[1] B.T. Aagaard, M.G. Knepley, and C.A. Williams. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res.: Sol. Earth, 118:3059--3079, 2013. [ bib ]
[2] Abaqus. Software product, online at http://www.3ds.com/products-services/simulia/products/abaqus/, accessed 11/2016, 2016. [ bib ]
[3] M. R. Abbassi and N. S. Mancktelow. Single layer buckle folding in nonlinear materials: 1. experimental-study of fold development from an isolated initial perturbation. J. Struc. Geology, 14:85--104, 1992. [ bib ]
[4] E. Abbate. Pre-orogenic tectonics and metamorphism in western Tethys Ophiolites. Ofioliti, 9:245--278, 1984. [ bib ]
[5] S. Abe and K. Mair. Grain fracture in 3D numerical simulations of granular shear. Geophys. Res. Lett., 32(L05305), 2005. [ bib | DOI ]
[6] Rachel E Abercrombie and James R Rice. Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int., 162:406--424, 2005. [ bib ]
[7] R. E. Abercrombie. Resolution and uncertainties in estimates of earthquake stress drop and energy release. Phil. Trans. R. Soc. A, 379, 2021. [ bib | DOI ]
[8] Rachel E Abercrombie, Daniel T Trugman, Peter M Shearer, Xiaowei Chen, Jiewen Zhang, Colin N Pennington, Jeanne L Hardebeck, Thomas HW Goebel, and Christine J Ruhl. Does earthquake stress drop increase with depth in the crust? J. Geophys. Res.: Sol. Earth, 126:e2021JB022314, 2021. [ bib ]
[9] Rachel Abercrombie and Peter Leary. Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys. Res. Lett., 20:1511--1514, 1993. [ bib ]
[10] Rachel E Abercrombie. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. J. Geophys. Res.: Sol. Earth, 100:24015--24036, 1995. [ bib ]
[11] R. E. Abercrombie. The magnitude-frequency distribution of earthquakes recorded with deep seismometers at Cajon Pass, southern california. Tectonophys., 261:1--7, 1996. [ bib ]
[12] G. A. Abers. Hydrated subducted crust at 100-250 km depth. Earth Planet. Sci. Lett., 176:323--330, 2000. [ bib ]
[13] G. A. Abers and J. W. Gephart. Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California. J. Geophys. Res.: Sol. Earth, 106:26523--26540, 2001. [ bib ]
[14] G. A. Abers, T. Plank, and B. R. Hacker. The wet Nicaragua slab. Geophys. Res. Lett., 30(L1098), 2003. [ bib | DOI ]
[15] Geoffrey A Abers. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys. Earth Planet. Inter., 149:7--29, 2005. [ bib ]
[16] G.A. Abers, P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik. The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet. Sci. Lett., 241:387--397, 2006. [ bib ]
[17] Geoffrey A Abers, Laura S MacKenzie, Stéphane Rondenay, Zhu Zhang, Aaron G Wech, and Kenneth C Creager. Imaging the source region of Cascadia tremor and intermediate-depth earthquakes. Geology, 37:1119--1122, 2009. [ bib ]
[18] G. A. Abers, P. E. van Keken, and B. R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosc., 10:333--337, 2017. [ bib ]
[19] Niloufar Abolfathian, Patricia Martínez-Garzón, and Yehuda Ben-Zion. Variations of stress parameters in the Southern California plate boundary around the South Central Transverse Ranges. J. Geophys. Res.: Sol. Earth, 125:e2020JB019482, 2020. [ bib ]
[20] Milton Abramowitz and Irene A Stegun, editors. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of Applied Mathematics Series. National Bureau of Standards, Washington DC, 5 edition, 1964. [ bib ]
[21] M. Abramowitz and I. A. Stegun. Handbook of Mathematical functions. Dover Publications, Inc., 1972. [ bib ]
[22] E. H. Abramson, J. M. Brown, L. J. Slutsky, and J. Zaug. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res.: Sol. Earth, 102:12253--12263, 1997. [ bib ]
[23] D. L. Abt and K. M. Fischer. Resolving three-dimensional anisotropic structure with shear-wave splitting tomography. Geophys. J. Int., 173:859--886, 2008. [ bib ]
[24] D. L. Abt, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. González. Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. Geochem., Geophys., Geosys., 10(Q05S15), 2009. [ bib | DOI ]
[25] D. Abt, K. M. Fischer, S. W. French, H. A. Ford, H. Yuan, and B. A. Romanowicz. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res.: Sol. Earth, 115(B09301), 2010. [ bib | DOI ]
[26] A. Acrivos. Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field. J. Fluid. Mech., 46:233--240, 1971. [ bib ]
[27] J. M.-C. Adam and S. Lebedev. Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys. J. Int., 191:155--174, 2012. [ bib ]
[28] D. C. Adams and E. D. Humphreys. New constraints on the properties of the Yellowstone mantle plume from P and S wave attenuation tomography. J. Geophys. Res.: Sol. Earth, 115(B12311), 2010. [ bib | DOI ]
[29] T. Affolter and J.-P. Gratier. Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[30] J. C. Afonso, G. Ranalli, M. Fernandez, W. L. Griffin, S. Y. O'Reilly, and U. Faul. On the Vp/Vs–Mg# correlation in mantle peridotites: implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet. Sci. Lett., 289:606--618, 2010. [ bib ]
[31] P. Agard, P. Yamato, L. Jolivet, and E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth-Sci. Rev., 92:53--79, 2009. [ bib ]
[32] P. Agard, A. Plunder, S. Angiboust, G. Bonnet, and J. Ruh. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos, 320:537--566, 2018. [ bib ]
[33] R. Agata, S. D. Barbot, K. Fujita, M. Hyodo, T. Iinuma, R. Nakata, T. Ichimura, and Takane Hori. Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nature Comm., 10:1--11, 2019. [ bib ]
[34] C. B. Agee. Phase transformations and seismic structure in the upper mantle and transition zone. In R. J. Hemley, editor, Ultrahigh-Pressure Mineralogy. Physics and Chemistry of the Earth's Deep Interior, volume 37 of Reviews in Mineralogy, pages 165--203. Mineralogical Society of America, Washington DC, 1998. [ bib ]
[35] M. R. Agius and S. Lebedev. Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophys. J. Int., 199:1395--1415, 2014. [ bib ]
[36] M. R. Agius and S. Lebedev. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophys. J. Int., 210:1823--1844, 2017. [ bib ]
[37] D. C. Agnew. SPOTL: Some programs for ocean-tide loading. Technical report, Scripps Institution of Oceanography, 2012. [ bib ]
[38] D. C. Agnew. Strainmeters and tiltmeters. Rev. Geophys., 24:579--624, 1986. [ bib ]
[39] Roberto Agrusta, Jeroen Van Hunen, and Saskia Goes. The effect of metastable pyroxene on the slab dynamics. Geophys. Res. Lett., 41:8800--8808, 2014. [ bib ]
[40] R. Agrusta, S. Goes, and J. van Hunen. Subducting-slab transition zone interaction: stagnation, penetration and mode switches. Earth Planet. Sci. Lett., 464:10--23, 2017. [ bib ]
[41] AIAA. Digital twin: Definition & value. AIAA and AIA Position Paper, 2020. AIAA Digital Engineering Integration Committee and others, available oneline at www.aia-aerospace.org/wp-content/uploads/Digital-Twin-Institute-Position-Paper-December-2020-1.pdf, accessed 12/2023. [ bib ]
[42] George Biddell Airy. III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil. Trans. Royal Soc. London, 145:101--104, 1855. [ bib ]
[43] Jonathan C Aitchison, Aileen M Davis, Jianbing Liu, Hui Luo, John G Malpas, Isabella RC McDermid, Hiyun Wu, Sergei V Ziabrev, Mei-fu Zhou, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung--Zangbo suture (southern Tibet). Earth Planet. Sci. Lett., 183:231--244, 2000. [ bib ]
[44] J. C. Aitchison, J. R. Ali, and A. M. Davis. When and where did India and Asia collide? J. Geophys. Res.: Sol. Earth, 112(B05423), 2007. [ bib | DOI ]
[45] H. Akaike. On entropy. In P. R. Krishnaiah, editor, Applications of Statistics, pages 27--41. North Holland, Amsterdam, 1977. [ bib ]
[46] M. Akaogi and E. Ito. Calorimetric study on majorite-perovskite transition in the system mg4si4o12-mg3al2si3o_12: transition boundaries with positive pressure-temperature slopes. Phys. Earth Planet. Inter., 114:129--140, 1999. [ bib ]
[47] M. Akaogi, Y. Hamada, T. Suzuki, and M. Kobayashi. High pressure transitions in the system MgAl2O4-CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle. Phys. Earth Planet. Inter., 115:67--77, 1999. [ bib ]
[48] K. Aki and P. G. Richards. Quantitative Seismology. University Science Books, Sausalito, California, 2 edition, 2002. [ bib ]
[49] Keiiti Aki. Synthesis of earthquake science information and its public transfer: A history of the Southern California Earthquake Center. In International Handbook of Earthquake & Engineering Seismology, volume 81A, pages 39--49. International Association of Phys. Earth's Interior Committee on Education, 2002. [ bib ]
[50] K. Aki and K. Kaminuma. Phase velocity in Japan. Part I. Love waves from the Aleutian shock of March 9, 1957. Bull. Earthq. Res. Inst. Tokyo Univ., 41:243--259, 1963. [ bib ]
[51] K. Aki. Maximum likelihood estimate of b in the formula log n = a-bm and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ., 43:237--239, 1965. [ bib ]
[52] K. Aki. Generation and propagation of G waves from the Niigata earthquake of June 16 1964. 2. Estimation of earthquake movement released energy and stress-strain drop from G wave spectrum. Bull. Earthq. Res. Inst. Tokyo Univ., 44:23--88, 1966. [ bib ]
[53] K. Aki. Scaling law of seismic spectrum. J. Geophys. Res.: Sol. Earth, 72:1217--1231, 1967. [ bib ]
[54] K. Aki and B. Chouet. Origin of coda waves: source, attenuation and scattering effects. J. Geophys. Res.: Sol. Earth, 80:3322--3342, 1975. [ bib ]
[55] K. Aki. Characterization of barriers on an earthquake fault. J. Geophys. Res.: Sol. Earth, 84:6140--6148, 1979. [ bib ]
[56] K. Aki and P. G. Richards. Quantitative Seismology, volume 1. Freeman and Company, New York, 1980. [ bib ]
[57] K. Aki. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res.: Sol. Earth, 89:5867--5872, 1984. [ bib ]
[58] K. Aki and P. G. Richards. Quantitative Seismology, volume 2. Freeman and Company, New York, 1980. [ bib ]
[59] David Al-Attar and Jeroen Tromp. Sensitivity kernels for viscoelastic loading based on adjoint methods. Geophys. J. Int., 196:34--77, 2014. [ bib ]
[60] F. Albarede and R. D. van der Hilst. Zoned mantle convection. Phil. Trans. Roy. Soc. Lon. A, 360:2569--2592, 2002. [ bib ]
[61] F. Albarede. Introduction to geochemical modeling. Cambridge University Press, 1995. [ bib ]
[62] F. Albarède. Time-dependent models of the U-Th-He and K-Ar evolution and the layering of mantle convection. Chem. Geol., 145:413--429, 1998. [ bib ]
[63] F. Albarède and R. D. van der Hilst. New mantle convection model may reconcile conflicting evidence. Eos Trans. AGU, 80:533--539, 1999. [ bib ]
[64] Michael Albers and Ulrich R Christensen. Channeling of plume flow beneath mid-ocean ridges. Earth Planet. Sci. Lett., 187(1-2):207--220, 2001. [ bib ]
[65] C. Alder, T. Bodin, Y. Ricard, Y. Capdeville, E. Debayle, and J. P. Montagner. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities. Geophys. J. Int., 211:1585--1600, 2017. [ bib ]
[66] L. R. Alejano and A. Bobet. Drucker–Prager criterion. Rock Mech. Rock Eng., 45:995--999, 2012. [ bib ]
[67] S. T. Ali and A. M. Freed. Contemporary deformation and stressing rates in Southern Alaska. Geophys. J. Int., 183:557--571, 2010. [ bib ]
[68] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, L. C. Wilcox, and O. Ghattas. Slab stress and strain rate as constraints on global mantle flow. Geophys. Res. Lett., 37(L22308), 2010. [ bib | DOI ]
[69] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, and O. Ghattas. Multi-scale dynamics and rheology of mantle flow with plates. J. Geophys. Res.: Sol. Earth, 117(B10402), 2012. [ bib | DOI ]
[70] C. Allégre. The evolution of mantle mixing. Phil. Trans. R. Soc. Lond. A, 360:2411--2431, 2002. [ bib ]
[71] C. J. Allègre and D. L. Turcotte. Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys. Res. Lett., 12:207--210, 1985. [ bib ]
[72] C. J. Allègre and D. L. Turcotte. Implications of a two-component marble-cake mantle. Nature, 323:123--127, 1986. [ bib ]
[73] C. Allègre. The behavior of the Earth. Harvard University Press, Cambridge MA, 1988. [ bib ]
[74] C. J. Allègre, J. L. Mouöl, H. D. Chau, and C. Narteau. Scaling organization of fracture tectonics (SOFT) and earthquake mechanism. Earth Planet. Sci. Lett., 92:215--233, 1995. [ bib ]
[75] Claude J Allegre, Gerard Manhes, and Christa Göpel. The age of the Earth. Geochim. Cosmochim. Acta, 59:1445--1456, 1995. [ bib ]
[76] C. J. Allègre, A. Hofmann, and K. O'Nions. The Argon constraints on mantle structure. Geophys. Res. Lett., 23:3555--3557, 1996. [ bib ]
[77] C. J. Allègre, J.L. Birck, F. Capmas, and V. Courtillot. Age of the Deccan traps using 187Re–187Os systematics. Earth Planet. Sci. Lett., 170:197--204, 1999. [ bib ]
[78] C. R Allen. Active faulting in Northern Turkey. Technical Report 1577, Div. Sci. Calif. Inst. Tech., 1969. [ bib ]
[79] Richard M Allen, Guust Nolet, W Jason Morgan, Kristín Vogfjörd, Bergur H Bergsson, Pálmi Erlendsson, GR Foulger, Steinunn Jakobsdóttir, Bruce R Julian, Matt Pritchard, Sturla Ragnarsson, and Ragnar Stefánsson. Imaging the mantle beneath Iceland using integrated seismological techniques. J. Geophys. Res.: Sol. Earth, 107(B12), 2002. [ bib | DOI ]
[80] M. B. Allen and H. A. Armstrong. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr., Palaeoclim., Palaeoeco., 265:3152--3158, 2008. [ bib ]
[81] Philip A Allen and John R Allen. Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons, 2013. [ bib ]
[82] K. L. Allison and E. M. Dunham. Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophys., 733:232--258, 2018. [ bib ]
[83] Kali L Allison and Eric M Dunham. Influence of shear heating and thermomechanical coupling on earthquake sequences and the brittle-ductile transition. J. Geophys. Res.: Sol. Earth, 126(6):e2020JB021394, 2021. [ bib ]
[84] Vaneeda Allken, Ritske S Huismans, and Cedric Thieulot. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study. G3, 13(Q05010), 2012. [ bib | DOI ]
[85] Bettina P Allmann and Peter M Shearer. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res.: Sol. Earth, 114(B01310), 2009. [ bib | DOI ]
[86] Rafael Almeida, Eric O. Lindsey, Kyle Bradley, Judith Hubbard, Rishav Mallick, and Emma M. Hill. Can the updip limit of frictional locking on megathrusts be detected geodetically? Quantifying the effect of stress shadows on near-trench coupling. Geophys. Res. Lett., 45:4754--4763, 2018. [ bib ]
[87] Bjarne S.G. Almqvist and David Mainprice. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev. Geophys., 55(2):367--433, 2017. [ bib ]
[88] L. A. Alpert, A. Ghosh, T. W. Becker, I. W. Bailey, and M. S. Miller. Coseismic subduction zone strain-release as a constraint for slab dynamics. Eos Trans. AGU, 89(53):DI53A--1674, 2008. [ bib ]
[89] L. A. Alpert, T. W. Becker, and I. Bailey. Coseismic sbuduction zone strain-release as a constraint for slab dynamics. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 26, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[90] L. A. Alpert, T. W. Becker, and I. W. Bailey. Global slab deformation and centroid moment constraints on viscosity. Geochem., Geophys., Geosys., 11(Q12006), 2010. [ bib | DOI ]
[91] L. A. Alpert, I. W. Bailey, and T. W. Becker. Deformation and geometry of subducted lithosphere from an analysis of global centroid moment tensor data (abstract). Eos Trans. AGU, pages DI31A--1947, 2010. [ bib ]
[92] L. A. Alpert, M. S. Miller, and T. W. Becker. Slab tearing in 3-D models of subduction and continental collision: Application to the Banda Sea (abstract). XXV IUGG General Assembly, Melbourne, Australia, 2011. [ bib ]
[93] L. A. Alpert, M. S. Miller, T. W. Becker, and A. A. Allam. Structure beneath the Alboran from geodynamic flow models and seismic anisotropy. J. Geophys. Res.: Sol. Earth, 118:1--13, 2013. [ bib | DOI ]
[94] Wolfram Alpha. www.wolframalpha.com/, accessed 01/2021, 2021. [ bib ]
[95] John Alroy. Accurate and precise estimates of origination and extinction rates. Paleobiol., 40:374--397, 2014. [ bib ]
[96] Fahad Alsayyari, Zoltán Perkó, Marco Tiberga, Jan Leen Kloosterman, and Danny Lathouwers. A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-dependent problems. Comp. Meth. Appl. Mech. Eng., 373:113483, 2021. [ bib ]
[97] P. Alvarado, S. Beck, G. Zandt, M. Araujo, and E. Triep. Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling. Geophys. J. Int., 163:580--598, 2005. [ bib ]
[98] W. Alvarez. Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet. Sci. Lett., 296:434--442, 2010. [ bib ]
[99] Luis W Alvarez, Walter Alvarez, Frank Asaro, and Helen V Michel. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208:1095--1108, 1980. [ bib ]
[100] W. Alvarez. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. J. Geophys. Res.: Sol. Earth, 87:6697--6710, 1982. [ bib ]
[101] W. Alvarez. Geologic evidence for the plate-driving mechanism: the continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics, 9:1213--1220, 1990. [ bib ]
[102] Joaquina Alvarez-Marron, E Rubio, and Montserrat Torné. Subduction-related structures in the North Iberian margin. J. Geophys. Res.: Sol. Earth, 102:22497--22511, 1997. [ bib ]
[103] C. Amante and B. W. Eakins. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. Technical report, National Geophysical Data Center, NOAA, 2009. NOAA Technical Memorandum NESDIS NGDC-24. Available online at www.ngdc.noaa.gov/mgg/global/global.html, accessed 11/2016. [ bib | DOI ]
[104] M. L. Amaru. Global travel time tomography with 3-d reference models. Geologica Ultraiectina, 274, 2007. 174p. [ bib ]
[105] N.N. Ambraseys. Some characteristic features of the North Anatolian fault zone. Tectonophys., 9:143--165, 1970. [ bib ]
[106] F. Amelung and G. C. P. King. Large-scale tectonic deformation inferred from small earthquakes. Nature, 386:702--705, 1997. [ bib ]
[107] D. Amitrano and J. Schmittbuhl. Fracture roughness and gouge distribution of a granite shear band. J. Geophys. Res.: Sol. Earth, 107(2375), 2002. [ bib | DOI ]
[108] D. Amitrano. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res.: Sol. Earth, 108(2044), 2003. [ bib | DOI ]
[109] D. Amitrano, J.-R. Grasso, and D. Hantz. From diffuse to localised damage through elastic interaction. Geophys. Res. Lett., 26:2109--2112, 1999. [ bib ]
[110] C. J. Ammon and G. E. Randall. mtinv. Available online at http://eqseis.geosc.psu.edu/~cammon/HTML/MTinvDocs/mtinv01.html, accessed 10/2011, 1994. [ bib ]
[111] G Amontons. De la resistance cause’e dans les machines (about resistance and force in machines). Mem. l’Academie R. A., pages 257--282, 1699. [ bib ]
[112] C. B. Amos, D. W. Burbank, D. C. Nobes, and S. A. L. Read. Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand. J. Geophys. Res.: Sol. Earth, 112(B03S11), 2007. [ bib | DOI ]
[113] C. B. Amos, P. Audet, W. C. Hammond, R. Bürgmann, I. A. Johanson, and G. Blewitt. Uplift and seismicity driven by groundwater depletion in central California. Nature, 509:483--486, 2014. [ bib ]
[114] O.. Ampferer. Über das Bewegungsbild von Faltengebirgen. Jahrbuch d. K. K. Geol. Reichsanst., 56:539--622, 1906. [ bib ]
[115] O. Ampferer and W. Hammer. Geologischer Querschnitt durch die Ostalpen vom Allgäu zum Gardasee. Jahrbuch d. K. K. Geol. Reichsanst., 61:531--710, 1911. [ bib ]
[116] Jean-Paul Ampuero and FA Dahlen. Ambiguity of the moment tensor. Bull. Seismol. Soc. Am., 95:390--400, 2005. [ bib ]
[117] J.-P. Ampuero and A. M. Rubin. Earthquake nucleation on rate and state faults: Aging and slip laws. J. Geophys. Res.: Sol. Earth, 113(B01302), 2008. [ bib | DOI ]
[118] A Amstutz. Sur l'évolution des structures alpines (notes pour la légende d'une série de schémas embryotectoniques). Archi. Sci., 4:323--329, 1951. [ bib ]
[119] D. L. Anderson. The thermal state of the upper mantle: no role for mantle plumes. Geophys. Res. Lett., 27:3623--3626, 2000. [ bib ]
[120] D. L. Anderson. Topside tectonics. Science, 293:2016--2018, 2001. [ bib ]
[121] M. L. Anderson, G. Zandt, E. Triep, M. Fouch, and S. Beck. Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis. Geophys. Res. Lett., 31(L23608), 2004. [ bib | DOI ]
[122] E. M. Anderson. The dynamics of faulting. Trans. Edinburgh Geol. Soc., 8:387--402, 1905. [ bib ]
[123] D. L. Anderson. New theory of the Earth. Cambridge University Press, 2 edition, 2007. [ bib ]
[124] M. Anderson, P. Alvarado, G. Zandt, and S. Beck. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int., 171:419--434, 2007. [ bib ]
[125] K. Anderson and P. Segall. Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J. Geophys. Res.: Sol. Earth, 116(B07204), 2011. [ bib | DOI ]
[126] K. Anderson and P. Segall. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004–2008. J. Geophys. Res.: Sol. Earth, 118:2017--2037, 2013. [ bib | DOI ]
[127] D. L. Anderson. Elastic wave propagation in layered anisotropic media. J. Geophys. Res.: Sol. Earth, 66:2953--2963, 1961. [ bib ]
[128] D. L. Anderson. Recent evidence concerning the structure and composition of the Earth's mantle. In Physics and Chemistry of the Earth, volume 6, pages 1--131. Pergmanon Press, Oxford UK, 1966. [ bib ]
[129] D. L. Anderson. A seismic equation of state. Geophys. J. R. Astr. Soc., 13:9--30, 1967. [ bib ]
[130] D. L. Anderson. Latest information from seismic observations. In T. F. Gaskell, editor, The Earth's Mantle, pages 355--420. Academic Press, New York, 1967. [ bib ]
[131] O. L. Anderson, E. Schreiber, and R. C. Liebermann. Some elastic constant data on minerals relevant to geophysics. Rev. Geophys. Space Phys., 6:491--524, 1968. [ bib ]
[132] D. L. Anderson. Chemical stratification of the mantle. J. Geophys. Res.: Sol. Earth, 84:6297--6298, 1979. [ bib ]
[133] D. L. Anderson and A. M. Dziewoński. Upper mantle anisotropy: evidence from free oscillations. Geophys. J. R. Astr. Soc., 69:383--404, 1982. [ bib ]
[134] D. L. Anderson. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297:391--393, 1982. [ bib ]
[135] D. L. Anderson. A seismic equation of state. II. Shear properties and thermodynamics of the lower mantle. Phys. Earth Planet. Inter., 45:307--323, 1987. [ bib ]
[136] D. L. Anderson. Theory of the Earth. Blackwell Scientific Publications, Boston, 1989. Available online at http://resolver.caltech.edu/CaltechBOOK:1989.001, accessed 01/2019. [ bib ]
[137] O. Anderson and D. G. Isaak. Elastic constants of mantle minerals at high temperature. In T. Ahrens, editor, A Handbook of Physical Constants: Mineral Physics and Crystallography, volume 2 of AGU Handbook, pages 64--98. AGU, Washington, DC, 1995. [ bib ]
[138] R. Anderson, J. Repka, and G. Dick. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology, 24:47--51, 1996. [ bib ]
[139] Ryosuke Ando and Yoshihiro Kaneko. Dynamic rupture simulation reproduces spontaneous multifault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake. Geophys. Res. Lett., 45:12--875, 2018. [ bib ]
[140] M. Ando. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophys., 27:119--140, 1975. [ bib ]
[141] M. Ando, Y. Ishikawa, and H. Wada. S-wave anisotropy in the upper mantle under a volcanic area in Japan. Nature, 286:43--46, 1980. [ bib ]
[142] M. Ando, Y. Ishikawa, and F. Yamasaki. Shear-wave polarization anisotropy in the mantle beneath Honshu, Japan. J. Geophys. Res.: Sol. Earth, 88:5850--5864, 1983. [ bib ]
[143] E. Andrews and M. I. Billen. Rheologic controls on slab detachment. Tectonophys., 464:60--69, 2009. [ bib ]
[144] D. J. Andrews and N. H. Sleep. Numerical modeling of tectonic flow behind Island Arc. Geophys. J. R. Astr. Soc., 38:237--251, 1974. [ bib ]
[145] J. Andrieux, S. Över, A. Poisson, and B. Olivier. The North Anatolian Fault Zone: distributed Neogene deformation in its northward convex part. Tectonophys., 243:135--154, 1995. [ bib ]
[146] J. Angelier, A. Tarantola, S. Manoussis, and B. Valette. Inversion of field data in fault tectonics to obtain the regional stress. 1: single phase fault populations: a new method of computing the stress tensor. Geophys. J. R. Astr. Soc., 69:607--621, 1982. [ bib ]
[147] Samuel Angiboust, Sylvie Wolf, Evgenii Burov, Philippe Agard, and Philippe Yamato. Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling. Earth Planet. Sci. Lett., 357:238--248, 2012. [ bib ]
[148] Samuel Angiboust, Josephine Kirsch, Onno Oncken, Johannes Glodny, Patrick Monié, and Erik Rybacki. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochem., Geophys., Geosys., 16:1905--1922, 2015. [ bib ]
[149] S. Angiboust and J. Glodny. Exhumation of eclogitic ophiolitic nappes in the W. Alps: New age data and implications for crustal wedge dynamics. Lithos, 356, 2020. [ bib | DOI ]
[150] D. K. Anglin and M. Fouch. Seismic anisotropy in the Izu-Bonin subduction system. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[151] F. Anguita and F. Hernán. The Canary Islands origin: a unifying model. J. Volc. Geoth. Res., 103:1--26, 2000. [ bib ]
[152] ANKORP working group. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature, 397:341--344, 1999. [ bib ]
[153] ANSYS, Inc. ANSYS Academic Research, Release 14.0, Help System, Coupled Field Analysis Guide, 2013. [ bib ]
[154] Boulder Real Time Technologies. Antelope, 2011. Available online at http://www.brtt.com/software.html, accessed 11/2011. [ bib ]
[155] Solène L Antoine, Yann Klinger, Arthur Delorme, Kang Wang, Roland Bürgmann, and Ryan D Gold. Diffuse deformation and surface faulting distribution from submetric image correlation along the 2019 Ridgecrest, California, ruptures. Bull. Seismol. Soc. Am., 111:2275--2302, 2021. [ bib ]
[156] S. Antoine, Y. Klinger, K. Wang, and R. Bürgmann. Diffuse deformation explains the magnitude-dependent coseismic shallow slip deficit (preprint). Research Square, 2023. [ bib | DOI ]
[157] M. Antolik, G. Ekström, A. M. Dziewoński, Y. J. Gu, J.-f. Pan, and L. Boschi. A new joint P and S velocity model of the mantle parameterized in cubic B-splines. In 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT): Proceedings, volume II, 2001. [ bib ]
[158] Thomas M Antonsen Jr and Edward Ott. Multifractal power spectra of passive scalars convected by chaotic fluid flows. Phys. Rev. A, 44:851, 1991. [ bib ]
[159] Hideo Aochi and Eiichi Fukuyama. Three-dimensional nonplanar simulation of the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 107(B2), 2002. [ bib | DOI ]
[160] Hideo Aochi and Raúl Madariaga. The 1999 Izmit, Turkey, earthquake: Nonplanar fault structure, dynamic rupture process, and strong ground motion. Bull. Seismol. Soc. Am., 93:1249--1266, 2003. [ bib ]
[161] T Araki, S Enomoto, K Furuno, Y Gando, K Ichimura, H Ikeda, K Inoue, Y Kishimoto, M Koga, Y Koseki, et al. Experimental investigation of geologically produced antineutrinos with kamland. Nature, 436:499--503, 2005. [ bib ]
[162] Eiichiro Araki, Demian M Saffer, Achim J Kopf, Laura M Wallace, Toshinori Kimura, Yuya Machida, Satoshi Ide, Earl Davis, and IODP Expedition 365 shipboard scientists. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust. Science, 356:1157--1160, 2017. [ bib ]
[163] D. Arcay, S. Lallemand, and M.-P. Doin. Back-arc strain in subduction zones: Statistical observations versus numerical modeling. Geochem., Geophys., Geosys., 9(Q05015), 2008. [ bib | DOI ]
[164] Diane Arcay. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting. Phys. Earth Planet. Inter., 269:112--132, 2017. [ bib ]
[165] D. Archer, A. Winguth, D. Lea, and N. Mahowald. What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys., 38:159--189, 2000. [ bib ]
[166] C. Arenas, H. Millan, G. Pardo, and A. Pocovi. Ebro basin continental sedimentation associated with late compressional pyrhenean tectonics (north-eastern iberia): controld on basin margin fans and fluvial systems. Basin Res., 13:65--89, 2001. [ bib ]
[167] R. Arevalo, A. Ghosh, V. Lekic, V. C. Tsai, A. M. Dziewoński, L. H. Kellogg, J. Matas, W. R. Panero, and B. A. Romanowicz. Degree-2 in the Transition Zone and Near the CMB: Bottom up Tectonics? EOS Trans AGU, 89(53):DI21A--1744, 2008. [ bib ]
[168] Emile Argand. La tectonique de l'Asie. Conférence faite á Bruxelles, le 10 août 1922. In Congrès géologique international (XIIIe session)-Belgique 1922, pages 171--372, 1922. [ bib ]
[169] E. Argand. La tectonique de l'asie. In Extrait du Compte-rendu du XIIIe congrès Géologique International 1922, volume 1, pages 171--372, Liège, Belgium, 1924. [ bib ]
[170] D. F. Argus, R. G. Gordon, and C. DeMets. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem., Geophys., Geosys., 12(Q11001), 2011. [ bib | DOI ]
[171] D. F. Argus, Y. Fu, and F. W. Landerer. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett., 41:1971--1980, 2014. [ bib | DOI ]
[172] D. F. Argus, W. R. Peltier, R. Drummond, and A.W. Moore. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int., 198:537--563, 2014. [ bib ]
[173] D. F. Argus and R. G. Gordon. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett., 18:2039--2042, 1991. [ bib ]
[174] M. Arnould, N. Coltice, N. Flament, and C. Mallard. Plate tectonics and mantle controls on plume dynamics. Earth Planet. Sci. Lett., 547:116439, 2020. [ bib ]
[175] A. Arnulf, D. Bassett, A. J. Harding, S. Kodaira, and A. Nakanishi. Anatomy of the Nankai subduction zone (abstract). In AGU Fall Meeting, number T41C-07, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[176] A. F. Arnulf, J. Biemiller, L. Lavier, L. Wallace, D. Bassett, S. Henrys, I. Pecher, G. Crutchley, and A. Plaza Faverola. Physical conditions and frictional properties in the source region of a slow-slip event. Nature Geosc., 14:334--340, 2021. [ bib ]
[177] A. ArRajehi, S. McClusky, R. Reilinger, M. Daoud, A. Alchalbi, S. Ergintav, F. Gomez, J. Sholan, F. Bou-Rabee, G. Ogubazghi, B. Haileab, S. Fisseha, L. Asfaw, S. Mahmoud, A. Rayan, R. Bendik, and L. Kogan. Geodetic constraints on present day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29(TC3011), 2010. [ bib | DOI ]
[178] Katrina M Arredondo and Magali I Billen. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity. Phys. Earth Planet. Inter., 196:1--13, 2012. [ bib ]
[179] Katrina M Arredondo and Magali I Billen. Coupled effects of phase transitions and rheology in 2-D dynamical models of subduction. J. Geophys. Res.: Sol. Earth, 122:5813--5830, 2017. [ bib ]
[180] I. Artemieva. Global 1o ×1o thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophys., 416:245--277, 2006. [ bib ]
[181] E. V. Artyushkov. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res.: Sol. Earth, 78:7675--7708, 1973. [ bib ]
[182] M. F. Ashby and R. A. Verrall. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Phil. Trans. Roy. Soc. London A, 288:59--95, 1977. [ bib ]
[183] M. F. Ashby and C. G. Sammis. The damage mechanics of brittle solids in compression. Pure Appl. Geophys., 133:489--521, 1990. [ bib ]
[184] J. Aspden, W. McCourt, and M. Brook. Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia. J. Geol. Soc. London, 144:893--905, 1987. [ bib ]
[185] S. Atkins and N. Coltice. Constraining the range and variation of lithospheric net rotation using geodynamic modeling. J. Geophys. Res.: Sol. Earth, 126:e2021JB022057, 2021. [ bib ]
[186] B. K. Atkinson. Fracture Mechanics of Rock. Academic Press, London, 1987. [ bib ]
[187] B. K. Atkinson. Introduction to fracture mechanics. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 1, pages 1--23. Academic Press, London, 1987. [ bib ]
[188] HV Atkinson. Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metallurgica, 36:469--491, 1988. [ bib ]
[189] V. C. Li. Mechanics of shear rupture applied to earthquake zones. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 9, pages 351--424. Academic Press, London, 1987. [ bib ]
[190] B.F. Atwater, S. Musumi-Rokkaku, K. Satake, Y. Tsuji, K. Ueda, and D. K. Yamaguchi. The orphan tsunami of 1700--Japanese clues to a parent earthquake in North America. Technical Report 1707, United States Geological Survey, 2015. 2nd edition, 135 p. [ bib ]
[191] T. Atwater. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Amer. Bull., 81:3513--3536, 1970. [ bib ]
[192] T. Atwater and J. Stock. Pacific-North America plate tectonics of the Neogene southwestern United States: An update. Int. Geol. Rev., 40:375--402, 1998. [ bib ]
[193] Felipe E Audemard and Franck A Audemard. Structure of the Mérida Andes, Venezuela: relations with the South America--Caribbean geodynamic interaction. Tectonophys., 345:1--26, 2002. [ bib ]
[194] P. Audet, M. G. Bostock, N. I. Christensen, and S. M. Peacock. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457:76--78, 2009. [ bib ]
[195] P. Audet and R. Bürgmann. Dominant role of tectonic inheritance in supercontinent cycles. Nature Geosc., 4:184--187, 2011. [ bib ]
[196] Pascal Audet and Susan Y Schwartz. Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nature Geosc., 6:852--855, 2013. [ bib ]
[197] Pascal Audet. Layered crustal anisotropy around the San Andreas Fault near Parkfield, California. J. Geophys. Res.: Sol. Earth, 120:3527--3543, 2015. [ bib ]
[198] Pascal Audet and YoungHee Kim. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophys., 670:1--15, 2016. [ bib ]
[199] L. Auer, L. Boschi, T. W. Becker, T. Nissen-Meyer, and D. Giardini. Savani: A variable-resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets. J. Geophys. Res.: Sol. Earth, 119:3006--3034, 2014. [ bib | DOI ]
[200] L. Auer, T. W. Becker, L. Boschi, and N. Schmerr. Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers. Geophys. Res. Lett., 42:9740--9742, 2015. [ bib | DOI ]
[201] Jacqueline Austermann, Jerry X Mitrovica, Peter Huybers, and Alessio Rovere. Detection of a dynamic topography signal in last interglacial sea-level records. Sci. Adv., 3:e1700457, 2017. [ bib ]
[202] Jacqueline Austermann, Mark J Hoggard, Konstantin Latychev, Fred D Richards, and Jerry X Mitrovica. The effect of lateral variations in Earth structure on Last Interglacial sea level. Geophys. J. Int., 227:1938--1960, 2021. [ bib ]
[203] N. J. Austin and B. Evans. Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35:343--346, 2007. [ bib ]
[204] Christian Auth, David Bercovici, and Ulrich R Christensen. Two-dimensional convection with a self-lubricating, simple-damage rheology. Geophys. J. Int., 154:783--800, 2003. [ bib ]
[205] Harm JA Van Avendonk, Joshua K Davis, Jennifer L Harding, and Lawrence A Lawver. Decrease in oceanic crustal thickness since the breakup of Pangaea. Nature Geosc., 10:58--61, 2017. [ bib ]
[206] Jean-Philippe Avouac. Mountain Building, Erosion, and the Seismic Cycle in the Nepal Himalaya. Adv. Geophys., 46:1--80, 2003. [ bib ]
[207] J.-P. Avouac. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Ann. Rev. Earth Planet. Sci., 43:233--271, 2015. [ bib ]
[208] Jean-Philippe Avouac and Paul Tapponnier. Kinematic model of active deformation in central asia. Geophys. Res. Lett., 20:895--898, 1993. [ bib ]
[209] Atilla Aydin and Amos Nur. Evolution of pull-apart basins and their scale independence. Tectonics, 1:91--105, 1982. [ bib ]
[210] Atilla Aydin and Amos Nur. The types and role of stepovers in strike slip tectonics. In Kevin T. Biddle and Nicholas Christie-Blick, editors, Strike-Slip Deformation, Basin Formation, and Sedimentation, volume 37. Society for Sedimentary Geology, 1985. [ bib ]
[211] T. Baba, Y. Tanioka, P. R. Cummins, and K. Uhira. The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Phys. Earth Planet. Inter., 132:59--73, 2002. [ bib ]
[212] A. Babeyko and S. V. Sobolev. Quantifying different modes of the late Cenozoic shortening in the central Andes. Geology, 33:621--624, 2005. [ bib ]
[213] A. Y. Babeyko and S. Soboloev. High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs. Lithos, 103:205--216, 2008. [ bib ]
[214] V. Babuška and J. Plomerová. European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys. Earth Planet. Inter., 158:264--280, 2006. [ bib ]
[215] V. Babuška, J. Plomerová, and J. Šíleny. Spatial variations of P residuals and deep structure of the European lithospere. Geophys. J. R. Astr. Soc., 79:363--383, 1984. [ bib ]
[216] V. Babuška, J.-P. Montagner, J. Plomerová, and N. Girardin. Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy. Pure Appl. Geophys., 151:257--280, 1998. [ bib ]
[217] V. Babuška and M. Cara. Seismic Anisotropy in the Earth. Kluwer Academic Publishers, Dordrecht, 1991. [ bib ]
[218] P. Baccheschi, L. Margheriti, and M. S. Steckler. Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys. Res. Lett., 34(L05302), 2007. [ bib | DOI ]
[219] C. E. Bachmann, S. Wiemer, B. P. Goertz-Allmann, and J. Woessner. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett., 39(L09302), 2012. [ bib | DOI ]
[220] G. E. Backus. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res.: Sol. Earth, 67:4427--4440, 1962. [ bib ]
[221] G. E. Backus. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res.: Sol. Earth, 70:3429--3439, 1965. [ bib ]
[222] G. Backus, J. Park, and D. Garbasz. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 67:415--435, 1981. [ bib ]
[223] Jeffrey L Bada and Jun Korenaga. Exposed areas above sea level on Earth> 3.5 Gyr ago: implications for prebiotic and primitive biotic chemistry. Life, 8(4):55, 2018. [ bib ]
[224] James Badro, Guillaume Fiquet, François Guyot, Jean-Pascal Rueff, Viktor V Struzhkin, Gyorgy Vanko, and Giulio Monaco. Iron partitioning in Earth's mantle: Toward a deep lower mantle discontinuity. Science, 300:789--791, 2003. [ bib ]
[225] M. Baes, R. Gover, and R. Wortel. Switching between alternative responses of the lithosphere to continental collision. Geophys. J. Int., 2011. [ bib | DOI ]
[226] Alireza Bahadori and William E Holt. Geodynamic evolution of southwestern North America since the Late Eocene. Nature Comm., 10:1--18, 2019. [ bib ]
[227] Q. Bai, S. J. Mackwell, and D. L. Kohlstedt. High-temperature creep of olivine single crystals, 1. mechanical results for buffered samples. J. Geophys. Res.: Sol. Earth, 96:2441--2463, 1991. [ bib ]
[228] I. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of crustal coseismic strain release associated with different earthquake sizes as imaged by a tensor summation method. In 2005 SCEC Annual Meeting Abstracts, page 9, Los Angeles, CA, 2005. Southern California Earthquake Center. Available online at http://www.scec.org/meetings/2005am/2005abstracts.doc. [ bib ]
[229] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Strain release in southern california based on earthquake catalog data (abstract). Seis. Res. Lett., 76(2), 2005. [ bib ]
[230] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of co-seismic strain computed from southern California focal mechanisms. Geophys. J. Int., 177:1015--1036, 2009. [ bib ]
[231] I. W. Bailey, Y. Ben-Zion, T. W. Becker, and M. Holschneider. Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophys. J. Int., 183:433--450, 2010. [ bib ]
[232] I. W. Bailey, L. A. Alpert, T. W. Becker, and M. S. Miller. Co-seismic deformation of deep slabs based on summed CMT data. J. Geophys. Res.: Sol. Earth, 177(B04404), 2012. [ bib | DOI ]
[233] I. W. Bailey, M. S. Miller, A. Levander, and K. Liu. VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. J. Geophys. Res.: Sol. Earth, 117, 2012. [ bib | DOI ]
[234] F. Bajolet, J. Galeano-Prieto, F. Funiciello, A. M. Negredo, M. Moroni, and C. Faccenna. Continental delamination: insights from laboratory models. Geochem., Geophys., Geosys., 13, 2011. [ bib | DOI ]
[235] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59:381, 1987. [ bib ]
[236] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38:364--373, July 1988. [ bib ]
[237] P. Bak and C. Tang. Earthquakes as a self-organized crititcal phenomenon. J. Geophys. Res.: Sol. Earth, 94:15636--15637, 1989. [ bib ]
[238] P. Bak, K. Christensen, and Z. Olami. Self-organized criticality: Consequences for statistics and predictability of earthquakes. In Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 18 of Geophys. Mono., pages 69--74. International Union of Geodesy and Geophysics, 1994. [ bib ]
[239] A. Baker, R. W. Allmendinger, and J. A. Rech. Permanent deformation caused by subduction earthquakes in northern Chile. Nature Geosc., 6:492--496, 2013. [ bib ]
[240] Edward T Baker, Y John Chen, and Jason Phipps Morgan. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett., 142:137--145, 1996. [ bib ]
[241] W.H. Bakun et al. Seismic slip, aseismic slip and the mechanics of repeating earthquakes on the Calaveras fault, California. In S. Das et al., editors, Earthquake Source Mechanics, volume 37 of Geophys. Mono., pages 195--207. American Geophysical Union, Washington DC, 1986. [ bib ]
[242] WH Bakun, B Aagaard, B Dost, WL Ellsworth, JL Hardebeck, RA Harris, C Ji, MJS Johnston, J Langbein, JJ Lienkaemper, et al. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437:969--974, 2005. [ bib ]
[243] W.H. Bakun and T.V. McEvilly. Recurrence models and Parkfield, California earthquakes. J. Geophys. Res.: Sol. Earth, 89:3051--3058, 1984. [ bib ]
[244] William H Bakun and Allan G Lindh. The Parkfield, California, earthquake prediction experiment. Science, 229:619--624, 1985. [ bib ]
[245] S Balachandar, DA Yuen, DM Reuteler, and GS Lauer. Viscous dissipation in three-dimensional convection with temperature-dependent viscosity. Science, 267:1150--1153, 1995. [ bib ]
[246] Attila Balázs, Evgueni B. Burov, Liviu Matenco, Katharina Vogt, Thomas Francois, and Sierd Cloetingh. Symmetry during the syn-and post-rift evolution of extensional back-arc basins: The role of inherited orogenic structures. Earth Planet. Sci. Lett., 462:86--98, 2017. [ bib ]
[247] G. Baldock and T. Stern. Width of mantle deformation across a continental transform: Evidence from upper mantle (Pn) seismic anisotropy measurements. Geology, 33:741--744, 2005. [ bib ]
[248] M. D. Ballmer, C. P. Conrad, E. I. Smith, and N. Harmon. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise. Geology, 41:479--482, 2012. [ bib ]
[249] Maxim D. Ballmer, Clinton P. Conrad, Eugene I. Smith, and Racheal Johnsen. Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling. Geochem., Geophys., Geosys., 2015. [ bib | DOI ]
[250] Maxim D Ballmer, Christine Houser, John W Hernlund, Renata M Wentzcovitch, and Kei Hirose. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geosc., 10:236--240, 2017. [ bib ]
[251] A. Baltay, G. Prieto, and G. C. Beroza. Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J. Geophys. Res.: Sol. Earth, 115(B08314), 2010. [ bib | DOI ]
[252] Annemarie Baltay, Satoshi Ide, German Prieto, and Gregory Beroza. Variability in earthquake stress drop and apparent stress. Geophys. Res. Lett., 38(6), 2011. [ bib ]
[253] Richard K Bambach. Phanerozoic biodiversity mass extinctions. Ann. Rev. Earth Planet. Sci., 34:127--155, 2006. [ bib ]
[254] D. Bamford. Pn velocity anisotropy in a continental upper mantle. Geophys. J. R. Astr. Soc., 49:29--48, 1977. [ bib ]
[255] A. Banerjee, Y. van Dinther, and F. C. Vossepoel. On parameter bias in earthquake sequence models using data assimilation. Nonl. Proc. Geophys., 30:101--115, 2023. [ bib ]
[256] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II -- a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1--24/27, 2007. [ bib ]
[257] N. Bangs, H. van Avendonk, A. Arnulf, A. Gase, S. Henrys, D. Okaya, D. Barker, K. Jacobs, G. Fujiie, R. Arai, and S. Kodaira. Large underplated structures along the southern hikurangi margin: preliminary results from shire seismic imaging experiment (abstract). In AGU Fall Meeting, number T53C-08, Washington DC, 2018. American Geophysical Union. [ bib ]
[258] Xiyuan Bao, Carolina R Lithgow-Bertelloni, Matthew G Jackson, and Barbara Romanowicz. On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges. Science, 375:57--61, 2022. [ bib ]
[259] Shahar Barak, Simon L. Klemperer, and Jesse F. Lawrence. San Andreas Fault dip, Peninsular Ranges mafic lower crust and partial melt in the Salton Trough, Southern California, from ambient-noise tomography. Geochem., Geophys., Geosys., 16:3946--3972, 2015. [ bib ]
[260] M. Barazangi and B. L. Isacks. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4:686--692, 1976. [ bib ]
[261] S. Barbot, Y. Fialko, and D. T. Sandwell. Effect of a compliant fault zone on the inferred earthquake slip distribution. J. Geophys. Res.: Sol. Earth, 113(B06404), 2008. [ bib | DOI ]
[262] S. Barbot and Y. Fialko. A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int., 182:1124--1140, 2010. [ bib ]
[263] S. Barbot, N. Lapusta, and J. P. Avouac. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle. Science, 336:707--710, 2012. [ bib ]
[264] S. Barbot. Asthenosphere flow modulated by megathrust earthquake cycles. Geophys. Res. Lett., 45:6018--6031, 2018. [ bib ]
[265] S. Barbot. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophys., 768:228171, 2019. [ bib ]
[266] S. Barbot. Frictional and structural controls of seismic super-cycles at the Japan trench. Earth, Planet. Space, 72(63), 2020. [ bib ]
[267] S. Barbot. Constitutive behavior of rocks during the seismic cycle. Advances, 4:e2023AV000972, 2024. [ bib ]
[268] M. Barchi, G. Minelli, and G. Pialli. The CROP03 profile: a synthesis of result on deep structures of the Northern Apennines. Mem. Soc. Geol. It., 52:383--400, 1998. [ bib ]
[269] Grigory Isaakovich Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. Adv. appl. mech., 7:55--129, 1962. [ bib ]
[270] AA Barka. The north Anatolian fault zone. In Annales tectonicae, volume 6, pages 164--195, 1992. [ bib ]
[271] Aykut Barka. Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bull. Seismol. Soc. Am., 86:1238--1254, 1996. [ bib ]
[272] D. H. N. Barker, S. Henrys, F. Caratori Tontini, P. M. Barnes, D. Bassett, E. Todd, and L. Wallace. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand. Geophys. Res. Lett., 45:12804--12813, 2018. [ bib ]
[273] Valentina R Barletta, Michael Bevis, Benjamin E Smith, Terry Wilson, Abel Brown, Andrea Bordoni, Michael Willis, Shfaqat Abbas Khan, Marc Rovira-Navarro, Ian Dalziel, Robert Smalley Jr, Eric Kendrick, Stephanie Konfai, Dana J. Caccamise II, Richard C. Aster, Andy Nyblade, and Doug A. Wiens. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science, 360:1335--1339, 2018. [ bib ]
[274] Philip M Barnes, Geoffroy Lamarche, Joerg Bialas, Stuart Henrys, Ingo Pecher, Gesa L Netzeband, Jens Greinert, Joshu J Mountjoy, Katherine Pedley, and Gareth Crutchley. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geol., 272:26--48, 2010. [ bib ]
[275] Jaime D Barnes, Jeffrey Cullen, Shaun Barker, Samuele Agostini, Sarah Penniston-Dorland, John C Lassiter, Andreas Klügel, and Laura Wallace. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere, 15:642--658, 2019. [ bib ]
[276] Philip M Barnes, Scott D Nodder, Susi Woelz, and Alan R Orpin. The structure and seismic potential of the Aotea and Evans Bay faults, Wellington, New Zealand. New Zealand J. Geol. Geophys., 62:46--71, 2019. [ bib ]
[277] Philip M. Barnes, Laura M. Wallace, Demian M. Saffer, Rebecca E. Bell, Michael B. Underwood, Åke Fagereng, Francesca Meneghini, Heather M. Savage, Hannah S. Rabinowitz, Julia K. Morgan, Hiroko Kitajima, Steffen Kutterolf, Yoshitaka Hashimoto, Christie H. Engelmann de Oliveira, Atsushi Noda, Martin P. Crundwel, Claire L. Shepherd, Adam D. Woodhouse, Robert N. Harris, Maomao Wang, Stuart Henrys, Daniel H.N. Barker, Katerina E. Petronotis, Sylvain M. Bourlange, Michael B. Clennell, Ann E. Cook, Brandon E. Dugan, Judith Elger, Patrick M. Fulton, Davide Gamboa, Annika Greve, Shuoshuo Han, Andre Hüpers, Matt J. Ikari, Yoshihiro Ito, Gil Young Kim, Hiroaki Koge, Hikweon Lee, Xuesen Li, Min Luo, Pierre R. Malie, Gregory F. Moore, Joshu J. Mountjoy, David D. McNamara, Matteo Paganoni, Elizabeth J. Screaton, Uma Shankar, Srisharan Shreedharan, Evan A. Solomon, Xiujuan Wang, Hung-Yu Wu, Ingo A. Pecher, Leah J. LeVay, and IODP Expedition 372 Scientists. Slow slip source characterized by lithological and geometric heterogeneity. Sci. Adv., 6(13):eaay3314, 2020. [ bib ]
[278] A. Barnhoorn, S. F. Cox, D. J. Robinson, and T. Senden. Stress- and fluid-driven failure during fracture array growth: Implications for coupled deformation and fluid flow in the crust. Geology, 38:779--782, 2010. [ bib ]
[279] Anthony D Barnosky, Nicholas Matzke, Susumu Tomiya, Guinevere OU Wogan, Brian Swartz, Tiago B Quental, Charles Marshall, Jenny L McGuire, Emily L Lindsey, Kaitlin C Maguire, et al. Has the Earth’s sixth mass extinction already arrived? Nature, 471:51--57, 2011. [ bib ]
[280] Amy C Barr and Adam P Showman. Heat transfer in Europa's icy shell. In Europa, pages 405--430. Univ. Arizona Press, 2009. [ bib ]
[281] T. D. Barr and G. A. Houseman. Deformation fields around a fault embedded in a non-linear ductile medium. Geophys. J. Int., 125:473--490, 1996. [ bib ]
[282] G. Barruol and F. R. Fontaine. Mantle flow beneath La Réunion hotspot track from SKS splitting. Earth Planet. Sci. Lett., 362:108--121, 2013. [ bib ]
[283] G. Barruol and H. Kern. P and S wave velocities and shear wave splitting in the lower crustal/upper mantle transition (Ivrea zone). Experimental and calculated data. Phys. Earth Planet. Inter., 95:175--194, 1996. [ bib ]
[284] Guilhem Barruol and Hartmut Kern. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the ivrea zone容xperimental and calculated data. Phys. Earth Planet. Inter., 95(3-4):175--194, 1996. [ bib ]
[285] Matthias G Barth, William F McDonough, and Roberta L Rudnick. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165:197--213, 2000. [ bib ]
[286] Noel M Bartlow, Shin'ichi Miyazaki, Andrew M Bradley, and Paul Segall. Space-time correlation of slip and tremor during the 2009 Cascadia slow slip event. Geophys. Res. Lett., 38(L18309), 2011. [ bib | DOI ]
[287] N. M. Bartlow and Y. Fialko. Modeling horizontal GPS seasonal signals caused by ocean loading (abstract). AGU Fall Meeting, (G23B-0486), 2014. Available online at http://adsabs.harvard.edu/abs/2014AGUFM.G23B0486B, accessed 08/2015. [ bib ]
[288] Noel M Bartlow. A long-term view of episodic tremor and slip in Cascadia. Geophys. Res. Lett., 47, 2020. [ bib | DOI ]
[289] R. Bartole. The North Tyrrhenian-Northern Apennines post-collisional system: constraint for a geodynamic model. Terra Nova, 7:7--30, 1995. [ bib ]
[290] Cathy Barton. Marie Tharp, oceanographic cartographer, and her contributions to the revolution in the Earth sciences. Geol. Soc., London, Spec. Pub., 192:215--228, 2002. [ bib ]
[291] Dan Bassett, Rupert Sutherland, and Stuart Henrys. Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. Earth Planet. Sci. Lett., 389:1--13, 2014. [ bib ]
[292] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochem., Geophys., Geosys., 16:1508--1540, 2015. [ bib ]
[293] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior. Geochem., Geophys., Geosys., 16:1541--1576, 2015. [ bib ]
[294] D. Bassett, D. T. Sandwell, Y. Fialko, and A. B. Watts. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature, 531:92--96, 2016. [ bib ]
[295] D. Bassett, A. F. Arnulf, S. Kodaira, Stuart A Henrys, Harm J Van Avendonk, Daniel H N Barker, Ayako Nakanishi, Alistair J Harding, Ryuta Arai, Nathan L Bangs, David A Okaya, Katie Jacobs, Gou Fujie, Andrew Gase, Yojiro Yamamoto, Thomas Luckie, and Koichiro Obana. Upper-plate controls on megathrust slip behaviour: comparing the Hikurangi and Nankai subduction zones (abstract). In AGU Fall Meeting, number T006-05, Washington DC, 2020. American Geophysical Union. [ bib ]
[296] C. Bassin, G. Laske, and G. Masters. The current limits of resolution for surface wave tomography in North America (abstract). Eos Trans. AGU, 81:F897, 2000. [ bib ]
[297] G. Batchelor. Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J. Fluid. Dyn., 5:113--133, 1959. [ bib ]
[298] G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, Cambridge UK, 1967. [ bib ]
[299] M. Båth. Lateral inhomogeneities in the upper mantle. Tectonophys., 2:483--514, 1965. [ bib ]
[300] K.-J. Bathe. Finite Element Procedures. Prentice-Hall, London, 2007. [ bib ]
[301] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, London, 1982. [ bib ]
[302] M. Battaglia, M. H. Murray, E. Serpelloni, and R. Bürgmann. The Adriatic regions: an independent microplate within the Africa-Eurasia collision zone. Geophys. Res. Lett., 31, 2004. [ bib | DOI ]
[303] Alexander Bauer, Fabian Scheipl, Helmut Küchenhoff, and A.-A. Gabriel. Modeling spatio-temporal earthquake dynamics using generalized functional additive regression. In Proceedings of the 32nd International Workshop on Statistical Modelling, volume 2, pages 146--149, 2017. [ bib ]
[304] T. Baumann, B. J. P. Kaus, and A. Popov. Constraining effective rheology through parallel joint geodynamic inversion. Tectonophys., 631:197--211, 2014. [ bib ]
[305] T. Baumann and B. J. P. Kaus. Geodynamic inversion to constrain the nonlinear rheology of the lithosphere. Geophys. J. Int., 202:1299--1316, 2015. [ bib ]
[306] Y. Baumberger, P. Berthoud, and C. Caroli. Physical analysis of the state- and rate-dependent friction law. II. Dynamic friction. Phys. Rev. E, 60:3928--3939, 1999. [ bib ]
[307] Elsa Bayart, Ilya Svetlizky, and Jay Fineberg. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Phys., 12:166--170, 2016. [ bib ]
[308] E. Bayart, I. Svetlizky, and J. Fineberg. Rupture dynamics of heterogeneous frictional interfaces. J. Geophys. Res.: Sol. Earth, 123:3828--3848, 2018. [ bib ]
[309] G. Bayona, M. Cortes, C. Jaramillo, G. Ojeda, J. Aristizábal, Reyes, and A. Harker. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull., 120:1171--1197, 2008. [ bib ]
[310] AP Beall, Louis Moresi, and Catherine M Cooper. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology, 46:487--490, 2018. [ bib ]
[311] Adam Beall, Åke Fagereng, and Susan Ellis. Strength of strained two-phase mixtures: Application to rapid creep and stress amplification in subduction zone mélange. Geophys. Res. Lett., 46:169--178, 2019. [ bib ]
[312] Adam Beall, Åke Fagereng, J. Huw Davies, Fanny Garel, and D. Rhodri Davies. Influence of subduction zone dynamics on interface shear stress and potential relationship with seismogenic behavior. Geochem., Geophys., Geosys., page e2020GC009267, 2020. [ bib | DOI ]
[313] S. Beanland and M. M. Clark. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake (abstract). In The Geological Society of America, Cordilleran Section, 89th annual meeting. Abstracts with Programs, volume 25, page 7, 1993. [ bib ]
[314] B. C. Beaudoin, J. A. Hole, S. L. Klemperer, and A. M. Trehu. Location of the southern edge of the Gorda slab and evidence for an adjacent asthenospheric window: results from seismic profiling and gravity. J. Geophys. Res.: Sol. Earth, 103:30101--30115, 1998. [ bib ]
[315] C. Beaumont, R. A. Jamieson, M. H. Nguyen, and B. Lee. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414:738--742, 2001. [ bib ]
[316] J. Beavan, P. Denys, M. Denham, B. Hager, T. Herring, and P. Molnar. Distribution of present-day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys. Res. Lett., 37(L16305), 2010. [ bib | DOI ]
[317] Gray E Bebout. Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett., 260:373--393, 2007. [ bib ]
[318] L. Beccaluva, P. Brotzu, G. Macciotta, L. Morbidelli, G. Serri, and G. Traversa. Cainozoic tectono-magmatic evolution and inferred mantle sources in the Sardo-Tyrrhenian area. In A. Boriani, M. Bonafede, G. B. Piccardo, and G. B. Vai, editors, The Lithosphere in Italy. Advances in Science Research, pages 15--40. Accademia Nazionale dei Lincei, Rome, 1989. [ bib ]
[319] Susan L Beck and George Zandt. The nature of orogenic crust in the central Andes. J. Geophys. Res.: Sol. Earth, 107(B10), 2002. [ bib | DOI ]
[320] Susan L Beck, George Zandt, Stephen C Myers, Terry C Wallace, Paul G Silver, and Lawrence Drake. Crustal-thickness variations in the central Andes. Geology, 24:407--410, 1996. [ bib ]
[321] T. W. Becker. Finite Elemente Modellierung zur Bruchaktivierung in Scherzonen. Master's thesis, Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. [ bib ]
[322] T. W. Becker. Deterministic chaos in two state-variable friction sliders and the effect of elastic interactions. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the Physics of Earthquakes, volume 120 of Geophys. Mono., pages 5--26. American Geophysical Union, Washington, DC, 2000. [ bib ]
[323] T. W. Becker and L. Boschi. A comparison of tomographic and geodynamic mantle models. Geochem., Geophys., Geosys., 3(1), 2002. [ bib | DOI ]
[324] T. W. Becker and R. J. O'Connell. Predicting plate velocities with geodynamic models. Geochem., Geophys., Geosys., 2(12), 2001. [ bib | DOI ]
[325] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology. In Workshop on numerical modeling of mantle convection and lithospheric dynamics, Aussois, France, 2001. [ bib ]
[326] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology (abstract). Eos Trans. AGU, 82(47):T12C--0921, 2001. [ bib ]
[327] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Global azimuthal anisotropy from Rayleigh waves and circulation-derived finite strain (abstract). In MIT/WHOI/New England Workshop on Anisotropy and Imaging, Massachusetts Institute of Technology, Cambridge MA, 2002. [ bib ]
[328] T. W. Becker. Lithosphere--Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. [ bib ]
[329] T. W. Becker. Lithosphere--Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. Available at http://www-udc.ig.utexas.edu/external/becker/thesis.tp.times10.pdf. [ bib ]
[330] T. W. Becker and B. Schott. On boundary-element models of elastic fault interaction (abstract). Eos Trans. AGU, 83(47):NG62A--0925, 2002. [ bib ]
[331] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models. Geophys. J. Int., 155:696--714, 2003. [ bib ]
[332] T. W. Becker, D. K. Blackman, and V. Schulte-Pelkum. Seismic anisotropy in the western US as a testbed for advancing combined models of upper mantle geodynamics and texturing (abstract). Eos Trans. AGU, 85(47):T33A--1338, 2004. [ bib ]
[333] T. W. Becker, J. L. Hardebeck, and G. Anderson. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions. Geophys. J. Int., 160:634--650, 2005. [ bib ]
[334] T. W. Becker. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys. J. Int., 167:943--957, 2006. [ bib ]
[335] T. W. Becker and the CIG Global Flow Code Benchmark Group. Global spectral flow code benchmark and development plan. Technical report, University of Southern California, 2006. Available online at http://www-udc.ig.utexas.edu/external/becker/flow_code_project.051706.pdf, accessed 06/2016. [ bib ]
[336] T. W. Becker, G. Ekström, L. Boschi, and J. W. Woodhouse. Length-scales, patterns, and origin of azimuthal seismic anisotropy in the upper mantle as mapped by Rayleigh waves. Geophys. J. Int., 171:451--462, 2007. [ bib ]
[337] T. W. Becker, S. Chevrot, V. Schulte-Pelkum, and D. K. Blackman. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res.: Sol. Earth, 111(B08309), 2006. [ bib | DOI ]
[338] T. W. Becker, V. Schulte-Pelkum, D. K. Blackman, J. B. Kellogg, and R. J. O'Connell. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett., 247:235--251, 2006. [ bib ]
[339] T. W. Becker. Stress and strain in southern California. Invited presentation at the Southern California Earthquake Center Annual Meeting, 2006. [ bib ]
[340] T. W. Becker, J. T. Browaeys, and T. H. Jordan. Stochastic analysis of shear wave splitting length scales. Earth Planet. Sci. Lett., 259:29--36, 2007. [ bib ]
[341] T. W. Becker. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett., 35(L05303), 2008. correction: doi:10.1029/2008GL033946. [ bib | DOI ]
[342] T. W. Becker, B. Kustowski, and G. Ekström. Radial seismic anisotropy as a constraint for upper mantle rheology. Earth Planet. Sci. Lett., 267:213--237, 2008. [ bib ]
[343] T. W. Becker, C. P. Conrad, B. A. Buffett, and R. D. Müller. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth Planet. Sci. Lett., 278:233--242, 2009. [ bib ]
[344] T. W. Becker, B. Steinberger, and C. O'Neill. HC - A global mantle circulation solver following [2087] and [5159] [ bib ]
[345] T. W. Becker and C. Faccenna. A review of the role of subduction dynamics for regional and global plate motions. In F. Funiciello and S. Lallemand, editors, Subduction Zone Geodynamics, Int. J. Earth Sci., pages 3--34. Springer, 2009. [ bib ]
[346] T. W. Becker. Fine-scale modeling of global plate tectonics. Science, 329:1020--1021, 2010. [ bib ]
[347] T. W. Becker and M. S. Miller. Caribbean slab-craton interactions constrained by shear wave splitting (abstract). Eos Trans. AGU, 91(26):T43A--06, 2010. [ bib ]
[348] T. W. Becker. Seismic anisotropy. In H. K. Gupta, editor, Encyclopedia of Solid Earth Geophysics. Springer, 2011. [ bib | DOI ]
[349] T. W. Becker and H. Kawakatsu. On the role of anisotropic viscosity for plate-scale flow. Geophys. Res. Lett., 38(L17307), 2011. [ bib | DOI ]
[350] T. W. Becker and C. Faccenna. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310:453--461, 2011. [ bib ]
[351] T. W. Becker. On recent seismic tomography for the western United States. Geochem., Geophys., Geosys., 13(Q01W10), 2012. [ bib | DOI ]
[352] T. W. Becker, S. Lebedev, and M. D. Long. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res.: Sol. Earth, 117(B01306), 2012. Original and updated splitting data base available online from http://www-udc.ig.utexas.edu/external/becker/sksdata.html, accessed 06/2021. [ bib | DOI ]
[353] T. W. Becker, S. Lebedev, and M. D. Long. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res.: Sol. Earth, 117(B01306), 2012. [ bib | DOI ]
[354] T. W. Becker, C. Faccenna, E. D. Humphreys, A. R. Lowry, and M. S. Miller. Static and dynamic support of western U.S. topography. Earth Planet. Sci. Lett., 402:234--246, 2014. [ bib ]
[355] T. W. Becker, C. P. Conrad, A. J. Schaeffer, and S. Lebedev. Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth Planet. Sci. Lett., 401:236--250, 2014. [ bib ]
[356] T. W. Becker, A. R. Lowry, C. Faccenna, B. Schmandt, A. Borsa, and C Yu. Western U.S. intermountain seismicity caused by changes in upper mantle flow. Nature, 524:458--461, 2015. [ bib ]
[357] T. W. Becker, A. J. Schaeffer, S. Lebedev, and C. P. Conrad. Implications of a comprehensive, spreading-aligned plate motion reference frame in light of seismic anisotropy and global trench migration (abstract). Eos Trans. AGU, (DI13C-01), 2015. [ bib ]
[358] T. W. Becker, A. J. Schaeffer, S. Lebedev, and S. P. Conrad. Toward a generalized plate motion reference frame. Geophys. Res. Lett., 42:3188--3196, 2015. [ bib ]
[359] T. W. Becker. Superweak asthenosphere in light of upper-mantle seismic anisotropy. Geochem., Geophys., Geosys., 18:1986--2003, 2017. [ bib | DOI ]
[360] T. W. Becker and W. Wang. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics (abstract). Eos Trans. AGU, 2017. AGU Fall Meeting, New Orleans. [ bib | DOI ]
[361] T. W. Becker, A. Hashima, A. M. Freed, and H. Sato. Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth Planet. Sci. Lett., 504:174--184, 2018. [ bib ]
[362] T. W. Becker and S. Lebedev. Dynamics of the lithosphere and upper mantle in light of seismic anisotropy. In H. Marquardt, M. Ballmer, S. Cottaar, and J. Konter, editors, Mantle Convection and Surface Expressions. American Geophysical Union, 2020. [ bib | DOI ]
[363] T. W. Becker and L. Fuchs. Input files and movie visualizations for convection models discussed in Becker and Fuchs, “Generation of evolving plate boundaries and toroidal flow from visco-plastic damage-rheology mantle convection and continents”, manuscript revised for G-Cubed [Dataset]. Zenodo, 2023. [ bib | DOI ]
[364] T. W. Becker and L. Fuchs. Generation of evolving plate boundaries and toroidal flow from visco-plastic damage-rheology mantle convection and continents. Geochem., Geophys., Geosys., 24, 2023. [ bib | DOI ]
[365] T. W. Becker and C. Faccenna. Tectonic Geodynamics (lecture notes). The University of Texas at Austin, 2024. p. 764, available online at www-udc.ig.utexas.edu/external/becker/preprints/tectonic_geodynamics_draft.pdf, accessed 02/2024. [ bib ]
[366] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1996, Freiberg/Sachsen, 1996. Deutsche Geophysikalische Gesellschaft. [ bib ]
[367] T. W. Becker and H. Schmeling. Finite element modeling of fault zone interactions. In EUG9 abstracts, Strassburg, 1997. European Union of Geosciences. [ bib ]
[368] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1997, Potsdam, 1997. Deutsche Geophysikalische Gesellschaft. [ bib ]
[369] T. Dahm and T. W. Becker. The elastic and viscous properties of highly fractured media. In EGS 1997 abstracts, Wien, 1997. European Geophysical Society. [ bib ]
[370] T. W. Becker and H. Schmeling. Earthquake recurrence time variations with and without fault zone interactions. Geophys. J. Int., 135:165--176, 1998. [ bib ]
[371] T. W. Becker, C. Faccenna, and R. J. O'Connell. The development of slabs in the upper mantle: insight from numerical and laboratory experiments (abstract). EOS, Trans. AGU, 79:S349, 1998. [ bib ]
[372] T. W. Becker, C. Faccenna, and R. J. O'Connell. Mantle winds and back-arc spreading: the influence of background flow on subdution in the upper mantle (abstract). Eos Trans. AGU, 79:F849, 1998. [ bib ]
[373] T. W. Becker, S. V. Panasyuk, R. J. O'Connell, and C. Faccenna. The backward-bent Indonesia slab. Eos Trans. AGU, 80:S18, 1999. [ bib ]
[374] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle (abstract). Eos Trans. AGU, 79:F599, 1998. [ bib ]
[375] T. W. Becker and A. Braun. New program maps geoscientific data sets interactively. Eos Trans. AGU, 79:505, 1998. [ bib ]
[376] T. W. Becker, C. Faccenna, R. J. O'Connell, and D. Giardini. The development of slabs in the upper mantle: insight from numerical and laboratory experiments. J. Geophys. Res.: Sol. Earth, 104:15207--15225, 1999. [ bib ]
[377] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett., 171:351, 1999. [ bib ]
[378] T. W. Becker. On the spherical harmonic expansion of discontinuities on the Earth's surface. Final project for Harvard University course EPS202 “Inverse Theory” by Prof. A. M. Dziewoński, 1999. [ bib ]
[379] T. W. Becker. Finite Element Modeling of Fault Zone Interactions. Diploma thesis. Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. (In German). [ bib ]
[380] T. W. Becker and B. J. P. Kaus. Numerical Modeling of Earth Systems. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, Los Angeles, 1.2.2 edition, 2015. Updated lecture notes (2020, 222 pages), available online at http://www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf, accessed 01/2023. [ bib | DOI ]
[381] Nicholas M Beeler, Evelyn Roeloffs, and Wendy McCausland. Re-estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia. Bull. Seismol. Soc. Am., 104:128--144, 2014. [ bib ]
[382] N. M. Beeler, T. E. Tullis, and J. D. Weeks. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett., 21:1987--1990, 1994. [ bib ]
[383] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151--162, 2003. [ bib ]
[384] C. Beghein and J. Trampert. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299:552--555, 2003. [ bib ]
[385] C. Beghein and J. Trampert. Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood algorithm. Geophys. J. Int., 157:163--1174, 2004. [ bib ]
[386] C. Beghein and J. Trampert. Lateral variations in radial anisotropy and consequences for the upper 1200km of the mantle. Geophys. Res. Abstr., 6:1348, 2004. [ bib ]
[387] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151--162, 2004. [ bib ]
[388] C. Beghein, J. Trampert, and H. J. van Heijst. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[389] C. Beghein, J. Resovsky, and R. D. van der Hilst. The signal of mantle anisotropy in the coupling of normal modes. Geophys. J. Int., 175:1209--1234, 2008. [ bib ]
[390] C. Beghein, K. Yuan, N. Schmerr, and Z. Xing. Changes in seismic anisotropy shed light on the nature of the Gutenberg discontinuity. Science, 343:1237--1240, 2014. [ bib ]
[391] Caroline Beghein, Jiaqi Li, E Weidner, R Maguire, J Wookey, Vedran Lekić, Philippe Lognonné, and W Banerdt. Crustal anisotropy in the Martian lowlands from surface waves. Geophys. Res. Lett., 49:e2022GL101508, 2022. [ bib ]
[392] N. Beghoul and M. Barazangi. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res.: Sol. Earth, 94:7083--7104, 1989. [ bib ]
[393] M. D. Behn, J. Lin, and M. T. Zuber. A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting. Earth Planet. Sci. Lett., 202:725--740, 2002. [ bib ]
[394] Mark D Behn, Jian Lin, and Maria T Zuber. Evidence for weak oceanic transform faults. Geophys. Res. Lett., 29(24), 2002. [ bib | DOI ]
[395] M. D. Behn, C. P. Conrad, and P. G. Silver. Detection of upper mantle flow associated with the African Superplume. Earth Planet. Sci. Lett., 224:259--274, 2004. [ bib ]
[396] M. D. Behn, G. Hirth, and P. Kelemen. Trench-parallel anisotropy produced by foundering of arc lower crust. Science, 317:108--111, 2007. [ bib ]
[397] M. D. Behn, M. S. Boettcher, and G. Hirth. Thermal structure of oceanic transform faults. Geology, 35:307--310, 2007. [ bib ]
[398] Mark D Behn and Garrett Ito. Magmatic and tectonic extension at mid-ocean ridges: 1. controls on fault characteristics. Geochem., Geophys., Geosys., 9(Q08O10), 2008. [ bib | DOI ]
[399] M. D. Behn, G. Hirth, and J. R. Elsenbeck II. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett., 282:178--189, 2009. [ bib ]
[400] Mark D Behn and Timothy L Grove. Melting systematics in mid-ocean ridge basalts: Application of a plagioclase-spinel melting model to global variations in major element chemistry and crustal thickness. J. Geophys. Res.: Sol. Earth, 120:4863--4886, 2015. [ bib ]
[401] Chris Behn and M Marder. The transition from subsonic to supersonic cracks. Phil. Trans. Royal Soc. A, 373:20140122, 2015. [ bib ]
[402] M. Behn, K. Barnhart, T. W. Becker, J. Brown, E. Choi, C. Cooper, J. Dannberg, N. Gasparini, R. Gassmoeller, L. Hwang, B. Kaus, L. Kellogg, L. Lavier, E. Mittelstaedt, L. Moresi, A. Pusok, G. Tucker, P. Upton, and P. Val. Whitepaper reporting outcomes from NSF-sponsored workshop: CTSP: Coupling of tectonic and surface processes April 25-27, 2018; Boulder CO. Technical report, CSDMS, Boulder CO, 2018. 41 pp., available online at https://csdms.colorado.edu/mediawiki/images/CTSP_WhitePaper_Final.pdf, accessed 01/2021. [ bib ]
[403] M. Běhounková and H. Čížková. Long-wavelength character of subducted slabs in the lower mantle. Earth Planet. Sci. Lett., 275:43--53, 2008. [ bib ]
[404] W. M. Behr and J. P. Platt. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet. Sci. Lett., 303:181--192, 2011. [ bib ]
[405] W. M. Behr and J. P. Platt. Kinematic and thermal evolution during two-stage exhumation of a Mediterranean subduction complex. Earth Planet. Sci. Lett., 31(TC4025), 2012. [ bib | DOI ]
[406] W. M. Behr and J. P. Platt. Brittle faults are weak, yet the ductile middle crust is strong: implications for lithospheric mechanics. Geophys. Res. Lett., 41:8067--–8075, 2015. [ bib | DOI ]
[407] Whitney M. Behr and Douglas Smith. Deformation in the mantle wedge associated with Laramide flat-slab subduction. Geochem., Geophys., Geosys., 17:2643--2660, 2016. [ bib | DOI ]
[408] W. M. Behr and T. W. Becker. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett., 502:166--173, 2018. [ bib ]
[409] Whitney M Behr, Alissa J Kotowski, and Kyle T Ashley. Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology, 46:475--478, 2018. [ bib ]
[410] W. M. Behr and R. Bürgmann. What's down there? The structures, materials and environment of deep-seated slow slip and tremor. Phil. Trans. R. Soc. A, 379, 2021. [ bib | DOI ]
[411] W. M. Behr, A. F. Holt, T. W. Becker, and C. Faccenna. The effects of plate interface rheology on subduction kinematics and dynamics. Geophys. J. Int., 230:796--812, 2022. [ bib ]
[412] DV Bekaert, SJ Turner, MW Broadley, JD Barnes, SA Halldórsson, J Labidi, J Wade, KJ Walowski, and PH Barry. Subduction-driven volatile recycling: A global mass balance. Ann. Rev. Earth Planet. Sci., 49:37--70, 2021. [ bib ]
[413] M. E. Bellardinelli, M. Cocco, O. Coutant, and F. Cotton. Redistribution of dynamic stress during coseismic ruptures: Evidence for fault interaction and earthquake triggering. J. Geophys. Res.: Sol. Earth, 104:14925--14945, 1999. [ bib ]
[414] Taylor J Bell, Luis Welbanks, Everett Schlawin, Michael R Line, Jonathan J Fortney, Thomas P Greene, Kazumasa Ohno, Vivien Parmentier, Emily Rauscher, Thomas G Beatty, Sagnick Mukherjee, Lindsey S Wiser, Martha L Boyer, Marcia J Rieke, and John A Stansberry. Methane throughout the atmosphere of the warm exoplanet wasp-80b. Nature, 623:709--712, 2023. [ bib ]
[415] N. Bellahsen, C. Faccenna, Funiciello R., Daniel J.M., and L. Jolivet. Why did Arabia separate from Africa? Insight from 3D laboratory experiments. Earth Planet. Sci. Lett., 216:365--381, 2003. [ bib ]
[416] N. Bellahsen, C. Faccenna, and F. Funiciello. Dynamics of subduction and plate motion in laboratory experiments: insights into the plate tectonics behavior of the Earth. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[417] O. Bellier, S. Över, A. Poisson, and A. Anrieux. Recent temporal change in the stress state and modern stress field along the North Anatolian Fault Zone (Turkey). Geophys. J. Int., 131:61--86, 1997. [ bib ]
[418] G Bellini, J Benziger, S Bonetti, M Buizza Avanzini, B Caccianiga, L Cadonati, Frank Calaprice, C Carraro, A Chavarria, F Dalnoki-Veress, et al. Observation of geo-neutrinos. Phys. Lett. B, 687:299--304, 2010. [ bib ]
[419] Léa Bello, Nicolas Coltice, Tobias Rolf, and Paul J Tackley. On the predictability limit of convection models of the Earth's mantle. Geochem., Geophys., Geosys., 15:2319--2328, 2014. [ bib ]
[420] L. Bello, N. Coltice, P. J. Tackley, D. Müller, and J. Cannon. Assessing the role of slab rheology in coupled plate-mantle convection models. Earth Planet. Sci. Lett., 430:191--201, 2015. [ bib ]
[421] Y. Ben-Zion. A note on quantification of the earthquake source. Seism. Res. Lett., 72:151--152, 2001. [ bib ]
[422] Y. Ben-Zion and L. Zhu. Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophys. J. Int., 148:F1--F5, 2002. [ bib ]
[423] Y. Ben-Zion and V. Lyakhovsky. Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure Appl. Geophys., 159:2385--2412, 2002. [ bib ]
[424] Y. Ben-Zion and C. G. Sammis. Characterization of fault zones. Pure Appl. Geophys., 160:677--715, 2003. [ bib ]
[425] Y. Ben-Zion. Key formulas in earthquake seismology. In International Handbook of Earthquake and Engineering Seismology, pages 1857--1875. Academic Press, 2003. [ bib ]
[426] Y. Ben-Zion, Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, N. Ozer, A. J. Michael, S. Baris, and M. Aktar. A shallow fault zone structure illuminated by trapped waves in the Karadere-Düuzce branch of the North Anatolian fault, western Turkey. Geophys. J. Int., 152:699--717, 2003. [ bib ]
[427] Y. Ben-Zion and V. Lyakhovsky. Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology. Geophys. J. Int., 165:197--210, 2006. [ bib ]
[428] Y. Ben-Zion. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes. Rev. Geophys., 46(RG4006), 2008. [ bib | DOI ]
[429] Y. Ben-Zion, Rice, and R. J. R. Dmowska. Interaction of the San Andreas fault creeping segment with adjacent great rupture zones and earthquake recurrence at Parkfield. J. Geophys. Res.: Sol. Earth, 98:2135--2144, 1993. [ bib ]
[430] Y. Ben-Zion and J. R. Rice. Earthquake Failure Sequences Along a Cellular Fault Zone in a Three-Dimensional Elastic Solid Containing Asperity and Nonasperity Region. J. Geophys. Res.: Sol. Earth, 98:14109--14131, 1993. [ bib ]
[431] Y. Ben-Zion and J. R. Rice. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res.: Sol. Earth, 100:12959--12983, 1995. [ bib ]
[432] Y. Ben-Zion and J. R. Rice. Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res.: Sol. Earth, 102:17771--17784, 1997. [ bib ]
[433] Y. Ben-Zion, K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon. Self-driven mode switching of earthquake activity on a fault system. Earth Planet. Sci. Lett., 172:11--21, 1999. [ bib ]
[434] H Bénard. Les tourbillons cellulaires dans une nappe liquid. Revue générale des Sciences pures et appliqueés, 11:1261--1271 and 1309--1328, 1900. [ bib ]
[435] H Bénard. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annales de Chimie et de Physique, 23:62--144, 1901. [ bib ]
[436] B. Bender. Maximum likelihood estimation of b values for magnitude grouped data. Bull. Seismol. Soc. Am., 73:831--851, 1983. [ bib ]
[437] G. Benettin, A. Galgani, A. Giorgilli, and J.-M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. part 2: Numerical application. Meccanica, 15:21, 1980. [ bib ]
[438] A Beniest, A Koptev, and Evgenii B. Burov. Numerical models for continental break-up: Implications for the South Atlantic. Earth Planet. Sci. Lett., 461:176--189, 2017. [ bib ]
[439] Hugo Benioff. Seismic evidence for the fault origin of oceanic deeps. Geol. Soc. Amer. Bull., 60:1837--1856, 1949. [ bib ]
[440] Richard A Bennett, Anke M Friedrich, and Kevin P Furlong. Codependent histories of the San Andreas and San Jacinto fault zones from inversion of fault displacement rates. Geology, 32:961--964, 2004. [ bib ]
[441] R. Bennett, W. Rodi, and R. E. Reilinger. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico. J. Geophys. Res.: Sol. Earth, 101:21943--21960, 1996. [ bib ]
[442] Yehuda Ben-Zion, Gregory C Beroza, Marco Bohnhoff, Alice-Agnes Gabriel, and Paul Martin Mai. A grand challenge international infrastructure for earthquake science. Seismol. Res. Lett., 93:2967--2968, 2022. [ bib ]
[443] H Berckhemer, W Kampfmann, E Aulbach, and H Schmeling. Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments. Phys. Earth Planet. Inter., 29:30--41, 1982. [ bib ]
[444] D. Bercovici, Y. Ricard, and G. Schubert. A two-phase model for compaction and damage. 3. Applications to shear localization and plate boundary formation. J. Geophys. Res.: Sol. Earth, 106:8925--8939, 2001. [ bib ]
[445] David Bercovici and Shun-ichiro Karato. Theoretical analysis of shear localization in the lithosphere. Rev. Mineral. Geochem., 51:387--420, 2002. [ bib ]
[446] D. Bercovici. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205:107--121, 2003. [ bib ]
[447] D. Bercovici and S.-i. Karato. Whole-mantle convection and the transition-zone water filter. Nature, 425:39--44, 2003. [ bib ]
[448] D. Bercovici and Y. Ricard. Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res.: Sol. Earth, 110(B0340), 2005. [ bib | DOI ]
[449] David Bercovici and Yanick Ricard. Generation of plate tectonics with two-phase grain-damage and pinning: Source--sink model and toroidal flow. Earth Planet. Sci. Lett., 365:275--288, 2013. [ bib ]
[450] D. Bercovici and Y. Ricard. Plate tectonics, damage and inheritance. Nature, 508:513--516, 2014. [ bib ]
[451] David Bercovici and Maureen D Long. Slab rollback instability and supercontinent dispersal. Geophys. Res. Lett., 41:6659--6666, 2014. [ bib ]
[452] D. Bercovici, P. T. Tackley, and Y. Ricard. The generation of plate tectonics from mantle convection. In Treatise on Geophysics, pages 271--318. Elsevier, 2 edition, 2015. [ bib ]
[453] D. Bercovici and Y. Ricard. Grain-damage hysteresis and plate tectonic states. Phys. Earth Planet. Inter., 253:31--47, 2016. [ bib ]
[454] David Bercovici and Elvira Mulyukova. A continuum theory for phase mixing and grain-damage relevant to tectonic plate boundary evolution. Phys. Earth Planet. Inter., 285:23--44, 2018. [ bib ]
[455] D Bercovici, G Schubert, GA Glatzmaier, and A Zebib. Three-dimensional thermal convection in a spherical shell. J. Fluid Mech., 206:75--104, 1989. [ bib ]
[456] David Bercovici, Gerald Schubert, and Gary A Glatzmaier. Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a basally heated spherical shell. J. Fluid Mech., 239:683--719, 1992. [ bib ]
[457] David Bercovici. A simple model of plate generation from mantle flow. Geophys. J. Int., 114:635--650, 1993. [ bib ]
[458] D. Bercovici. A source-sink model of the generation of plate-tectonics from non-Newtonian mantle flow. J. Geophys. Res.: Sol. Earth, 100:2013--2030, 1995. [ bib ]
[459] D. Bercovici. On the purpose of toroidal motion in a convecting mantle. Geophys. Res. Lett., 22:3107--3110, 1995. [ bib ]
[460] D. Bercovici. Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication. Earth Planet. Sci. Lett., 133:41--51, 1996. [ bib ]
[461] H. C. Berg. Bacterial behavior. Nature, 254:389--392, 1975. [ bib ]
[462] P. A. Berge, J. G. Berryman, and B. P. Bonner. Influence of microstructure on rock elastic properties. Geophys. Res. Lett., 20:2619--2622, 1993. [ bib ]
[463] Andre Berger. The milankovitch astronomical theory of paleoclimates: a modern review. Vistas in Astronomy, 24:103--122, 1980. [ bib ]
[464] André Berger. Milankovitch theory and climate. Rev. Geophys., 26:624--657, 1988. [ bib ]
[465] S. Y. Bergeron, D. A. Yuen, and A. P. Vincent. Capabilities of 3-D wavelet transforms to detect plume-like structures from seismic tomography. Geophys. Res. Lett., 27:3433--3436, 2000. [ bib ]
[466] Rachel E. Bernard and Whitney M. Behr. Fabric heterogeneity in the Mojave lower crust and lithospheric mantle in Southern California. J. Geophys. Res.: Sol. Earth, 122:5000--5025, 2017. [ bib | DOI ]
[467] R. Bernard, W. M. Behr, T. W. Becker, and D. Young. Relationships between olivine CPO and deformation parameters in naturally deformed rocks and implications for mantle seismic anisotropy. Geochem., Geophys., Geosys., 2019. [ bib | DOI ]
[468] Gregory C Beroza and Satoshi Ide. Slow earthquakes and nonvolcanic tremor. Ann. Rev. Earth Planet. Sci., 39:271--296, 2011. [ bib ]
[469] G. C. Beroza and M. D. Zoback. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction. Science, 259:210--212, 1993. [ bib ]
[470] Kelvin R. Berryman, Ursula A. Cochran amd Kate J. Clark, Glenn P. Biasi, Robert M. Langridge, and Pilar Villamor. Major earthquakes occur regularly on an isolated plate boundary fault. Science, 336:1690--1693, 2012. [ bib ]
[471] C Lithgow-Bertelloni and M Gurnis. Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geology, 25:735--738, 1997. [ bib ]
[472] P. G. Betts, W. G. Mason, and L. M. Moresi. The influence of a mantle plume head on the dynamics of a retreating subduction zone. Geology, 40:739--742, 2012. [ bib ]
[473] É. Beucler, É. Stutzmann, and J.-P. Montagner. Surface wave higher mode phase velocity measurements usig a roller coaster type algorithm. Geophys. J. Int., 155:289--307, 2003. [ bib ]
[474] É. Beucler and J.-P. Montagner. Computation of large anisotropic seismic heterogeneities (CLASH). Geophys. J. Int., 165:447--468, 2006. [ bib ]
[475] M. Bevis and B. L. Isacks. Hypocentral trend surface analysis: Probing the geometry of Benioff zones. J. Geophys. Res.: Sol. Earth, 89:6153--6170, 1984. [ bib ]
[476] M. Bevis. The curvature of Wadati-Benioff zones and the torsional rigidity of subducting plates. Nature, 323:52--53, 1986. [ bib ]
[477] M. Bevis. Seismic slip and down dip strain rate in Wadati-Benioff zones. Science, 240:1317--1319, 1988. [ bib ]
[478] M. Bevis, F. W. Taylor, B. E. Schutz, J. Recy, B. L. Isacks, S. Helu, R. Singh, E. Kendrick, J. Stowell, B. Taylor, and S. Calmant. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature, 374:249--251, 1995. [ bib ]
[479] M. J. Bezada, M. B. Magnani, C. A. Zelt, M. Schmitz, and A. Levander. The Caribbean-South American plate boundary at 65oW: Results from wide-angle seismic data. J. Geophys. Res.: Sol. Earth, 115(B08402), 2010. [ bib | DOI ]
[480] M. J. Bezada, A. Levander, and B. Schmandt. Subduction in the southern Caribbean: Images from finite-frequency P wave tomography. J. Geophys. Res.: Sol. Earth, 115(B12333), 2010. [ bib | DOI ]
[481] M. J. Bezada and E. D. Humphreys. Contrasting rupture processes during the April 11, 2010 deep-focus earthquake beneath Granada, Spain. Earth Planet. Sci. Lett., 353:38--46, 2012. [ bib ]
[482] M. J. Bezada, E. D. Humphreys, D. R. Toomey, M. Harnafi, and J. M. Dávila. Western mediterranean slab rollback revealed by upper mantle tomography. Earth Planet. Sci. Lett., submitted, 2013. [ bib ]
[483] MJ Bezada, M Faccenda, and DR Toomey. Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward. Geochem., Geophys., Geosys., 17(8):3164--3189, 2016. [ bib ]
[484] R. Bhagavatula, K. Chen, and C. Jayaprakash. Earthquakes in a model of seismic zone with embedded pre-existing faults. Geophys. Res. Lett., 22:1301--1304, May 1995. [ bib ]
[485] Pathikrit Bhattacharya, Allan M Rubin, Terry E Tullis, Nicholas M Beeler, and Keishi Okazaki. The evolution of rock friction is more sensitive to slip than elapsed time, even at near-zero slip rates. Proc. Natl. Acad. Sci. USA, 119:e2119462119, 2022. [ bib ]
[486] Kaushik Bhattacharya, Burigede Liu, Andrew Stuart, and Margaret Trautner. Learning Markovian homogenized models in viscoelasticity. Multiscale Model. Simul., 21:641--679, 2023. [ bib ]
[487] I. Bianchi, J. Park, N. Piana Agostinetti, and V. Levin. Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy. J. Geophys. Res.: Sol. Earth, 115, 2010. [ bib | DOI ]
[488] T. A. Bianco, G. Ito, J. M. Becker, and M. O. Garcia. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem., Geophys., Geosys., 8, 2005. [ bib | DOI ]
[489] Glenn P Biasi, Ray J Weldon, Thomas E Fumal, and Gordon G Seitz. Paleoseismic event dating and the conditional probability of large earthquakes on the southern san andreas fault, california. Bull. Seismol. Soc. Am., 92:2761--2781, 2002. [ bib ]
[490] R. Biegel and C. G. Sammis. Relating fault mechanics to fault zone structure. Adv. Geophys., 47:65--276, 2004. [ bib ]
[491] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. nteraction of a dynamic rupture on a fault plane with short frictionless fault branches. Pure Appl. Geophys., 164:1881--1904, 2007. [ bib ]
[492] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. An experimental study of the effect of off-fault damage on the velocity of a slip pulse. J. Geophys. Res.: Sol. Earth, 113(B04302), 2008. [ bib | DOI ]
[493] R. L. Biegel, C. G. Sammis, and J. H. Dieterich. The frictional properties of a simulated gouge having a fractal particle distribution. J. Struct. Geol., 11:827--846, 1989. [ bib ]
[494] J. Biemiller and L. L. Lavier. Earthquake supercycles as part of a spectrum of normal fault slip styles. J. Geophys. Res.: Sol. Earth, 133:3221--3240, 2017. [ bib ]
[495] H. Bijwaard, W. Spakman, and E.R. Engdahl. Closing the gap between regional and global travel time tomography. J. Geophys. Res.: Sol. Earth, 103:30055--30078, 1998. [ bib ]
[496] Harmen Bijwaard and Wim Spakman. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett., 166:121--126, 1999. [ bib ]
[497] Susan L Bilek, Susan Y Schwartz, and Heather R DeShon. Control of seafloor roughness on earthquake rupture behavior. Geology, 31:455--458, 2003. [ bib ]
[498] S. Bilek, C. P. Conrad, and C. Lithgow-Bertelloni. Slab pull, slab weakening and their relation to deep intra-slab seismicity. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[499] Susan L Bilek and Thorne Lay. Subduction zone megathrust earthquakes. Geosphere, 14:1468--1500, 2018. [ bib ]
[500] R. Bilham and G. C. P. King. The morphology of strike-slip-faults: Examples from the San-Andreas fault, California. J. Geophys. Res.: Sol. Earth, 94:10204--10216, August 1989. [ bib ]
[501] R Bilham, R Engdahl, N Feldl, and SP Satyabala. Partial and complete rupture of the Indo-Andaman plate boundary 1847-2004. Seismol. Res. Lett., 76:299--311, 2005. [ bib ]
[502] R. Bilham. Earthquakes and sea level: space and terrestrial metrology on a changing planet. Rev. Geophys., 29:1--29, 1991. [ bib ]
[503] M. I. Billen and M. Gurnis. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett., 193:227--236, 2001. [ bib ]
[504] M. I. Billen and M. Gurnis. Comparison of dynamic flow models for the Central Aleuitan and Tonga-Kermadec subduction zones. Geochem., Geophys., Geosys., 4, 2003. [ bib | DOI ]
[505] M. I. Billen and M. Gurnis. Multiscale dynamics of the Tonga-Kermadec subduction zone. Geophys. J. Int., 153:359--388, 2003. [ bib ]
[506] M. I. Billen and G. A. Houseman. Lithospheric instability in obliquely convergent margins: San Gabriel Mountains, southern California. J. Geophys. Res.: Sol. Earth, 109(B01404), 2004. [ bib | DOI ]
[507] M. I. Billen and G. Hirth. Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[508] M. I. Billen and M. Gurnis. Constraints on subducting plate strength within the Kermadec trench. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[509] M. I. Billen and G. Hirth. Rheologic controls on slab dynamics. Geochem., Geophys., Geosys., 8(Q08012), 2007. [ bib | DOI ]
[510] M. I. Billen. Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci., 36:325--356, 2008. [ bib ]
[511] M. I. Billen. Slab dynamics in the transition zone. Phys. Earth Planet. Inter., 183:296–--308, 2010. [ bib ]
[512] M. I. Billen and K. M. Arredondo. Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone. Phys. Earth Planet. Inter., 281:17--30, 2018. [ bib ]
[513] M. I. Billen. Deep slab seismicity limited by rate of deformation in the transition zone. Sci. Adv., 6(22), 2020. [ bib | DOI ]
[514] B. Bills, K. D. Adams, and S. G. Wesnousky. Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. J. Geophys. Res.: Sol. Earth, 112, 2007. [ bib | DOI ]
[515] Bruce G Bills and Glenn M May. Lake Bonneville: Constraints on lithospheric thickness and upper mantle viscosity from isostatic warping of Bonneville, Provo, and Gilbert stage shorelines. J. Geophys. Res.: Sol. Earth, 92:11493--11508, 1987. [ bib ]
[516] Bruce G Bills and Richard D Ray. Lunar orbital evolution: A synthesis of recent results. Geophys. Res. Lett., 26:3045--3048, 1999. [ bib ]
[517] C. R. Bina and H. Kawakatsu. Buoyancy, bending, and seismic visibility in deep slab stagnation. Phys. Earth Planet. Inter., 183:330–--340, 2010. [ bib ]
[518] Eugene C Bingham. Rheology. i. the nature of fluid flow. J. Chem. Educ., 6:1113--119, 1929. [ bib ]
[519] F. Birch. Elasticity and constitution of the Earth’s interior. J. Geophys. Res.: Sol. Earth, 57:227--286, 1952. [ bib ]
[520] Francis Birch. Energetics of core formation. J. Geophys. Res.: Sol. Earth, 70:6217--6221, 1965. [ bib ]
[521] P. Bird. Stress direction history of the western United States and Mexico since 85 Ma. Tectonics, 21(3), 2002. [ bib | DOI ]
[522] P. Bird. Neotectonic velocity field of the western United States (abstract). Eos Trans. AGU, 83(47):NG62A--0931, 2002. [ bib ]
[523] P. Bird. An updated digital model of plate boundaries. Geochem., Geophys., Geosys., 4(3), 2003. [ bib | DOI ]
[524] P. Bird and Y. Y. Kagan. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull. Seismol. Soc. Am., 94:2380--2399, 2004. [ bib ]
[525] P. Bird, Z. Liu, and W. K. Rucker. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis. J. Geophys. Res.: Sol. Earth, 113(B11406), 2008. [ bib | DOI ]
[526] P. Bird. Fault slip rates in the western U.S. from a joint fit to geologic offsets, GPS velocities, and stress directions (abstract). Eos Trans. AGU, 89(52):T23R--08, 2008. [ bib ]
[527] P. Bird. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. J. Geophys. Res.: Sol. Earth, 114(B11403), 2009. [ bib | DOI ]
[528] P. Bird. Thin-shell dynamic F-E model SHELLS with faults, 3-D structure, and realistic rheology. Unpublished model derived for the SCEC CSM using the method of [539], available online at http://sceczero.usc.edu/projects/CSM/model_metadata?type=stress&model=SHELLS, accessed 10/2013, 2012. [ bib ]
[529] Peter Bird and Corné Kreemer. Revised tectonic forecast of global shallow seismicity based on version 2.1 of the Global Strain Rate Map. Bull. Seismol. Soc. Am., 105:152--166, 2015. [ bib ]
[530] P. Bird. Continental delamination and the Colorado Plateau. J. Geophys. Res.: Sol. Earth, 84:7561--7571, 1979. [ bib ]
[531] P. Bird and K. Piper. Plane-stress finite-element models of tectonic flow in Southern California. Phys. Earth Planet. Inter., 21:158--175, 1980. [ bib ]
[532] P. Bird and J. Baumgardner. Fault friction, regional stress, and crust-mantle coupling in Southern California from finite element models. J. Geophys. Res.: Sol. Earth, 89:1932--1944, 1984. [ bib ]
[533] Peter Bird and Robert W Rosenstock. Kinematics of present crust and mantle flow in southern california. GSA Bull., 95:946--957, 1984. [ bib ]
[534] P. Bird. Formation of the Rocky Mountains, western United States: a continuum computer model. Science, 239:1501--1507, 1988. [ bib ]
[535] P. Bird. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res.: Sol. Earth, 96:10275--10286, 1991. [ bib ]
[536] P. Bird and X. Kong. Computer simulations of California tectonics confirm very low strength of major faults. Bull. Seismol. Soc. Am., 106:159--174, 1994. [ bib ]
[537] P. Bird and Y. Li. Interpolation of principal stress directions by nonparametric statistics: global maps with confidence limits. J. Geophys. Res.: Sol. Earth, 101:5435--5443, 1996. [ bib ]
[538] P. Bird. Testing hypothesis on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res.: Sol. Earth, 103:10115--10129, 1998. [ bib ]
[539] P. Bird. Thin-plate and thin-shell finite element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosc., 25:383--394, 1999. [ bib ]
[540] Thomas Birren and Jacqueline E Reber. The impact of rheology on the transition from stick-slip to creep in a semibrittle analog. J. Geophys. Res.: Sol. Earth, 124:3144--3154, 2019. [ bib ]
[541] C. B. Biryol, G. Zandt, S. L. Beck, A. A. Ozacar, H. E. Adiyaman, and C. R. Gans. Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone. Geophys. J. Int., 181:1201--1213, 2010. [ bib ]
[542] R. Biswas, A. F. Arnulf, M. K. Sen, D. Datta, and P. Jaysaval. Ray-based tomography and acoustic full waveform inversion with the reversible jump Markov chain Monte Carlo algorithm (abstract). In AGU Fall Meeting, number S31D-0526. American Geophysical Union, 2018. [ bib ]
[543] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DES3D on Bitbucket. Online at bitbucket.org/tan2/dynearthsol3d/src, accessed 11/2016, 2016. [ bib ]
[544] D. Bittner and H. Schmeling. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int., 123(59--70), 1995. [ bib ]
[545] D. K. Blackman, H.-R. Wenk, and J.-M. Kendall. Seismic anisotropy of the upper mantle: 1. Factors that affect mineral texture and effective elastic properties. Geochem., Geophys., Geosys., 3(2001GC000248), 2002. [ bib ]
[546] D. K. Blackman and J.-M. Kendall. Seismic anisotropy of the upper mantle: 2. Predictions for current plate boundary flow models. Geochem., Geophys., Geosys., 3(2001GC000247), 2002. [ bib ]
[547] Donna K Blackman, Jeffrey A Karson, Deborah S Kelley, Johnson R Cann, Gretchen L Früh-Green, Jeffrey S Gee, Stephen D Hurst, Barbara E John, Jennifer Morgan, Scott L Nooner, D Kent Ross, Schroeder Timothy J, and Elizabeth A. Williams. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30oN): Implications for the evolution of an ultramafic oceanic core complex. Marine Geophys. Res., 23:443--469, 2002. [ bib ]
[548] D. Blackman. Use of mineral physics, with geodynamic modelling and seismology, to investigate flow in the Earth's mantle. Rep. Prog. Phys., 70:659--689, 2007. [ bib ]
[549] D.K. Blackman, D.E. Boyce, O. Castelnau, P. R. Dawson, and G Laske. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy. Geophys. J. Int., 210:1481--1493, 2017. [ bib ]
[550] D. K. Blackman, J.-M. Kendall, P. R. Dawson, and H.-R. Wenk. Teleseismic imaging of subaxial flow at mid-ocean ridges: traveltime effects of anisotropic mineral texture in the mantle. Geophys. J. Int., 127:415--426, 1996. [ bib ]
[551] D. K. Blackman and J.-M. Kendall. Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Phil. Trans. Roy. Soc. Lond. A, 235:217--231, 1997. [ bib ]
[552] D. D. Blackwell and M. Richards. Calibration of the AAPG Geothermal Survey of North America BHT data base (abstract). In AAPG Annual Meeting, Dallas, TX, page 87616, 2004. updated data compilation based on [554], available online at http://www.smu.edu/geothermal/2004NAMap/, accessed 05/2005. [ bib ]
[553] Em Blackwell1, Manoochehr Shirzaei, Chandrakanta Ojha, and Susanna Werth. Tracking California’s sinking coast from space: Implications for relative sea-level rise. Sci. Adv., 6:eaba4551, 2020. [ bib ]
[554] D. D. Blackwell, J. L. Steele, and L. S. Carter. Heat flow patterns of the North American continent: A discussion of the DNAG geothermal map of North America. In D. B. Slemmons, E. R. Engdahl, and D. D. Blackwell, editors, Neotectonics of North America, volume 1 of Geol. Soc. Amer. DNAG Decade Map, pages 423--437. Geol. Soc. Amer., 1991. [ bib ]
[555] M. Blanco and W. Spakman. The P-wave velocity structure of the mantle below the Iberian Peninsula: evidence for subducted lithosphere below southern Spain. Tectonophys., 221:13--34, 1993. [ bib ]
[556] M. L. Blanpied and T. E. Tullis. The stability and behavior of a frictional system with a two state variable constitutive law. Pure Appl. Geophys., 124:415--444, 1986. [ bib ]
[557] ML Blanpied, DA Lockner, and JD Byerlee. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett., 18:609--612, 1991. [ bib ]
[558] Michael L Blanpied, David A Lockner, and James D Byerlee. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res.: Sol. Earth, 100:13045--13064, 1995. [ bib ]
[559] Lilian Blaser, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. Seismol. Soc. Am., 100:2914--2926, 2010. [ bib ]
[560] W. Bleeker. The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71:99--134, 2003. [ bib ]
[561] Q. Bletery, A. M. Thomas, A. W. Rempel, L. Karlstrom, A. Sladen, and L. De Barros. Mega-earthquakes rupture flat megathrusts. Science, 354:1027--1031, 2016. [ bib ]
[562] G. Blewitt. NGL/UNR GPS Data Analysis Strategy Summary. Technical report, Nevada Geodetic Laboratory, University of Nevada, 2016. Available online at http://geodesy.unr.edu/gps/ngl.acn.txt, accessed 11/2016. [ bib ]
[563] G. Blewitt, W. C. Hammond, and C. Kreemer. Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, 2018. [ bib | DOI ]
[564] M Block. Surface tension as the cause for bénard and surface deformation in a liquid film. Nature, 178:650--651, 1956. [ bib ]
[565] H. Blumenauer and G. Pusch. Technische Bruchmechanik. Dtsch. Verlag f"ur Grundstoffindustrie, Leipzig, 3 edition, 1993. [ bib ]
[566] M. Boccaletti, P. Elter, and G. Guazzone. Polaritá strutturali delle alpi e dell' appennino settentrionale in rapporto all'inversione di una zona di subduzione nord-tirrenica. Mem. Soc. Geol. It., 10:371--378, 1971. [ bib ]
[567] Y. Bock, R. M. Nikolaidis, P. J. de Jonge, and M. Bevis. Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res.: Sol. Earth, 105:28223--28253, 2000. [ bib ]
[568] YEHUDA Bock, L Prawirodirdjo, JF Genrich, CW Stevens, R McCaffrey, C Subarya, SSO Puntodewo, and E Calais. Crustal motion in Indonesia from global positioning system measurements. J. Geophys. Res.: Sol. Earth, 108(2367), 2003. [ bib | DOI ]
[569] P. Bodin and J.N. Brune. On the scaling of slip with rupture length for shallow strike-slip earthquakes: Quasi-static models and dynamic rupture propagation. Bull. Seismol. Soc. Am., 86:1292--1299, October 1996. [ bib ]
[570] Thomas Bodin, Malcolm Sambridge, H Tkalčić, Pierre Arroucau, Kerry Gallagher, and Nicholas Rawlinson. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res.: Sol. Earth, 117(B2), 2012. [ bib ]
[571] T. Bodin, J. Leiva, B. A. Romanowicz, V. Maupin, and H. Yuan. Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophys. J. Int., 206:605--629, 2016. [ bib ]
[572] JH Bodine, MS Steckler, and AB Watts. Observations of flexure and the rheology of the oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 86:3695--3707, 1981. [ bib ]
[573] M. Bodmer, D. R. Toomey, E. E. Hooft, and J. Braunmiller. Seismic anisotropy beneath the Juan de Fuca plate system: Evidence for heterogeneous mantle flow. Geology, 43, 2015. [ bib | DOI ]
[574] L. Bodri and B. Bodri. Numerical investigation of tectonic flow in island-arc areas. Tectonophys., 50:163--175, 1978. [ bib ]
[575] O. F. Bodur and P. F. Rey. The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10:2167--2178, 2019. [ bib ]
[576] M. S. Boettcher and T. H. Jordan. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res.: Sol. Earth, 109(B12302), 2004. [ bib | DOI ]
[577] M. S. Boettcher, G. Hirth, and B. Evans. Olivine friction at the base of oceanic seismogenic zones. J. Geophys. Res.: Sol. Earth, 112(B91295), 2007. [ bib | DOI ]
[578] M. S. Boettcher, A. McGarr, and M. Johnston. Extension of Gutenberg–Richter distribution to Mw -1.3, no lower limit in sight. Geophys. Res. Lett., 36(L10307), 2009. [ bib | DOI ]
[579] G. Bokelmann and E. D. Humphreys. Plate-mantle interaction and forces that move plates. Eos Trans. AGU, 81(48), 2000. Special session at AGU Fall Meeting. [ bib ]
[580] G. H. R. Bokelmann and G. C. Beroza. Depth-dependent earthquake focal mechanism orientation: evidence for a weak zone in the lower crust. J. Geophys. Res.: Sol. Earth, 105:21683--21696, 2000. [ bib ]
[581] G. H. R. Bokelmann. Convection-driven motion of the north American craton: evidence from P-wave anisotropy. Geophys. J. Int., 148:278--287, 2002. [ bib ]
[582] G. Bokelmann. Which forces drive North America? Geology, 30:1027, 2002. [ bib ]
[583] G. Bokelmann and E. Maufroy. Mantle structure under Gibraltar constrained by dispersion of body waves. Geophys. Res. Lett., 34(L22305), 2007. [ bib | DOI ]
[584] A. N. B. Boliakov and H. J. Herrmann. Self-organized criticality of plastic shear bands in rocks. Geophys. Res. Lett., 21:2143--2146, 1994. [ bib ]
[585] Bert Bolin. Requirements for a satisfactory model of the global carbon cycle and current status of modeling efforts. In The changing carbon cycle, pages 403--424. Springer, 1986. [ bib ]
[586] David C Bolton, Chris Marone, Demian Saffer, and Daniel T Trugman. Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes. Nature comm., 14:3859, 2023. [ bib ]
[587] M. Bonafede and A. Neri. Effects induced by an earthquake on its fault plane: a boundary element study. Geophys. J. Int., 141:43--56, 2000. [ bib ]
[588] M. Bonafede, M. Dragoni, and E. Boschi. Quasi-static crack models and the frictional stress threshold criterion for slip arrest. J. Geophys. Res.: Sol. Earth, 83:615--637, 1985. [ bib ]
[589] M. Bonafede, M. Dragoni, and A. Morelli. On the existence of a periodic dislocation cycle in horizontally layered viscoelastic model. J. Geophys. Res.: Sol. Earth, 91:6396--6404, May 1986. [ bib ]
[590] David PG Bond and Stephen E Grasby. On the causes of mass extinctions. Palaeogeog., Palaeoclim., Palaeoecol., 478:3--29, 2017. [ bib ]
[591] Y. Boneh and Y. Skemer. The effect of deformation history on the evolution of olivine CPO. Earth Planet. Sci. Lett., 406:213--222, 2014. [ bib ]
[592] Y. Boneh, L. F. Morales, É. Kaminski, and P. Skemer. Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle. Geochem., Geophys., Geosys., 16:3436--3455, 2015. [ bib ]
[593] Y. Boneh, D. Wallis, L. N. Hansen, M. Krawczynski, and P. Skemer. Oriented grain growth and modification of “frozen anisotropy” in the lithospheric mantle. Earth Planet. Sci. Lett., 474:368--374, 2017. [ bib ]
[594] N. L. Boness and M. D. Zoback. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34:825--828, 2006. [ bib ]
[595] M. G. Bonilla and J. M. Buchanan. Interim report on worldwide historic surface faulting. U.S. Geol. Surv., Open-File Rept., Washington, D.C., 1970. [ bib ]
[596] M. Bonini. Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics, 22, 2003. [ bib | DOI ]
[597] Mickael Bonnin, Guilhem Barruol, and Götz HR Bokelmann. Upper mantle deformation beneath the North American--Pacific plate boundary in California from SKS splitting. J. Geophys. Res.: Sol. Earth, 115(B4), 2010. [ bib ]
[598] M. Bonnin, A. Tommasi, R. Hassani, S. Chevrot, J. Wookey, and G. Barruol. Numerical modelling of the upper-mantle anisotropy beneath a migrating strike-slip plate boundary: the San Andreas Fault system. Geophys. J. Int., 191:436--458, 2012. [ bib ]
[599] Richard K Bono, John A Tarduno, Francis Nimmo, and Rory D Cottrell. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nature Geosc., 12:143--147, 2019. [ bib ]
[600] Cameron Book, Matthew J Hoffman, Samuel B Kachuck, Trevor R Hillebrand, Stephen F Price, Mauro Perego, and Jeremy N Bassis. Stabilizing effect of bedrock uplift on retreat of Thwaites Glacier, Antarctica, at centennial timescales. Earth Planet. Sci. Lett., 597:117798, 2022. [ bib ]
[601] D. C. Booth and S. Crampin. The anisotropic reflectivity technique: theory. Geophys. J. R. Astr. Soc., 72:31--45, 1985. [ bib ]
[602] P. Borat, J. Rivière, C. Marone, A. Mali, D. Kifer, and P. Shokouhi. Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes. Nature Comm., 14:3693, 2023. [ bib ]
[603] C. Borrero and H. Castillo. Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología UIS, 28:23--34, 2006. [ bib ]
[604] C. Borrero, L. M. Toro, M. Alvarán, and H. Castillo. Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruíz volcano, Colombia. Geofís. Inter., 48:149--169, 2009. [ bib ]
[605] A. A. Borsa, D. C. Agnew, and D. R. Cayan. Ongoing drought-induced uplift in the western United States. Science, 345:1587--1590, 2014. [ bib ]
[606] A. A. Borsa and D. C. Agnew. Drought-induced stress changes on faults associated with the 2014 South Napa earthquake. AGU Fall Meeting Abtract Volume, (S44D-05), 2014. Available online at http://http://adsabs.harvard.edu/abs/2014AGUFM.S44D..05B, accessed 08/2015. [ bib ]
[607] S. Borsi and R. Dubois. Donnes geochronologiques sue l'histoire hercynienne et alpine de la Calabre centrale. C. R. Acad. Sci. Paris, 266:72--75, 1968. [ bib ]
[608] V. Bortolotti, G. Principi, and B. Treves. Mesozoic evolution of western Tethys and the Europe/Iberia/Adria plate junction. Mem. Soc. Geol. It., 45:393--407, 1990. [ bib ]
[609] L. Boschi and A. M Dziewoński. Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res.: Sol. Earth, 105:25567--25594, 2000. [ bib ]
[610] L. Boschi and G. Ekström. New images of the Earth's upper mantle from measurements of surface-wave phase velocity anomalies. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[611] L. Boschi. Measures of resolution in global body wave tomography. Geophys. Res. Lett., 30, 2003. [ bib | DOI ]
[612] L. Boschi, G. Ekström, and B. Kustowski. Multiple resolution surface wave tomography: the Mediterranean basin. Geophys. J. Int., 157:293--304, 2004. [ bib ]
[613] L. Boschi and J. H. Woodhouse. Surface wave ray tracing and azimuthal anisotropy: generalized spherical harmonic approach. Geophys. J. Int., 164:569--578, 2006. [ bib ]
[614] L. Boschi, T. W. Becker, G. Soldati, and A. M. Dziewoński. On the relevance of Born theory in global seismic tomography. Geophys. Res. Lett., 33(L06302), 2006. [ bib | DOI ]
[615] L. Boschi, T. W. Becker, and B. Steinberger. Mantle plumes: dynamic models and seismic images. Geochem., Geophys., Geosys., 8(Q10006), 2007. [ bib | DOI ]
[616] L. Boschi, T. W. Becker, and B. Steinberger. On the statistical significance of correlations between synthetic mantle plumes and tomographic models. Phys. Earth Planet. Inter., 167:230--238, 2008. [ bib ]
[617] L. Boschi, T. W. Becker, G. Ekström, H. J. van Heijst, N. A. Simmons, and J. Trampert. Vertical coherency of heterogeneity in the Earth's mantle constrained from a comprehensive set of global seismic data (abstract). Eos Trans. AGU, 90(52):U23D--0064, 2009. [ bib ]
[618] L. Boschi, B. Fry, G. Ekström, and D. Giardini. The European upper mantle as seen by surface waves. Surv. Geophys., 30:463--501, 2009. [ bib ]
[619] L. Boschi, C. Faccenna, and T. W. Becker. Mantle structure and dynamic topography in the Mediterranean Basin. Geophys. Res. Lett., 37(L20303), 2010. [ bib | DOI ]
[620] L. Boschi, T. W. Becker, F. Cammarano, and S. Speziale. Mapping mineralogical phase transformations from global seismic data. Abstract U51A-0020 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec., 2010. [ bib ]
[621] L. Boschi and T. W. Becker. Vertical coherence in mantle heterogeneity from global seismic data. Geophys. Res. Lett., 38(L20306), 2011. [ bib | DOI ]
[622] L. Boschi and A. M. Dziewoński. `High' and `low' resolution images of the Earth's mantle -- Implications of different approaches to tomographic modeling. J. Geophys. Res.: Sol. Earth, 104:25567--25594, 1999. [ bib ]
[623] M. G. Bostock, S. Rondenay, and J. Shragge. Multi-parameter 2-D inversion of scattered teleseismic body waves I. Theory for oblique incidence. J. Geophys. Res.: Sol. Earth, 107:30771--30782, 2001. [ bib ]
[624] M. G. Bostock. Kirchhoff-approximate inversion of teleseismic wavefields. Geophys. J. Int., 149:787--795, 2002. [ bib ]
[625] M. G. Bostock, R. D. Hyndman, S. Rondenay, and S. M. Peacock. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417:536--538, 2002. [ bib ]
[626] M. g. Bostock and N. I. Christensen. Split from slip and schist: Crustal anisotropy beneath northern cascadia from non-volcanic tremor. J. Geophys. Res.: Sol. Earth, 117(B08303), 2012. [ bib | DOI ]
[627] MG Bostock. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res.: Sol. Earth, 103(B9):21183--21200, 1998. [ bib ]
[628] M. G. Bostock. Seismic imaging of lithospheric discontinuities and continental evolution. Lithos, 48:1--16, 1999. [ bib ]
[629] W. Bosworth, R. Guirath, and L. G. Kessler II. Late Cretaceous (ca. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): far-field stress effects of the “Santonian event” and origin of the Syrian arc deformation belt. Geology, 27:633--636, 1999. [ bib ]
[630] M. Bouchon, D. Marsan, V. Durand, M. Campillo, H. Perfettini, R. Madariaga, and B. Gardonio. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geosc., 9:380--384, 2016. [ bib | DOI ]
[631] A. M. Bouillier and A. Nicolas. Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys. Chem. Earth, 9:467--475, 1975. [ bib ]
[632] S. J. Bourne, P. C. England, and B. Parsons. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391:655--659, 1998. [ bib ]
[633] F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids, Part 2. Oxford University Press, New York, 1964. [ bib ]
[634] D. J. Bower, M. Gurnis, J. M. Jackson, and W. Sturhahn. Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase. Geophys. Res. Lett., 36(L10306), 2009. [ bib | DOI ]
[635] Dan J Bower, Michael Gurnis, and Maria Seton. Lower mantle structure from paleogeographically constrained dynamic earth models. Geochem., Geophys., Geosys., 14:44--63, 2013. [ bib ]
[636] D. J. Bower, M. Gurnis, and N. Flament. Assimilating lithosphere and slab history in 4-D dynamic Earth models. Phys. Earth Planet. Inter., 238:8--22, 2015. [ bib ]
[637] J. R. Bowman and M. A. Ando. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys. J. R. Astr. Soc., 88:24--41, 1987. [ bib ]
[638] D. D. Bowman, G. Ouillon, C. G. Sammis, D. Sornette, and A. Sornette. An observational test of the critical earthquake concept. Eos Trans. AGU, 78:F463, 1997. [ bib ]
[639] D. D. Bowman, G. Ouillon, C. G. Samnis, A. Sornette, and D. Sornette. An observational test of the critical earthquake concept. J. Geophys. Res.: Sol. Earth, 103:24359--24372, 1998. [ bib ]
[640] Jonathan W Bown and Robert S White. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett., 121:435--449, 1994. [ bib ]
[641] O. S. Boyd, C. H. Jones, and A. F. Sheehan. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California. Science, 305:660--662, 2004. [ bib ]
[642] O. S. Boyd and A. F. Sheehan. Attenuation tomography beneath the Rocky Mountain Front: Implications for the physical state of the upper mantle. In The Rocky Mountain Region: An Evolving Lithosphere, volume 154 of Geophys. Mono., pages 361--377. American Geophysical Union, 2005. [ bib ]
[643] FR Boyd, JJ Gurney, and SH Richardson. Evidence for a 150--200-km thick Archaean lithosphere from diamond inclusion thermobarometry. Nature, 315:387--389, 1985. [ bib ]
[644] Maud Boyet and Richard W Carlson. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science, 309:576--581, 2005. [ bib ]
[645] E. Bozdag and J. Trampert. Assessment of tomographic mantle models using spectral element seismograms. Geophys. J. Int., 180:1187--1199, 2010. [ bib ]
[646] W. F. Brace and J. D. Beyerlee. Stick-slip as a mechanism for earthquakes. Science, 153:990--992, 1966. [ bib ]
[647] W. F. Brace and D. L. Kohlstedt. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res.: Sol. Earth, 85:6248--6252, 1980. [ bib ]
[648] Y. Brainman, F. Family, and H. G. E. Hentschel. Nonlinear friction in the periodic stick-slip motion of coupled oscillators. Phys. Rev. B., 55:5491--5504, 1997. [ bib ]
[649] J. L. Branchaw, A. R. Butz, and A. R. Smith. Entering Research: A curriculum to support undergraduate and graduate research trainees. Macmillan, New York, 2 edition, 2020. [ bib ]
[650] J.L. Branchaw, A.R. Butz, and A.R. Smith. Evaluation of the second edition of entering research: A customizable curriculum for apprentice-style undergraduate and graduate research training programs and courses. Life Sci. Edu., 19:1--19, 2020. [ bib ]
[651] J. P. Brandenburg and P. E. van Keken. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res.: Sol. Earth, 112:B06403, 2007. [ bib | DOI ]
[652] J. P. Brandenburg, E. H. Hauri, P. E. van Keken, and C. J. Ballentine. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett., 276:1--13, 2008. [ bib ]
[653] N. Brantut, P. Baud, M. J. Heap, and P. G. Meredith. Micromechanics of brittle creep in rocks. J. Geophys. Res.: Sol. Earth, 117(B8), 2012. [ bib | DOI ]
[654] J. Braun. The many surface expressions of mantle dynamics. Nature Geosc., 3:825--833, 2010. [ bib ]
[655] J Braun, Xavier Robert, and T Simon-Labric. Eroding dynamic topography. Geophys. Res. Lett., 40:1494--1499, 2013. [ bib ]
[656] J. Braun and S. D. Willett. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorph., 180:170--179, 2013. [ bib ]
[657] J. Braun, X. Robert, and T. Simon-Labric. Eroding dynamic topography. Geophys. Res. Lett., 40:1494--1499, 2013. [ bib | DOI ]
[658] Jean Braun and Christopher Beaumont. A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17:760--764, 1989. [ bib ]
[659] J. Braun and M. Sambridge. Dynamical lagrangian remeshing (dlr): A new algorithm for solving large strain deformation problems and its application to fault-propagation folding. Earth Planet. Sci. Lett., 124:211--220, 1994. [ bib ]
[660] J. Braun and M. Sambridge. A numerical methode for solving partial differential equations on highly irregular evolving grids. Nature, 376:655--660, 1995. [ bib ]
[661] J. Braun and C. Beaumont. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand. J. Geophys. Res.: Sol. Earth, 100:18059--18074, 1995. [ bib ]
[662] O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard. Nonlinear mobility of the generalized Frenkel-Kontorova model. Phys. Rev. E, 55:3598--3612, 1997. [ bib ]
[663] J. Braun, A. Poliakov, D. Mainprice, A. Vauchez, A. Tomassi, and M. Daigniéres. A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine. J. Geophys. Res.: Sol. Earth, 104:25167--25181, 1999. [ bib ]
[664] Y. Brechet and Y. Estrin. The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater., 30:1449--1454, 1994. [ bib ]
[665] N. A. Breen and E. A. Silver. The Wetar back arc thrust belt, eastern Indonesia: The effect of accretion against an irregularly shaped arc. Tectonics, 8:85--8, 1989. [ bib ]
[666] Efim A Brener, Michael Aldam, Fabian Barras, Jean-François Molinari, and Eran Bouchbinder. Unstable slip pulses and earthquake nucleation as a nonequilibrium first-order phase transition. Phys. Rev. Lett., 121:234302, 2018. [ bib ]
[667] Efim A Brener and Eran Bouchbinder. Unconventional singularities and energy balance in frictional rupture. Nature comm., 12:2585, 2021. [ bib ]
[668] Alec R Brenner, Roger R Fu, David AD Evans, Aleksey V Smirnov, Raisa Trubko, and Ian R Rose. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Sci. Adv., 6(17):eaaz8670, 2020. [ bib ]
[669] A. R. Brenner, R. R. Fu, A. R. C. Kylander-Clark, and B. J. Foley. Plate motion and a dipolar geomagnetic field at 3.25 Ga. Proc. Natl. Acad. Sci. USA, 119:e2210258119, 2022. [ bib ]
[670] J. H. P. de Bresser, J. H. ter Heege, and C. H. Spiers. Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int. J. Earth Sci., 90:28--45, 2001. [ bib ]
[671] Arthur Briaud, Roberto Agrusta, Claudio Faccenna, Francesca Funiciello, and Jeroen van Hunen. Topographic fingerprint of deep mantle subduction. J. Geophys. Res.: Sol. Earth, 125:e2019JB017962, 2020. [ bib ]
[672] David L Bridges, Kevin Mickus, Stephen S Gao, Mohamed G Abdelsalam, and Abera Alemu. Magnetic stripes of a transitional continental rift in Afar. Geology, 40:203--206, 2012. [ bib ]
[673] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM, 2 edition, 2000. [ bib ]
[674] Silvia Brizzi, Iris van Zelst, Francesca Funiciello, Fabio Corbi, and Ylona van Dinther. How sediment thickness influences subduction dynamics and seismicity. J. Geophys. Res.: Sol. Earth, 125:e2019JB018964, 2020. [ bib ]
[675] Emily E Brodsky, Jacquelyn J Gilchrist, Amir Sagy, and Cristiano Collettini. Faults smooth gradually as a function of slip. Earth Planet. Sci. Lett., 302:185--193, 2011. [ bib ]
[676] E. E. Brodsky and T. Lay. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344:700--702, 2014. [ bib ]
[677] Emily E Brodsky and Nicholas J van der Elst. The uses of dynamic earthquake triggering. Ann. Rev. Earth Planet. Sci., 42:317--339, 2014. [ bib ]
[678] Emily E. Brodsky, James J. Mori, Louise Anderson, Frederick M. Chester, Marianne Conin, Eric M. Dunham, Nobu Eguchi, Patrick M. Fulton, Ryota Hino, Takehiro Hirose, Matt J. Ikari, Tsuyoshi Ishikawa, Tamara Jeppson, Yasuyuki Kano, James Kirkpatrick, Shuichi Kodaira, Weiren Lin, Yasuyuki Nakamura, Hannah S. Rabinowitz, Christine Regalla, Francesca Remitti, Christie Rowe, Demian M. Saffer, Saneatsu Saito, James Sample, Yoshinori Sanada, Heather M. Savage, Tianhaozhe Sun, Sean Toczko, Kohtaro Ujiie, Monica Wolfson-Schwehr, and Tao Yang. The state of stress on the fault before, during, and after a major earthquake. Ann. Rev. Earth Planet. Sci., 48:49--74, 2020. [ bib ]
[679] J. Browaeys and S. Chevrot. Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int., 159:667--678, 2004. [ bib ]
[680] J. T. Browaeys, T. W. Becker, and T. H. Jordan. Stochastic description of seismic anisotropy in the lithosphere and upper mantle (abstract). Eos Trans. AGU, 86(52):S43C--08, 2005. [ bib ]
[681] E. T. Brown, R. Bendick, D. L. Bourles, V. Gaur, P. Molnar, G. M. Raisbeck, , and F. Yiou. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J. Geophys. Res.: Sol. Earth, 107(B92192), 2002. [ bib | DOI ]
[682] Michael Brown. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology, 34:961--964, 2006. [ bib ]
[683] Michael Brown. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout earth history: when did earth first adopt a plate tectonics mode of behavior? Geol. Soc. Am. Special Pap., 440:97--128, 2008. [ bib ]
[684] Michael Brown. Paired metamorphic belts revisited. Gondwana Res., 18:46--59, 2010. [ bib ]
[685] Michael Brown and Tim Johnson. Metamorphism and the evolution of subduction on earth. Amer. Mineral., 104:1065--1082, 2019. [ bib ]
[686] Michael Brown, Tim Johnson, and Nicholas J Gardiner. Plate tectonics and the Archean Earth. Ann. Rev. Earth Planet. Sci., 48:291--320, 2020. [ bib ]
[687] S. Brown Krein, Z.J. Molitor, and T.L. Grove. ReversePetrogen: A multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res.: Sol. Earth, 126(8):e2020JB021292, 2021. [ bib ]
[688] JM Brown and TJ Shankland. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. Int., 66:579--596, 1981. [ bib ]
[689] R. D. Brown. Quaternary deformation. In The San Andreas Fault System, California, volume 1515 of U. S. Geol. Surv. Prof. Pap., pages 83--113. United States Geological Survey, 1990. [ bib ]
[690] E. T. Brown, D. L. Bourles, B. C. Burchfiel, D. Qidong, L. Jun, P. Molnar, G. M. Raisbeck, and F. Yiou. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. GSA Bull., 110:377--386, 1998. [ bib ]
[691] S. J. Brownlee, V. Schulte-Pelkum, A. Raju, K. Mahan, C. Condit, and O. F. Orlandini. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 36:1835--1857, 2017. [ bib | DOI ]
[692] Michael R Brudzinski, Clifford H Thurber, Bradley R Hacker, and E Robert Engdahl. Global prevalence of double Benioff zones. Science, 316:1472--1474, 2007. [ bib ]
[693] Lucile Bruhat and Paul Segall. Coupling on the northern Cascadia subduction zone from geodetic measurements and physics-based models. J. Geophys. Res.: Sol. Earth, 121:8297--8314, 2016. [ bib ]
[694] Jean-Pierre Brun and Claudio Faccenna. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet. Sci. Lett., 272:1--7, 2008. [ bib ]
[695] Jean-Pierre Brun, Dimitrios Sokoutis, Céline Tirel, Frédéric Gueydan, Jean Van Den Driessche, and Marie-Odile Beslier. Crustal versus mantle core complexes. Tectonophys., 746:22--45, 2018. [ bib ]
[696] J.P. Brun, M.-A. Gutscher, et al. Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophys., 208:139--147, 1992. [ bib ]
[697] J.-P. Brun. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Phil. Trans. Royal Soc. London A, 357:695--712, 1999. [ bib ]
[698] Sascha Brune, Christian Heine, Marta1 Pérez-Gussinyé, and Stephan V Sobolev. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Comm., 5:1--9, 2014. [ bib ]
[699] Sascha Brune, Christian Heine, Peter D Clift, and Marta Pérez-Gussinyé. Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine Petrol. Geol., 79:257--281, 2017. [ bib ]
[700] Sascha Brune, Folarin Kolawole, Jean-Arthur Olive, D Sarah Stamps, W Roger Buck, and Susanne JH Buiter. Geodynamics of continental rift initiation and evolution. EarthArXiv, 2022. [ bib | DOI ]
[701] J. N. Brune. Seismic moment seismicity and rate of slip along major fault zones. J. Geophys. Res.: Sol. Earth, 73:777--784, 1968. [ bib ]
[702] James N Brune, Thomas L Henyey, and Robert F Roy. Heat flow, stress, and rate of slip along the San Andreas fault, California. J. Geophys. Res.: Sol. Earth, 74:3821--3827, 1969. [ bib ]
[703] James N Brune. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res.: Sol. Earth, 75:4997--5009, 1970. [ bib ]
[704] David Brunei and Philippe Machetel. Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity. J. Geophys. Res.: Sol. Earth, 103(B3):4929--4945, 1998. [ bib ]
[705] W.M. Bruner. Comment on `Seismic velocities in dry and saturated cracked solids' by Richard J. O'Connell and Bernard Budiansky. J. Geophys. Res.: Sol. Earth, 81:2573--2576, Mai 1976. [ bib ]
[706] C. Brunet, P. Monié, L. Jolivet, and J. P. Cadet. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics, 321:127--155, 2000. [ bib ]
[707] B. Brunhes. Recherches sur la direction d'aimantation des roches volcaniques. J. Phys. Theor. Appl., 5:705--724, 1906. [ bib ]
[708] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 113:3932--3937, 2016. [ bib ]
[709] S. G. Brush. Discovery of the Earth's core. Amer. J. Phys., 48:705--723, 1980. [ bib ]
[710] Madeleine Bry and Nicky White. Reappraising elastic thickness variation at oceanic trenches. J. Geophys. Res.: Sol. Earth, 112(B08414), 2007. [ bib | DOI ]
[711] S. C. Bryan and R. E. Ernst. Revised definiton of Large Igneous Provinces (LIPs). Earth-Sci. Rev., 175--202, 2008. [ bib ]
[712] J. A. Bryant, G. M. Yogodzinski, M. L. Hall, J. L. Lewicki, and D. G. Bailey. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J. Petrol., 47:1147--1175, 2006. [ bib ]
[713] C. A. Langston, editor. The 1992, Landers, California, Earthquake Sequence, volume 84 of Bull. Seismol. Soc. Am., El Cerrito, Kalifornien, June 1994. Seismological Society of America. [ bib ]
[714] W. R. Buck, L. L. Lavier, and Babeyko A. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. Int. Geol. Rev., 45:712--723, 2003. [ bib ]
[715] W Roger Buck. Consequences of asthenospheric variability on continental rifting. In Rheology and deformation of the lithosphere at continental margins, pages 1--30. Columbia University Press, 2004. [ bib ]
[716] W Roger Buck, Luc L Lavier, and Alexei NB Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434:719--723, 2005. [ bib ]
[717] W Roger Buck. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet. Sci. Lett., 466:62--69, 2017. [ bib ]
[718] W. R. Buck and A. Poliakov. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392:272--275, 1998. [ bib ]
[719] W. R. Buck, L.L. Lavier, and A. Babeyko. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. International Geology Review, 45:712--723, 2003. [ bib ]
[720] W Roger Buck. Consequences of asthenospheric variability on continental rifting. In G. Karner, B. Taylor, N. Driscoll, and D. Kohlstedt, editors, Rheology and deformation of the lithosphere at continental margins, pages 1--30. Columbia University Press, 2004. [ bib ]
[721] W. R. Buck, L L Lavier, and A. Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434:719--723, 2005. [ bib ]
[722] W Roger Buck. Modes of continental lithospheric extension. J. Geophys. Res.: Sol. Earth, 96(B12):20161--20178, 1991. [ bib ]
[723] W Roger Buck. Effect of lithospheric thickness on the formation of high-and low-angle normal faults. Geology, 21:933--936, 1993. [ bib ]
[724] B. Budiansky. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13:223--227, 1965. [ bib ]
[725] R. Budiansky and G. F. Carrier. The pointless wedge. SIAM J. Appl. Mech., 25:378--387, 1973. [ bib ]
[726] Bernard Budiansky and Richard J O'Connell. Elastic moduli of a cracked solid. Int. J. Solids Struct., 12:81--97, 1976. [ bib ]
[727] R. Budiansky and R. J. O'Connell. Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5:5--7, 1978. [ bib ]
[728] M. I. Budyko. The effect of solar radiation variations on the climate of the Earth. Tellus, 21:611--619, 1969. [ bib ]
[729] J. S. Buehler and P. M. Shearer. Pn tomography of the western United States using US Array. J. Geophys. Res.: Sol. Earth, 115(B09315), 2010. [ bib | DOI ]
[730] J. S. Buehler and P.M. Shearer. Anisotropy and Vp/Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases. J. Geophys. Res.: Sol. Earth, 119:1200--1219, 2014. [ bib ]
[731] Janine S. Buehler and Peter M. Shearer. Localized imaging of the uppermost mantle with USArray Pn data. J. Geophys. Res.: Sol. Earth, 117, 2012. [ bib | DOI ]
[732] Janine S. Buehler and Peter M. Shearer. Uppermost mantle seismic velocity structure beneath USArray. J. Geophys. Res.: Sol. Earth, 122:436--448, 2017. [ bib | DOI ]
[733] C. G. Bufe and D. J. Varnes. Predictive modeling of the seismic cycle of the greater San Francisco Bay region. J. Geophys. Res.: Sol. Earth, 98:9871--9883, 1993. [ bib ]
[734] B. A. Buffett. Earth's core and the geodynamo. Science, 288:2007--2012, 2000. [ bib ]
[735] Bruce A Buffett. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett., 29, 2002. [ bib | DOI ]
[736] B. A. Buffett. Thermal state of Earth's core. Science, 299:1675--1677, 2003. [ bib ]
[737] B. A. Buffett and D. B. Rowley. Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet. Sci. Lett., 245:359--364, 2006. [ bib ]
[738] B. A. Buffett. Plate force due to bending at subduction zones. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[739] B. A. Buffett. Onset and orientation of convection in the inner core. Geophys. J. Int., 179:711--719, 2009. [ bib ]
[740] B. A. Buffett and T. W. Becker. Bending stress and dissipation in subducted lithosphere. J. Geophys. Res.: Sol. Earth, 117(B05413), 2012. [ bib | DOI ]
[741] B. A. Buffett, C. W. Gable, and R. J. O'Connell. Linear stability of a layered fluid with mobile surface plates. J. Geophys. Res.: Sol. Earth, 99:1985--1990, 1994. [ bib ]
[742] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comp., 30:3270--3288, 2008. [ bib ]
[743] Tan Bui-Thanh, Murali Damodaran, and Karen Willcox. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J., 42:1505--1516, 2004. [ bib ]
[744] S. J. H. Buiter, R. Govers, and M. J. R. Wortel. Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophys., 354:195--210, 2002. [ bib ]
[745] S. J. H. Buiter, A. Y. Babeyko, S. Ellis, T. V. Gerya, B. J. P. Kaus, A. Kellner, G. Schreurs, and Y. Yamada. The numerical sandbox: Comparison of model results for a shortening and an extension experiment. In S. J. H. Buiter and G. Schreurs, editors, Analogue and Numerical Modelling of Crustal-Scale Processes, volume 253 of Geol. Soc. London Spec. Pub., pages 29--64, London, 2006. [ bib ]
[746] Susanne JH Buiter and Trond H Torsvik. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res., 26:627--653, 2014. [ bib ]
[747] Susanne JH Buiter, Guido Schreurs, Markus Albertz, Taras V Gerya, Boris Kaus, Walter Landry, Laetitia Le Pourhiet, Yury Mishin, David L Egholm, Michele Cooke, B. Maillot, C. Thieulot, T. Crook, D. May, P. Souloumiac, and C. Beaumont. Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol., 92:140--177, 2016. [ bib ]
[748] A. L. Bull, A. K. McNamara, T. W. Becker, and J. Ritsema. Global scale models of the mantle flow field predicted by synthetic tomography models. Phys. Earth Planet. Inter., 182:129--138, 2010. [ bib ]
[749] Abigail L Bull, Mathew Domeier, and Trond H Torsvik. The effect of plate motion history on the longevity of deep mantle heterogeneities. Earth Planet. Sci. Lett., 401:172--182, 2014. [ bib ]
[750] AJ Bull. Further aspects of the mountain building problem. Proc. Geol. Assoc., 40:105--114, IN1--IN6, 1929. [ bib ]
[751] E. C. Bullard, C. Freedman, H. Gellman, and J. Nixon. The westward drift of the Eearth's magnetic field. Phil. Trans. Roy. Soc. Lond., 243:67--92, 1950. [ bib ]
[752] Edward Bullard, James E Everett, and A Gilbert Smith. The fit of the continents around the Atlantic. Phil. Trans. Royal Soc. London. Ser. A, Math. Phys. Sci., 258:41--51, 1965. [ bib ]
[753] K. E. Bullen, editor. Introduction to the theory of seismology. Cambridge University Press, London, 1947. [ bib ]
[754] H.-P. Bunge and S. P. Grand. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405:337--340, 2000. [ bib ]
[755] H.-P. Bunge and J. H. Davies. Tomographic images of a mantle circulation model. Geophys. Res. Lett., 28:77--80, 2001. [ bib ]
[756] H.-P. Bunge and J. H. Davies. Seismically “fast” geodynamic models. Geophys. Res. Lett., 28:73--76, 2001. [ bib ]
[757] H.-P. Bunge, C. Hagelberg, and B. Travis. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography (abstract). Eos Trans. AGU, 82(47):NG51C--07, 2001. [ bib ]
[758] H.-P. Bunge, L. Stixrude, J. Tromp, and R. Hollerbach. Virtual Earth laboratories. Eos Trans. AGU, 82(47), 2001. Special session at AGU Fall Meeting. [ bib ]
[759] H.-P. Bunge, C. R. Hagelberg, and B. J. Travis. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int., 152:280--301, 2003. [ bib ]
[760] H.-P. Bunge and J. Tromp. Supercomputing moves to universities and makes possible new ways to organize computational research. Eos Trans. AGU, 84(4):30--33, 2003. [ bib ]
[761] Hans-Peter Bunge. Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys. Earth Planet. Inter., 153:3--10, 2005. [ bib ]
[762] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379:436--438, 1996. [ bib ]
[763] Hans-Peter Bunge and Mark A Richards. The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification. Geophys. Res. Lett., 23:2987--2990, 1996. [ bib ]
[764] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. A sensitivity study of 3-D spherical mantle convection at 108 Rayleigh number: Effects of depth dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res.: Sol. Earth, 102:11991--12007, 1997. [ bib ]
[765] H.-P. Bunge, M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, and B. A. Romanowicz. Time scales and heterogeneous structure in geodynamic earth models. Science, 280:91--95, 1998. [ bib ]
[766] L. Buontempo, G. H. R. Bokelmann, G. Barruol, and J. Morales. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth Planet. Sci. Lett., 273:237--250, 2008. [ bib ]
[767] Mark J Burchell. W (h) ither the drake equation? Int. J. Astrobio., 5:243--250, 2006. [ bib ]
[768] Burrell C Burchfiel, Chen Zhiliang, Kip V Hodges, Liu Yuping, Leigh H Royden, Deng Changrong, and Xu Jiene. The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. GSA Spec. Papers, 269:1--41, 1992. [ bib ]
[769] Joe D Burchfield. Kelvin and the physics of time. In Lord Kelvin and the Age of the Earth, pages 21--56. University of Chicago Press, 1975. [ bib ]
[770] BC Burchfiel and GA Davis. Nature and controls of Cordilleran orogenesis, western United-States - extensions of an earlier synthesis. Am. J. Sci., A275:363--396, 1975. [ bib ]
[771] S. Burdick, C. Li, V. Martynov, T. Cox, J. Eakins, T. Mulder, L. Astiz, F. L. Vernon, G. L. Pavlis, and R. D. van der Hilst. Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seis. Res. Lett., 79:384--392, 2008. [ bib ]
[772] S. Burdick, R. D. van der Hilst, F. L. Vernon, V. Martynov, T. Cox, J. Eakins, L. Astiz, and G. L. Pavlis. Model Update January 2010: Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seism. Res. Lett., 81:689--693, 2010. [ bib ]
[773] J. P. Burg and Y. Podladchikov. Lithospheric scale folding: numerical modeling and application to the himalayan syntaxes. Int. J. Earth Sci., 88(2):190--200, 1999. [ bib ]
[774] J. P. Burg, B. J. P. Kaus, and Y. Podladchikov. Dome structures in collision orogens. mechanical investigation of the gravity/compression interplay. In D.L. Whitney, C. Teyssier, and C.S. Siddoway, editors, Gneiss domes in orogeny, volume 380, pages 47--66. Geological Society of America, Boulder, 2004. [ bib ]
[775] JP Burg and GM Chen. Tectonics and structural zonation of southern Tibet, China. Nature, 311:219--223, 1984. [ bib ]
[776] Reed J Burgette, Ray J Weldon, and David A Schmidt. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res.: Sol. Earth, 114(B1), 2009. [ bib ]
[777] R. Bürgmann, P. A. Rosen, and E. J. Fielding. Synthetic aperature radar interferometry to measure Earth's surface topography and its deformation. Ann. Rev. Earth Planet. Sci., 28:169--209, 2000. [ bib ]
[778] Roland Bürgmann, Mikhail G Kogan, Grigory M Steblov, George Hilley, Vasily E Levin, and Edwin Apel. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res.: Sol. Earth, 110(B07405), 2005. [ bib | DOI ]
[779] R. Bürgmann, G. Hilley, A. Ferretti, and F. Novali. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 34:221--224, 2006. [ bib ]
[780] R. Bürgmann and G. Dresen. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Ann. Rev. Earth Planet. Sci., 36:531--567, 2008. [ bib ]
[781] R. Bürgmann. The geophysics, geology, and mechanics of slow fault slip. Earth Planet. Sci. Lett., 495:112--134, 2018. [ bib ]
[782] Roland Bürgmann, David D Pollard, and Stephen J Martel. Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol., 16:1675--1690, 1994. [ bib ]
[783] G. Burgos, J.-P. Montagner, E. Beucler, Y. Capdeville, A. Mocquet, and M. Drilleau. Oceanic lithosphere/asthenosphere boundary from surface wave dispersion data. J. Geophys. Res.: Sol. Earth, 119:1079--1093, 2014. [ bib | DOI ]
[784] K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett., 265:49--60, 2008. [ bib ]
[785] Kevin Burke and John Frederick Dewey. Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J. Geol., 81:406--433, 1973. [ bib ]
[786] K. Burke, J. F. Dewey, and W. S. F. Kidd. World distribution of sutures -- the sites of former oceans. Tectonophys., 40:69--99, 1977. [ bib ]
[787] Kevin Burke and WSF Kidd. Were Archean continental geothermal gradients much steeper than those of today? Nature, 272:240--241, 1978. [ bib ]
[788] Kevin Burke. The African plate. South African J. Geol., 99:341--409, 1996. [ bib ]
[789] E.R. Burkett and M.I. Billen. Dynamics and implications of slab detachment due to ridge-trench collision. J. Geophys. Res.: Sol. Earth, 114(B12402), 2009. [ bib | DOI ]
[790] E. Burkett and M. I. Billen. Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation. Geochem., Geophys., Geosys., 11(Q11012), 2010. [ bib | DOI ]
[791] E. Burkett and M. Gurnis. Stalled slab dynamics. Lithosphere, 5:92--97, 2013. [ bib ]
[792] M. Burkhard and A. Sommaruga. Evolution of the western swiss molasse basin: structural relations with the alps and the jura belt. In A. Mascle, editor, Foreland Basins of the Western Alpine Thrust Belts, pages 279--298. Geological Society Special Publication, London, 1998. [ bib ]
[793] E B Burov, L Jolivet, L Le Pourhiet, and A Poliakov. A thermomechanical model of exhumation of high pressure (hp) and ultra-high pressure (uhp) metamorphic rocks in alpine-type collision belts. Tectonophys., 342:113--136, 2001. [ bib ]
[794] E. B. Burov. The upper crust is softer than dry quartzite. Tectonophys., 361:321--326, 2003. [ bib ]
[795] E. B. Burov and L. Guillou-Frottier. The plume-head continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys. J. Int., 58:469--490, 2005. [ bib ]
[796] E. B. Burov and A. B. Watts. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”. GSA Today, 16:4--10, 2006. [ bib ]
[797] E. B. Burov and P. Molnar. Small and large-amplitude gravitational instability of an elastically compressible viscoelastic Maxwell solid overlying an inviscid incompressible fluid: dependence of growth rates on wave number and elastic constants at low Deborah numbers. Earth Planet. Sci. Lett., 275:370--381, 2008. [ bib ]
[798] Evgueni B. Burov and Sierd Cloetingh. Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys. J. Int., 178:1691--1722, 2009. [ bib ]
[799] Evgueni B. Burov and Sierd Cloetingh. Plume-like upper mantle instabilities drive subduction initiation. Geophys. Res. Lett., 37(L03309), 2010. [ bib | DOI ]
[800] Evgene B Burov. Rheology and strength of the lithosphere. Marine Petrol. Geol., 28:1402--1443, 2011. [ bib ]
[801] E. Burov and T. Gerya. Asymmetric three-dimensional topography over mantle plumes. Nature, 513:85--89, 2014. [ bib ]
[802] E. Burov, T. Francois, P. Agard, L. Le Pourhiet, B. Meyer, C. Tirel, S. Lebedev, P. Yamato, and J.-P. Brun. Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models. Tectonophys., 631:212--250, 2014. [ bib ]
[803] E. Burov and S. Cloetingh. Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet. Sci. Lett., 150:7--26, 1997. [ bib ]
[804] E. B. Burov and M. Diament. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res.: Sol. Earth, 100:3905--3927, 1995. [ bib ]
[805] E. B. Burov, Y. Y. Podladchikov, G. Grandjean, and J. P. Burg. Thermo-mechanical approach to validation of deep crustal and lithospheric structures inferred from multidisciplinary data: application to the Western and Northern Alps. Terra Nova, 11:124--131, 1999. [ bib ]
[806] R. Burridge and L. Knopoff. Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am., 54:1875--1888, 1964. [ bib ]
[807] R. Burridge and L. Knopoff. Model and theoretical seismicity. Bull. Seismol. Soc. Am., 57:341--371, 1967. [ bib ]
[808] R. Burridge and G.S. Halliday. Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. R. Astr. Soc., 25:261--283, 1971. [ bib ]
[809] J. Burrus. Contribution to a geodynamic synthesis of the Provençal basin (north-western Mediterranean). Mar. Geol., 55:247--269, 1984. [ bib ]
[810] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox. Parallel scalable adjoint-based adaptive solution for variable-viscosity Stokes flows. Comp. Meth. Appl. Mech. Eng., 198:1691--1700, 2009. [ bib ]
[811] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Scient. Comp., 33:1103--1133, 2011. Available online at p4rest.org, accessed 02/2020. [ bib ]
[812] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan, Michael Gurnis, and Omar Ghattas. Large-scale adaptive mantle convection simulation. Geophys. J. Int., 192:889--906, 2013. [ bib ]
[813] T. M. Bury, D. Dylewsky, C. T. Bauch, M. Anand, L. Glass, A. Shrier, and G. Bub. Predicting discrete-time bifurcations with deep learning. Nature Comm., 14:6331, 2023. [ bib ]
[814] F. H. Busse, M. A. Richards, and A. Lenardic. A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int., 164:160--167, 2006. [ bib ]
[815] Friedrich H Busse. A model of the geodynamo. Geophys. J. Int., 42:437--459, 1975. [ bib ]
[816] Friedrich H Busse. Patterns of convection in spherical shells. J. Fluid Mech., 72:67--85, 1975. [ bib ]
[817] J. Buttles and P. Olson. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett., 164:245--262, 1998. [ bib ]
[818] J.D. Byerlee. Friction of rock. Pure Appl. Geophys., 116:615--626, 1978. [ bib ]
[819] J Byerlee. Friction, overpressure and fault normal compression. Geophys. Res. Lett., 17:2109--2112, 1990. [ bib ]
[820] M. Bystricky, K. Kunze, L. Burlini, and J.-P. Burg. High shear strain of olivine aggregrates: rheological and seismic consequences. Science, 290:1564--1567, 2000. [ bib ]
[821] G. Allen, R. Benger, R. Dramlitsch, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, and E. Seidel. Cactus grid computing: Review of current development. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors, Euro-Par 2001: Parallel Processing, Proceedings of 7th International Euro-Par Conference Manchester. Springer Verlag, New York, 2001. [ bib ]
[822] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid, dynamic topography and lithospheric stresses. In European Geophysical Society, 25th general assembly, volume 2 of Geophys. Res. Abstr. European Geophysical Society, 2000. [ bib ]
[823] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid and dynamic topography. Geophys. J. Int., 152:566--580, 2003. [ bib ]
[824] O. Čadek. Constraints on global mantle-flow models from geophysical data (abstract). In E. Boschi, editor, 9th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, volume 25 of International School of Geophysics, pages 15--16, Erice, Sicily, 2005. Ettore Majorana Foundation and Centre for Scienftific Culture. [ bib ]
[825] Ondřej Čadek and Yanick Ricard. Toroidal/poloidal energy partitioning and global lithospheric rotation during Cenozoic time. Earth Planet. Sci. Lett., 109:621--632, 1992. [ bib ]
[826] O. Čadek, Y. Ricard, Z. Martinec, and C. Matyska. Comparison between Newtonian and non-Newtonian flow driven by internal loads. Geophys. J. Int., 112:103--114, 1993. [ bib ]
[827] O. Čadek, H. Kyvalova, and D. A. Yuen. Geodynamical implications from the correlation of surface geology and seismic tomographic structure. Earth Planet. Sci. Lett., 136:615--627, 1995. [ bib ]
[828] O. Čadek, H. Čížková, and D. A. Yuen. Can long-wavelength dynamical signatures be compatible with layered mantle convection? Geophys. Res. Lett., 16:2091--2094, 1997. [ bib ]
[829] Florence Cagnard, Jean-Pierre Brun, and Denis Gapais. Modes of thickening of analogue weak lithospheres. Tectonophys., 421:145--160, 2006. [ bib ]
[830] Florence Cagnard, Nicolas Durrieu, Denis Gapais, Jean-Pierre Brun, and Carl Ehlers. Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova, 18:72--78, 2006. [ bib ]
[831] F. Cai, L. Ding, and Y. Yue. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet. Sci. Lett., 305:195--206, 2011. [ bib ]
[832] Zhengyu Cai and David Bercovici. Two-phase viscoelastic damage theory, with applications to subsurface fluid injection. Geophys. J. Int., 199:1481--1496, 2014. [ bib ]
[833] Zhengyu Cai and David Bercovici. Two-dimensional magmons with damage and the transition to magma-fracturing. Phys. Earth Planet. Inter., 256:13--25, 2016. [ bib ]
[834] E Calais, C DeMets, and J-M Nocquet. Evidence for a post-3.16-Ma change in Nubia--Eurasia--North America plate motions? Earth Planet. Sci. Lett., 216:81--92, 2003. [ bib ]
[835] E. Calais, L. Dong, M. Wang, Z. Shen, and M. Vergnolle. Continental deformation in Asia from a combined GPS solution. Geophys. Res. Lett., 33(L24319), 2006. [ bib | DOI ]
[836] E. Calais, J. Y. Han, C. DeMets, and J. M. Nocquet. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res.: Sol. Earth, 111(B06402), 2006. [ bib | DOI ]
[837] P. Calcagno and A. Cazenave. Subsidence of the seafloor in the Atlantic and Pacific ocean: Rregional and large-scale variations. Earth Planet. Sci. Lett., 126:473--492, 1994. [ bib ]
[838] JG Caldwell, WF Haxby, D Eo Karig, and DL Turcotte. On the applicability of a universal elastic trench profile. Earth Planet. Sci. Lett., 31:239--246, 1976. [ bib ]
[839] JG Caldwell and DL Turcotte. Dependence of the thickness of the elastic oceanic lithosphere on age. J. Geophys. Res.: Sol. Earth, 84:7572--7576, 1979. [ bib ]
[840] F. J. Calixto, D. Robinson, E. Sandvol, S. Kay, D. Abt, K. Fischer, B. Heit, X. Yuan, D. Comte, and P. Alvarado. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau. Geophys. J. Int., 199:688--699, 2014. [ bib ]
[841] J. P. Calpin. Paleoseismology. Academic Press, London, 1996. [ bib ]
[842] M. L. Calvache and S. N. Williams. Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J. Volcanol. Geothermal Res., 77:21--38, 1997. [ bib ]
[843] M. Calvet, S. Chevrot, and A. Souriau. P-wave propagation in transversely isotropic media. II. Application to inner core anisotropy: Effects of data averaging, parameterization and a priori information. Phys. Earth Planet. Inter., 156:21--40, 2006. [ bib ]
[844] A. G. W. Cameron and W. R. Ward. The origin of the Moon. In 7th Lunar and Planetary Science Conference, pages 120--122, 1976. [ bib ]
[845] F. Cammarano, S. Goes, P. Vacher, and D. Giardini. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 138:197--222, 2003. [ bib ]
[846] F. Cammarano, A. Deuss, S. Goes, and D. Giardini. One-dimensional physical reference models for the upper mantle and transition zone: combining seismic and mineral physics constraints. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[847] Fabio Cammarano, Saskia Goes, Arwen Deuss, and Domenico Giardini. Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet. Sci. Lett., 232:227--243, 2005. [ bib ]
[848] F. Cammarano, P. Tackley, and L. Boschi. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermo-chemical models. Geophys. J. Int., 187:1301--1318, 2011. [ bib ]
[849] Ian H Campbell and Ross W Griffiths. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett., 99:79--93, 1990. [ bib ]
[850] M. Campillo, I. R. Ionescu, J. C. Paumier, and Y. Renard. On the dynamic sliding with friction of a rigid block and of an infinite elastic slab. Phys. Earth Planet. Inter., 96:15--23, 1996. [ bib ]
[851] S. C. Cande, P. Patriat, and J. Dyment. Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophys. J. Int., 183:127--149, 2010. [ bib ]
[852] S. C. Cande and D. R. Stegman. Indian and African plate motions driven by the push force of the Réunion plume head. Nature, 475:47--52, 2011. [ bib ]
[853] S. C. Cande and D. V. Kent. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res.: Sol. Earth, 100:6083--6095, 1995. [ bib ]
[854] Thibault Candela, François Renard, Yann Klinger, Karen Mair, Jean Schmittbuhl, and Emily E Brodsky. Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res.: Sol. Earth, 117(B08409), 2012. [ bib | DOI ]
[855] Dante Canil. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos, 77:375--393, 2004. [ bib ]
[856] Y. Caniven, S. Dominguez, R. Soliva, R. Cattin, M. Peyret, M. Marchandon, C. Romano, and V. Strak. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle. Tectonics, 34:232--264, 2015. [ bib | DOI ]
[857] Mathilde Cannat, Daniel Sauter, Javier Escartín, Luc L Lavier, and Suzanne Picazo. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth Planet. Sci. Lett., 288:174--183, 2009. [ bib ]
[858] Mathilde Cannat. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res.: Sol. Earth, 101:2847--2857, 1996. [ bib ]
[859] Mathilde Cannat, Yves Lagabrielle, Henri Bougault, Jack Casey, Nathalie de Coutures, Leonid Dmitriev, and Yves Fouquet. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15N region. Tectonophys., 279:193--213, 1997. [ bib ]
[860] Robin M Canup. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys., 42:441--475, 2004. [ bib ]
[861] A. Cao and B. A. Romanowicz. Locating scatterers in the mantle using array analysis of PKIKP precursors from an earthquake doublet. Earth Planet. Sci. Lett., 255:22--31, 2007. [ bib ]
[862] F. A. Capitanio, G. Morra, and S. Goes. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet. Sci. Lett., 262:284--297, 2007. [ bib ]
[863] F. A. Capitanio, S. Goes, G. Morra, and D. Giardini. Signatures of downgoing plate-buoyancy driven subduction in motions and seismic coupling at major subduction zones. Earth Planet. Sci. Lett., 262:298--306, 2007. [ bib ]
[864] F. A. Capitanio, G. Morra, S. Goes, R. F. Weinberg, and L. Moresi. India-Asia convergence driven by the subduction of the Greater Indian continent. Nature Geosc., 3:136--139, 2010. [ bib ]
[865] F. A. Capitanio, D. R. Stegman, L. Moresi, and W. Sharples. Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophys., 483:80--92, 2010. [ bib ]
[866] F. A. Capitanio, C. Faccenna, S. Zlotnik, and D. R. Stegman. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature, 480:83--86, 2011. [ bib ]
[867] F. A. Capitanio and G. Morra. The bending mechanics in a dynamic subduction system: Constraints from numerical modelling and global compilation analysis. Tectonophys., 2012. [ bib | DOI ]
[868] Fabio A Capitanio and Anne Replumaz. Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western syntaxis formation. Geochem., Geophys., Geosys., 14:3515--3531, 2013. [ bib ]
[869] F. A. Capitanio, A. Replumaz, and N. Riel. Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochem., Geophys., Geosys., 16:962--982, 2015. [ bib | DOI ]
[870] Fabio A Capitanio. The role of the Miocene-to-Pliocene transition in the Eastern Mediterranean extrusion tectonics: Constraints from numerical modelling. Earth Planet. Sci. Lett., 448:122--132, 2016. [ bib ]
[871] S. Crampin. A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3:343--391, 1981. [ bib ]
[872] S. Carannante and L. Boschi. Databases of surface wave dispersion. Annal. Geophys., 48:945--955, 2005. [ bib ]
[873] Suzanne Carbotte, Carolyn Mutter, John Mutter, and Gustavo Ponce-Correa. Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer: Insights from the East Pacific Rise at lat 16N. Geology, 26:455--458, 1998. [ bib ]
[874] A. Cardona, V. A. Valencia, G. Bayona, J. Duque, M. Ducea, G. Gehrels, C. Jaramillo, C. Montes, G. Ojeda, and J. Ruiz. Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23:26--34, 2011. [ bib ]
[875] S Warren Carey. The expanding earth-an essay review. Earth-Sci. Rev., 11:105--143, 1975. [ bib ]
[876] R. L. Carlson, T. W. C. Hilde, and S. Uyeda. The driving mechanism of plate tectonics: relation to age of the lithosphere at trenches. Geophys. Res. Lett., 10:297--300, 1983. [ bib ]
[877] R. L. Carlson and P. J. Melia. Subduction hinge migration. Tectonophys., 102:1--16, 1984. [ bib ]
[878] R. L. Carlson and C. A. Mortera-Gutiérrez. Subduction hinge migration along The Izu-Bonin-Mariana arc. Tectonophys., 181:331--344, 1990. [ bib ]
[879] R. W. Carlson. Mechanisms of earth differentiation: consequences for the chemical structure of the mantle. Rev. Geophys., 32:337--361, 1994. [ bib ]
[880] J. M. Carlson and J. S. Langer. Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett., 62:2632--2635, 1989. [ bib ]
[881] J. M. Carlson, J. S. Langer, and B. E. Shaw. Dynamics of earthquake faults. Rev. Mod. Physics, 66:657--670, 1994. [ bib ]
[882] R. L. Carlson and H. P. Johnson. On modeling the thermal evolution of the oceanic upper-mantle -- an assessment of the cooling plate model. J. Geophys. Res.: Sol. Earth, 99:3201--3214, 1994. [ bib ]
[883] L. Carmignani and R. Kligfield. Crustal extension in the Northern Apennines: the transition from compression to extension in the Alpi Apuane core complex. Tectonics, 9:1275--1305, 1990. [ bib ]
[884] E. Carminati and P. Petricca. State of stress in slabs as a function of large-scale plate kinematics. Geochem., Geophys., Geosys., 11(Q04006), 2010. [ bib | DOI ]
[885] BM Carpenter, DM Saffer, and C Marone. Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. J. Geophys. Res.: Sol. Earth, 120:5273--5289, 2015. [ bib ]
[886] B. M. Carpenter, M. J. Ikari, and C. Marone. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. J. Geophys. Res.: Sol. Earth, 121:1183--1201, 2016. [ bib ]
[887] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, London, 2nd edition, 1959. [ bib ]
[888] N. L. Carter. Steady state flow of rock. Rev. Geophys. Space Phys., 14:301--360, 1976. [ bib ]
[889] D. J. Carter, Audley-Charles, M. G., and A. J. Barber. Stratigraphic analysis of island arc– continental margin collision in eastern Indonesia. J. Geol. Soc. London, 132:197–--198, 1976. [ bib ]
[890] J. H. E. Cartwright, E. Hernández-Garcia, and O. Piro. Burridge-knopoff models as elastic excitable media. Phys. Rev. Lett., 79:527--530, 1997. [ bib ]
[891] E. Casarotti, A. Piersanti, F. P. Lucente, and E. Boschi. Global postseismic stress diffusion and fault interaction at long distances. Earth Planet. Sci. Lett., 191:75--84, 2001. [ bib ]
[892] P Casero. Structural setting of petroleum exploration plays in Italy. Spec. Vol. Italian Geol. Soc. for the IGC, 32:189--199, 2004. [ bib ]
[893] K. V. Cashman, R. S. J. Sparks, and J. D. Blundy. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355, 2017. [ bib | DOI ]
[894] S. J. Caskey and S. G. Wesnousky. Static stress change and earthquake triggering during the 1954 Fairview Peak and Dixie Valley earthquakes, Central Nevada. Bull. Seismol. Soc. Am., 87:521--527, June 1997. [ bib ]
[895] O. Castelnau, D. K. Blackman, R. A. Lebensohn, and P. Ponte Castaneda. Micromechanical modeling of the viscoplastic behavior of olivine. J. Geophys. Res.: Sol. Earth, 113(B09202), 2008. [ bib | DOI ]
[896] O. Castelnau, D. K. Blackman, and T. W. Becker. Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow. Geophys. Res. Lett., 36(L12304), 2009. [ bib | DOI ]
[897] P. Castillo. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336:667--670, 1988. [ bib ]
[898] J. C. Castle and R. D. van der Hilst. Searching for seismic observations of deep mantle structure (abstract). Eos Trans. AGU, 81:F832, 2000. [ bib ]
[899] J. C. Castle and R. D. van der Hilst. Searching for seismic scattering off mantle interfaces between 800 and 2000 km depth. J. Geophys. Res.: Sol. Earth, 108:10.1029/2001JB000286, 2003. [ bib ]
[900] J. C. Castle and K. C. Craeger. Seismic evidence against a mantle chemical discontinutity near 660km depth beneath Izu-Bonin. Geophys. Res. Lett., 24:241--244, 1997. [ bib ]
[901] J. C. Castle and K. C. Creager. NW Pacific slab rheology, the seismicity cutoff, and the olicvine to spinel phase change. Earth Planets Space, 50:977--985, 1998. [ bib ]
[902] J. C. Castle and K. C. Creager. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. J. Geophys. Res.: Sol. Earth, 104:7279--7292, 1999. [ bib ]
[903] R. D. Catchings and W. M. Kohler. Reflected seismic waves and their effect on strong shaking during the 1989 Loma Prieta, California Earthquake CA. Bull. Seismol. Soc. Am., 86:1401--1416, 1996. [ bib ]
[904] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin. Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81:1841--1844, 1998. [ bib ]
[905] L. M. III Cathles. Viscosity of the Earth's mantle. PhD thesis, Princeton University, Princeton NJ, 1975. [ bib ]
[906] Camilla Cattania and Paul Segall. Crack models of repeating earthquakes predict observed moment-recurrence scaling. J. Geophys. Res.: Sol. Earth, 124:476--503, 2019. [ bib ]
[907] C Cattania. Complex earthquake sequences on simple faults. Geophys. Res. Lett., 46:10384--10393, 2019. [ bib ]
[908] C. Cattania and P. Segall. Foreschoks on rough rate-state faults (abstract). In AGU Fall Meeting, number S24B-07, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[909] Camilla Cattania and Paul Segall. Precursory slow slip and foreshocks on rough faults. J. Geophys. Res.: Sol. Earth, 126:e2020JB020430, 2021. [ bib ]
[910] O Cavalié, Cécile Lasserre, M-P Doin, G Peltzer, J Sun, X Xu, and Z-K Shen. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett., 275:246--257, 2008. [ bib ]
[911] Peter A Cawood, A Kroner, and Sergei Pisarevsky. Precambrian plate tectonics: criteria and evidence. GSA Today, 16:4--11, 2006. [ bib ]
[912] Peter A Cawood and Craig Buchan. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci. Rev., 82:217--256, 2007. [ bib ]
[913] Peter A Cawood, Robin A Strachan, Sergei A Pisarevsky, Dmitry P Gladkochub, and J Brendan Murphy. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet. Sci. Lett., 449:118--126, 2016. [ bib ]
[914] Peter A Cawood, Chris J Hawkesworth, Sergei A Pisarevsky, Bruno Dhuime, Fabio A Capitanio, and Oliver Nebel. Geological archive of the onset of plate tectonics. Phil. Trans. Royal Soc. A, 376:20170405, 2018. [ bib ]
[915] Peter A. Cawood, Priyadarshi Chowdhury, Jacob A. Mulder, Chris J. Hawkesworth, Fabio A. Capitanio, Prasanna M. Gunawardana, and Oliver Nebel. Secular evolution of continents and the earth system. Rev. Geophys., 60:e2022RG000789, 2022. [ bib ]
[916] Anny Cazenave and Robert S Nerem. Present-day sea level change: Observations and causes. Rev. Geophys., 42:RG3001, 2004. [ bib | DOI ]
[917] Sara Beth L Cebry, Chun-Yu Ke, Srisharan Shreedharan, Chris Marone, David S Kammer, and Gregory C McLaskey. Creep fronts and complexity in laboratory earthquake sequences illuminate delayed earthquake triggering. Nature comm., 13:6839, 2022. [ bib ]
[918] F. Cediel, R.P. Shaw, and C. Cáceres. Tectonic assembly of the Northern Andean Block. In C. Bartolini, R.T. Buffler, and J. Blickwede, editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, volume 79 of AAPG Memoir, pages 815--848. AAPG, 2003. [ bib ]
[919] Nicolas Luca Celli, Sergei Lebedev, Andrew J Schaeffer, and Carmen Gaina. The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism. Earth Planet. Sci. Lett., 569:117048, 2021. [ bib ]
[920] Mattia Cenedese, Joar Axås, Bastian Bäuerlein, Kerstin Avila, and George Haller. Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nature Comm., 13:872, 2022. [ bib ]
[921] N. G. Cerpa, R. Araya, M. Gerbault, and R. Hassani. Relationship between slab dip and topography segmentation in an oblique subduction zone: Insights from numerical modeling. Geophys. Res. Lett., 42:5786--5795, 2015. [ bib ]
[922] N. G. Cerpa, I. Wada, and C. Wilson. Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction. J. Geophys. Res.: Sol. Earth, 2017. [ bib | DOI ]
[923] Nestor G Cerpa, Ikuko Wada, and Cian R Wilson. Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting. Geosphere, 15:1--23, 2019. [ bib ]
[924] M. Chai, J. M. Brown, and L. J. Slutsky. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J. Geophys. Res.: Sol. Earth, 102:14779--14785, 1997. [ bib ]
[925] Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting. Proc. AAAI Conf. Artificial Intelligence, 37:6989--6997, 2023. [ bib ]
[926] D. Chalot-Prat, J. Ganne, and A. Lombar. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69:69--103, 2003. [ bib ]
[927] F. Chambat, Y. Ricard, and B. Valette. Flattening of the earth: further from hydrostaticity than previously estimated. Geophys. J. Int., 183:727--732, 2010. [ bib ]
[928] Kevin R Chamberlain, Carol D Frost, and B Ronald Frost. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canad. J. Earth Sci., 40:1357--1374, 2003. [ bib ]
[929] CJ Chamberlain, Nicolas Houlié, HLM Bentham, and TA Stern. Lithosphere--asthenosphere interactions near the san andreas fault. Earth Planet. Sci. Lett., 399:14--20, 2014. [ bib ]
[930] N. Chamot-Rooke, J.-M. Gaulier, and F. Jestin. Constraints on Moho depth and crustal thickness in the Liguro-Provençal Basin from a 3D gravity inversion; geodynamic implications. In B. Durand, A. Mascle, L. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 37--61. Geological Society of London, London, 1999. [ bib ]
[931] J. D. Champagnac, P. Molnar, R. S. Anderson, C. Sue, and B. Delacou. Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35:195--198, 2007. [ bib ]
[932] T. R. Chandrupatla and A. D. Belegundu. Introduction to finite elements in engineering. Prentice-Hall, London, 1991. [ bib ]
[933] Chandong Chang, Jun Bok Lee, and Tae-Seob Kang. Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophys., 485:164--177, 2010. [ bib ]
[934] S.-J. Chang, A. M. G. Ferreira, J. Ritsema, H. J. van Heijst, and J. H. Woodhouse. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res.: Sol. Earth, 120:4278--4300, 2015. [ bib | DOI ]
[935] J. E. T. Channell. Paleomagnetism and continental collision in the Alpine belt and the formation of late-tectonic extensional basins. In M. P. Coward and A. C. Reis, editors, Collision Tectonics, volume 19 of Geol. Soc. Lond. Spec. Pubs., pages 261--284. Geological Society of London, London, 1986. [ bib ]
[936] Alan D Chapman. The Pelona--Orocopia--Rand and related schists of southern California: a review of the best-known archive of shallow subduction on the planet. Int. Geol. Rev., 59:664--701, 2017. [ bib ]
[937] C. H. Chapman and P. M. Shearer. Ray tracing in azimuthally anisotropic media -- II. Quasi-shear wave coupling. Geophys. J., 96:65--83, 1989. [ bib ]
[938] W. M. Chapple and T. E. Tullis. Evaluation of the forces that drive the plates. J. Geophys. Res.: Sol. Earth, 82:1967--1984, 1977. [ bib ]
[939] William M Chapple and Donald W Forsyth. Earthquakes and bending of plates at trenches. J. Geophys. Res.: Sol. Earth, 84:6729--6749, 1979. [ bib ]
[940] E.-M. Charalampidou, S. A. Hall, S. Stanchits, L. Helen, and G. Viggiani. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression. Tectonophys., 2010. [ bib | DOI ]
[941] Dominique Chardon, Pierre Choukroune, and Mudlappa Jayananda. Sinking of the Dharwar basin (South India): implications for Archaean tectonics. Precambrian Research, 91(1-2):15--39, 1998. [ bib ]
[942] T. R. Charlton. Postcollisional extension in arc-continent collision zones, eastern Indonesia. Geology, 19:28--31, 1991. [ bib ]
[943] T. R. Charlton. Backthrusting on the birps deep seismic reflection profiles, banda arc, indonesia, a repsonse to changing slab inclination? J. Geol. Soc., 154:169--172, 1997. [ bib ]
[944] C. G. Chase, J. A. Libarkin, and A. J. Sussman. Colorado Plateau: Geoid and means of isostatic support. Int. Geol. Rev., 44:575--587, 2002. [ bib ]
[945] A. Chase and P. Wessel. Analysis of Pacific hotspot chains. Geochem., Geophys., Geosys., 23:e2021GC010225, 2022. [ bib ]
[946] C. G. Chase. Extension behind island arcs and motion relative to hot spots. J. Geophys. Res.: Sol. Earth, 83:5385--5387, 1978. [ bib ]
[947] C. G. Chase. Subduction, the geoid, and lower mantle convection. Nature, 282:464--468, 1979. [ bib ]
[948] Y. B. Chastel, P. R. Dawson, H.-R. Wenk, and K. Bennett. Anisotropic convection with implications for the upper mantle. J. Geophys. Res.: Sol. Earth, 98:17757--17771, 1993. [ bib ]
[949] Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current Sci, 78:808--817, 2000. [ bib ]
[950] EJ Chaves, SY Schwartz, and RE Abercrombie. Repeating earthquakes record fault weakening and healing in areas of megathrust postseismic slip. Science adv., 6:eaaz9317, 2020. [ bib ]
[951] ChEESE Project, 2021. Available online at cheese-coe.eu/about/objectives, accessed 01/2021. [ bib ]
[952] A. I. Chemenda, J. P. Burg, and M. Mattauer. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett., 174:397--409, 2000. [ bib ]
[953] N. Chemingui. Modeling 3-D anisotropic fractal media. Technical report, Stanford University, 2001. Stanford Exploration Project, Report 80. [ bib ]
[954] P.-F. Chen, C. R. Bina, and E. A. Okal. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophys. J. Int., 159:721--733, 2004. [ bib ]
[955] P. Chen, L. Zhao, and T. H. Jordan. Full 3D tomography for the crustal structure of the Los Angeles region. Bull. Seismol. Soc. Am., 97:1094--1120, 2007. [ bib ]
[956] M. Chen, J. Tromp, D. Helmberger, and H. Kanamori. Waveform modeling of the slab beneath Japan. J. Geophys. Res.: Sol. Earth, 112(B02305), 2007. [ bib | DOI ]
[957] Ting Chen and Nadia Lapusta. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. J. Geophys. Res.: Sol. Earth, 114(B01311), 2009. [ bib | DOI ]
[958] L. Chen and Y. Ai. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J. Geophys. Res.: Sol. Earth, 114(B06307), 2009. [ bib | DOI ]
[959] L. Chen, T. V. Gerya, Z.-J. Zhang, A. Aitken, Z.-H. Li, and X.-F. Liang. Formation mechanism of steep convergent intracontinental margins: Insights from numerical modeling. Geophys. Res. Lett., 40:2000--2005, 2013. [ bib | DOI ]
[960] J. Chen, A. R. Niemeijer, and C. J. Spiers. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. J. Geophys. Res.: Sol. Earth, 122:9627--9657, 2017. [ bib ]
[961] Peng Chen, Umberto Villa, and Omar Ghattas. Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty. J. Comp. Phys., 385:163--186, 2019. [ bib ]
[962] Peng Chen and Omar Ghattas. Hessian-based sampling for high-dimensional model reduction. J. Uncert. Quant., 9:103--121, 2019. [ bib ]
[963] G. Chen, Q. Cheng, S. E. Peters, C. J. Spencer, and M. Zhao. Feedback between surface and deep processes: Insight from time series analysis of sedimentary record. Earth Planet. Sci. Lett., 579:117352, 2022. [ bib ]
[964] W.-P. Chen and P. Molnar. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res.: Sol. Earth, 88:4183--4214, 1983. [ bib ]
[965] K. Chen, P. Bak, and S. P. Obukhov. Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A, 43:625--629, January 1991. [ bib ]
[966] Yongshun John Chen. Oceanic crustal thickness versus spreading rate. Geophys. Res. Lett., 19:753--756, 1992. [ bib ]
[967] P. Chen and S. J. Duda. Fracture mechanics rupture model of earthquakes and an estimate of ambient shear stress. Phys. Earth Planet. Inter., 93:299--308, 1996. [ bib ]
[968] J. Chen and S. D. King. The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Phys. Earth Planet. Inter., 106:75--91, 1998. [ bib ]
[969] Minkang Cheng, Byron D Tapley, and John C Ries. Deceleration in the Earth's oblateness. J. Geophys. Res.: Sol. Earth, 118:740--747, 2013. [ bib ]
[970] Yifang Cheng, Egill Hauksson, and Yehuda Ben-Zion. Refined earthquake focal mechanism catalog for Southern California derived with Deep Learning algorithms. J. Geophys. Res.: Sol. Earth, 128:e2022JB025975, 2023. [ bib ]
[971] A. Cherchi and L. Montandert. Oligo-Miocene rift of Sardinia and the early history of the Western Mediterranean basin. Nature, 298:736--739, 1982. [ bib ]
[972] L. A. Chernov. Wave propagation in a random medium. McGraw-Hill, New York, 1960. [ bib ]
[973] M. V. Chertova, W. Spakman, T. Geenen, A. P. Berg, and D. J. J. Hinsbergen. Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J. Geophys. Res.: Sol. Earth, 119:5876--5902, 2014. [ bib | DOI ]
[974] J. Chéry, M. D. Zoback, and R. Hassani. An integrated mechanical model of the San Andreas fault in central and northern California. J. Geophys. Res.: Sol. Earth, 106:22051--22066, 2001. [ bib ]
[975] J. Chéry. Geodetic strain across the San Andreas fault reflects elastic plate thickness variations (rather than fault slip rate). Earth Planet. Sci. Lett., 269:352--365, 2008. [ bib ]
[976] Christine J Chesley, Samer Naif, and Kerry Key. Subducting topography generates upper plate porosity that promotes slow slip at the Hikurangi Margin, New Zealand (abstract). In AGU Fall Meeting, number T055-06. American Geophysical Union, 2020. [ bib ]
[977] Judith S Chester, Frederick M Chester, and Andreas K Kronenberg. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437:133--136, 2005. [ bib ]
[978] F. M. Chester, C. Rowe, K. Ujiie, J. Kirkpatrick, C. Regalla, F. Remitti, J. C. Moore, V. Toy, M. Wolfson-Schwehr, S. Bose, J. Kameda, J. J. Mori, E. E. Brodsky, N. Eguchi, S. Toczko, and Expedition 343 and 343T Scientists. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342:1208--1211, 2013. [ bib ]
[979] Frederick M Chester and NG Higgs. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res.: Sol. Earth, 97:1859--1870, 1992. [ bib ]
[980] Frederick M Chester, James P Evans, and Ronald L Biegel. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res.: Sol. Earth, 98:771--786, 1993. [ bib ]
[981] F. M. Chester and J. S. Chester. Ultracataclasite structure and friction processes of the Punchbowl fault San Andreas system, California. Tectonophys., 295:199--221, 1998. [ bib ]
[982] S. Chevrot. Multichannel analysis of shear wave splitting. J. Geophys. Res.: Sol. Earth, 105:21579--21590, 2000. [ bib ]
[983] S. Chevrot and R. D. van der Hilst. On the effects of a dipping axis of symmetry on shear wave splitting measurements. Geophys. J. Int., 152:497--505, 2003. [ bib ]
[984] S. Chevrot, N. Favier, and D. Komatitsch. Shear wave splitting in three-dimensional anisotropic media. Geophys. J. Int., 159:711--720, 2004. [ bib ]
[985] S. Chevrot. Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophys. J. Int., 165:641--657, 2006. [ bib ]
[986] S. Chevrot and V. Monteiller. Principles of vectorial tomography -- the effects of model parametrization and regularization in tomographic imaging of seismic anisotropy. Geophys. J. Int., 179:1726--1736, 2009. [ bib ]
[987] S. Chevrot, L. Vinnik, and J.-P. Montagner. Global-scale analysis of the mantle PdS phases. J. Geophys. Res.: Sol. Earth, 104:20203--20219, 1999. [ bib ]
[988] M. Chiaradia, O. Muntener, and B. Beate. Enriched basaltic andesites from mid-crustal fractional crystal lization, recharge and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). J. Petrol., 52:1107--1141, 2011. [ bib ]
[989] Lauro Chiaraluce, Gaetano Festa, Pascal Bernard, Antonio Caracausi, Ivano Carluccio, John Francis Clinton, Raffaele Di Stefano, Luca Elia, Christos Evangelidis, Semih Ergintav, et al. The Near Fault Observatory community in Europe: a new resource for faulting and hazard studies. Ann. Geophys., 65:DM316, 2022. [ bib ]
[990] M. A. Chinnery. The stress changes that accompany strike-slip faulting. Bull. Seismol. Soc. Am., 53:921--932, 1963. [ bib ]
[991] E. Choi, P. Thoutireddy, L. L. Lavier, S. Quenette, Tan. E., M. Gurnis, M. Aivazis, and B. Appelbee. Coupling models of crustal deformation and mantle convection: An application of GeoFramework (abstract). Eos Trans. AGU, 85(47):T31A--1261, 2004. [ bib ]
[992] E. Choi, L. Lavier, and M. Gurnis. Thermomechanics of mid-ocean ridge segmentation. Phys. Earth Planet. Inter., 171:374--386, 2008. [ bib ]
[993] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation. J. Geophys. Res.: Sol. Earth, 118:2429--2444, 2013. [ bib ]
[994] A. Chopelas and R. Boehler. Thermal expansion measurements at very high pressure, systematics, and a case for a chemically homogeneous mantle. Geophys. Res. Lett., 16:1347--1350, 1989. [ bib ]
[995] P Choukroune, D Gapais, and O Merle. Shear criteria and structural symmetry. J. Struct. Geol., 9:525--530, 1987. [ bib ]
[996] George L Choy and John L Boatwright. Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res.: Sol. Earth, 100:18205--18228, 1995. [ bib ]
[997] R. Christensen. Theory of Viscoelasticity. Academic Press, New York, 1982. [ bib ]
[998] U. Christensen. Geodynamic models of deep subduction. Phys. Earth Planet. Inter., 127:25--34, 2001. [ bib ]
[999] Ulrich R Christensen and Julien Aubert. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int., 166:97--114, 2006. [ bib ]
[1000] UR Christensen. Dynamo scaling laws and applications to the planets. Space Sci. Rev., 152:565--590, 2010. [ bib ]
[1001] Ulrich R Christensen. Geodynamo models: Tools for understanding properties of Earth's magnetic field. Phys. Earth Planet. Inter., 187:157--169, 2011. [ bib ]
[1002] N. I. Christensen and M. H. Salisbury. Seismic anisotropy in the oceanic upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res.: Sol. Earth, 84:4601--4610, 1979. [ bib ]
[1003] Douglas H Christensen and Larry J Ruff. Outer-rise earthquakes and seismic coupling. Geophys. Res. Lett., 10:697--700, 1983. [ bib ]
[1004] U. R. Christensen and D. A. Yuen. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res.: Sol. Earth, 89:4389--4402, 1984. [ bib ]
[1005] U. R. Christensen. Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. R. Astr. Soc., 77:343--384, 1984. [ bib ]
[1006] U. R. Christensen. Thermal evolution models for the Earth. J. Geophys. Res.: Sol. Earth, 90:2995--3007, 1985. [ bib ]
[1007] U. R. Christensen and D. A. Yuen. Layered convection induced by phase transitions. J. Geophys. Res.: Sol. Earth, 90:10291--10300, 1985. [ bib ]
[1008] U. R. Christensen. Some geodynamical effects of anisotropic viscosity. Geophys. J. R. Astr. Soc., 91:711--736, 1987. [ bib ]
[1009] Ulrich R Christensen and David A Yuen. Time-dependent convection with non-newtonian viscosity. J. Geophys. Res.: Sol. Earth, 94:814--820, 1989. [ bib ]
[1010] Ulrich R. Christensen. Mixing by time-dependent convection. Earth Planet. Sci. Lett., 95:382--394, 1989. [ bib ]
[1011] U. Christensen and H. Harder. Three-dimensional convection with variable-viscosity. Geophys. J. Int., 104:213--226, 1991. [ bib ]
[1012] U. R. Christensen. An Eulerian technique for thermo-mechanical modeling of lithospheric extension. J. Geophys. Res.: Sol. Earth, 97:2015--2036, 1992. [ bib ]
[1013] U. R. Christensen and A. W. Hofmann. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res.: Sol. Earth, 99:19867--19884, 1994. [ bib ]
[1014] N. I. Christensen and W. D. Mooney. Seismic velocity structure and composition of the continental crust: A global review. J. Geophys. Res.: Sol. Earth, 100:9761--9788, 1995. [ bib ]
[1015] U. R. Christensen. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett., 140:27--39, 1996. [ bib ]
[1016] U. R. Christensen. Influence of chemical buoyancy on the dynamics of slabs in the transition zone. J. Geophys. Res.: Sol. Earth, 102:22435--22443, 1997. [ bib ]
[1017] GL Christeson, JA Goff, and RS Reece. Synthesis of oceanic crustal structure from two-dimensional seismic profiles. Rev. Geophys., 57:504--529, 2019. [ bib ]
[1018] R. Y. Chuang and K. Johnson. Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep. Geology, 39:627--630, 2011. [ bib ]
[1019] P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao, and P. Thornton. Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 465--570. Cambridge University Press, Cambridge UK, 2013. [ bib ]
[1020] S. Cianetti, C. Giunchi, and M. Cocco. Mechanical coupling between the Landers and Hector Mine (California) fault systems. Geophys. Res. Lett., 29:1869, 2002. [ bib ]
[1021] S. Cianetti, C. Giunchi, and M. Cocco. Three-dimensional finite element modeling of stress interaction: An application to Landers and Hector Mine fault systems. J. Geophys. Res.: Sol. Earth, 110(B05S17), 2005. [ bib | DOI ]
[1022] L. Kellogg, B. A. Romanowicz, S. Hart, and A. Dziewoński. Cider. 2006 summer program: The nature and dynamics of the earth's transition zone: a multidisciplinary approach. Available online at www.deep-earth.org/summer06.html, accessed 06/2006, 2006. [ bib ]
[1023] M. Gurnis. Computational Infrastructure for Geodynamics (CIG). California Institute of Technology, Pasadena CA. Online at www.geodynamics.org/, accessed 06/2006, 2006. [ bib ]
[1024] Hana Čížková, Ondřej Čadek, Ctirad Matyska, and David A Yuen. Implications of post-perovskite transport properties for core--mantle dynamics. Phys. Earth Planet. Inter., 180:235--243, 2010. [ bib ]
[1025] H. Čížková, J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett., 199:447--457, 2002. [ bib ]
[1026] H. Čížková, A. van den Berg, W. Spakman, and C. Matyska. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet. Inter., 200:56--62, 2012. [ bib ]
[1027] H. Čížková and C. Bina. Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth Planet. Sci. Lett., 379:95--103, 2013. [ bib ]
[1028] H. Čížková and C. Bina. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth Planet. Sci. Lett., 430:408--415, 2015. [ bib ]
[1029] H. Čížková, O. Čadek, and A. Slancová. Regional correlation analysis between seismic heterogeneity in the lower mantle and subduction in the last 180 Myr: implications for mantle dynamics and rheology. Pure Appl. Geophys., 151:527--537, 1998. [ bib ]
[1030] H. Čížková, O. Čadek, A. van den Berg, and N. J. Vlaar. Can lower mantle slab-like seimic anomalies be explained by thermal coupling between the upper and lower mantles? Geophys. Res. Lett., 26:1501--1504, 1999. [ bib ]
[1031] David A Clague and Richard D Jarrard. Tertiary Pacific plate motion deduced from the Hawaiian-Emperor chain. Geol. Soc. Amer. Bull., 84:1135--1154, 1973. [ bib ]
[1032] John J Clague. Evidence for large earthquakes at the Cascadia subduction zone. Rev. Geophys., 35:439--460, 1997. [ bib ]
[1033] Matthew E Clapham and Paul R Renne. Flood basalts and mass extinctions. Ann. Rev. Earth Planet. Sci., 47:275--303, 2019. [ bib ]
[1034] Marin Kristen Clark and Leigh Handy Royden. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28:703--706, 2000. [ bib ]
[1035] M. K. Clark, J. W. M. Bush, and L. H. Royden. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int., 162:575--590, 2005. [ bib ]
[1036] S. R. Clark, D. Stegman, and R. D. Müller. Episodicity in back-arc tectonic regimes. Phys. Earth Planet. Inter., 171:265--279, 2008. [ bib ]
[1037] S. A. Clark, A. Levander, M. B. Magnani, and C. A. Zelt. Negligible convergence and lithospheric tearing along the Caribbean-South American plate boundary at 64W. Tectonics, 27(TC6013), 2008. [ bib | DOI ]
[1038] S. A. Clark, M. Sobiesiak, C. A. Zelt, M. B. Magnani, M. S. Miller, M. J. Bezada, and A. Levander. Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles. Geochem., Geophys., Geosys., 9(Q11004), 2008. [ bib | DOI ]
[1039] S. A. Clark, C. A. Zelt, M. B. Magnan, and A. Levander. Characterizing the Caribbean-South American plate boundary at 64W using wide-angle seismic data. J. Geophys. Res.: Sol. Earth, 113(B07401), 2008. [ bib | DOI ]
[1040] K. Clark, J. Howarth, N. Litchfield, U. Cochran, J. Turnbull, L. Dowling, A. Howell, K. Berryman, and F. Wolfe. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geol., 412:139--172, 2019. [ bib ]
[1041] James A Clark, William E Farrell, and W Richard Peltier. Global changes in postglacial sea level: A numerical calculation1. Quatern. Res., 9:265--287, 1978. [ bib ]
[1042] W.B. Clarke, M.A. Beg, and H. Craig. Excess 3He in the sea: Evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6:213--220, 1969. [ bib ]
[1043] R. Clayton and H. Engquist. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am., 67:1529--1540, 1977. [ bib ]
[1044] National Student Clearinghouse. Web page and database, 2021. Available online at https://www.studentclearinghouse.org/, accessed 01/2021. [ bib ]
[1045] J. R. Cleary and R. A. Haddon. Seismic wave scattering near the core-mantle boundary: a new interpretation of precursors to PKP. Nature, 240:549--551, 1972. [ bib ]
[1046] B. M. Clement. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature, 428:637--640, 2004. [ bib ]
[1047] Edward J Clennett, Adam F Holt, Michael G Tetley, Thorsten W Becker, and Claudio Faccenna. Assessing plate reconstruction models using plate driving force consistency tests. Scient. Rep., 13:10191, 2023. [ bib ]
[1048] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat., 6:3--73, 1990. [ bib ]
[1049] P. Clift and P. Vannucchi. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys., 42:1--31, 2004. [ bib ]
[1050] S. Cloetingh, E. B. Burov, and A. Poliakov. Lithosphere folding: Primary response to compression? (from central asia to paris basin). Tectonics, 18(6):1064--1083, 1999. [ bib ]
[1051] S. Cloetingh, E. B. Burov, F. Beekman, B. Andeweg, P. A. M. Andriessen, D. Garcia-Castellanos, G. de Vicente, and R. Vegas. Lithospheric folding in iberia. Tectonics, 21(5):art. no.--1041, 2002. [ bib ]
[1052] S. A. P. L. Cloething, M. J. R. Wortel, and N. J. Vlaar. Evolution of passive continental margins and initiation of subduction zones. Nature, 297:139--142, 1982. [ bib ]
[1053] S. Cloething and M. J. R. Wortel. Regional stress field of the Indian plate. Geophys. Res. Lett., 12:77--80, 1983. [ bib ]
[1054] S. Cloething, M. J. R. Wortel, and N. J. Vlaar. On the initiation of subduction zones. Pure Appl. Geophys., 129:7--25, 1989. [ bib ]
[1055] Sierd Cloetingh and Evgenii B. Burov. Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Res., 23:257--290, 2011. [ bib ]
[1056] Sierd Cloetingh, Alexander Koptev, István Kovács, Taras Gerya, Anouk Beniest, Ernst Willingshofer, Todd A Ehlers, Nevena Andrić-Tomašević, Svetlana Botsyun, Paul R Eizenhöfer, T François, and F Beekman. Plume-induced sinking of intracontinental lithospheric mantle: An overlooked mechanism of subduction initiation? Geochem., Geophys., Geosys., 22(2):e2020GC009482, 2021. [ bib ]
[1057] S. Cloetingh and M. J. R. Wortel. Stress in the Indo-Australian plate. Tectonophys., 132:49--67, 1986. [ bib ]
[1058] M. Cloos. Flow melanges: Numerical modelling and geologic constraints on their origin in the Fransiscan subduction complex, California. Geol. Soc. Am. Bull., 93:330--345, 1982. [ bib ]
[1059] M. Cloos. Blueschists in the Franciscan Complex of California: Petrotectonic constraints on uplift mechanisms. In Blueschists and eclogites, volume 164 of Geol. Soc. Amer. Mem., pages 77--93. Geological Society of America, 1986. [ bib ]
[1060] M. Cloos and R. L. Shreve. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins, 2, Implications and discussion. Pure Appl. Geophys., 128:501--545, 1988. [ bib ]
[1061] M. N. Cloos. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geol. Soc. Am. Bull., 105:715--737, 1993. [ bib ]
[1062] Preston E Cloud Jr. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160:729--736, 1968. [ bib ]
[1063] A. M. Dziewoński and J. H. Woodhouse. Studies of the seismic source using normal-mode theory. In H. Kanamori and E. Boschi, editors, Earthquakes: observation, theory, and interpretation: notes from the International School of Physics “Enrico Fermi” (1982: Varenna, Italy), volume 85, pages 45--137. North-Holland, Amsterdam, 1983. [ bib ]
[1064] CNSS. Composite catalog. Council of the National Seismic System CNSS, quake.geo.berkeley.edu/cnss/catalog-search.html, 1995. [ bib ]
[1065] RL Coble. A model for boundary diffusion controlled creep in polycrystalline materials. J Appl. Phys., 34:1679--1682, 1963. [ bib ]
[1066] D. Coblentz, C. G. Chase, K. E. Karlstrom, and J. van Wijk. Topography, the geoid, and compensation mechanisms for the southern Rocky Mountains. Geochem., Geophys., Geosys., 12(Q04002), 2011. [ bib | DOI ]
[1067] D. D. Coblentz, R. M. Richardson, and M. Sandiford. On the gravitational potential of the Earth's lithosphere. Tectonics, 13:929--945, 1994. [ bib ]
[1068] D. D. Coblentz, S. Zhou, R. R. Hillis, R. M. Richardson, and M. Sandiford. Topography, boundary forces, and the Indo-Australian intraplate stress field. J. Geophys. Res.: Sol. Earth, 103:919--931, 1998. [ bib ]
[1069] M. Cocco, E. Tinti, and A. Cirella. On the scale dependence of earthquake stress drop. J Seismol., 20:1151--1170, 2016. [ bib ]
[1070] M. Cocco, S. Aretusini, C. Cornelio, S. B. Nielsen, E. Spagnuolo, E. Tinti, and G. Di Toro. Fracture energy and breakdown work during earthquakes. Ann. Rev. Earth Planet. Sci., 51:217--252, 2023. [ bib ]
[1071] A. Cochard and R. Madariaga. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res.: Sol. Earth, 101:25321--25336, 1996. [ bib ]
[1072] E. S. Cochran, J. E. Vidale, and Y. G. Li. Near-fault anisotropy following the Hector Mine earthquake. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1073] Elizabeth S Cochran, Morgan T Page, Nicholas J van der Elst, Zachary E Ross, and Daniel T Trugman. Fault roughness at seismogenic depths and links to earthquake behavior. The Seism. Rec., 3:37--47, 2023. [ bib ]
[1074] UNAVCO. Caribbean GPS network to aid earthquake and hurricane forecasting. Available online at www.unavco.org/community_science/science_highlights/2011/coconet.html, accessed 11/2011, 2011. [ bib ]
[1075] MILLARD F Coffin, ROBERT A Duncan, OLAV Eldholm, J GODFREY Fitton, FRED A Frey, HANS CHRISTIAN Larsen, JOHN J Mahoney, ANDREW D Saunders, ROLAND Schlich, and PAUL J Wallace. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead. Oceanography, 19:150--160, 2006. [ bib ]
[1076] M. F. Coffin and O. Eldholm. Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys., 32:1--36, 1994. [ bib ]
[1077] J.-P. Cogne and E. Humler. Temporal variation of oceanic spreading and crustal production rates during the last 180 Myr. Earth Planet. Sci. Lett., 227:427--439, 2004. [ bib ]
[1078] C. R. Cohen. Model for a passive to active continental margin transition: implications for hydrocarbon exploration. Am. Ass. Petrol. Geol. Bull., 66:708--818, 1982. [ bib ]
[1079] R. H. Colburn and W. D. Mooney. Two-dimensional velocity structure along the synclinal axis of the great valley, California. Bull. Seismol. Soc. Am., 76:1305--1322, 1986. [ bib ]
[1080] B. Colleta, F. Hebrard, J. Letouzey, P. Werner, and J. L. Rudkiweicz. Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In J. Letouzey, editor, Petroleum and Tectonics in Mobile Belts, pages 81--100. Technip, Paris, 1990. [ bib ]
[1081] Bernard Colletta, François Roure, Bruno de Toni, Daniel Loureiro, Herminio Passalacqua, and Yves Gou. Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuela Andes. Tectonics, 16:777--794, 1997. [ bib ]
[1082] Cristiano Collettini and Richard H Sibson. Normal faults, normal friction? Geology, 29:927--930, 2001. [ bib ]
[1083] C. Collettini, A. Niemeijer, C. Viti, S. A.F. Smith, and C. Marone. Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet. Sci. Lett., 311:316--327, 2011. [ bib ]
[1084] Cristiano Collettini. The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophys., 510:253--268, 2011. [ bib ]
[1085] L. Colli, H.-P. Bunge, and B. Schuberth. On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett., 42:8341--8348, 2015. [ bib ]
[1086] L. Colli, S. Ghelichkhan, and H.-P. Bunge. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophys. Res. Lett., 43:2510--2516, 2016. [ bib ]
[1087] M. Collignon, B. J. P. Kaus, D. A. May, and N. Fernandez. Influences of surface processes on fold growth during 3-D detachment folding. Geochem., Geophys., Geosys., 15:3281--3303, 2014. [ bib | DOI ]
[1088] F. Collino and C. Tsogka. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:294--307, 2001. [ bib ]
[1089] K. B. Colson, T. K. Rockwell, K. M. Thorup, and G. L. Kennedy. Neotectonics of the left-lateral Santa Rosa Island Fault, western Transverse Ranges, Southern California (abstract). In The Geological Society of America, Cordilleran Section, 91st annual meeting. Abstracts with Programs, volume 27, page 11, 1995. [ bib ]
[1090] Nicolas Coltice, Francis Albarède, and Philippe Gillet. 40K-40Ar constraints on recycling continental crust into the mantle. Science, 288:845--847, 2000. [ bib ]
[1091] N. Coltice. The role of convective mixing in degassing the Earth's mantle. Earth Planet. Sci. Lett., 234:15--25, 2005. [ bib ]
[1092] N. Coltice, T. Rolf, P. J. Tackley, and S. Labrosse. Dynamic causes of the relation between area and age of the ocean floor. Science, 336:335--338, 2012. [ bib ]
[1093] N. Coltice, M. Seton, T. Rolf, R. Müller, and P. Tackley. Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth Planet. Sci. Lett., 383:92--100, 2013. [ bib ]
[1094] E. Coltice, M. Gérault, and M. Ulrová. A mantle convection perspective on global tectonics. Earth-Sci. Rev., 165:120--150, 2017. [ bib ]
[1095] N. Coltice and G. E. Shephard. Tectonic predictions with mantle convection models. Geophys. J. Int., 213:16--29, 2018. [ bib ]
[1096] Nicolas Coltice, Laurent Husson, Claudio Faccenna, and Maëlis Arnould. What drives tectonic plates? Sci. Adv., 5(10):eaax4295, 2019. [ bib ]
[1097] Nicolas Coltice. Tectonics is a Hologram. In João C. Duarte, editor, Dynamics of Plate Tectonics and Mantle Convection, pages 105--125. Elsevier, 2023. [ bib ]
[1098] S. Colucci, M. de' Michieli Vitturi, A. Neri, and D. M. Palladino. An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruption. Earth Planet. Sci. Lett., 404:98--110, 2014. [ bib ]
[1099] M. Comninou and J. Dundurs. The angular dislocations in a half space. J. Elasticity, 5:203--216, 1975. [ bib ]
[1100] Kent C Condie and Alfred Kröner. When did plate tectonics begin? Evidence from the geologic record. In When did plate tectonics begin on planet Earth, volume 440 of GSA Spec. Papers, pages 281--294. Geological Society of America, 2008. [ bib ]
[1101] Kent C Condie, Elena Belousova, WL Griffin, and Keith N Sircombe. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res., 15:228--242, 2009. [ bib ]
[1102] K. Condie, S. A. Pisarevsky, J. Korenaga, and S. Gardoll. Is the rate of supercontinent assembly changing with time? Precambrian Res., 259:278--289, 2015. [ bib ]
[1103] Kent C Condie. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett., 163:97--108, 1998. [ bib ]
[1104] P. J. Coney and T. A. Harms. Cordilleran metamorphic core complexes: Cenozoic extensional relics of mesozoic compression. Geology, 12:550--554, 1984. [ bib ]
[1105] P. J. Coney. The regional tectonic setting and possible causes of Cenozoic extension in the North American Cordillera. In Continental extensional tectonics, Geol. Soc. Lond. Spec Pub., pages 177--186. Geological Society of London, 1987. [ bib ]
[1106] S. Connaughton, S. Hall, and S. Lebedev. Seismic anisotopy and deformation beneath California. In Continental deformation: constraints from anisotropy, kinematics, dynamics Workshop, Dublin, November 2008. Dublin Institute for Advanced Studies. [ bib ]
[1107] J. Connolly. Perple_X, a collection of Fortran77 programs for calculating and displaying petrological phase diagrams, phase equilibria, and thermodynamic data. Available online at www.perplex.ethz.ch/, 2004. [ bib ]
[1108] J. A. D. Connolly. The geodynamic equation of state: what and how. Geochem., Geophys., Geosys., 10(Q10014), 2009. [ bib | DOI ]
[1109] JAD Connolly and Yu Yu Podladchikov. Compaction-driven fluid flow in viscoelastic rock. Geodin. Acta, 11:55--84, 1998. [ bib ]
[1110] C. P. Conrad and B. H. Hager. Mantle convection with strong subduction zones. Geophys. J. Int., 144:271--288, 2001. [ bib ]
[1111] C. P. Conrad and C. Lithgow-Bertelloni. How mantle slabs drive plate tectonics. Science, 298:207--209, 2002. [ bib ]
[1112] C. P. Conrad and M. Gurnis. Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochem., Geophys., Geosys., 4(2001GC000299), 2003. [ bib ]
[1113] C. P. Conrad and C. Lithgow-Bertelloni. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1114] C. P. Conrad, Lithgow-Bertelloni C., and K. Louden. The Farallon slab and dynamic topography of the North Atlantic. Geology, 32:177--180, 2004. [ bib ]
[1115] C. P. Conrad, S. Bilek, and C. Lithgow-Bertelloni. Great earthquakes and slab-pull: Interaction between seismic coupling and plate-slab coupling. Earth Planet. Sci. Lett., 218:109--122, 2004. [ bib ]
[1116] C. P. Conrad and C. Lithgow-Bertelloni. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett., 33, 2006. [ bib | DOI ]
[1117] C. P. Conrad and C. Lithgow-Bertelloni. Faster seafloor spreading and lithosphere production during the mid-Cenozoic. Geology, 35:29--32, 2007. [ bib ]
[1118] C. P. Conrad, M. D. Behn, and P. G. Silver. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. J. Geophys. Res.: Sol. Earth, 112(B07317), 2007. [ bib | DOI ]
[1119] C. P. Conrad and L. Husson. Influence of dynamic topography on sea level and its rate of change. Lithosphere, 1:110--120, 2009. [ bib ]
[1120] C. P. Conrad and M. D. Behn. Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochem., Geophys., Geosys., 11(Q05W05), 2010. [ bib | DOI ]
[1121] C. P. Conrad and P. Molnar. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys. J. Int., 129:95--112, 1997. [ bib ]
[1122] Clinton P Conrad and Bradford H Hager. Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys. Res. Lett., 24:1503--1506, 1997. [ bib ]
[1123] C. P. Conrad and B. H. Hager. The effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res.: Sol. Earth, 104:17551--17571, 1999. [ bib ]
[1124] C. P. Conrad and B. H. Hager. The thermal evolution of an Earth with strong subduction zones. Geophys. Res. Lett., 26:3041--3044, 1999. [ bib ]
[1125] E. Contreras-Reyes and J. Garay. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions. Geophys. J. Int., 113:1--12, 2018. [ bib ]
[1126] FA Cook and DL Turcotte. Parameterized convection and the thermal evolution of the Earth. Tectonophys., 75:1--17, 1981. [ bib ]
[1127] Frederick A Cook and John L Varsek. Orogen-scale decollements. Rev. Geophys., 32:37--60, 1994. [ bib ]
[1128] M. Cooke and A. Kameda. Mechanical fault interaction within the Los Angeles Basin: a two-dimensional analysis using mechanical efficiency. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[1129] Michele L Cooke and Susan Murphy. Assessing the work budget and efficiency of fault systems using mechanical models. J. Geophys. Res.: Sol. Earth, 109(B10408), 2004. [ bib | DOI ]
[1130] Michele L Cooke and Laura C Dair. Simulating the recent evolution of the southern big bend of the San Andreas fault, Southern California. J. Geophys. Res.: Sol. Earth, 116(B04405), 2011. [ bib | DOI ]
[1131] F. J. Cooper, J. P. Platt, and R. Anczkiewicz. Constraints on early Franciscan subduction rates from 2-D thermal modeling. Earth Planet. Sci. Lett., 312:69--79, 2011. [ bib ]
[1132] L. B. Cooper, D. M. Ruscitto, T. Plank, P. J. Wallace, E. M. Syracuse, and C. E. Manning. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem., Geophys., Geosys., 13(Q03024), 2012. [ bib | DOI ]
[1133] M. A. Cooper, F. T. Addison, R. Alvarez, M. Coral, R. H. Graham, A. B. Hayward, S. Howe, J. Martinez, J. Naar, R. Peñas, A. J. Pulham, and A. Taborda. Basin development and tectonic history of the Llanos Basin, Colombia. In A. J. Tankard, R. Suarez-Soruco, and H.J. Welsink, editors, Petroleum Basins of South America, volume 62 of Am. Assoc. Petroleum Geol. Memoir, pages 659--665. American Association of Petroleum Geologists, 1995. [ bib ]
[1134] A. Copley, J.-P. Avouac, and J.-Y. Royer. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res.: Sol. Earth, 115(B03410), 2010. [ bib | DOI ]
[1135] F. Corbi, F. Funiciello, M. Moroni, Y. van Dinther, P. M. Mai, L. A. Dalguer, and C. Faccenna. The seismic cycle at subduction thrusts: 1. Insights from laboratory models. J. Geophys. Res.: Sol. Earth, 118, 2013. [ bib | DOI ]
[1136] F. Corbi, R. Herrendörfer, F. Funiciello, and Y. van Dinther. Controls of seismogenic zone width and subduction velocity on interplate seismicity: Insights from analog and numerical models. Geophys. Res. Lett., 44:6082--6091, 2017. [ bib | DOI ]
[1137] V. Cormier. Slab diffraction of S waves. J. Geophys. Res.: Sol. Earth, 94:3006--3024, 1989. [ bib ]
[1138] V. Corrieu, Y. Ricard, and C. Froidevaux. Radial viscosity of the earth deduced from mantle tomography. Phys. Earth Planet. Inter., 84:3--13, 1994. [ bib ]
[1139] M. Cortés and J. Angelier. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophys., 403:29--58, 2005. [ bib ]
[1140] G. Corti. Dynamics of periodic instabilities during stretching of the continental lithosphere: View from centrifuge models and comparison with natural examples. Tectonics, 24(TC2008), 2005. [ bib | DOI ]
[1141] COST. cost. European Cooperation in Science & Technology. Online at www.cost.eu/, accessed 10/2017, 2017. Part of the EU Framework Programme Horizon 2020. [ bib ]
[1142] Thuany Costa de Lima, Hrvoje Tkalčić, and Lauren Waszek. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield. J. Geophys. Res.: Sol. Earth, 127(4):e2021JB023540, 2022. [ bib ]
[1143] S. Cottaar, M. Li, A. K. McNamara, B. A. Romanowicz, and H.-R. Wenk. Synthetic seismic anisotropy models within a slab impinging on the core-mantle boundary. Geophys. J. Int., 199:164--177, 2014. [ bib ]
[1144] F. Cotton and M. Campillo. Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 100:3961--3975, 1995. [ bib ]
[1145] C. A. Coulomb. Theorie des machine simple (Theory of Simple Machines). Bachelier, Paris, 1821. [ bib ]
[1146] S. Coulson, S. Dangendorf, J. X. Mitrovica, M E. Tamisiea, L. Pan, and D. T. Sandwell. A detection of the sea level fingerprint ofGreenland Ice Sheet melt. Science, 377:1550--1554, 2022. [ bib ]
[1147] K. Course and P. B. Nair. State estimation of a physical system with unknown governing equations. Nature, 662:261--267, 2023. [ bib ]
[1148] Anna M Courtier, Matthew G Jackson, Jesse F Lawrence, Zhengrong Wang, Cin-Ty Aeolus Lee, Ralf Halama, Jessica M Warren, Rhea Workman, Wenbo Xu, Marc M Hirschmann, et al. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett., 264:308--316, 2007. [ bib ]
[1149] V. Courtillot, A. Davaille, J. Besse, and J. Stock. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett., 205:295--308, 2003. [ bib ]
[1150] V Courtillot, G Feraud, Henri Maluski, D Vandamme, MG Moreau, and J Besse. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333:843--846, 1988. [ bib ]
[1151] P. A. Cowie and C. H. Scholz. Growth of faults by accumulation of seismic slip. J. Geophys. Res.: Sol. Earth, 97:11085--11095, 1992. [ bib ]
[1152] Patience A Cowie and Christopher H Scholz. Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J. Struct. Geol., 14:1133--1148, 1992. [ bib ]
[1153] N. L. Cox. Variable uplift from quaternary folding along the northern coast of east timor, based on u-series age determinations of coral terraces. Master's thesis, Brigham Young University, 2009. Available online at contentdm.lib.byu.edu/cdm4/item_viewer.php?CISOROOT=/ETD&CISOPTR=1687, accessed 06/2011. [ bib ]
[1154] S. Cox, A. Fagereng, and C. J. MacLeod. Shear zone development in serpentinized mantle: Implications for the strength of oceanic transform faults. J. Geophys. Res.: Sol. Earth, 126:e2020JB020763, 2021. [ bib ]
[1155] A. M. Cox, G. Debiche, and D. C. Engebretson. Terrane trajectories and plate interaction along continental margins in the north Pacific basin. In Z. Ben-Avraham, editor, The evolution of the Pacific Ocean margins, pages 20--35. Oxford University Press, Oxford, 1989. [ bib ]
[1156] S. J. D. Cox and C. H. Scholz. On the formation and growth of faults: An experimental study. J. Struct. Geol., 10:413--430, 1988. [ bib ]
[1157] T. J. Craig, J. A. Jackson, K. Priestley, and D. McKenzie. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys. J. Int., 185:403--434, 2011. [ bib ]
[1158] TJ Craig, A Copley, and J Jackson. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int., 197:63--89, 2014. [ bib ]
[1159] H Craig and JE Lupton. Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett., 31:369--385, 1976. [ bib ]
[1160] F. Crameri, P. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus. A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(L03306), 2012. [ bib | DOI ]
[1161] F Crameri, H Schmeling, GJ Golabek, T Duretz, R Orendt, SJH Buiter, DA May, BJP Kaus, TV Gerya, and PJ Tackley. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the “sticky air” method. Geophys. J. Int., 189:38--54, 2012. [ bib ]
[1162] F. Crameri and P. Tackley. Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection. J. Geophys. Res.: Sol. Earth, 120:3680--3706, 2015. [ bib ]
[1163] Fabio Crameri, CR Lithgow-Bertelloni, and Paul J Tackley. The dynamical control of subduction parameters on surface topography. Geochem., Geophys., Geosys., 18:1661--1687, 2017. [ bib ]
[1164] F. Crameri. Scientific colour maps. Zenodo, 2018. [ bib | DOI ]
[1165] Fabio Crameri, Valentina Magni, Mathew Domeier, Grace E Shephard, Kiran Chotalia, George Cooper, Caroline M Eakin, Antoniette Greta Grima, Derya Gürer, Ágnes Király, E Mulyukova, K Peters, B Robert, and M Thielmann. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nature comm., 11:3750, 2020. [ bib ]
[1166] S. Crampin and S. Chastin. A review of shear wave splitting in the crack-critical crust. Geophys. J. Int., 155:221--240, 2003. [ bib ]
[1167] S. Crampin. The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astr. Soc., 21:387--402, 1970. [ bib ]
[1168] S. Crampin. Seismic anisotropy, a summary. Z. Geophys., 43:499--501, 1977. [ bib ]
[1169] Stuart Crampin. Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys. J. Int., 53:467--496, 1978. [ bib ]
[1170] S. Crampin, R. McGonigle, and D. Bamford. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysics, 45:345--360, 1980. [ bib ]
[1171] S. Crampin. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. Astr. Soc., 76:135--145, 1984. [ bib ]
[1172] S. Crampin. Evaluation of anisotropy by shear-wave splitting. Geophysics, 50:142--152, 1985. [ bib ]
[1173] Ophelia Crawford, David Al-Attar, Jeroen Tromp, Jerry X Mitrovica, Jacqueline Austermann, and Harriet CP Lau. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity. Geophys. J. Int., 214:1324--1363, 2018. [ bib ]
[1174] Kenneth C Creager and Thomas H Jordan. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. J. Geophys. Res.: Sol. Earth, 91:3573--3589, 1986. [ bib ]
[1175] Neala Creasy, Lowell Miyagi, and Maureen D Long. A library of elastic tensors for lowermost mantle seismic anisotropy studies and comparison with seismic observations. Geochem., Geophys., Geosys., 21:e2019GC008883, 2020. [ bib ]
[1176] J.-F. Crétaux, L. Soudarin, A. Cazenave, and Bouillé. Present-day tectonic plate motions and crustal deformations from the DORIS space system. J. Geophys. Res.: Sol. Earth, 103:30167--30181, 1998. [ bib ]
[1177] J. Croll. Climate and time in their geological relations: A theory of secular changes of the Earth's climate,. Daldy, Isbister, & Co., London, 1875. [ bib ]
[1178] R. Jr Crook, C. R. Allen, B. Kamb, C. M. Payne, and R. J. Proctor. Quaternary geology and seismic hazard of the Sierra Madre and associated faults, western San Gabriel Mountains. In Recent reverse faulting in the Transverse Ranges, California, volume 1339 of U. S. Geol. Surv. Prof. Pap., pages 27--63. United States Geological Survey, 1987. [ bib ]
[1179] AG Crosby and D McKenzie. An analysis of young ocean depth, gravity and global residual topography. Geophys. J. Int., 178:1198--1219, 2009. [ bib ]
[1180] T. A. Cross and R. C. Pilger. Controls of subduction geometry, location of magmatic arcs, tectonics of arc and back-arc regions. Geol. Soc. Am. Bull., 93:545--562, 1982. [ bib ]
[1181] H. P. Crotwell and T. J. Owens. Automated receiver function processing. Seismol. Res. Lett., 76:702--709, 2005. Data available online at www.iris.washington.edu/ears, accessed 01/2013. [ bib ]
[1182] S. L. Crouch and A. M. Starfield. Boundary Element Methods in Solid Mechanics. With Applications in Rock Mechanics. Allen and Unwin, London, 1983. [ bib ]
[1183] S Thomas Crough. Thermal model of oceanic lithosphere. Nature, 256:388--390, 1975. [ bib ]
[1184] S. T. Crough and G. A. Thompson. Thermal model of continental lithosphere. J. Geophys. Res.: Sol. Earth, 81:4857--4862, 1976. [ bib ]
[1185] S. T. Crough and G. A. Thompson. Upper mantle origin of Sierra Nevada uplift. Geology, 5:396--399, 1977. [ bib ]
[1186] S. T. Crough. Thermal origin of mid-plate hotspot swells. Geophys. J. R. Astr. Soc., 55:451--469, 1978. [ bib ]
[1187] S Thomas Crough. Hotspot swells. Ann. Rev. Earth Planet. Sci., 11:165--193, 1983. [ bib ]
[1188] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite elements methods for solving the stationary Stokes equation. Rev. Franc. d'Automat. Informat. Rech. Opér., 3:33--76, 1973. [ bib ]
[1189] R. Crow, K. Karlstrom, Y. Asmerom, B. Schmandt, V. Polyak, and S. A. DuFrane. Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology, 39:27--30, 2010. [ bib ]
[1190] J. W. Crowley, M. Gérault, and R. J. O'Connell. On the relative influence of heat and water transport on planetary dynamics. Earth Planet. Sci. Lett., 310:380--388, 2011. [ bib ]
[1191] John W Crowley and Richard J O’Connell. An analytic model of convection in a system with layered viscosity and plates. Geophys. J. Int., 188:61--78, 2012. [ bib ]
[1192] C. Cruciani, E. Carminati, and C. Doglioni. Slab dip vs. lithosphere age: no direct function. Earth Planet. Sci. Lett., 238:298--310, 2005. [ bib ]
[1193] Paola Crupi and Andrea Bizzarri. The role of radiation damping in the modeling of repeated earthquake events. Ann. Geophys., 56(R0111), 2013. [ bib | DOI ]
[1194] A. M. C. Şengör. Eduard Suess' relations to the pre-1950 schools of thought in global tectonics. Geolog. Rundsch., 71:381--420, 1982. [ bib ]
[1195] L. Cserepes, U. R. Christensen, and N. M. Ribe. Geoid height versus topography for a plume model of the Hawaiian swell. Earth Planet. Sci. Lett., 178:29--38, 2000. [ bib ]
[1196] N. Cubas, N. Lapusta, J.-P. Avouac, and H. Perfettni. Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: Comparison with observations and implications for fault friction. Earth Planet. Sci. Lett., 419:187--198, 2015. [ bib ]
[1197] Yifeng Cui, Efecan Poyraz, Kim B Olsen, Jun Zhou, Kyle Withers, Scott Callaghan, Jeff Larkin, C Guest, D Choi, Amit Chourasia, Z. Shi, S. M. Day, P. J. Maechling, and T. H. Jordan. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers. In SC'13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2013. [ bib ]
[1198] P. A. Cundall and M. Board. A microcomputer program for modeling large strain plasticity problems. In G. Swoboda, editor, Numerical Methods in Geomechanics, pages 2101--2108. Balkema, 1988. [ bib ]
[1199] CA Currie, K Wang, Roy D Hyndman, and Jiangheng He. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc. Earth Planet. Sci. Lett., 223:35--48, 2004. [ bib ]
[1200] Claire A Currie and Roy D Hyndman. The thermal structure of subduction zone back arcs. J. Geophys. Res.: Sol. Earth, 111(B08404), 2006. [ bib | DOI ]
[1201] Claire A Currie, Ritske S Huismans, and Christopher Beaumont. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet. Sci. Lett., 269:436--447, 2008. [ bib ]
[1202] Claire A Currie and Peter Copeland. Numerical models of Farallon plate subduction: Creating and removing a flat slab. Geosphere, 18:476--502, 2022. [ bib ]
[1203] A. Curtis, H. Nicolson, D. Halliday, J. Trampert, and B. Baptie. Virtual seismometers in the subsurface of the earth from seismic interferometry. Nature Geosc., 2:700--704, 2009. [ bib ]
[1204] A. Curtis and D. Halliday. Source-receiver wavefield interferometry. Phys. Rev. E, 81(046601-1–046601-10), 2010. [ bib | DOI ]
[1205] P. Cvitanović. Universality in Chaos: A Reprint Selection, chapter 1, pages 3--33. Adam Hilger, Bristol, 1984. [ bib ]
[1206] M. Dabrowski, M. Krotkiewski, and D. W. Schmid. MILAMIN: MATLAB-based finite element method solver for large problems. Geochem., Geophys., Geosys., 9(Q04030), 2008. [ bib | DOI ]
[1207] Z. Dagan, S. Weinbaum, and R. Pfeffer. An infinite-series solution for the creeping motion through an orifice of finite length. J. Fluid Mech., 115:505--523, 1982. [ bib ]
[1208] N. D'Agostino and D. McKenzie. Convective support of long wavelength topography in the Apennines (Italy). Terra Nova, 11:234--238, 1999. [ bib ]
[1209] Houraa Daher, Brian K Arbic, James G Williams, Joseph K Ansong, Dale H Boggs, Malte Müller, Michael Schindelegger, Jacqueline Austermann, Bruce D Cornuelle, Eliana B Crawford, et al. Long-term Earth-Moon evolution with high-level orbit and ocean tide models. J. Geophys. Res.: Planets, 126:e2021JE006875, 2021. [ bib ]
[1210] F. A. Dahlen, S.-H. Hungh, and G. Nolet. Fréchet kernels for finite-frequency traveltimes I. Theory. Geophys. J. Int., 141:175--203, 2000. [ bib ]
[1211] FA Dahlen. Noncohesive critical coulomb wedges: An exact solution. J. Geophys. Res.: Sol. Earth, 89:10125--10133, 1984. [ bib ]
[1212] F. A. Dahlen. Critical taper model of fold-and-thrust belts and accretionary wedges. Ann. Rev. Earth Planet. Sci., 18:55--99, 1990. [ bib ]
[1213] F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press, Princeton, NJ, 1998. [ bib ]
[1214] T. Dahm. Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int., 124:245--257, 1996. [ bib ]
[1215] T. Dahm and T. W. Becker. On the elastic and viscous properties of media containing strongly interacting in-plane cracks. Pure Appl. Geophys., 151:1--15, 1998. [ bib ]
[1216] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl. Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett., 102:175501, 2009. [ bib ]
[1217] H.J. Dalstra, E.J.M. Bloem, J.R. Ridley, and D.I. Groves. Diapirism synchronous with regional deformation and gold mineralisation, a new concept for granitoid emplacement in the southern cross province, western australia. Geologie en Mijnbouw, 76:321--338, 1998. [ bib ]
[1218] C. A. Dalton and G. Ekström. Global models of surface wave attenuation. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[1219] C. A. Dalton and G. Ekström. What can we learn from images of seismic-wave attenuation? Presentation at the IRIS Workshop, Tuscon, AZ, available online at www.seismology.harvard.edu/~dalton/IRIS/iris06_dalton_short.pdf, accessed 06/2006, 2006. [ bib ]
[1220] Colleen A Dalton, Göran Ekström, and Adam M Dziewoński. The global attenuation structure of the upper mantle. J. Geophys. Res.: Sol. Earth, 113(B09303), 2008. [ bib | DOI ]
[1221] C. A. Dalton, C. H. Langmuir, and A. Gale. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344:80--83, 2014. [ bib ]
[1222] Colleen A Dalton, Xueyang Bao, and Zhitu Ma. The thermal structure of cratonic lithosphere from global rayleigh wave attenuation. Earth Planet. Sci. Lett., 457:250--262, 2017. [ bib ]
[1223] R. A. Daly. A general sinking of sea-level in recent time. Proc. Natl. Acad. Sci. USA, 6:246--250, 1920. [ bib ]
[1224] L. Dal Zilio, Y. van Dinther, T. V. Gerya, and C. C. Pranger. Seismic behaviour of mountain belts controlled by plate convergence rate. Earth Planet. Sci. Lett., 482:81--92, 2018. [ bib ]
[1225] Luca Dal Zilio, Manuele Faccenda, and Fabio Capitanio. The role of deep subduction in supercontinent breakup. Tectonophys., 746:312--324, 2018. [ bib ]
[1226] L. Dal Zilio, Y. van Dinther, T. Gerya, and J. P. Avouac. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nature Comm., 10:1--11, 2019. [ bib ]
[1227] L. Dal Zilio, N. Lapusta, J.-P. Avouac, and T. Gerya. Subduction earthquake sequences in a non-linear visco-elasto-plastic megathrust. Geophys. J. Int., 229:1098--1121, 2022. [ bib ]
[1228] J. D. Dana. On some results of the Earth's contraction from cooling, including a discussion of the origins of mountains, and the nature of the Earth's Interior. Amer. J. Sci., 5:423--443, 1873. [ bib ]
[1229] K. Daniels and N. W. Hayman. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res.: Sol. Earth, 113(B11411), 2008. [ bib | DOI ]
[1230] J. Dannberg and T. Heister. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT. Geophys. J. Int., 207:1343--1366, 2016. [ bib ]
[1231] J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. The importance of grain size to mantle dynamics and seismological observations. Geochem., Geophys., Geosys., 18:3034--3061, 2017. [ bib ]
[1232] A. Daradich, J. X. Mitrovica, R. N. Pysklywec, S. D. Willet, and A. M. Forte. Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology, 31:901--904, 2003. [ bib ]
[1233] F. Darbyshire and S. Lebedev. Rayleigh wave phase-velocity heterogeneity and multi-layered azimuthal anisotropy of the Superior Craton, Ontario. Geophys. J. Int., 176:215--234, 2009. [ bib ]
[1234] B. D'Argenio and A. Mindszenty. Karst Bauxite at regional unconformity and the geotectonic correlation in the Cretaceous of the Mediterranean. Bull. Soc. Geol. It., 110:85--92, 1991. [ bib ]
[1235] George Howard Darwin. VIII. On the influence of geological changes on the Earth's axis of rotation. Phil. Trans. Royal Soc. London, 167:271--312, 1877. [ bib ]
[1236] S. Das and C. H. Scholz. Off-fault aftershock clusters caused by shear stress increase? Bull. Seismol. Soc. Am., 71:1669--1675, October 1981. [ bib ]
[1237] Kelian Dascher-Cousineau, Emily E Brodsky, Thorne Lay, and T H W Goebel. What controls variations in aftershock productivity? J. Geophys. Res.: Sol. Earth, 125:e2019JB018111, 2020. [ bib ]
[1238] Kelian Dascher Cousineau, Oleksandr Shchur, Emily E Brodsky, and Stephan Günnemann. Using deep learning for flexible and scalable earthquake forecasting. Geophys. Res. Lett., 50:e2023GL103909, 2023. [ bib ]
[1239] Anne Davaille, Fabien Girard, and Michael Le Bars. How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203:621--634, 2002. [ bib ]
[1240] Anne Davaille, Eléonore Stutzmann, Graça Silveira, Jean Besse, and Vincent Courtillot. Convective patterns under the indo-atlantic “box”. Earth Planet. Sci. Lett., 239:233--252, 2005. [ bib ]
[1241] Anne Davaille and Barbara Romanowicz. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics, 39:e2020TC006265, 2020. [ bib ]
[1242] Anne Davaille and Claude Jaupart. Transient high-Rayleigh-number thermal convection with large viscosity variations. J Fluid Mech., 253:141--166, 1993. [ bib ]
[1243] A. Davaille. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756--760 1999. [ bib ]
[1244] J. Davidsen, S. Stanchits, and G. Dresen. Scaling and universality in rock fracture. Phys. Rev. Lett., 98:12, 2007. [ bib ]
[1245] J. Davidsen, C. Gu, and M. Baiesi. Generalized Omori–Utsu law for aftershock sequences in southern California. Geophys. J. Int., 201:965--978, 2015. [ bib ]
[1246] D. R. Davies, C. R. Wilson, and S. C. Kramer. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics. Geochem., Geophys., Geosys., 12(Q06001), 2011. [ bib | DOI ]
[1247] J. H. Davies. Global map of solid Earth surface heat flow. Geochem., Geophys., Geosys., 14:4608--4622, 2013. [ bib ]
[1248] Geoffrey F Davies. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J. Geophys. Res.: Sol. Earth, 85:2517--2530, 1980. [ bib ]
[1249] G. F. Davies. Geophysical and isotopic constraints on mantle convection: an interim synthesis. J. Geophys. Res.: Sol. Earth, 89:6017--6040, 1984. [ bib ]
[1250] G. F. Davies. Mantle convection under simulated plates: effects of heating modes and ridge and trench migration, and implications for the core-mantle boundary, bathymetry, the geoid and Benioff zones. Geophys. J. R. Astr. Soc., 84:153--183, 1986. [ bib ]
[1251] G. F. Davies. Ocean bathymetry and mantle convection, 1. Large-scale flows and hotspots. J. Geophys. Res.: Sol. Earth, 93:10467--10480, 1988. [ bib ]
[1252] G. F. Davies. Role of the lithosphere inw mantle convection. J. Geophys. Res.: Sol. Earth, 93:10451--10466, 1988. [ bib ]
[1253] G. F. Davies. Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett., 99:94--109, 1990. [ bib ]
[1254] G. F. Davies and M. A. Richards. Mantle convection. J. Geology, 100:151--206, 1992. [ bib ]
[1255] G. F. Davies. On the emergence of plate tectonics. Geology, 20:963--966, 1992. [ bib ]
[1256] J.H. Davies and D.J. Stevenson. Physical model of source region of subduction zone volcanics. J. Geophys. Res.: Sol. Earth, 97:2037--2070, 1992. [ bib ]
[1257] Geoffrey F Davies. Conjectures on the thermal and tectonic evolution of the Earth. Lithos, 30:281--289, 1993. [ bib ]
[1258] G. F. Davies. Penetration of plates and plumes through the mantle transition zone. Earth Planet. Sci. Lett., 133:507--516, 1995. [ bib ]
[1259] J. H. Davies and F. von Blanckenburg. Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129:85--102, 1995. [ bib ]
[1260] G. F. Davies. Dynamic Earth: Plates, plumes, and mantle convection. Cambridge University Press, 1999. [ bib ]
[1261] G. F. Davies. Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett., 166:149--162, 1999. [ bib ]
[1262] F. M. Dávila, C. Lithgow-Bertelloni, and M. Gimenez. Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth Planet. Sci. Lett., 295:187--194, 2010. [ bib ]
[1263] F. M. Dávila and C. Lithgow-Bertelloni. Dynamic topography in south america. J. South Amer. Earth Sci., 43:127--144, 2013. [ bib ]
[1264] Federico M Dávila and Carolina Lithgow-Bertelloni. Dynamic uplift during slab flattening. Earth Planet. Sci. Lett., 425:34--43, 2015. [ bib ]
[1265] P. M. Davis and L. Knopoff. The elastic modulus of media containing strongly interacting antiplane cracks. J. Geophys. Res.: Sol. Earth, 100:18253--18258, September 1995. [ bib ]
[1266] P. M. Davis. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle. J. Geophys. Res.: Sol. Earth, 108:2052, 2003. 10.1029/2001JB000637. [ bib ]
[1267] J. L. Davis, L. H. Kellogg, J. R. Arrowsmith, B. A. Buffett, C. G. Constable, A. Donnellan, E. R. Ivins, G. S. Mattioli, S. E. Owen, M. E. Pritchard, M. E. Purucker, D. T. Sandwell, and J. Sauber. Challenges and Opportunities for Research in ESI (CORE): Report from the NASA Earth Surface and Interior (ESI) Focus Area Workshop, November 2--3, 2015, Arlington, Virginia, 2016. available online at smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/CORE2016%20Updated%3DTAGGED.pdf, accessed 12/2017. [ bib ]
[1268] E. E. Davis and C. R. B. Lister. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett., 21:405--413, 1974. [ bib ]
[1269] Dan Davis, John Suppe, and FA Dahlen. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res.: Sol. Earth, 88:1153--1172, 1983. [ bib ]
[1270] P. M. Davis and L. Knopoff. Reply. In J. Geophys. Res.: Sol. Earth [4365], pages 25377--25379. [ bib ]
[1271] Philippe Davy, Olivier Bour, J-R De Dreuzy, and Caroline Darcel. Flow in multiscale fractal fracture networks. Geol. Soc., London, Spec. Pub., 261:31--45, 2006. [ bib ]
[1272] Ph. Davy and P. R. Cobbold. Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophys., 188:1--25, 1991. [ bib ]
[1273] P. R. Dawson and H.-R. Wenk. Texturing of the upper mantle during convection. Phil. Mag. A, 80:573--598, 2000. [ bib ]
[1274] A. Day-Lewis, M. D. Zoback, and S. H. Hickman. Spectral analysis of localized stress variations, the spatial distribution of faults, and the scaling of physical properties near the San Andreas fault (abstract). Eos Trans. AGU, 86(52):T21A--0439, 2005. [ bib ]
[1275] Steven M Day. Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bull. Seismol. Soc. Am., 72:705--727, 1982. [ bib ]
[1276] M. M. Deal, G. Nolet, and R. D. van der Hilst. Slab temperatures and thickness from seismic tomography 1. Method and application to Tonga. J. Geophys. Res.: Sol. Earth, 104:28789--28802, 1999. [ bib ]
[1277] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 9.1. J. Num. Math., 27, 2019. [ bib | DOI ]
[1278] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling, Alexander V. Grayver, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Reza Rastak, Ignacio Thomas, Bruno Turcksin, Zhuoran Wang, and David Wells. The deal.II library, version 9.2. J. Num. Math., 28:131--146, 2020. [ bib ]
[1279] E. Debayle and M. Sambridge. Inversion of massive surface wave data sets: Model construction and resolution assessment. J. Geophys. Res.: Sol. Earth, 109(B02316), 2004. [ bib | DOI ]
[1280] E. Debayle, B. L. N. Kennett, and K. Priestley. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433:509--512, 2005. [ bib ]
[1281] E. Debayle and Y. Ricard. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett., 376:165--177, 2013. [ bib ]
[1282] E. Debayle, F. Dubuffet, and S. Durand. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett., 43, 2016. [ bib | DOI ]
[1283] Eric Debayle, Thomas Bodin, Stéphanie Durand, and Yanick Ricard. Seismic evidence for partial melt below tectonic plates. Nature, 586:555--559, 2020. [ bib ]
[1284] Bas de Boer, Paolo Stocchi, Pippa L Whitehouse, and Roderik SW van de Wal. Current state and future perspectives on coupled ice-sheet--sea-level modelling. Quat. Sci. Rev., 169:13--28, 2017. [ bib ]
[1285] René de Borst and Thibault Duretz. On viscoplastic regularisation of strain-softening rocks and soils. Int. J. Numer. Analyt. Meth. Geomech., 44:890--903, 2020. [ bib ]
[1286] R. De Borst, L. J. Sluys, H.-B. Mühlhaus, and J. Pamin. Fundamental issues in finite element analyses of localization of deformation. Eng. Computations, 10:99--121, 1993. [ bib ]
[1287] R. De Borst, J. Pamin, and M. G. D. Geers. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech. A/Solids, 18:939--962, 1999. [ bib ]
[1288] Jean-Claude de Bremaecker. Is the oceanic lithosphere elastic or viscous? J. Geophys. Res.: Sol. Earth, 82:2001--2004, 1977. [ bib ]
[1289] J De Bresser, J Ter Heege, and C Spiers. Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int. J. Earth Sci., 90:28--45, 2001. [ bib ]
[1290] P. G. DeCelles, M. H. Ducea, P. Kapp, and G. Zandt. Cyclicity in Cordilleran orogenic systems. Nature Geosc., 2:251--257, 2009. [ bib ]
[1291] Peter G DeCelles and Barbara Carrapa. Differences between the central Andean and Himalayan orogenic wedges: A matter of climate. Earth Planet. Sci. Lett., 616:118216, 2023. [ bib ]
[1292] Peter G DeCelles and Katherine A Giles. Foreland basin systems. Basin Res., 8:105--123, 1996. [ bib ]
[1293] R. Deguen and P. Cardin. Tectonic history of the Earth's inner core preserved in its seismic structure. Nature Geosc., 2:419--422, 2009. [ bib ]
[1294] Véronique Dehant, H Lammer, Yu N Kulikov, J-M Grießmeier, D Breuer, O Verhoeven, Ö Karatekin, Tim Van Hoolst, O Korablev, and P Lognonné. Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci. Rev., 129:279--300, 2007. [ bib ]
[1295] T. L. De la Torre and A. F. Sheehan. Broadband seismic noise analysis of Himalayan Nepal Tibet Seismic Experiment. Bull. Seismol. Soc. Am., 95:1202--1208, 2005. [ bib ]
[1296] T. L. De la Torre, G. Monsalve, A. F. Sheehan, S. Sapkota, and F. Wu. Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys. J. Int., 171:718--738, 2007. [ bib ]
[1297] T. L. De la Torre. Upper Lithospheric Seismic Characteristics Beneath the Himalaya and the Southern Tibetan Plateau. PhD thesis, University of Colorado at Boulder, 2007. [ bib ]
[1298] J. R. Delph, A. M. Thomas, and A. Levander. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett., 556:116724, 2021. [ bib ]
[1299] Brian J Demartin, Robert A Sohn, Juan Pablo Canales, and Susan E Humphris. Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology, 35:711--714, 2007. [ bib ]
[1300] C. DeMets, R. G. Gordon, and D. F. Argus. Geologically current plate motions. Geophys. J. Int., 181:1--80, 2010. [ bib ]
[1301] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Current plate motions. Geophys. J. Int., 101:425--478, 1990. [ bib ]
[1302] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21:2191--2194, 1994. [ bib ]
[1303] R. V. Demicco. Modeling seafloor-spreading rates through time. Geology, 32:485--488, 2004. [ bib ]
[1304] R. Demirtaş and Y. Rüçhan. Seismotectonics of Türkiye. Ministry of Public Works and Settlement, Republic of Türkiye, Ankara, Juni 1996. [ bib ]
[1305] J. M. deMoor, A. Aiuppa, G. Avard, H. Wehrmann, N. Dunbar, C. Muller, G. Tamburello, G. Giudice, M. Liuzzo, R. Moretti, et al. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-​frequency gas monitoring. J. Geophys. Res.: Sol. Earth, 121:5761--5775, 2016. [ bib | DOI ]
[1306] Sylvie Demouchy, Andréa Tommasi, Tiziana Boffa Ballaran, and Patrick Cordier. Low strength of Earth's uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys. Earth Planet. Inter., 220:37--49, 2013. [ bib ]
[1307] J. Deng and L. R. Sykes. Triggering of 1812 Santa Barbara earthquake by a great San Andreas shock: Implications for future seismic hazards in southern California. Geophys. Res. Lett., 23:1155--1158, May 1996. [ bib ]
[1308] J. Deng and L. R. Sykes. Evolution of the stress field in Southern California and triggering of moderate-size earthquakes: A 200-year perspective. J. Geophys. Res.: Sol. Earth, 102:9859--9886, 1997. [ bib ]
[1309] J. Deng, M. Gurnis, H. Kanamori, and E. Hauksson. Viscoelastic Flow in the Lower Crust after the 1992 Landers, California, Earthquake. Science, 282:1689--1692, 1998. [ bib ]
[1310] Sabine AM Den Hartog, Demian M Saffer, and Christopher J Spiers. The roles of quartz and water in controlling unstable slip in phyllosilicate-rich megathrust fault gouges. Earth, Planet. Space, 66:1--9, 2014. [ bib ]
[1311] D. J. DePaolo and M. Manga. Deep origin of hotspots--the mantle plume model. Science, 300:920--921, 2003. [ bib ]
[1312] D. J. DePaolo and G. J. Wasserburg. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 3:743--746, 1976. [ bib ]
[1313] V. Deparis, H. Legros, and Y. Ricard. Mass anomalies due to subducted slabs and simulations of plate motion since 200 My. Earth Planet. Sci. Lett., 89:271--280, 1995. [ bib ]
[1314] J. Dercourt, L. P. Zonenshain, L. E. Ricou, V. C. Karmin, X. Le Pichon, A. L. Knipper, C. Grandjacquet, I. M. Sburtshickov, J. Geyssant, C. Lepvrier, D. A. Pechersky, J. Boulin, J. C. Sibuet, L. A. Savostin, O. Sorokhtin, M. Westphal, M. L. Bazhenov, J. P. Laver, and B. Biju-Duval. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophys., 123:241--315, 1986. [ bib ]
[1315] J. Dercourt, L. E. Ricou, and B. Vrielinck. Atlas Tethys, paleoenvironmental maps. Gauthier-Villars, Paris, 1993. [ bib ]
[1316] F. Deschamps, J. Trampert, and R. Snieder. Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Phys. Earth Planet. Inter., 129:245--264, 2002. [ bib ]
[1317] F. Deschamps and J. Trampert. Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Inter., 140:227--291, 2003. [ bib ]
[1318] F. Deschamps and J. Trampert. Towards a lower mantle reference temperature and composition. Earth Planet. Sci. Lett., 222:161--175, 2004. [ bib ]
[1319] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States. Geophys. J. Int., 173:827--843, 2008. [ bib ]
[1320] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet. Sci. Lett., 274:489--498, 2008. [ bib ]
[1321] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography I. principles and influence of rheological parameters. Phys. Earth Planet. Inter., 171:357--373, 2008. [ bib ]
[1322] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography II - Influence of physical and compositional parameters. Phys. Earth Planet. Inter., 176:1--18, 2009. [ bib ]
[1323] Frédéric Deschamps, Paul J Tackley, and Takashi Nakagawa. Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry. Geophys. J. Int., 182:137--154, 2010. [ bib ]
[1324] Frédéric Deschamps and Yang Li. Core-mantle boundary dynamic topography: Influence of postperovskite viscosity. J. Geophys. Res.: Sol. Earth, 124:9247--9264, 2019. [ bib ]
[1325] V. S. Deshpande and A. G. Evans. Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J. Mech. Phys. Solids, 56:3077--3100, 2008. [ bib ]
[1326] Julia de Sigoyer, Valérie Chavagnac, Janne Blichert-Toft, Igor M Villa, Béatrice Luais, Stéphane Guillot, Michael Cosca, and Georges Mascle. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 28:487--490, 2000. [ bib ]
[1327] Julia De Sigoyer, Stéphane Guillot, and Pierre Dick. Exhumation of the ultrahigh-pressure tso morari unit in eastern ladakh (nw himalaya): A case study. Tectonics, 23(TC3003), 2004. [ bib | DOI ]
[1328] J.-X. Dessa, S. Operto, S. Kodaira, A. Nakanishi, G. Pascal, J. Virieux, and Y. Kaneda. Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion. Geophys. Res. Lett., 31(18), 2004. [ bib | DOI ]
[1329] R. S. Detrick and S. T. Crough. Island subsidence, hot spots, and lithospheric thinning. J. Geophys. Res.: Sol. Earth, 83:1236--1244, 1978. [ bib ]
[1330] Robert S Detrick, Douglas R Toomey, and John A Collins. Three-dimensional upper crustal heterogeneity and anisotropy around Hole 504B from seismic tomography. J. Geophys. Res.: Sol. Earth, 103:30485--30504, 1998. [ bib ]
[1331] Y. Deubelbeiss and B. J. P. Kaus. Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Phys. Earth Planet. Inter., 171:92--111, 2008. [ bib ]
[1332] P. M. R. DeVries, P. G. Krastev, J. F. Dolan, and B. J. Meade. Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre- and postseismic geodetic observations. Bull. Seismol. Soc. Am., 107, 2017. [ bib | DOI ]
[1333] J. F. Dewey. Continental margins: a model for conversion of Atlantic type to Andean type. Earth Planet. Sci. Lett., 6:189--197, 1969. [ bib ]
[1334] John F Dewey and John M Bird. Mountain belts and the new global tectonics. J. Geophys. Res.: Sol. Earth, 75:2625--2647, 1970. [ bib ]
[1335] John F Dewey and Kevin Burke. Hot spots and continental break-up: implications for collisional orogeny. Geology, 2:57--60, 1974. [ bib ]
[1336] J. F. Dewey. Episodicity, sequence and style at convergent plate boundaries. In The Continental crust and its mineral deposits, volume 20 of GAC Special Paper, pages 553--573. Geological Association of Canada, 1980. [ bib ]
[1337] J. F. Dewey. Extensional collapse of orogens. Tectonics, 7:1123--1139, 1988. [ bib ]
[1338] J. F. Dewey, M. L. Helman, E. Turco, D. H. W. Hutton, and S. D. Knot. Kinematics of the western Mediterranean. In M. P. Coward, D. Dietrich, and R. G. Park, editors, Conference on Alpine tectonics, volume 45 of Geol. Soc. Lond. Spec. Pubs., pages 265--283. Geological Society of London, London, 1989. [ bib ]
[1339] J. F. Dewey and S. H. Lamb. Active tectonics of the Andes. Tectonophys., 205:79--95, 1992. [ bib ]
[1340] JF Dewey, RE Holdsworth, and RA Strachan. Transpression and transtension zones. Geol. Soc., London, Spec. Pub., 135:1--14, 1998. [ bib ]
[1341] Gilles A de Wijs, Georg Kresse, Lidunka Vočadlo, David Dobson, Dario Alfe, Michael J Gillan, and Geoffrey D Price. The viscosity of liquid iron at the physical conditions of the Earth's core. Nature, 392:805--807, 1998. [ bib ]
[1342] Sambuddha Dhar and Jun Muto. Function model based on nonlinear transient rheology of rocks: An analysis of decadal gnss time series after the 2011 tohoku-oki earthquake. Geophys. Res. Lett., 50:e2023GL103259, 2023. [ bib ]
[1343] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Subduction Dynamics and Energy Dissipation: 3-D Numerical Models (abstract). Eos Trans. AGU, 87(52):T11F--04, 2006. [ bib ]
[1344] J. Diaz, J. Gallart, A. Villaseñor, F. Mancilla, A. Pazos, D. Córdoba, J. A. Pulgar, P. Ibarra, and M. Harnafi. Mantle dynamics beneath the Gibraltar Arc (western Mediterranean) from shear-wave splitting measurements on a dense seismic array. Geophys. Res. Lett., 37(L18304), 2010. [ bib | DOI ]
[1345] Lydia DiCaprio, Michael Gurnis, and R Dietmar Müller. Long-wavelength tilting of the Australian continent since the Late Cretaceous. Earth Planet. Sci. Lett., 278:175--185, 2009. [ bib ]
[1346] Sara Di Carli, Caroline François-Holden, Sophie Peyrat, and Raul Madariaga. Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. J. Geophys. Res.: Sol. Earth, 115(B12328), 2010. [ bib | DOI ]
[1347] Henry JB Dick, Jian Lin, and Hans Schouten. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405--412, 2003. [ bib ]
[1348] Henry JB Dick, Robert L Fisher, and Wilfred B Bryan. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett., 69:88--106, 1984. [ bib ]
[1349] Jean O Dickey, PL Bender, JE Faller, XX Newhall, RL Ricklefs, JG Ries, PJ Shelus, C Veillet, AL Whipple, JR Wiant, et al. Lunar laser ranging: A continuing legacy of the Apollo program. Science, 265:482--490, 1994. [ bib ]
[1350] Armin Dielforder, Ralf Hetzel, and Onno Oncken. Megathrust shear force controls mountain height at convergent plate margins. Nature, 582:225--229, 2020. [ bib ]
[1351] J. H. Dieterich and D. E. Smith. Nonplanar faults: Mechanics of slip and off-fault damage. Pure Appl. Geophys., 166:1799--1815, 2009. [ bib ]
[1352] J. H. Dieterich. Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys., 116:790--806, 1972. [ bib ]
[1353] J. H. Dieterich. Time-dependent friction in rocks. J. Geophys. Res.: Sol. Earth, 77:3690--3697, 1978. [ bib ]
[1354] J. H. Dieterich. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res.: Sol. Earth, 84:2161--2168, 1979. [ bib ]
[1355] J. H. Dieterich. Modeling of rock friction 2. simulation of preseismic slip. J. Geophys. Res.: Sol. Earth, 84:2168--2175, 1979. [ bib ]
[1356] J. H. Dieterich. Constitutive properties of faults with simulated gouge. In N. L. Carter, M. Friedman, J. M. Logan, and D. W. Stearns, editors, Mechanical behavior of crustal rocks: the Handin volume, volume 24 of Geophys. Mono., pages 103--120. American Geophysical Union, Washington, DC, 1981. [ bib ]
[1357] J. H. Dieterich. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophys., 211:115--134, 1992. [ bib ]
[1358] J. H. Dieterich and M. F. Linker. Fault stability under conditions of variable normal stress. Geophys. Res. Lett., 19:1691--1694, 1992. [ bib ]
[1359] J. H. Dieterich. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res.: Sol. Earth, 99:2601--2618, 1994. [ bib ]
[1360] J. H. Dieterich. Earthquake simulations with time-dependent nucleation and long-range interactions. Nonlinear Processes in Geophysics, 2:109--120, 1995. [ bib ]
[1361] J. H. Dieterich and B. D. Kilgore. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophys., 256:219--239, 1996. [ bib ]
[1362] Robert S Dietz. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190:854--857, 1961. [ bib ]
[1363] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Slab stiffness controls trench motion: insights from numerical models. Geochem., Geophys., Geosys., 9(Q02014), 2008. [ bib | DOI ]
[1364] Yildirim Dilek, Eldridge M Moores, and Harald Furnes. Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers. In Faulting and Magmatism at Mid-Ocean Ridges, volume 106 of Geophys. Mono., pages 219--266. American Geophysical Union, Washington DC, 1998. [ bib ]
[1365] C. Dimate, L. Rivera, A. Taboada, B. Delouis, A. Osorio, E. Jimenez, A. Fuenzalida, A. Cisternas, and I. Gomez. The 19 January 1995 Tauramena (Colombia) earthquake: geometry and stress regime. Tectonophys., 363:159--180, 2003. [ bib ]
[1366] G. Di Toro, D. L. Goldsby, and T. E. Tullis. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427:436--439, 2004. [ bib ]
[1367] Giulio Di Toro, Raehee Han, Takehiro Hirose, Nicola De Paola, Stefan Nielsen, Kazuo Mizoguchi, Fabio Ferri, Massimo Cocco, and Tosihiko Shimamoto. Fault lubrication during earthquakes. Nature, 471:494--498, 2011. [ bib ]
[1368] T. H. Dixon, E. Norabuena, and L. Hotaling. Paleoseismology and Global Positioning System; earthquake-cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone. Geology, 31:55--58, 2003. [ bib ]
[1369] J. E. Dixon, T. H. Dixon, D. R. Bell, and R. Malservisi. Lateral variations in upper mantle viscosity: role of water. Earth Planet. Sci. Lett., 222:451--467, 2004. [ bib ]
[1370] T. H. Dixon. An introduction to the Global Positioning System and some tectonic applications. Rev. Geophys., 29:249--276, 1991. [ bib ]
[1371] Timothy H Dixon, Stefano Robaudo, Jeffrey Lee, and Marith C Reheis. Constraints on present-day basin and range deformation from space geodesy. Tectonics, 14:755--772, 1995. [ bib ]
[1372] M. Marlino. Digital library for earth system education (DLESE). University Corporation for Atmospheric Research, Boulder CO. Online at www.dlese.org, accessed 06/2006, 2006. [ bib ]
[1373] R. Dmowska, J. R. Rice, L. C. Lovinson, and D. Josell. Stress transfer and seismic phenomena in coupled subduction zones during the earthquake cycle. J. Geophys. Res.: Sol. Earth, 93:7869--7884, 1988. [ bib ]
[1374] R. Dmowska and L. C. Lovison. Influence of asperities along subduction interfaces on the stressing and seismicity of adjacent areas. TECTON, 211:23--43, 1992. [ bib ]
[1375] R. Dmowska, G. Zheng, and J. R. Rice. Seismicity and deformation at convergent margins due to heterogeneous coupling. J. Geophys. Res.: Sol. Earth, 101:3015--3029, 1996. [ bib ]
[1376] D. P. Dobson, P. G. Meredith, and S. A. Boon. Detection and analysis of microseismicity in multi anvil experiments. Phys. Earth Planet. Inter., 143:337--346, 2004. [ bib ]
[1377] C. Doglioni, D. Green, and F. Mongelli. On the shallow origin of hotspots and the westward drift of the lithosphere. In G. R. Foulger, J. H. Natland, D. C. Presnall, and D. L. Anderson, editors, Plates, Plumes and Paradigms, volume 388 of GSA Sp. Paper, pages 735--749. Geol. Soc. Am., 2005. [ bib ]
[1378] C. Doglioni, E. Carminati, and M. Cuffaro. Simple kinematics of subduction zones. Int. Geol. Rev., 48:479--493, 2006. [ bib ]
[1379] C. Doglioni, E. Carminati, M. Cuffaro, and D. Scrocca. Subduction kinematics and dynamic constraints. Earth-Sci. Rev., 83:125--175, 2007. [ bib ]
[1380] C. Doglioni. The global tectonic pattern. J. Geodynamics, 12:21--38, 1990. [ bib ]
[1381] Carlo Doglioni. Some remarks on the origin of foredeeps. Tectonophys., 228:1--20, 1993. [ bib ]
[1382] C. Doglioni. Foredeeps versus subduction zones. Geology, 22:271--274, 1994. [ bib ]
[1383] C. Doglioni, E. Gueguen, F. Sàbat, and M. Fernandez. The western Mediterranean extensional basins and the Alpine orogen. Terra Nova, 9:109--112, 1997. [ bib ]
[1384] M-P Doin and L Fleitout. Thermal evolution of the oceanic lithosphere: an alternative view. Earth Planet. Sci. Lett., 142:121--136, 1996. [ bib ]
[1385] M.-P. Doin, L. Fleitout, and D. McKenzie. Geoid anomalies and the structure of continental and oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 101:16119--16135, 1996. [ bib ]
[1386] R. K. Dokka and C. J. Travis. Role of the eastern California shear zone in accomodating Pacific-North American plate motion. Geophys. Res. Lett., 17:1323--1326, 1990. [ bib ]
[1387] J. F. Dolan, K. E. Sieh, and T. K. Rockwell. Late Quaternary activity and seismic potential of the Santa Monica fault system, Los Angeles, California. Geol. Soc. Am. Bull., 112:1559--1581, 2000. [ bib ]
[1388] J. F. Dolan, D. D. Bowman, and C. G. Sammis. Long-range and long-term fault interactions in Southern California. Geology, 35:855--858, 2007. [ bib ]
[1389] James F Dolan, Lee J McAuliffe, Edward J Rhodes, Sally F McGill, and Robert Zinke. Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth Planet. Sci. Lett., 446:123--136, 2016. [ bib ]
[1390] J. F. Dolan, K. E. Sieh, T. K. Rockwell, R. S. Yeats, J. Shaw, J. Suppe, G. J. Huftile, and E. M. Gath. Prospects for larger or more frequent earthquakes in the Los Angeles metropolitan region. Science, 267:199--205, 1995. [ bib ]
[1391] Valentina Dolci and Renzo Arina. Proper orthogonal decomposition as surrogate model for aerodynamic optimization. Int. J. Aerospace Eng., 3:1--15, 2016. [ bib ]
[1392] M. Domeier and T. H. Torsvik. Plate tectonics in the late Paleozoic. Geosc. Front., 5:303--350, 2014. [ bib ]
[1393] M. Domeier, G.E. Shephard, J. Jakob, C. Gaina, P.V. Doubrovine, and T.H. Torsvik. Intraoceanic subduction spanned the Pacific in the Late Cretaceous-Paleocene. Sci. Adv., 3:1--6, 2017. [ bib ]
[1394] S. Dominguez, J. Malavieille, and S. E. Lallemand. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19:182--196, 2000. [ bib ]
[1395] Tim P Dooley and Guido Schreurs. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophys., 574:1--71, 2012. [ bib ]
[1396] Jacob Dorsett, Kaj M Johnson, Simone Puel, and Thorsten W Becker. Postseismic deformation and stress evolution following the 2019 M 7.1 and M 6.4 Ridgecrest earthquakes (abstract). In AGU Fall Meeting, number S31G-0500. American Geophysical Unison, 2019. [ bib ]
[1397] R. J. Dorsey. Stratigraphic record of Pleistocene initiation and slip on the Coyote Creek Fault, lower Coyote Creek, southern California. In A. Barth, editor, Contributions to crustal evolution of the Southwestern United States, Special paper, pages 251--269. Geological Society of America, 2002. [ bib ]
[1398] R. J. Dorsey. Late pleistocene slip rate on the Coachella Valley segment of the San Andreas fault and implications for regional slip partitioning (abstract). In 99th Annual Meeting, Cordilleran Section, Geological Society of America, Puerto Vallarta, Mexico. Geological Society of America, April 2003. [ bib ]
[1399] Rebecca J. Dorsey, Gary J. Axen, Thomas C. Peryam, and Mary E. Kairouz. Initiation of the Southern Elsinore Fault at similar to 1.2 Ma: Evidence from the Fish Creek-Vallecito Basin, southern California. Tectonophys., 31, 2012. [ bib | DOI ]
[1400] P. V. Doubrovine, B. Steinberger, and T. H. Torsvik. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res.: Sol. Earth, 117(B09101), 2012. [ bib | DOI ]
[1401] Nadja Drabon, Benjamin L. Byerly, Gary R. Byerly, Joseph L. Wooden, Michael Wiedenbeck, John W. Valley, Kouki Kitajima, Ann M. Bauer, and Donald R. Lowe. Destabilization of long-lived Hadean protocrust and the onset of pervasive hydrous melting at 3.8 Ga. Sci. Adv., 3:e2021AV000520, 2022. [ bib ]
[1402] H. Dragert, K. Wang, and T. S. James. A silent slip event on the deeper Cascadia subduction interface. Science, 292:1525--1528, 2001. [ bib ]
[1403] Herb Dragert and Kelin Wang. Temporal evolution of an episodic tremor and slip event along the northern Cascadia margin. J. Geophys. Res.: Sol. Earth, 116(B12), 2011. [ bib ]
[1404] F. D. Drake. Life on other planets, chapter Intelligent life in space. Macmillan, New York, 1962. [ bib ]
[1405] H. Drewes. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In M. Feissel, editor, Geodynamics, IAG Symposia. Springer, 1998. [ bib ]
[1406] P Driscoll and D Bercovici. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter., 236:36--51, 2014. [ bib ]
[1407] PE Driscoll and Rory Barnes. Tidal heating of earth-like exoplanets around m stars: thermal, magnetic, and orbital evolutions. Astrobio., 15:739--760, 2015. [ bib ]
[1408] D. C. Drucker and W. Prager. Soil mechanics and plastic analysis or limit design. Q. Appl. Math., 10:157--165, 1952. [ bib ]
[1409] K. A. Druken, M. D. Long, and C. Kincaid. Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains. Geophys. Res. Lett., 38(L13310), 2011. [ bib | DOI ]
[1410] K. A. Druken, C. Kincaid, and R. W. Griffiths. Directions of seismic anisotropy in laboratory models of mantle plumes. Geophys. Res. Lett., 40(14):3544--3549, 2013. [ bib | DOI ]
[1411] KA Druken, Christopher Kincaid, RW Griffiths, DR Stegman, and SR Hart. Plume--slab interaction: the Samoa--Tonga system. Phys. Earth Planet. Inter., 232:1--14, 2014. [ bib ]
[1412] Yijun Du and Atilla Aydin. Shear fracture patterns and connectivity at geometric complexities along strike-slip faults. J. Geophys. Res.: Sol. Earth, 100:18093--18102, 1995. [ bib ]
[1413] Benchun Duan. Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount. J. Geophys. Res.: Sol. Earth, 117(B05311), 2012. [ bib | DOI ]
[1414] Pierre Dublanchet, Pascal Bernard, and Pascal Favreau. Interactions and triggering in a 3-D rate-and-state asperity model. J. Geophys. Res.: Sol. Earth, 118:2225--2245, 2013. [ bib ]
[1415] Pierre Dublanchet. Scaling and variability of interacting repeating earthquake sequences controlled by asperity density. Geophys. Res. Lett., 46:11950--11958, 2019. [ bib ]
[1416] F. Dubuffet, D. A. Yuen, and M. Rabinowicz. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth Planet. Sci. Lett., 171:401--409, 1999. [ bib ]
[1417] M. N. Ducea, J. B. Saleeby, and G. Bergantz. The architecture, chemistry, and evolution of continental magmatic arcs. Ann. Rev. Earth Planet. Sci., 43:299--331, 2015. [ bib ]
[1418] M. N. Ducea. Understanding continental subduction: A work in progress. Geology, 44:239--240, 2016. [ bib ]
[1419] M. Duclos, M. K. Savage, A. Tommasi, and K. R. Gledhill. Mantle tectonics beneath New Zealand inferred from SKS splittingand petrophysics. Geophys. J. Int., 163:760--774, 2005. [ bib ]
[1420] T. S. Duffy and T. J. Ahrens. Sound velocities at high pressure and temperature and their geophysical implications. J. Geophys. Res.: Sol. Earth, 97:4503--4520, 1992. [ bib ]
[1421] Donald S Dugdale. Yielding of steel sheets containing slits. J. Mech. Phys. Solids, 8:100--104, 1960. [ bib ]
[1422] S. Duggen, K.A. Hoernle, F. Hauff, A. Klügel, M. Bouabdellah, and M. F. Thirlwall. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology, 37:283–--286, 2009. [ bib ]
[1423] C. Dumoulin, M.-P. Doin, and L. Fleitout. Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Phys. Earth Planet. Inter., 125:45--64, 2001. [ bib ]
[1424] C. Dumoulin, D. Bercovici, and P. Wessel. A continuous plate-tectonic model using geophysical data to estimate plate-margin widths, with a seismicity-based example. Geophys. J. Int., 133:379--389, 1998. [ bib ]
[1425] R. A. Duncan and D. A. Clague. The Pacific Ocean. In A. E. M. Nairn, F. L. Stehli, and S. Uyeda, editors, The Ocean Basins and Margins, volume 7A, pages 89--121. Plenum Press, 1985. [ bib ]
[1426] Robert A Duncan and MA Richards. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29:31--50, 1991. [ bib ]
[1427] E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults. Bull. Seismol. Soc. Am., 101:2308--2322, 2011. [ bib ]
[1428] E. M. Dunham, A. Thomas, T. W. Becker, C. Cattania, J. Hawthorne, J. Hubbard, G. C. Lotto, J.-A. Olive, and J. Platt. Modeling Collaboratory for Subduction RCN Megathrust Modeling Workshop report. EarthArXiv, 2020. [ bib | DOI ]
[1429] Robert A Dunn and Donald W Forsyth. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. J. Geophys. Res.: Sol. Earth, 108(B7), 2003. [ bib | DOI ]
[1430] B. Dupre and C. J. Allègre. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303:142--146, 1983. [ bib ]
[1431] H. Duque-Caro. The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci., 3:71--84, 1990. [ bib ]
[1432] Joseph J Durek and Göran Ekström. A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am., 86:144--158, 1996. [ bib ]
[1433] Florian Duret, Nikolai M Shapiro, Z Cao, V Levin, P Molnar, and S Roecker. Surface wave dispersion across Tibet: Direct evidence for radial anisotropy in the crust. Geophys. Res. Lett., 37(L16306), 2010. [ bib | DOI ]
[1434] Thibault Duretz, Taras V Gerya, and Dave A May. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophys., 502:244--256, 2011. [ bib ]
[1435] T Duretz, SM Schmalholz, and TV Gerya. Dynamics of slab detachment. Geochem., Geophys., Geosys., 13(Q03020), 2012. [ bib | DOI ]
[1436] Thibault Duretz, René de Borst, and Laetitia Le Pourhiet. Finite thickness of shear bands in frictional viscoplasticity and implications for lithosphere dynamics. Geochem., Geophys., Geosys., 20:5598--5616, 2019. [ bib ]
[1437] Thibault Duretz, René de Borst, and Philippe Yamato. Modeling lithospheric deformation using a compressible visco-elasto-viscoplastic rheology and the effective viscosity approach. Geochem., Geophys., Geosys., 22(8):e2021GC009675, 2021. [ bib ]
[1438] A. L. du Toit. Our Wandering Continents. An Hypothesis of Continental Drifting. Oliver & Boyd, London, 1937. [ bib ]
[1439] J. Dvorkin, A. Nur, G. Mavko, and Z. Ben-Avraham. Narrow subducting slabs and the origin of backarc basins. Tectonophys., 227:63--79, 1993. [ bib ]
[1440] D Dymkova and Taras Gerya. Porous fluid flow enables oceanic subduction initiation on earth. Geophys. Res. Lett., 40:5671--5676, 2013. [ bib ]
[1441] A. M. Dziewoński. Global seismic tomography: past, present and future. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 289--349, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1442] A. M. Dziewoński, V. Lekic, and B. A. Romanowicz. Mantle anchor structure: An argument for bottom up tectonics. Earth Planet. Sci. Lett., 299:69--79, 2010. [ bib ]
[1443] A. M. Dziewoński, B. H. Hager, and R. J. O'Connell. Large scale heterogeneity in the lower mantle. J. Geophys. Res.: Sol. Earth, 82:239--255, 1977. [ bib ]
[1444] A. M. Dziewoński and D. L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25:297--356, 1981. [ bib ]
[1445] A. M. Dziewoński, T.-A. Chou, and J. H Woodhouse. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.: Sol. Earth, 86:2825--2852, 1981. [ bib ]
[1446] A. M. Dziewoński. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res.: Sol. Earth, 89:5929--5952, 1984. [ bib ]
[1447] C. M. Eakin, C. A. Rychert, and N. Harmon. The role of oceanic transform faults in seafloor spreading: A global perspective from seismic anisotropy. J. Geophys. Res.: Sol. Earth, 123:1736--1751, 2018. [ bib | DOI ]
[1448] D. Eaton, F. Darbyshire, R. L. Evans, H. Grütter, A. G. Jones, and X. Yuan. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos, 109:1--22, 2009. [ bib ]
[1449] D. Eberhart-Phillips, M. Reyners, and M. Chadwick. Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophys. J. Int., 174:418--434, 2008. [ bib ]
[1450] Donna Eberhart-Phillips, Stephen Bannister, and Martin Reyners. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P-and S-wave attenuation. Geophys. J. Int., 211:1032--1045, 2017. [ bib ]
[1451] D. Eberhart-Phillips. Three dimensional velocity structure in the Northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am., 76:1025--1052, 1986. [ bib ]
[1452] CJ Ebinger, D Keir, ID Bastow, K Whaler, JOS Hammond, A Ayele, MS Miller, Christel Tiberi, and S Hautot. Crustal structure of active deformation zones in Africa: Implications for global crustal processes. Tectonics, 36:3298--3332, 2017. [ bib ]
[1453] Cynthia J Ebinger. Recipe for rifting: Flavors of East Africa. In Encyclopedia of Geology, pages 271--283. Elsevier, 2 edition, 2021. [ bib ]
[1454] CJ Ebinger, Miriam C Reiss, Ian Bastow, and Mary M Karanja. Shallow sources of upper mantle seismic anisotropy in East Africa. Earth Planet. Sci. Lett., 625:118488, 2024. [ bib ]
[1455] C. J. Ebinger and N. H. Sleep. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395:788--791, 1998. [ bib ]
[1456] J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys., 53:643--654, 1981. [ bib ]
[1457] D. C. Edelson and D. Gordin. Visualization for learners: A framework for adapting scientists' tools. Comp. Geosci., 24:607--616, 1998. [ bib ]
[1458] Gernot Eder. Terrestrial neutrinos. Nucl. Phys., 78:657--662, 1966. [ bib ]
[1459] B. Efron and C. Stein. The jackknife estimate of variance. Annals Stat., 9:586--596, 1981. [ bib ]
[1460] Bradley Efron. The jackknife, the bootstrap and other resampling plans. SIAM, Philadelphia, PA, 1982. [ bib ]
[1461] O. Egbue and J. Kellogg. Pleistocene to present north Andean “escape”. Tectonophys., 489:248--–257, 2010. [ bib ]
[1462] Todd A Ehlers. Crustal thermal processes and the interpretation of thermochronometer data. Rev. Mineral. Geochem., 58:315--350, 2005. [ bib ]
[1463] Martin Ekman. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova, 8:158--165, 1996. [ bib ]
[1464] G. Ekström. Global studies of earthquakes. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 111--123, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1465] G. Ekström. Mapping azimuthal anisotropy of intermediate-period surface waves (abstract). Eos Trans. AGU, 82(47):S51E--06, 2001. [ bib ]
[1466] G. Ekström. A simple method of representing azimuthal anisotropy on a sphere. Geophys. J. Int., 165:668--671, 2006. [ bib ]
[1467] G. Ekström, G. A. Abers, and S. C. Webb. Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation. Geophys. Res. Lett., 36(L18301), 2009. [ bib | DOI ]
[1468] G. Ekström, M. Nettles, and A. M. Dziewonski. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200:1--9, 2012. [ bib ]
[1469] G. Ekström. Anomalous earthquakes on volcano ring-fault structures. Earth Planet. Sci. Lett., 128:707--712, 1994. [ bib ]
[1470] G. Ekström, J. Tromp, and E. Larson. Measurements and global models of surface wave propagation. J. Geophys. Res.: Sol. Earth, 102:8137--8157, 1997. [ bib ]
[1471] G. Ekström and A. M. Dziewoński. The unique anisotropy of the Pacific upper mantle. Nature, 394:168--172, 1998. [ bib ]
[1472] G. Ekström. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25--250 s. Geophys. J. Int., 187:1668--1686, 2011. [ bib ]
[1473] Z. H. El-Isa and D. W. Eaton. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophys., 615:1--11, 2014. [ bib ]
[1474] T. Elliott. Tracers of the slab. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono., pages 23--46. American Geophysical Union, Washington DC, 2003. [ bib ]
[1475] W. L. Ellsworth, A. G. Lindh, W. H. Prescott, and D. J. Herd. The 1906 San Francisco earthquake and the seismic cycle. In D. Simpson and P. Richards, editors, Earthquake Prediction, an International Review, volume 4 of Maurice Ewing, pages 126--140. American Geophysical Union, Washington DC, 1981. [ bib ]
[1476] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, 2005. IFISS Matlab software available online at www.maths.manchester.ac.uk/~djs/ifiss/, accessed 06/2006. [ bib ]
[1477] F.-J. Elmer. Is Self-Organized Criticality possible in dry friction? In B. N. J. Persson and E. Tosatti, editors, Physics of sliding friction, pages 433--447. Kluwer Academic, Dordrecht, The Netherlands, 1996. [ bib ]
[1478] P. Elósegui, J. L. Davis, R. T. K. Jaldehag, J. M. Johansson, A. E. Niell, and I. I Shapiro. Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position. J. Geophys. Res.: Sol. Earth, 100:9921--9934, 1995. [ bib ]
[1479] W. M. Elsasser. Convection and stress propagation in the upper mantle. In S. K. Runcorn, editor, The Application of Modern Physics to the Earth and Planetary Interiors, pages 223--249. Wiley, New York, 1969. [ bib ]
[1480] K. Ely and M. Sandiford. Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia. Tectonophys., 483:112--124, 2010. [ bib ]
[1481] B. Endrun, T. Meier, S. Lebedev, M. Bohnhoff, G. Stavrakakis, and H.-P. Harjes. S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys. J. Int., 174:593--616, 2008. [ bib ]
[1482] B. Endrun, S. Lebedev, T. Meier, C. Tirel, and W. Friederich. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geosc., 4:203--207, 2011. [ bib ]
[1483] M. Eneva and Y. Ben-Zion. Techniques and parameters to analyze seismicity patterns associated with large earthquakes. J. Geophys. Res.: Sol. Earth, 102:17785--17795, 1997. [ bib ]
[1484] M. Eneva and Y. Ben-Zion. Application of pattern recognition techniques to earthquake catalogs generated by models of segmented fault systems in three-dimensional elastic solids. J. Geophys. Res.: Sol. Earth, 102:24513--24528, 1997. [ bib ]
[1485] E. R. Engdahl, R. D. van der Hilst, and R. Buland. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88:722--743, 1998. [ bib ]
[1486] D. C. Engebretson, A. Cox, and R. G Gordon. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am. Spec. Paper, 206, 1985. [ bib ]
[1487] J. T. Engelder. Microscopic wear grooves on slickensides: Indicators of paleosesimicity. J. Geophys. Res.: Sol. Earth, 79:4387--4392, 1974. [ bib ]
[1488] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; i, asperity creep and stick-slip. Int. J. Rock Mech. Min. Sci., 13:149--154, 1976. [ bib ]
[1489] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; ii, influence of relative hardness and normal load. Int. J. Rock Mech. Min. Sci., 13:155--163, 1976. [ bib ]
[1490] P. England, R. Engdahl, and W. Thatcher. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys. J. Int., 156:377--408, 2004. [ bib ]
[1491] P. England and C. Wilkins. A simple analytical approximation to the temperature structure in subduction zones. Geophys. J. Int., 159:1138--1154, 2004. [ bib ]
[1492] P. England and P. Molnar. Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res.: Sol. Earth, 110(B12401), 2005. [ bib | DOI ]
[1493] Philip C England, Peter Molnar, and Frank M Richter. Kelvin, Perry and the Age of the Earth: Had scientists better appreciated one of Kelvin's contemporary critics, the theory of continental drift might have been accepted decades earlier. American scientist, 95:342--349, 2007. [ bib ]
[1494] P. C. England and R. F. Katz. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature, 467:700--703, 2010. [ bib ]
[1495] P. C. England and D. A. May. The global range of temperatures on convergent plate interfaces. Geochem., Geophys., Geosys., 2021. [ bib | DOI ]
[1496] P. C. England and A. J. Smye. Metamorphism and deformation on subduction interfaces: 1. Physical framework. Geochem., Geophys., Geosys., 24:e2022GC010644, 2023. [ bib ]
[1497] P. C. England and D. P. McKenzie. A thin viscous sheet model for continental deformation. Geophys. J. R. Astr. Soc., 70:295--321, 1982. [ bib ]
[1498] P. C. England and D. P. McKenzie. Correction to a thin viscous sheet model for the continental deformation. Geophys. J. R. Astr. Soc., 73:523--532, 1983. [ bib ]
[1499] Philip C England and Alan Bruce Thompson. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol., 25:894--928, 1984. [ bib ]
[1500] P. England, G. Houseman, and L. Sonder. Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res.: Sol. Earth, 90:3551--3557, 1985. [ bib ]
[1501] P. C. England and G. A. Houseman. Finite strain calculations of continental deformation II. Comparison with the India-Asia collision zone. J. Geophys. Res.: Sol. Earth, 91:3664--3676, 1986. [ bib ]
[1502] P. C. England and J. Jackson. Active deformation of the continents. Ann. Rev. Earth Planet. Sci., 17:197--226, 1989. [ bib ]
[1503] Philip England and Peter Molnar. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18:1173--1177, 1990. [ bib ]
[1504] P. C. England and P. Molnar. Active deformation of Asia: from kinematics to dynamics. Science, 278:647--650, 1997. [ bib ]
[1505] J. M. English, S. T. Johston, and K. Wang. Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet. Sci. Lett., 214:619--632, 2003. [ bib ]
[1506] A. Enns, T. W. Becker, and H. Schmeling. The dynamics of subduction and trench migration for viscosity stratification. Geophys. J. Int., 160:761--775, 2005. [ bib ]
[1507] EPOS. The GEO Geohazard Supersites and Natural Laboratory initiative, 2017. Available online at www.epos-ip.org/geo-geohazard-supersites-and-natural-laboratory-initiative, accessed 10/2017. [ bib ]
[1508] EPOS. EPOS, the European Plate Observing System. European Infrastructure on Solid Earth, 2017. Available online at www.epos-ip.org, accessed 10/2017. [ bib ]
[1509] Zoltán Erdős, Ritske S Huismans, Claudio Faccenna, and Sebastian G Wolf. The role of subduction interface and upper plate strength on back-arc extension: Application to Mediterranean back-arc basins. Tectonics, 40:e2021TC006795, 2021. [ bib ]
[1510] Zoltán Erdős, Ritske S Huismans, and Claudio Faccenna. Wide versus narrow back-arc rifting: Control of subduction velocity and convective back-arc thinning. Tectonics, 41(6):e2021TC007086, 2022. [ bib ]
[1511] Monica E Erdman, Bradley R Hacker, George Zandt, and Gareth Seward. Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range. Geophys. J. Int., 195(2):1211--1229, 2013. [ bib ]
[1512] B. A. Erickson, B. Birnir, and D. Lavallée. Periodicity, chaos and localization in a Burridge--Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int., 187:178--198, 2011. [ bib ]
[1513] Brittany A. Erickson, Junle Jiang, Michael Barall, Nadia Lapusta, Eric M. Dunham, Ruth Harris, Lauren S. Abrahams, Kali L. Allison, Jean-Paul Ampuero, Sylvain Barbot, Camilla Cattania, Ahmed Elbanna, Yuri Fialko, Benjamin Idini, Jeremy E. Kozdon, Valére Lambert, Yajing Liu, Yingdi Luo, Xiao Ma, Maricela Best McKay, Paul Segall, Pengcheng Shi, Martijn van den Ende, and Meng Wei. Community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Seismol. Res. Lett., 91:874--890, 2020. [ bib ]
[1514] R. E. Ernst. Large Igneous Provinces. Cambridge University Press, 2014. [ bib ]
[1515] WG Ernst and JG Liou. Overview of UHP metamorphism and tectonics in well-studied collisional orogens. Int. Geol. Rev., 41:477--493, 1999. [ bib ]
[1516] AV Ershov and AM Nikishin. Recent geodynamics of the Caucasus-Arabia-east Africa region. Geotectonics, 38:123--136, 2004. [ bib ]
[1517] John Douglas Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London. A. Math. Phys. Sci., 241:376--396, 1957. [ bib ]
[1518] NASA-ESI. Earth Surface and Interior Solicication NNH15ZDA001N-ESI. NASA, 2015. A.25 Earth Surface and Interior as amended, Available online at nspires.nasaprs.com/external/viewrepositorydocument?cmdocumentid=448056&solicitationId={AFD18323-7FFD-D19B-AD6C-3A780AD09CEE}&viewSolicitationDocument=1, accessed 08/2015. [ bib ]
[1519] Pentti Eskola. On the relations between the chemical and mineralogical composition in the metamorphic rocks of Orijarvi region. Bull. comm. géol. Finlande, 44, 1915. [ bib ]
[1520] P.E. Eskola. The problem of mantled gneiss domes. Geolog. Soc. London Quarterly J., 104:461--476, 1949. [ bib ]
[1521] P. Espanol. Propagative slipping modes in a spring-block model. Phys. Rev. E., 50:227--235, 1994. [ bib ]
[1522] N. Espurt, F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27(TC3011):10.1029/2007TC002175, 2008. [ bib ]
[1523] L. H. Estey and B. J. Douglas. Upper mantle anisotropy: a preliminary model. J. Geophys. Res.: Sol. Earth, 91:11393--11406, 1986. [ bib ]
[1524] NOAA. 2-minute Gridded Global Relief Data (ETOPO2v2). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado, 2006. www.ngdc.noaa.gov/mgg/fliers/06mgg01.html, accessed 01/2013. [ bib ]
[1525] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. www.ngdc.noaa.gov. [ bib ]
[1526] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. [ bib ]
[1527] J. P. Evans, Z. K. Shipton, M. A. Pachell, S. J. Lim, and K. Robeson. The structure and composition of exhumed faults and their implication for seismic processes. In 3rd Conference on Tectonics Problems of the San Andreas system. Stanford University, 2000. [ bib ]
[1528] B Evans, J Renner, and G Hirth. A few remarks on the kinetics of static grain growth in rocks. Int. J. Earth Sci., 90:88--103, 2001. [ bib ]
[1529] David AD Evans. True polar wander and supercontinents. Tectonophys., 362:303--320, 2003. [ bib ]
[1530] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int., 165:931--942, 2006. [ bib ]
[1531] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated splitting project database. Online at www.isc.ac.uk/SKS/, accessed 02/2006, 2006. [ bib ]
[1532] David AD Evans and Sergei A Pisarevsky. Plate tectonics on early Earth? Weighing the paleomagnetic evidence. In K. C. Condie and V. Pease, editors, When Did Plate Tectonics Begin on Planet Earth?, volume 440, pages 249--263. Geological Society of America, 2008. [ bib ]
[1533] Eileen L Evans, John P Loveless, and Brendan J Meade. Total variation regularization of geodetically and geologically constrained block models for the western united states. Geophys. J. Int., 202:713--727, 2015. [ bib ]
[1534] Eileen L Evans, Wayne R Thatcher, Fred F Pollitz, and Jessica R Murray. Persistent slip rate discrepancies in the eastern California (USA) shear zone. Geology, 44:691--694, 2016. [ bib ]
[1535] J. R. Evans and U. Achauer. Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies. In Seismic Tomography: Theory and Applications, pages 319--360. Chapman and Hall, London, 1993. [ bib ]
[1536] A. Ewart. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With a Special Reference to the Andesitic-Basaltic Compositional Range. In R.S. Thorpe, editor, Andesites: Orogenic Andesites and Related Rocks, pages 25--95. Wiley, Chichester, 1982. [ bib ]
[1537] NASA Exoplanet Archive, 2022. Available online at exoplanetarchive.ipac.caltech.edu/, accessed 12/2022. [ bib | DOI ]
[1538] M. Faccenda, L. Burlini, T. Gerya, and D. Mainprince. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455:1097--1101, 2008. [ bib ]
[1539] M. Faccenda and N. Mancktelow. Fluid flow during unbending: Implications for slab hydration, intermediate-depth earthquakes and deep fluid subduction. Tectonophys., 494:149--154, 2010. [ bib ]
[1540] M. Faccenda and F. A. Capitanio. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem., Geophys., Geosys., 14, 2013. [ bib | DOI ]
[1541] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Why did Sardinia stop rotating? Geophys. Res. Abstr., 2:16, 2000. [ bib ]
[1542] C. Faccenna, T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int., 145:809--820, 2001. [ bib ]
[1543] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett., 187:105--116, 2001. [ bib ]
[1544] Claudio Faccenna, Laurent Jolivet, Claudia Piromallo, and Andrea Morelli. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res.: Sol. Earth, 108(B2), 2003. [ bib | DOI ]
[1545] C. Faccenna, C. Piromallo, A. Crespo Blanc, L. Jolivet, and F. Rossetti. Lateral slab deformation and the origin of the arcs of the western Mediterranean. Tectonics, 23(TC1012), 2004. [ bib | DOI ]
[1546] Claudio Faccenna, Lucia Civetta, Massimo D'Antonio, Francesca Funiciello, Lucia Margheriti, and Claudia Piromallo. Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett., 32(L06311), 2005. [ bib | DOI ]
[1547] C. Faccenna, O. Bellier, J. Martinod, C. Piromallo, and V. Regard. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth Planet. Sci. Lett., 242:85--97, 2006. [ bib ]
[1548] C. Faccenna, A. Heuret, F. Funiciello, S. Lallemand, and T. W. Becker. Predicting trench and plate motion from the dynamics of a strong slab. Earth Planet. Sci. Lett., 257:29--36, 2007. [ bib ]
[1549] C. Faccenna, F. Rossetti, T. W. Becker, S. Danesi, and A Morelli. Recent extension driven by mantle upwelling at craton edge beneath the Admirality Mountains (Ross Sea, East Antarctica). Tectonics, 27, 2008. [ bib | DOI ]
[1550] C. Faccenna, E. Di Giuseppe, F. Funiciello, S. Lallemand, and J. van Hunen. Control of seafloor aging on the migration of the Izu-Bonin-Mariana trench. Earth Planet. Sci. Lett., 288:386--398, 2009. [ bib ]
[1551] C. Faccenna and T. W. Becker. Shaping mobile belts by small-scale convection. Nature, 465:602--605, 2010. [ bib ]
[1552] C. Faccenna, T. W. Becker, S. Lallemand, Y. Lagabrielle, F. Funiciello, and C. Piromallo. Subduction-triggered magmatic pulses. A new class of plumes? Earth Planet. Sci. Lett., 209:54--68, 2010. [ bib ]
[1553] C. Faccenna, T. W. Becker, S. Lallemand, and B. Steinberger. On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett., 39(L03305), 2012. [ bib | DOI ]
[1554] C. Faccenna, T. W. Becker, L. Jolivet, and M. Keskin. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett., 375:254--269, 2013. [ bib ]
[1555] C. Faccenna, T. W. Becker, C. P. Conrad, and L. Husson. Mountain building and mantle dynamics. Tectonics, 32:80--93, 2013. [ bib ]
[1556] C. Faccenna, T. W. Becker, M. S. Miller, E. Serpelloni, and S. D. Willett. Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth Planet. Sci. Lett., 407:163--174, 2014. [ bib ]
[1557] C. Faccenna, T. W. Becker, L. Auer, A. Billi, L. Boschi, J.-P. Brun, F. A. Capitanio, F. Funiciello, F. Horvath, L. Jolivet, C. Piromallo, L. Royden, F. Rossetti, and E. Serpelloni. Mantle dynamics in the Mediterranean. Rev. Geophys., 52:283--332, 2014. [ bib ]
[1558] C. Faccenna, O. Oncken, A. F. Holt, and T. W. Becker. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett., 463:189--201, 2017. [ bib ]
[1559] C. Faccenna, A. F. Holt, T. W. Becker, S. Lallemand, and L. H. Royden. Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. Tectonophys., 746:229--238, 2018. [ bib ]
[1560] Claudio Faccenna and Thorsten W Becker. Topographic expressions of mantle dynamics in the Mediterranean. Earth-Sci. Rev., 209, 2020. [ bib | DOI ]
[1561] Claudio Faccenna, Thorsten W. Becker, Adam F. Holt, and Jean Pierre Brun. Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited. Earth Planet. Sci. Lett., 564:116905, 2021. [ bib ]
[1562] C. Faccenna, P. Davy, J.-P. Brun, R. Funiciello, D. Giardini, M. Mattei, and T. Nalpas. The dynamics of back-arc extension: an experimental approach to the opening of the Tyrrhenian Sea. Geophys. J. Int., 126:781--795, 1996. [ bib ]
[1563] C. Faccenna, M. Mattei, R. Funiciello, and L. Jolivet. Styles of back-arc extension in the Central Mediterranean. Terra Nova, 9:126--130, 1997. [ bib ]
[1564] C. Faccenna and D. Giardini. Initiation of subduction in the Mediterranean (abstract). In EGS meeting, Annalae Geophysicae, volume 16. European Geophysical Society, Nice, 1998. [ bib ]
[1565] C. Faccenna, D. Giardini, P. Davy, and A. Argentieri. Initiation of subduction at Atlantic type margins: Insights from laboratory experiments. J. Geophys. Res.: Sol. Earth, 104:2749--2766, 1999. [ bib ]
[1566] Åke Fagereng and Richard H Sibson. Melange rheology and seismic style. Geology, 38:751--754, 2010. [ bib ]
[1567] Åke Fagereng, Graeme WB Hillary, and Johann FA Diener. Brittle-viscous deformation, slow slip, and tremor. Geophys. Res. Lett., 41:4159--4167, 2014. [ bib ]
[1568] Å. Fagereng, H.M. Savage, J.K. Morgan, M. Wang, F. Meneghini, P.M. Barnes, R. Bell, H. Kitajima, D.D. McNamara, D.M. Saffer, L.M. Wallace, K. Petronotis, L. LeVay, and the IODP Expedition 372/375 Scientists. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. Geology, 47:872--876, 2019. [ bib ]
[1569] Zijun Fang and Eric M. Dunham. Additional shear resistance from fault roughness and stress levels on geometrically complex faults. J. Geophys. Res.: Sol. Earth, 118:3642--3654, 2013. [ bib ]
[1570] G. Fantozzi, J. Chevalier, C. Olagnon, and J. L. Chermant. Creep of ceramic matrix composites. In Comprehensive Composite Materials, volume 4, pages 115--162. Elsevier, 2000. [ bib ]
[1571] D. L. Farber, G. S. Hancock, R. C. Finkel, and D. T. Rodbell. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. J. Quaternary Sci., 20:759--776, 2005. [ bib ]
[1572] K. A. Farley, J. H. Natland, and H. Craig. Binary mixing of enriched and undegassed (primitive-questionable) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111:183--199, 1992. [ bib ]
[1573] CG Farnetani and H Samuel. Beyond the thermal plume paradigm. Geophys. Res. Lett., 32(L07311), 2005. [ bib | DOI ]
[1574] C. G. Farnetani. Excess temperature of mantle plumes: The role of chemical stratification across D”. Geophys. Res. Lett., 24:1583--1586, 1997. [ bib ]
[1575] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699--712, 2000. [ bib ]
[1576] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699--712, 2002. [ bib ]
[1577] W. Farrell and J. A. Clark. On postglacial sea level. Geophys. J. R. Astr. Soc., 46:647--667, 1976. [ bib ]
[1578] D. W. Farris, A. Cardona, C. Montes, G. Bayona, and J. C. Restrepo. Linked tectonic and magmatic evolution of the Panama arc during collision with South America. In Neotectonics of Arc-Continent Collision, Penrose Conference Proceedings, Manizales, Colombia, 2011. [ bib ]
[1579] D. W. Farris, C. Jaramillo, G. Bayona, S. A. Restrepo-Moreno, C. Monte, A. Cardona, A. Mora, R. J. Speakman, M. D. Glascock, and V. Valencia. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 2011. [ bib | DOI ]
[1580] U. Faul and I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234:119--134, 2005. [ bib ]
[1581] D.R. Faulkner, C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and M.O. Withjack. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol., 32:1557 -- 1575, 2010. [ bib ]
[1582] N. Favier and S. Chevrot. Sensitivity kernels for shear wave splitting in transverse isotropic media. Geophys. J. Int., 153:213--228, 2003. [ bib ]
[1583] N. Fay and E. D. Humphreys. Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[1584] N. Fay and E. D. Humphreys. Dynamics of the Salton block: Absolute fault strength and crust-mantle coupling. Geology, 34:261--264, 2006. [ bib ]
[1585] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2008 SCEC Annual Meeting, pages 1--122, 2008. [ bib ]
[1586] N. P. Fay, R. A. Bennett, J. C. Spinler, and E. D. Humphreys. Small-scale upper mantle convection and crustal dynamics in southern California. Geochem., Geophys., Geosys., 9(Q08006), 2008. [ bib | DOI ]
[1587] N. P. Fay and E. D. Humphreys. Forces acting on the Sierra Nevada block and implications for the strength of the San Andreas fault system and the dynamics of continental deformation in the western United States. J. Geophys. Res.: Sol. Earth, 113(B12), 2008. [ bib | DOI ]
[1588] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2009 SCEC Annual Meeting, volume 19, page 251, 2009. [ bib ]
[1589] M. Fehler, L. House, and H. Kaieda. Determining planes along which earthquakes occur: Method of application to earthquakes accompanying hydraulic fracturing. J. Geophys. Res.: Sol. Earth, 92:9407--9414, August 1987. [ bib ]
[1590] Y Fei, J Van Orman, J Li, W Van Westrenen, C Sanloup, W Minarik, K Hirose, T Komabayashi, M Walter, and K-i Funakoshi. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res.: Sol. Earth, 109(B02305), 2004. [ bib | DOI ]
[1591] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19:25, 1978. [ bib ]
[1592] M. J. Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Science, 1:4, 1980. (reprinted in [?]). [ bib ]
[1593] Mark A Feighner and Mark A Richards. The fluid dynamics of plume-ridge and plume-plate interactions: An experimental investigation. Earth Planet. Sci. Lett., 129:171--182, 1995. [ bib ]
[1594] K. L. Feigl and E. Dupreé. RNGCHN: a program to calculate displacement componenets from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation. Computers & Geosc., 1996. revised. [ bib ]
[1595] K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekström, and J. R. Rice. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 107(B92190), 2002. [ bib | DOI ]
[1596] Karen R Felzer and Emily E Brodsky. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature, 441:735--738, 2006. [ bib ]
[1597] S. Ferrachat and Y. Ricard. Regular vs. chaotic mantle mixing. Earth Planet. Sci. Lett., 155:75--86, 1998. [ bib ]
[1598] A. M. G. Ferreira, J. H. Woodhouse, K. Visser, and J. Trampert. On the robustness of global radially anisotropic surface wave tomography. J. Geophys. Res.: Sol. Earth, 115(B04313), 2010. [ bib | DOI ]
[1599] Amy L. Ferrick and Jun Korenaga. Scaling laws for mixed heated convection with pseudoplastic rheology: Implications for the bistability of tectonic mode. J. Geophys. Res.: Sol. Earth, 128, 2023. [ bib | DOI ]
[1600] Matthieu Ferry, Mustapha Meghraoui, Najib Abou Karaki, Masdouq Al-Taj, and Lutfi Khalil. Episodic Behavior of the Jordan Valley Section of the Dead Sea Fault Inferred from a 14-ka-Long Integrated Catalog of Large EarthquakesEpisodic Behavior of the Jordan Valley Section of the Dead Sea Fault. Bull. Seismol. Soc. Am., 101:39--67, 2011. [ bib ]
[1601] G. Festa and S. Nielsen. PML absorbing boundaries. Bull. Seismol. Soc. Am., 93:891--903, 2003. [ bib ]
[1602] G. Feulner. The faint young sun problem. Rev. Geophys., 50(RG2006), 2012. [ bib | DOI ]
[1603] Y. Fialko. Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1604] Y. Fialko, D. T. Sandwell, M. Simons, and P. Rosen. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435:295--299, 2005. [ bib ]
[1605] Y. Fialko, L. Rivera, and H. Kanamori. Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophys. J. Int., 160:527--532, 2005. [ bib ]
[1606] Yuri Fialko. Interseismic strain accumulation and the earthquake potential on the southern san andreas fault system. Nature, 441:968--971, 2006. [ bib ]
[1607] A. Fichtner, B. L. N. Kennett, and J. Trampert. Separating intrinsic and apparent anisotropy. Phys. Earth Planet. Inter., 219:11--20, 2013. [ bib ]
[1608] A. Fick. Über diffusion. Annalen der Physik, 170:59--86, 1855. [ bib ]
[1609] E. H. Field, R. J. Arrowsmith, G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordon, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon II, and Y. Zeng. Uniform california earthquake rupture forecast version 3 (UCERF3): The time-independent model. Bull. Seismol. Soc. Am., 104:1122--1180, 2014. [ bib ]
[1610] Edward H Field, Glenn P Biasi, Peter Bird, Timothy E Dawson, Karen R Felzer, David D Jackson, Kaj M Johnson, Thomas H Jordan, Christopher Madden, Andrew J Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, R. R. Thatcher, R. J. Weldon, II, and Y. Zeng. Long-term time-dependent probabilities for the third uniform california earthquake rupture forecast (ucerf3). Bull. Seismol. Soc. Am., 105:511--543, 2015. [ bib ]
[1611] Edward H Field, Thomas H Jordan, Morgan T Page, Kevin R Milner, Bruce E Shaw, Timothy E Dawson, Glenn P Biasi, Tom Parsons, Jeanne L Hardebeck, Andrew J Michael, et al. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismol. Res. Lett., 88:1259--1267, 2017. [ bib ]
[1612] Edward H Field, Kevin R Milner, Jeanne L Hardebeck, Morgan T Page, Nicholas van der Elst, Thomas H Jordan, Andrew J Michael, Bruce E Shaw, and Maximilian J Werner. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an operational earthquake forecast. Bull. Seismol. Soc. Am., 107:1049--1081, 2017. [ bib ]
[1613] Edward H Field, Kevin R Milner, Alexandra E Hatem, Peter M Powers, Fred F Pollitz, Andrea L Llenos, Yuehua Zeng, Kaj M Johnson, Bruce E Shaw, Devin McPhillips, et al. The USGS 2023 conterminous US time-independent earthquake rupture forecast. Bull. Seismol. Soc. Am., 114:523--571, 2024. [ bib ]
[1614] N. Fiet, X. Quidelleur, O. Parize, L. G. Bulot, and P. Y. Gillot. Lower Cretaceous stage durations combining radiometric data and orbital chronology: Towards a more stable relative time scale? Earth Planet. Sci. Lett., 246:407--417, 2006. [ bib ]
[1615] I. Finetti and A. del Ben. Geophysical study of the Tyrrhenian opening. Boll. Geofis. Teorica Ed Applicata, 28:75--155, 1986. [ bib ]
[1616] K. M. Fischer, E. M. Parmentier, A. R. Stine, and E. R. Wolf. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res.: Sol. Earth, 105:16181--16191, 2000. [ bib ]
[1617] K. M. Fischer, H. A. Ford, D. L. Abt, and C. A. Rychert. The lithosphere-asthenosphere boundary. Ann. Rev. Earth Planet. Sci., 38:551--575, 2010. [ bib ]
[1618] Karen M Fischer, Catherine A Rychert, Colleen A Dalton, Meghan S Miller, Caroline Beghein, and Derek L Schutt. A comparison of oceanic and continental mantle lithosphere. Phys. Earth Planet. Inter., 309:106600, 2020. [ bib ]
[1619] K. M. Fischer and T. H. Jordan. Seismic strain rate and deep slab deformation in Tonga. J. Geophys. Res.: Sol. Earth, 96:14429--14444, 1991. [ bib ]
[1620] K. M. Fischer and D. A. Wiens. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet. Sci. Lett., 142:253--260, 1996. [ bib ]
[1621] K. M. Fischer, M. J. Fouch, D. A. Wiens, and M. S. Boettcher. Anisotropy and flow in Pacific subduction zone back-arcs. Pure Appl. Geophys., 151:463--475, 1998. [ bib ]
[1622] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data, volume 1. Cambridge University Press, New York, 1987. [ bib ]
[1623] D. D. Fitzenz and S. A. Miller. A forward model for earthquake generation on interacting faults including tectonics, fluids, and stress transfer. J. Geophys. Res.: Sol. Earth, 106:26689--26706, 2001. [ bib ]
[1624] N. Flament, N. Coltice, and P. Rey. A case for late-Archean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett., 275:326--336, 2008. [ bib ]
[1625] N. Flament, M. Gurnis, and R. D. Müller. A review of observations and models of dynamic topography. Lithosphere, 5:189--210, 2013. [ bib ]
[1626] Nicolas Flament, Ömer F Bodur, Simon E Williams, and Andrew S Merdith. Assembly of the basal mantle structure beneath Africa. Nature, 603:846--851, 2022. [ bib ]
[1627] Gregory Flato, Jochem Marotzke, Babatunde Abiodun, Pascale Braconnot, Sin Chan Chou, William Collins, Peter Cox, Fatima Driouech, Seita Emori, Veronika Eyring, et al. Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 741--866. Cambridge University Press, 2014. [ bib ]
[1628] L. Fleitout and C. Froidevaux. Thermal and mechanical evolution of shear zones. J. Struct. Geol., 2:159--164, 1980. [ bib ]
[1629] L. Fleitout and C. Froidevaux. Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics, 1:21--56, 1982. [ bib ]
[1630] L. Fleitout and C. Froidevaux. Tectonic stresses in the lithosphere. Tectonics, 2:315--324, 1983. [ bib ]
[1631] P. B. Fleming and T. W. Becker. “Lab to Planet”: an introductory course to develop quantitative intuition for the earth scientist. In AGU Fall Meeting Abstracts, number ED43B-05, San Francisco CA, 2023. American Geophysical Union. [ bib ]
[1632] L. M. Flesch, W. E. Holt, A. J. Haines, and B. Shen-Tu. Dynamics of the Pacific-North American plate boundary in the western United States. Science, 287:834--836, 2000. [ bib ]
[1633] L. M. Flesch, A. J. Haines, and W. E. Holt. Dynamics of the India-Eurasia collision zone. J. Geophys. Res.: Sol. Earth, 106:16435--16460, 2001. [ bib ]
[1634] L. M. Flesch, E. E. Holt, P. G. Silver, M. Stephenson, C.-Y. Wang, and W. W. Chan. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet. Sci. Lett., 238:248--268, 2005. [ bib ]
[1635] L. M. Flesch, W. E. Holt, A. J. Haines, L. Wen, and B. Shen-Tu. The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions. Geophys. J. Int., 169:866--896, 2007. [ bib ]
[1636] Michael Fletcher and Derek A Wyman. Mantle plume--subduction zone interactions over the past 60 Ma. Lithos, 233:162--173, 2015. [ bib ]
[1637] R. C. Fletcher and J. A. Sherwin. Arc lengths of single layer folds - discussion of comparison between theory and observation. Amer. J. Science, 278:1085--1098, 1978. [ bib ]
[1638] R. C. Fletcher and B. Hallet. Unstable extension of the lithosphere: A mechanical model for Basin-and-Range structure. J. Geophys. Res.: Sol. Earth, 88:7457--7466, 1983. [ bib ]
[1639] R. C. Fletcher. Approximate analytical solutions for a cohesive fold-and-thrust wedge - some results for lateral variation in wedge properties and for finite wedge angle. J. Geophys. Res.: Sol. Earth, 94:10347--10354, 1989. [ bib ]
[1640] R. C. Fletcher. 3-Dimensional folding of an embedded viscous layer in pure shear. J. Struct. Geol., 13:87--96, 1991. [ bib ]
[1641] R. C. Fletcher. 3-Dimensional folding and necking of a power-law layer - are folds cylindrical, and, if so, do we understand why. Tectonophys., 247:65--83, 1995. [ bib ]
[1642] M. M. Fliedner and S. Ruppert. Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling. Geology, 24:367--370, 1996. [ bib ]
[1643] D. Flinn. On folding during three-dimensional progressive deformation. Quart. J. Geol. Soc., 118:385--428, 1962. [ bib ]
[1644] MA Florez and GA Prieto. Controlling factors of seismicity and geometry in double seismic zones. Geophys. Res. Lett., 46:4174--4181, 2019. [ bib ]
[1645] R. M. Flowers. The enigmatic rise of the Colorado Plateau. Geology, 38:671--672, 2010. [ bib ]
[1646] Paul Flück, RD Hyndman, and Kelin Wang. Three-dimensional dislocation model for great earthquakes of the cascadia subduction zone. J. Geophys. Res.: Sol. Earth, 102:20539--20550, 1997. [ bib ]
[1647] B. J. Foley and T. W. Becker. Generation of plate tectonics and mantle heterogeneity from a spherical, visco-plastic convection model. Geochem., Geophys., Geosys., 10(Q08001), 2009. [ bib | DOI ]
[1648] Bradford J Foley, David Bercovici, and William Landuyt. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett., 331:281--290, 2012. [ bib ]
[1649] B. J. Foley, D. Bercovici, and W. Landuyt. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett., 331:281--290, 2014. [ bib ]
[1650] B. J. Foley and D. Bercovici. Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophys. J. Int., 199:580--603, 2014. [ bib ]
[1651] Bradford J Foley and Peter E Driscoll. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution. Geochem., Geophys., Geosys., 17:1885--1914, 2016. [ bib ]
[1652] B. J. Foley. On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones. Phys. Earth Planet. Inter., 283:7--25, 2018. [ bib ]
[1653] Bradford J Foley. Timescale of short-term subduction episodicity in convection models with grain damage: Applications to Archean tectonics. J. Geophys. Res.: Sol. Earth, 125:e2020JB020478, 2020. [ bib ]
[1654] Heather A Ford, Karen M Fischer, and Vedran Lekic. Localized shear in the deep lithosphere beneath the San Andreas fault system. Geology, 42:295--298, 2014. [ bib ]
[1655] B. Fornberg. A practical guide to pseudospectral methods. Cambridge University Press, Cambridge UK, 1996. [ bib ]
[1656] D. Forsyth and A. Li. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In A. Levander and G. Nolet, editors, Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, Washington, D.C., 2005. [ bib ]
[1657] D. W. Forsyth and S. Uyeda. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43:163--200, 1975. [ bib ]
[1658] D. W. Forsyth. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc., 43:103--162, 1975. [ bib ]
[1659] Donald W Forsyth. The evolution of the upper mantle beneath mid-ocean ridges. Tectonophys., 38:89--118, 1977. [ bib ]
[1660] Donald W Forsyth. Comparison of mechanical models of the oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 85:6364--6368, 1980. [ bib ]
[1661] Donald W Forsyth. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res.: Sol. Earth, 90:12623--12632, 1985. [ bib ]
[1662] A. M. Forte and H. K. C. Perry. Geodynamic evidence for a chemically depleted continental tectosphere. Science, 290:1940--1944, 2000. [ bib ]
[1663] A. M. Forte and J. X. Mitrovica. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410:1049--1056, 2001. [ bib ]
[1664] A. M. Forte. Constraints on seismic models from other disciplines -- Implications for mantle dynamics and composition. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 805--858. Elsevier, Amsterdam, 2007. [ bib ]
[1665] A. M. Forte, J. X. Mitrovica, R. Moucha, N. A. Simmons, and S. P. Grand. Descent of the ancient Farallon slab drives localized mantle flow below the New Madrid seismic zone. Geophys. Res. Lett., 34(L04308), 2007. [ bib | DOI ]
[1666] A. M. Forte, R. Moucha, N. Simmons, S. Grand, and J. Mitrovica. Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophys., 481:3--15, 2010. [ bib ]
[1667] A. M. Forte, S. Quéreé, R. Moucha, N. A. Simons, S. P. Grand, J. X. Mitrovisa, and D. B. Rowley. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet. Sci. Lett., 295:329--341, 2010. [ bib ]
[1668] A. M. Forte, N. A. Simons, and S. P. Grand. Constraints on seismic models from other disciplines - Constraints on 3-D seismic models from global geodynamic observables: Implications for the global mantle convective flow. In G. Schubert, editor, Treatise on Geophysics, volume 1, pages 853--907. Elsevier, Oxford, 2 edition, 2015. [ bib ]
[1669] A. M. Forte and W. R. Peltier. Plate tectonics and aspherical earth structure: the importance of poloidal-toroidal coupling. J. Geophys. Res.: Sol. Earth, 92:3645--3679, 1987. [ bib ]
[1670] A. M. Forte, W. R. Peltier, and A. M. Dziewoński. Inferences of mantle viscosity from tectonic plate velocities. Geophys. Res. Lett., 18:1747--1750, 1991. [ bib ]
[1671] Alessandro M Forte and W Richard Peltier. Mantle convection and core-mantle boundary topography: explanations and implications. Tectonophys., 187:91--116, 1991. [ bib ]
[1672] A. M. Forte, W. R. Peltier, A. M. Dziewonski, and R. L. Woodword. Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett., 20:225--228, 1993. [ bib ]
[1673] A. Forte and W. R. Peltier. The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: the importance of surface plates and lateral viscosity variations. Adv. Geophys., 36:1--119, 1994. [ bib ]
[1674] A. M. Forte, A. M. Dziewoński, and R. J. O'Connell. Continent--ocean chemical heterogeneity in the mantle based on seismic tomography. Science, 268:386--388, 1995. [ bib ]
[1675] J. Fortin, S. Stanchits, G. Dresen, and E. Görgün. Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J. Geophys. Res.: Sol. Earth, 111(B10203), 2006. [ bib | DOI ]
[1676] J. Fortin, S. Stanchits, G. Dresen, and Y. Gueguen. Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation. Pure Appl. Geophys., 166:823--841, 2009. [ bib ]
[1677] Haakon Fossen. Structural geology. Cambridge University Press, Cambridge, 2016. [ bib ]
[1678] Haakon Fossen and Basil Tikoff. Extended models of transpression and transtension, and application to tectonic settings. Geol. Soc., London, Spe. Pub., 135:15--33, 1998. [ bib ]
[1679] M. J. Fouch, K. M. Fischer, E. M. Parmentier, M. E. Wysession, and T. J. Clarke. Shear wave splitting, continental keels, and patterns of mantle flow. J. Geophys. Res.: Sol. Earth, 105:6255--6275, 2000. [ bib ]
[1680] M. J. Fouch, P. G. Silver, D. R. Bell, and J. N Lee. Small-scale variations in seismic anisotropy near Kimberley, South Africa. Geophys. J. Int., 157:764--774, 2004. [ bib ]
[1681] M. Fouch. Upper mantle anisotropy database. Online, 2006. accessed in 06/2006, geophysics.asu.edu/anisotropy/upper/. [ bib ]
[1682] M. J. Fouch and S. Rondenay. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter., 158:292--320, 2006. [ bib ]
[1683] M. J. Fouch, D. A. Okaya, and R. Arrowsmith. Shear wave splitting, crustal anisotropy, and patterns of mantle(?) deformation (abstract). Eos Trans. AGU, (DI13A-1848), Abstract at the American Geophysical Union Fall Meeting 2010. [ bib ]
[1684] M. J. Fouch and K. M. Fischer. Mantle anisotropy beneath Northwest Pacific subduction zones. J. Geophys. Res.: Sol. Earth, 101:15987--16002, 1996. [ bib ]
[1685] M. J. Fouch and K. M. Fischer. Shear wave anisotropy in the Mariana subduction zone. Geophys. Res. Lett., 25:1221--1224, 1998. [ bib ]
[1686] GR Foulger, MJ Pritchard, BR Julian, JR Evans, RM Allen, G Nolet, WJ Morgan, BH Bergsson, P Erlendsson, S Jakobsdottir, et al. Seismic tomography shows that upwelling beneath iceland is confined to the upper mantle. Geophys. J. Int., 146:504--530, 2001. [ bib ]
[1687] G. R. Foulger and J. H. Natland. Is “hotspot” volcanism a consequence of plate tectonics? Science, 300:921--922, 2003. [ bib ]
[1688] L. Fourel, S. Goes, and G. Morra. The role of elasticity in slab bending. Geochem., Geophys., Geosys., 15:4507--4525, 2014. [ bib | DOI ]
[1689] Marc Fournier, Laurent Jolivet, Philippe Davy, and Jean-Charles Thomas. Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophys. J. Int., 157:871--889, 2004. [ bib ]
[1690] C. M. R. Fowler. The Solid Earth -- an Introduction to Global Geophysics. Cambridge University Press, Cambridge, 1990. [ bib ]
[1691] A. C. Fowler. Boundary layer theory and subduction. J. Geophys. Res.: Sol. Earth, 98:21997--22005, 1993. [ bib ]
[1692] Siegfried Franck and Christine Bounama. Continental growth and volatile exchange during earth's evolution. Phys. Earth Planet. Inter., 100:189--196, 1997. [ bib ]
[1693] D. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetics. Plenum, New York, 1969. [ bib ]
[1694] W. B. Frank, N. M. Shapiro, A. L. Husker, V. Kostoglodov, H. S. Bhat, and M. Campillo. Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico. Earth Planet. Sci. Lett., 413:135--143, 2015. [ bib ]
[1695] William B Frank, Baptiste Rousset, Cécile Lasserre, and Michel Campillo. Revealing the cluster of slow transients behind a large slow slip event. Science adv., 4(5):eaat0661, 2018. [ bib ]
[1696] William B Frank and Emily E Brodsky. Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Science adv., 5(10):eaaw9386, 2019. [ bib ]
[1697] F. C. Frank. Plate tectonics, The analogy with glacier flow, and isostasy. In Flow and Fracture of Rocks, The Griggs Volume, volume 16 of Geophys. Mono., pages 285--292. American Geophhysical Union, Washington DC, 1972. [ bib ]
[1698] Leander Franz, Rolf L Romer, Reiner Klemd, Robert Schmid, Roland Oberhansli, Thomas Wagner, and Dong Shuwen. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol., 141:322--346, 2001. [ bib ]
[1699] A. Frassetto, H. Gilbert, G. Zandt, S. Beck, and M. J. Fouch. Support of high topography in the southern Basin and Range based on composition and architecture of the crust in the Basin and Range and Colorado Plateau. Earth Planet. Sci. Lett., 243:62--73, 2006. [ bib ]
[1700] S. Frederiksen and J. Braun. Numerical modeling of strain localisation during extension of the continental lithosphere. Earth Planet. Sci. Lett., 188:241--251, 2001. [ bib ]
[1701] A. M. Freed and J. Lin. Accelerated stress buildup on the southern San Andreas Fault and surrounding regions caused by Mojave Desert earthquakes. Geology, 30:571--574, 2002. [ bib ]
[1702] A. M. Freed and R. Bürgmann. Evidence for power-law flow in the Mojave desert mantle. Nature, 430:548--551, 2004. [ bib ]
[1703] A. M. Freed. Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann. Rev. Earth Planet. Sci., 33:335--367, 2005. [ bib ]
[1704] A. M. Freed, R. Bürgmann, E. Calais, J. Freymueller, and S. Hreinsdóttir. Implications of deformation following the 2002 Denali, Alaska earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res.: Sol. Earth, 111(B01401), 2006. [ bib | DOI ]
[1705] A. M. Freed, S. T. Ali, and R. Bürgmann. Evolution of stress in southern california for the past 200 years from coseismic, postseismic & interseismic stress changes. Geophys. J. Int., 169:1164--1179, 2007. [ bib ]
[1706] A. M. Freed, R. Bürgmann, and T. Herring. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys. Res. Lett., 34, 2008. [ bib | DOI ]
[1707] Andrew M Freed, Thomas Herring, and Roland Bürgmann. Steady-state laboratory flow laws alone fail to explain postseismic observations. Earth Planet. Sci. Lett., 300:1--10, 2010. [ bib ]
[1708] A. M. Freed, G. Hirth, and M. D. Behn. Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle. J. Geophys. Res.: Sol. Earth, 117(B01409), 2012. [ bib | DOI ]
[1709] A. Freed, A. Hashima, T. W. Becker, D. A. Okaya, H. Sato, and Y. Hatanaka. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet. Sci. Lett., 459:279--290, 2017. [ bib ]
[1710] S. W. French, L. M. Warren, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. Gonzalez. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis. Geochem., Geophys., Geosys., 11(Q03220), 2010. [ bib | DOI ]
[1711] S. French, V. Lekić, and B. A. Romanowicz. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 342:227--230, 2013. [ bib ]
[1712] S. W. French and B. A. Romanowicz. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int., 199:1303--1327, 2014. [ bib ]
[1713] Scott W French and Barbara Romanowicz. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525:95--99, 2015. [ bib ]
[1714] Melodie E French and Cailey B Condit. Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions. Earth Planet. Sci. Lett., 528:115828, 2019. [ bib ]
[1715] A. Frepoli, G. Selvaggi, C. Chiarabba, and A. Amato. State of stress of the Southern Tyrrhenian subduction zone from fault-plane solutions. Geophys. J. Int., 126:555--578, 1996. [ bib ]
[1716] V. Frette et al. Avalanche dynamics in a pile of rice. Nature, 379:49--52, January 1996. [ bib ]
[1717] L. B. Freund. Dynamic fracture mechanics. Cambridge University Press, New York, 1998. [ bib ]
[1718] M. Freybourger, J. Gaherty, T. H. Jordan, and the Kaapvaal Seismic Group. Structure of the Kaapvaal craton from surface waves. Geophys. Res. Lett., 28:2489--2492, 2001. [ bib ]
[1719] F. T. Freymueller, J. N. Kellogg, and V. Vega. Plate motions in the north Andean region. J. Geophys. Res.: Sol. Earth, 98:21853--21863, 1993. [ bib ]
[1720] Jeffrey T Freymueller, Mark H Murray, Paul Segall, and David Castillo. Kinematics of the Pacific-North America plate boundary zone, northern California. J. Geophys. Res.: Sol. Earth, 104:7419--7441, 1999. [ bib ]
[1721] A. M. Friedrich, B. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1722] Cliff Frohlich and Laura Reiser Wetzel. Comparison of seismic moment release rates along different types of plate boundaries. Geophys. J. Int., 171:909--920, 2007. [ bib ]
[1723] C. Frohlich and Y. Nakamura. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? Phys. Earth Planet. Inter., 173:365--374, 2009. [ bib ]
[1724] Cliff Frohlich. The nature of deep-focus earthquakes. Ann. Rev. Earth Planet. Sci., 17:227--254, 1989. [ bib ]
[1725] C. Frohlich. Characteristics of well-determined non-double-couple earthquakes in the Harvard CMT catalog. Phys. Earth Planet. Inter., 91:213--228, 1995. [ bib ]
[1726] Paul Frossard, Claudine Israel, Audrey Bouvier, and Maud Boyet. Earth’s composition was modified by collisional erosion. Science, 377:1529--1532, 2022. [ bib ]
[1727] Daniel J Frost and David Dolejš. Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet. Sci. Lett., 256:182--195, 2007. [ bib ]
[1728] R.-S. Fu and P.-H. Huang. The global stress field in the lithosphere obtained from the satellite gravitational harmonics. Phys. Earth Planet. Inter., 31:269--276, 1983. [ bib ]
[1729] R.-S. Fu and P.-H. Huang. Global stress pattern constrained on deep mantle flow and tectonic features. Phys. Earth Planet. Inter., 60:314--323, 1990. [ bib ]
[1730] L. Fuchs and T. W. Becker. Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability. EarthArXiv Preprint, 2018. [ bib | DOI ]
[1731] L. Fuchs and T. W. Becker. Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability. Geophys. J. Int., 218:601--618, 2019. [ bib ]
[1732] L. Fuchs and T. W. Becker. Deformation memory in the lithosphere: A comparison of damage-dependent weakening and grain-size sensitive rheologies. J. Geophys. Res.: Sol. Earth, 126:e2020JB020335, 2021. [ bib | DOI ]
[1733] L. Fuchs and T. W. Becker. On the role of rheological memory for convection-driven plate reorganizations. Geophys. Res. Lett., 49:e2022GL099574, 2022. [ bib ]
[1734] G. S. Fuis, T. Ryberg, N. J. Godfrey, D. A. Okaya, and J. M. Murphy. Crustal Structure and tectonics from the Los Angeles Basin to the Mojave Desert, southern California. Bull. Seismol. Soc. Am., 29:15--18, 2001. [ bib ]
[1735] Gary S. Fuis, K. Bauer, M. R. Goldman, T. Ryberg, V. E. Langenheim, D. S. Scheirer, M. J. Rymer, J. M. Stock, J. A. Hole, R. D. Catchings, R. D. Graves, and B. Aagaard. Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations. Bull. Seismol. Soc. Am., 107:1642--1662, 2017. [ bib ]
[1736] Toshiya Fujiwara, Shuichi Kodaira, Tetsuo No, Yuka Kaiho, Narumi Takahashi, and Yoshiyuki Kaneda. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science, 334:1240--1240, 2011. [ bib ]
[1737] S. Fujiwara, M. Tobita, and S. Ozawa. Spatiotemporal functional modeling of postseismic deformations after the 2011 Tohoku-Oki earthquake. Earth, Planet. Space, 74:1--27, 2022. [ bib ]
[1738] Yukitoshi Fukahata and Mitsuhiro Matsu'ura. Deformation of island-arc lithosphere due to steady plate subduction. Geophys. J. Int., 204:825--840, 2016. [ bib ]
[1739] Y. Fukao, S. Widiyantoro, and M. Obayashi. Stagnant slabs in the upper and lower mantle transition region. Rev. of Geophys., 39:291--323, 2001. [ bib ]
[1740] Y. Fukao, M. Obayashi, T. Nakakuki, and the Deep Slab Project Group. Stagnant slab: A review. Ann. Rev. Earth Planet. Sci., 37:19--46, 2009. [ bib ]
[1741] Y. Fukao and M. Obayashi. Subducted slabs stagnant above, penetrating through and trapped below the 660-km discontinuity. J. Geophys. Res.: Sol. Earth, 118:5920--5938, 2013. [ bib ]
[1742] Yoshio Fukao, Tatsuya Kubota, Hiroko Sugioka, Aki Ito, Takashi Tonegawa, Hajime Shiobara, Mikiya Yamashita, and Tatsuhiko Saito. Detection of “rapid” aseismic slip at the Izu-Bonin Trench. J. Geophys. Res.: Sol. Earth, 126:e2021JB022132, 2021. [ bib ]
[1743] Yoshio Fukao, Sadaki Hori, and Motoo Ukawa. A seismological constraint on the depth of basalt--eclogite transition in a subducting oceanic crust. Nature, 303:413--415, 1983. [ bib ]
[1744] Y. Fukao. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 371:149--151, 1984. [ bib ]
[1745] J. Fukuda and K. M. Johnson. Bayesian inversion for a stress-driven model of afterslip and viscoelastic relaxation: Method and application to postseismic deformation following the 2011 MW 9.0 Tohoku-Oki earthquake. J. Geophys. Res.: Sol. Earth, 126:e2020JB021620, 2021. [ bib ]
[1746] Rikuto Fukushima, Masayuki Kano, and Kazuro Hirahara. Physics-informed neural networks for fault slip monitoring: Simulation, frictional parameter estimation, and prediction on slow slip events in a spring-slider system. J. Geophys. Res.: Sol. Earth, 128:e2023JB027384, 2023. [ bib ]
[1747] E. Fukuyama and R. Madariaga. Rupture dynamics of a planar fault in a 3d elastic medium: Rate- and slip-weakening friction. Bull. Seismol. Soc. Am., 88:1--17, 1998. [ bib ]
[1748] C. W. Fuller, S. D. Willett, and M. T. Brandon. Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34:65--68, 2006. [ bib ]
[1749] PM Fulton, Emily E Brodsky, Y Kano, J Mori, F Chester, T Ishikawa, RN Harris, W Lin, Nobuhisa Eguchi, S Toczko, and Expedition 343, 343T, and KR13-08 Scientists. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science, 342:1214--1217, 2013. [ bib ]
[1750] T. E. Fumal, M. J. Rymer, and G. G. Seitz. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California. Bull. Seismol. Soc. Am., 92:2841--2860, 2002. [ bib ]
[1751] F. Funiciello, C. Faccenna, D. Giardini, and K. Regenauer Lieb. Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1752] F. Funiciello, G. Morra, K. Regenauer-Lieb, and D. Giardini. Dynamics of retreating slabs (part 1): insights from numerical experiments. J. Geophys. Res.: Sol. Earth, 2003. [ bib ]
[1753] F. Funiciello, C. Faccenna, and D. Giardini. Flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys. J. Int., 157:1393--1407, 2004. [ bib ]
[1754] F. Funiciello, C. Piromallo, M. Moroni, T. W. Becker, C. Faccenna, H. A. Bui, and A. Cenedese. 3-D laboratory and numerical models of mantle flow in subduction zones (abstract). Eos Trans. AGU, 85(47):T21b--0527, 2004. [ bib ]
[1755] F. Funiciello, C. Faccenna, and D. Giardini. Role of lateral mantle flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys. J. Int., 157:1393--1406, 2004. [ bib ]
[1756] F. Funiciello, M. Moroni, C. Piromallo, C. Faccenna, A. Cenedese, and H. A. Bui. Mapping flow during retreating subduction: laboratory models analyzed by Feature Tracking. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[1757] F. Funiciello, C. Faccenna, A. Heuret, E. Di Giuseppe, S. Lallemand, and T. W. Becker. Trench migration, net rotation and slab-mantle coupling. Earth Planet. Sci. Lett., 271:233--240, 2008. [ bib ]
[1758] F. Funiciello, C. Faccenna, and D. Giardini. Laboratory experiments of subduction. Geophys. Res. Abstr., 1:62, 1999. [ bib ]
[1759] K. P. Furlong, D. S. Chapman, and P. W. Alfeld. Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. J. Geophys. Res.: Sol. Earth, 87:1786--1802, 1982. [ bib ]
[1760] M. Furuichi, M. Kameyama, and A. Kageyama. Three-dimensional eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation. J. Comput. Phys., 227:4977, 2008. [ bib ]
[1761] Yoshitsugu Furukawa. Depth of the decoupling plate interface and thermal structure under arcs. J. Geophys. Res.: Sol. Earth, 98:20005--20013, 1993. [ bib ]
[1762] T. Furumura and B.L.N. Kennett. Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J. Geophys. Res.: Sol. Earth, 110:B10302, 2005. [ bib | DOI ]
[1763] C. W. Gable. Numerical Models of Plate Tectonics and Mantle Convection in Three Dimensions. PhD thesis, Harvard University, Cambridge MA, 1989. [ bib ]
[1764] C. W. Gable, R. J. O'Connell, and B. J. Travis. Convection in three dimensions with surface plates: generation of toroidal flow. J. Geophys. Res.: Sol. Earth, 96:8391--8405, 1991. [ bib ]
[1765] C. W. Gable, H. A. Stone, and R. J. O'Connell. Chaotic mantle mixing: Time dependence is unnecessary. Eos Trans. AGU, 72:269, 1991. [ bib ]
[1766] C. Gaboret, A. M. Forte, and J.-P. Montagner. The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth Planet. Sci. Lett., 208:219--233, 2003. [ bib ]
[1767] A-A Gabriel, J-P Ampuero, LA Dalguer, and Paul Martin Mai. Source properties of dynamic rupture pulses with off-fault plasticity. J. Geophys. Res.: Sol. Earth, 118:4117--4126, 2013. [ bib ]
[1768] Alice-Agnes Gabriel, Duo Li, Simone Chiocchetti, Maurizio Tavelli, Ilya Peshkov, Romenski Evgeniy, and Michael Dumbser. A unified first order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones. Phil. Trans. Royal Soc. A, 2021. [ bib | DOI ]
[1769] A. M. Gabrielov, T. A. Levshina, and I. M. Rotwain. Block model of earthquake sequence. Phys. Earth Planet. Inter., 61:18--28, 1990. [ bib ]
[1770] A. Gabrielov and W. I. Newman. Seismicity modeling and earthquake prediction: A review. In Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 83 of Geoophys. Mono., pages 7--13. International Union of Geodesy and Geophysics, 1994. [ bib ]
[1771] G. A. Gaetani and T. Grove. Experimental constraints on melt generation in the mantle wedge. In J. Eiler, editor, Inside the Subduction Factory, volume 138. American Geophysical Union, Washington DC, 2003. [ bib ]
[1772] S. Gaffin. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci., 287:596--611, 1987. [ bib ]
[1773] J. B. Gaherty, D. Lizarralde, J. A. Collins, G. Hirth, and S. Kim. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett., 228:225--265, 2004. [ bib ]
[1774] J. B. Gaherty and B. H. Hager. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett., 21:141--144, 1994. [ bib ]
[1775] J. B. Gaherty and T. H. Jordan. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science, 268:1468--1471, 1995. [ bib ]
[1776] J. B. Gaherty, T. H. Jordan, and L. S. Gee. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res.: Sol. Earth, 101:22291--22310, 1996. [ bib ]
[1777] J. Gaherty, M. Kato, and T. H. Jordan. Seismological structure of the upper mantle: a regional comparison of seismic layering. Phys. Earth Planet. Inter., 110:21--41, 1999. [ bib ]
[1778] Eric Gaidos, Clinton P Conrad, Michael Manga, and John Hernlund. Thermodynamic limits on magnetodynamos in rocky exoplanets. Astrophys. J., 718:596, 2010. [ bib ]
[1779] C. Gaina, R.D. Müller, B. Brown, T. Ishihara, and S. Ivanov. Breakup and early seafloor spreading between India and Antarctica. Geophys. J. Int., 170:151--170, 2007. [ bib ]
[1780] W. Landry, L. Hodkinson, and S. Kienz. GALE: User manual version 0.9. Online at www.geodynamics.org:8080/cig/software/packages/gale/gale_book.pdf, accessed 10/2006, 2006. [ bib ]
[1781] A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J.-G. Schilling. The mean composition of ocean ridge basalts. Geochem., Geophys., Geosys., 14:489--518, 2013. [ bib ]
[1782] J. Galetzka, D. Melgar, J. F. Genrich, J. Geng, S. Owen, E. O. Lindsey, X. Xu, Y. Bock, J.-P. Avouac, L. B. Adhikari, B. N. Upreti, B. Pratt-Sitaula, T. N. Bhattarai, B. P. Sitaula, A. Moore, K. W. Hudnut, W. Szeliga, J. Normandeau, M. Fend, M. Flouzat, L. Bollinger, P. Shrestha, B. Koirala, U. Gautam, M. Bhatterai, R. Gupta, T. Kandel, C. Timsina, S. N. Sapkota, S. Rajaure, and N. Maharjan. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 349:1091--1095, 2015. [ bib ]
[1783] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 1. Method and synthetic test. J. Geophys. Res.: Sol. Earth, 124:6949--6969, 2019. [ bib ]
[1784] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, earthquake. J. Geophys. Res.: Sol. Earth, 124:6970--6988, 2019. [ bib ]
[1785] Percy Galvez, J-P Ampuero, Luis A Dalguer, Surendra N Somala, and Tarje Nissen-Meyer. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M 9 Tohoku earthquake. Geophys. J. Int., 198:1222--1240, 2014. [ bib ]
[1786] Percy Galvez, Luis A Dalguer, Jean-Paul Ampuero, and Domenico Giardini. Rupture reactivation during the 2011 Mw 9.0 Tohoku earthquake: Dynamic rupture and ground-motion simulations. Bull. Seismol. Soc. Am., 106:819--831, 2016. [ bib ]
[1787] Percy Galvez, Daniel B Peter, and Paul Martin Mai. Earthquake cycle modeling of curvilinear non-planar faults: 1992, Landers earthquake sequence. In AGU Fall Meeting Abstracts, 2018. [ bib ]
[1788] Percy Galvez, Anatoly Petukhin, Kojiro Irikura, and Paul Somerville. Dynamic source model for the 2011 Tohoku earthquake in a wide period range combining slip reactivation with the short-period ground motion generation process. Pure Appl. Geophys., 177:2143--2161, 2020. [ bib ]
[1789] Kusali Gamage, Elizabeth Screaton, Barbara Bekins, and Ivano Aiello. Permeability--porosity relationships of subduction zone sediments. Marine Geol., 279:19--36, 2011. [ bib ]
[1790] W. Gan, P. Zhang, Z.‐K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng. Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res.: Sol. Earth, 113(B08416), 2007. [ bib | DOI ]
[1791] Phillip B Gans. An open-system, two-layer crustal stretching model for the eastern Great Basin. Tectonics, 6:1--12, 1987. [ bib ]
[1792] S. Gao, R. L. Rudnick, R. W. Carlson, W. F. McDonough, and Y.-S. Liu. Re--Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett., 198:307--322, 2002. [ bib ]
[1793] Haiying Gao, David A Schmidt, and Ray J Weldon. Scaling relationships of source parameters for slow slip events. Bull. Seismol. Soc. Am., 102:352--360, 2012. [ bib ]
[1794] Xiang Gao and Kelin Wang. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345:1038--1041, 2014. [ bib ]
[1795] Xiang Gao and Kelin Wang. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature, 543:416--419, 2017. [ bib ]
[1796] Haiying Gao. Three-dimensional variations of the slab geometry correlate with earthquake distributions at the cascadia subduction system. Nature Comm., 9:1--8, 2018. [ bib ]
[1797] Denis Gapais, Alain Potrel, Nuno Machado, and Erwan Hallot. Kinematics of long-lasting Paleoproterozoic transpression within the Thompson Nickel Belt, Manitoba, Canada. Tectonics, 24(3), 2005. [ bib ]
[1798] Dmitry I Garagash. Fracture mechanics of rate-and-state faults and fluid injection induced slip. Phil. Trans. Roy. Soc. A, 379(2196):20200129, 2021. [ bib ]
[1799] G Garapić, MG Jackson, EH Hauri, SR Hart, KA Farley, JS Blusztajn, and JD Woodhead. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos, 228:1--11, 2015. [ bib ]
[1800] F. Garel, S. Goes, D. R. Davies, J. H. Davies, S. C. Kramer, and C. R. Wilson. Interaction of subducted slabs with the mantle transition zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem., Geophys., Geosys., 15, 2014. [ bib | DOI ]
[1801] Z. Garfunkel, C. A. Anderson, and G. Schubert. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res.: Sol. Earth, 91:7205--7223, 1986. [ bib ]
[1802] E. J. Garnero and T. Lay. D” shear velocity heterogeneity, anisotropy, and discontinuity structure beneath the Caribbean and Central America. Phys. Earth Planet. Inter., 140:219--242, 2003. [ bib ]
[1803] E. J. Garnero. A new paradigm for Earth's core-mantle boundary. Science, 304:835--836, 2004. [ bib ]
[1804] E. J. Garnero, V. Maupin, T. Lay, and M. J. Fouch. Variable azimuthal anisotropy in Earth's lowermost mantle. Science, 306:5694, 2004. [ bib ]
[1805] E. J. Garnero and A. K. McNamara. Structure and dynamics of the Earth's lower mantle. Science, 320:626--628, 2008. [ bib ]
[1806] E. J. Garnero, A. K. McNamara, and S.-H. Shim. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nature Geosc., 9:481--489, 2016. [ bib ]
[1807] Edward J Garnero and Donald V Helmberger. A very slow basal layer underlying large-scale low-velocity anomalies in the lower mantle beneath the Pacific: evidence from core phases. Phys. Earth Planet. Inter., 91:161--176, 1995. [ bib ]
[1808] E. J. Garnero, J. S. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg. Ultralow velocity zone at the core-mantle boundary. In M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, editors, The Core-mantle Boundary Region, pages 319--334. American Geophysical Union, Washington DC, 1998. [ bib ]
[1809] Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Timo Heister, and Robert Myhill. On formulations of compressible mantle convection. Geophys. J. Int., 221:1264--1280, 2020. [ bib ]
[1810] E. Gazel, M. J. Carr, K. Hoernle, M. D. Feigenson, D. Szymanski, F. Hauff, and P. van den Bogaard. The Galapagos-OIB signature in southern Central America: Mantle re-fertilization by arc-hotspot interaction. Geochem., Geophys., Geosys., 10(Q02S11), 2009. [ bib | DOI ]
[1811] E. Gazel, K. Hoernle, M. J. Carr, C. Herzberg, I. Saginor, P. van den Bogaard, F. Hauff, M. Feigenson, and C. Swisher III. Plume-subduction interaction in southern Central America: mantle upwelling and slab melting. Lithos, 121:117--134, 2011. [ bib ]
[1812] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 05/2018, 2018. [ bib ]
[1813] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 12/2014, 2014. [ bib ]
[1814] GM Geffers and IG Main. Accuracy and precision of frequency--size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg--Richter law b-value for earthquakes. Geophys. J. Int., 232:2080--2086, 2023. [ bib ]
[1815] G. E. Gehrels, M. Rushmore, G. Woodsworth, M. Crawford, C. Andronicos, et al. U-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. Geol. Soc. Am. Bull., 121:1341--1361, 2009. [ bib ]
[1816] R. J. Geller. Shake-up time for Japanese seismology. Nature, 472:407--409, 2011. [ bib ]
[1817] R. J. Geller. Earthquake prediction: a critical review. Geophys. J. Int., 131:425--450, 1997. [ bib ]
[1818] Robert J Geller, David D Jackson, Yan Y Kagan, and Francesco Mulargia. Earthquakes cannot be predicted. Science, 275:1616--1616, 1997. [ bib ]
[1819] Gen Li, A. Joshua West, and Hongrui Qiu. Competing effects of mountain uplift and landslide erosion over earthquake cycles. J. Geophys. Res.: Sol. Earth, 124:5101--5133, 2019. [ bib ]
[1820] Laurent Geoffroy. The structure of volcanic margins: some problematics from the North-Atlantic/Labrador--Baffin system. Mar. Petrol. Geol., 18:463--469, 2001. [ bib ]
[1821] GeoFORCE Texas. About us. Available online at www.jsg.utexas.edu/geoforce/about-us, accessed 09/2018, 2018. [ bib ]
[1822] NSF Geosciences. Beyond 2000: Understanding and predicting Earth's environment and habitability. National Science Foundation, Washington DC. Online at www.nsf.gov/pubs/2000/nsf0028/nsf0028.htm, accessed 06/2006, 2000. [ bib ]
[1823] J. W. Gephart and D. W. Forsyth. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res.: Sol. Earth, 89:9305--9320, 1984. [ bib ]
[1824] J. W. Gephart. Stress and the direction of slip on fault planes. Tectonics, 9:845--858, 1990. [ bib ]
[1825] G. Gerardi and N. M. Ribe. Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone. J. Geophys. Res.: Sol. Earth, 123:5227--5248, 2018. [ bib ]
[1826] G. Gerardi, N. M. Ribe, and P. J. Tackley. Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach. Earth Planet. Sci. Lett., 515:47--57, 2019. [ bib ]
[1827] M. Gérault, T. W. Becker, B. J. P. Kaus, C. Faccenna, L. N. Moresi, and L. Husson. The role of slabs and oceanic plate geometry for the net rotation of the lithosphere, trench motions, and slab return flow. Geochem., Geophys., Geosys., 13(Q04001), 2012. [ bib | DOI ]
[1828] Mélanie Gérault, Laurent Husson, Meghan S Miller, and Eugene D Humphreys. Flat-slab subduction, topography, and mantle dynamics in southwestern Mexico. Tectonics, 34:1892--1909, 2015. [ bib ]
[1829] M. Gerbault, E. B. Burov, A. N. B. Poliakov, and M. Daignieres. Do faults trigger folding in the lithosphere? Geophys. Res. Lett., 26:271--274, 1999. [ bib ]
[1830] M. Gerbault. At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet. Sci. Lett., 178:165--181, 2000. [ bib ]
[1831] CR German and LM Parson. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: interplay of magmatic and tectonic controls. Earth Planet. Sci. Lett., 160:327--341, 1998. [ bib ]
[1832] M. C. Gerstenberger, S. Wiemer, and D. Giardini. A systematic test of the hypothesis the the b value varies with depth in California. Geophys. Res. Lett., 28:57--60, 2001. [ bib ]
[1833] M. C. Gerstenberger, Y. Kaneko, B. Fry, L. Wallace, D. Rhoades, A. Christophersen, and C. Williams. Probabilities of earthquakes in central New Zealand. In GNS Science misc. ser., volume 114, page 23. GNS Science, Lower Hutt, New Zealand, 2017. [ bib | DOI ]
[1834] Matthew C Gerstenberger, Warner Marzocchi, Trevor Allen, Marco Pagani, Janice Adams, Laurentiu Danciu, Edward H Field, Hiroyuki Fujiwara, Nicolas Luco, K-F Ma, et al. Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges. Rev. Geophys., 58:e2019RG000653, 2020. [ bib ]
[1835] Taras V Gerya, Bernhard Stöckhert, and Alexey L Perchuk. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 2002. [ bib | DOI ]
[1836] T. V. Gerya, R. Uken, J. Reinhardt, M.K. Watkeys, W.V. Maresch, and C. Brendan. Cold fingers in hot magma: numerical modeling of country-rock diaprs in the Bushveld Complex, South Africa. Geology, 31:753--756, 2003. [ bib ]
[1837] T. V. Gerya and D. Yuen. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter., 140:293--318, 2003. [ bib ]
[1838] T. V. Gerya, D. A. Yuen, and W. V. Maresch. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett., 226:101--116, 2004. [ bib ]
[1839] Taras V Gerya, James AD Connolly, and David A Yuen. Why is terrestrial subduction one-sided? Geology, 36:43--46, 2008. [ bib ]
[1840] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2009. [ bib ]
[1841] Taras Gerya. Dynamical instability produces transform faults at mid-ocean ridges. Science, 329:1047--1050, 2010. [ bib ]
[1842] T. V. Gerya and F. I. Meilick. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol., 29:7--31, 2010. [ bib ]
[1843] T. Gerya. Future directions in subduction modeling. J. Geodyn, 52:344--378, 2011. [ bib ]
[1844] Taras V Gerya. Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Inter., 214:35--52, 2013. [ bib ]
[1845] Taras V Gerya, Robert J Stern, Marzieh Baes, Stephan V Sobolev, and Scott A Whattam. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527:221--225, 2015. [ bib ]
[1846] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2 edition, 2019. [ bib ]
[1847] T. V. Gerya, D. Bercovici, and T. W. Becker. Dynamic slab segmentation due to brittle-ductile damage in the outer rise. Nature, 599:245--250, 2021. [ bib ]
[1848] Sia Ghelichkhan and H-P Bunge. The adjoint equations for thermochemical compressible mantle convection: derivation and verification by twin experiments. Proc. Roy. Soc. A, 474:20180329, 2018. [ bib ]
[1849] S Ghelichkhan, HP Bunge, and J Oeser. Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses. Geophys. J. Int., 226:1432--1460, 2021. [ bib ]
[1850] A. Ghods, F. Sobouti, and J. Arkani-Hamed. An improved second moment method for solution of pure advection problems. Eos Trans. AGU, 1998. spring meeting. [ bib ]
[1851] A. Ghosh, W. E. Holt, L. M. Flesch, and A. J. Haines. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34:321--324, 2006. [ bib ]
[1852] A. Ghosh, T. W. Becker, and E. D. Humphreys. Effects of lateral viscosity variations on the dynamics of western North America. In 2008 SCEC Annual Meeting, pages 1--124, 2008. [ bib ]
[1853] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. Eos Trans. AGU, 89(53):DI53A--1687, 2008. [ bib ]
[1854] A. Ghosh, W. E. Holt, L. Wen, L. M. Flesch, and A. J. Haines. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling. Geophys. Res. Lett., 35(L16309), 2008. [ bib | DOI ]
[1855] A. Ghosh, A. V. Newman, A. M. Thomas, and G. T. Farmer. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett., 35(L01301), 2008. [ bib | DOI ]
[1856] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 57, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[1857] A. Ghosh, W. E. Holt, and L. M. Flesch. Contribution of gravitational potential energy differences to the global stress field. Geophys. J. Int., 179:787--812, 2009. [ bib ]
[1858] A. Ghosh, T. W. Becker, and S. Zhong. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett., 37(L01301), 2010. [ bib | DOI ]
[1859] A. Ghosh, T. W. Becker, and E. D. Humphreys. Understanding the deformation of the North American continent (abstract). EarthScope National Meeting Abstract Volume, page 70, 2011. Available online at www.earthscope.org/es_doc/meetings/2011_national/, accessed 06/2011. [ bib ]
[1860] A. Ghosh and W. E. Holt. Plate motions and stresses from global dynamic models. Science, 335:839--843, 2012. [ bib ]
[1861] A. Ghosh, T. W. Becker, and E. D. Humphreys. Dynamics of the North American continent. Geophys. J. Int., 194:651--669, 2013. [ bib ]
[1862] A Ghosh, WE Holt, and L Wen. Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res.: Sol. Earth, 118:346--368, 2013. [ bib ]
[1863] Attreyee Ghosh, William E Holt, and Alireza Bahadori. Role of large-scale tectonic forces in intraplate earthquakes of Central and Eastern North America. Geochem., Geophys., Geosys., 20:2134--2156, 2019. [ bib ]
[1864] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Technical report, ETH Zürich, http://seismo.ethz.ch/gshap/global/global.html, 2000. [ bib ]
[1865] D. Giardini. Regional deviation of earthquake source mechanisms from the “double-couple” model. In H. Kanamori and E. Boschi, editors, Earthquakes: observation, theory, and interpretation: notes from the International School of Physics “Enrico Fermi” (1982: Varenna, Italy), volume 85, pages 345--353. North-Holland, Amsterdam, 1983. [ bib ]
[1866] D. Giardini and J. H. Woodhouse. Deep seismicity and modes of deformation in Tonga subduction zone. Nature, 307:505--509, 1984. [ bib ]
[1867] D. Giardini and J. H. Woodhouse. Horizontal shear flow in the mantle beneath the Tonga arc. Nature, 319:551--555, 1986. [ bib ]
[1868] D. Giardini and M. Velonà. La sismicita profonda del Mar Tirreno. Deep seismicity of the Tyrrhenian Sea. Mem. Soc. Geol. It., 41:1079--1087, 1988. [ bib ]
[1869] Domenico Giardini. Frequency distribution and quantification of deep earthquakes. J. Geophys. Res.: Sol. Earth, 93:2095--2105, 1988. [ bib ]
[1870] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Annali di Geof., 42:1225--1230, 1999. [ bib ]
[1871] G Gibert, Muriel Gerbault, R Hassani, and Emmanuel Tric. Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling. Geophys. J. Int., 189:747--760, 2012. [ bib ]
[1872] S. J. Gibowicz. Physics of fracturing and seismic energy release: A review. Pure Appl. Geophys., 124:611--658, 1986. [ bib ]
[1873] J. Gil-Rodríguez. Igneous petrology of the La Colosa gold-rich porphyry system (Tolima, Colombia). Master's thesis, University of Arizona, 2010. [ bib ]
[1874] W. Gilbert. On the magnet (De Magnete). Peter Short, London, (Translated in 1900 from Latin by Silvanus Thompson and reproduced by Basic Books, N. Y., 1956.) 1600. [ bib ]
[1875] H. Gilbert, A. F. Sheehan, K. G. Dueker, and P. Molnar. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res.: Sol. Earth, 108(2229), 2003. [ bib | DOI ]
[1876] H. Gilbert, Y. Yang, D. W. Forsyth, C. H. Jones, T. J. Owens, G. Zandt, and J.C. Stachnik. Imaging lithospheric foundering in the structure of the Sierra Nevada. Geosphere, 8:1310--1300, 2012. [ bib ]
[1877] G. K. Gilbert. A theory of the earthquakes of the Great Basin, with a practical application. Am. J. Sci. Ser., 3:49--54, 1884. [ bib ]
[1878] Lewis E. Gilbert, Christopher H. Scholz, and John Beavan. Strain localization along the san andreas fault: Consequences for loading mechanisms. J. Geophys. Res.: Sol. Earth, 99:23975--23984, 1994. [ bib ]
[1879] J. Gill. Orogenic Andesites and Plate Tectonics. Springer Verlag, New York NY, 1981. [ bib ]
[1880] D. Gilly. UNIX in a Nutshell. O'Reilly & Associates, Inc., Cambridge, 1994. [ bib ]
[1881] W. Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling. In Adv. in Neural Information Proc. Sys. (NeurIPS), 2021. arXiv preprint arXiv:2110.05266. [ bib ]
[1882] W. Gilpin. Model scale versus domain knowledge in statistical forecasting of chaotic systems. Phys. Rev. Research, 5:043552, 2023. [ bib ]
[1883] William Gilpin. Generative learning for nonlinear dynamics. Nature Rev. Phys., pages 1--17, 2024. [ bib ]
[1884] C. Giunchi, R. Sabadini, E. Boschi, and P. Gasperini. Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian sea. Geophys. J. Int., 126:555--578, 1996. [ bib ]
[1885] G. Glatzmaier. Geodynamo simulations-how realistic are they? Ann. Rev. Earth Planet. Sci., 30:237--257, 2002. [ bib ]
[1886] Gary A Glatzmaier and Paul H Roberts. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377:203--209, 1995. [ bib ]
[1887] Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction. Solid Earth, 9:267--294, 2018. [ bib ]
[1888] Petar Glišović and Alessandro M Forte. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates. Earth Planet. Sci. Lett., 390:146--156, 2014. [ bib ]
[1889] Petar Glišović and Alessandro M Forte. On the deep-mantle origin of the Deccan Traps. Science, 355:613--616, 2017. [ bib ]
[1890] Petar Glišović and Alessandro M Forte. Two deep-mantle sources for Paleocene doming and volcanism in the North Atlantic. Proc. Natl. Acad. Sci. USA, 116:13227--13232, 2019. [ bib ]
[1891] P Glišović, AM Forte, and R Moucha. Time-dependent convection models of mantle thermal structure constrained by seismic tomography and geodynamics: implications for mantle plume dynamics and CMB heat flux. Geophys. J. Int., 190:785--815, 2012. [ bib ]
[1892] P. Wessel and W. H. F. Smith. Free software helps map and display data. Eos Trans. AGU, 72:445--446, 1991. [ bib ]
[1893] Gnuplot. Gnuplot homepage, 2023. Available online at www.gnuplot.info/, accessed 05/2023. [ bib ]
[1894] J. Gobert and J. Clement. Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynmaic knowledge in plate tectonics. J. Res. Sci. Teaching, 36:39--53, 1999. [ bib ]
[1895] S. Godey, R. Snieder, A. Villasenor, and H. M. Benz. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: phase velocity maps and limitations of ray theory. Geophys. J. Int., 152:620--632, 2003. [ bib ]
[1896] S. Godey, F. Deschamps, J. Trampert, and R. Snieder. Thermal and compositional anomalies beneath the North American continent. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1897] N. J. Godfrey, N. I. Christensen, and D. A. Okaya. Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res.: Sol. Earth, 105:27991--28007, 2000. [ bib ]
[1898] N. J. Godfrey, B. C. Beaudoin, and S. L. Klemperer. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin. Geol. Soc. Am. Bull., 108:1536--1562, 1997. [ bib ]
[1899] T. H. W. Goebel, S. Stanchits, T. W. Becker, G. Dresen, and D. Schorlemmer. Acoustic emissions during fracture and sliding of rock surfaces: Preliminary results. 2009 SCEC Annual Meeting Abstracts, 19:317, 2009. [ bib ]
[1900] T. H. W. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 2009 SCEC Annual Meeting Abstracts, 19:230, 2009. [ bib ]
[1901] T. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 6th International Workshop on Statistical Seismology Abstracts, 2009. [ bib ]
[1902] T. H. Goebel, S. Stanchits, T. W. Becker, D. Schorlemmer, and G. Dresen. Temporal and spatial analysis of acoustic emission clusters during sliding of rough granite surfaces. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 20:216, 2010. Available online at www.scec.org/meetings/2010am/2010SCECProceedings.pdf, accessed 05/2011. [ bib ]
[1903] T. H. Goebel, T. W. Becker, C. Sammis, G. Dresen, and D. Schorlemmer. Variations in b-values, size and rate of micro-seismicity before dynamic slip instabilities in laboratory experiments. 7th International Workshop on Statistical Seismology. Abstracts, page 17, 2011. Available online at www.gein.noa.gr/statsei7/forms/StatSei7_Abstracts.pdf, accessed 05/2011. [ bib ]
[1904] T. H. W. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, E. Rybacki, and G. Dresen. Connecting acoustic emission event locations, aftershock density and b-values before and after stick-slips to changes in topography of rough fracture surfaces during frictional sliding experiments. Seismological Society of America 2011 Annual Meeting Abstracts, 2011. Available online at www.seismosoc.org/meetings/2011/program.php, accessed 05/2011. [ bib ]
[1905] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1906] T. H. Goebel, C. Sammis, and T. W. Becker. Connecting the spatial distribution of acoustic emissions to fault roughness during stick-slip experiments. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1907] T. H. W. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J. Geophys. Res.: Sol. Earth, 117(B03310), 2012. [ bib | DOI ]
[1908] T. H. W. Goebel, D. Schorlemmer, T. W. Becker, G. Dresen, and C. G. Sammis. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett., 40:2049--2054, 2013. [ bib ]
[1909] T. H. W. Goebel, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. A comparison of seismicity characteristics and fault structure between stick-slip experiments and nature. Pure Appl. Geophys., 2014. [ bib | DOI ]
[1910] T. H. W. Goebel, T. Candela, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. Seismic event distributions and off-fault damage during frictional sliding of saw-cut surfaces with predefined roughness. Geophys. J. Int., 196:612--625, 2014. [ bib ]
[1911] T. H. W. Goebel, T. W. Becker, C. G. Sammis, G. Dresen, and D. Schorlemmer. Off-fault damage and acoustic emission distributions during the evolution of structurally-complex faults over series of stick-slip events. Geophys. J. Int., 197:1705--1718, 2014. [ bib ]
[1912] Thomas HW Goebel, Grzegorz Kwiatek, Thorsten W Becker, Emily E Brodsky, and Georg Dresen. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45:815--818, 2017. [ bib ]
[1913] S. Goes and S. van der Lee. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.: Sol. Earth, 107(2050), 2002. [ bib | DOI ]
[1914] S. Goes, F. Cammarano, and U. Hansen. Synthetic seismic signature for thermal mantle plumes. Earth Planet. Sci. Lett., 218:401--417, 2004. [ bib ]
[1915] S. Goes, F. A. Capitanio, and G. Morra. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451:981--984, 2008. [ bib ]
[1916] Saskia Goes, Roberto Agrusta, Jeroen van Hunen, and Fanny Garel. Subduction-transition zone interaction: A review. Geosphere, 13:644--664, 2017. [ bib ]
[1917] S. D. B. Goes. Irregular recurrence of large earthquakes: An analysis of historic and paleoseismic catalogs. J. Geophys. Res.: Sol. Earth, 101:5739--5749, 1996. [ bib ]
[1918] C. Goetze and D. L. Kohlstedt. Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res.: Sol. Earth, 78:5961--5971, 1973. [ bib ]
[1919] C. Goetze and B. Evans. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astr. Soc., 59:463--478, 1979. [ bib ]
[1920] J. A. Goff and T. H. Jordan. Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res.: Sol. Earth, 93:13589--13608, 1988. [ bib ]
[1921] D. Goff and D.V. Wiltschko. Stresses beneath a ramping thrust sheet. J. Struct. Geol., 14:437--449, 1992. [ bib ]
[1922] D. Goff, D.V. Wiltschko, and R.C. Fletcher. Decollement folding as a mechanism for thrust-ramp spacing. J. Geophys. Res.: Sol. Earth, 101:11341--11352, 1996. [ bib ]
[1923] O. Gogus and R. Pysklywec. Near surface diagnostics of dripping and delaminating lithosphere. J. Geophys. Res.: Sol. Earth, 113(B11404), 2008. [ bib | DOI ]
[1924] Oğuz H Göğüş, Russell N Pysklywec, Fabio Corbi, and Claudio Faccenna. The surface tectonics of mantle lithosphere delamination following ocean lithosphere subduction: Insights from physical-scaled analogue experiments. Geochem., Geophys., Geosys., 12(Q05004), 2011. [ bib | DOI ]
[1925] Oğuz H Göğüş. Rifting and subsidence following lithospheric removal in continental back arcs. Geology, 43:3--6, 2015. [ bib ]
[1926] Oğuz H Göğüş, Russell N Pysklywec, A M C Şengör, and E Gün. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature Comm., 8:1--9, 2017. [ bib ]
[1927] R. D. Gold, E. Cowgill, X.-F. Wang, and X.-H. Chen. Application of trishear fault-propagation folding to active reverse faults: examples from the Dalong Fault, Gansu Province, NW China. J. Struct. Geol., 28:200--219, 2006. [ bib ]
[1928] S. L. Goldberg and A. F. Holt. Characterizing the complexity of subduction zone flow with an ensemble of multiscale global convection models. Geochem., Geophys., Geosys., 25(2):e2023GC011134, 2024. [ bib ]
[1929] Chris Goldfinger, C Hans Nelson, Joel E Johnson, and Shipboard Scientific Party. Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites. Ann. Rev. Earth Planet. Sci., 31:555--577, 2003. [ bib ]
[1930] Chris Goldfinger, Ann E Morey, C Hans Nelson, Julia Gutiérrez-Pastor, Joel E Johnson, Eugene Karabanov, Jason Chaytor, Andrew Eriksson, and Shipboard Scientific Party. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy. Earth Planet. Sci. Lett., 254:9--27, 2007. [ bib ]
[1931] C. Goldfinger, C.H. Nelson, A.E. Morey, J.E. Johnson, J.R. Patton, E. Karabanov, J. Gutiérrez-Pastor, A.T. Eriksson, E. Grácia, G. Dunhill, R.J. Enkin, A. Dallimore, and T. Vallier. Turbidite event history: Methods and implications for holocene paleoseismicity of the cascadia subduction zone. U.S. Geological Survey Professional Paper 1661--F, United States Geological Survey, 2012. 170 p. [ bib ]
[1932] C. Goldfinger, Y. Ikeda, R. S. Yeats, and J. Ren. Superquakes and supercycles. Seismol. Res. Lett., 84:24--32, 2013. [ bib ]
[1933] P. Goldreich and A. Toomre. Some remarks on polar wandering. J. Geophys. Res.: Sol. Earth, 74:2555--2565, 1969. [ bib ]
[1934] EM Golos, H Fang, H Yao, H Zhang, S Burdick, F Vernon, A Schaeffer, S Lebedev, and RD Van der Hilst. Shear wave tomography beneath the United States using a joint inversion of surface and body waves. J. Geophys. Res.: Sol. Earth, 123:5169--5189, 2018. [ bib ]
[1935] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, 3 edition, 1996. [ bib ]
[1936] J. Gomberg et al. Slow slip phenomena in Cascadia from 2007 and beyond: A review. Geol. Soc. Amer. Bull., 122:963--978, 2010. [ bib ]
[1937] Joan Gomberg, Aaron Wech, Kenneth Creager, Kazushige Obara, and Duncan Agnew. Reconsidering earthquake scaling. Geophys. Res. Lett., 43:6243--6251, 2016. [ bib ]
[1938] J. S. Gomberg, K. A. Ludwig, B. A. Bekins, T. M. Brocher, J. C. Brock, D. Brothers, J. D. Chaytor, A. D. Frankel, E. L. Geist, M. Haney, S. H. Hickman, W. S. Leith, E. A. Roeloffs, W. H. Schulz, T. W. Sisson, J. T. Watt K. Wallace, and A. Wein. Reducing risk where tectonic plates collide--A plan to advance subduction zone science, volume 1428 of Circular. U.S. Geological Survey, 2017. [ bib | DOI ]
[1939] J. Gomberg, M. L. Blanpied, and N. M. Beeler. Transient triggering of near and distant earthquakes. Bull. Seismol. Soc. Am., 87:294--309, 1997. [ bib ]
[1940] J. Gomberg, N. M. Beeler, M. L. Blanpied, and P. Bodin. Earthquake triggering by transient and static deformations. J. Geophys. Res.: Sol. Earth, 103:24411--24426, 1998. [ bib ]
[1941] J. Gómez, A. Nivia, N. Montes, D. Jiménez, M. Sepúlveda, T. Gaona, J. Osorio, H. Diederix, M. Mora, and M. M. Velásquez. Atlas geológico de Colombia, Sheet 5-09, scale 1:500.000. INGEOMINAS, 2007. [ bib ]
[1942] N. Gomez, J. X. Mitrovica, P. Huybers, and P. U. Clark. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosc., 3:850--853, 2010. [ bib ]
[1943] Natalya Gomez, David Pollard, and Jerry X Mitrovica. A 3-D coupled ice sheet--sea level model applied to Antarctica through the last 40 ky. Earth Planet. Sci. Lett., 384:88--99, 2013. [ bib ]
[1944] Natalya Gomez, Konstantin Latychev, and David Pollard. A coupled ice sheet--sea level model incorporating 3D earth structure: Variations in Antarctica during the last deglacial retreat. J. Climate, 31:4041--4054, 2018. [ bib ]
[1945] Alexander F Goncharov, Benjamin D Haugen, Viktor V Struzhkin, Pierre Beck, and Steven D Jacobsen. Radiative conductivity in the Earth's lower mantle. Nature, 456:231--234, 2008. [ bib ]
[1946] H. M. Gonnermann and M. Manga. Nonequilibrium magma degassing: results from modeling of the ca. 1340 AD eruption of Mono Craters, California. Earth Planet. Sci. Lett., 238:1--16, 2005. [ bib ]
[1947] H. Gonnermann and S. Mukhopadhyay. Preserving noble gases in a convecting mantle. Nature, 458:560--564, 2009. [ bib ]
[1948] H. M. Gonnermann and M. Manga. Dynamics of magma ascent in the volcanic conduit. In S. A. Fagents, T. K. P. Gregg, and R. M. C. Lopes, editors, Modeling volcanic processes, The Physics and Mathematics of Volcanism. Cambridge University Press, 2013. [ bib ]
[1949] Helge Gonnermann, Kyle Anderson, Tom Sisson, George Bergantz, Matthew Pritchard, Matthew Jackson, Philipp Ruprecht, Mark Ghiorso, Emilie Hooft, Christian Huber, Eleonora Rivalta, Diana Roman, Mattia de’ Michieli Vitturi, Madison Myers, Joe Dufek, Antonio Costa, Costanza Bonadonna, Larry Mastin, Hélène Le Mével, Mary Grace Bato, Michael Poland, Paul Segall, Leif Karlstrom, Erin Fitch, and Einat Lev. Modeling volcano-magmatic systems: Crustal magma transport, storage and eruption (draft). Technical report, Modeling Collaboratory for Subduction, Austin TX, 2021. Available online at https://bit.ly/3nYhI9W, accessed 10/2021. [ bib ]
[1950] L.B. Goodwin and H.R. Wenk. Development of phyllonite from granodiorite - mechanisms of grain-size reduction in the Santa-Rosa mylonite zone, California. J. Struct. Geol., 17:689, 1995. [ bib ]
[1951] A. Gorbatov and B. L. N. Kennett. Joint bulk-sound and shear tomography for western pacific subduction zones. Earth Planet. Sci. Lett., 210:527--543, 2003. [ bib ]
[1952] A Gorbatov and V Kostoglodov. Maximum depth of seismicity and thermal parameter of the subducting slab: general empirical relation and its application. Tectonophys., 277:165--187, 1997. [ bib ]
[1953] R. G. Gordon. Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geoophys. Mono., pages 143--159. American Geophysical Union, Washington DC, 2000. [ bib ]
[1954] R. G. Gordon, A. Cox, and C. E. Harter. Absolute motion of an individual plate estimated from its ridge and trench boundaries. Nature, 274:752--755, 1978. [ bib ]
[1955] R. G. Gordon and D. M. Jurdy. Cenozoic global plate motions. J. Geophys. Res.: Sol. Earth, 91:12389--12406, 1986. [ bib ]
[1956] Richard G Gordon. Plate motions, crustal and lithospheric mobility, and paleomagnetism: Prospective viewpoint. J. Geophys. Res.: Sol. Earth, 100:24367--24392, 1995. [ bib ]
[1957] Liran Goren, Matthew Fox, and Sean D Willett. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. J. Geophys. Res.: Earth Surf., 119:1651--1681, 2014. [ bib ]
[1958] C. Gorini, A. Mauffret, P. Guennoc, and A. Le Marrec. Structure of the gulf of Lions (Northwestern Mediterranean Sea): a review. In A. Mascle, editor, Hydrocarbon and Petroleum Geology of France, volume 4 of Europ. Assoc. Petrol. Geol., pages 223--243. Springer, New York, 1994. [ bib ]
[1959] D. Gorney, A. Escalona, P. Mann, M. B. Magnani, and BOLIVAR Study Group. Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on-land geology. AAPG Bull., 91:653--684, 2007. [ bib ]
[1960] M. L. Gorring and S. M. Kay. Mantle processes and sources of Neogene slab-window magmas in southern Patagonia. J. Petrol., 42:1067--1094, 2001. [ bib ]
[1961] A. Gorszczyk, S. Operto, L. Schenini, and Y. Yamada. Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough. Solid Earth, 10:765--784, 2019. [ bib ]
[1962] A. Goss and S. M. Kay. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem., Geophys., Geosys., 7(Q05016), 2006. [ bib | DOI ]
[1963] A. Goss and S. M. Kay. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~27o S, ~68o W). Earth Planet. Sci. Lett., 270:97--109, 2009. [ bib ]
[1964] A. Goss, S. M. Kay, C. Mpodozis, and B. Singer. The Incapillo Caldera and dome complex (~28oS): A stranded magma chamber over a dying Andean arc, California. J. Volc. Geother Res., 184:384--404, 2009. [ bib ]
[1965] A. Goss, S. M. Kay, and C. Mpodozis. Geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28oS). Contrib. Mineral. Petrol., 161:101--128, 2011. [ bib ]
[1966] J. Gosse and F. Phillips. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sci. Rev., 20:1475--1560, 2001. [ bib ]
[1967] M. Gouiza and J. Naliboff. Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere. Nature comm., 12:4653, 2021. [ bib ]
[1968] N. J. Goulding, N. M. Ribe, O. Castelnau, A. M. Walker, and J. Wookey. Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy. Geophys. J. Int., 203:334--350, 2015. [ bib ]
[1969] Bruno Goutorbe and John K Hillier. An integration to optimally constrain the thermal structure of oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 118:432--446, 2013. [ bib ]
[1970] R Govers and MJR Wortel. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett., 236:505--523, 2005. [ bib ]
[1971] Free Software Foundation. GNU General Public License, GPLv3. Free Software Foundation, Boston, MA, 2007. Available online at www.gnu.org/licenses/gpl-3.0.en.html, accessed 01/2020. [ bib ]
[1972] C. C. Graham, S. Stanchits, I. G. Main, and G. Dresen. Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data. Int. J. Rock Mech. Min. Sci., 47:161--169, 2010. [ bib ]
[1973] Shannon E Graham, John P Loveless, and Brendan J Meade. Global plate motions and earthquake cycle effects. Geochem., Geophys., Geosys., 19:2032--2048, 2018. [ bib ]
[1974] E. Granato and S. C. Ying. Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model. Phys. Rev. B, 59:5154--5161, 1999. [ bib ]
[1975] S. P. Grand. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A, 360:2475--2491, 2002. [ bib ]
[1976] S. P. Grand. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res.: Sol. Earth, 99:11591--11621, 1994. [ bib ]
[1977] S. P. Grand, R. D. van der Hilst, and S. Widiyantoro. Global seismic tomography; a snapshot of convection in the Earth. GSA Today, 7:1--7, 1997. [ bib ]
[1978] S. P. Grand. Updated tomographic model based on [?], accessed 02/2001, 2001. ftp://amazon.geo.utexas.edu/outgoing/steveg/. [ bib ]
[1979] Roi Granot and Jérôme Dyment. The cretaceous opening of the South Atlantic Ocean. Earth Planet. Sci. Lett., 414:156--163, 2015. [ bib ]
[1980] Roi Granot. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nature Geosc., 9:701--705, 2016. [ bib ]
[1981] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9:189, 1983. [ bib ]
[1982] Fabien Graveleau, Jacques Malavieille, and Stéphane Dominguez. Experimental modelling of orogenic wedges: A review. Tectonophys., 538:1--66, 2012. [ bib ]
[1983] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward Field, Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta, Kevin Milner, et al. Cybershake: A physics-based seismic hazard model for southern California. Pure Appl. Geophys., 168:367--381, 2011. [ bib ]
[1984] R. W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am., 86:1091--1106, 1996. [ bib ]
[1985] D.H. Green and A.E. Ringwood. The genesis of basaltic magmas. Contrib Mineral. Petrol., 15:103--190, 1967. [ bib ]
[1986] H. W. Green and H. Houston. The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci., 23:169--213, 1995. [ bib ]
[1987] Richard Greenberg, Paul Geissler, Gregory Hoppa, and B. R. Tufts. Tidal-tectonic processes and their implications for the character of Europa's icy crust. Rev. Geophys., 40(2):1004, 2002. [ bib | DOI ]
[1988] L. L. Greischar and C. R. Bentley. Isostatic Equilibrium Grounding Line between the West Antarctic Inland Ice-Sheet and the Ross Ice Shelf. Nature, 283:651--654, 1980. [ bib ]
[1989] WL Griffin, SY O’Reilly, N Abe, S Aulbach, RM Davies, NJ Pearson, BJ Doyle, and K Kivi. The origin and evolution of Archean lithospheric mantle. Precamb. Res., 127:19--41, 2003. [ bib ]
[1990] W. L. Griffin, S. Y. O'Reilly, J. C. Afonso, and G. C. Begg. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol., 50:1185--1204, 2009. [ bib ]
[1991] Jonathan D Griffin, Mark W Stirling, and Ting Wang. Periodicity and clustering in the long-term earthquake record. Geophys. Res. Lett., 47(22):e2020GL089272, 2020. [ bib ]
[1992] W. A. Griffith and M. L. Cooke. Mechanical validation of the three-dimensional intersection geometry between the Puente Hills blind-thrust system and the Whittier fault Los Angeles, California. Bull. Seismol. Soc. Am., 94:493--505, 2004. [ bib ]
[1993] A. A. Griffith. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A, 221:582--593, 1921. [ bib ]
[1994] A. A. Griffith. The theory of rupture. In J. M. Bienzano, C. B. und Burgers, editor, Proc. 1st. Int. Congr. Appl. Mech., pages 54--63. Tech. Boekhandel en Drukkerij, Delft, 1924. [ bib ]
[1995] PT Griffiths. Non-newtonian channel flow-exact solutions. IMA J. Appl. Math., 85:263--279, 2020. [ bib ]
[1996] R. W. Griffiths. Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech., 166:115--138, 1986. [ bib ]
[1997] R. W. Griffiths. Particle motions induced by spherical convective elements in Stokes flow. J. Fluid Mech., 166:139--159, 1986. [ bib ]
[1998] R. W. Griffiths, M. Gurnis, and G. Eitelberg. Holographic measurements of surface topography in laboratory models of mantle hotspots. Geophys. J. Int., 96:477--495, 1989. [ bib ]
[1999] Ross W Griffiths and Ian H Campbell. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett., 99:66--78, 1990. [ bib ]
[2000] R. W. Griffiths, R. I. Hackney, and R. D. van der Hilst. A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet. Sci. Lett., 133:1--17, 1995. [ bib ]
[2001] D. T. Griggs and D. W. Baker. The origin of deep-focus earthquakes. In H. Mark and S. Fernbach, editors, Properties of Matter Under Unusual Conditions. Wiley, New York, 1969. [ bib ]
[2002] C. Grigné, S. Labrosse, and P. J. Tackley. Convective heat transfer as a function of wavelength. Implications for the cooling of the Earth. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[2003] C Grigné and M Combes. Thermal history of the Earth: On the importance of surface processes and the size of tectonic plates. Geochem., Geophys., Geosys., 21:e2020GC009123, 2020. [ bib ]
[2004] D.-A. Griot, J.-P. Montagner, and P. Tapponnier. Heterogeneous versus homogeneous strain in central Asia. Geophys. Res. Lett., 25:1447--1450, 1998. [ bib ]
[2005] A. E. Gripp and R. G. Gordon. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150:321--361, 2002. [ bib ]
[2006] A. E. Gripp and R. G. Gordon. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys. Res. Lett., 17:1109--1112, 1990. [ bib ]
[2007] Christopher J. Grose and Juan Carlos Afonso. Comprehensive plate models for the thermal evolution of oceanic lithosphere. Geochem., Geophys., Geosys., 14:3751--3778, 2013. [ bib ]
[2008] CJ Grose and JC Afonso. The hydrothermal power of oceanic lithosphere. Sol. Earth, 6:1131--1155, 2015. [ bib ]
[2009] S. Gross and C. Kisslinger. Estimating tectonic stress rate and state with Landers aftershocks. J. Geophys. Res.: Sol. Earth, 102:7603--7612, 1997. [ bib ]
[2010] S. Gross and R. Bürgmann. The rate and state of background stress estimated from the aftershocks of the 1989 Loma Prieta, California, earthquake. J. Geophys. Res.: Sol. Earth, 102:4915--4927, 1998. [ bib ]
[2011] Siegfried Grossmann and Detlef Lohse. Scaling in thermal convection: a unifying theory. J. Fluid Mech., 407:27--56, 2000. [ bib ]
[2012] T Grove, S Parman, S Bowring, R Price, and M Baker. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol., 142:375--396, 2002. [ bib ]
[2013] TL Grove, CB Till, E Lev, N Chatterjee, and E Médard. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459:694--697, 2009. [ bib ]
[2014] T. L. Grove, C. B. Till, and M. J. Krawczynski. The role of H2O in subduction zone magmatism. Ann. Rev. Earth Planet. Sci., 40:413--439, 2012. [ bib ]
[2015] M. A. Growdon, G. L. Pavlis, F. Niu, F. L. Vernon, and H. Rendon. Constraints on mantle flow at the Caribbean-South American plate boundary inferred from shear wave splitting. J. Geophys. Res.: Sol. Earth, 114(B02303), 2009. [ bib | DOI ]
[2016] EDC. Global 30 Arc Second Elevation Data Set. EROS Data Center, Sioux Falls, South Dakota, 1996. [ bib ]
[2017] Y. J. Gu, A. M. Dziewoński, W.-j. Su, and G. Ekström. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Res.: Sol. Earth, 106:11169--11199, 2001. [ bib ]
[2018] Y. Gu, A. Dziewoński, and G. Ekström. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys. J. Int., 154:559--583, 2003. [ bib ]
[2019] Y. H. Gu, A. L. Lerner-Lam, A. M. Dziewonski, and G. Ekström. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth Planet. Sci. Lett., 232:259--272, 2005. [ bib ]
[2020] J.-C. Gu, J. R. Rice, A. L. Ruina, and S. T. Tse. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids, 32:167--196, 1984. [ bib ]
[2021] Y. Gu and T.-F. Wong. Nonlinear dynamics of the transition from stable sliding to cyclic stick-slip in rock. In W. I. Newman, A. Gabrielov, and D. L. Turcotte, editors, Nonlinear dynamics and predictability of geophysical phenomena, volume 83 of Geoophys. Mono., pages 15--35. American Geophysical Union, Washington, DC, 1994. [ bib ]
[2022] Y. Gu, A. M. Dziewoński, and C. B. Agee. Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157:57--67, 1998. [ bib ]
[2023] A. Gualandi, J.-P. Avouac, S. Michel, and D. Faranda. The predictable chaos of slow earthquakes. Science adv., 6:eaaz5548, 2020. [ bib ]
[2024] A. Gualandi, D. Faranda, C. Marone, M. Cocco, and G. Mengaldo. Deterministic and stochastic chaos characterize laboratory earthquakes. Earth Planet. Sci. Lett., 604:117995, 2023. [ bib ]
[2025] A. P. Gubanov and W. D. Mooney. New global maps of crustal basement age. Eos Trans. AGU, 90, 2009. Fall Meet. Suppl., Abstract T53B-1583. [ bib ]
[2026] David Gubbins, Dario Alfe, Guy Masters, G David Price, and Michael Gillan. Gross thermodynamics of two-component core convection. Geophys. J. Int., 157:1407--1414, 2004. [ bib ]
[2027] O. Gudmundsson, J. H. Davies, and R. W. Clayton. Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data. Geophys. J. Int., 102:25--43, 1990. [ bib ]
[2028] O. Gudmundsson and M. Sambridge. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res.: Sol. Earth, 103:7121--7136, 1998. [ bib ]
[2029] M. C. Guédez. Crustal structure across the Caribbean-South American Plate boundary at 70W -- Results from seismic refraction and reflection data. Master's thesis, Rice University, Houston, 2007. [ bib ]
[2030] E. Gueguen, C. Doglioni, and M. Fernandez. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophys., 298:259--269, 1998. [ bib ]
[2031] F. Gueydan, C. Morency, and J.-P. Brun. Continental rifting as a function of lithosphere mantle strength. Tectonophys., 460:83--93, 2008. [ bib ]
[2032] F. Gueydan and J. Précigout. Modes of continental rifting as a function of ductile strain localization in the lithospheric mantle. Tectonophys., 612:18--25, 2014. [ bib ]
[2033] F. Gueydan, J. Précigout, and L. G. J. Montési. Strain weakening enables continental plate tectonics. Tectonophys., 631:189--196, 2016. [ bib ]
[2034] G. Guieu and J. Roussel. Arguments for the pre-rift uplift and rift propagation in the Ligurian-Provençal basin (northwestern Mediterranean) in the light of Pyrenean Provençal orogeny. Tectonics, 9:1113--1142, 1990. [ bib ]
[2035] B. Guillaume, M. Moroni, F. Funiciello, C. Faccenna, and J. Martinod. Mantle flow and dynamic topography associated with slab window opening : Insights from laboratory models. Tectonophys., 496:83--98, 2010. [ bib ]
[2036] S. Guillot, E. Garzanti, D. Baratoux, D. Marquer, G. Mahéo, and J. de Sigoyer. Reconstructing the total shortening history of the NW Himalaya. Geochem., Geophys., Geosys., 4(7), 2003. [ bib | DOI ]
[2037] L. Gouillou-Frottier, J. Buttles, and P. Olson. Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett., 133:19--34, 1995. [ bib ]
[2038] Anna JP Gülcher, David J Gebhardt, Maxim D Ballmer, and Paul J Tackley. Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle. Earth Planet. Sci. Lett., 536:116160, 2020. [ bib ]
[2039] A. J. P. Gülcher, M. D. Ballmer, and P. J. Tackley. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle. Solid Earth, 12:2087--2107, 2021. [ bib ]
[2040] Y. Gung, M. Panning, and B. A. Romanowicz. Global anisotropy and the thickness of continents. Nature, 422:707--711, 2003. [ bib ]
[2041] Y. Gung and B. A. Romanowicz. Q tomography of the upper mantle using three-component long-period waveforms. Geophys. J. Int., 157:813--830, 2004. [ bib ]
[2042] M. Gupta and T. H Kwon. 3-D Flow analysis of non-Newtonian viscous fluids using “enriched” finite elements. Polymer Eng. Sci., 30:1420--1430, 1990. [ bib ]
[2043] Derya Gürer and Douwe JJ van Hinsbergen. Diachronous demise of the Neotethys Ocean as a driver for non-cylindrical orogenesis in Anatolia. Tectonophys., 760:95--106, 2019. [ bib ]
[2044] M. Gurnis, S. Zhong, and J. Toth. On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motions, volume 121 of Geophysical Monograph, pages 73--94. AGU, Washington DC, 2000. [ bib ]
[2045] M. Gurnis, J. X. Mitrovica, J. Ritsema, and H.-J. van Heijst. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochem., Geophys., Geosys., 1(1020), 2000. [ bib | DOI ]
[2046] M. Gurnis, J. Ritsema, H.-J. van Heijst, and S. Zhong. Tonga slab deformation: The influence of a lower mantle upwelling on a slab in a young subduction zone. Geophys. Res. Lett., 27:2373--2376, 2000. [ bib ]
[2047] M. Gurnis. Sculpting the earth from inside out. Scientific American, 284:40--47, 2001. [ bib ]
[2048] M. Gurnis. Stirring and mixing in the mantle by plate-scale flow: large persistent blobs and long tendrils coexist. Geophys. Res. Lett., 13:1474--1477, 1986. [ bib ]
[2049] M. Gurnis. Quantitative bounds on the size spectrum of isotopic heterogeneity within the mantle. Nature, 323:317--320, 1986. [ bib ]
[2050] M. Gurnis and G. F. Davies. The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett., 13:541--544, 1986. [ bib ]
[2051] M. Gurnis and G. F. Davies. Numerical models of high Rayleigh number convection in a medium with depth-dependent viscosity. Geophys. J. R. Astr. Soc., 85:523--541, 1986. [ bib ]
[2052] M. Gurnis and B. H. Hager. Controls of the structure of subducted slabs. Nature, 335:317--321, 1988. [ bib ]
[2053] M. Gurnis. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332:695--699, 1988. [ bib ]
[2054] M. Gurnis. Ridge spreading, subduction, and sea level fluctuations. Science, 250:970--972, 1990. [ bib ]
[2055] M. Gurnis. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344:754--756, 1990. [ bib ]
[2056] M. Gurnis. Rapid continental subsidence following the initiation and evolution of subduction. Science, 255:1556--1558, 1992. [ bib ]
[2057] M. Gurnis. Depressed continental hypsometry behind oceanic trenches: a clue to subduction controls on sea-level change. Geology, 21:29--32, 1993. [ bib ]
[2058] M. Gurnis. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature, 364:589--593, 1993. [ bib ]
[2059] M. Gurnis and T. Torsvik. Rapid drift of large continents during the Late Precambrian and Paleozoic: Paleomagnetic constraints and dynamics models. Geology, 22:1023--1026, 1994. [ bib ]
[2060] M. Gurnis, C. Eloy, and S. Zhong. Free-surface formulation of mantle convection --ii. Implication for subduction-zone observables. J. Geophys. Res.: Sol. Earth, 127:719--727, 1996. [ bib ]
[2061] A. R. Gusman, Y. Tanioka, H. Matsumoto, and S.-I. Iwasaki. Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bull. Seismol. Soc. Am., 99:2169--2179, 2009. [ bib ]
[2062] B. Gutenberg. Über die Konstitution des Erdinnern, erschlossen aus Erdbebenbeobachtungen. Phys. Z, 14:1217--1218, 1913. [ bib ]
[2063] B. Gutenberg and C. F. Richter. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34:185--188, 1944. [ bib ]
[2064] B. Gutenberg and C.F. Richter. Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton, 1949. [ bib ]
[2065] G. Gutenberg and C. F. Richter. Seismicity of the Earth. Princeton University Press, Princeton NJ, 1954. [ bib ]
[2066] B. Gutenberg. The asthenosphere low-velocity layer. Annal. Geophys., 12:439--460, 1959. [ bib ]
[2067] M.-A. Gutscher, W. Spakman, H. Bijwaard, and E. R. Engdahl. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19:814--833, 2000. [ bib ]
[2068] M.-A. Gutscher, J. Malod, J.-P. Rehault, I. Contrucci, F. Klingelhoefer, L. Mendes-Victor, and W. Spakman. Evidence for active subduction beneath Gibraltar. Geology, 30:1071--1074, 2002. [ bib ]
[2069] M.-A. Gutscher and S. M. Peacock. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. J. Geophys. Res.: Sol. Earth, 108(2009), 2003. [ bib | DOI ]
[2070] M.-A. Gutscher, J. Malavieille, S. Lallemand, and J.-Y. Collot. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett., 168:255--270, 1999. [ bib ]
[2071] J. H. Guynn and C. R. Lithgow-Bertelloni. Modeling mantle contributions to the global lithospheric stress field (abstract). Eos Trans. AGU, 82(47):T12C--0922, 2001. [ bib ]
[2072] Z. Gvirtzman, C. Faccenna, and T. W. Becker. Isostasy, flexure, and dynamic topography. Tectonophys., 683:255--271, 2016. [ bib ]
[2073] Shahar Gvirtzman and Jay Fineberg. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nature Phys., 17:1037--1042, 2021. [ bib ]
[2074] S. Gvirtzman and J. Fineberg. The initiation of frictional motion—the nucleation dynamics of frictional rupture. J. Geophys. Res.: Sol. Earth, 128(e2022JB025483), 2023. [ bib | DOI ]
[2075] Z. Gvirtzman and A. Nur. The formation of Mount Etna as the consequence of slab rollback. Nature, 401:782--785, 1999. [ bib ]
[2076] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. US Geol. Surv. Prof. Pap., 294-B(97), 1957. [ bib ]
[2077] B. R. Hacker, S. M. Peacock, G. A. Abers, and S. D. Holloway. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res.: Sol. Earth, 108:24627--24637, 2003. [ bib ]
[2078] B. R. Hacker and G. A. Abers. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem., Geophys., Geosys., 5(Q01005), 2004. [ bib | DOI ]
[2079] Bradley R Hacker. H2O subduction beyond arcs. Geochem., Geophys., Geosys., 9(Q03001), 2008. [ bib | DOI ]
[2080] R. A. Haddon and J. R. Cleary. Evidence for scattering of seismic PKP waves near the core-mantle boundary. Phys. Earth Planet. Inter., 8:211--234, 1974. [ bib ]
[2081] D. Hadley and H. Kanamori. Seismic structure of the Transverse Ranges. Geol. Soc. Am. Bull., 88:1469--1478, 1977. [ bib ]
[2082] M. Härri. Folding versus faulting of pressure sensitive elastoplastic rocks: application to the Jura Mountains. Phd-thesis, ETH Zürich, 1998. [ bib ]
[2083] E. Hafkenscheid, M. J. R. Wortel, and W. Spakman. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res.: Sol. Earth, 111(B08401), 2006. [ bib | DOI ]
[2084] B. H. Hager and R. J. O'Connell. Subduction zone dip angles and flow derived by plate motion. Tectonophys., 50:111--133, 1978. [ bib ]
[2085] B. H. Hager. Oceanic plate motions driven by lithospheric thickening and subducted slabs. Nature, 276:156--159, 1978. [ bib ]
[2086] B. H. Hager and R. J. O'Connell. Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res.: Sol. Earth, 84:1031--1048, 1979. [ bib ]
[2087] B. H. Hager and R. J. O'Connell. A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Sol. Earth, 86:4843--4867, 1981. [ bib ]
[2088] B. H. Hager, R. J. O'Connell, and A. Raefsky. Subduction, back-arc spreading and global mantle flow. Tectonophys., 99:165--189, 1983. [ bib ]
[2089] B. H. Hager. Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res.: Sol. Earth, 89:6003--6015, 1984. [ bib ]
[2090] B. H. Hager, R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewoński. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313:541--545, 1985. [ bib ]
[2091] B. H. Hager and R. W. Clayton. Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In W. R. Peltier, editor, Mantle convection: Plate tectonics and global dynamics, volume 4 of Fluid Mech. Astrophys. Geophys., pages 657--763. Gordon and Breach Science Pub., New York, NY, 1989. [ bib ]
[2092] BH Hager and MA Richards. Long-wavelength variations in earth's geoid: physical models and dynamical implications. Phil. Trans. Royal Soc. London. Ser. A, 328:309--327, 1989. [ bib ]
[2093] H.G. Hahn. Bruchmechanik. B. G. Teubner, Stuttgart, 1976. [ bib ]
[2094] S. Haines. PP and PS interferometric images of near-seafloor sediments. In 81st Ann. Internat. Mtg. Soc. Expl. Geophys. (Expanded Abstracts), pages 1288--1292, 2011. [ bib ]
[2095] A John Haines, Lada L Dimitrova, Laura M Wallace, and Charles A Williams. Enhanced surface imaging of crustal deformation: Obtaining tectonic force fields using GPS data. Springer, 2015. [ bib ]
[2096] John Haines, Laura M Wallace, and Lada Dimitrova. Slow slip event detection in Cascadia using vertical derivatives of horizontal stress rates. J. Geophys. Res.: Sol. Earth, 124:5153--5173, 2019. [ bib ]
[2097] A. J. Haines and W. E. Holt. A procedure to obtain the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res.: Sol. Earth, 98:12057--12082, 1993. [ bib ]
[2098] Sebastian Hainzl and David Marsan. Dependence of the Omori-Utsu law parameters on main shock magnitude: Observations and modeling. J. Geophys. Res.: Sol. Earth, 113, 2008. [ bib | DOI ]
[2099] A. J. Hale, K.-D. Gottschaldt, G. Rosenbaum, L. Bourgouin, M. Bauchy, and H. Mühlhaus. Dynamics of slab tear faults: Insights from numerical modelling. Tectonophys., 483:58--70, 2010. [ bib ]
[2100] T. C. Hales, D. Abt, E. D. Humphreys, and J. Roering. Columbia River basalt eruptions and uplift of the Wallowa mountains. Nature, 438:842--845, 2005. [ bib ]
[2101] A. L. Hales. Convection currents in the earth. Roy. Astron. Soc., Geophys. Supp., 3:372--379, 1936. [ bib ]
[2102] A. L. Hales. Gravitational sliding and continental drift. Earth Planet. Sci. Lett., 6:31--34, 1969. [ bib ]
[2103] C. E. Hall, K. M. Fischer, E. M. Parmentier, and D. K. Blackman. The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. J. Geophys. Res.: Sol. Earth, 105:28009--28033, 2000. [ bib ]
[2104] R. Hall. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer based reconstructions, model and animations. J. Asian Earth Sci., 20:353--434, 2002. [ bib ]
[2105] C. E. Hall, M. Gurnis, M. Sdrolias, L. L. Lavier, and R. D. Muller. Catastrophic initiation of subduction following forced convergence at transform boundaries. Earth Planet. Sci. Lett., 212:15--30, 2003. [ bib ]
[2106] C. E. Hall and E. M. Parmentier. Influence of grain size evolution on convective instability. Geochem., Geophys., Geosys., 4(1029), 2003. [ bib | DOI ]
[2107] C. E. Hall and M. Gurnis. Strength of fracture zones from their barymetric and gravitational evolution. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[2108] Paul S Hall. On the thermal evolution of the mantle wedge at subduction zones. Phys. Earth Planet. Inter., 198:9--27, 2012. [ bib ]
[2109] Kara L Hall, Amanda L Vogel, and Kevin Crowston. Comprehensive collaboration plans: practical considerations spanning across individual collaborators to institutional supports. In Strategies for Team Science Success, pages 587--611. Springer, 2019. [ bib ]
[2110] H. Hamamoto, M. Yamano, S. Goto, M. Kinoshita, K. Fujino, and K. Wang. Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula. Geochem., Geophys., Geosys., 12(Q2011), 2011. [ bib | DOI ]
[2111] S. Hamdi, W. E. Schiesser, and G. W Griffiths. Method of lines. Scholarpedia, 2(7):2859, 2007. revision #124335. [ bib | DOI ]
[2112] W. B. Hamilton. An alternative Earth. GSA Today, 13:4--12, 2003. [ bib ]
[2113] R. B. Hamilton. Aftershocks of the Borrego mountain earthquake from April 12 to June 12, 1968. In The Borrego Mountain Earthquake of April 9, 1968, volume 787 of Geol. Surv. Profess. Paper, pages 31--54. U.S. Government Printing Center, 1972. [ bib ]
[2114] W. C. Hammond and E. D. Humphreys. Upper mantle seismic wave attenuation: The effect of realistic partial melt distribution. J. Geophys. Res.: Sol. Earth, 105:10975--10986, 2000. [ bib ]
[2115] W. C. Hammond and W. Thatcher. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[2116] W. C. Hammond, G. Blewitt, Z. Li, H.-P. Plag, and C. Kreemer. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology, 40:667--670, 2012. [ bib ]
[2117] William C Hammond, Geoffrey Blewitt, and Corne Kreemer. Steady contemporary deformation of the central Basin and Range Province, western United States. J. Geophys. Res.: Sol. Earth, 119:5235--5253, 2014. [ bib ]
[2118] R. Han, T. Shimamoto, T. Hirose, J.-H. Ree, and J. Ando. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316:878--881, 2007. [ bib ]
[2119] Shin-Chan Han, Jeanne Sauber, and Fred Pollitz. Broadscale postseismic gravity change following the 2011 Tohoku-Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip. Geophys. Res. Lett., 41:5797--5805, 2014. [ bib ]
[2120] Shuoshuo Han, Nathan L. Bangs, Suzanne M. Carbotte, Demian. M Saffer, and James C. Gibson. Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geosc., 10:954--959, 2017. [ bib ]
[2121] Libo Han, Jia Cheng, Yanru An, Lihua Fang, Changsheng Jiang, Bo Chen, Zhongliang Wu, Jie Liu, Xiwei Xu, Ruifeng Liu, Zhixiang Yao, Changzai Wang, and Yushi Wany. Preliminary report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, earthquake. Seismol. Res. Lett., 89:557--569, 2018. [ bib ]
[2122] D. Han and J. Wahr. An analysis of anisotropic mantle viscosity, and its possible effects on post-glacial rebound. Phys. Earth Planet. Inter., 102:33--50, 1997. [ bib ]
[2123] L. Han and M. Gurnis. How valid are dynamical models of subduction and convection when plate motions are prescribed? Phys. Earth Planet. Inter., 110:235--246, 1999. [ bib ]
[2124] B. Hanan and D. Graham. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272:991--995, 1996. [ bib ]
[2125] G. Hancock, R. Anderson, O. Chadwick, and R. Finkel. Dating fluvial terraces with 10Be and 26Al profiles: Application to the Wind River, Wyoming. Geomorph., 27:1--2, 1999. [ bib ]
[2126] Thomas C. Hanks and Hiroo Kanamori. A moment magnitude scale. J. Geophys. Res.: Sol. Earth, 84:2348--2350, 1979. [ bib ]
[2127] L. N. Hansen, M. E. Zimmerman, and D. L. Kohlstedt. Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature, 492:415--418, 2012. [ bib ]
[2128] L. N. Hansen, Y.-H. Zhao, M. E. Zimmerman, and D. L. Kohlstedt. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet. Sci. Lett., 387:157--158, 2014. [ bib ]
[2129] Steven M Hansen, Ken Dueker, and Brandon Schmandt. Thermal classification of lithospheric discontinuities beneath USArray. Earth Planet. Sci. Lett., 431:36--47, 2015. [ bib ]
[2130] L. N. Hansen, C. Qib, and J. M. Warren. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere. Proc. Natl. Acad. Sci. USA, 113:10503--10506, 2016. [ bib ]
[2131] L. N. Hansen, J. M. Warren, M. E. Zimmerman, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth Planet. Sci. Lett., 445:92--103, 2016. [ bib ]
[2132] L. N. Hansen, C. P. Conrad, Y. Boneh, P. Skemer, J. M. Warren, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model. J. Geophys. Res.: Sol. Earth, 121:7137--7160, 2016. [ bib | DOI ]
[2133] Lars N Hansen, Kathryn M Kumamoto, Christopher A Thom, David Wallis, William B Durham, David L Goldsby, Thomas Breithaupt, Cameron D Meyers, and David L Kohlstedt. Low-temperature plasticity in olivine: Grain size, strain hardening, and the strength of the lithosphere. J. Geophys. Res.: Sol. Earth, 124:5427--5449, 2019. [ bib ]
[2134] J. L. Hardebeck and E. Hauksson. Crustal stress field in southern California and its implications for fault mechanics. J. Geophys. Res.: Sol. Earth, 106:21859--21882, 2001. [ bib ]
[2135] J. L. Hardebeck and E. Hauksson. Stress orientations obtained from earthquake focal mechanisms; what are appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91:250--262, 2001. [ bib ]
[2136] J. L. Hardebeck and P. M. Shearer. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am., 92:2264--2276, 2002. [ bib ]
[2137] J. L. Hardebeck and P. M. Shearer. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seismol. Soc. Am., 93:2434--2444, 2003. [ bib ]
[2138] J. L. Hardebeck and A. J. Michael. Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[2139] J. L. Hardebeck. Stress triggering and earthquake probability estimates. J. Geophys. Res.: Sol. Earth, 109(B04310), 2004. [ bib | DOI ]
[2140] J. L. Hardebeck, P. M. Shearer, and E. Hauksson. A new earthquake focal mechanism catalog for southern California. In 2005 SCEC Annual Meeting Abstracts, page 130, Los Angeles, CA, 2005. Southern California Earthquake Center. [ bib ]
[2141] J. L. Hardebeck. Homogeneity of small-scale earthquake faulting, stress and fault strength. Bull. Seismol. Soc. Am., 96:1675--1688, 2006. [ bib ]
[2142] J. L. Hardebeck and A. J. Michael. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. J. Geophys. Res.: Sol. Earth, 111(B11310), 2006. [ bib | DOI ]
[2143] J. L. Hardebeck. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett., 39(L21313), 2012. [ bib | DOI ]
[2144] J. Hardebeck, B. Aagaard, T. W. Becker, B. Shaw, and J. Shaw. Workshop Report for Community Stress Model (CSM) 2012 Workshop, SCEC Award 12114. Available online at sceczero.usc.edu/dashboard/darel/search/product?pid=32, accessed 10/2013, 2013. [ bib ]
[2145] Jeanne L Hardebeck. Stress orientations in subduction zones and the strength of subduction megathrust faults. Science, 349:1213--1216, 2015. [ bib ]
[2146] J. L. Hardebeck and T. Okada. Temporal stress changes caused by earthquakes: A review. J. Geophys. Res.: Sol. Earth, 123:1350--1365, 2018. [ bib ]
[2147] Jeanne L Hardebeck. Physical properties of the crust influence aftershock locations. J. Geophys. Res.: Sol. Earth, 127:e2022JB024727, 2022. [ bib ]
[2148] J. L. Hardebeck and R. A. Harris. Earthquakes in the shadows: Why aftershocks occur at surprising locations. Seismic Rec., 2:207--216, 2022. [ bib ]
[2149] J. L. Hardebeck, Andrea L. Llenos, Andrew J. Michael, Morgan T. Page, Max Schneider, and Nicholas J. van der Elst. Afterchock forecasting. Ann. Rev. Earth Planet. Sci., 52:1--24, 2024. [ bib ]
[2150] J. L. Hardebeck, J. J. Nazareth, and E. Hauksson. The static stress change triggering model: Constraints from two southern California aftershock sequences. J. Geophys. Res.: Sol. Earth, 103:24427--24437, 1998. [ bib ]
[2151] J. W. Harden and J. C. Matti. Holocene and late Pleistocene slip rates on the San Andreas Fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology. Geol. Soc. Am. Bull., 101:1107--1117, 1989. [ bib ]
[2152] L. A. Hardie. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24:279--283, 1996. [ bib ]
[2153] J. F. Harper. On the driving forces of plate tectonics. Geophys. J. R. Astr. Soc., 40:465--474, 1975. [ bib ]
[2154] J. F. Harper. Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55:87--110, 1978. [ bib ]
[2155] JF Harper. Mantle flow due to internal vertical forces. Phys. Earth Planet. Inter., 36:285--290, 1984. [ bib ]
[2156] J. F. Harper. Mantle flow and plate motions. Geophys. J. R. Astr. Soc., 87:155--171, 1986. [ bib ]
[2157] R. A. Harris, M. W. Vorkink, C. Prasetyadi, N. Roosmawati, E. Zobell, and M. Apthorpe. Transition from subduction to arc-continent collision: Geological and neotectonic evolution of Savu, Indonesia. Geosphere, 5:152--171, 2009. [ bib ]
[2158] Ruth A Harris, Michael Barall, Dudley J Andrews, Benchun Duan, Shuo Ma, Eric M Dunham, A-A Gabriel, Yoshihiro Kaneko, Yuko Kase, Brad T Aagaard, et al. Verifying a computational method for predicting extreme ground motion. Seismol. Res. Lett., 82:638--644, 2011. [ bib ]
[2159] Ruth A. Harris, Michael Barall, Brad Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, Jean-Paul Ampuero, Yoshihiro Kaneko, Alice-Agnes Gabriel, Kenneth Duru, Thomas Ulrich, Stephanie Wollherr, Zheqiang Shi, Eric Dunham, Sam Bydlon, Zhenguo Zhang, Xiaofei Chen, Surendra Nadh Somala, Christian Pelties, Josué Tago, Victor Manuel Cruz-Atienza, Jeremy Kozdon, Eric Daub, Khurram Aslam, Yuko Kase, Kyle Withers, and Luis Dalguer. A suite of exercises for verifying dynamic earthquake rupture codes. Seismol. Res. Lett., 89:1146--1162, 2018. [ bib ]
[2160] Charles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R'io, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585:357--362, 2020. [ bib ]
[2161] R. A. Harris. Temporal distribution of strain in the active Banda orogen: a reconciliation of rival hypotheses. J. Southeast Asian Earth Sci., 6:373--386, 1991. [ bib ]
[2162] R. A. Harris and R. W. Simpson. Changes in static stress on Southern California faults after the 1992 Landers earthquake. Nature, 360:251--254, 1992. [ bib ]
[2163] Ruth A Harris and Steven M Day. Dynamics of fault interaction: Parallel strike-slip faults. J. Geophys. Res.: Sol. Earth, 98:4461--4472, 1993. [ bib ]
[2164] R. A. Harris, R. W. Simpson, and P. A. Reasenberg. Influence of static stress changes on earthquake locations in Southern California. Nature, 375:221--224, May 1995. [ bib ]
[2165] R. A. Harris and R. W. Simpson. In the shadow of 1857 -- the effect of the great Ft. Tejon earthquake on subsequent earthquakes in Southern California. Geophys. Res. Lett., 23:229--232, February 1996. [ bib ]
[2166] R. A. Harris. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res.: Sol. Earth, 103:24347--24358, 1998. [ bib ]
[2167] R. A. Harris, R. K. Sawyer, and M. G. Audley-Charles. Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, 17:458--480, 1998. [ bib ]
[2168] T. M. Harrison, J. Blichert-Toft, W. Muller, F. Albarede, P. Holden, and S. J. Mojzsis. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science, 310:1947--1950, 2005. [ bib ]
[2169] C. G. A. Harrison. Spreading rates and heat flow. Geophys. Res. Lett., 7:1041--1044, 1980. [ bib ]
[2170] D.L. Harry, D. S. Sawyer, and W.P. Leeman. The mechanics of continental extension in western North America: implications for the magmatic and structural evolution of the Great Basin. Earth Planet. Sci. Lett., 117:59--71, 1993. [ bib ]
[2171] Stanley R Hart. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309:753--757, 1984. [ bib ]
[2172] S. R. Hart and A. Zindler. Constraints on the nature and development of chemical heterogeneities in the mantle. In W. R. Peltier, editor, Mantle Convection: Plate Tectonics and Global Dynamics, pages 261--387. Gordon and Breach Science Pub., New York, 1989. [ bib ]
[2173] S. R. Hart, E. H. Hauri, L. A. Oschmann, and J. A. Whitehead. Mantle plumes and entrainment: isotopic evidence. Science, 256:517--520, 1992. [ bib ]
[2174] W. K. Hartmann and D. R. Davis. Satellite-sized planetesimals and lunar origing. Icarus, 504--515, 1975. [ bib ]
[2175] Chris JH Hartnady. About turn for supercontinents. Nature, 352:476--478, 1991. [ bib ]
[2176] R. Hartog and S. Y. Schwartz. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res.: Sol. Earth, 105:7909--7930, 2000. [ bib ]
[2177] R. Hartog and S. Y. Schwartz. Depth-dependent mantle anisotropy below the San Andreas fault system: Apparent splitting parameters and waveforms. J. Geophys. Res.: Sol. Earth, 106:4155--4168, 2001. [ bib ]
[2178] Tobias W Harvey, Brittany A Erickson, and Jeremy E Kozdon. A high-order accurate summation-by-parts finite difference method for fully-dynamic earthquake sequence simulations within sedimentary basins. J. Geophys. Res.: Sol. Earth, 128:e2022JB025357, 2023. [ bib ]
[2179] A. Hasegawa, K. Yoshida, and T. Okada. Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planet. Space, 63:703--707, 2011. [ bib ]
[2180] A. Hasegawa, K. Yoshida, Y. Asano, T. Okada, T. Iinuma, and Y. Ito. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 355:231--243, 2012. [ bib ]
[2181] Akira Hasegawa, Norihito Umino, and Akio Takagi. Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophys., 47:43--58, 1978. [ bib ]
[2182] A. Hashima, T. W. Becker, A. M. Freed, H. Sato, and D. A. Okaya. Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan. Earth, Planet. Space, 68(159), 2016. [ bib ]
[2183] Akinori Hashima and Toshinori Sato. A megathrust earthquake cycle model for Northeast Japan: bridging the mismatch between geological uplift and geodetic subsidence. Earth, Planet. Space, 69(23), 2017. [ bib ]
[2184] C. Hashimoto, A. Noda, T. Sagiya, and M. Matsuúra. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geosc., 2:141--144, 2009. [ bib ]
[2185] Zvi Hashin and Shmuel Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech. Phys. Solids, 11:127--140, 1963. [ bib ]
[2186] N. A. Haskell. The motion of a fluid under a surface load. Physics, 6:265--269, 1935. [ bib ]
[2187] Rakib Hassan, R Dietmar Müller, Michael Gurnis, Simon E Williams, and Nicolas Flament. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533:239--242, 2016. [ bib ]
[2188] R. Hassani, D. Jongmans, and J. Chéry. Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J. Geophys. Res.: Sol. Earth, 102:17951--17965, 1997. [ bib ]
[2189] D. Hasterok. A heat flow based cooling model for tectonic plates. Earth Planet. Sci. Lett., 361:34--43, 2013. [ bib ]
[2190] D Hasterok. Global patterns and vigor of ventilated hydrothermal circulation through young seafloor. Earth Planet. Sci. Lett., 380:12--20, 2013. [ bib ]
[2191] Derrick Hasterok, Jacqueline A Halpin, Alan S Collins, Martin Hand, Corné Kreemer, Matthew G Gard, and Stijn Glorie. New maps of global geological provinces and tectonic plates. Earth-Sci. Rev., 231:104069, 2022. [ bib ]
[2192] D. Hatzfeld, E. Karagianni, I. Kassaras, A. Kiratzi, E. Louvari, H. Lyon-Caen, K. Makropoulos, P. Papadimitriou, G. Bock, and K. Priestley. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res.: Sol. Earth, 106:30737--30753, 2001. [ bib ]
[2193] D. Hatzfeld and P. Molnar. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys., 48(RG2005), 2010. [ bib | DOI ]
[2194] S. A. Hauck, R. J. Phillips, and A. M. Hofmeister. Variable conductivity: effects on the thermal structure of subducting slabs. Geophys. Res. Lett., 26:3257--3260, 1999. [ bib ]
[2195] E. Hauksson et al. The 1992 Landers earthquake sequence: Seismological observations. J. Geophys. Res.: Sol. Earth, 98:19835--19858, 1993. [ bib ]
[2196] E. Hauksson. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. J. Geophys. Res.: Sol. Earth, 105:13875--13903, 2000. [ bib ]
[2197] E. Hauksson, W.-C Chi, and P. Shearer. Comprehensive waveform cross-correlation of southern california seismograms: Part 1. refined hypocenters obtained using the double-difference method and tectonic implications (abstract). Eos Trans. AGU, 84(46):S21D--0325, 2003. [ bib ]
[2198] E. Hauksson. Large earthquakes, aftershocks, and background seismicity: analysis of interseismic and coseismic spatial seismicity patterns in southern California. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 18:145, 2008. Available online at www.scec.org/meetings/2008am/2008SCECAnnualMeetingVolume.pdf, accessed 01/2009. [ bib ]
[2199] E. Hauksson. Spatial separation of large earthquakes, aftershocks, and background seismicity: Analysis of interseismic and coseismic seismicity patterns in Southern California. Pure Appl. Geophys., 167:979--997, 2010. [ bib ]
[2200] E. Hauksson, W. Yang, and P. M. Shearer. Waveform relocated earthquake catalog for Southern California (1981 to 2011). Bull. Seismol. Soc. Am., 102:2239--2244, 2012. [ bib ]
[2201] E. Hauksson and J. S. Haase. Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central Transverse Ranges, California. J. Geophys. Res.: Sol. Earth, 102:5423--5452, 1997. [ bib ]
[2202] Erik H Hauri and Stanley R Hart. Rhenium abundances and systematics in oceanic basalts. Chem. Geol., 139:185--205, 1997. [ bib ]
[2203] Chris J Hawkesworth, B Dhuime, AB Pietranik, PA Cawood, AIS Kemp, and CD Storey. The generation and evolution of the continental crust. J. Geol. Soc., 167(2):229--248, 2010. [ bib ]
[2204] W. B. Hawley, R. Allen, and M. A. Richards. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science, 353:1406--1408, 2016. [ bib ]
[2205] William B Hawley and Richard M Allen. The fragmented death of the Farallon plate. Geophys. Res. Lett., 46:7386--7394, 2019. [ bib ]
[2206] JC Hawthorne and AM Rubin. Laterally propagating slow slip events in a rate and state friction model with a velocity-weakening to velocity-strengthening transition. J. Geophys. Res.: Sol. Earth, 118:3785--3808, 2013. [ bib ]
[2207] JC Hawthorne and NM Bartlow. Observing and modeling the spectrum of a slow slip event. J. Geophys. Res.: Sol. Earth, 123:4243--4265, 2018. [ bib ]
[2208] G. Hayes. Slab2 - A Comprehensive Subduction Zone Geometry Model. Technical report, United States Geological Survey, 2018. U.S. Geological Survey data release. [ bib | DOI ]
[2209] N. Hayman and L. L. Lavier. The geologic record of deep episodic tremor and slip. Geology, 42:195--198, 2014. [ bib ]
[2210] J. D. Hays and W. C. Pitman III. Lithospheric plate motion, sea level changes, and climatic and ecological consequences. Nature, 246:18--22, 1973. [ bib ]
[2211] James D Hays, John Imbrie, and Nicholas J Shackleton. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194:1121--1132, 1976. [ bib ]
[2212] Bruce W Hayward, Hugh R Grenfell, Ashwaq T Sabaa, Kate J Clark, Ursula A Cochran, and Alan S Palmer. Subsidence-driven environmental change in three Holocene embayments of Ahuriri Inlet, Hikurangi subduction margin, New Zealand. New Zealand J. Geol. Geophys., 58:344--363, 2015. [ bib ]
[2213] Changrong He, Zeli Wang, and Wenming Yao. Frictional sliding of gabbro gouge under hydrothermal conditions. Tectonophys., 445:353--362, 2007. [ bib ]
[2214] D. Healy, S. M. Reddy, N. E. Timms, E. M. Gray, and A. V. Brovarone. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs. Earth Planet. Sci. Lett., 283:75--86, 2009. [ bib ]
[2215] R. F. S. Hearmon. An introduction to applied anisotropic elasticity. Oxford University Press, London, 1961. [ bib ]
[2216] E. H. Hearn. What can GPS tell us about the dynamics of postseismic deformation? Geophys. J. Int., 155:753--777, 2003. [ bib ]
[2217] EH Hearn, Simon McClusky, Semih Ergintav, and RE Reilinger. Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. J. Geophys. Res.: Sol. Earth, 114(B08405), 2009. [ bib | DOI ]
[2218] E. H. Hearn, F. F. Pollitz, W. R. Thatcher, and C. T. Onishi. How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? Geochem., Geophys., Geosys., 14:828--838, 2013. [ bib ]
[2219] E. H. Hearn. 2018 crm workshop report. Technical Report Available online at files.scec.org/s3fs-public/reports/2018/18202_report.pdf, accessed 02/2019, Southern California Earthquake center, University of Southern California, Los Angeles, 2018. [ bib ]
[2220] E. H. Hearn. Kinematics of southern California crustal deformation: Insights from finite-element models. Tectonophys., 758:12--28, 2019. [ bib ]
[2221] T. M. Hearn. Anisotropic Pn tomography in the western United States. J. Geophys. Res.: Sol. Earth, 101:8403--8414, 1996. [ bib ]
[2222] Elizabeth Harding Hearn, Eugene D Humphreys, Mu Chai, and J Michael Brown. Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics. J. Geophys. Res.: Sol. Earth, 102:11943--11956, 1997. correction: [2223]. [ bib ]
[2223] E. H. Hearn, E. D. Humphreys, M. Chai, and J. M. Brown. Correction to “Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics” by Elizabeth Harding Hearn, Eugene D. Humphreys, Mu Chai, and J. Michael Brown. J. Geophys. Res.: Sol. Earth, 104:1193--1195, 1999. [ bib ]
[2224] T. M. Hearn. Uppermost mantle velocities and anisotropy beneath Europe. J. Geophys. Res.: Sol. Earth, 104:15123--15139, 1999. [ bib ]
[2225] T. H. Heaton. Tidal triggering of earthquakes. Geophys. J. R. Astr. Soc., 43:307--326, 1972. [ bib ]
[2226] T. H. Heaton. Tidal triggering of earthquakes. Bull. Seismol. Soc. Am., 72:2181--2200, 1982. [ bib ]
[2227] T. H. Heaton. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter., 64:1--20, 1990. [ bib ]
[2228] H. J. van Heck and P. J. Tackley. Planforms of self-consistently generated plate tectonics in 3-D spherical geometry. Geophys. Res. Lett., 35(L19312), 2008. [ bib | DOI ]
[2229] H. J. van Heck and P. J. Tackley. Plate tectonics on super-Earths: equally or more likely than on Earth. Earth Planet. Sci. Lett., 310:252--261, 2011. [ bib ]
[2230] M. A. H. Hedlin, P. M. Shearer, and P. S. Earle. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature, 387:145--150, 1997. [ bib ]
[2231] Bruce C Heezen, Marie Tharp, and Maurice Ewing. The floors of the oceans, volume 65. Geological Society of America, 1959. [ bib ]
[2232] Bruce C Heezen, Marie Tharp, Heinrich C Berann, Heinz Vielkind, and Suzanne B MacDonald. World ocean floor. US Navy, 1977. Available online at lccn.loc.gov/2010586277, accessed 01/2023. [ bib ]
[2233] O. Heidbach. Der Mittelmeerraum: numerische Modellierung der Lithosphärendynamik im Vergleich mit Ergebnissen aus der Satellitengeodäsie, volume 525 of Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften: Reihe C, Dissertationen. Beck, München, 2000. [ bib ]
[2234] O. Heidbach, M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller. The World Stress Map database release 2008, 2008. [ bib | DOI ]
[2235] Oliver Heidbach, Mojtaba Rajabi, Xiaofeng Cui, Karl Fuchs, Birgit Müller, John Reinecker, Karsten Reiter, Mark Tingay, Friedemann Wenzel, Furen Xie, et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophys., 744:484--498, 2018. [ bib ]
[2236] H. J. van Heijst and J. H. Woodhouse. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping. Geophys. J. Int., 137:601--620, 1999. [ bib ]
[2237] E. Heilman and T. W. Becker. Plume-slab interactions can shut off subduction. Geophys. Res. Lett., 49:e2022GL099286, 2022. [ bib ]
[2238] E. Heilman and T. W. Becker. Plume-driven subduction termination in 3-D mantle convection models (preprint). Authorea, 2024. [ bib | DOI ]
[2239] M. Heimpel and P. Olson. A seismodynamical model of lithosphere deformation: Development of continental and oceanic rift networks. J. Geophys. Res.: Sol. Earth, 101:16155--16176, 1996. [ bib ]
[2240] M. Heimpel. Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388:865--868, 1997. [ bib ]
[2241] M. Heimpel. Aseismic slip in earthquake nucleation and self-similarity: evidence from Parkfield, California. Earth Planet. Sci. Lett., 157:249--254, 1998. [ bib ]
[2242] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader, Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke Liao, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, and Pradeep Dubey. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 3--14. IEEE, 2014. [ bib ]
[2243] M. Heintz, E. Debayle, and A. Vauchez. Upper mantle structure of the South American continent and neighboring oceans from surface wave tomography. Tectonophys., 406:115--139, 2005. [ bib ]
[2244] M. Heintz and B. L. N. Kennett. The apparently isotropic Australian upper mantle. Geophys. Res. Lett., 33(L15319), 2006. [ bib | DOI ]
[2245] Wiebke Heise, T Grant Caldwell, Edward A Bertrand, Graham J Hill, Stewart L Bennie, and Yasuo Ogawa. Changes in electrical resistivity track changes in tectonic plate coupling. Geophys. Res. Lett., 40:5029--5033, 2013. [ bib ]
[2246] W. Heiskanen. Isostatic tables for the reduction of gravimetric observations calculated on the basis of Airy's hypothesis. Bulletin Géodésique, 30:110--129, 1931. [ bib ]
[2247] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods – II: Realistic models and problems. Geophys. J. Int., 210:833--851, 2017. [ bib ]
[2248] G. Helffrich. Topography of the transition zone seismic discontinuities. Rev. Geophys., 38:141--158, 2000. [ bib ]
[2249] G. Helffrich, D. A. Wiens, E. Vera, S. Barrientos, P. Shore, S. Robertson, and R. Adaros. A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces. Geophys. J. Int., 149:F1--F7, 2002. [ bib ]
[2250] P. L. Heller, D. L. Anderson, and C. L. Angevine. Cretaceous pulse of rapid seafloor spreading: real or necessary? Geology, 24:491--494, 1996. [ bib ]
[2251] DV Helmberger, L Wen, and X Ding. Seismic evidence that the source of the iceland hotspot lies at the core--mantle boundary. Nature, 396:251--255, 1998. [ bib ]
[2252] Agnes Helmstetter and Didier Sornette. Båth's law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett., 30(2069), 2003. [ bib | DOI ]
[2253] Agnès Helmstetter and Didier Sornette. Foreshocks explained by cascades of triggered seismicity. J. Geophys. Res.: Sol. Earth, 108(2457), 2003. [ bib | DOI ]
[2254] A. Helmstetter and B. E. Shaw. Relation between stress heterogeneity and aftershock rate in the rate-and-state model. J. Geophys. Res.: Sol. Earth, 111(B07304), 2006. [ bib | DOI ]
[2255] T. J. Henstock, A. Levander, and J. A. Hole. Deformation in the lower crust of the San Andreas Fault system in Northern California. Science, 278:650--653, 1997. [ bib ]
[2256] F.S. Henyey and N. Pomphrey. Self-consistent elastic moduli of a cracked solid. Geophys. Res. Lett., 9:903--906, August 1982. [ bib ]
[2257] J. W. Herbert, M. L. Cooke, M. Oskin, and O. Difo. How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology, 42:71--75, 2013. [ bib ]
[2258] Frédéric Herman, Diane Seward, Pierre G Valla, Andrew Carter, Barry Kohn, Sean D Willett, and Todd A Ehlers. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504:423--426, 2013. [ bib ]
[2259] Frédéric Herman, Fien De Doncker, Ian Delaney, Günther Prasicek, and Michèle Koppes. The impact of glaciers on mountain erosion. Nature Rev. Earth & Environ., 2:422--435, 2021. [ bib ]
[2260] C Hernandez and F Speranza. Understanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone. Tectonics, 33:1964--1988, 2014. [ bib ]
[2261] J. W. Hernlund, C. Thomas, and P. J. Tackley. Phase boundary double crossing and the structure of Earth's deep mantle. Nature, 434:882--886, 2005. [ bib ]
[2262] J. W. Hernlund and C. Houser. On the statistical distribution of seismic velocities in the Earth's deep mantle. Earth Planet. Sci. Lett., 265:423--437, 2008. [ bib ]
[2263] J. W. Hernlund and P. J. Tackley. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter., 171:48--54, 2008. [ bib ]
[2264] Robert Herrendörfer, Taras Gerya, and Ylona Van Dinther. An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. J. Geophys. Res.: Sol. Earth, 123:5018--5051, 2018. [ bib ]
[2265] R. Herrendörfer, Y. van Dinther, T. Gerya, and L. A. Dalguer. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nature Geosc., 8:471--474, 2015. [ bib ]
[2266] C. Herring. Diffusional viscosity of a polycrystalline solid. J. Appl. Phys., 21:437--445, 1950. [ bib ]
[2267] R. B. Herrmann, H. Benz, and C. J. Ammon. Monitoring the earthquake process in North America. Bull. Seismol. Soc. Am., 101:2609--2625, 2011. Catalog available online at www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/mech.html, accessed 12/2014. [ bib ]
[2268] C. Herzberg, P. D. Asimow, N. Arndt, Y. Niu, C. M. Lesher, J. G. Fitton, M. J. Cheadle, and A. D. Saunders. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem., Geophys., Geosys., 8(Q02006), 2007. [ bib | DOI ]
[2269] Claude Herzberg, Kent Condie, and Jun Korenaga. Thermal history of the earth and its petrological expression. Earth Planet. Sci. Lett., 292:79--88, 2010. [ bib ]
[2270] Claude Herzberg, Tibor Gasparik, and Hiroshi Sawamoto. Origin of mantle peridotite: constraints from melting experiments to 16.5 gpa. J. Geophys. Res.: Sol. Earth, 95:15779--15803, 1990. [ bib ]
[2271] C. T. Herzberg. Lithosphere peridotites of the Kaapvaal craton. Earth Planet. Sci. Lett., 120:13--29, 1993. [ bib ]
[2272] C. Herzberg and J. Zhang. Melting experiments on anhydrous peridotite KLB-1: Composition of magmas in the upper mantle and transition zone. J. Geophys. Res.: Sol. Earth, 101:8271--8295, 1996. [ bib ]
[2273] H. Hess. History of ocean basins. In A. Engeln, H. James, and B. Leonard, editors, Petrologic Studies - A Volume in Honor of A. F. Buddington, pages 599--620. Geol. Soc. Am., New York, 1962. [ bib ]
[2274] H. H. Hess. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203:629--631, 1964. [ bib ]
[2275] Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comp. Phys., 363:55--78, 2018. [ bib ]
[2276] E. Hetland and B. H. Hager. Postseismic and interseismic displacements near a strike-slip fault: A two-dimensional theory for general linear viscoelastic rheologies. J. Geophys. Res.: Sol. Earth, 110(B10401), 2005. [ bib | DOI ]
[2277] E. A. Hetland and B. H. Hager. Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences. Geochem., Geophys., Geosys., 7(Q05004), 2006. [ bib | DOI ]
[2278] E. A. Hetland and B. H. Hager. The effects of rheological layering on post-seismic deformation. Geophys. J. Int., 166:277--292, 2006. [ bib ]
[2279] R. Hetzel, S. Niedermann, M. X. Tao, P. W. Kubik, and M. R. Strecker. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. J. Geophys. Res.: Sol. Earth, 111(F03012), 2006. [ bib | DOI ]
[2280] A. Heuret and S. Lallemand. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter., 149:31--51, 2005. [ bib ]
[2281] A. Heuret, F. Funiciello, C. Faccenna, and S. Lallemand. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth Planet. Sci. Lett., 256:473--483, 2007. [ bib ]
[2282] A. Heuret, S. Lallemand, F. Funiciello, C. Piromallo, and C. Faccenna. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem., Geophys., Geosys., 12(Q01004), 2011. [ bib | DOI ]
[2283] Arnauld Heuret, CP Conrad, F Funiciello, Serge Lallemand, and L Sandri. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys. Res. Lett., 39(L05304), 2012. [ bib | DOI ]
[2284] JM Hewitt, DP McKenzie, and NO Weiss. Dissipative heating in convective flows. J. Fluid Mech., 68:721--738, 1975. [ bib ]
[2285] R. N. Hey. Speculative propagating rift-subduction zone interactions with possible consequences for continental margin evolution. Geology, 26:247--250, 1998. [ bib ]
[2286] Björn H Heyn, Clinton P Conrad, and Reidar G Trønnes. How thermochemical piles can (periodically) generate plumes at their edges. J. Geophys. Res.: Sol. Earth, 125(6):e2019JB018726, 2020. [ bib ]
[2287] S. P. Hicks, S. E.J. Nippress, and A. Rietbrock. Sub-slab mantle anisotropy beneath south-central Chile. Earth Planet. Sci. Lett., 357:203--213, 2012. [ bib ]
[2288] S. P. Hicks, A. Rietbrock, I. M. A. Ryder, C.-S. Lee, and M. Miller. Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth Planet. Sci. Lett., 405:142--155, 2014. [ bib ]
[2289] C. F. Hieronymus. Control on seafloor spreading geometries by stress- and strain-induced lithospheric weakening. Earth Planet. Sci. Lett., 222:177--189, 2004. [ bib ]
[2290] Alan R Hildebrand, Glen T Penfield, David A Kring, Mark Pilkington, Antonio Camargo Z, Stein B Jacobsen, and William V Boynton. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19:867--871, 1991. [ bib ]
[2291] H. H. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London Sec. A, 65:349--354, 1952. [ bib ]
[2292] G. Hillers, P. M. Mai, Y. Ben-Zion, and J.-P. Ampuero. Statistical properties of seismicity of fault zones at different evolutionary stages. Geophys. J. Int., 169:515--533, 2007. [ bib ]
[2293] G. E. Hilley, E.E. Brodsky, D. Roman, D. J. Shillington, M. Brudzinski, M. Behn, H. Tobin, and the SZ4D RCN. SZ4D Implementation Plan. Stanford Digital Repository, 2022. [ bib ]
[2294] George E Hilley, Jennifer L Lewicki, and Curtis W Baden. Seasonal and multiyear changes in CO2 degassing at Mammoth Mountain explained by solid-earth-driven fault valving. Geophys. Res. Lett., 49:e2021GL096595, 2022. [ bib ]
[2295] R. D. van der Hilst. Changing views on Earth's deep mantle. Science, 306:817--818, 2004. [ bib ]
[2296] R. D. van der Hilst, E. R. Engdahl, W. Spakman, and T. Nolet. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 353:47--53, 1991. [ bib ]
[2297] R. D. van der Hilst and T. Seno. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett., 120:395--407, 1993. [ bib ]
[2298] R. D. van der Hilst and P. Mann. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22:451--454, 1994. [ bib ]
[2299] R. D. van der Hilst. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374:154--157, 1995. [ bib ]
[2300] R. D. van der Hilst, S. Widiyantoro, and E. R. Engdahl. Evidence of deep mantle circulation from global tomography. Nature, 386:578--584, 1997. [ bib ]
[2301] R. D. van der Hilst and H. Kárason. Aspherical structure of the bottom half of Earth's mantle. Eos Trans. AGU, 79:213, 1998. [ bib ]
[2302] R. D. van der Hilst and H. Kárason. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science, 283:1885--1887, 1999. [ bib ]
[2303] D. Hindle and M. Burkhard. Strain, displacement and rotation associated with the formation of curvature in fold belts; the example of the jura arc. J. Struct. Geol., 21:1089--1101, 1999. [ bib ]
[2304] D. Hindle, O. Besson, and M. Burkhard. A model of displacement and strain for arc-shaped mountain belts applied to the jura arc. J. Struct. Geol., 22:1285--1296, 2000. [ bib ]
[2305] D. J. J. van Hinsbergen, P. Kapp, G. Dupont-Nivet, P Lippert, P. DeCelles, and T. Torsvik. Restoration of Cenozoic deformation in Asia, and the size of Greater India. Tectonics, 30(TC5003), 2011. [ bib | DOI ]
[2306] K.-G. Hinzen. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophys., 377:325--356, 2003. [ bib ]
[2307] Takayuki Hirata. Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure Appl. Geophys., 131:157--170, 1989. [ bib ]
[2308] Ken-ichi Hirauchi, Kumi Fukushima, Masanori Kido, Jun Muto, and Atsushi Okamoto. Reaction-induced rheological weakening enables oceanic plate subduction. Nature Comm., 7:1--7, 2016. [ bib ]
[2309] A. Hirn. Anisotropy in the continental upper mantle: possible evidence from explosion seismology. Geophys. J. Int., 49:49--58, 1977. [ bib ]
[2310] Kei Hirose, Stéphane Labrosse, and John Hernlund. Composition and state of the core. Ann. Rev. Earth Planet. Sci., 41:657--691, 2013. [ bib ]
[2311] K. Hirose, Y. W. Fei, Y. Z. Ma, and H. K. Mao. The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397:53--56, 1999. [ bib ]
[2312] H. Hirose, K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett., 26:3237--3240, 1999. [ bib ]
[2313] M. Hirschmann. Mantle solidus: Experimental constraints and the effect of periodite composition. Geochem., Geophys., Geosys., (2000GC000070), 2000. [ bib ]
[2314] Marc M Hirschmann, Cyril Aubaud, and Anthony C Withers. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett., 236:167--181, 2005. [ bib ]
[2315] M. M. Hirschmann. Water, melting, and the deep Earth H2O cycle. Ann. Rev. Earth Planet. Sci., 34:629--653, 2006. [ bib ]
[2316] M. M. Hirschmann. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter., 179:60--71, 2010. [ bib ]
[2317] C. Hirt and M. Rexer. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Observ. Geoinf., 39:103--112, 2015. [ bib ]
[2318] Greg Hirth, Christian Teyssier, and James W Dunlap. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int. J. Earth Sci., 90:77--87, 2001. [ bib ]
[2319] G. Hirth and D. L. Kohlstedt. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono., pages 83--105. American Geophysical Union, Washington DC, 2004. [ bib ]
[2320] Greg Hirth and David L Kohlstedt. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144:93--108, 1996. [ bib ]
[2321] Vala Hjörleifsdóttir and Göran Ekström. Effects of three-dimensional Earth structure on CMT earthquake parameters. Phys. Earth Planet. Inter., 179:178--190, 2010. [ bib ]
[2322] D. Hoang, T. W. Becker, S. Kenner, and Y. Fialko. Finite element and boundary element benchmarks for the post-seismic deformation. Proceedings of the 2003 Annual SCEC Meeting, 2003. [ bib ]
[2323] K. M. Hodgkinson, R. S. Stein, and G. C. P. King. The 1954 Rainbow Mountain--Fairview Peak--Dixie Valley earthquakes: A triggered normal faulting sequence. J. Geophys. Res.: Sol. Earth, 101:25459--25471, 1996. [ bib ]
[2324] P. F. Hoffman. Big Time. Ann. Rev. Earth Planet. Sci., 47:1--17, 2019. [ bib ]
[2325] P F Hoffman. Rodinia, Gondwanaland, Pangea, and Amasia: Alternating kinematic scenarios of supercontinent fusion. Eos, 73:282, 1992. [ bib ]
[2326] Paul F Hoffman. Tectonic genealogy of North America. In van der Pluijm. B. A. and S. Marshak, editors, Earth structure: An introduction to structural geology and tectonics, pages 459--464. McGraw-Hill, New York, 1997. [ bib ]
[2327] Paul F Hoffman, Alan J Kaufman, Galen P Halverson, and Daniel P Schrag. A Neoproterozoic snowball earth. Science, 281:1342--1346, 1998. [ bib ]
[2328] P. F. Hoffmann and D. P. Schrag. Snowball earth. Scientific American, 282:68--75, 2000. [ bib ]
[2329] P. F. Hoffman, D. S. Abbot, Y. Ashkenazy, D. I. Benn, J. J. Brocks, P. A. Cohen, and I. J. Fairchild. Snowball earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv., 3:e1600983, 2017. [ bib ]
[2330] P. Hoffmann. Continental transform tectonics, Great Slave Lake shear zone (ca 1.9 Ga), northwest Canada. Geology, 15:785--788, 1987. [ bib ]
[2331] P. Hoffmann. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Ann. Rev. Earth Planet. Sci., 16:543--603, 1988. [ bib ]
[2332] P. Hoffmann. Speculations on Laurentia's first gigayear (2.0--1.0 Ga). Geology, 17:135--138, 1989. [ bib ]
[2333] P. Hoffmann. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252:1409--1412, 1991. [ bib ]
[2334] P. Hoffmann. Orographic precipitation, erosional unloading, and tectonic style. Geology, 25:195--198, 1993. [ bib ]
[2335] P. F. Hoffmann, A. J. Kaufman, G. P. Halverson, and D. P. Schrag. A neoproterozoic snowball earth. Science, 281:1342--1346, 1998. [ bib ]
[2336] AW Hofmann, C Class, and SL Goldstein. Size and composition of the MORB+OIB mantle reservoir. Geochem., Geophys., Geosys., 23:e2022GC010339, 2022. [ bib | DOI ]
[2337] Albrecht W Hofmann and William M White. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57:421--436, 1982. [ bib ]
[2338] A. W. Hofmann. Mantle geochemistry: the message from oceanic volcanism. Nature, 385:219--229, 1997. [ bib ]
[2339] A. M. Hofmeister. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283:1699--1706, 1999. [ bib ]
[2340] MJ Hoggard, Nicholas White, and David Al-Attar. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geosc., 9:456--463, 2016. [ bib ]
[2341] T. Hoink and A. Lenardic. Three-dimensional mantle convection simulations with a low viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett., 35(L10304):10.1029/2008GL033854, 2008. [ bib ]
[2342] T. Hoink and A. Lenardic. Long wavelength convection, Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int., 180:23--33, 2010. [ bib ]
[2343] T. Hoink, A. M. Jellinek, and A. Lenardic. Viscous coupling at the lithosphere-asthenosphere boundary. Geochem., Geophys., Geosys., 12(Q0AK02), 2011. [ bib | DOI ]
[2344] T. Hoink, A. Lenardic, and M. Richards. Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics. Geophys. J. Int., 191:30--41, 2012. [ bib ]
[2345] W. S. Holbrook and W. D. Mooney. The crustal structure of the axis of the Great Valley California. Tectonophys., 140:49--63, 1987. [ bib ]
[2346] WS Holbrook and PB Kelemen. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature, 364:433--436, 1993. [ bib ]
[2347] W. S. Holbrook, T. M. Brocher, U. S. ten Brink, and J. A. Hole. Crustal Structure of a transform plate boundary: San Francisco Bay and the central California continental margin. J. Geophys. Res.: Sol. Earth, 101:22311--22334, 1996. [ bib ]
[2348] W Steven Holbrook, D Lizarralde, S McGeary, N Bangs, and J Diebold. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology, 27:31--34, 1999. [ bib ]
[2349] T. Holland and R. Powell. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J. Petrol., 42(4):673--683, 2001. [ bib ]
[2350] K. Holliger and A. R. Levander. A stochastic view of lower crustal fabric based on evidence from the Ivrea Zone. Geophys. Res. Lett., 19:1153--1156, 1992. [ bib ]
[2351] A. Holmes. The Age of the Earth. Harper & Brothers, London & New York, 1913. [ bib ]
[2352] Arthur Holmes. A review of the continental drift hypothesis. Mining Publications, 1929. [ bib ]
[2353] A. Holmes. Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, 18:559--606, 1931. [ bib ]
[2354] A. Holmes. The thermal history of the earth. J. Washington Acad. Sci., 23:169--195, 1933. [ bib ]
[2355] A. Holmes. Principles of Physical Geology. Thomas Nelson, London, 1944. [ bib ]
[2356] Arthur Holmes. An estimate of the age of the earth. Nature, 157:680--684, 1946. [ bib ]
[2357] M. Holschneider and Y. Ben-Zion. Bayesian estimation of faults geometry based on seismic catalog data. Eos Trans. Amer. Geophys. Union, Fall Meet. Suppl., 87, 2006. [ bib ]
[2358] W. E. Holt. Correlated crust and mantle strain fields in Tibet. Geology, 28:67--70, 2000. [ bib ]
[2359] W. E. Holt and P. G. Silver. Using surface observations to constrain the direction and magnitude of mantle flow beneath western North America (abstract). Eos Trans. AGU, 82(47):F, 2001. [ bib ]
[2360] A. F. Holt, T. W. Becker, and B. A. Buffett. Trench migration and overriding plate stress in dynamic subduction models. Geophys. J. Int., 201:172--192, 2015. [ bib ]
[2361] A. F. Holt, B. A. Buffett, and T. W. Becker. Overriding plate thickness control on subducting plate curvature. Geophys. Res. Lett., 42:3802--3810, 2015. [ bib ]
[2362] A. F. Holt and T. W. Becker. The effect of a power-law mantle viscosity on trench retreat rate. Geophys. J. Int., 208:491--507, 2016. [ bib ]
[2363] A. F. Holt, L. H. Royden, and T. W. Becker. The dynamics of double slab subduction. Geophys. J. Int., 209:250--265, 2017. [ bib ]
[2364] A. H. Holt, L. H. Royden, T. W. Becker, and F. Faccenna. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth Planet. Sci. Lett., 489:72--83, 2018. [ bib ]
[2365] Adam F Holt and Leigh H Royden. Subduction dynamics and mantle pressure: 2. Towards a global understanding of slab dip and upper mantle circulation. Geochem., Geophys., Geosys., 21(7):e2019GC008771, 2020. [ bib ]
[2366] A. F. Holt and C. Condit. Slab temperature evolution over the lifetime of a subduction zone. Geochem., Geophys., Geosys., 22, 2021. [ bib | DOI ]
[2367] Adam F Holt. The topographic signature of mantle pressure build-up beneath subducting plates: Insights from spherical subduction models. Geophys. Res. Lett., 49(22):e2022GL100330, 2022. [ bib ]
[2368] W. E. Holt. Flow fields within the Tonga slab determined from the moment tensors of deep earthquakes. Geophys. Res. Lett., 22:989--992, 1995. [ bib ]
[2369] B. K. Holtzman, D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga, and J. Hustoft. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301:1227--1230, 2003. [ bib ]
[2370] B. K. Holtzman and J.-M. Kendall. Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem., Geophys., Geosys., 11(Q0AB06), 2010. [ bib | DOI ]
[2371] B. Holtzman. Questions on the existence, persistence, and mechanical effecs of a very small melt fraction in the asthenosphere. Geochem., Geophys., Geosys., 17:470--484, 2016. [ bib | DOI ]
[2372] Caleb W Holyoke III and Andreas K Kronenberg. Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophys., 494:17--31, 2010. [ bib ]
[2373] C. Homberg, F. Bergerat, Y. Philippe, O. Lacombe, and J. Angelier. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics, 357:137--158, 2002. [ bib ]
[2374] Satoru Honda. Thermal structure beneath Tohoku, northeast Japan. Tectonophys., 112:69--102, 1985. [ bib ]
[2375] S. Honda. Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13:1454--1457, 1986. [ bib ]
[2376] S Honda, DA Yuen, S Balachandar, and D Reuteler. Three-dimensional instabilities of mantle convection with multiple phase transitions. Science, 259:1308--1311, 1993. [ bib ]
[2377] Tae-Kyung Hong, Junhyung Lee, and Soung Eil Houng. Long-term evolution of intraplate seismicity in stress shadows after a megathrust. Phys. Earth Planet. Inter., 245:59--70, 2015. [ bib ]
[2378] Tae-Kyung Hong, Junhyung Lee, Donggeun Chi, and Seongjun Park. Seismic velocity changes in the backarc continental crust after the 2011 Mw 9.0 Tohoku-Oki megathrust earthquake. Geophys. Res. Lett., 44:10--997, 2017. [ bib ]
[2379] S. Hongsresawat, M. P. Panning, R. M. Russo, D. A. Foster, V. Monteiller, and S. Chevrot. USArray shear wave splitting shows seismic anisotropy from both lithosphere and asthenosphere. Geology, 43:667--670, 2015. [ bib ]
[2380] D Höning and T Spohn. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of earth. Phys. Earth Planet. Inter., 255:27--49, 2016. [ bib ]
[2381] C. Hoorn, J. Guerrero, G. A. Sarmiento, and M. A. Lorente. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23:237--240, 1995. [ bib ]
[2382] Michelle Hopkins, T Mark Harrison, and Craig E Manning. Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456:493--496, 2008. [ bib ]
[2383] E. Hopper and K. M. Fischer. The meaning of midlithospheric discontinuities: A case study in the northern u.s. craton. Geochem., Geophys., Geosys., 16:4057--4083, 2015. [ bib | DOI ]
[2384] Emily Hopper and Karen M Fischer. The changing face of the lithosphere-asthenosphere boundary: Imaging continental scale patterns in upper mantle structure across the contiguous US with Sp converted waves. Geochem., Geophys., Geosys., 19:2593--2614, 2018. [ bib ]
[2385] T. Hori, N. Kato, K. Hirahara, T. Baba, and Y. Kaneda. A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan: lateral variation in frictional property due to the slab geometry controls the nucleation position. Earth Planet. Sci. Lett., 228:215--226, 2004. [ bib ]
[2386] A. van Horne, H. Sato, and T. Ishiyama. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophys., 710:6--20, 2017. [ bib ]
[2387] F. G. Horowitz and A. L. Ruina. Slip patterns in a spatially homogeneous fault model. J. Geophys. Res.: Sol. Earth, 94:10279--10298, 1989. [ bib ]
[2388] B. K. Horton, M. Parra, J. E. Saylor, J. Nie, A. Mora, V. Torres, D. F. Stockli, and M. R. Strecker. Resolving uplift of the Northern Andes using detrital zircon age signatures. GSA Today, 20:4--10, 2010. [ bib ]
[2389] B. K. Horton, J. E. Saylor, J. Nie, A. Mora, M. Parra, A. Reyes-Harker, and D. F. Stockli. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geol. Soc. Am. Bull, 122:1423--1442, 2010. [ bib ]
[2390] J Hospers. Rock magnetism and polar wandering. Nature, 173:1183--1184, 1954. [ bib ]
[2391] Nicolas Houlié and Tim Stern. A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone. Earth Planet. Sci. Lett., 345:117--125, 2012. [ bib ]
[2392] G. A. Houseman and Gemmer L. Intra-orogenic extension driven by gravitational instability: Carpathian-Pannonian orogeny. Geology, 35:1135--1138, 2007. [ bib ]
[2393] G. A. Houseman, D. P. McKenzie, and P. Molnar. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res.: Sol. Earth, 86:6115--6132, 1981. [ bib ]
[2394] G. A. Houseman and P. C. England. A dynamical model for lithospheric extension and sedimentary basin formation. J. Geophys. Res.: Sol. Earth, 91:719--729, 1986. [ bib ]
[2395] G. A. Houseman and P. C. England. A dynamical model of lithosphere extension and sedimentary basin formation. J. Geophys. Res.: Sol. Earth, 91:719--729, 1986. [ bib ]
[2396] G. A. Houseman and P. C. England. Finite strain calculations of continental deformation I. Method and general results for convergent zone. J. Geophys. Res.: Sol. Earth, 91:3651--3663, 1986. [ bib ]
[2397] G. A. Houseman and P. Molnar. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int., 128:125--150, 1997. [ bib ]
[2398] G. A. Houseman and D. Gubbins. Deformation of subducted oceanic lithosphere. Geophys. J. Int., 131:535--551, 1997. [ bib ]
[2399] C Houser, G Masters, P Shearer, and G Laske. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174:195--212, 2008. [ bib ]
[2400] C. Houser and Q. Williams. The wavelengths of fast and slow shear velocity anomalies in the lower mantle: Contrary to the expectations of dynamics? Phys. Earth Planet. Inter., 176:187--197, 2009. [ bib ]
[2401] C. Houser and Q. Williams. Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet. Sci. Lett., 296:255--266, 2010. [ bib ]
[2402] H. Houston. Deep earthquakes. In G. Schubert, editor, Treatise on Geophysics, Vol. 4: Deep Earthquakes, volume 11, pages 321--350. Elsevier, 2007. [ bib ]
[2403] H. Houston. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress. Nature Geosc., 8:409--415, 2015. [ bib ]
[2404] R. Houtz and J. I. Ewing. Upper crustal structure as a function of plate age. J. Geophys. Res.: Sol. Earth, 81:2490--2498, 1976. [ bib ]
[2405] L.N. Howard. Convection at high Rayleigh number. In H. Gortler, editor, Proceedings of the Eleventh International Congress of Applied Mechanics, pages 1109--1115, New York, 1966. Springer. [ bib ]
[2406] Alan D Howard, William E Dietrich, and Michele A Seidl. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res.: Sol. Earth, 99:13971--13986, 1994. [ bib ]
[2407] Jamie D Howarth, Nicolas C Barth, Sean J Fitzsimons, Keith Richards-Dinger, Kate J Clark, Glenn P Biasi, Ursula A Cochran, Robert M Langridge, Kelvin R Berryman, and Rupert Sutherland. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nature Geosc., 14:314--320, 2021. [ bib ]
[2408] Samuel Howell, Bridget Smith-Konter, Neil Frazer, Xiaopeng Tong, and David Sandwell. The vertical fingerprint of earthquake cycle loading in southern California. Nature Geosc., 9:611--614, 2016. [ bib ]
[2409] J. M. Howie, K. C. Miller, and W. U. Savage. Integrated crustal structure across the South Central California Margin: Santa Lucia Escarpment to the San Andreas Fault. J. Geophys. Res.: Sol. Earth, 98:8473--8196, 1993. [ bib ]
[2410] A. T. Hsui. Application of fluid mechanic principles to the study of trench back-arc systems. Pure Appl. Geophys., 128:661--681, 1988. [ bib ]
[2411] Y. Hu, R. Bürgmann, J.T. Freymueller, P. Banerjee, and K. Wang. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planet. Space, 66, 2014. [ bib | DOI ]
[2412] Y. Hu, R. Bürgmann, N. Uchide, P. Banerjee, and J. T. Freymueller. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J. Geophys. Res.: Sol. Earth, 120, 2016. [ bib | DOI ]
[2413] Y. Hu, R. Bürgmann, P. Banerjee, L. Feng, E. M. Hill, T. Ito, T. Tabei, and K. Wang. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake. Nature, 538:368--372, 2016. [ bib ]
[2414] Jiashun Hu, Lijun Liu, Armando Hermosillo, and Quan Zhou. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth Planet. Sci. Lett., 438:1--13, 2016. [ bib ]
[2415] J. Hu, M. Faccenda, and L. Liu. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett., 470:13--24, 2017. [ bib ]
[2416] Jiashun Hu, Michael Gurnis, Johann Rudi, Georg Stadler, and R Dietmar Müller. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nature Geosc., 15:74--78, 2022. [ bib ]
[2417] J. Hua, K. Fischer, T. W. Becker, E. Gazel, and G. Hirth. Asthenospheric low-velocity zone consistent with globally prevalent partial melting. Nature Geosc., 16:175--181, 2023. [ bib ]
[2418] J Hua, KM Fischer, E Gazel, EM Parmentier, and G Hirth. Long-distance asthenospheric transport of plume-influenced mantle from Afar to Anatolia. Geochem., Geophys., Geosys., 24:e2022GC010605, 2023. [ bib ]
[2419] C. Hua. An inverse transformation for quadrilateral isoparametric elements: Analysis and application. Finite Elem. Anal. Design, 7:159--166, 1990. [ bib ]
[2420] W.C. Huang, J. F. Ni, F. Tilmann, D. Nelson, J. Guo, W. Zhao, J. Mechie, R. Kind, J. Saul, R. Rapine, and T. M. Hearn. Seismic polarization anisotropy beneath the central Tibetan plateau. J. Geophys. Res.: Sol. Earth, 105:27979--27989, 2000. [ bib ]
[2421] Jinshui Huang, Shijie Zhong, and Jeroen van Hunen. Controls on sublithospheric small-scale convection. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[2422] Jinshui Huang and Shijie Zhong. Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. J. Geophys. Res.: Sol. Earth, 110(B5), 2005. [ bib ]
[2423] J. Huang and D. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res.: Sol. Earth, 111(B09305), 2006. [ bib | DOI ]
[2424] G. C. Huang, F. T. Wu, S. W. Roecker, and A. F. Sheehan. Lithospheric structure of the central Himalaya from 3-D tomographic imaging. Tectonophys., 475:524--543, 2009. [ bib ]
[2425] J. Huang, E. Vanacore, F. Niu, and A. Levander. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications. Earth Planet. Sci. Lett., 289:105--111, 2010. [ bib ]
[2426] Hui Huang, Huajian Yao, and Robert D van der Hilst. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophys. Res. Lett., 37(21), 2010. [ bib ]
[2427] G.-C. Huang, S. W. Roecker, and V. Levin. Lower‐crustal earthquakes in the West Kunlun range. Geophys. Res. Lett., 38(L01314), 2011. [ bib | DOI ]
[2428] J. Huang and D. L. Turcotte. Are earthquakes an example of deterministic chaos? Geophys. Res. Lett., 17:223--226, 1990. [ bib ]
[2429] J. Hubbard and K. Bradley. M7.5 earthquake strikes western Japan, triggers tsunami. Earthquake Insights, 2024. Blog post, available at https://earthquakeinsights.substack.com/p/m75-earthquake-strikes-western-japan, accessed 01/2024. [ bib ]
[2430] M King Hubbert and William W Rubey. Role of fluid pressure in mechanics of overthrust faulting. I. mechanics of fluid-filled porous solids and its application to overthrust faulting. GSA Bull., 70:115--166, 1959. [ bib ]
[2431] K. W. Hudnut, L. Seeber, and J. Pacheco. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophys. Res. Lett., 16:199--202, 1989. [ bib ]
[2432] Victoria A Hudspith, Susan M Rimmer, and Claire M Belcher. Latest Permian chars may derive from wildfires, not coal combustion. Geology, 42:879--882, 2014. [ bib ]
[2433] R. von Huene and C. R. Ranero. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res.: Sol. Earth, 108(2079), 2003. [ bib | DOI ]
[2434] T. J. R Hughes. The finite element method. Dover Publications, 2000. [ bib ]
[2435] Liu Huiqi, KR McClay, and D Powell. Physical models of thrust wedges. In Thrust tectonics, pages 71--81. Springer, 1992. [ bib ]
[2436] R. S. Huismans and C. Beaumont. Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening. J. Geophys. Res.: Sol. Earth, 108(B10):2496, 2003. [ bib | DOI ]
[2437] Ritske Huismans and Christopher Beaumont. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473:74--78, 2011. [ bib ]
[2438] R. S. Huismans, Y. Y. Podladchikov, and S. Cloetingh. Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics, 20:1021--1039, 2001. [ bib ]
[2439] Claudia Hulbert, Bertrand Rouet-Leduc, Paul A Johnson, Christopher X Ren, Jacques Rivière, David C Bolton, and Chris Marone. Similarity of fast and slow earthquakes illuminated by machine learning. 12:69--74, 2019. [ bib ]
[2440] E. D. Humphreys, K. Dueker, D. Schutt, and R. B. Smith. Beneath Yellowstone: Evaluating plume and nonplume models using teleseismic images of the upper mantle. GSA Today, 10:1--6, 2000. [ bib ]
[2441] E. D. Humphreys, E. Hessler, K. Dueker, E. Erslev, G. L. Farmer, and T. Atwater. How Laramide-age hydration of North America by the Farallon slab controlled subsequent activity in the western U.S. In J. Eiler, editor, The George Thompson volume, volume 7 of GSA International Book, pages 524--544. Geological Society of America, 2003. [ bib ]
[2442] E. D. Humphreys and D. Coblentz. North American dynamics and western U.S. tectonics. Rev. Geophys., 45(RG3001), 2007. [ bib | DOI ]
[2443] E. D. Humphreys. Cenozoic slab windows beneath the western United States. In J. E. Spencer and S. Titley, editors, Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits (Dickinson volume), page in press. Arizona Geological Society, 2008. [ bib ]
[2444] E. D. Humphreys. Relation of flat subduction to magmatism and deformation in the Western USA. In S. Kay and V. Ramos, editors, Backbone of the Americas, Special Publication, page in press. Geological Society of America, 2008. [ bib ]
[2445] Eugene D Humphreys, Brandon Schmandt, Maximiliano J Bezada, and Jonathan Perry-Houts. Recent craton growth by slab stacking beneath Wyoming. Earth Planet. Sci. Lett., 429:170--180, 2015. [ bib ]
[2446] E. D. Humphreys and B. H. Hager. A kinematic model for the Late Cenozoic development of southern California crust and upper mantle. J. Geophys. Res.: Sol. Earth, 95:19747--19762, 1990. [ bib ]
[2447] Eugene D Humphreys and Robert W Clayton. Tomographic image of the southern California mantle. JGR, 95:19725--19746, 1990. [ bib ]
[2448] E. D. Humphreys and K. G. Dueker. Western U.S. upper mantle structure. J. Geophys. Res.: Sol. Earth, 99:9615--9634, 1994. [ bib ]
[2449] E. D. Humphreys and R. J. Weldon. Deformation across the western United States: A local estimate of Pacific-North American transform deformation. J. Geophys. Res.: Sol. Earth, 99:19975--20010, 1994. [ bib ]
[2450] E. D. Humphreys. Post-Laramide removal of the Farallon slab, western United States. Geology, 23:987--990, 1995. [ bib ]
[2451] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. A thermomechanical model of horizontal subduction below an overriding plate. Earth Planet. Sci. Lett., 182:157--169, 2000. [ bib ]
[2452] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophys., 352:317--333, 2002. [ bib ]
[2453] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys. Res. Lett., 29(1690), 2002. [ bib | DOI ]
[2454] J. van Hunen and S. Zhong. New insight in the Hawaiian plume swell dynamics from scaling laws. Geophys. Res. Lett., 30(15):1785, 2003. [ bib | DOI ]
[2455] J. van Hunen, J. Huang, and S. Zhong. The effect of shearing on the onset and vigor of small-scale convection in a Newtonian rheology. Geophys. Res. Lett., 30(19):1991, 2003. [ bib | DOI ]
[2456] J. van Hunen, S. Zhong, N. Shapiro, and M. H. Ritzwoller. Oceanic upper mantle rheology as constrained by combined geodynamic and seismic modeling of plate-mantle interaction (abstract). Eos Trans. AGU, 85(47):T11B--1258, 2004. [ bib ]
[2457] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys. Earth Planet. Inter., 146:179--194, 2004. [ bib ]
[2458] J. van Hunen, S. Zhong, N. M. Shapiro, and M. H. Ritzwoller. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett., 238:146--155, 2005. [ bib ]
[2459] J. van Hunen and J.-F. Moyen. Archean subduction: Fact or fiction? Ann. Rev. Earth Planet. Sci., 40:195--219, 2012. [ bib ]
[2460] S.-H. Hung and D. W. Forsyth. Can a narrow, melt-rich, low-velocity zone of mantle upwelling be hidden beneath the East Pacific Rise? Limits from waveform modeling and the MELT experiment. J. Geophys. Res.: Sol. Earth, 105:7945--7960, 2000. [ bib ]
[2461] S.-H. Hung, Y. Shen, and L.-Y. Chiao. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach. J. Geophys. Res.: Sol. Earth, 109(B08305), 2004. [ bib | DOI ]
[2462] S.-H. Hung, E. J. Garnero, L.-Y. Chiao, B.-Y. Kuo, and T. Lay. Finite frequency tomography of D" shear velocity heterogeneity beneath the Caribbean. J. Geophys. Res.: Sol. Earth, 110(B07305), 2005. [ bib | DOI ]
[2463] S.-H. Hung and D. W. Forsyth. Modeling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multi-domain pseudospectral method. Geophys. J. Int., 133:720--740, 1998. [ bib ]
[2464] W. Hunt. Unraveling the mysteries under our very feet. Discover Magazine, 2011. Available online at discovermagazine.com/photos/18-unraveling-mysteries-under-our-feet, accessed 11/2011. [ bib ]
[2465] J. Hunter and A. B. Watts. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys. J. Int., 207:288--316, 2016. [ bib ]
[2466] G. Huot and S. C. Singh. Seismic evidence for fluid/gas beneath the Mentawai fore-arc basin, Central Sumatra. J. Geophys. Res.: Sol. Earth, 123:957--976, 2018. [ bib ]
[2467] Kimberly L Huppert, J Taylor Perron, and Leigh H Royden. Hotspot swells and the lifespan of volcanic ocean islands. Science adv., 6:eaaw6906, 2020. [ bib ]
[2468] E. S. Husebye, D. W. King, and R. A. Haddon. Precursors to PKIKP and seismic wave scattering near the mantle-core boundary. J. Geophys. Res.: Sol. Earth, 81:170--182, 1976. [ bib ]
[2469] L. Husson and Y. Ricard. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett., 222:1037--1050, 2004. [ bib ]
[2470] L. Husson. Dynamic topography above retreating subduction zones. Geology, 34:741--744, 2006. [ bib ]
[2471] L. Husson, C. P. Conrad, and C. Faccenna. Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin. Earth Planet. Sci. Lett., 271:303--310, 2008. [ bib ]
[2472] L. Husson, P. C. Conrad, and C. Faccenna. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett., 317:126--135, 2012. [ bib ]
[2473] L. Husson, B. Guillaume, F. Funiciello, C. Faccenna, and L. H. Royden. Unraveling topography around subduction zones from laboratory models. Tectonophys., 526:5--15, 2012. [ bib ]
[2474] L. Husson, P. Yamato, and A. Bézos. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics. Earth Planet. Sci. Lett., 429:205--215, 2015. [ bib ]
[2475] Laurent Husson, Thomas Bodin, Giorgio Spada, Gaël Choblet, and Corné Kreemer. Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of glacial isostatic adjustment. J. Geodynamics, 122:25--40, 2018. [ bib ]
[2476] A. R. Hutko, T. Lay, E. J. Garnero, and J. Revenaugh. Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature, 441:333--336, 2006. [ bib ]
[2477] R. D. Hyndman and S. M. Peacock. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett., 212:417--432, 2003. [ bib ]
[2478] Roy D Hyndman, Claire A Currie, and Stephane P Mazzotti. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15:4--10, 2005. [ bib ]
[2479] R. D. Hyndman and C. A. Currie. Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology, 39:783--786, 2011. [ bib ]
[2480] Roy D Hyndman. Origin of regional Barrovian metamorphism in hot backarcs prior to orogeny deformation. Geochem., Geophys., Geosys., 20:460--469, 2019. [ bib ]
[2481] USGS. Global Hypocenter Database CD, volume 3.0. United States Geological Survey / National Earthquake Information Center, Denver, Colorado, 1992. [ bib ]
[2482] G. Iaffaldano, H.-P. Bunge, and T. H. Dixon. Feedback between mountain belt growth and plate convergence. Geology, 34:893--896, 2006. [ bib ]
[2483] G. Iaffaldano and H.-P. Bunge. Relating rapid plate motion variations to plate boundary forces in global coupled models of the mantle/lithosphere system: effects of topography and friction. Tectonophys., 474:393--404, 2009. [ bib ]
[2484] Giampiero Iaffaldano and Hans-Peter Bunge. Rapid plate motion variations through geological time: Observations serving geodynamic interpretation. Ann. Rev. Earth Planet. Sci., 43:571--592, 2015. [ bib ]
[2485] T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and H. Kobayashi. Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF× 30 K time-step unstructured FE non-linear seismic wave simulation. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 15--26. IEEE, 2014. [ bib ]
[2486] Tsuyoshi Ichimura, Kohei Fujita, Pher Errol Balde Quinay, Lalith Maddegedara, Muneo Hori, Seizo Tanaka, Yoshihisa Shizawa, Hiroshi Kobayashi, and Kazuo Minami. Implicit nonlinear wave simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive earthquake simulation. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2015. [ bib ]
[2487] T Ichimura, K Fujita, T Yamaguchi, A Naruse, J C Wells, C J Zimmer, T P Straatsma, T Hori, S Puel, T W Becker, and M Hori. 416-PFLOPS fast scalable implicit solver on low-ordered unstructured finite elements accelerated by 1.10-ExaFLOPS kernel with reformulated AI-like algorithm: For equation-based earthquake modeling. In SC'19: The International Conference for High Performance Computing, Networking, Storage, and Analysis, 2019. [ bib ]
[2488] Tsuyoshi Ichimura, Kohei Fujita, Kentaro Koyama, Ryota Kusakabe, Kazuo Minami, Hikaru Inoue, Seiya Nishizawa, Miwako Tsuji, Tatsuo Nishiki, Muneo Hori, et al. Fast scalable implicit solver with convergence of physics-based simulation & data-driven learning: toward high-fidelity simulation with digital twin city. In Research Poster for the International Conference on High Performance Computing, Networking, Storage and Analysis (SC'20), 2020. [ bib ]
[2489] Yoshiaki Ida. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. J. Geophys. Res.: Sol. Earth, 77:3796--3805, 1972. [ bib ]
[2490] S. Ide and G. Beroza. Does apparent stress vary with earthquake size? Geophys. Res. Lett., 28:3349--3352, 2001. [ bib ]
[2491] S. Ide, G. C. Beroza, D. R. Shelly, and T. A. Uchide. Scaling law for slow earthquakes. Nature, 447:76--79, 2007. [ bib ]
[2492] Satoshi Ide. Variety and spatial heterogeneity of tectonic tremor worldwide. J. Geophys. Res.: Sol. Earth, 117(B03302), 2012. [ bib | DOI ]
[2493] S. Ide and H. Aochi. Historical seismicity and dynamic rupture process of the 2011 Tohoku-oki earthquake. Tectonophys., 600:1--13, 2013. [ bib ]
[2494] Satoshi Ide and Gregory C Beroza. Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. Proc. Natl. Acad. Sci. USA, 120(32):e2222102120, 2023. [ bib ]
[2495] Benjamin Idini and J-P Ampuero. Fault-zone damage promotes pulse-like rupture and back-propagating fronts via quasi-static effects. Geophys. Res. Lett., 47:e2020GL090736, 2020. [ bib ]
[2496] H. Igel, T. Nissen-Meyer, and G. Jahnke. Wave propagation in 3D spherical sections: Effects of subduction zones. Phys. Earth Planet. Inter., 132:219--234, 2003. [ bib ]
[2497] H. Igel, N. Takeuchi, R. J. Geller, C. Megnin, H.-P. Bunge, E. Clevede, J. Dalkolmo, and B. A. Romanowicz. The COSY project: verification of global seismic modeling algorithms. Phys. Earth Planet. Inter., 119:3--23, 1999. [ bib ]
[2498] T. W. Becker. iGMT: Interactive Mapping of Geographic Datasets. Update of [375], online at www-udc.ig.utexas.edu/external/becker/igmt/, accessed 05/2016, 2006. [ bib ]
[2499] Takeshi Iinuma, Mako Ohzono, Yusaku Ohta, and Satoshi Miura. Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data---Was the asperity in Miyagi-oki ruptured? Earth, Planet. Space, 63(24), 2011. [ bib ]
[2500] T Iinuma, R Hino, M Kido, D Inazu, Y Osada, Y Ito, M Ohzono, H Tsushima, S Suzuki, H Fujimoto, and S. Miura. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res.: Sol. Earth, 117(B7409), 2012. [ bib | DOI ]
[2501] T. Iinuma. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field. Geophys. J. Int., 213:30--47, 2018. [ bib ]
[2502] Matt J Ikari, Demian M Saffer, and Chris Marone. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res.: Sol. Earth, 114(B05409), 2009. [ bib | DOI ]
[2503] Matt J Ikari, Chris Marone, and Demian M Saffer. On the relation between fault strength and frictional stability. Geology, 39:83--86, 2011. [ bib ]
[2504] Matt J Ikari and Demian M Saffer. Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. Geochem., Geophys., Geosys., 12(Q0AD11), 2011. [ bib | DOI ]
[2505] Matt J Ikari and Demian M Saffer. Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Marine Geol., 295:1--13, 2012. [ bib ]
[2506] Matt J Ikari, André R Niemeijer, Christopher J Spiers, Achim J Kopf, and Demian M Saffer. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology, 41:891--894, 2013. [ bib ]
[2507] Matt J Ikari, Jun Kameda, Demian M Saffer, and Achim J Kopf. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 412:35--41, 2015. [ bib ]
[2508] Matt J. Ikari, Brett M. Carpenter, Marco M. Scuderi, Cristiano Collettini, and Achim J. Kopf. Frictional strengthening explored during non-steady state shearing: Implications for fault stability and slip event recurrence time. J. Geophys. Res.: Sol. Earth, 125:e2020JB020015, 2020. [ bib | DOI ]
[2509] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Island Arc, 17:342--357, 2008. [ bib ]
[2510] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Tectonics and sedimentation around Kashinosaki Knoll: A subducting basement high in the eastern Nankai Trough. Island Arc, 17:358--375, 2008. [ bib ]
[2511] R. Ikegami. On the secular variation of magnitude-frequency relation of earthquakes. Bull. Earthquake Res. Inst., 45:327--338, 1967. [ bib ]
[2512] Akihiko Ikemoto and Hikaru Iwamori. Numerical modeling of trace element transportation in subduction zones: implications for geofluid processes. Earth, Planet. Space, 66:1--10, 2014. [ bib ]
[2513] K. J. Im, D. Saffer, C. Marone, and J. P. Avouac. Slip-rate dependent friction as a universal mechanism for slow slip events. Nature Geosc., 13:705--710, 2020. [ bib ]
[2514] Kazutoshi Imanishi and William L. Ellsworth. Source Scaling Relationships of Microearthquakes at Parkfield, CA, Determined Using the SAFOD Pilot Hole Seismic Array. In Earthquakes: Radiated Energy and the Physics of Faulting, volume 170 of Geophysical Monograph, pages 81--90. American Geophysical Union, 2006. [ bib ]
[2515] Icelandic Meteorological Office. Online at twitter.com/Vedurstofan/status/1736893338563838110, accessed 12/2023, 2023. [ bib ]
[2516] M. Ingalls, D. R. Rowley, B. Currie, and A. S. Colman. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nature Geosc., 9:848--853, 2016. [ bib ]
[2517] INGEOMINAS. National seismic catalog of Colombia. Technical report, Red Sismológica Nacional de Colombia, 2010. Available online at seisan.ingeominas.gov.co/RSNC/, accessed 01/2010. [ bib ]
[2518] C. E. Inglis. Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Arch., 219--230, 1913. [ bib ]
[2519] H. Y. Inoue, Y. Fukao, K. Tanabe, and Y. Ogata. Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter., 59:294--328, 1990. [ bib ]
[2520] T. Inoue. Effect of water on melting phase relations and melt composition in the system mg2sio4--mgsio3--h2o up to 15 gpa. Phys. Earth Planet. Inter., 85:237--263, 1994. [ bib ]
[2521] T. R. Ireland, T. Flöttman, C. M. Fanning, G. M. Gibson, and W. V. Preiss. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology, 26:243--246, 1998. [ bib ]
[2522] M. F. W. Ireton, C. A. Manduca, and D. W. Mogk. Shaping the future of undergraduate earth science education: Innovation and change using an Earth System approach. American Geophysical Union, Washington DC. Online at www.agu.org/sci_soc/spheres/, accessed 06/2006, 1997. [ bib ]
[2523] T. Irifune and A. E. Ringwood. Phase transformations in subducted oceanic crust and buoyanyc relationships at depths of 600--800 km in the mantle. Earth Planet. Sci. Lett., 117:101--110, 1993. [ bib ]
[2524] E. Irving. Paleomagnetic and palaeoclimatological aspects of polar wandering. Geofis. Pura Appl., 33:23--41, 1956. [ bib ]
[2525] G. R. Irwin and R. de Wit. Fracture mechanics. J. Testing and Evaluation, 11:56--65, 1983. [ bib ]
[2526] G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech., 24:361--364, 1957. [ bib ]
[2527] Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas. Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the antarctic ice sheet. J. Comp. Phys., 296:348--368, 2015. [ bib ]
[2528] D. G. Isaak. High-temperature elasticity of iron-bearing olivines. J. Geophys. Res.: Sol. Earth, 97:1871--1885, 1992. [ bib ]
[2529] E. H. Isaaks and R. M. Srivastava. An Introduction to Applied Geostatistics. Oxford University Press, New York, 1989. [ bib ]
[2530] B. L. Isacks, J. Oliver, and L. R. Sykes. Seismology and the new global tectonics. J. Geophys. Res.: Sol. Earth, 73:5855--5899, 1968. [ bib ]
[2531] B. Isacks and P. Molnar. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223:1121--1124, 1969. [ bib ]
[2532] B. Isacks and P. Molnar. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev. Geophys. Space Phys., 9:103--175, 1971. [ bib ]
[2533] B. Isacks and M. Barazangi. Geometry of Benioff zones: lateral segmentations and downward bending of subducted lithosphere. In M. Talwani and W. C. Pitman III, editors, Island arcs, Deep Sea Trenches, and Back-Arc Basins, volume 1 of Maurice Ewing, pages 99--114. AGU, Washington DC, 1977. [ bib ]
[2534] Katsuhiko Ishibashi. Status of historical seismology in Japan. Ann. Geophys., 47:339--368, 2004. [ bib ]
[2535] Katsuhiko Ishibashi. Ancient and medieval events and recurrence interval of great Kanto earthquakes along the Sagami Trough, central Japan, as inferred from historiographical seismology. Seismol. Res. Lett., 91:2579--2589, 2020. [ bib ]
[2536] K. Ishibashi. Specification of a soon-to-occur seismic faulting in the Tokai district, central Japan. Maurice Ewing, 4:297--332, 1981. [ bib ]
[2537] Takeo Ishibe, Kunihiko Shimazaki, Kenji Satake, and Hiroshi Tsuruoka. Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planet. Space, 63(7):40, 2011. [ bib ]
[2538] M. Ishii and J. Tromp. Even-degree lateral variations in the Earth's mantle constrained by free oscillations and the free-air gravity anomaly. Geophys. J. Int., 145:77--96, 2001. [ bib ]
[2539] Miaki Ishii and Adam M Dziewoński. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl. Acad. Sci. USA, 99:14026--14030, 2002. [ bib ]
[2540] M. Ishii and A. M. Dziewoński. Distinct seismic anisotropy at the centre of the earth. Phys. Earth Planet. Inter., 140:203--217, 2003. [ bib ]
[2541] M. Ishii and J. Tromp. Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 146:113--124, 2004. [ bib ]
[2542] M. Ishii and J. Tromp. Three-dimensional models of mantle heterogeneity and their implications for petrology. EOS, Trans. AGU, 79:F656, 1998. [ bib ]
[2543] M. Ishii and J. Tromp. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285:1231, 1999. [ bib ]
[2544] M Ishimoto. Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthq. Res. Inst., 17:443--478, 1939. [ bib ]
[2545] M. Ishise and H. Oda. Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan. J. Geophys. Res.: Sol. Earth, 110(B07304), 2005. [ bib | DOI ]
[2546] A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii. Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter., 145:99--114, 2004. [ bib ]
[2547] A. Ismail-Zadeh and P. Tackley. Computational Methods for Geodynamics. Cambridge University Press, 2010. [ bib ]
[2548] W. Ben Ismail and D. Mainprice. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophys., 296:145--157, 1998. [ bib ]
[2549] T. Isse, H. Kawakatsu, K. Yoshizawa, A. Takeo, H. Shiobara, H. Sugioka, A. Ito, D. Suetsugu, and D. Reymond. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution. Earth Planet. Sci. Lett., 510:116--130, 2019. [ bib ]
[2550] Joel Ita and Scott D King. Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state. J. Geophys. Res.: Sol. Earth, 99:15919--15938, 1994. [ bib ]
[2551] J. Ita and S. D. King. The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett., 25:1463--1466, 1998. [ bib ]
[2552] J. Ita and R. E. Cohen. Diffusion in MgO at high pressure: Implications for lower mantle rheology. Geophys. Res. Lett., 25:1095--1098, 1998. [ bib ]
[2553] Garrett Ito. Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411:681--684, 2001. [ bib ]
[2554] G. Ito, J. Lin, and D. Graham. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Rev. Geophys., 41, 2003. [ bib | DOI ]
[2555] Garrett Ito and John J Mahoney. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230:29--46, 2005. [ bib ]
[2556] G. Ito and P. E. van Keken. Hotspots and melting anomalies. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, Amsterdam, 2007. [ bib ]
[2557] Y. Ito, K. Obara, K. Shiomi, S. Sekine, and H. Hirose. Slow earthquakes coincident with episodic tremors and slow slip events. Science, 315:503--506, 2007. [ bib ]
[2558] Garrett Ito and Mark D Behn. Magmatic and tectonic extension at mid-ocean ridges: 2. origin of axial morphology. Geochem., Geophys., Geosys., 9(Q09012), 2008. [ bib | DOI ]
[2559] Y. Ito, R. Hino, M. Kido, H. Fujimoto, Y. Osada, D. Inazu, Y. Ohta, T. Iinuma, M. Ohzono, S. Miura, M. Masaaki, K. Suzuki, T. Tusji, and J. Ashi. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophys., 600:14--26, 2013. [ bib ]
[2560] G. Ito, R. Dunn, A. Li, C. J. Wolfe, A. Gallego, and Y. Fu. Seismic anisotropy and shear wave splitting associated with mantle plume-plate interaction. J. Geophys. Res.: Sol. Earth, 119:4923--4937, 2014. [ bib | DOI ]
[2561] Ryo Ito and Yoshihiro Kaneko. Physical Mechanism for a Temporal Decrease of the Gutenberg-Richter b-Value Prior to a Large Earthquake. J. Geophys. Res.: Sol. Earth, 128(12):e2023JB027413, 2023. [ bib ]
[2562] E Ito, M Akaogi, L Topor, and A Navrotsky. Negative pressure-temperature slopes for reactions formign mgsio3 perovskite from calorimetry. Science, 249:1275--1278, 1990. [ bib ]
[2563] Garrett Ito and Jian Lin. Oceanic spreading center--hotspot interactions: constraints from along-isochron bathymetric and gravity anomalies. Geology, 23:657--660, 1995. [ bib ]
[2564] G. Ito, Y. Shen, G. Hirth, and C. J. Wolfe. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett., 165:81--96, 1999. [ bib ]
[2565] Hikaru Iwamori and Francis Albarède. Decoupled isotopic record of ridge and subduction zone processes in oceanic basalts by independent component analysis. Geochem., Geophys., Geosys., 9(Q04033), 2008. [ bib | DOI ]
[2566] Hikaru Iwamori. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett., 160:65--80, 1998. [ bib ]
[2567] Ian Jackson. Laboratory measurement of seismic wave dispersion and attenuation: recent progress. In Shun-Ichiro Karato, Alessandro Forte, Robert Liebermann, Guy Masters, and Lars Stixrude, editors, Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, volume 117 of Geophys. Mono., pages 265--289. American Geophysical Union, Washington DC, 2000. [ bib ]
[2568] I. Jackson, J. D. Fitz Gerald, U. Faul, and B. H. Tan. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[2569] JA Jackson. Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today, 12:4--10, 2002. [ bib ]
[2570] J. A. Jackson, H. Austrheim, D. McKenzie, and K. Priestley. Metastability, mechanical strength, and the support of mountain belts. Geology, 32:625--628, 2004. [ bib ]
[2571] Matthew G Jackson, Stanley R Hart, Anthony AP Koppers, Hubert Staudigel, Jasper Konter, Jerzy Blusztajn, Mark Kurz, and Jamie A Russell. The return of subducted continental crust in Samoan lavas. Nature, 448:684--687, 2007. [ bib ]
[2572] Matthew G Jackson, Richard W Carlson, Mark D Kurz, Pamela D Kempton, Don Francis, and Jerzy Blusztajn. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature, 466:853--856, 2010. [ bib ]
[2573] M. G. Jackson, J. G. Konter, and T. W. Becker. Primordial helium entrained by the hottest mantle plumes. Nature, 542:340--343, 2017. [ bib ]
[2574] M. G. Jackson, T. W. Becker, and J. G. Konter. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: Implications for storage in the Large Low Shear Wave Velocity Provinces. Geochem., Geophys., Geosys., 19:3496--3519, 2018. [ bib ]
[2575] M. G. Jackson, T. W. Becker, and B. Steinberger. Spatial characteristics of recycled and primordial reservoirs in the deep mantle. Geochem., Geophys., Geosys., 22:e2020GC009525, 2021. [ bib ]
[2576] M.G. Jackson and F.A. Macdonald. Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction. Sci. Adv., 3:e2022AV000664, 2022. [ bib ]
[2577] J. Jackson and D. P. McKenzie. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys. J. Int., 93:45--73, 1988. [ bib ]
[2578] I. Jackson. Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophys. J. Int., 134:291--311, 1998. [ bib ]
[2579] K. H. Jacob, K. Nakamura, and J. N. Davies. Trench-volcano gap along the Alaska-Aleutian trench: facts and speculations on the role of terrigenous sediments for subduction. In M. Talwani and W. C. Pitman III, editors, Island arcs, deep sea trenches and back-arc basins, pages 243--259. American Geophysical Union, Washington DC, 1976. [ bib ]
[2580] S. B. Jacobsen and G. J. Wasserburg. The mean age of mantle and crustal reservoirs. J. Geophys. Res.: Sol. Earth, 84:7411--7427, 1979. [ bib ]
[2581] Stein B Jacobsen. Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett., 90:315--329, 1988. [ bib ]
[2582] Carl E Jacobson, Andrew P Barth, and Marty Grove. Late Cretaceous protolith age and provenance of the Pelona and Orocopia Schists, southern California: Implications for evolution of the Cordilleran margin. Geology, 28(3):219--222, 2000. [ bib ]
[2583] W. R. Jacoby. One-dimensional modeling of mantle flow. Pure Appl. Geophys., 116:1231--1249, 1978. [ bib ]
[2584] W. R. Jacoby and H. Schmeling. Convection experiments and driving mechanism. Geol. Rundschau, 24:217--284, 1981. [ bib ]
[2585] A. B. Jacquey and M. Cacace. Multiphysics modeling of a brittle-ductile lithosphere: 1. Explicit visco-elasto-plastic formulation and its numerical implementation. J. Geophys. Res.: Sol. Earth, 125, 2020. [ bib | DOI ]
[2586] M. A. Jadamec and M. I. Billen. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465:338--341, 2010. [ bib ]
[2587] M. A. Jadamec and M. I. Billen. The role of rheology and slab shape on rapid mantle flow: 3D numerical models of the Alaska slab edge. J. Geophys. Res.: Sol. Earth, 117(B02304), 2012. [ bib | DOI ]
[2588] M. A. Jadamec, M. I. Billen, and S. M. Roseke. Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. Earth Planet. Sci. Lett., 376:29--42, 2013. [ bib ]
[2589] Margarete A Jadamec. Insights on slab-driven mantle flow from advances in three-dimensional modelling. J. Geodynamics, 100:51--70, 2016. [ bib ]
[2590] J.C. Jaeger and N.G.W. Cook. Fundamentals of Rock Mechanics. Menthuen, London, 1969. [ bib ]
[2591] Oliver Jagoutz, Othmar Müntener, Max W Schmidt, and Jean-Pierre Burg. The roles of flux-and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth Planet. Sci. Lett., 303:25--36, 2011. [ bib ]
[2592] O. Jagoutz, L. Royden, A. F. Holt, and T. W. Becker. Anomalously fast convergence between India and Eurasia caused by double subduction. Nature Geosc., 8:475--478, 2015. [ bib ]
[2593] Oliver Jagoutz and Peter B Kelemen. Role of arc processes in the formation of continental crust. Ann. Rev. Earth Planet. Sci., 43:363--404, 2015. [ bib ]
[2594] Chhavi Jain, Jun Korenaga, and Shun-ichiro Karato. Global analysis of experimental data on the rheology of olivine aggregates. J. Geophys. Res.: Sol. Earth, 124:310--334, 2019. [ bib ]
[2595] Charitra Jain, Antoine B Rozel, Paul J Tackley, Patrick Sanan, and Taras V Gerya. Growing primordial continental crust self-consistently in global mantle convection models. Gondw. Res., 73:96--122, 2019. [ bib ]
[2596] D. E. James, M. J. Fouch, R. W. Carlson, and J. B. Roth. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett., 311:124--135, 2011. [ bib ]
[2597] A.I. James and A.J. Watkinson. Initiation of folding and boudinage in wrench shear and transpression. J. Struct. Geol., 16:883--893, 1994. [ bib ]
[2598] D. E. James and L. A. Murcia. Crustal contamination in northern Andean volcanic. J. Geol. Soc. London, 141:823--830, 1984. [ bib ]
[2599] R. A. Jamieson and C. Beaumont. On the origin of orogens. Geol. Soc. Amer. Bull., 125:1671--1702, 2013. [ bib ]
[2600] T. F. Jamieson. On the history of the last geological changes in Scotland. Quart. J. Geol. Soc. London, 21:161--203, 1865. [ bib ]
[2601] Rebecca Anne Jamieson, C Beaumont, P Fullsack, and B Lee. Barrovian regional metamorphism: where's the heat? In P. J. Treloar and P. J. O'Brien, editors, What Drives Metamorphism and Metamorphic Reactions?, volume 138 of Spec. Ser., pages 23--51. The Geological Society of London, 1998. [ bib ]
[2602] S. Jammes, L. L. Lavier, and G. Manatschal. Extreme crustal thinning of the Bay of Biscay and Western Pyrenees: From observations to modeling. Geochem., Geophys., Geosys., 11(Q10016), 2010. [ bib | DOI ]
[2603] Olivier Jaoul, Jan Tullis, and Andreas Kronenberg. The effect of varying water contents on the creep behavior of Heavitree quartzite. J. Geophys. Res.: Sol. Earth, 89:4298--4312, 1984. [ bib ]
[2604] J. Jaramillo, P. R. Linero, and J. I. Garver. Neogene volcanism in the Cordillera Oriental of the Andes, Colombnia. Earth Sci. Res., 9:19--29, 2005. [ bib ]
[2605] R. D. Jarrard. Relations among subduction parameters. Rev. Geophys., 24:217--284, 1986. [ bib ]
[2606] G.T. Jarvis and D.P. McKenzie. Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech., 96:515--583, 1980. [ bib ]
[2607] G. T. Jarvis and W. R. Peltier. Mantle convection as a boundary layer phenomenon. Geophys. J. R. Astr. Soc., 68:389--427, 1982. [ bib ]
[2608] G. T. Jarvis. Time-dependent convection in the earth's mantle. Phys. Earth Planet. Inter., 36:305--327, 1984. [ bib ]
[2609] G. T. Jarvis and W. R. Peltier. Convection models and geophysical observations. In W. R. Peltier, editor, Mantle convection: Plate Tectonics and Global Dynamics, volume 4 of Fluid Mech. Astrophys. Geophys., pages 479--593. Gordon and Breach Science Pub., New York, NY, 1989. [ bib ]
[2610] J. Jasbinsek and K. Dueker. Ubiquitous low-velocity layer atop the 410-km discontinuity in the northern Rocky Mountains. Geochem., Geophys., Geosys., 8(Q10004), 2007. [ bib | DOI ]
[2611] S. C. Jaumé and L. R. Sykes. Change in the state of stress on the southern San Andreas fault resulting from the California earthquake sequence of April to June 1992. Science, 258:1325--1328, 1992. [ bib ]
[2612] S. C. Jaumé and L. R. Sykes. Evolution of moderate seismicity in the San Francisco Bay region, 1850 to 1993: Seismicity changes related to the occurrence of large and great earthquakes. J. Geophys. Res.: Sol. Earth, 101:765--789, 1996. [ bib ]
[2613] C. Jaupart, S. Labrosse, and J.-C. Marechal. Temperatures, heat and energy in the mantle of the Earth. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 253--303. Elsevier, 2007. [ bib ]
[2614] C. Jaupart, S. Labrosse, F. Lucazeau, and J.-C. Marechal. Temperatures, heat and energy in the mantle of the Earth. In G. Schubert, editor, Treatise on Geophysics, pages 223--270. Elsevier, 2 edition, 2015. [ bib ]
[2615] C. Jaupart and B. Parsons. Convective instabilities in a variable viscosity fluid cooled from above. Phys. Earth Planet. Inter., 39:14--32, 1985. [ bib ]
[2616] M. Javoy. The integral enstatite chondrite model of the earth. Geophys. Res. Lett., 22:2219--2222, 1995. [ bib ]
[2617] R. Jeanloz and S. Morris. Is the mantle geotherm sub-adiabatic? Geophys. Res. Lett., 14:335--338, 1987. [ bib ]
[2618] R. Jeanloz and H. R. Wenk. Convection and anisotropy of the inner core. Geophys. Res. Lett., 15:72--75, 1988. [ bib ]
[2619] Harold Jeffreys. Certain hypotheses as to the internal structure of the Earth and Moon. Mem. Royal Astron. Soc., 60:187, 1915. [ bib ]
[2620] H. Jeffreys. The Earth: Its Origin, History and Physical Constitution. Cambridge University Press, 1924. [ bib ]
[2621] Harold Jeffreys. The rigidity of the Earth's central core. Geophys. Supp. Mon. Not. Royal Astron. Soc., 1:371--383, 1926. [ bib ]
[2622] A. M. Jellinek and M. Manga. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418:760--763, 2002. [ bib ]
[2623] A. M. Jellinek and M. Manga. Links between long-lived hot spots, mantle plumes, D”, and plate tectonics. Rev. Geophys., 42(RG3002), 2004. [ bib | DOI ]
[2624] AM Jellinek, A Lenardic, and RT Pierrehumbert. Ice, fire, or fizzle: The climate footprint of Earth's supercontinental cycles. Geochem., Geophys., Geosys., 21:e2019GC008464, 2020. [ bib ]
[2625] C. W. Jennings. Fault map of California with locations of volcanoes, thermal springs, and thermal wells. Number 1 in Geologic Data Map. California Division of Mines and Geology, Sacramento CA, 1975. [ bib ]
[2626] Tamara N Jeppson, Harold J Tobin, and Yoshitaka Hashimoto. Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14:1411--1424, 2018. [ bib ]
[2627] M Jeyakumaran, JW Rudnicki, and LM Keer. Modeling slip zones with triangular dislocation elements. Bull. Seismol. Soc. Am., 82:2153--2169, 1992. [ bib ]
[2628] M. Jeyakumaran and J. W. Rudnicki. The sliding wing crack -- Again! Geophys. Res. Lett., pages 2901--2904, 1995. [ bib ]
[2629] J. H. Davies, O. Gudmundsson, and R. W. Clayton. Spectra of mantle shear wave velocity structure. Geophys. J. Int., 108:565--582, 1992. [ bib ]
[2630] Shaocheng Ji, Tongbin Shao, Katsuyoshi Michibayashi, Shoma Oya, Takako Satsukawa, Qian Wang, Weihua Zhao, and Matthew H Salisbury. Magnitude and symmetry of seismic anisotropy in mica-and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res.: Sol. Earth, 120:6404--6430, 2015. [ bib ]
[2631] Yingfeng Ji, Shoichi Yoshioka, and Takumi Matsumoto. Three-dimensional numerical modeling of temperature and mantle flow fields associated with subduction of the Philippine Sea plate, southwest Japan. J. Geophys. Res.: Sol. Earth, 121:4458--4482, 2016. [ bib ]
[2632] Yingfeng Ji and Shoichi Yoshioka. Slab dehydration and earthquake distribution beneath southwestern and central Japan based on three-dimensional thermal modeling. Geophys. Res. Lett., 44:2679--2686, 2017. [ bib ]
[2633] S. Ji, X. Zhao, and D. Francis. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophys., 239:1--27, 1994. [ bib ]
[2634] J. Jiang and N. Lapusta. Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352:1293--1297, 2016. [ bib ]
[2635] Chengxin Jiang, Brandon Schmandt, and Robert W Clayton. An anisotropic contrast in the lithosphere across the central San Andreas fault. Geophys. Res. Lett., 45:3967--3975, 2018. [ bib ]
[2636] Chengxin Jiang, Brandon Schmandt, and Robert W. Clayton. An Anisotropic Contrast in the Lithosphere Across the Central San Andreas Fault. Geophys. Res. Lett., 45:3967--3975, 2018. [ bib ]
[2637] I. Jiménez-Munt, M. Fernàndez, J. Vergés abd D. Garcia-Castellanos, J. Fullea, M. Pérez-Gussinyé, and J. C. Afonso. Decoupled crust‐mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin. J. Geophys. Res.: Sol. Earth, 116(B08403), 2011. [ bib | DOI ]
[2638] K. P. Jochum, A. W. Hofmann, E. Ito, H. M. Seufert, and W. M. White. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 306:431--436, 1983. [ bib ]
[2639] T. John, S. Medvedev, L. H. Rüpke, T. B. Andersen, Y. Y. Podladchikov, and H. Austrheim. Generation of intermediate-depth earthquakes by self localizing themal runaway. Nature Geosc., 2:137--140, 2009. [ bib ]
[2640] M. R. W. Johnson. Shortening budgets and the role of continental subduction during the India-Asia collision. Earth-Sci. Rev., 59:101--123, 2002. [ bib ]
[2641] KM Johnson and P Segall. Viscoelastic earthquake cycle models with deep stress-driven creep along the san andreas fault system. J. Geophys. Res.: Sol. Earth, 109(B10), 2004. [ bib ]
[2642] K. M Johnson, J. Fukuda, and P. Segall. Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake. Geophys. Res. Lett., 39(L20302), 2012. [ bib | DOI ]
[2643] K. M. Johnson, A. Mavrommatis, and P. Segall. Small interseismic asperities and widespread aseismic creep on the northern Japan subduction interface. Geophys. Res. Lett., 43:135--143, 2016. [ bib ]
[2644] Kaj M. Johnson and Douglas Tebo. Capturing 50 years of postseismic mantle flow at Nankai subduction zone. J. Geophys. Res.: Sol. Earth, 123:10,091--10,106, 2018. [ bib ]
[2645] Christopher W Johnson and Paul A Johnson. Learning the low frequency earthquake activity on the central San Andreas Fault. Geophys. Res. Lett., 48:e2021GL092951, 2021. [ bib ]
[2646] K. T. M. Johnson, H. J. B. Dick, and N. Shimizu. Melting in the oceanic upper mantle: an ion microprobe study of Diopsides in abyssal peridotites. J. Geophys. Res.: Sol. Earth, 95:2661--2678, 1990. [ bib ]
[2647] H. O. Johnson. Techniques and studies in crustal deformation. PhD thesis, University of California, San Diego, 1993. [ bib ]
[2648] J. M. Johnson, Y. Tanioka, J. Ruff, K. Satake, H. Kanamori, and L. R. Sykes. The 1957 great Aleutian earthquake. Pure Appl. Geophys., 142:3--28, 1994. [ bib ]
[2649] J. M. Johnson, K. Satake, S. R. Holdahl, and J. Sauber. The 1964 Prince Wiliam Sound earthquake: Joint inversion of tsunami and geodetic data. J. Geophys. Res.: Sol. Earth, 101:523--532, January 1996. [ bib ]
[2650] M. Johnson and T. Plank. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem., Geophys., Geosys., 1(1007), 1999. [ bib | DOI ]
[2651] H. O. Johnson, D. C. Agnew, and F. K. Wyatt. Present-day crustal deformation in southern California. J. Geophys. Res.: Sol. Earth, 99:23951--23974, 1994. [ bib ]
[2652] M. J. Johnston, S. A. T. Linde, and M. T. Gladwin. Near-field high resolution strain measurements prior to the October 18 1989, Loma Prieta Ms 7.1 earthquake. Geophys. Res. Lett., 17:1777--1780, 1990. [ bib ]
[2653] M. Johri, E. M. Dunham, M. D. Zoback, and Z. Fang. Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations. J. Geophys. Res.: Sol. Earth, 119:1251--1272, 2014. [ bib ]
[2654] L. Jolivet and C. Faccenna. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 6:1095--1107, 2000. [ bib ]
[2655] Laurent Jolivet, Claudio Faccenna, Bruno Goffé, Evgenii B. Burov, and Philippe Agard. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Amer. J. Sci., 303:353--409, 2003. [ bib ]
[2656] Laurent Jolivet, Claudio Faccenna, and Claudia Piromallo. From mantle to crust: Stretching the Mediterranean. Earth Planet. Sci. Lett., 285(1-2):198--209, 2009. [ bib ]
[2657] Laurent Jolivet, Emmanuel Lecomte, Benjamin Huet, Yoann Denèle, Olivier Lacombe, Loic Labrousse, Laetitia Le Pourhiet, and Caroline Mehl. The North Cycladic detachment system. Earth Planet. Sci. Lett., 289:87--104, 2010. [ bib ]
[2658] Laurent Jolivet and Jean-Pierre Brun. Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci., 99:109--138, 2010. [ bib ]
[2659] Romain Jolivet, M Simons, Z Duputel, J-A Olive, HS Bhat, and Quentin Bletery. Interseismic loading of subduction megathrust drives long-term uplift in northern Chile. Geophys. Res. Lett., 47(e2019GL085377), 2020. [ bib ]
[2660] L. Jolivet, C. Faccenna, B. Goffè, M. Mattei, F. Rossetti, C. Brunet, F. Storti, R. Funiciello, J. P. Cadet, N. d'Agostino, and T. Parra. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian sea. J. Geophys. Res.: Sol. Earth, 103:12123--12161, 1998. [ bib ]
[2661] L. Jolivet, C. Faccenna, N. d'Agostino, M. Fournier, and D. Worrall. The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. In C. Mac Niocaill and P. D. Ryan, editors, The Mediterranean Basins: Tertiary extension within the Alpine orogen, volume 164 of Geol. Soc. London Spec. Publ., pages 21--53. Geological Society of London, London, 1999. [ bib ]
[2662] D.W.R. Jones, R.F. Katz, M. Tian, and J.F. Rudge. Thermal impact of magmatism in subduction zones. Earth Planet. Sci. Lett., 481:73--79, 2018. [ bib ]
[2663] A. G. Jones, L. Sonder, and J. R. Unruh. Lithospheric gravitational potential energy and past orogenesis: Implications for conditions of initial Basin and Range and Laramide deformation. Geology, 26:639--642, 1998. [ bib ]
[2664] C. H. Jones, B. P. Wernicke, G. L. Farmer, J. D. Walker, D. S. Coleman, L. W. McKenna, and F. V. Perry. Variations across and along a major continental rift: an interdisciplinary study of the Basin and Range Province, western USA. Tectonophys., 213:57--96, 1992. [ bib ]
[2665] L. E. Jones and S. E. Hough. Analysis of broadband records from the 28 June 1992 Big Bear earthquake; evidence of a multiple-event source. Bull. Seismol. Soc. Am., 85:688--704, 1995. [ bib ]
[2666] C. H. Jones, J. R. Unruh, and L.J. Sonder. The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 381:37--41, 1996. [ bib ]
[2667] Sigurjón Jónsson, Paul Segall, Rikke Pedersen, and Grímur Björnsson. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424:179--183, 2003. [ bib ]
[2668] T. H. Jordan and E. G. Paulson. Convergence depths of tectonic regions from an ensemble of global tomographic models. J. Geophys. Res.: Sol. Earth, 118:4196--4225, 2013. [ bib ]
[2669] T. H. Jordan. Some comments on tidal drag as a mechanism for driving plate motions. J. Geophys. Res.: Sol. Earth, 79:2141--2142, 1974. [ bib ]
[2670] T. H. Jordan. Composition and development of the continental tectosphere. Nature, 274:544--548, 1978. [ bib ]
[2671] T. H. Jordan. Global tectonic regionalization for seismological data analysis. Bull. Seismol. Soc. Am., 71:1131--1141, 1981. [ bib ]
[2672] TH Jordan. Continents as a chemical boundary layer. Phil. Trans. Royal Soc. London. A, 301:359--373, 1981. [ bib ]
[2673] Thomas H Jordan, Peter Puster, Gary A Glatzmaier, and Paul J Tackley. Comparisons between seismic earth structures and mantle flow models based on radial correlation functions. Science, 261:1427--1431, 1993. [ bib ]
[2674] ML u Jost and RB Herrmann. A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60:37--57, 1989. [ bib ]
[2675] F. Jouanne, F. A. Audemard, C. Beck, A. van Welden, R. Ollarves, and C. Reinoz. Present-day deformation along the El Pilar Fault in eastern Venezuela: Evidence of creep along a major transform boundary. J. Geodynamics, 51:398--410, 2011. [ bib ]
[2676] J. Julia, C. J. Ammon, R. B. Herrmann, and A. M. Correig. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int., 143:99--112, 2000. [ bib ]
[2677] Bruce R Julian. Volcanic tremor: nonlinear excitation by fluid flow. J. Geophys. Res.: Sol. Earth, 99:11859--11877, 1994. [ bib ]
[2678] H. Jung and S.-i. Karato. Water-induced fabric transitions in olivine. Science, 293:1460--1463, 2001. [ bib ]
[2679] H. Jung, W. Mo, and H. W. Green. Upper mantle seismic anisotropy resulting from pressure-induced slip transitions in olivine. Nature Geosc., 2:73--77, 2009. [ bib ]
[2680] Project Jupyter. Jupyter website, 2021. online at jupyter.org/index.html, accessed 01/2021. [ bib ]
[2681] M. Kachanov. Effective elastic properties of cracked solids: critical review of some basic concepts. In V. C. Li, editor, Micromechnical modeling of quasi-brittle behavior, volume 45 of Appl. Mech. Rev., pages 304--335. American Society of Mechanical Engineers, 1992. [ bib ]
[2682] M. Kachanov. Elastic solids with many cracks and related problems. Advan. Appl. Mech., 30:259--445, 1994. [ bib ]
[2683] K. Kadinsky-Cade and R. J. Wilemann. Towards understanding aftershock patterns: The basic pattern for strike slip earthquakes. In Eos Trans. AGU, volume 63, page 384. American Geophysical Union, 1982. (abstract). [ bib ]
[2684] M. Käser, C. Castro, V. Hermann, and C. Pelties. SeisSol: a software for seismic wave propagation simulations. In High Performance Computing in Science and Engineering Garching/Munich 2009, pages 281--292. Springer, Berlin, Heidelberg, 2010. Package available online at www.seissol.org, accessed 02/2020. [ bib ]
[2685] Y. Y. Kagan and D. D. Jackson. Probabilistic forecasting of earthquakes. Geophys. J. Int., 143:438--453, 2000. [ bib ]
[2686] Yan Y Kagan. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int., 148:520--541, 2002. [ bib ]
[2687] Y. Y. Kagan. On the geometric complexity of earthquake focal zone and fault systems: A statistical study. Phys. Earth Planet. Inter., 173:254--268, 2009. [ bib ]
[2688] Y.Y. Kagan, D.D. Jackson, and R.J. Geller. Characteristic earthquake model, 1884–2011, R.I.P. Seismol. Res. Lett., 83:951--953, 2012. [ bib ]
[2689] Y. Y. Kagan and L. Knopoff. Spatial distribution of earthquakes: the two-point correlation function. Geophys. J. Int., 62(2):303--320, 1980. [ bib ]
[2690] Y. Y. Kagan. Stochastic model of earthquake fault geometry. Geophys. J. R. astr. Soc., 71:659--691, 1982. [ bib ]
[2691] Y. Y. Kagan and L. Knopoff. The first-order statistical moment of the seismic moment tensor. Geophys. J. R. Astr. Soc., 81:429--444, 1985. [ bib ]
[2692] Y. Y. Kagan. Random stress and earthquake statistics: Spatial dependence. Geophys. J. Int., 102:573--583, 1990. [ bib ]
[2693] Y. Y. Kagan. Incremental stress and earthquakes. Geophys. J. Int., 117:345--364, 1994. [ bib ]
[2694] Y. Y. Kagan and D. D. Jackson. Long-term probabilistic forecasting of earthquakes. J. Geophys. Res.: Sol. Earth, 99:13685--13700, 1994. [ bib ]
[2695] YY Kagan and DD Jackson. New seismic gap hypothesis: Five years after. J. Geophys. Res.: Sol. Earth, 100:3943--3959, 1995. [ bib ]
[2696] Y. Y. Kagan. Are earthquakes predictable? Geophys. J. Int., 131:505--525, 1997. [ bib ]
[2697] Y. Y. Kagan and D. D. Jackson. Spatial aftershock distribution: Effect of normal stress. J. Geophys. Res.: Sol. Earth, 103:24453--24467, 1998. [ bib ]
[2698] Y. Y. Kagan. Universality of the seismic moment-frequency relation. Pure Appl. Geophys., 155:537--573, 1999. [ bib ]
[2699] Akira Kageyama, Tetsuya Sato, and Complexity Simulation Group. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas, 2:1421--1431, 1995. [ bib ]
[2700] Yavor Kamer and Stefan Wiemer. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. J. Geophys. Res.: Sol. Earth, 120:5191--5214, 2015. [ bib ]
[2701] M. Kameyama, D. A. Yuen, and H. Hiromi. The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones. Geophys. Res. Lett., 24:2523--2526, 1997. [ bib ]
[2702] É. Kaminski and N. M. Ribe. A kinematic model for for recrystallization and texture development in olivine polycrystals. Earth Planet. Sci. Lett., 189:253--267, 2001. [ bib ]
[2703] É. Kaminski and N. M. Ribe. Time scales for the evolution of seismic anisotropy in mantle flow. Geochem., Geophys., Geosys., 3(2001GC000222), 2002. [ bib ]
[2704] É. Kaminski. The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys. Res. Lett., 29:10.1029/2002GL014710, 2002. [ bib ]
[2705] É. Kaminski, N. M.. Ribe, and J. T. Browaeys. D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophys. J. Int., 157:1--9, 2004. [ bib ]
[2706] H. Kanamori and T. H. Heaton. Microscopic and macroscopic physics of earthquakes. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the Physics of Earthquakes, volume 120 of Geophys. Mono., pages 147--163. American Geophysical Union, Washington, DC, 2000. [ bib ]
[2707] H. Kanamori and D. L. Anderson. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65:1073--1095, 1975. [ bib ]
[2708] H. Kanamori. The energy release in great earthquakes. J. Geophys. Res.: Sol. Earth, 82:2981--2987, 1977. [ bib ]
[2709] Hiroo Kanamori and Don L Anderson. Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys., 15:105--112, 1977. [ bib ]
[2710] R. V. S. Kanda and M. Simons. An elastic plate model for interseismic deformation in subduction zones. J. Geophys. Res.: Sol. Earth, 115(B03405), 2010. [ bib | DOI ]
[2711] D. L. Kane, G. A. Prieto, F. L. Vernon, and P. M. Shearer. Quantifying seismic source parameter uncertainties. Bull. Seismol. Soc. Am., 101:535--543, 2011. [ bib ]
[2712] Yoshihiro Kaneko, Laura M Wallace, Ian J Hamling, and Matthew C Gerstenberger. Simple physical model for the probability of a subduction-zone earthquake following slow slip events and earthquakes: Application to the Hikurangi megathrust, New Zealand. Geophys. Res. Lett., 45:3932--3941, 2018. [ bib ]
[2713] Yoshihiro Kaneko, Yoshihiro Ito, Bryant Chow, Laura M Wallace, Carl Tape, Ronni Grapenthin, Elisabetta D'Anastasio, Stuart Henrys, and Ryota Hino. Ultra-long duration of seismic ground motion arising from a thick, low-velocity sedimentary wedge. J. Geophys. Res.: Sol. Earth, 124:10347--10359, 2019. [ bib ]
[2714] Ichiro Kaneoka and Nobuo Takaoka. Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Earth Planet. Sci. Lett., 39:382--386, 1978. [ bib ]
[2715] Ichiro Kaneoka and Nobuo Takaoka. Rare gas isotopes in hawaiian ultramafic nodules and volcanic rocks: constraint on genetic relationships. Science, 208:1366--1368, 1980. [ bib ]
[2716] S. Kaneshima and G. R. Helffrich. Subparallel dipping heterogeneities in the mid-lower mantle. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[2717] S. Kaneshima and G. Helffrich. Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science, 283:1888--1891, 1999. [ bib ]
[2718] Masayuki Kano, Shin'ichi Miyazaki, Yoichi Ishikawa, Yoshihisa Hiyoshi, Kosuke Ito, and Kazuro Hirahara. Real data assimilation for optimization of frictional parameters and prediction of afterslip in the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method. Geophys. J. Int., 203:646--663, 2015. [ bib ]
[2719] Honn Kao, Shao-Ju Shan, Herb Dragert, Garry Rogers, John F Cassidy, and Kumar Ramachandran. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature, 436:841--844, 2005. [ bib ]
[2720] J. L. Kaplan and J. A. Yorke. Chaotic behavior of multidimensional difference equations. In H.-O. Peitgen and H.-O. Walter, editors, Functional Differential Equations and Approximations of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204--227. Springer, Berlin, 1979. [ bib ]
[2721] P. Kapp, M. Taylor, D. Stockli, and D. Lin. Active development of low-angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 36:7--10, 2008. [ bib ]
[2722] Paul Kapp and Peter G DeCelles. Mesozoic--Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Amer. J. Sci., 319:159--254, 2019. [ bib ]
[2723] Bryan M Kaproth and C Marone. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip. Science, 341:1229--1232, 2013. [ bib ]
[2724] P. Karabinos, S. D. Samson, J. C. Hepburn, and H. M. Stoll. Taconian orogeny in the New England Appalachians: Collision between Laurentia and the Shelburne Falls arc. Geology, 26:215--218, 1998. [ bib ]
[2725] Haydar Karaoğlu and Barbara Romanowicz. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method. Geophys. J. Int., 213:1536--1558, 2018. [ bib ]
[2726] H. Kárason and R. D. van der Hilst. Constraints on mantle convection from seismic tomography. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geoophys. Mono., pages 277--288. American Geophysical Union, Washington DC, 2000. [ bib ]
[2727] H. Kárason and R. D. van der Hilst. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res.: Sol. Earth, 106:6569--6588, 2001. [ bib ]
[2728] H. Kárason. Constraints on mantle convection from seismic tomography and flow modeling. PhD thesis, Massachusetts Institute of Technology, Cambridge MA, June 2002. [ bib ]
[2729] S.-i. Karato and B. B. Karki. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res.: Sol. Earth, 106:21771--21783, 2001. [ bib ]
[2730] S.-i. Karato, M. R. Riedel, and D. A. Yuen. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 127:83--108, 2001. [ bib ]
[2731] S.-i. Karato. Mapping water content in the upper mantle. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono. American Geophysical Union, Washington, DC, 2004. [ bib ]
[2732] S.-i. Karato, H. Jung, I. Katayama, and P. Skemer. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann. Rev. Earth Planet. Sci., 36:59--95, 2008. [ bib ]
[2733] S.-i. Karato. On the origin of the asthenosphere. Earth Planet. Sci. Lett., 321--322:95--103, 2012. [ bib ]
[2734] Shun-ichiro Karato, Tolulope Olugboji, and Jeffrey Park. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geosc., 8:509--514, 2015. [ bib ]
[2735] S.-i. Karato. Rheology of the lower mantle. Phys. Earth Planet. Inter., 24:1--14, 1981. [ bib ]
[2736] S.-i. Karato. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior: a preliminary result. Phys. Earth Planet. Inter., 55:234--240, 1989. [ bib ]
[2737] S.-i. Karato. Grain growth kinetics in olivine aggregates. Tectonophys., 168:255--273, 1989. [ bib ]
[2738] S.-i. Karato and P. Li. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science, 255:1238--1240, 1992. [ bib ]
[2739] S.-i. Karato. On the Lehmann discontinuity. Geophys. Res. Lett., 51:2255--2258, 1992. [ bib ]
[2740] S.-i. Karato and P. Wu. Rheology of the upper mantle: a synthesis. Science, 260:771--778, 1993. [ bib ]
[2741] S.-i. Karato. Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science, 262:1708--1711, 1993. [ bib ]
[2742] S.-i. Karato. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20:1623--1626, 1993. [ bib ]
[2743] S.-i. Karato and D. C. Rubie. Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures. J. Geophys. Res.: Sol. Earth, 102:20111--20122, 1997. [ bib ]
[2744] S.-i. Karato. Seismic anisotropy in the deep mantle, boundary layers and the geometry of convection. Pure Appl. Geophys., 151:565--587, 1998. [ bib ]
[2745] S.-i. Karato and H. Jung. Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett., 157:193--207, 1998. [ bib ]
[2746] Sadegh Karimpouli, Danu Caus, Harsh Grover, Patricia Martínez-Garzón, Marco Bohnhoff, Gregory C Beroza, Georg Dresen, Thomas H. W. Goebel, Tobias Weigel, and Grzegorz Kwiatek. Explainable machine learning for labquake prediction using catalog-driven features. Earth Planet. Sci. Lett., 622:118383, 2023. [ bib ]
[2747] Krister S Karlsen, Clinton P Conrad, Mathew Domeier, and Reidar G Trønnes. Spatiotemporal variations in surface heat loss imply a heterogeneous mantle cooling history. Geophys. Res. Lett., 48(6):e2020GL092119, 2021. [ bib ]
[2748] K. E. Karlstrom, D. Coblentz, K. Dueker, W. Ouimet, E. Kirby, J. Van Wijk, B. Schmandt, S. Kelley, G. Lazear, L.J. Crossey, R. Crow, A. Aslan, A. Darling, R. Aster, J. MacCarthy, S.M. Hansen, J. Stachnik, D.F. Stockli, R.V. Garcia, M. Hoffman, R. McKeon, J. Feldman, M. Heizler, M.S. Donahue, and the CREST Working Group. Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis. Lithosphere, 4:3--22, 2012. [ bib ]
[2749] T. von Karmàn. Progress in the statistical theory of turbulence. J. Mar. Res., 7:252--264, 1948. [ bib ]
[2750] S. L. Karner and C. Marone. Healing and time-dependent weakening in simulated fault gouge (abstract). EOS, Trans. AGU, 79:F629, 1998. [ bib ]
[2751] M. Karpychev and L. Fleitout. Long-wavelength geoid: the effect of continental roots and lithosphere thickness variations. Geophys. J. Int., 143:945--963, 2000. [ bib ]
[2752] M. Karpychev and L. Fleitout. Simple considerations on forces driving plate motion and on the plate-tectonic contribution to the long-wavelength geoid. Geophys. J. Int., 127:268--282, 1996. [ bib ]
[2753] JA Karson, EM Klein, SD Hurst, CE Lee, PA Rivizzigno, D Curewitz, AR Morris, DJ Miller, RG Varga, GL Christeson, B Cushman, JM O'Neill, JG Brophy, MA Gillis, and AL Steward. Structure of uppermost fast-spread oceanic crust exposed at the Hess Deep Rift: Implications for subaxial processes at the East Pacific Rise. Geochem., Geophys., Geosys., 3(1002), 2002. [ bib | DOI ]
[2754] JA Karson, GL Früh-Green, Deborah S Kelley, EA Williams, Dana R Yoerger, and M Jakuba. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30oN. Geochem., Geophys., Geosys., 7(Q06016), 2006. [ bib | DOI ]
[2755] K. A. Kastens and J. Mascle. The geological evolution of the Tyrrhenian sea: an introduction to the scientific results of ODP Leg 107. In K. A. Kastens and J. Mascle, editors, Proc. ODP, Scientific Results, volume 107, pages 3--26. ODP Program, 1990. [ bib ]
[2756] Miriam Kastner, Evan A Solomon, Robert N Harris, and Marta E Torres. Fluid origins, thermal regimes, and fluid and solute fluxes in the forearc of subduction zones. Dev. Marine Geol., 7:671--733, 2014. [ bib ]
[2757] Miriam Kastner, Keith A Kvenvolden, and Thomas D Lorenson. Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet. Sci. Lett., 156:173--183, 1998. [ bib ]
[2758] I. Katayama, H. Jung, and S.-i. Karato. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32:1045--1048, 2004. [ bib ]
[2759] I. Katayama, K.-i. Hirauchi, K. Michibayahi, and J.-i. Ando. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461:1114--1117, 2009. [ bib ]
[2760] N. Kato and T. E. Tullis. A composite rate-and state-dependent law for rock friction. Geophys. Res. Lett., 28:1103--1106, 2001. [ bib ]
[2761] A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-oki earthquake. Science, 335:705--708, 2012. [ bib ]
[2762] Aitaro Kato, Jun'ichi Fukuda, and Kazushige Obara. Response of seismicity to static and dynamic stress changes induced by the 2011 M9. 0 Tohoku-Oki earthquake. Geophys. Res. Lett., 40:3572--3578, 2013. [ bib ]
[2763] A. Kato, J. Fukuda, T. Kumazawa, and S. Nakagawa. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Sci. Rep., 6(24792), 2016. [ bib ]
[2764] Aitaro Kato. Implications of fault-valve behavior from immediate aftershocks following the 2023 Mj6.5 earthquake beneath the Noto Peninsula, Central Japan. Geophys. Res. Lett., 51:e2023GL106444, 2024. [ bib ]
[2765] T. Katsura, H. Yamada, O. Nishikawa, M. Song, A. Kubo, T. Shinmei, S. Yokoshi, Y. Aizawa, T. Yoshino, M. J. Walter, E. Ito, and K.-i. Funakoshi. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys. Res.: Sol. Earth, 109(B02209), 2004. [ bib | DOI ]
[2766] T. Katsura. A revised adiabatic temperature profile for the mantle. J. Geophys. Res.: Sol. Earth, 127:e2021JB023562, 2022. [ bib ]
[2767] Simon A Kattenhorn and Louise M Prockter. Evidence for subduction in the ice shell of Europa. Nature Geosc., 7:762--767, 2014. [ bib ]
[2768] R. F. Katz, M. Spiegelman, and C. H. Langmuir. A new parameterization of hydrous mantle melting. Geochem., Geophys., Geosys., 4(9), 2003. [ bib | DOI ]
[2769] R. F. Katz. The Dynamics of Partially Molten Rock. Princeton University Press, Princeton, 2022. [ bib ]
[2770] R. L. Katzman, L. Zhao, and T. H. Jordan. High-resolution, 2D vertical tomography of the central Pacific using ScS reverberations and frequency-dependent travel times. J. Geophys. Res.: Sol. Earth, 103:17933--17971, 1998. [ bib ]
[2771] P. S. Kaufman and L. H. Royden. Lower crustal flow in an extensional setting; constraints from the Halloran Hills region, eastern Mojave Desert, California. J. Geophys. Res.: Sol. Earth, 99:15723--15739, 1994. [ bib ]
[2772] Georg Kaufmann and Falk Amelung. Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada. J. Geophys. Res.: Sol. Earth, 105:16341--16358, 2000. [ bib ]
[2773] Georg Kaufmann and Kurt Lambeck. Mantle dynamics, postglacial rebound and the radial viscosity profile. Phys. Earth Planet. Inter., 121:301--324, 2000. [ bib ]
[2774] Georg Kaufmann and Patrick Wu. Lateral asthenospheric viscosity variations and postglacial rebound: a case study for the Barents Sea. Geophys. Res. Lett., 25:1963--1966, 1998. [ bib ]
[2775] W. M. Kaula. Geophysical implications of satellite determinations of the Earth's gravitational field. Space Sci. Rev., 7:769--794, 1967. [ bib ]
[2776] W. M. Kaula. Absolute plate motions by boundary velocity minimization. J. Geophys. Res.: Sol. Earth, 80:244--248, 1975. [ bib ]
[2777] William M Kaula. Thermal evolution of Earth and Moon growing by planetesimal impacts. J. Geophys. Res.: Sol. Earth, 84:999--1008, 1979. [ bib ]
[2778] B. J. P. Kaus and Y. Y. Podladchikov. Forward and reverse modeling of the three-dimensional Rayleigh-Taylor instability. Geophys. Res. Lett., 28:1095--1098, 2001. [ bib ]
[2779] B. J. P. Kaus, J. A. D. Connolly, and Y. Y. Podladchikov. The effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth Planet. Sci. Lett., 223:213--228, 2005. [ bib ]
[2780] B. J. P. Kaus and Y. Y. Podladchikov. Initiation of localized shear in visco-elasto-plastic rocks. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[2781] B. J. P. Kaus and S. M. Schmalholz. 3D finite amplitude folding: implications for stress evolution during crustal and lithospheric deformation. Geophys. Res. Lett., 33(L14309), 2006. [ bib | DOI ]
[2782] B. J. P. Kaus and T. W. Becker. Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. Geophys. J. Int., 168:843--862, 2007. [ bib ]
[2783] B. J. P. Kaus, C. Steedman, and T. W. Becker. From passive continental margin to mountain belt: insights from analytical and numerical models and application to Taiwan. Phys. Earth Planet. Inter., 171:235--251, 2008. [ bib ]
[2784] B. J. P. Kaus and T. W. Becker. A numerical study of the effects of surface bonudary conditions and rheology on slab dynamics. Boll. di Geof., 49(2):177--182, 2008. [ bib ]
[2785] B. J. P. Kaus, Y. Liu, T. W. Becker, D. Yuen, and Y. Shi. Lithospheric stress-states predicted from long-term tectonic models: influence of rheology and possible application to Taiwan. J. Asian Earth Sci., 36:119--134, 2009. [ bib ]
[2786] B. J. P. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys., 484:36--47, 2010. [ bib ]
[2787] B. J. P. Kaus, A. A. Popov, T. S. Baumann, A. E. Püsök, A. Bauville, N. Fernandez, and M. Collignon. Forward and inverse modelling of lithospheric deformation on geological timescales. In K. Binder, M. Müller, and A. Schnurpfeil, editors, NIC Symposium 2016 - Proceedings, volume 48 of NIC Series, pages 299--307, 2016. [ bib ]
[2788] B. J. P. Kaus, Y. Y. Podladchikov, and D. W. Schmid. Eulerian spectral/finite difference method for large deformation modelling of visco-elasto-plastic geomaterials. Boll. Geof., 45:346--349, 2004. [ bib ]
[2789] B. J. P. Kaus. Modeling approaches to geodynamic processes. Phd-thesis, Swiss Federal Institute of Technology, Zurich, 2005. [ bib ]
[2790] Ayoub Kaviani, Georg Rümpker, Michael Weber, and Günter Asch. Short-scale variations of shear-wave splitting across the Dead Sea basin: Evidence for the effects of sedimentary fill. Geophys. Res. Lett., 38(4), 2011. [ bib | DOI ]
[2791] H. Kawakatsu, P. Kumar, Y. Takei, M. Shinohara, T. Kanazawa, E. Araki, and K. Suyehiro. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324:499--502, 2009. [ bib ]
[2792] H. Kawakatsu and S. Yoshioka. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet. Sci. Lett., 303:1--10, 2011. [ bib ]
[2793] H. Kawakatsu. A new fifth parameter for transverse isotropy. Geophys. J. Int., 204:682--685, 2016. [ bib ]
[2794] H. Kawakatsu and H. Utada. Seismic and electrical signatures of the lithosphere–asthenosphere system of the normal oceanic mantle. Ann. Rev. Earth Planet. Sci., 45:139--167, 2017. [ bib ]
[2795] H. Kawakatsu and F. Niu. Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371:301--305, 1994. [ bib ]
[2796] S. M. Kay and C. Mpodozis. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flatslab. J. South Amer. Earth Sci., 15:39--50, 2002. [ bib ]
[2797] R. Kay and S. M. Kay. Andean adakites: Three ways to make them. Acta Petrol. Sin., 18:303--311, 2002. [ bib ]
[2798] S. M. Kay., E. Godoy, and A. Kurtz. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull., 117:67--88, 2005. [ bib ]
[2799] S. M. Kay, W. M. Burns, P. Copeland, and O. Mancilla. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén basin. In S. M. Kay and V. A. Ramos, editors, Evolution of an Andean Margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35o-39oS lat.), volume 407 of Geolog. Soc. Amer. Spec. Pap., pages 19--60. Geological Society of America, 2006. [ bib ]
[2800] S. M. Kay, B. L. Coira, and C. Mpodozis. Neogene to Recent evolution of the Puna plateau and the southern Central Volcanic Zone. In S. M. Kay and V. A. Ramos, editors, Field trip guides to the backbone of the America in the southern and central Andes, volume 13 of Field Guide, pages 117--181. Geol. Soc. Am., 2008. [ bib ]
[2801] S. M. Kay and B. Coira. Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the Central Andean Altiplano-Puna Plateau. In S. M. Kay, V. A. Ramos, and W. M. Dickinson, editors, Backbone of the Americas: Shallow Subduction, Plateau and Ridge and Terrane Collisions, volume 204 of Geolog. Soc. Amer. Mem., pages 229--260. Geological Society of America, 2009. [ bib ]
[2802] S. M. Kay., B. L. Coira, and P. J. Caffe. Regional chemical diversity, crustal and mantle sources and evolution of the Neogene Puna plateau ignimbrites of the Central Andes. J. Vol. Geotherm., 198:81--111, 2010. [ bib ]
[2803] S. M. Kay, B. L. Coira, G. Wörner, R. Kay, and B. S. Singer. Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bull. Volc., 2011. [ bib | DOI ]
[2804] R. W. Kay. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volc. Geothermal Res., 4:117--132, 1978. [ bib ]
[2805] Chun-Yu Ke, Gregory C McLaskey, and David S Kammer. The earthquake arrest zone. Geophys. J. Int., 224:581--589, 2021. [ bib ]
[2806] Chun-Yu Ke, Gregory C McLaskey, and David S Kammer. Earthquake breakdown energy scaling despite constant fracture energy. Nature comm., 13:1005, 2022. [ bib ]
[2807] James Tuttle Keane and Isamu Matsuyama. Evidence for lunar true polar wander and a past low-eccentricity, synchronous lunar orbit. Geophys. Res. Lett., 41:6610--6619, 2014. [ bib ]
[2808] I. Keisuke. Towards a new view of earthquake phenomena. Pure Appl. Geophys., 138:531--548, 1992. [ bib ]
[2809] S. B. Keith. Paleosubduction geometries inferred from Cretaceous and Tertiary magmatic patterns in southwestern North America. Geology, 6:516--521, 1978. [ bib ]
[2810] P. E. van Keken, S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin. A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res.: Sol. Earth, 102:22477--22495, 1997. [ bib ]
[2811] P. E. van Keken and S. Zhong. Mixing in a 3D spherical model of present-day mantle convection. Earth Planet. Sci. Lett., 171:533--547, 1999. [ bib ]
[2812] Peter B Kelemen, Jennifer L Rilling, EM Parmentier, Luc Mehl, and Bradley R Hacker. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In J. Eiler, editor, Inside the Subduction Factory, volume 138, pages 293--311. American Geophysical Union, Washington DC, 2003. [ bib ]
[2813] P. B. Kelemen and G. Hirth. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 446:787–790, 2007. [ bib ]
[2814] Peter B Kelemen and Craig E Manning. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA, 112:E3997--E4006, 2015. [ bib ]
[2815] Peter B Kelemen, Stanley R Hart, and Stefan Bernstein. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett., 164:387--406, 1998. [ bib ]
[2816] T. Keller, D. A. May, and B. J. P. Kaus. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int., 195:1406--1442, 2013. [ bib ]
[2817] E. A. Keller, M. S. Bonkowski, R. J. Korsh, and R. J. Shlemon. Tectonic geomorphology of the San Andreas fault zone in the southern Indio Hills, Coachella Valley, California. Geol. Soc. Am. Bull., 93:46--56, 1982. [ bib ]
[2818] Deborah S Kelley, Jeffrey A Karson, Gretchen L Fruh-Green, Dana R Yoerger, Timothy M Shank, David A Butterfield, John M Hayes, Matthew O Schrenk, Eric J Olson, Giora Proskurowski, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science, 307:1428--1434, 2005. [ bib ]
[2819] Katherine A Kelley, Terry Plank, Timothy L Grove, Edward M Stolper, Sally Newman, and Erik Hauri. Mantle melting as a function of water content beneath back-arc basins. J. Geophys. Res.: Sol. Earth, 111(B9), 2006. [ bib ]
[2820] James B Kellogg, Stein B Jacobsen, and Richard J O’Connell. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204:183--202, 2002. [ bib ]
[2821] James B Kellogg, Stein B Jacobsen, and Richard J O'Connell. Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth Planet. Sci. Lett., 262:328--342, 2007. [ bib ]
[2822] Louise H Kellogg. Mixing in the mantle. Ann. Rev. Earth Planet. Sci., 20:365, 1992. [ bib ]
[2823] J. B. Kellogg and R. J. O'Connell. Toroidal motion and mixing in three dimensions (abstract). Eos Trans. AGU, 79:S334, 1998. [ bib ]
[2824] L. H. Kellogg, B. H. Hager, and R. D. van der Hilst. Compositional stratification in the deep mantle. Science, 283:1881--1884, 1999. [ bib ]
[2825] D. V. Kemp and D. J. Stevenson. A tensile, flexural model for the initiation of subduction. Geophys. J. Int., 125:73--94, 1996. [ bib ]
[2826] J-M Kendall, S Pilidou, D Keir, ID Bastow, GW Stuart, and A Ayele. Mantle upwellings, melt migration and the rifting of Africa: Insights from seismic anisotropy. Geol. Soc., London, Spec. Pub., 259:55--72, 2006. [ bib ]
[2827] J.-M. Kendall. Teleseismic arrivals at a mid-ocean ridge: effects of mantle melt and anisotropy. Geophys. Res. Lett., 21:301--304, 1994. [ bib ]
[2828] K. J. Kendrick, D. M. Morton, S. G. Wells, and R. W. Simpson. Spatial and temporal deformation along the northern San Jacinto Fault, Southern California; implications for slip rates. Bull. Seismol. Soc. Am., 92:2782--2802, 2002. [ bib ]
[2829] K. Kendrick, L. McFadden, and D. Morton. Soils and slip rates along the northern San Jacinto Fault. In S. F. McGill and T. M. Ross, editors, Geological investigations of an active margin, Geological Society of America, Cordilleran Section, Annual Meeting, Guidebook, volume 27, pages 146--151. Geological Society of America, Tulsa OK, 1994. [ bib ]
[2830] L. Kennan and J. L. Pindell. Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate. In K. James, M. A. Lorente, and J. Pindell, editors, The geology and evolution of the region between North and South America, volume 328 of Geol. Soc. Long. Spec. Pub., pages 487--533. Geol. Soc. Lond., 2009. [ bib ]
[2831] B. L. N. Kennett and T. Furumura. Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. Geophys. J. Int., 172:363--382, 2008. [ bib ]
[2832] B. L. N. Kennett and H.-P. Bunge. Geophysical Continua. Cambridge University Press, 2008. [ bib ]
[2833] B. L. N. Kennett and T. Furumura. Tears or thinning? Subduction structures in the Pacific plate beneath the Japanese Islands. Phys. Earth Planet. Inter., 180:52--58, 2010. [ bib ]
[2834] B. L. Kennett, , and T. Furumura. High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation. Geophys. J. Int., 195:1862--1877, 2013. [ bib ]
[2835] B. L. N. Kennett. Lithosphere-asthenosphere P-wave reflectivity across Australia. Earth Planet. Sci. Lett., 431:225--235, 2015. [ bib ]
[2836] B. L. N. Kennett, E. R. Engdahl, and R. Buland. Constraints on seismic velocities in the earth from travel times. Geophys. J. Int., 122:108--124, 1995. [ bib ]
[2837] B. L. N. Kennett, S. Widiyantoro, and R. D. van der Hilst. Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle. J. Geophys. Res.: Sol. Earth, 103:12469--12493, 1998. [ bib ]
[2838] B. L. N. Kennett. Seismic Wave Propagation in Stratified Media. Cambridge Univ. Press, New York, 1983. [ bib ]
[2839] Graham M Kent, Alistair J Harding, John A Orcutt, Robert S Detrick, John C Mutter, and Peter Buhl. Uniform accretion of oceanic crust south of the Garrett transform at 14deg 15'S on the East Pacific Rise. J. Geophys. Res.: Sol. Earth, 99:9097--9116, 1994. [ bib ]
[2840] M. Keskin. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in eastern Anatolia, Turkey. Geophys. Res. Lett., 30(8046), 2003. [ bib | DOI ]
[2841] S. E. Kesson, J. D. Fitz Gerald, and J. M. Shelley. Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393:252--254, 1998. [ bib ]
[2842] Kerry Key, Steven Constable, Tetsuo Matsuno, Rob L Evans, and David Myer. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth Planet. Sci. Lett., 351:45--53, 2012. [ bib ]
[2843] A. Khan, L. Boschi, and J. A. D. Connolly. Mapping the Earth's thermochemical and anisotropic structure using global surface wave data. J. Geophys. Res.: Sol. Earth, 116(B01301), 2011. [ bib | DOI ]
[2844] Amir Khan, Savas Ceylan, Martin van Driel, Domenico Giardini, Philippe Lognonné, Henri Samuel, Nicholas C Schmerr, Simon C Stähler, Andrea C Duran, Quancheng Huang, et al. Upper mantle structure of Mars from InSight seismic data. Science, 373:434--438, 2021. [ bib ]
[2845] K. Khattri. Earthquake focal mechanism studies -- a review. Earth. Sci. Rev., 9:19--63, 1973. [ bib ]
[2846] M. Kido and T. Seno. Dynamic topography compared with residual depth anomalies in oceans and implications for age-depth curves. Geophys. Res. Lett., 21:717--720, 1994. [ bib ]
[2847] D. Kilb and J. L. Hardebeck. Fault parameter constraints using relocated earthquakes: A validation of first motion focal mechanism data. Bull. Seismol. Soc. Am., 96:1140--1158, 2006. [ bib ]
[2848] Brian D Kilgore, Michael L Blanpied, and James H Dieterich. Velocity dependent friction of granite over a wide range of conditions. Geophys. Res. Lett., 20:903--906, 1993. [ bib ]
[2849] Y. Kim, R. W. Clayton, and J. M. Jackson. Geometry and seismic properties of the subducting Cocos plate in central Mexico. J. Geophys. Res.: Sol. Earth, 115(B06310), 2010. [ bib | DOI ]
[2850] S.-S. Kim and P. Wessel. New global seamount census from the altimetry-derived gravity data. Geophys. J. Int., 186:615--631, 2011. [ bib ]
[2851] J.-I. Kimura, R. J. Stern, and T. Yoshida. Re-initiation of subduction and magmatic responses in SW Japan during Neogene time. Bull. Geol. Soc. Amer., 117:969--986, 2005. [ bib ]
[2852] H. Kimura, T. Takeda, K. Obara, and K. Kasahara. Seismic evidence for active underplating below the megathrust earthquake zone in Japan. Science, 329:210--212, 2010. [ bib ]
[2853] C. Kincaid and R. W. Griffiths. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425:58--62, 2003. [ bib ]
[2854] C. Kincaid and R. W. Griffiths. Variability in flow and temperatures within mantle subduction zones. Geochem., Geophys., Geosys., 5(Q06002), 2004. [ bib | DOI ]
[2855] Christopher Kincaid, KA Druken, RW Griffiths, and DR Stegman. Bifurcation of the yellowstone plume driven by subduction-induced mantle flow. Nature Geosc., 6:395--399, 2013. [ bib ]
[2856] C. Kincaid and P. Olson. An experimental study of subduction and slab migration. J. Geophys. Res.: Sol. Earth, 92:13832--13840, 1987. [ bib ]
[2857] Chris Kincaid and I. Selwyn Sacks. Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res.: Sol. Earth, 102:12295--12315, 1997. [ bib ]
[2858] Rainer Kind, Xiaohui Yuan, and Prakash Kumar. Seismic receiver functions and the lithosphere--asthenosphere boundary. Tectonophys., 536:25--43, 2012. [ bib ]
[2859] S. D. King. Subduction: Observations and geodynamic models. Phys. Earth Planet. Inter., 127:9--24, 2001. [ bib ]
[2860] G. C. P. King and M. Cocco. Fault interaction by elastic stress changes: new clues from earthquake sequences. Adv. in Geophys., 44:1--38, 2001. [ bib ]
[2861] S. D. King. Mantle downwellings and the fate of subducting slabs: constraints from seismology, geoid, topography, geochemistry, and pretrology. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, 2007. [ bib ]
[2862] N. E. King, D. Argus, J. Langbein, D. C. Agnew, G. Bawden, R. S. Dollar, Z. Liu, D. Galloway, E. Reichard, A. Yong, F. H. Webb, Y. Bock, K. Stark, and D. Barseghian. Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J. Geophys. Res.: Sol. Earth, 112(B03409), 2007. [ bib | DOI ]
[2863] M. A. King and C. S. Watson. Long GPS coordinate time series: multipath and geometry effects. J. Geophys. Res.: Sol. Earth, 115(B04403), 2010. [ bib | DOI ]
[2864] Scott D King, Changyeol Lee, Peter E Van Keken, Wei Leng, Shijie Zhong, Eh Tan, Nicola Tosi, and Masanori C Kameyama. A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle. Geophys. J. Int., 180:73--87, 2010. [ bib ]
[2865] S. D. King and C. Adam. Hotspot swells revisited. Phys. Earth Planet. Inter., 235:66--83, 2014. [ bib ]
[2866] S. D. King, D. J. Front, and D. C. Rubie. Why cold slabs stagnate in the transition zone. Geology, 43:231--234, 2015. [ bib ]
[2867] S. D. King. Reconciling laboratory and observational models of mantle rheology in geodynamic modeling. J. Geodynamics, 100:33--50, 2016. [ bib ]
[2868] S. D. King, A. Raefsky, and B. H. Hager. ConMan v3.0.0 [software], 2020. [ bib | DOI ]
[2869] G. C. P. King. The accomodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometric origin of b-value. Pure Appl. Geophys., 121:761--815, 1983. [ bib ]
[2870] G. C. P. King, R. S. Stein, and J. B. Rundle. The growth of geological structures by repeated earthquakes 1. Conceptual framework. J. Geophys. Res.: Sol. Earth, 93:13307--13318, 1988. [ bib ]
[2871] S. D. King, D. A. Raefsky, and B. H. Hager. ConMan: vectorizing a finite element code for incompressible two-dimensional convection in the Earth's mantle. Phys. Earth Planet. Inter., 59:195--207, 1990. [ bib ]
[2872] S. D. King and B. H. Hager. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations. Geophys. Res. Lett., 17:2409--2412, 1990. [ bib ]
[2873] S. D. King, C. W. Gable, and S. A. Weinstein. Models of convection-driven tectonic plates: a comparison of methods and results. Geophys. J. Int., 109:481--487, 1992. [ bib ]
[2874] S. D. King and G. Masters. An inversion for radial viscosity structure using seismic tomography. Geophys. Res. Lett., 19:1551--1554, 1992. [ bib ]
[2875] G. C. P. King, R. C. Stein, and J. Lin. Static stress change and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84:935--953, 1994. [ bib ]
[2876] S. D. King and J. Ita. Effect of slab rheology on mass transport across a phase transition boundary. J. Geophys. Res.: Sol. Earth, 100:20211--2022, 1995. [ bib ]
[2877] S. D. King. Radial models of mantle viscosity: Results from a genetic algorithm. Geophys. J. Int., 122:725--734, 1995. [ bib ]
[2878] N. E. King and J. C. Savage. Strain-rate profile across the Elsinore, San Jacinto, and San Andreas faults near Palm Springs, California, 1973--81. Geophys. Res. Lett., 10:55--57, 1983. [ bib ]
[2879] S. D. King and B. H. Hager. Subducted slabs and the geoid 1. Numerical experiments with temperature-dependent viscosity. J. Geophys. Res.: Sol. Earth, 99:19843--19852, 1994. [ bib ]
[2880] R. J. Kinzler and T. L. Grove. Primary magmas of mid-ocean ridge basalts. Part 2: Applications. J. Geophys. Res.: Sol. Earth, 97:6907--6926, 1992. [ bib ]
[2881] A. Király, C. Faccenna, F. Funiciello, and A. Sembroni. Coupling surface and mantle dynamics: A novel experimental approach. Geophys. Res. Lett., 42:3863--3869, 2015. [ bib | DOI ]
[2882] Á. Király, F. A. Capitanio, F. Funiciello, and C. Faccenna. Subduction zone interaction: Controls on arcuate belts. Geology, 44:715--718, 2016. [ bib ]
[2883] Ágnes Király, Fabio A Capitanio, Francesca Funiciello, and Claudio Faccenna. Subduction induced mantle flow: Length-scales and orientation of the toroidal cell. Earth Planet. Sci. Lett., 479:284--297, 2017. [ bib ]
[2884] A. Király, C. P. Conrad, and L. N. Hansen. Evolving viscous anisotropy in the upper mantle and its geodynamic implications. Geochem., Geophys., Geosys., 21(e2020GC009159), 2020. [ bib ]
[2885] A. A. Kiratzi and C. B. Papazachos. Active crustal deformation from the Azores triple junction to the Middle East. Tectonophys., 243:1--24, 1995. [ bib ]
[2886] E. Kirby, D. W. Burbank, M. Reheis, and F. Phillips. Temporal variations in slip rate of the White Mountain Fault Zone, Eastern California. Earth Planet. Sci. Lett., 248:168--185, 2006. [ bib ]
[2887] S. H. Kirby and A. K. Kronenberg. Rheology of the lithosphere: Selected topics. Rev. Geophys., 25:1219--1244, 1987. [ bib ]
[2888] S. H. Kirby, S. Stein, E. A. Okal, and D. C. Rubie. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys., 34:261--306, 1996. [ bib ]
[2889] James D Kirkpatrick, Joel H Edwards, Alessandro Verdecchia, Jared W Kluesner, Rebecca M Harrington, and Eli A Silver. Subduction megathrust heterogeneity characterized from 3D seismic data. Nature Geosc., 13:369--374, 2020. [ bib ]
[2890] G. Kirsch. Geologie und Radioaktivität. Springer, Wien, 1928. [ bib ]
[2891] Joseph L. Kirschvink. Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth. In The Proterozoic biosphere : a multidisciplinary study, pages 51--52. Cambridge University Press, 1992. [ bib ]
[2892] Joseph L Kirschvink, Robert L Ripperdan, and David A Evans. Evidence for a large-scale reorganization of early cambrian continental masses by inertial interchange true polar wander. Science, 277:541--545, 1997. [ bib ]
[2893] E. Kiser, M. Ishii, C. H. Langmuir, P. M. Shearer, and H. Hirose. Insights into the mechanism of intermediate depth earthquakes from source properties as imaged by back projection of multiple seismic phases. J. Geophys. Res.: Sol. Earth, 116(B06310), 2011. [ bib | DOI ]
[2894] E. Kissling, W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradofler. Initial reference models in local earthquake tomography. J. Geophys. Res.: Sol. Earth, 99:19635--19646, 1994. [ bib ]
[2895] C. Kisslinger. The stretched exponential function as an alternative model for aftershock decay rate. J. Geophys. Res.: Sol. Earth, 98:1913--1921, 1993. [ bib ]
[2896] C. Kisslinger. Aftershocks and fault zone properties. Adv. in Geophys., 38:1--36, 1996. [ bib ]
[2897] Hiroko Kitajima and Demian M. Saffer. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett., 39(23), 2012. [ bib | DOI ]
[2898] Martijn Klaver, Gene Yogodzinski, Capucine Albert, Michal Camejo-Harry, Marlina Elburg, Kaj Hoernle, Colin Macpherson, Geoff Nowell, Tracy Rushmer, Helen Williams, and M.-A. Millet. Widespread slab melting in modern subduction zones. Earth Planet. Sci. Lett., 626:118544, 2024. [ bib ]
[2899] F. W. Klein. User's guide to HYPOINVERSE-2000, a FORTRAN program to solve for earthquake locations and magnitudes. U. S. Geological Survey Open File Report, 02--171:1--123, 2002. [ bib ]
[2900] E. Klein, L. Fleitout, C. Vigny, and J. D. Garaud. Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile). Geophys. J. Int., 205:1455--1472, 2016. [ bib ]
[2901] Emilie Klein, Yehuda Bock, Xiaohua Xu, David T Sandwell, Dorian Golriz, Peng Fang, and Lina Su. Transient deformation in California from two decades of GPS displacements: Implications for a three-dimensional kinematic reference frame. J. Geophys. Res.: Sol. Earth, 124:12189--12223, 2019. [ bib ]
[2902] Emily M Klein and Charles H Langmuir. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res.: Sol. Earth, 92:8089--8115, 1987. [ bib ]
[2903] EM Klein, CH Langmuir, A Zindler, H Staudigel, and B Hamelin. Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance. Nature, 333:623--629, 1988. [ bib ]
[2904] F. W. Klein. User's guide to HYPOINVERSE, a program for VAX computers to solve for earthquake locations and magnitudes. U. S. Geological Survey Open File Report, 89-314:61 pp., 1989. [ bib ]
[2905] PG Klemens. Thermal resistance due to point defects at high temperatures. Phys. Rev., 119:507--509, 1960. [ bib ]
[2906] S. Klemperer. Passive seismic study of a magma-dominated rift: the Salton Trough. International Federation of Digital Seismograph Networks, 2011. [ bib | DOI ]
[2907] Jonas Kley and César R Monaldi. Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21:11--1, 2002. [ bib ]
[2908] J. Kley. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. South Amer. Earth Sci., 12:221--235, 1999. [ bib ]
[2909] F. Klingelhoefer, M.-A. Gutscher, S. Ladage, J.-X. Dessa, D. Graindorge, D. Franke, C. André, H. Permana, T. Yudistira, and A. Chauhan. Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling. J. Geophys. Res.: Sol. Earth, 115(B01304), 2010. [ bib | DOI ]
[2910] Yann Klinger, Xiwei Xu, Paul Tapponnier, Jérome Van der Woerd, Cecile Lasserre, and Geoffrey King. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw 7.8, 14 November 2001 Kokoxili earthquake, Kunlun fault, northern Tibet, China. Bull. Seismol. Soc. Am., 95:1970--1987, 2005. [ bib ]
[2911] Y Klinger, M Le Béon, and M Al-Qaryouti. 5000 yr of paleoseismicity along the southern Dead Sea fault. Geophys. J. Int., 202:313--327, 2015. [ bib ]
[2912] E. R. Klosko, R. M. Russo, E. A. Okal, and W. P. Richardson. Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau. Earth Planet. Sci. Lett., 186:347--361, 2001. [ bib ]
[2913] J. Klotz, G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, and O. Cifuentes. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet. Sci. Lett., 193:437--446, 2001. [ bib ]
[2914] E. A. Kneller, P. E. van Keken, S.-i. Karato, and J. Park. B-type olivine fabric in the mantle wedge: insights from high-resolution non-newtonian subduction zone models. Earth Planet. Sci. Lett., 237:781--797, 2005. [ bib ]
[2915] E. A. Kneller and P. E. van Keken. Trench-parallel flow and seismic anisotropy in the Marianas and Andean subduction systems. Nature, 450:1222--1225, 2007. [ bib ]
[2916] E. A. Kneller and P. E. van Keken. The effect of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy. Geochem., Geophys., Geosys., 9(Q01003), 2008. [ bib | DOI ]
[2917] M. Knoll, A. Tommasi, R. Logé, and J. Signorelli. A multiscale approach to model the anisotropic deformation of lithospheric plates. Geochem., Geophys., Geosys., 10(Q08009), 2009. [ bib | DOI ]
[2918] R. E. Knop. Random vectors uniform in solid angle. Comm. ACM, 13:326, 1970. [ bib ]
[2919] L. Knopoff. Energy release in earthquakes. Geophys. J., 1:44--52, 1958. [ bib ]
[2920] L. Knopoff and J. F. Gilbert. Radiation from a strike-slip earthquake. Bull. Seismol. Soc. Am., 49:163--178, 1959. [ bib ]
[2921] Leon Knopoff and Michael John Randall. The compensated linear-vector dipole: A possible mechanism for deep earthquakes. J. Geophys. Res.: Sol. Earth, 75:4957--4963, 1970. [ bib ]
[2922] L. Knopoff, R. Mitchel, and D. D. Jackson. A stochastic analysis of a model earthquake sequence. Geophys. J. R. Astr. Soc., 29:255--261, 1972. [ bib ]
[2923] L. Knopoff, T. Levshina, V. I. Keilis-Borok, and C. Mattoni. Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California. J. Geophys. Res.: Sol. Earth, 101:5779--5796, 1996. [ bib ]
[2924] S. D. Knott. The Liguride Complex of southern Italy -- A Cretaceous to Paleogene accretionary wedge. Tectonophys., 142:217--226, 1987. [ bib ]
[2925] B. Ko and H. Jung. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Comm., 6(6586), 2015. [ bib | DOI ]
[2926] S. Kodaira, T. Iidaka, A. Kato, J.-O. Park, T. Iwasaki, and Y. Kaneda. High pore fluid pressure may cause silent slip in the Nankai trough. Science, 304:1295--1298, 2004. [ bib ]
[2927] Shuichi Kodaira, Takane Hori, Aki Ito, Seiichi Miura, Gou Fujie, Jin-Oh Park, Toshitaka Baba, Hide Sakaguchi, and Yoshiyuki Kaneda. A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation. J. Geophys. Res.: Sol. Earth, 111(B09301), 2006. [ bib | DOI ]
[2928] Shuichi Kodaira, Gou Fujie, Mikiya Yamashita, Takeshi Sato, Tsutomu Takahashi, and Narumi Takahashi. Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nature Geosc., 7:371--375, 2014. [ bib ]
[2929] Shuichi Kodaira, Toshiya Fujiwara, Gou Fujie, Yasuyuki Nakamura, and Toshiya Kanamatsu. Large coseismic slip to the trench during the 2011 Tohoku-Oki earthquake. Ann. Rev. Earth Planet. Sci., 48:321--343, 2020. [ bib ]
[2930] M. D. Kohler. Lithospheric deformation beneath the San Gabriel mountains in the southern California Transverse ranges. J. Geophys. Res.: Sol. Earth, 104:15025--15041, 1999. [ bib ]
[2931] D. L. Kohlstedt. Constitutive equations, rheological behavior, and viscosity of rocks. In G. D. Price, editor, Treatise on Geophysics. Elsevier, Amsterdam, 2007. [ bib ]
[2932] D. L. Kohlstedt, B. Evans, and S. J. Mackwell. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res.: Sol. Earth, 100:17587--17602, 1995. [ bib ]
[2933] DL Kohlstedt, H Keppler, and DC Rubie. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol., 123:345--357, 1996. [ bib ]
[2934] D. L. Kohlstedt and M. E. Zimmerman. Rheology of partially molten rocks. Ann. Rev. Earth Planet. Sci., 24:41--62, 1996. [ bib ]
[2935] Matthew J Kohn, Adrian E Castro, Buchanan C Kerswell, César R Ranero, and Frank S Spear. Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc. Natl. Acad. Sci. USA, 115:11706--11711, 2018. [ bib ]
[2936] D. Komatitsch and J. Tromp. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int., 139:806--822, 2003. [ bib ]
[2937] D. Komatitsch, L. P. Vinnik, and S. Chevrot. SHdiff/SVdiff splitting in an isotropic Earth. J. Geophys. Res.: Sol. Earth, 115(B08312), 2010. [ bib | DOI ]
[2938] D. Komatitsch and J. P. Vilotte. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:368--392, 1998. [ bib ]
[2939] Tsuyoshi Komiya, Shigenori Maruyama, Toshiaki Masuda, Susumu Nohda, Mamoru Hayashi, and Kazuaki Okamoto. Plate tectonics at 3.8--3.7 Ga: Field evidence from the Isua accretionary complex, southern West Greenland. J. Geology, 107:515--554, 1999. [ bib ]
[2940] X. Kong and P. Bird. SHELLS: A thin-shell program for modeling neotectonics of regional or global extent. J. Geophys. Res.: Sol. Earth, 100:22129--22131, 1995. [ bib ]
[2941] Masaru Kono and Paul H Roberts. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys., 40:4--1, 2002. [ bib ]
[2942] Konstantinos I Konstantinou and Vera Schlindwein. Nature, wavefield properties and source mechanism of volcanic tremor: a review. J. Volc. Geothermal Res., 119(1-4):161--187, 2003. [ bib ]
[2943] J. G. Konter and T. W. Becker. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem., Geophys., Geosys., 13(Q02004), 2012. [ bib | DOI ]
[2944] K. D. Koper, D. A. Wiens, L. M. Dorman, J. A. Hildebrand, and S. C. Webb. Modeling the Tonga slab: Can travel time data resolve a metastable olivine wedge? J. Geophys. Res.: Sol. Earth, 103:30079--30100, 1998. [ bib ]
[2945] Heidrun Kopp. The control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophys., 589:1--16, 2013. [ bib ]
[2946] Anthony AP Koppers, Thorsten W Becker, Matthew G Jackson, Kevin Konrad, R Dietmar Müller, Barbara Romanowicz, Bernhard Steinberger, and Joanne M Whittaker. Mantle plumes and their role in earth processes. Nature Rev. Earth & Environ., 2:382--401, 2021. [ bib ]
[2947] Alexander Koptev, Evgueni B. Burov, Taras Gerya, Laetitia Le Pourhiet, Sylvie Leroy, Eric Calais, and Laurent Jolivet. Plume-induced continental rifting and break-up in ultra-slow extension context: Insights from 3D numerical modeling. Tectonophys., 746:121--137, 2018. [ bib ]
[2948] Alexander Koptev, Anouk Beniest, Taras Gerya, Todd A Ehlers, Laurent Jolivet, and Sylvie Leroy. Plume-induced breakup of a subducting plate: Microcontinent formation without cessation of the subduction process. Geophys. Res. Lett., 46:3663--3675, 2019. [ bib ]
[2949] Alexander Koptev, Sierd Cloetingh, and Todd A Ehlers. Longevity of small-scale (“baby”) plumes and their role in lithospheric break-up. Geophys. J. Int., 227:439--471, 2021. [ bib ]
[2950] J. Korenaga. Energetics of mantle convection and the fate of fossile heat. Geophys. Res. Lett., 30(8), 2003. [ bib | DOI ]
[2951] J. Korenaga and T. H. Jordan. Physics of multiscale convection in Earth's mantle: Onset of sublithospheric convection. J. Geophys. Res.: Sol. Earth, 108(2333), 2003. [ bib | DOI ]
[2952] J. Korenaga. Archean geodynamics and the thermal evolution of the Earth. In K. Benn, J.-C. Marechal, and K. Condie, editors, Archean Geodynamics and Environments, volume 164 of AGU Geoophys. Mono., pages 7--31. American Geophysical Union, 2006. [ bib ]
[2953] J. Korenaga. Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett., 257:350--358, 2007. [ bib ]
[2954] J. Korenaga. Urey ratio and the structure and evolution of Earth's mantle. Rev. Geophys., 46, 2008. [ bib | DOI ]
[2955] T. Korenaga and J. Korenaga. Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening. Earth Planet. Sci. Lett., 268:41--51, 2008. [ bib ]
[2956] J. Korenaga. Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophys. J. Int., 179:154--170, 2009. [ bib ]
[2957] J. Korenaga. Scaling of plate tectonic convection with pseudoplastic rheology. J. Geophys. Res.: Sol. Earth, 115(B11405), 2010. [ bib | DOI ]
[2958] Jun Korenaga. Initiation and evolution of plate tectonics on Earth: theories and observations. Ann. Rev. Earth Planet. Sci., 41:117--151, 2013. [ bib ]
[2959] T. Korenaga and J. Korenaga. Evolution of young oceanic lithosphere and the meaning of seafloor subsidence rate. J. Geophys. Res.: Sol. Earth, 121:6315--6332, 2016. [ bib ]
[2960] J. Korenaga. Pitfalls in modeling mantle convection with internal heat production. J. Geophys. Res.: Sol. Earth, 122:4064--4085, 2017. [ bib | DOI ]
[2961] J. Korenaga, N. J. Planavsky, and D. A. D. Evans. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A, 375:10.1098/rsta.2015.0393, 2017. [ bib ]
[2962] Jun Korenaga. Crustal evolution and mantle dynamics through earth history. Phil. Trans. Royal Soc. A, 376:20170408, 2018. [ bib ]
[2963] T. Korenaga, J. Korenaga, H. Kawakatsu, and M. Yamano. A new reference model for the evolution of oceanic lithosphere in a cooling Earth. J. Geophys. Res.: Sol. Earth, 126:e2020JB021528, 2021. [ bib ]
[2964] G. L. Kosarev, L. I. Makeyeva, and L. P. Vinnik. Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys. J. R. Astr. Soc., 76:209--220, 1984. [ bib ]
[2965] G. Kosarev, R. Kind, S. V. Sobolev, X. Yuan, W. Hanka, and S. Oreshin. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283:1306--1309, 1999. [ bib ]
[2966] Muhammed Kösen. Ariel footage captured in kahramanmaraş, turkey, on february 8, 2023. Available online at https://www.facebook.com/muhammedkosen, accessed 02/2023, 2023. [ bib ]
[2967] B. V. Kostrov. Seismic moment and energy of earthquakes and seismic flow of rock. Phys. Solid Earth, 1:23--40, 1974. [ bib ]
[2968] B. V. Kostrov and S. Das. Principles of Earthquake Source Mechanics. University Press, Cambridge, 1988. [ bib ]
[2969] A. Koulali, D. Ouazara, A. Tahayt, R. W. King, P. Vernant, R.E. Reilinger, S. McClusky, T. Mourabit, J. M. Davila, and N. Amraouih. New GPS constraints on active deformation along the Africa–Iberia plate boundary. Earth Planet. Sci. Lett., 308:211--217, 2011. [ bib ]
[2970] A. Koulali, S. McClusky, L. Wallace, S. Allgeyer, P. Tregoning, E. D'Anastasio, and R. Benavente. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand. Geophys. Res. Lett., 44, 2017. [ bib | DOI ]
[2971] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. J. Mach. Learn. Res., 24:1--97, 2023. [ bib ]
[2972] Jeremy E Kozdon, Eric M Dunham, and Jan Nordström. Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comp., 55:92--124, 2013. [ bib ]
[2973] Jeremy E Kozdon and Eric M Dunham. Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seismol. Soc. Am., 103:1275--1289, 2013. [ bib ]
[2974] J. E. Kozdon and E. M. Dunham. Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth Planet. Sci. Lett., 396:56--65, 2014. [ bib ]
[2975] C. Kreemer, J. Haines, W. E. Holt, G. Blewitt, and D. Lavallée. On the determination of a global strain rate model. Earth, Planet. Space, 52:765--770, 2000. [ bib ]
[2976] C. Kreemer, W. E. Holt, S. Goes, and R. Govers. Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. J. Geophys. Res.: Sol. Earth, 105:663--680, 2000. [ bib ]
[2977] C. Kreemer, W. E. Holt, and A. J. Haines. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154:5--34, 2003. [ bib ]
[2978] C. Kreemer, N. Chamot-Rooke, and X. Le Pichon. Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett., 225:329--346, 2004. [ bib ]
[2979] Corné Kreemer and Nicolas Chamot-Rooke. Contemporary kinematics of the southern Aegean and the Mediterranean Ridge. Geophys. J. Int., 157:1377--1392, 2004. [ bib ]
[2980] C. Kreemer and W. C. Hammond. Geodetic constraints on areal changes in the Pacific-North America plate boundary zone: What controls Basin and Range extension? Geology, 10:943--947, 2007. [ bib ]
[2981] C. Kreemer. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. J. Geophys. Res.: Sol. Earth, 114(B10405), 2009. [ bib | DOI ]
[2982] C. Kreemer, G. Blewitt, and E. C. Klein. A geodetic plate motion and Global Strain Rate Model. Geochem., Geophys., Geosys., 15, 2014. [ bib | DOI ]
[2983] C. Kreemer and Z. M. Yound. Crustal strain rates in the western United States and their relationship with earthquake rates. Seismol. Res. Lett., 93:2990--3008, 2022. [ bib ]
[2984] Lukas Krenz, Carsten Uphoff, Thomas Ulrich, Alice-Agnes Gabriel, Lauren S Abrahams, Eric M Dunham, and Michael Bader. 3D acoustic-elastic coupling with gravity: the dynamics of the 2018 Palu, Sulawesi earthquake and tsunami. In Proc. Int. Conf. High Perf. Comp., Network., Stor. Anal., pages 1--14, 2021. [ bib ]
[2985] E. Kreyszig. Advanced engineering mathematics. John Wiley & Sons, New York, 9 edition, 2006. [ bib ]
[2986] Y. Krien and L. Fleitout. Gravity above subduction zones and forces controlling plate motions. J. Geophys. Res.: Sol. Earth, 113(B09407), 2008. [ bib | DOI ]
[2987] M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int., 191:12--29, 2012. [ bib ]
[2988] Weijia Kuang and Jeremy Bloxham. An Earth-like numerical dynamo model. Nature, 389:371--374, 1997. [ bib ]
[2989] Yusuke Kubota, Fumihiro Matsu'ura, Kenji Shimizu, Akira Ishikawa, and Yuichiro Ueno. Sulfur in Archean komatiite implies early subduction of oceanic lithosphere. Earth Planet. Sci. Lett., 598:117826, 2022. [ bib ]
[2990] Joseph Kuchar, Glenn Milne, and Konstantin Latychev. The importance of lateral Earth structure for North American glacial isostatic adjustment. Earth Planet. Sci. Lett., 512:236--245, 2019. [ bib ]
[2991] Keiko Kuge and Hitoshi Kawakatsu. Analysis of a deep “non double couple” earthquake using very broadband data. Geophys. Res. Lett., 17:227--230, 1990. [ bib ]
[2992] K. Kuge and H. Kawakatsu. Significance of non-double couple components of deep and intermediate-depth earthquakes: Implications from moment tensor inversions of long-period seismic waves. Phys. Earth Planet. Inter., 75:243--266, 1993. [ bib ]
[2993] Ichiro Kumagai, Anne Davaille, Kei Kurita, and Eléonore Stutzmann. Mantle plumes: Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett., 35(L16301), 2008. [ bib | DOI ]
[2994] Hiroyuki Kumagai. Time sequence and the recurrence models for large earthquakes along the Nankai trough revisited. Geophys. Res. Lett., 23:1139--1142, 1996. [ bib ]
[2995] P. Kumar and H. Kawakatsu. Imaging the seismic lithosphere-asthenosphere boundary of the oceanic plate. Geochem., Geophys., Geosys., 12(Q01006), 2011. [ bib | DOI ]
[2996] P. Kumar, R. Kind, X. Yuan, and J. Mechie. USArray Receiver Function Images of the Lithosphere-Asthenosphere Boundary. Seism. Res. Lett., 83:486--491, 2012. [ bib ]
[2997] M. Kumazawa and O. L. Anderson. Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J. Geophys. Res.: Sol. Earth, 74:5961--5972, 1969. [ bib ]
[2998] Takeshi Kuritani, Eiji Ohtani, and Jun-Ichi Kimura. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geosc., 4:713--716, 2011. [ bib ]
[2999] MD Kurz, WJ Jenkins, and SR Hart. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature, 297:43--47, 1982. [ bib ]
[3000] M. D. Kurz, W. J. Jenkins, S. R. Hart, and D. Clague. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett., 66:388--406, 1983. [ bib ]
[3001] T. Kurz and W. Lauterborn. Bifurcation structure of the Toda osciallator. Phys. Rev. A, 37:1029--1031, 1988. [ bib ]
[3002] B. Kustowski, G. Ekström, and A. M. Dziewoński. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. J. Geophys. Res.: Sol. Earth, 113, 2008. [ bib | DOI ]
[3003] K. Kusonose. Fracture mechanics of rocks. J. Phys. Earth, 43:479--504, 1995. [ bib ]
[3004] NJ Kusznir and RG Park. Intraplate lithosphere deformation and the strength of the lithosphere. Geophys. J. Int., 79:513--538, 1984. [ bib ]
[3005] NJ Kusznir and RG Park. The extensional strength of the continental lithosphere: its dependence on geothermal gradient, and crustal composition and thickness. Geol. Soc., London, Spec. Pub., 28:35--52, 1987. [ bib ]
[3006] N. J. Kuznir. The distribution of stress with depth in the lithosphere: thermorheological and geodynamic constraints. Phil. Trans. R. Soc. London Ser. A, 337:95--110, 1991. [ bib ]
[3007] G. Kwiatek, K. Plenkers, M. Nakatani, Y. Yabe, G. Dresen, and JAGUARS group. Frequency-magnitude characteristics down to magnitude -4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa. Bull. Seismol. Soc. Am., 100:1165--1173, 2010. [ bib ]
[3008] Grzegorz Kwiatek, Katrin Plenkers, Georg Dresen, and JAGUARS Research Group. Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: Implications for scaling relations. Bull. Seismol. Soc. Am., 101:2592--2608, 2011. [ bib ]
[3009] Grzegorz Kwiatek, Patricia Martínez-Garzón, Thomas W. Goebel, Marco Bohnhoff, Yehuda Ben-Zion, and Georg Dresen. Complex multi-scale preparatory processes of stick-slip events on rough laboratory faults. ESS Open Archive, 2023. [ bib | DOI ]
[3010] Y. W. Kwon and H. Bang. The Finite Element Method Using Matlab. CRC Press, 1996. [ bib ]
[3011] H. Kyvalova, Čadek. O., and D. A. Yuen. Correlation analysis between subduction in the last 180 Myr and lateral seismic structure of the lower mantle: Geodynamical implications. Geophys. Res. Lett., 22:1281--1284, 1995. [ bib ]
[3012] John L LaBrecque, Dennis V Kent, and Steven C Cande. Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time. Geology, 5:330--335, 1977. [ bib ]
[3013] S. Labrosse. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett., 1999:147--156, 2002. [ bib ]
[3014] S. Labrosse and C. Jaupart. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett., 260:465--481, 2007. [ bib ]
[3015] S. Labrosse, J. W. Hernlund, and N. Coltice. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450:866--869, 2007. [ bib ]
[3016] Stéphane Labrosse. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter., 247:36--55, 2015. [ bib ]
[3017] A. H. Lachenbruch. Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res.: Sol. Earth, 73:6977--6989, 1968. [ bib ]
[3018] A. H. Lachenbruch and G. A. Thompson. Oceanic ridges and transform faults: Their intersection angles and resistance to plate motion. Earth Planet. Sci. Lett., 15:116--122, 1972. [ bib ]
[3019] A. H. Lachenbruch and J. H. Sass. Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res.: Sol. Earth, 85:6185--6222, 1980. [ bib ]
[3020] A. H. Lachenbruch and J. H. Sass. Heat flow from Cajon pass, fault strength, and tectonic implications. J. Geophys. Res.: Sol. Earth, 97:4995--5015, 1982. [ bib ]
[3021] A. H. Lachenbruch and P. Morgan. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophys., 174:39--62, 1990. [ bib ]
[3022] D. Lahondère and C. Guerrot. Datation Sm-Nd du métamorphisme éclogitique en Corse Alpine: un argument pour l'existence au Crétacé supériuer d'une zone de subduction active localisée sous le bloc Corse-Sarde. Geol. France, 3:3--11, 1997. [ bib ]
[3023] Hongyu Lai, Edward J Garnero, Stephen P Grand, Robert W Porritt, and Thorsten W Becker. Global travel time data set from adaptive empirical wavelet construction. Geochem., Geophys., Geosys., 20:2175--2198, 2019. [ bib ]
[3024] S. Lallemand, Y. Font, H. Bijwaard, and H. Kao. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophys., 335:229--253, 2001. [ bib ]
[3025] S. Lallemand, A. Heuret, and D. Boutelier. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem., Geophys., Geosys., 6, 2005. [ bib | DOI ]
[3026] Serge Lallemand, Arnauld Heuret, Claudio Faccenna, and Francesca Funiciello. Subduction dynamics as revealed by trench migration. Tectonics, 27(TC3014), 2008. [ bib | DOI ]
[3027] Serge Lallemand and Diane Arcay. Subduction initiation from the earliest stages to self-sustained subduction: Insights from the analysis of 70 Cenozoic sites. Earth-Sci. Rev., 221:103779, 2021. [ bib ]
[3028] S. Lallemand. High rates of arc consumption by subduction processes: some consequences. Geology, 23:551--554, 1995. [ bib ]
[3029] H. G. Aveé Lallamant. Displacement partitioning and arc-parallel extension: example from the southeastern Caribbean plate margin. In R. E. Bebout, D. W. Scholl, S. H. Kirby, and J. P. Platt, editors, Subduction: Top to Bottom, volume 96 of Geoophys. Mono., pages 113--118. American Geophysical Union, washington, dc edition, 1996. [ bib ]
[3030] Simon Lamb and Paul Davis. Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425:792--797, 2003. [ bib ]
[3031] Simon Lamb. Shear stresses on megathrusts: Implications for mountain building behind subduction zones. J. Geophys. Res.: Sol. Earth, 111(B07401), 2006. [ bib | DOI ]
[3032] S. Lamb, J. D. P. Moore, M. Perez-Gussinye, and T. Stern. Global whole lithosphere isostasy: implications for surface elevations, structure, strength and densitities of the continental lithosphere. Geochem., Geophys., Geosys., 21:10.1029/2020GC009150, 2020. [ bib ]
[3033] Kurt Lambeck, Anthony Purcell, Jason Zhao, and NILS-OLOF SVENSSON. The Scandinavian ice sheet: from MIS 4 to the end of the last glacial maximum. Boreas, 39:410--435, 2010. [ bib ]
[3034] Kurt Lambeck and Susan Pullan. The lunar fossil bulge hypothesis revisited. Phys. Earth Planet. Inter., 22:29--35, 1980. [ bib ]
[3035] Kurt Lambeck. Sea-level change and shore-line evolution in Aegean Greece since Upper Palaeolithic time. Antiquity, 70:588--611, 1996. [ bib ]
[3036] Kurt Lambeck, Catherine Smither, and Paul Johnston. Sea-level change, glacial rebound and mantle viscosity for northern Europe. Geophys. J. Int., 134:102--144, 1998. [ bib ]
[3037] Valère Lambert and Nadia Lapusta. Resolving simulated sequences of earthquakes and fault interactions: Implications for physics-based seismic hazard assessment. J. Geophys. Res.: Sol. Earth, 126:e2021JB022193, 2021. [ bib ]
[3038] V. Lambert, N. Lapusta, and V. Perry. Propagation of large earthquakes as self-healing pulses or mild cracks. Nature, 591:252--258, 2021. [ bib ]
[3039] Riccardo Lanari, Claudio Faccenna, Maria Giuditta Fellin, Abderrahim Essaifi, A Nahid, Fida Medina, and Nasrrddine Youbi. Tectonic evolution of the western high Atlas of Morocco: oblique convergence, reactivation, and transpression. Tectonics, 39(3):e2019TC005563, 2020. [ bib ]
[3040] R Lanari, C Faccenna, C Natali, E Şengül Uluocak, MG Fellin, TW Becker, OH Göğüş, N Youbi, R Clementucci, and S Conticelli. The Atlas of Morocco: A Plume-Assisted Orogeny. Geochem., Geophys., Geosys., 24(6):e2022GC010843, 2023. [ bib ]
[3041] P. Lancaster and K. Šalkauskas. Curve and surface fitting - An introduction. Academic Press, San Diego, 1986. [ bib ]
[3042] Maylis Landeau, Alexandre Fournier, Henri-Claude Nataf, David Cébron, and Nathanaël Schaeffer. Sustaining Earth's magnetic dynamo. Nature Rev. Earth & Env., 3:255--269, 2022. [ bib ]
[3043] F. W. Landerer and S. C. Swenson. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resource Res., 48(W04531), 2012. [ bib | DOI ]
[3044] W Landuyt, D Bercovici, and Y Ricard. Plate generation and two-phase damage theory in a model of mantle convection. Geophys. J. Int., 174:1065--1080, 2008. [ bib ]
[3045] W. Landuyt and D. Bercovici. Formation and structure of lithospheric shear zones with damage. Phys. Earth Planet. Inter., 175:115--126, 2009. [ bib ]
[3046] G. Lang. Relaxationsverhalten der erde nach einem dip-slip-beben in einer subduktionszone in abhängigkeit vom winkel der abtauchenden platte und der asthenosphärenrheologie. Master's thesis, Institut für Geophysik der Technischen Universität Clausthal, Clausthal, 1983. [ bib ]
[3047] Sean M Langemeyer, Julian P Lowman, and Paul J Tackley. Global mantle convection models produce transform offsets along divergent plate boundaries. Comm. Earth & Environ., 2:1--10, 2021. [ bib ]
[3048] VE Langenheim, RC Jachens, DM Morton, RW Kistler, and JC Matti. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California. Geol. Soc. Am. Bull., 116:1143--1157, 2004. [ bib ]
[3049] Marcus G Langseth Jr, Xavier Le Pichon, and Maurice Ewing. Crustal structure of the mid-ocean ridges: 5. Heat flow through the Atlantic Ocean floor and convection currents. J. Geophys. Res.: Sol. Earth, 71:5321--5355, 1966. [ bib ]
[3050] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. SIAM, Philadelphia, PA, 3 edition, 1999. [ bib ]
[3051] Pierre Simon Laplace. Traité de mécanique céleste, 1. Typ. Crapelet, 1823. [ bib ]
[3052] N. Lapusta, J. R. Rice, Y. Ben-Zion, and G. Zheng. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res.: Sol. Earth, 105:23765--23789, 2000. [ bib ]
[3053] N. Lapusta and Y. Liu. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. J. Geophys. Res.: Sol. Earth, 114(B09303), 2009. [ bib | DOI ]
[3054] N. Lapusta, E. Dunham, Jean-Philippe Avouac, Marine Denolle, Ylona van Dinther, Daniel Faulkner, Yuri Fialko, Hiroko Kitajima Valère Lambert, Stacy Larochelle, Brad Aagaard, Sylvain Barbot, Thorsten W. Becker, Nicholas M. Beeler, Yehuda Ben-Zion, Gregory C. Beroza, Roland Bürgmann, Emily E. Brodsky, Camilla Cattania, Benchun Duan, William L. Ellsworth Ahmed E. Elbanna, Brittany A. Erickson, Alice-Agnes Gabriel, Michael Gurnis, Ruth A. Harris, Junle Jiang, Greg Hirth, Yoshihiro Kaneko, James D. Kirkpatrick, Thorne Lay, Shuo Ma, Chris Marone, Gregory C. McLaskey, Men-Andrin Meier, André R. Niemeijer, Hiroyuki Noda, David D. Oglesby, Ares J. Rosakis Kim B. Olsen, Zachary E. Ross, Christie D. Rowe, Paul Segall, Yuval Tal, John Townend, John E. Vidale, Zhongwen Zhan, and Wenlu Zhu. Modeling earthquake source processes: from tectonics to dynamic rupture, Report to the National Science Foundation. Technical report, Caltech, Pasadena CA, 2019. Available online at www.seismolab.caltech.edu/pdf/MESP_White_Paper_Main_Text_8_March_2019.pdf, accesed 01/2024. [ bib ]
[3055] N. Lapusta, E. Dunham, et al. Modeling earthquake source processes: from tectonics to dynamic rupture, Report to the National Science Foundation. Technical report, Caltech, Pasadena CA, 2019. Available online at www.seismolab.caltech.edu/pdf/MESP_White_Paper_Main_Text_8_March_2019.pdf, accesed 03/2024. [ bib ]
[3056] M.E. Lara Ocampo, A. Cardona, V. Valencia, M. Weber, J. Ceron, F. de la Parra, D. Espitia, and M. Martinez. Middle Miocene volcanism within the south Caribbean deformed belt in northern Colombia: petrotectonic implications. In XIV Congreso Latinoamericano de Geologia Memorias,, page 221, 2011. [ bib ]
[3057] J. Larmor. How could a rotating body such as the Sun become a magnet? Rep. Brit. Assoc. Adv. Sci., pages 159--160, 1919. [ bib ]
[3058] Allan Larsen. Aerodynamics of the Tacoma Narrows Bridge-60 years later. Struct. Eng. Int., 10:243--248, 2000. [ bib ]
[3059] S. Larsen, R. Reilinger, H. Neugebauer, and W. Strange. Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting. J. Geophys. Res.: Sol. Earth, 97:4885--4902, April 1992. [ bib ]
[3060] T. Larsen, D. A. Yuen, and A. V. Malevsky. Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection. Geophys. Res. Lett., 22:1277--1280, 1995. [ bib ]
[3061] T. Larsen, D. A. Yuen, J. L. Smedsmo, and A. V. Malevsky. Thermomechanical modeling of pulsation tectonics and consequences on lithospheric dynamics. Geophys. Res. Lett., 23:217--220, 1996. [ bib ]
[3062] Tine B Larsen and David A Yeun. Fast plumeheads: Temperature-dependent versus non-Newtonian rheology. Geophys. Res. Lett., 24:1995--1998, 1997. [ bib ]
[3063] E. W. F. Larsen, J. Tromp, and G. Ekström. Effects of slight anisotropy on surface waves. Geophys. J. Int., 132:654--666, 1998. [ bib ]
[3064] R. L. Larson and W. C. Pitman III. World-wide correlation of Mesosoic magnetic anomalies and its implications. GSA Bull., 83:3645--3662, 1972. [ bib ]
[3065] Roger L Larson and Thomas WC Hilde. A revised time scale of magnetic reversals for the Early Cretaceous and Late Jurassic. J. Geophys. Res.: Sol. Earth, 80:2586--2594, 1975. [ bib ]
[3066] E. Larson, J. Tromp, and G. Ekström. Effects of slight anisotropy on surface waves. Geophys. J. Int., 132:654--666, 1998. [ bib ]
[3067] G. Laske. Reference Earth Model website. University of California, San Diego, La Jolla CA. Online at mahi.ucsd.edu/Gabi/rem.html, accessed 06/2006, 2006. [ bib ]
[3068] G. Laske, G. Masters., Z. Ma, and M. Pasyanos. A 1-degree global model of Earth's crust. Geophys. Res. Abstr., 15, 2013. Abstract EGU2013-2658. [ bib ]
[3069] G. Laske and G. Masters. A global digital map of sediment thickness. EOS, Trans. AGU, 78:F483, 1997. [ bib ]
[3070] G. Laske and G. Masters. Surface-wave polarization data and global anisotropic structure. Geophys. J. Int., 132:508--520, 1998. [ bib ]
[3071] T. M. Lassak, M. J. Fouch, C. E. Hall, and É Kaminski. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett., 243:632--649, 2006. [ bib ]
[3072] Teresa Mae Lassak, Allen K McNamara, Edward J Garnero, and Shijie Zhong. Core--mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics. Earth Planet. Sci. Lett., 289:232--241, 2010. [ bib ]
[3073] K. Latifi, A. Kaviani, G. Rümpker, M. Mahmoodabadi, M. R. Ghassemi, and A. Sadidkhouy. The effect of crustal anisotropy on SKS splitting analysis-synthetic models and real-data observations. Geophys. J. Int., 213:1426--1447, 2018. [ bib ]
[3074] Konstantin Latychev, Jerry X Mitrovica, Mark E Tamisiea, Jeroen Tromp, Christina C Christara, and Robert Moucha. GIA-induced secular variations in the Earth's long wavelength gravity field: Influence of 3-D viscosity variations. Earth Planet. Sci. Lett., 240:322--327, 2005. [ bib ]
[3075] Nicholas Lau, Adrian A Borsa, Christopher W Johnson, and Thorsten W Becker. Geodetic imaging of spatial variations in vertical land motion and its implication for relative sea level change along the US West Coast. In AGU Fall Meeting Abstracts, number G52A-06, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[3076] H. C. P. Lau and B. K. Holtzman. “Measures of dissipation in viscoelastic media” extended: Toward continuous characterization across very broad geophysical time scales. Geophys. Res. Lett., 46:9544--9553, 2019. [ bib ]
[3077] Nicholas Lau, Adrian A. Borsa, and Thorsten W. Becker. Present-day crustal vertical velocity field for the contiguous united states. J. Geophys. Res.: Sol. Earth, 125:e2020JB020066, 2020. [ bib | DOI ]
[3078] Nicholas Lau, Adrian A Borsa, Christopher W Johnson, and Thorsten W Becker. Present-day crustal vertical velocity field for the Contiguous United States. J. Geophys. Res.: Sol. Earth, submitted. Available online at http://www-udc.ig.utexas.edu/external/becker/preprints/lbb20_pre.pdf, accessed 07/2020. [ bib ]
[3079] L. Laurenti, E. Tinti, F. Galasso, L. Franco, and C. Marone. Deep learning for laboratory earthquake prediction and autoregressive forecasting of fault zone stress. Earth Planet. Sci. Lett., 598:117825, 2022. [ bib ]
[3080] L. L. Lavier, W. R. Buck, and A. N. B. Poliakov. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res.: Sol. Earth, 105:23431--23442, 2000. [ bib ]
[3081] L. Lavier and W.R. Buck. Half graben versus large-offset low-angle normal fault: importance of keeping cool during normal faulting. J. Geophys. Res.: Sol. Earth, 107:10.1029/2001JB000513, 2002. [ bib ]
[3082] L. L. Lavier and G. A. Manatschal. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440:324--328, 2006. [ bib ]
[3083] L. L. Lavier, R. Bennett, and R. Duddu. Creep events at the brittle ductile transition. Geochem., Geophys., Geosys., 14:3334--3351, 2013. [ bib | DOI ]
[3084] L.L. Lavier, P.J. Ball, G. Manatschal, M.J. Heumann, J. MacDonald, V.J. Matt, and C. Schneider. Controls on the thermomechanical evolution of hyperextended lithosphere at magma-poor rifted margins: The example of Espirito Santo and the Kwanza basins. Geochem., Geophys., Geosys., 20:5148--5176, 2019. [ bib ]
[3085] Luc L Lavier, Xinyue Tong, and James Biemiller. The mechanics of creep, slow slip events and earthquakes in mixed brittle-ductile fault zones. J. Geophys. Res.: Sol. Earth, 125(e2020JB020325), 2021. [ bib | DOI ]
[3086] L L Lavier, W R Buck, and A N B Poliakov. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology, 27:1127--1130, 1999. [ bib ]
[3087] B. Lawn. Fracture of brittle solids. Cambridge University Press, 2 edition, 1993. [ bib ]
[3088] J. F. Lawrence and M. E. Wysession. Seismic evidence for subduction-transported water in the lower mantle. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono. American Geophysical Union, Washington, DC, 2004. [ bib ]
[3089] J. F. Lawrence and M. E. Wysession. QLM9: A new radial quality factor (Qμ) model for the lower mantle. Earth Planet. Sci. Lett., 241:962--971, 2006. [ bib ]
[3090] J. Lawrence and P. Shearer. A global study of transition zone thickness using receiver functions. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[3091] N. Laws and R. McLaughlin. Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proc. R. Soc. Lond. A., 359:251--273, 1978. [ bib ]
[3092] T. Lay and E. J. Garnero. Core-mantle boundary structures and processes. In R. S. J. Sparks and C. J. Hawkesworth, editors, The State of the Planet: Frontiers and Challenges in Geophysics, volume 150 of Geoophys. Mono., pages 25--41. American Geophysical Union, 2004. [ bib ]
[3093] T. Lay, J. Hernlund, and B. A. Buffett. Core-mantle boundary heat flow. Nature Geosc., 1:25--32, 2008. [ bib ]
[3094] T. Lay, H. Kanamori, C. J. Ammon, K. D. Koper, A. R. Hutko, L. Ye, H. Yue, and T. M. Rushing. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res.: Sol. Earth, 117(B04311), 2012. [ bib | DOI ]
[3095] T. Lay. The surge of great earthquakes from 2004 to 2014. Earth Planet. Sci. Lett., 409:133--146, 2015. [ bib ]
[3096] Thorne Lay and Hiroo Kanamori. Earthquake doublets in the Solomon islands. Phys. Earth Planet. Inter., 21:283--304, 1980. [ bib ]
[3097] T. Lay. The fate of descending slabs. Ann. Rev. Earth Planet. Sci., 22:33, 1994. [ bib ]
[3098] T. Lay and T.C. Wallace. Modern Global Seismology, chapter 8. Academic Press, San Diego, 1995. [ bib ]
[3099] G. Leahy and D. Bercovici. Reactive infiltration of hydrous melt above the mantle transition zone. J. Geophys. Res.: Sol. Earth, 115(B08406), 2010. [ bib | DOI ]
[3100] Michael Le Bars and Anne Davaille. Whole layer convection in a heterogeneous planetary mantle. J. Geophys. Res.: Sol. Earth, 109(B03403), 2004. [ bib | DOI ]
[3101] S. Lebedev, S. Chevrot, and R. van der Hilst. Correlation between the shear-speed structure and thickness of the mantle transition zone. Phys. Earth Planet. Inter., 136:25--40, 2003. [ bib ]
[3102] S. Lebedev and G. Nolet. Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res.: Sol. Earth, 108(2048), 2003. [ bib | DOI ]
[3103] S. Lebedev, G. Nolet, T. Meier, and R. D. van der Hilst. Automated multimode inversion of surface and S waveforms. Geophys. J. Int., 162:951--964, 2005. [ bib ]
[3104] S. Lebedev, T. Meier, and R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth Planet. Sci. Lett., 249:415--424, 2006. [ bib ]
[3105] S. Lebedev and R. D. van der Hilst. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int., 173:505--518, 2008. [ bib ]
[3106] S. Lebedev, J. Boonen, and J. Trampert. Seismic structure of Precambrian lithosphere: New constraints from broad-band surface-wave dispersion. Lithos, 109:96--111, 2009. [ bib ]
[3107] S Lebedev, B Endrun, TM Meier, J Adam, and C Tirel. 3D deformation and evolution of Mediterranean basins: insights from crustal and mantle anisotropy. In AGU Fall Meeting Abstracts, 2010. [ bib ]
[3108] S. M. Lechmann, S. M. Schmalholz, G. Hetenyi, D. A. May, and B.J.P. Kaus. Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models. J. Geophys. Res.: Sol. Earth, 119, 2014. [ bib | DOI ]
[3109] J. Lee, C. Rubin, M. Miller, J. Spencer, O. Lewis, and T. Dixon. Kinematics of the Eastern California shear zone north of the Garlock Fault (abstract). In The Geological Society of America, 2000 Annual meeting. Abstracts with Programs, volume 32, page 105, 2000. [ bib ]
[3110] Cin-Ty Aeolus Lee. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res.: Sol. Earth, 108(B9), 2003. [ bib | DOI ]
[3111] C.-T. A. Lee, A. Lenardic, C. M. Cooper, F. Niu, and A. Levander. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth Planet. Sci. Lett., 230:379--395, 2005. [ bib ]
[3112] C. T. A. Lee. Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle. Earth Planet. Sci. Lett., 255:357--366, 2007. [ bib ]
[3113] Cin-Ty Aeolus Lee, Peter Luffi, Tobias Höink, Zheng-Xue A Li, and Adrian Lenardic. The role of serpentine in preferential craton formation in the late Archean by lithosphere underthrusting. Earth Planet. Sci. Lett., 269:96--104, 2008. [ bib ]
[3114] C.-K. Lee, S.-C. Han, and B. Steinberger. Influence of variable uncertainties in seismic tomography models on constraining mantle viscosity from geoid observations. Phys. Earth Planet. Inter., 184:51--62, 2011. [ bib ]
[3115] C.-T. A. Lee, P. Luffi, and E. J. Chin. Building and destroying continental mantle. Ann. Rev. Earth Planet. Sci., 39:59--90, 2011. [ bib ]
[3116] Changyeol Lee and Scott D King. Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth Planet. Sci. Lett., 312:360--370, 2011. [ bib ]
[3117] T.-C. Lee. Pore-pressure rise, frictional strength, and fault slip: one-dimesional interaction models. Geophys. J. Int., 125:371--384, 1996. [ bib ]
[3118] CT Lee and R. L. Rudnick. Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait tuff cone, Tanzania. In J. J. Gurny and S. R. Richardson, editors, Proceedings of the 7th International Kimberlite Conference, pages 503--521, 1999. [ bib ]
[3119] Mary L Leech, S Singh, AK Jain, Simon L Klemperer, and RM Manickavasagam. The onset of India--Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett., 234:83--97, 2005. [ bib ]
[3120] J. R. Leeman, D. M. Saffer, M. M. Scuderi, and C. Marone. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Comm., 7(11104), 2016. [ bib ]
[3121] J. R. Leeman, C. Marone, and D. M. Saffer. Frictional mechanics of slow earthquakes. J. Geophys. Res.: Sol. Earth, 123:7931--7949, 2018. [ bib ]
[3122] Jonathan M Lees and Jeffrey Park. Multiple-taper spectral analysis: A stand-alone C-subroutine. Comp. & Geosc., 21:199--236, 1995. [ bib ]
[3123] Marthe Lefevre, Yann Klinger, Mahmoud Al-Qaryouti, Maryline Le Béon, and Khaled Moumani. Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations. Sci. Rep., 8:4511, 2018. [ bib ]
[3124] I. Lehmann. P'. Bureau Central Séismologique Int. Strasbourg: Pub. du Bureau Central Sci., 14:87--115, 1936. [ bib ]
[3125] Florian K Lehner, Victor C Li, and JR Rice. Stress diffusion along rupturing plate boundaries. J. Geophys. Res.: Sol. Earth, 86:6155--6169, 1981. [ bib ]
[3126] X. Lei, K. Kusunose, M. Rao, O. Nishizawa, and T. Satoh. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J. Geophys. Res.: Sol. Earth, 105:6127--6139, 2000. [ bib ]
[3127] X. Lei. How do asperities fracture? An experimental study of unbroken asperities. Earth Planet. Sci. Lett., 26:247--258, 2003. [ bib ]
[3128] J. Lei, D. Zhao, B. Steinberger, B. Wu, F. Shen, and Z. Li. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter., 33--50, 2009. [ bib ]
[3129] B. Leitner, A. M. Trehu, and N. J. Godfrey. Crustal structure of the northwestern Vizcaino block and Gorda Escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. J. Geophys. Res.: Sol. Earth, 103:23795--23812, 1998. [ bib ]
[3130] V. Lekić and B. A. Romanowicz. Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys. J. Int., 2011. [ bib | DOI ]
[3131] V. Lekić, K. M. Fischer, and S. French. Lithospheric thinning beneath rifted regions of Southern California. Science, 334:783--787, 2011. [ bib ]
[3132] V. Lekic and B. A. Romanowicz. Tectonic regionalization without a priori information: A cluster analysis of upper mantle tomography. Earth Planet. Sci. Lett., 308:151--160, 2011. [ bib ]
[3133] A. Lenardic, L. N. Moresi, and H. Mühlhaus. Longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[3134] A. Lenardic, L. N. Moresi, A. M. Jellinek, and M. Manga. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett., 234:317--333, 2005. [ bib ]
[3135] A. Lenardic, M. A. Richards, and F. H. Busse. Depth-dependent rheology and the horizontal length-scale of mantle convection. J. Geophys. Res.: Sol. Earth, 111(B07404), 2006. [ bib | DOI ]
[3136] A Lenardic and AM Jellinek. Tails of two plume types in one mantle. Geology, 37:127--130, 2009. [ bib ]
[3137] A. Lenardic, L. N. Moresi, A. M. Jellinek, C. J. O’Neill, C. M. Cooper, and C. T. Lee. Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments. Geochem., Geophys., Geosys., 12(Q10016), 2011. [ bib | DOI ]
[3138] A. Lenardic and J. W. Crowley. On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys. J., 755:132--143, 2012. [ bib ]
[3139] A Lenardic. The diversity of tectonic modes and thoughts about transitions between them. Phil. Trans. Royal Soc. A, 376:20170416, 2018. [ bib ]
[3140] A. Lenardic and W. M. Kaula. A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces. J. Geophys. Res.: Sol. Earth, 98:8243--8260, 1993. [ bib ]
[3141] A. Lenardic and L. N. Moresi. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. J. Geophys. Res.: Sol. Earth, 104:12747--12758, 1999. [ bib ]
[3142] Wei Leng and Shijie Zhong. Controls on plume heat flux and plume excess temperature. J. Geophys. Res.: Sol. Earth, 113(B04408), 2008. [ bib | DOI ]
[3143] Wei Leng and Shijie Zhong. Viscous heating, adiabatic heating and energetic consistency in compressible mantle convection. Geophys. J. Int., 173:693--702, 2008. [ bib ]
[3144] W. Leng and M. Gurnis. Dynamics of subduction initiation with different evolutionary pathways. Geochem., Geophys., Geosys., 12(Q12018), 2011. [ bib | DOI ]
[3145] Xavier Le Pichon and Corné Kreemer. The miocene-to-present kinematic evolution of the eastern mediterranean and middle east and its implications for dynamics. Ann. Rev. Earth Planet. Sci., 38:323--351, 2010. [ bib ]
[3146] X. Le Pichon. Sea floor spreading and continental drift. J. Geophys. Res.: Sol. Earth, 73:3661--3697, 1968. [ bib ]
[3147] L. Le Pourhiet, M. Gurnis, and J. Saleeby. Mantle instability beneath the Sierra Nevada mountains in California and Death Valley extension. Earth Planet. Sci. Lett., 251:104--119, 2006. [ bib ]
[3148] L. Le Pourhiet, B. Huet, and N. Traoré. Links between long-term and short-term rheology of the lithosphere: Insights from strike-slip fault modelling. Tectonophys., 631:146--159, 2014. [ bib ]
[3149] Y. Le Stunff and Y. Ricard. Topography and geoid due to lithospheric mass anomalies. Geophys. J. Int., 133:982--990, 1995. [ bib ]
[3150] E. Lev and B. H. Hager. Rayleigh-Taylor instabilities with anisotropic lithospheric viscosity. Geophys. J. Int., 173:806--814, 2008. [ bib ]
[3151] E. Lev and B. H. Hager. Prediction of anisotropy from flow models: A comparison of three methods. Geochem., Geophys., Geosys., 9(Q07014):10.1029/2008GC002032, 2008. [ bib ]
[3152] E. Lev and B. H. Hager. Anisotropic viscosity changes subduction zone thermal structure. Geochem., Geophys., Geosys., 12(Q04009), 2011. [ bib | DOI ]
[3153] A. Levander. USArray design implications for wavefield imaging in the lithosphere and upper mantle. The Leading Edge, 22:250--255, 2003. [ bib ]
[3154] A. Levander, F. Niu, and W. W. Symes. Imaging teleseismic P to S scattered waves using the Kirchhoff integral. In A. Levander and G. Nolet, editors, Seismic Earth: Array Analysis of Broadband Seismograms, volume 157 of Geoophys. Mono., pages 149--169. American Geophysical Union, Washington, D.C., 2005. [ bib ]
[3155] A. Levander, M. Schmitz, H. G. Aveé Lallemant, C. A. Zelt, D. S. Sawyer, M. B. Magnani, P. Mann, G. Christeson, J. E. Wright, G. L. Pavlis, and J. Pindell. Evolution of the southern Caribbean plate boundary. Eos Trans. AGU, 87(9), 2006. [ bib | DOI ]
[3156] A. Levander, F. Niu, C.-T. A. Lee, and X. Cheng. Imag(in)ing the continental lithosphere. Tectonophys., 416:167--185, 2006. [ bib ]
[3157] A. Levander, D. Niu, and M. S. Miller. The Moho and the Lithosphere-Asthenosphere Boundary under the western U.S. from USArray PdS Receiver Functions. Eos Trans. AGU, 89(53):S31D--05, 2008. [ bib ]
[3158] A. Levander, B. Schmandt, M. S. Miller, K. Liu, K. E. Karlstrom, R. S. Crow, C.-T. Lee, and E. D. Humphreys. Regional Colorado Plateau uplift by delamination and thermo-chemical downwelling of North American lithosphere. Nature, 472:461--465, 2011. [ bib ]
[3159] A. Levander and M. S. Miller. Evolutionary aspects of the lithosphere discontinuity structure in the western U.S. Geochem., Geophys., Geosys., 13(Q0AK07), 2012. [ bib | DOI ]
[3160] A. R. Levander. Fourth-order finite-difference P-SV seismograms. Geophysics, 53:1425--1436, 1988. [ bib ]
[3161] W. Levandowski, C. H. Jones, W. Shen, M. H. Ritzwoller, and V. Schulte-Pelkum. Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. J. Geophys. Res.: Sol. Earth, 119:2375--2396, 2014. [ bib ]
[3162] V. Levin, D. Okaya, and J. Park. Cause and effect: Shear wave birefringence in wedge-shaped anisotropic regions. Geophys. J. Int., 168:275--286, 2007. [ bib ]
[3163] Vadim Levin and Jeffrey Park. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions. Geophys. Res. Lett., 24(11):1283--1286, 1997. [ bib ]
[3164] V. Levin and J. Park. P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook. Pure Appl. Geophys., 151:669--697, 1998. [ bib ]
[3165] V. Levin, W. Menke, and J. Park. Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy. J. Geophys. Res.: Sol. Earth, 104:17975--17993, 1999. [ bib ]
[3166] M. Levine and A. Stuart. A framework for machine learning of model error in dynamical systems. Comm. Amer. Math. Soc., 2:283--344, 2022. [ bib ]
[3167] F. Lévy and C. Jaupart. The initiation of subduction by crustal extension at a continental margin. Geophys. J. Int., 188:779--797, 2012. [ bib ]
[3168] J. L. Lewicki, T. Fischer, and S. N. Williams. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution. Bull. Volcanol., 62:347--361, 2000. [ bib ]
[3169] X. Li, S. V. Sobolev, R. Kind, X. Yuan, and C. Estabrook. A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone. Earth Planet. Sci. Lett., 183:527--541, 2000. [ bib ]
[3170] A. Li, D. W. Forsyth, and K. M. Fischer. Shear wave structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave tomography. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[3171] J. Li and Y. Fei. Experimental constraints on core composition. In R. W. Carlson, editor, The Mantle and Core, volume 2, pages 521--546. Elsevier, 2005. [ bib ]
[3172] Q. Li and M. Liu. Geometrical impact of the San Andreas fault on stress and seismicity in California. Geophys. Res. Lett., 33, 2006. [ bib | DOI ]
[3173] Q. Li and M. Liu. Initiation of the San Jacinto fault and its interaction with the San Andreas fault: Insights from geodynamic modeling. Pure Appl. Geophys., 164:1937--1945, 2007. [ bib ]
[3174] X. Li, X. Yuan, and R. Kind. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int., 170:700--710, 2007. [ bib ]
[3175] Z.-X. L. Li, C.-T. A. Lee, A. H. Peslier, A. Lenardic, and S. J. Mackwell. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J. Geophys. Res.: Sol. Earth, 113, 2008. [ bib | DOI ]
[3176] C. Li, R. D. van der Hilst, E. R. Engdahl, and S. Burdick. A new global model for P wave speed variations in Earth's mantle. Geochem., Geophys., Geosys., 9(Q05018), 2008. [ bib | DOI ]
[3177] C. Li, R. D. van der Hilst, A. S. Meltzer, and E. R. Engdahl. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274:157--168, 2008. [ bib ]
[3178] C. Li and R. D. van der Hilst. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J. Geophys. Res.: Sol. Earth, 115(B07308), 2010. [ bib | DOI ]
[3179] Z.-H. Li and N. M. Ribe. Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res.: Sol. Earth, 117(B06408), 2012. [ bib | DOI ]
[3180] Z. Li, Z. Peng, Z. Ross, F. Vernon, and Y. Ben-Zion. Variations of seismic anisotropy along the San Jacinto fault zone, southern California. In Annual Meeting 2014, Proceedings Volume XXIV, page 157, Los Angeles, CA, 2014. Southern California Earthquake Center. Available online at www.scec.org/meetings/2014am/SCEC2014Proceedings.pdf, accessed 10/2014. [ bib ]
[3181] Z. Li, H. Zhang, and Z. Peng. Structure-controlled seismic anisotropy along the Karadere-Düzce branch of the North Anatolian Fault revealed by shear-wave splitting tomography. Earth Planet. Sci. Lett., 391:319--326, 2014. [ bib ]
[3182] Z.-H. Li, J. F. Di Leo, and N.M. Ribe. Subduction-induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling. J. Geophys. Res.: Sol. Earth, 119:5052--5076, 2014. [ bib ]
[3183] S. Li, M. Moreno, J. Bedford, M. Rosenau, and O. Oncken. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J. Geophys. Res.: Sol. Earth, 120:4522--4538, 2015. [ bib ]
[3184] Zefeng Li and Zhigang Peng. Stress- and structure-induced anisotropy in Southern California from two decades of shear wave splitting measurements. Geophys. Res. Lett., 44:9607--09614, 2017. [ bib | DOI ]
[3185] D. Li, M. Gurnis, and G. Stadler. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity. Geophys. J. Int., 209:86--105, 2017. [ bib ]
[3186] Duo Li and Yajing Liu. Modeling slow-slip segmentation in cascadia subduction zone constrained by tremor locations and gravity anomalies. J. Geophys. Res.: Sol. Earth, 122:3138--3157, 2017. [ bib ]
[3187] Mingming Li and Shijie Zhong. The source location of mantle plumes from 3D spherical models of mantle convection. Earth Planet. Sci. Lett., 478:47--57, 2017. [ bib ]
[3188] Shaoyang Li, Kelin Wang, Yanzhao Wang, Yan Jiang, and Stan E. Dosso. Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic earth model. J. Geophys. Res.: Sol. Earth, 123:8056--8072, 2018. [ bib ]
[3189] Shaoyang Li, Jonathan Bedford, Marcos Moreno, William D. Barnhart, Matthias Rosenau, and Onno Oncken. Spatiotemporal variation of mantle viscosity and the presence of cratonic mantle inferred from 8 years of postseismic deformation following the 2010 Maule, Chile, earthquake. Geochem., Geophys., Geosys., 19:3272--3285, 2018. [ bib ]
[3190] Duo Li, Jeffrey J McGuire, Yajing Liu, and Jeanne L Hardebeck. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths. Earth Planet. Sci. Lett., 485:55--64, 2018. [ bib ]
[3191] Chenglong Li, Tao Li, Xinjian Shan, and Guohong Zhang. Extremely large off-fault deformation during the 2021 Mw 7.4 Maduo, Tibetan Plateau, Earthquake. Seismol. Res. Lett., 94:39--51, 2023. [ bib ]
[3192] Yida Li and Michael Gurnis. A simple force balance model of subduction initiation. Geophys. J. Int., 232:128--146, 2023. [ bib ]
[3193] Xing Li, Sigurjón Jónsson, Shaozhuo Liu, Zhangfeng Ma, Nicolás Castro-Perdomo, Simone Cesca, Frédéric Masson, and Yann Klinger. Resolving the slip-rate inconsistency of the northern Dead Sea fault. Sci. Adv., 10:eadj8408, 2024. [ bib ]
[3194] V. C. Li and J.R. Rice. Crustal deformation in great California earthquake cycles. J. Geophys. Res.: Sol. Earth, 92:11533--11551, October 1987. [ bib ]
[3195] V. C. Li, S. H. Seale, and T. Cao. Postseismic stress and pore pressure readjustment and aftershock distributions. Tectonophys., 144:37--54, 1987. [ bib ]
[3196] V. C. Li and H. S. Lim. Modeling surface deformations at complex strike-slip plate boundaries. J. Geophys. Res.: Sol. Earth, 93:7943--7954, July 1988. [ bib ]
[3197] X.-D. Li and B. A. Romanowicz. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophys. J. Int., 121:695--709, 1995. [ bib ]
[3198] F. Liakopoulou-Morris, I. G. Main, B. R. Crawford, and B. G. D. Smart. Microseismic properties of a homogeneous sandstone during fault nucleation and frictional sliding. Geophys. J. Int., 119:219--230, 1994. [ bib ]
[3199] K. Liao. mpacts of lithospheric rheology on surface topography. Master's thesis, The University of Texas at Austin, 2018. Available online at hdl.handle.net/2152/68456, accessed 02/2019. [ bib ]
[3200] K. G. Libbrecht. Practical considerations for the generation of large-order spherical harmonics. Solar Phys., 99:371--373, 1985. [ bib ]
[3201] A. Libchaber, C. Laroche, and S. Fauve. Period doubling cascade in mercury, a quantitative measurement. J. Physique. Lett., 43:L211--L216, 1982. [ bib ]
[3202] E. Libicki and Y. Ben-Zion. Stochastic branching models of fault surfaces and estimated fractal dimensions. Pure Appl. Geophys., 162(6--7), 2005. [ bib ]
[3203] J. J. Lienkaemper, B. Baker, and F. S. McFarland. Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays. Bull. Seismol. Soc. Am., 96:239--249, 2006. [ bib ]
[3204] X. Li, X. Yuan, and R. Kind. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int., 170:700--710, 2007. [ bib ]
[3205] G. Lin and P. Shearer. Tests of relative earthquake relocation techniques using synthetic data. J. Geophys. Res.: Sol. Earth, 110(B04304), 2005. [ bib | DOI ]
[3206] Shu-Chuan Lin and Peter E Van Keken. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem., Geophys., Geosys., 7(Q03003), 2006. [ bib | DOI ]
[3207] G. Lin, P. M. Shearer, and E. Hauksson. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res.: Sol. Earth, 112(B12309), 2007. [ bib | DOI ]
[3208] G. Lin and P. Shearer. Estimating local Vp/Vs ratios within similar earthquake clusters. Bull. Seismol. Soc. Am., 97:379--388, 2007. [ bib ]
[3209] F.-C. Lin, M. H. Ritzwoller, and R. Snieder. Eikonal tomography: surface wave tomography by phase-front tracking across a regional broad-band seismic array. Geophys. J. Int., 177:1091--1110, 2008. [ bib ]
[3210] F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller. Crustal and uppermost mantle shear wave azimuthal anisotropy in the western United States based on ambient noise cross correlation and Eikonal tomography. Eos Trans. AGU, 89(53):S24A--02, 2008. [ bib ]
[3211] F. Lin, M. P. Moschetti, and M. H. Ritzwoller. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173:281--298, 2008. [ bib ]
[3212] G. Lin and P. M. Shearer. Evidence for water-filled cracks in earthquake source regions. Geophys. Res. Lett., 36(L17315), 2009. [ bib | DOI ]
[3213] F.-C. Lin, M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geosc., 2010. [ bib | DOI ]
[3214] F. C. Lin, M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geosc., 4:55--61, 2011. [ bib ]
[3215] Yu-Pin Lin, Li Zhao, and Shu-Huei Hung. Full-wave multiscale anisotropy tomography in Southern California. Geophys. Res. Lett., 41:8809--8817, 2014. [ bib | DOI ]
[3216] Guoqing Lin, Falk Amelung, Peter M. Shearer, and Paul G. Okubo. Location and size of the shallow magma reservoir beneath Kīlauea caldera, constraints from near-source Vp/Vs ratios. Geophys. Res. Lett., 42:8349--8357, 2015. [ bib ]
[3217] P.-Y. P. Lin, J. B. Gaherty, Jin. G., J. A. Collins, D. Lizarralde, R. L. Evans, and G. Hirth. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 535:538--541, 2016. [ bib ]
[3218] Guoqing Lin. Spatiotemporal variations of in situ Vp/Vs ratio within the Salton Sea Geothermal Field, southern California. Geotherm., 84:101740, 2020. [ bib ]
[3219] A. T. Linde and I. S. Sachs. Slow earthquakes and great earthquakes along the Nankai trough. Earth Planet. Sci. Lett., 203:265--275, 2002. [ bib ]
[3220] Alan T Linde, Michael T Gladwin, Malcolm JS Johnston, Ross L Gwyther, and Roger G Bilham. A slow earthquake sequence on the San Andreas fault. Nature, 383:65--68, 1996. [ bib ]
[3221] EO Lindsey and Y Fialko. Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. J. Geophys. Res.: Sol. Earth, 118:689--697, 2013. [ bib ]
[3222] E. O. Lindsey, Y. Fialko, Y. Bock, D. T. Sandwell, and R. Bilham. Localized and distributed creep along the southern San Andreas Fault. J. Geophys. Res.: Sol. Earth, 2014. [ bib | DOI ]
[3223] M. F. Linker and M. F. Dieterich. Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res.: Sol. Earth, 97:4923--4940, 1992. [ bib ]
[3224] Lorraine E Lisiecki and Maureen E Raymo. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(PA1003), 2005. [ bib | DOI ]
[3225] CRB Lister. On the thermal balance of a mid-ocean ridge. Geophys. J. Int., 26:515--535, 1972. [ bib ]
[3226] C. R. B. Lister. Gravitational drive on oceanic plates caused by thermal contraction. Nature, 257:663--665, 1975. [ bib ]
[3227] CRB Lister. Estimators for heat flow and deep rock properties based on boundary layer theory. Tectonophys., 41:157--171, 1977. [ bib ]
[3228] G. S. Lister, M. A. Etheridge, and P. A. Symonds. Detachment faulting and the evolution of passive continental margins. Geology, 14:246--250, 1986. [ bib ]
[3229] Konstantin D Litasov, Eiji Ohtani, and Asami Sano. Influence of water on major phase transitions in the earth's mantle. In Earth's Deep Water Cycle, volume 168 of Geophys. Mono., pages 95--111. American Geophysical Union, 2006. [ bib ]
[3230] C. Lithgow-Bertelloni and J. H. Guynn. Origin of the lithospheric stress field. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[3231] C. Lithgow-Bertelloni, M. A. Richards, Y. Ricard, R. J. O'Connell, and D. C. Engebretson. Toroidal-poloidal partitioning of plate motions since 120 Ma. Geophys. Res. Lett., 20:375--378, 1993. [ bib ]
[3232] C. Lithgow-Bertelloni and M. A. Richards. Cenozoic plate driving forces. Geophys. Res. Lett., 22:1317--1320, 1995. [ bib ]
[3233] C. Lithgow-Bertelloni and M. Gurnis. Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geophys. Res. Lett., 25:735--738, 1997. [ bib ]
[3234] C. Lithgow-Bertelloni and M. A. Richards. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys., 36:27--78, 1998. [ bib ]
[3235] C. Lithgow-Bertelloni and P. G. Silver. Dynamic topography, plate driving forces and the African superswell. Nature, 395:269--272, 1998. [ bib ]
[3236] T. A. Little, M. K. Savage, and B. Tikoff. Relationship between crustal finite strain and seismic anisotropy in the mantle, Pacific-Australia plate boundary zone, South Island, New Zealand. Geophys. J. Int., 151:106--116, 2002. [ bib ]
[3237] T. A. Little, B. R. Hacker, S. J. Brownlee, and G. Seward. Microstructures and quartz lattice-preferred orientations in the eclogite-bearing migmatitic gneisses of the D'Entrecasteaux Islands, Papua New Guinea. Geochem., Geophys., Geosys., 14:2030--2062, 2013. [ bib | DOI ]
[3238] V. Litvak, E. Poma, and S. M. Kay. Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina. J. South Am. Earth Sci., 24:117--137, 2007. [ bib ]
[3239] Z. Liu and P. Bird. North America plate is driven westward by lower mantle flow. Geophys. Res. Lett., 29(2164), 2002. [ bib | DOI ]
[3240] M. Liu and Y. Yang. Extensional collapse of the Tibetan plateau: Results from three-dimensional finite element modeling. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[3241] Y. Liu and J. R. Rice. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. J. Geophys. Res.: Sol. Earth, 110(B08307), 2005. [ bib | DOI ]
[3242] M. Liu, Y. Yang, Q. Li, and H. Zhang. Parallel computing of multi-scale continental deformation in the Western United States: preliminary results. Phys. Earth Planet. Inter., 163:35--51, 2007. [ bib ]
[3243] Y. Liu and J. R. Rice. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res.: Sol. Earth, 112(B09404), 2007. [ bib | DOI ]
[3244] L. Liu and M. Gurnis. Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res.: Sol. Earth, 113(B08405), 2008. [ bib | DOI ]
[3245] L. Liu, S. Spasojević, and M. Gurnis. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322:934--938, 2008. [ bib ]
[3246] Yajing Liu and James R Rice. Slow slip predictions based on granite and gabbro friction data compared to GPS measurements in northern Cascadia. J. Geophys. Res.: Sol. Earth, 114(B09407), 2009. [ bib | DOI ]
[3247] L. Liu and M. Gurnis. Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38:663--666, 2010. [ bib ]
[3248] Yajing Liu and Allan M Rubin. Role of fault gouge dilatancy on aseismic deformation transients. J. Geophys. Res.: Sol. Earth, 115(B10414), 2010. [ bib | DOI ]
[3249] Mian Liu, Hui Wang, and Qingsong Li. Inception of the eastern California shear zone and evolution of the Pacific-North American plate boundary: From kinematics to geodynamics. J. Geophys. Res.: Sol. Earth, 115(B7), 2010. [ bib ]
[3250] K. Liu, A. Levander, F. Niu, and M. S. Miller. Imaging crustal and upper mantle structure beneath the Colorado Plateau using finite frequency Rayleigh wave tomography. Geochem., Geophys., Geosys., 12(7), 2011. [ bib | DOI ]
[3251] L. Liu and D. R. Stegman. Segmentation of the Farallon slab. Earth Planet. Sci. Lett., 311:1--10, 2011. [ bib ]
[3252] L. Liu and D. R. Stegman. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482:386--389, 2012. [ bib ]
[3253] Xin Liu, Dapeng Zhao, and Sanzhong Li. Seismic imaging of the Southwest Japan arc from the Nankai trough to the Japan Sea. Phys. Earth Planet. Inter., 216:59--73, 2013. [ bib ]
[3254] L. Liu. Rejuvenation of Appalachian topography caused by subsidence-induced differential erosion. Nature Geosc., 2014. [ bib | DOI ]
[3255] K. H. Liu, A. Elsheikh, A. Lemnifi, U. Purevsurenand M. Ray, H. Refayee, B. Yang, Y. Yu, and S.S. Gao. A uniform database of teleseismic shear wave splitting measurements for the western and central United States. Geochem., Geophys., Geosys., 15, 2014. 10.1002/2014GC005267. [ bib ]
[3256] Yajing Liu. Source scaling relations and along-strike segmentation of slow slip events in a 3-D subduction fault model. J. Geophys. Res.: Sol. Earth, 119:6512--6533, 2014. [ bib ]
[3257] L. Liu and Q. Zhou. Deep recycling of oceanic asthenosphere material during subduction. Geophys. Res. Lett., 42:2204--2211, 10.1002/2015GL063633 2015. [ bib ]
[3258] Lijun Liu. The ups and downs of North America: Evaluating the role of mantle dynamic topography since the Mesozoic. Rev. Geophys., 53:1022--1049, 2015. [ bib ]
[3259] Sibiao Liu and Claire A Currie. Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophys., 666:33--47, 2016. [ bib ]
[3260] Xiaowen Liu and Claire A Currie. Influence of upper plate structure on flat-slab depth: Numerical modeling of subduction dynamics. J. Geophys. Res.: Sol. Earth, 124:13150--13167, 2019. [ bib ]
[3261] S. Liu and J. M. Dixon. Centrifuge modeling of thrust faulting: Strain partitioning and sequence of thrusting in duplex structures. In R. J. Knipe and E. H. Rutter, editors, Rheology and Tectonics, volume 54, pages 431--444. Geol. Soc. Spec. Pub., London, 1990. [ bib ]
[3262] S. Liu and J. M. Dixon. Localization of duplex thrust-ramps by buckling: analog and numerical modeling. J. Struct. Geol., 17:875--886, 1995. [ bib ]
[3263] D. Liu, B. Duan, and B. Luo. EQsimu: a 3-D finite element dynamic earthquake simulator for multicycle dynamics of geometrically complex faults governed by rate- and state-dependent friction. Geophys. J. Int., 220:598--609, 2020. [ bib ]
[3264] Shangxin Liu and Scott D King. Dynamics of the North American plate: Large-scale driving mechanism from far-field slabs and the interpretation of shallow negative seismic anomalies. Geochem., Geophys., Geosys., 23:e2021GC009808, 2022. [ bib ]
[3265] Burigede Liu, Eric Ocegueda, Margaret Trautner, Andrew M Stuart, and Kaushik Bhattacharya. Learning macroscopic internal variables and history dependence from microscopic models. J. Mech. Phys. Sol., page 105329, 2023. [ bib ]
[3266] M. Liu, D. A. Yuen, W. Zhao, and S. Honda. Development of diapiric structures in the upper mantle due to phase transitions. Science, 252:1836--1839, 1991. [ bib ]
[3267] L. Liu, A. T. Linde, I. S. Sacks, and S. He. Aseismic fault slip and block deformation in North China. Pure Appl. Geophys., 146, 1996. [ bib ]
[3268] Lanbo Liu and Mark D Zoback. Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 16:585--595, 1997. [ bib ]
[3269] Z. Liu and P. Bird. Kinematic modelling of neotectonics in the persia-tibet-burma orogen. Geophys. J. Int., 172:779--797, 2008. [ bib ]
[3270] Zhen Liu and Jeffrey Park. Seismic receiver function interpretation: Ps splitting or anisotropic underplating? Geophys. J. Int., 208:1332--1341, 2017. [ bib ]
[3271] L. A. Lliboutry. Sea floor spreading, continental drift and lithosphere sinking with an asthenosphere at melting point. J. Geophys. Res.: Sol. Earth, 74:6525--6540, 1969. [ bib ]
[3272] L. A. Lliboutry. Rheological properties of the asthenosphere from Fennoscandia data. J. Geophys. Res.: Sol. Earth, 76:1433--1446, 1971. [ bib ]
[3273] Geoffrey E Lloyd, Robert WH Butler, Martin Casey, and David Mainprice. Mica, deformation fabrics and the seismic properties of the continental crust. Earth Planet. Sci. Lett., 288(1-2):320--328, 2009. [ bib ]
[3274] Sergey S Lobanov, François Soubiran, Nicholas Holtgrewe, James Badro, Jung-Fu Lin, and Alexander F Goncharov. Contrasting opacity of bridgmanite and ferropericlase in the lowermost mantle: Implications to radiative and electrical conductivity. Earth Planet. Sci. Lett., 562:116871, 2021. [ bib ]
[3275] DA Lockner, R Summers, and JD Byerlee. Effects of temperature and sliding rate on frictional strength of granite. Pure Appl. Geophys., 124:445--469, 1986. [ bib ]
[3276] D. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidrin. Quasi-static fault growth and shear fracture energy in granite. Nature, 350:39--42, 1991. [ bib ]
[3277] D. A. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidrin. Observations of quasi-static fault growth from acoustic emissions. In B. Evans and T.-f. Wong, editors, Fault mechanics and transport properties of rocks, pages 3--31. Academic, San Diego, 1992. [ bib ]
[3278] D. Lockner. The role of acoustic emission in the study of rock fracture. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 30(7):883--899, 1993. [ bib ]
[3279] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media, 2012. [ bib ]
[3280] Philippe Lognonné, WB Banerdt, WT Pike, Domenico Giardini, U Christensen, Raphaël F Garcia, T Kawamura, S Kedar, B Knapmeyer-Endrun, L Margerin, et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geosc., 13:213--220, 2020. [ bib ]
[3281] C. Loiselet, J. Braun, L. Husson, C. Le Carlier de Veslud, C. Thieulot, P. Yamato, and D. Grujic. Subducting slabs: Jellyfishes in the Earth's mantle. Geochem., Geophys., Geosys., 11(Q08016), 2010. [ bib | DOI ]
[3282] A. Lomax, J. Virieux, P. Volant, and C. Berge. Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. In C. H. Thurber and N. Rabinowitz, editors, Advances in Seismic Event Location, pages 101--134. Kluwer, Amsterdam, 2000. [ bib ]
[3283] A. Lomax, A. Zollo, P. Capuano, and J. Virieux. Precise, absoute earthquake location under Somma-Vesuvius volcano using a new 3D velocity model. Geophys. J. Int., 146:313--331, 2001. [ bib ]
[3284] A. Lomax, A. Michelini, and A. Curtis. Encyclopedia of Complexity and System Science, chapter Earthquake Location, Direct, Global-Search Methods, pages 2449--2473. Springer, New York, 2009. [ bib ]
[3285] C. Lomnitz. Search of a worldwide catalog for earthquakes triggered at intermediate distances. Bull. Seismol. Soc. Am., 86:293--298, 1996. [ bib ]
[3286] J. Londoño. Activity and Vp/Vs ratio of volcano-tectonic seismic swarm zones at Nevado del Ruiz volcano, Colombia. Earth Sci. Res., 14:111--124, 2010. [ bib ]
[3287] L. Lonergan and N. White. Origin of the Betic-Rif mountain belt. Tectonics, 16:504--522, 1997. [ bib ]
[3288] M. D. Long and R. D. van der Hilst. Estimating shear-wave splitting parameters from broadband recordings in Japan: a comparison of three methods. Bull. Seismol. Soc. Am., 95:1346--1358, 2005. [ bib ]
[3289] M. D. Long and R. D. van der Hilst. Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Phys. Earth Planet. Inter., 155:300--312, 2006. [ bib ]
[3290] M. D. Long, M. V. de Hoop, and R. D. van der Hilst. Wave equation shear wave splitting tomography. Geophys. J. Int., 172:311--330, 2008. [ bib ]
[3291] M. D. Long and P. G. Silver. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surv. Geophys., 30:407--461, 2009. [ bib ]
[3292] M. D. Long. Complex anisotropy in D” beneath the eastern Pacific from SKS-SKKS splitting discrepancies. Earth Planet. Sci. Lett., 283:181--189, 2009. [ bib ]
[3293] M. D. Long and P. G. Silver. Mantle flow in subduction systems: The sub-slab flow field and implications for mantle dynamics. J. Geophys. Res.: Sol. Earth, 114(B10312), 2009. [ bib | DOI ]
[3294] M. D. Long and T. W. Becker. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297:341--354, 2010. [ bib ]
[3295] M. D. Long. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys., 51:76--112, 2013. [ bib ]
[3296] Sean P Long. Geometry and magnitude of extension in the Basin and Range Province (39 N), Utah, Nevada, and California, USA: Constraints from a province-scale cross section. GSA Bull., 131:99--119, 2019. [ bib ]
[3297] P. Lonsdale. Creation of the Cocos and Nazca plates by fission of the Farallón plate. Tectonophys., 404:237--264, 2005. [ bib ]
[3298] DE Loper and K McCartney. Mantle plumes and the periodicity of magnetic field reversals. Geophys. Res. Lett., 13:1525--1528, 1986. [ bib ]
[3299] A. López, G. M. Sierra, and D. Ramírez. Vulcanismo neógeno en el suroccidente antioqueno y sus implicaciones tectónicas. Bol. Ciencias de la Tierra, 19:27--42, 2006. [ bib ]
[3300] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963. [ bib ]
[3301] X. Lou and S. van der Lee. Observed and predicted North American teleseismic delay times. Earth Planet. Sci. Lett., 402:6--15, 2014. [ bib ]
[3302] D. L. Lourenço, A. Rozel, and P. J. Tackley. Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett., 439:18--28, 2016. [ bib ]
[3303] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge, 1927. Reprinted in 1944 by Dover Publications, New York. [ bib ]
[3304] J. P. Loveless and B. J. Meade. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res.: Sol. Earth, 115(B02410), 2010. [ bib | DOI ]
[3305] J. P. Loveless and B. J. Meade. Stress modulation on the San Andreas fault due to interseismic fault system interactions. Geology, 39:1035--1038, 2011. [ bib ]
[3306] J. P. Loveless and B. J. Meade. Two decades of spatiotemporal variations in subduction zone coupling offshore Japan. Earth Planet. Sci. Lett., 436:19--30, 2016. [ bib ]
[3307] J. P. Lowman and G. T. Jarvis. Continental collisions in wide aspect ratio and high Rayleigh number two-dimensional mantle convection models. J. Geophys. Res.: Sol. Earth, 101:25485--25497, 1996. [ bib ]
[3308] J. P. Lowman and G. T. Jarvis. Effects of mantle heat source distribution on supercontinent stability. J. Geophys. Res.: Sol. Earth, 104:12733--12746, 1999. [ bib ]
[3309] A. R. Lowry, N. M. Ribe, and R. B. Smith. Dynamic elevation of the Cordillera, western United States. J. Geophys. Res.: Sol. Earth, 105:23371--23390, 2000. [ bib ]
[3310] A. R. Lowry and M. Pérez-Gussinyé. The role of crustal quartz in controlling Cordilleran deformation. Nature, 471:353--357, 2011. [ bib ]
[3311] A. R. Lowry and R. B. Smith. Strength and rheology of the western U.S. Cordillera. J. Geophys. Res.: Sol. Earth, 100:17947--17963, 1995. [ bib ]
[3312] S. J. Loyd, T. W. Becker, C. P. Conrad, C. Lithgow-Bertelloni, and F. A. Corsetti. Time-variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution. Proc. Nat. Acad. Sci., 104:14266--14271, 2007. [ bib ]
[3313] Chang Lu, Stephen P Grand, Hongyu Lai, and Edward J Garnero. Tx2019slab: A new p and s tomography model incorporating subducting slabs. J. Geophys. Res.: Sol. Earth, 124:11549--11567, 2019. [ bib ]
[3314] Lucy X Lu and Dazhi Jiang. Quartz flow law revisited: the significance of pressure dependence of the activation enthalpy. J. Geophys. Res.: Sol. Earth, 124(1):241--256, 2019. [ bib ]
[3315] Chang Lu, Alessandro M Forte, Nathan A Simmons, Stephen P Grand, Marie N Kajan, Hongyu Lai, and Edward J Garnero. The sensitivity of joint inversions of seismic and geodynamic data to mantle viscosity. Geochem., Geophys., Geosys., 21:e2019GC008648, 2020. [ bib ]
[3316] F. P. Lucente, C. Ciarabba, G. B. Cimini, and D. Giardini. Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res.: Sol. Earth, 104:20307--20327, 1999. [ bib ]
[3317] J. C. Luke. Mathematical models for landform evolution. J. Geophys. Res.: Sol. Earth, 77:2460--2464, 1972. [ bib ]
[3318] J.-E. Lund Snee and M. D. Zoback. Multiscale variations of the crustal stress field throughout North America. Nature Comm., 11(1951), 2020. [ bib ]
[3319] P. Lundren et al. Alaska crustal deformation: Finite element modeling constrained by geologic and very long baseline interferometry data. J. Geophys. Res.: Sol. Earth, 100:22033 -- 22045, November 1995. [ bib ]
[3320] Yingdi Luo and Jean-Paul Ampuero. Stability of faults with heterogeneous friction properties and effective normal stress. Tectonophys., 733:257--272, 2018. [ bib ]
[3321] H. Luo and K Wang. Postseismic geodetic signature of cold forearc mantle in subduction zones. Nature Geosc., 2021. [ bib | DOI ]
[3322] Yingdi Luo and Jean-Paul Ampuero. Stability of faults with heterogeneous friction properties and effective normal stress. Tectonophys., 733:257--272, 2018. [ bib ]
[3323] H. Luo and K. Wang. Finding simplicity in the complexity of postseismic coastal uplift and subsidence following great subduction earthquakes. J. Geophys. Res.: Sol. Earth, 2022. [ bib | DOI ]
[3324] Alexander D. J. Lusk, John P. Platt, and Jason A. Platt. Natural and experimental constraints on a flow law for dislocation-dominated creep in wet quartz. J. Geophys. Res.: Sol. Earth, 126(5):e2020JB021302, 2021. [ bib | DOI ]
[3325] K. Luttrell, B. Smith-Konter, and D. T. Sandwell. Investigating absolute stress in southern California: How well do stress models of compensated topography and fault loading match earthquake focal mechanisms? In Southern California Earthquake Center Annual Meeting 2012 Program, pages 121--122, 2012. Available online at www.scec.org/meetings/2012am/SCECProceedingsXXII_2012.pdf, accessed 10/2013. [ bib ]
[3326] Karen Luttrell and Bridget Smith-Konter. Limits on crustal differential stress in southern California from topography and earthquake focal mechanisms. Geophys. J. Int., 211:472--482, 2017. [ bib ]
[3327] Karen Luttrell and Jeanne Hardebeck. A unified model of crustal stress heterogeneity from borehole breakouts and earthquake focal mechanisms. J. Geophys. Res.: Sol. Earth, 126(2):e2020JB020817, 2021. [ bib | DOI ]
[3328] B. P. Luyendyk. A model for neogene crustal rotations, transtension, and transpression in southern California. Geol. Soc. Am. Bull., 103:1528--1536, 1991. [ bib ]
[3329] B. P. Luyendyk. Dip of downgoing lithospheric plates beneath island arcs. Geol. Soc. Am. Bull., 81:3411--3416, 1970. [ bib ]
[3330] V. Lyakhovsky, Y. Ben-Zion, and A. Agnon. Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J. Geophys. Res.: Sol. Earth, 106:4103--4120, 2001. [ bib ]
[3331] Vladimir Lyakhovsky, Yehuda Ben-Zion, and Amotz Agnon. A viscoelastic damage rheology and rate-and state-dependent friction. Geophys. J. Int., 161:179--190, 2005. [ bib ]
[3332] Vladimir Lyakhovsky, Eyal Shalev, Ittai Kurzon, Wenlu Zhu, Laurent Montesi, and Nikolai M Shapiro. Effective seismic wave velocities and attenuation in partially molten rocks. Earth Planet. Sci. Lett., 572:117117, 2021. [ bib ]
[3333] V. Y. Lyakhovsky, Ben-Zion, and A. Agnon. Distributed damage, faulting, and friction. J. Geophys. Res.: Sol. Earth, 102:27635--27649, 1997. [ bib ]
[3334] Hélène Lyon-Caen and Peter Molnar. Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J. Geophys. Res.: Sol. Earth, 88:8171--8191, 1983. [ bib ]
[3335] Tanya Lyubetskaya and Jun Korenaga. Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. J. Geophys. Res.: Sol. Earth, 112(B03211), 2007. [ bib | DOI ]
[3336] G. A. Lyzenga, A. Raefsky, and S. G. Mulligan. Models of recurrent strike-slip earthquake cycles and the state of crustal stress. J. Geophys. Res.: Sol. Earth, 96:21623--21640, 1991. [ bib ]
[3337] Z. T. Ma and G. Masters. Effect of earthquake locations on Rayleigh wave azimuthal anisotropy models. Geophys. J. Int., 203:1319--1333, 2015. [ bib ]
[3338] Shuo Ma and Shiying Nie. Dynamic wedge failure and along-arc variations of tsunamigenesis in the Japan trench margin. Geophys. Res. Lett., 46:8782--8790, 2019. [ bib ]
[3339] Z. Ma and C. A. Dalton. Evidence for dehydration-modulated small-scale convection in the oceanic upper mantle from seafloor bathymetry and Rayleigh wave phase velocity. Earth Planet. Sci. Lett., 510:12--25, 2019. [ bib ]
[3340] X. Q. Ma and N. J. Kuznir. Coseismic and postseismic subsurface displacements and strains for a vertical strike-slip fault in a three-layer elastic medium. Pure Appl. Geophys., 142:705ff., 1994. [ bib ]
[3341] K C Macdonald, P J Fox, S Miller, S Carbotte, M H Edwards, M Eisen, D J Fornari, L Perram, R Pockalny, D Scheirer, S Tighe, S Weiland, and D Wilson. The East Pacific Rise and its flanks 8--18oN: History of segmentation, propagation and spreading direction based on SeaMARC II and Sea Beam studies. Marine Geophys. Res., 14:299--344, 1992. [ bib ]
[3342] J. G. MacDougall, K. M. Fischer, and M. L. Anderson. Seismic anisotropy above and below the subducting Nazca lithosphere in southern South America. J. Geophys. Res.: Sol. Earth, 117(B12306), 2012. [ bib | DOI ]
[3343] J. G. MacDougall, C. Kincaid, S. Szwaja, and K. M. Fischer. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments. Geophys. J. Int., 197:705--730, 2014. [ bib ]
[3344] Philippe Machetel and Patrice Weber. Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature, 350:55--57, 1991. [ bib ]
[3345] P. Machetel, C. Thoraval, and D. Brunet. Spectral and geophysical consequences of 3-D spherical mantle convection with an endothermic phase change at the 670 km discontinuity. Phys. Earth Planet. Inter., 88:43--51, 1995. [ bib ]
[3346] L. S. MacKenzie, G. A. Abers, S. Rondenay, and K. M. Fischer. Imaging a steeply dipping subducting slab in Southern Central America. Earth Planet. Sci. Lett., 296:459--468, 2010. [ bib ]
[3347] Albert Madansky. The fitting of straight lines when both variables are subject to error. J. Amer. Stat. Assoc., 54:173--205, 1959. [ bib ]
[3348] R. Madariaga. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am., 66:636--666, 1976. [ bib ]
[3349] R. Madariaga, K. Olsen, and R. Archuleta. Modeling dynamic rupture in a 3D earthquake fault model. Bull. Seismol. Soc. Am., 88:1182--1197, 1998. [ bib ]
[3350] Elizabeth H Madden, Thomas Ulrich, Alice-Agnes Gabriel, Iris van Zelst, and Ylona van Dinther. The role of splay faults in seafloor deformation and tsunami generation during the Mw 9.1-9.3 Sumatra-Andaman earthquake. In 19th EGU General Assembly, page 16862, Vienna, Austria, 2017. [ bib ]
[3351] Elizabeth Madden, Michael Bader, Jörn Behrens, Ylona van Dinther, Alice-Agnes Gabriel, Leonhard Rannabauer, Thomas Ulrich, Carsten Uphoff, Stefan Vater, Stephanie Wollherr, and Iris van Zelst. Methods and test cases for linking physics-based earthquake and tsunami models. EarthArXiv, 2019. [ bib | DOI ]
[3352] E H Madden, M Bader, J Behrens, Y van Dinther, A-A Gabriel, L Rannabauer, T Ulrich, C Uphoff, S Vater, and I van Zelst. Linked 3D modeling of megathrust earthquake-tsunami events: from subduction to tsunami run up. Geophys. J. Int., 224:487--516, 2020. [ bib ]
[3353] P. Maechlin. SCEC/CME CyberShake Project. University of Southern California, Los Angeles CA. Online at epicenter.usc.edu/cmeportal/CyberShake.html, accessed 06/2006, 2006. [ bib ]
[3354] A. Maggi, E. Debayle, K. Priestley, and G. Barruol. Azimuthal anisotropy of the Pacific region. Earth Planet. Sci. Lett., 250:53--71, 2006. [ bib ]
[3355] A. Maggi, E. Debayle, K. Priestley, and G. Barruol. Multimode surface waveform tomography of the pacific ocean: a closer look at the lithospheric cooling signature. Geophys. J. Int., 166:1384--1397, 2006. [ bib ]
[3356] H. Magistrale, S. Day, R. Clayton, and R. Graves. The SCEC southern California reference three-dimensional seismic velocity model version 2. Bull. Seismol. Soc. Am., 90:65--76, 2000. [ bib ]
[3357] H. Magistrale and T. K. Rockwell. The central and southern Elsinore fault zone, southern California. Bull. Seismol. Soc. Am., 86:1793--1803, 1996. [ bib ]
[3358] M. B. Magnani, C. A. Zelt, A. Levander, and M. Schmitz. Crustal structure of the South American–Caribbean plate boundary at 67oW from controlled source seismic data. J. Geophys. Res.: Sol. Earth, 114(B02312), 2009. [ bib | DOI ]
[3359] V V Magni, J van Hunen, F Funiciello, and C Faccenna. Numerical models of slab migration in continental collision zones. Solid Earth, 3:293--306, 2012. [ bib ]
[3360] Valentina Magni, Claudio Faccenna, Jeroen van Hunen, and Francesca Funiciello. How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models. Geology, 42:511--514, 2014. [ bib ]
[3361] I. G. Main, P. G. Meredith, and C. A. Jones. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophys. J. Int., 96:131--138, 1989. [ bib ]
[3362] I. G. Main, P. G. Meredith, P. R. Sammonds, and C. Jones. Influence of fractal flaw distributions on rock deformation in the brittle field. Geol. Soc. London, Spec. Pub., 54:81--96, 1990. [ bib ]
[3363] I. G. Main, P. G. Meredith, and P. R. Sammonds. Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophys., 211:233--246, 1992. [ bib ]
[3364] I. G. Main. Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys., 34:433--462, 1996. [ bib ]
[3365] D. Mainprice, G. Barruol, and W. Ben Ismail. The seimic anisotropy of the Earth's mantle: From single crystal to polycrystal. In S.-i. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, editors, Earth's deep interior. Mineral physics and tomography from the atomic to the global scale, volume 117 of Geoophys. Mono., pages 237--264. American Geophysical Union, Washington DC, 2000. [ bib ]
[3366] D. Mainprice, A. Tommasi, H. Couvy, P. Cordier, and N. J J. Frost. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature, 433:731--733, 2005. [ bib ]
[3367] D. Mainprice. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, volume 2, pages 437--492. Elsevier, 2007. [ bib ]
[3368] D. Mainprice and A. Nicholas. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. J. Struct. Geol., 11:175--189, 1989. [ bib ]
[3369] D. Mainprice and P. G. Silver. Interpretation of SKS-waves using samples from the subcontinental mantle. Phys. Earth Planet. Inter., 78:257--280, 1993. [ bib ]
[3370] D. Mainprice. Modelling the anisotropic seismic properties of partially molten rocks found at Mide-ocean Ridges. Adolphe Nicolas Special Volume, Tectonophys., accepted, 1996. [ bib ]
[3371] D. Mainprice. Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophys., 279:161--179, 1997. [ bib ]
[3372] K. Mair, K. M. Frye, and C. Marone. Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res.: Sol. Earth, 107(2219), 2002. [ bib | DOI ]
[3373] K. Mair, C. Marone, and R. P. Young. Rate dependence of acoustic emissions generated during shear of simulated fault gouge. Bull. Seismol. Soc. Am., 97:1841--1849, 2007. [ bib ]
[3374] Andrei V Malevsky and David A Yuen. Strongly chaotic non-Newtonian mantle convection. Geophys. & Astrophys. Fluid Dyn., 65:149--171, 1992. [ bib ]
[3375] P. E. Malin, S. N. Blakeslee, M. G. Alvarez, and A. J. Martin. Microearthquake imaging of the Parkfield asperity. Science, 244:557--559, 1989. [ bib ]
[3376] A. Malinverno and W. Ryan. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5:227--245, 1986. [ bib ]
[3377] C. Mallard, N. Coltice, M. Seton, R. D. Müller, and P. J. Tackley. Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 535:140--143, 2016. [ bib ]
[3378] Rishav Mallick, Valere Lambert, and Brendan Meade. On the choice and implications of rheologies that maintain kinematic and dynamic consistency over the entire earthquake cycle. J. Geophys. Res.: Sol. Earth, 127(9):e2022JB024683, 2022. [ bib ]
[3379] Marco G Malusà, Claudio Faccenna, Eduardo Garzanti, and Riccardo Polino. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet. Sci. Lett., 310:21--32, 2011. [ bib ]
[3380] Marco Giovani Malusà, Stéphane Guillot, Liang Zhao, Anne Paul, Stefano Solarino, Thierry Dumont, Stephane Schwartz, Coralie Aubert, Paola Baccheschi, Elena Eva, et al. The deep structure of the Alps based on the CIFALPS seismic experiment: A synthesis. Geochem., Geophys., Geosys., 22(3):e2020GC009466, 2021. [ bib ]
[3381] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, 1977. [ bib ]
[3382] A. Mambole and L. Fleitout. Petrological layering induced by an endothermic phase transition in the Earth's mantle. Geophys. Res. Lett., 29(22), 2002. [ bib | DOI ]
[3383] B.A. Mamyrin, I.N. Tolstikhin, G.S. Anufriev, and I.L. Kamanskiy. Anomalous isotopic composition of helium in volcanic gases. Dokl. Akad. Nauk S.S.S.R., 184:1197--1199, 1969. [ bib ]
[3384] Nicholas Mancinelli, Peter Shearer, and Qinya Liu. Constraints on the heterogeneity spectrum of earth's upper mantle. J. Geophys. Res.: Sol. Earth, 121:3703--3721, 2016. [ bib ]
[3385] N. J. Mancinelli, K. M. Fischer, and C. A. Dalton. A global search for the cratonic lithosphere-asthenosphere boundary. Nature Geosc., submitted, 2017. [ bib ]
[3386] K. Manduca, D. Mogk, and N. Stillings. Bringing Research On Learning to the Geosciences. Carleton College, Northfiled MN, 2004. Available online at serc.carleton.edu/files/research_on_learning/ROL0304_2004.pdf, accessed 06/2006. [ bib ]
[3387] V. Manea and M. Gurnis. Subduction zone evolution and low viscosity wedges and channels. Earth Planet. Sci. Lett., 264:22--45, 2007. [ bib ]
[3388] V. C. Manea and M. Manea. Flat-slab thermal structure and evolution beneath Central Mexico. Pure Appl. Geophys., 168:1475--1487, 2010. [ bib ]
[3389] V. C. Manea, M. Pérez-Gussinyé, and M. Manea. Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 40:35--38, 2012. [ bib ]
[3390] V. C. Manea, W. P. Leeman, T. Gerya, M. Manea, and G. Zhu. Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nature Comm., 5(5095), 2014. [ bib | DOI ]
[3391] Michael Manga, Howard A Stone, and Richard J O'Connell. The interaction of plume heads with compositional discontinuities in the Earth's mantle. J. Geophys. Res.: Sol. Earth, 98:19979--19990, 1993. [ bib ]
[3392] M. Manga and R. J. O'Connell. The tectosphere and postglacial rebound. Geophys. Res. Lett., 22:1949--1952, 1995. [ bib ]
[3393] M. Manga. Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophys. Res. Lett., 23:403--406, 1996. [ bib ]
[3394] M. Manga. Interactions between mantle diapirs. Geophys. Res. Lett., 24:1871--1874, 1997. [ bib ]
[3395] Michael Manga and Dayanthie Weeraratne. Experimental study of non-Boussinesq Rayleigh--Bénard convection at high Rayleigh and Prandtl numbers. Phys. Fluids, 11:2969--2976, 1999. [ bib ]
[3396] A. Mangeney, F. Califano, and O. Castelnau. Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. J. Geophys. Res.: Sol. Earth, 101:28189--28204, 1996. [ bib ]
[3397] I Manighetti, Antoine Mercier, and Louis De Barros. Fault trace corrugation and segmentation as a measure of fault structural maturity. Geophys. Res. Lett., 48:e2021GL095372, 2021. [ bib ]
[3398] Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. Stratigraphic signatures of forearc basin formation mechanisms. Geochem., Geophys., Geosys., 18:2388--2410, 2017. [ bib ]
[3399] Geeth M Manthilake, Nico de Koker, Dan J Frost, and Catherine A McCammon. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core. Proc. Natl. Acad. Sci. USA, 108:17901--17904, 2011. [ bib ]
[3400] Adriana Maria Mantilla-Pimiento, Gerhard Jentzsch, Jonas Kley, and Carlos Alfonso-Pava. Configuration of the Colombian Caribbean Margin: Constraints from 2D seismic reflection data and potential fields interpretation. In F. Funiciello and S. Lallemand, editors, Subduction Zone Geodynamics, Int. J. Earth Sci., pages 247--272. Springer, 2009. [ bib ]
[3401] Fabio Mantovani, Luigi Carmignani, Gianni Fiorentini, and Marcello Lissia. Antineutrinos from Earth: A reference model and its uncertainties. Phys. Rev. D, 69:013001, 2004. [ bib ]
[3402] X. Mao, M. Gurnis, and D. A. May. Subduction initiation with vertical lithospheric heterogeneities and new fault formation. Geophys. Res. Lett., 44:11349--11356, 2017. [ bib | DOI ]
[3403] Wei Mao and Shijie Zhong. Controls on global mantle convective structures and their comparison with seismic models. J. Geophys. Res.: Sol. Earth, 124:9345--9372, 2019. [ bib ]
[3404] W. Mao and S. Zhong. Constraints on mantle viscosity from intermediate- wavelength geoid anomalies in mantle convection models with plate motion history. J. Geophys. Res.: Sol. Earth, 126:e2020JB021561, 2021. [ bib | DOI ]
[3405] Shmuel Marco, Mordechai Stein, Amotz Agnon, and Hagai Ron. Long-term earthquake clustering: A 50,000-year paleoseismic record in the Dead Sea Graben. J. Geophys. Res.: Sol. Earth, 101:6179--6191, 1996. [ bib ]
[3406] Michael Marder. Cracks break the sound barrier. Science, 381:375--376, 2023. [ bib ]
[3407] M. Marder. Energetic developments in fracture. Nature, 381, 1996. [ bib ]
[3408] K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley & Sons, Chichester, West Sussex, 2 edition, 1999. [ bib ]
[3409] M. Marín-Cerón. Major, trace element and multi-isotopic systematics of SW Colombian volcanic arc, northern Andes, implication for the stability of carbonate-rich sediment at subduction zone and the genesis of andesite magma. PhD thesis, Okayama University, 2007. [ bib ]
[3410] Milena Marjanović, Suzanne M Carbotte, Helene Carton, Mladen R Nedimović, John C Mutter, and Juan Pablo Canales. A multi-sill magma plumbing system beneath the axis of the East Pacific Rise. Nature Geosc., 7:825--829, 2014. [ bib ]
[3411] F. Marone and B. A. Romanowicz. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447:198--201, 2007. [ bib ]
[3412] F. Marone, Y. Gung, and B. A. Romanowicz. Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophys. J. Int., 171:206--222, 2007. [ bib ]
[3413] C. Marone, B. M. Carpenter, and D. Schiffer. Transition from rolling to jamming in thin granular layers. Phys. Rev. Lett., 101(248001), 2008. [ bib | DOI ]
[3414] C. Marone and D. M. Saffer. The mechanics of frictional healing and slip instability during the seismic cycle. In Treatise on Geophysics, pages 111--138. Elsevier, 2 edition, 2015. [ bib ]
[3415] C. Marone, J. E. Vidale, and W. Ellsworth. Fault healing inferred from the time dependent variations in source properties of repeating earthquakes. Geophys. Res. Lett., 22:3095--3098, 1995. [ bib ]
[3416] C. Marone. Laboratory-derived friction laws and their application to seismic faulting. Ann. Rev. Earth Planet. Sci., 26:643--696, 1998. [ bib ]
[3417] C. Marone. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature, 391:69--72, 1998. [ bib ]
[3418] A. M. Marotta and R. Sabadini. The style of Tyrrhenian subduction. Geophys. Res. Lett., 22:747--750, 1995. [ bib ]
[3419] A. M. Marotta and F. Mongelli. Flexure of subducted slabs. Geophys. J. Int., 132:701--711, 1998. [ bib ]
[3420] G. Marquart and H. Schmeling. Interaction of small mantle plumes with the spinel-perovskite phase boundary: implications for chemical mixing. Earth Planet. Sci. Lett., 177:241--254, 2000. [ bib ]
[3421] G. Marquart, H. Schmeling, G. Ito, and B. Schott. Conditions for plumes to penetrate the mantle phase boundaries. J. Geophys. Res.: Sol. Earth, 105:5679--5693, 2000. [ bib ]
[3422] G. Marquart. On the geometry of mantle flow beneath drifting lithospheric plates. Geophys. J. Int., 144:356--372, 2001. [ bib ]
[3423] G. Marquart, H. Schmeling, and O. Čadek. Dynamic models for mantle flow and seismic anisotropy in the North Atlantic region and comparison with observations. Geochem., Geophys., Geosys., 8, 2007. [ bib | DOI ]
[3424] G. Marquart, H. Schmeling, and A. Braun. Small-scale instabilities below the cooling oceanic lithosphere. Geophys. J. Int., 138:655--666, 1999. [ bib ]
[3425] G. Marquart. FINEL: Modifizierter Finite Elemente Code von [?]. Institut für Meteorologie und Geophysik der Universität Frankfurt am Main, 1995. [ bib ]
[3426] M. Marroni, S. Monechi, N. Perilli, G. Principi, and B. Treves. Late Cretaceous flysch deposits of the Northern Apennines Italy: age of inception of orogenesis-controlled sedimentation. Cretaceous Res., 13:487--504, 1992. [ bib ]
[3427] D. Marsan. The role of small earthquakes in redistributing crustal elastic stress. Geophys. J. Int., 163:141--151, 2005. [ bib ]
[3428] S. T. Marshall, M. L. Cooke, and S. E. Owen. Interseismic deformation associated with three-dimensional faults in the Greater Los Angeles region, California. J. Geophys. Res.: Sol. Earth, 114(B12403), 2009. [ bib | DOI ]
[3429] Jeffrey S Marshall and Robert S Anderson. Quaternary uplift and seismic cycle deformation, Peninsula de Nicoya, Costa Rica. GSA Bull., 107:463--473, 1995. [ bib ]
[3430] R. Martin-Short, R. M. Allen, I. D. Bastow, E. Totten, and M. A. Richards. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system. Nature Geosc., 8:965--968, 2015. [ bib ]
[3431] William Martin, John Baross, Deborah Kelley, and Michael J Russell. Hydrothermal vents and the origin of life. Nature Rev. Microbio., 6:805--814, 2008. [ bib ]
[3432] Craig R. Martin, Oliver Jagoutz, Rajeev Upadhyay, Jill A. van Tongeren, Paul A. Mueller, and Benjamin P. Weiss. Paleomagnetic constraint on the age of the Shyok Suture Zone. J. Geophys. Res.: Sol. Earth, 128(10):e2022JB026137, 2023. [ bib ]
[3433] Z. Martinec, O. Čadek, and L. Fleitout. Can the 1D viscosity profiles inferred from postglacial rebound data be affected by lateral viscosity variations in the tectosphere? Geophys. Res. Lett., 28:4403--4406, 2001. [ bib ]
[3434] Z. Martinec, C. Matyska, O. Čadek, and P. Hrdina. The Stokes problem with 3-D Newtonian rheology in a sphericall shell. Comp. Phys. Comm., 76:63--79, 1993. [ bib ]
[3435] Joseph Martinod, Denis Hatzfeld, Jean-Pierre Brun, Philippe Davy, and Pierre Gautier. Continental collision, gravity spreading, and kinematics of aegea and anatolia. Tectonics, 19:290--299, 2000. [ bib ]
[3436] J. Martinod, L. Husson, P. Roperch, B. Guillaume, and N. Espurt. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet. Sci. Lett., 299:299--309, 2010. [ bib ]
[3437] J. Martinod and P. Davy. Periodic instabilities during compression or extension of the lithosphere. 1. Deformation modes from an analytical perturbation method. J. Geophys. Res.: Sol. Earth, 97:1999--2014, 1992. [ bib ]
[3438] J. Martinod and P. Davy. Periodic instabilities during compression or extension of the lithosphere. 2. Analogue experiments. J. Geophys. Res.: Sol. Earth, 99:12057--12069, 1994. [ bib ]
[3439] Frederic C Marton, Craig R Bina, Seth Stein, and David C Rubie. Effects of slab mineralogy on subduction rates. Geophys. Res. Lett., 26:119--122, 1999. [ bib ]
[3440] J. C. Marty and A. Cazenave. Regional variations in subsidence rate of oceanic plates: a global analysis. Earth Planet. Sci. Lett., 94:301--315, 1989. [ bib ]
[3441] G. Maruyama and T. Hiraga. Grain- to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate: 2. Grain boundary sliding-induced grain rotation and its role in crystallographic preferred orientation in rocks. J. Geophys. Res.: Sol. Earth, 122:5916--5934, 2017. [ bib | DOI ]
[3442] T. Maruyama. On the force equivalents of dynamic elastic dislocations with reference to the earthquake mechanism. Bull. Earthquake Res. Inst. Univ. Tokyo, 41:467--486, 1963. [ bib ]
[3443] G Marx. Geophysics by neutrinos. Czechoslovak J. Physics B, 19:1471--1479, 1969. [ bib ]
[3444] W. Marzocchi and L. Sandri. A review and new insights on the estimation of the b-value and its uncertainty. Ann. Geophys., 46:1271--1282, 2009. [ bib ]
[3445] W. Marzocchi, L. Sandri, A. Heuret, and F. Funiciello. Where giant earthquakes may come. J. Geophys. Res.: Sol. Earth, 121:7322--7336, 2016. [ bib | DOI ]
[3446] Cody C. Mason, James A. Spotila, Gary Axen, Rebecca J. Dorsey, Amy Luther, and Daniel F. Stockli. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System. Tectonophys., 36:2863--2881, 2017. [ bib | DOI ]
[3447] Anna Massmeyer, Erika Di Giuseppe, Anne Davaille, Tobias Rolf, and Paul J Tackley. Numerical simulation of thermal plumes in a herschel--bulkley fluid. J. Non-Newtonian Fluid Mech., 195:32--45, 2013. [ bib ]
[3448] DG Masson, JA Cartwright, LM Pinheiro, RB Whitmarsh, M-O Beslier, and H Roeser. Compressional deformation at the ocean--continent transition in the NE Atlantic. J. Geol. Soc., 151:607--613, 1994. [ bib ]
[3449] D. Massonnet, M. Rossi, C. Carmona, and F. Adragna. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364:138--142, 1993. [ bib ]
[3450] G. Masters, G. Laske, H. Bolton, and A. M. Dziewoński. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In S.-i. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, editors, Earth's deep interior. Mineral physics and tomography from the atomic to the global scale, volume 117 of Geoophys. Mono., pages 63--87. American Geophysical Union, Washington DC, 2000. [ bib ]
[3451] G. Masters, T. H. Jordan, P. G. Silver, and F. Gilbert. Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 298:609--613, 1982. [ bib ]
[3452] G. Masters, S. Johnson, G. Laske, and H. Bolton. A shear-velocity model of the mantle. Phil. Trans. R. Soc. London A, 354:1385--1411, 1996. [ bib ]
[3453] G. Masters, H. Bolton, and G. Laske. Joint seismic tomography for P and S velocities: How pervasive are chemical anomalies in the mantle? (abstract). Eos Trans. AGU, 80:S14, 1999. [ bib ]
[3454] J. Masy, F. Niu, A. Levander, and M. Schmitz. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth Planet. Sci. Lett., 305:396--404, 2011. [ bib ]
[3455] B. Matérn. Spatial variation, volume 36 of Lecture notes in Statistics. Springer Verlag, New York, 1986. [ bib ]
[3456] Kathryn Materna, Noel Bartlow, Aaron Wech, Charles Williams, and Roland Bürgmann. Dynamically triggered changes of plate interface coupling in Southern Cascadia. Geophys. Res. Lett., 46:12890--12899, 2019. [ bib ]
[3457] Mathworks. MATLAB product documentation. The Mathworks Inc. Online at www.mathworks.com/access/helpdesk/help/techdoc/matlab.html, accessed 06/2006, 2006. [ bib ]
[3458] Matplotlib. Matplotlib homepage, 2023. Available online at https://matplotlib.org/, accessed 05/2023. [ bib ]
[3459] M. Matsubara, K. Obada, and K. Kasahara. Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography. Tectonophys., 454:86--103, 2008. [ bib ]
[3460] Satoshi Matsumoto. Method for estimating the stress field from seismic moment tensor data based on the flow rule in plasticity theory. Geophys. Res. Lett., 43:8928--8935, 2016. [ bib ]
[3461] M. Matsu'ura and T. Sato. Loading mechanism and scaling relations of large interplate earthquakes. Tectonophys., 277:189--198, 1997. [ bib ]
[3462] Mitsuhiro Matsu'ura, Toshiro Tanimoto, and Takaya Iwasaki. Quasi-static displacements due to faulting in a layered half-space with an intervenient viscoelastic layer. J. Phys. Earth, 29:23--54, 1981. [ bib ]
[3463] M. Matsu'ura and T. Sato. A dislocation model for the earthquake cycle at convergent plate boundaries. Geophys. J. Int., 96:23--32, 1988. [ bib ]
[3464] T. Matsuzawa, H. Hirose, B. Shibazaki, and K. Obara. Modeling short-and long-term slow slip events in the seismic cycles of large subduction earthquakes. J. Geophys. Res.: Sol. Earth, 115(B12), 2010. [ bib ]
[3465] E. Mattern, J. Matas, Y. Ricard, and J. Bass. Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys. J. Int., 160:973--990, 2005. [ bib ]
[3466] K. J. Matthews, A. J. Hale, M. Gurnis, R. D. Müller, and L. DiCaprio. Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Res., 19:372--383, 2011. [ bib ]
[3467] K. Matthews, K.T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, and R.D. Müller. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change, 146:226--250, 2016. [ bib ]
[3468] Motonori Matuyama. On the direction of magnetisation of basalt in Japan, Tyôsen and Manchuria. Proc. Imperial Acad., 5:203--205, 1929. [ bib ]
[3469] A. Mauffret, G. Pascal, A. Maillard, and C. Gorini. Tectonics and deep structure of the north-western Mediterranean basin. Mar. Preto. Geol., 12:645--666, 1995. [ bib ]
[3470] A. Mauffret and I. Contrucci. Crustal structure of the North Tyrrhenian Sea: First result of the multichannel seismic LISA cruise. In B. Durand, A. Mascle, L. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 169--193. Geological Society of London, London, 1999. [ bib ]
[3471] Jeremy Maurer, Kaj Johnson, and Paul Segall. Bounding the moment deficit rate on crustal faults using geodetic data: application to southern California. J. Geophys. Res.: Sol. Earth, 123:11048--11061, 2018. [ bib ]
[3472] G. M. Mavko. Velocity and attenuation in partially molten rocks. J. Geophys. Res.: Sol. Earth, 85:5173--5189, 1980. [ bib ]
[3473] A. P. Mavrommatis, P. Segall, and K. M. Johnson. A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophys. Res. Lett., 41:4486--4494, 2014. [ bib ]
[3474] A. P. Mavrommatis, P. Segall, N. Uchida, and K. M. Johnson. Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: Constraints from repeating earthquakes. Geophys. Res. Lett., 42:9717--9725, 2015. [ bib ]
[3475] A. P. Mavrommatis, P. Segall, and K. M. Johnson. A physical model for interseismic erosion of locked fault asperities. J. Geophys. Res.: Sol. Earth, 122:8326--8346, 2017. [ bib ]
[3476] D. A. May and L. N. Moresi. Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. Inter., 171:33--47, 2008. [ bib ]
[3477] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:459, 1976. [ bib ]
[3478] M. Maya. Catalogo de dataciones isotópicas en Colombia. Boletín Geológico Ingeominas, 32:127--188, 1992. [ bib ]
[3479] K. Mayeda, L. Malagnini, W. S. Phillips, W. R. Walter, and D. Dreger. 2-D or not 2-D, that is the question: A northern California test. Geophys. Res. Lett., 32(L12301), 2005. [ bib | DOI ]
[3480] T. Mayer-Guerr. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. PhD thesis, Universität Bonn, Bonn, Germany, 2006. [ bib ]
[3481] Stéphane Mazzotti and John Adams. Variability of near-term probability for the next great earthquake on the Cascadia subduction zone. Bull. Seismol. Soc. Am., 94:1954--1959, 2004. [ bib ]
[3482] S. Mazzotti, A. Lambert, J. Henton, T. S. James, and N. Courtier. Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophys. Res. Lett., 38(L24311), 2011. [ bib | DOI ]
[3483] D. C. McAdoo, C. F. Martin, and P. Polouse. Seasat observations of flexure: Evidence for a strong lithosphere. Tectonophys., 116:209--222, 1985. [ bib ]
[3484] David C McAdoo and David T Sandwell. Folding of oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 90:8563--8569, 1985. [ bib ]
[3485] Robert McCaffrey, Maureen D Long, Chris Goldfinger, Peter C Zwick, John L Nabelek, Cheryl K Johnson, and Curt Smith. Rotation and plate locking at the southern Cascadia subduction zone. Geophys. Res. Lett., 27:3117--3120, 2000. [ bib ]
[3486] R. McCaffrey. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. J. Geophys. Res.: Sol. Earth, 110(B07401), 2005. [ bib | DOI ]
[3487] Robert McCaffrey. The tectonic framework of the Sumatran subduction zone. Ann. Rev. Earth Planet. Sci., 37:345--366, 2009. [ bib ]
[3488] Christine McCarthy, Yasuko Takei, and Takehiko Hiraga. Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. J. Geophys. Res.: Sol. Earth, 116(B09207), 2011. [ bib | DOI ]
[3489] S. McClusky, S. Bassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Preilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M. N. Toksoz, and G. Veis. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res.: Sol. Earth, 105:5695--5719, 2000. [ bib ]
[3490] S. C. McClusky, S. C. Bjornstad, B. H. Hager, R. W. King, B. J. Meade, M. M. Miller, F. C. Monastero, and B. J. Souter. Present day kinematics of the Eastern California shear zone from a geodetically constrained block model. Geophys. Res. Lett., 28:3369--3372, 2001. [ bib ]
[3491] S. McClusky, R. Reilinger, S. Mahmoud, D. Ben Sari, and A. Tealeb. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int., 155:126--138, 2003. [ bib ]
[3492] Robert K McConnell Jr. Viscosity of the mantle from relaxation time spectra of isostatic adjustment. J. Geophys. Res.: Sol. Earth, 73:7089--7105, 1968. [ bib ]
[3493] K. A. McCormack and M. A. Hesse. Hydrologic Response to Megathrust Earthquake: A look at the 2012 Mw 7.6 Costa Rican Event (abstract). In Subduction Zone Dynamics, CIDER Summer Program, Berkeley CA, 2017. [ bib ]
[3494] W. F. McDonough and S.-s. Sun. The composition of the earth. Chem. Geol., 120:223--253, 1995. [ bib ]
[3495] T. V. McEvilly. Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion. Bull. Seismol. Soc. Am., 54:1997--2015, 1964. [ bib ]
[3496] A. McGarr. On relating apparent stress to the stress causing earthquake fault slip. J. Geophys. Res.: Sol. Earth, 104:3003--3011, 1999. [ bib ]
[3497] R Shane McGary, Rob L. Evans, Philip E. Wannamaker, Jimmy Elsenbeck, and Stéphane Rondenay. Pathway fromsubducting slab to surface formelt and fluids beneath Mount Rainier. Nature, 511:338--340, 2014. [ bib ]
[3498] S. McGill, S. Dergham, K. Barton, T. Berney-Ficklin, D. Grant, C. Hartling, K. Hobart, R. Minnich, M. Rodriguez, and E. Runnerstrom. Paleoseismology of the San Andreas fault at Plunge Creek, near San Bernardino, Southern California. Bull. Seismol. Soc. Am., 92:2803--2840, 2002. [ bib ]
[3499] J. T. McGill. Geologic maps of the Pacific Palisades area, Los Angeles, California. In Map I-1828, Miscellaneous Investigations Series, volume 1:4, page 800. U.S. Geological Survey, 1989. [ bib ]
[3500] S. F. McGill. Surficial offsets on the eastern Garlock fault associated with prehistoric earthquakes. J. Geophys. Res.: Sol. Earth, 96:21597--21621, 1991. [ bib ]
[3501] S. F. McGill and K. E. Sieh. Holocene Slip Rate of the Central Garlock Fault in Southeastern Searles Valley. J. Geophys. Res.: Sol. Earth, 98:14217--14231, 1993. [ bib ]
[3502] S. F. McGill. Preliminary slip rate and recurrence interval for the western Garlock Fault near Lone Tree Canyon, California (abstract). In The Geological Society of America, Cordilleran Section, 90th annual meeting. Abstracts with Programs, volume 26, page 72, 1994. [ bib ]
[3503] S. F. McGill and T. K. Rockwell. Ages of late holocene earthquakes on the central garlock fault near el paso peaks, california. J. Geophys. Res.: Sol. Earth, 103:7265--7279, 1998. [ bib ]
[3504] N. McGlashan, L. D. Brown, and S. M. Kay. Crustal thicknesses in the Central Andes from teleseismically recorded depth phase precursors. Geophys. J. Int., 175:1013--1022, 2008. [ bib ]
[3505] Patrick J McGovern and Gerald Schubert. Thermal evolution of the earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett., 96:27--37, 1989. [ bib ]
[3506] J. J. McGuire, T. Plank, S. Barrientos, T. W. Becker, E. Brodsky, E. Cottrell, M. French, P. Fulton, J. Gomberg, S. Gulick, M. Haney, D. Melgar, S. Penniston-Dorland, D. Roman, P. Skemer, H. Tobin, I. Wada, and D. Wiens. The SZ4D Initiative: Understanding the processes that underlie subduction zone hazards in 4D. Vision document submitted to the National Science Foundation. The IRIS Consortium, 2017. 63 pp., available online at www.iris.edu/hq/files/workshops/2016/09/szo_16/sz4d.pdf, accessed 01/2021. [ bib ]
[3507] Jeffrey J. McGuire, John A. Collins, Earl Davis, Keir Becker, and Martin Heesemann. A lack of dynamic triggering of slow slip and tremor indicates that the shallow Cascadia megathrust offshore Vancouver Island is likely locked. Geophys. Res. Lett., 45:11,095--11,103, 2018. [ bib ]
[3508] D. P. McKenzie, J. Jackson, and K. Priestley. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett., 233:337--349, 2005. [ bib ]
[3509] D. McKenzie, M. C. Daly, and K. Priestley. The lithospheric structure of Pangea. Geology, 43:783--786, 2015. [ bib ]
[3510] Dan P McKenzie. The viscosity of the lower mantle. J. Geophys. Res.: Sol. Earth, 71:3995--4010, 1966. [ bib ]
[3511] D. P. McKenzie and R. L. Parker. The North Pacific; an example of tectonics on a sphere. Nature, 216:1276--1280, 1967. [ bib ]
[3512] D. P. McKenzie. The viscosity of the mantle. Geophys. J. R. Astr. Soc., 14:297--327, 1967. [ bib ]
[3513] D. P. McKenzie. Some remarks on heat flow and gravity anomalies. J. Geophys. Res.: Sol. Earth, 72:6261--6273, 1967. [ bib ]
[3514] D. P. McKenzie. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astr. Soc., 18:1--32, 1969. [ bib ]
[3515] D. P. McKenzie. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull. Seismol. Soc. Am., 59:591--601, 1969. [ bib ]
[3516] D. P. McKenzie and J. P. Morgan. Evolution of triple junctions. Nature, pages 125--133, 1969. [ bib ]
[3517] D. P. McKenzie. Temperature and potential temperature beneath island arcs. Tectonophys., 10:357--366, 1970. [ bib ]
[3518] D. P. McKenzie and J. Brune. Melting on fault planes during large earthquakes. Geophys. J. R. Astr. Soc., 29:65--78, 1972. [ bib ]
[3519] Dan P. McKenzie. Active tectonics of the Mediterranean region. Geophys. J. Int., 30:109--185, 1972. [ bib ]
[3520] Dan P. McKenzie and Nigel Weiss. Speculations on the thermal and tectonic history of the Earth. Geophys. J. R. Astr. Soc., 42:131--174, 1975. [ bib ]
[3521] Dan P. McKenzie and Carl Bowin. The relationship between bathymetry and gravity in the atlantic ocean. J. Geophys. Res.: Sol. Earth, 81:1903--1915, 1976. [ bib ]
[3522] D. P. McKenzie. The initiation of trenches: a finite amplitude instability. In M. Talwani and W. C. Pitman III, editors, Island Arcs, Deep Sea Trenches and Back-Arc basins, volume 1 of Maurice Ewing, pages 57--61. AGU, Washington DC, 1977. [ bib ]
[3523] Dan P. McKenzie. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40:25--32, 1978. [ bib ]
[3524] D. P. McKenzie. Finite deformation during fluid flow. Geophys. J. R. Astr. Soc., 58:689--715, 1979. [ bib ]
[3525] D. P. McKenzie and J. Jackson. The relationship between strain rates, crustal thickening, paleomagnetism, finite strain and fault movements within a deforming zone. Earth Planet. Sci. Lett., 65:182--202, 1983. [ bib ]
[3526] D. P. McKenzie. The generation and compaction of partially molten rock. J. Petrol., 25:713--765, 1984. [ bib ]
[3527] D. P. McKenzie and M. J. Bickle. The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29:625--679, 1988. [ bib ]
[3528] Gregory C McLaskey, Brian D Kilgore, David A Lockner, and Nicholas M Beeler. Laboratory generated M-6 earthquakes. Pure Appl. Geophys., 171:2601--2615, 2014. [ bib ]
[3529] G. C. McLaskey. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res.: Sol. Earth, 124:12882--12904, 2019. [ bib ]
[3530] G. C. McLeaskey and S. D. Glaser. Micromechanics of asperity rupture during laboratory stick slip experiments. Geophys. Res. Lett., 38, 2011. [ bib | DOI ]
[3531] A. K. McNamara and P. E. van Keken. Cooling of the Earth: A parameterized convection study of whole versus layered models. Geochem., Geophys., Geosys., 1, 2000. [ bib | DOI ]
[3532] A. McNamara, S.-i. Karato, and P. E. van Keken. Localization of dislocation creep in the lower mantle: implications for the origin of seismic anisotropy. Earth Planet. Sci. Lett., 191:85--99, 2001. [ bib ]
[3533] A. K. McNamara, P. E. van Keken, and S.-i. Karato. Development of anisotropic structure in the Earth's lower mantle by solid-state convection. Nature, 416:310--314, 2002. [ bib ]
[3534] A. K. McNamara, P. E. van Keken, and S.-i. Karato. Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J. Geophys. Res.: Sol. Earth, 108(2230), 2003. [ bib | DOI ]
[3535] A. K. McNamara and S. Zhong. Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[3536] A. K. McNamara and S. Zhong. The influence of thermochemical convection on the fixity of mantle plumes. Earth Planet. Sci. Lett., 222:485--500, 2004. [ bib ]
[3537] A. K. McNamara and S. Zhong. Thermochemical piles under africa and the pacific. Nature, 437:1136--1139, 2005. [ bib ]
[3538] Allen K McNamara. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophys., 760:199--220, 2019. [ bib ]
[3539] D. E. McNamara and T. J. Owens. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases. J. Geophys. Res.: Sol. Earth, 98:12003--12017, 1993. [ bib ]
[3540] D. E. McNamara, T. J. Owens, P. G. Silver, and F. T. Wu. Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res.: Sol. Earth, 99:13655--13665, 1994. [ bib ]
[3541] M. McNutt and T. H. Heaton. An evaluation of the seismic-window theory for earthquake prediction. California Geology, 34:12--16, 1981. [ bib ]
[3542] M. McNutt. Superswells. Rev. Geophys., 36:211--244, 1998. [ bib ]
[3543] M. McNutt. The mantle's lava lamp. Nature, 402:739--740, 1999. [ bib ]
[3544] N. McQuarrie, J. M. Stock, C. Verdel, and B. P. Wernicke. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett., 30(2036), 2003. [ bib | DOI ]
[3545] Nadine McQuarrie and Brian P Wernicke. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere, 1:147--172, 2005. [ bib ]
[3546] N. McQuarrie and M. Oskin. Palinspastic restoration of NAVDat and implications for the origin of magmatism in southwestern North America. J. Geophys. Res.: Sol. Earth, 115(B10401), 2010. [ bib | DOI ]
[3547] N. McQuarrie and D. W. Rodgers. Subsidence of a volcanic basin by flexure and lower crustal flow: The eastern Snake River Plain. Tectonics, 17:203--220, 1998. [ bib ]
[3548] B. J. Meade, B. H. Hager, S. C. McClusky, R. E. Reilinger, S. Ergintav, O. Lenk, A. A. Barka, and H. Ozener. Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements. Bull. Seismol. Soc. Am., 92:208--215, 2002. [ bib ]
[3549] B. J. Meade, B. H. Hager, and R. W. King. Block models of present day deformation in Southern California constrained by geodetic measurements (abstract). 2002 SCEC Annual Meeting, Oxnard CA, page 96, September 2002. [ bib ]
[3550] B. J. Meade and B. H. Hager. Viscoelastic deformation for a clustered earthquake cycle. Geophys. Res. Lett., 31(L10610), 2004. [ bib | DOI ]
[3551] B. J. Meade and B. H. Hager. Block models of crustal motion in southern California constrained by GPS measurements. J. Geophys. Res.: Sol. Earth, 110(B03403), 2005. [ bib | DOI ]
[3552] B. J. Meade and B. H. Hager. Spatial localization of moment deficits in southern California. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[3553] Brendan J Meade. Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Computers & Geosc., 33:1064--1075, 2007. [ bib ]
[3554] B. J. Meade and C. P. Conrad. Andean growth and the deceleration of South American subduction: Time evolution of a coupled orogen-subduction system. Earth Planet. Sci. Lett., 275:93--101, 2008. [ bib ]
[3555] Brendan J Meade, Phoebe MR DeVries, Jeremy Faller, Fernanda Viegas, and Martin Wattenberg. What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett., 44:11--409, 2017. [ bib ]
[3556] C. Meade, P. G. Silver, and S. Kaneshima. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett., 22:1293--1296, 1995. [ bib ]
[3557] C. Mégnin and B. A. Romanowicz. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms. Geophys. J. Int., 143:709--728, 2000. [ bib ]
[3558] C. Mégnin, H.-P. Bunge, B. A. Romanowicz, and M. A. Richards. Imaging 3-D spherical convection models: what can seismic tomography tell us about mantle dynamics? Geophys. Res. Lett., 24:1299--1302, 1997. [ bib ]
[3559] C. Mégnin and B. A. Romanowicz. The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography. Geophys. J. Int., 138:366--380, 1999. [ bib ]
[3560] L. Mehl, B. R. Hacker, G. Hirth, and P. B. Kelemen. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res.: Sol. Earth, 108(2375), 2003. [ bib | DOI ]
[3561] A. P. Mehta, A. C. Mills, K. A. Dahmen, and J. P. Sethna. Universal pulse shape scaling function and exponents: Critical test for avalanche models applied to Barkhausen noise. Phys. Rev. E, 65:046139, 2002. [ bib ]
[3562] A. P. Mehta, K. A. Dahmen, and Y. Ben-Zion. Universal mean moment rate profiles of earthquake ruptures. Phys. Rev. E, 73:056104, 2006. [ bib ]
[3563] S. Mei, A. M. Suzuki, D. L. Kohlstedt, N. A. Dixon, and W. B. Durham. Experimental constraints on the strength of lithospheric mantle. J. Geophys. Res.: Sol. Earth, 115(B08204), 2010. [ bib | DOI ]
[3564] T. Meier, K. Dietrich, B. Stöckhert, and H.-P. Harjes. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int., 156:45--58, 2004. [ bib ]
[3565] U. Meier, J. Trampert, and A. Curtis. Global variations of temperature and water content in the mantle transition zone from higher mode surface waves. Earth Planet. Sci. Lett., 282:91--101, 2009. [ bib ]
[3566] T Meier, RA Soomro, L Viereck, S Lebedev, JH Behrmann, C Weidle, L Cristiano, and R Hanemann. Mesozoic and Cenozoic evolution of the Central European lithosphere. Tectonophys., 692:58--73, 2016. [ bib ]
[3567] M-A Meier, JP Ampuero, and Thomas H Heaton. The hidden simplicity of subduction megathrust earthquakes. Science, 357:1277--1281, 2017. [ bib ]
[3568] M. van der Meijde, S. van der Lee, and D. Giardini. Seismic discontinuities in the Mediterranean mantle. Phys. Earth Planet. Inter., 148:233--250, 2005. [ bib ]
[3569] P. T. Meijer and M. J. R. Wortel. The dynamics of motion of the South American plate. J. Geophys. Res.: Sol. Earth, 97:11915--11931, 1992. [ bib ]
[3570] P. T. Meijer and M. J. R. Wortel. Cenozoic dynamics of the African plate with emphasis on the Africa-Eurasia collision. J. Geophys. Res.: Sol. Earth, 104:7405--7418, 1999. [ bib ]
[3571] R. Meissner, W. D. Mooney, and I. Artemieva. Seismic anisotropy and mantle creep in young orogens. Geophys. J. Int., 149:1--14, 2002. [ bib ]
[3572] R. Meissner, W. Rabbel, and H. Kern. Seismic lamination and anisotropy of the lower continental crust. Tectonophys., 416:81--99, 2006. [ bib ]
[3573] R. Meissner. The Continental Crust, volume 34 of International Geophysics Series. Academic Press, 1986. [ bib ]
[3574] T. Melbourne and D. Helmberger. Mantle control of plate boundary deformation. Geophys. Res. Lett., 28:4003--4006, 2001. [ bib ]
[3575] Diego Melgar, Wenyuan Fan, Sebastian Riquelme, Jianghui Geng, Cunren Liang, Mauricio Fuentes, Gabriel Vargas, Richard M Allen, Peter M Shearer, and Eric J Fielding. Slip segmentation and slow rupture to the trench during the 2015, Mw8. 3 Illapel, Chile earthquake. Geophys. Res. Lett., 43:961--966, 2016. [ bib ]
[3576] Diego Melgar and Gavin P Hayes. Systematic observations of the slip pulse properties of large earthquake ruptures. Geophys. Res. Lett., 44:9691--9698, 2017. [ bib ]
[3577] Diego Melgar, Xyoli Pérez-Campos, Leonardo Ramirez-Guzman, Zack Spica, Victor Hugo Espíndola, William C Hammond, and Enrique Cabral-Cano. Bend faulting at the edge of a flat slab: The 2017 Mw7. 1 Puebla-Morelos, Mexico earthquake. Geophys. Res. Lett., 45:2633--2641, 2018. [ bib ]
[3578] Daniel Melnick, Marcos Moreno, Javier Quinteros, Juan Carlos Baez, Zhiguo Deng, Shaoyang Li, and Onno Oncken. The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophys. Res. Lett., 44:784--791, 2017. [ bib ]
[3579] H. J. Melosh and A. Raefsky. The dynamical origin of subduction zone topography. Geophys. J. R. Astr. Soc., 60:333--354, 1980. [ bib ]
[3580] H. J. Melosh and A. Raefsky. A simple and efficient method for introducing faults into finite element computations. Bull. Seismol. Soc. Am., 71:1391--1400, 1981. [ bib ]
[3581] H. J. Melosh and C. A. Williams. Mechanics of graben formation in crustal rocks: A finite element analysis. J. Geophys. Res.: Sol. Earth, 94:13961--13973, Oktober 1989. [ bib ]
[3582] HJ Melosh. Giant impacts and the thermal state of the early earth. In LPI Conference on the Origin of the Earth, pages 69--83, 1990. [ bib ]
[3583] W. Melson, J. Allan, D. Jerez, J. Nellen, M. L. Calvache, S. Williams, J. Fournelle, and M. Perfit. Water content, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia,. J. Volcanol. Geotherm. Res., 41:97--126, 1985. [ bib ]
[3584] MELT team. Imaging the deep seismic structure beneath a Mid-Ocean ridge: The MELT experiment. Science, 280:215--1217, 1998. [ bib ]
[3585] A. Meltzer and N. Christensen. Nanga parbat crustal anisotropy: Implications for interpretation of crustal velocity structure and shear-wave splitting. Geophys. Res. Lett., 28(10):2129--2132, 2001. [ bib ]
[3586] W. Menke and V. Levin. The cross-convolution method for interpreting SKS splitting observations, with application to one and two layer anisotropic Earth models. Geophys. J. Int., 154:379--392, 2003. [ bib ]
[3587] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Matlab Edition. Academic Press, 2012. [ bib ]
[3588] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Revised Edition. Academic Press, 1989. [ bib ]
[3589] M. J. Menne, I. Durre, R. S. Vose, R. E. Gleason, and T. G. Houston. An overview of the global historical climatology network-daily database. J. Atmosph. Ocean. Tech., 29:897--910, 2012. [ bib ]
[3590] Andrew S Merdith, Alan S Collins, Simon E Williams, Sergei Pisarevsky, John D Foden, Donnelly B Archibald, Morgan L Blades, Brandon L Alessio, Sheree Armistead, Diana Plavsa, et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res., 50:84--134, 2017. [ bib ]
[3591] Andrew S Merdith, Simon E Williams, Alan S Collins, Michael G Tetley, Jacob A Mulder, Morgan L Blades, Alexander Young, Sheree E Armistead, John Cannon, Sabin Zahirovic, et al. Extending full-plate tectonic models into deep time: Linking the neoproterozoic and the phanerozoic. Earth-Sci. Rev., 214:103477, 2021. [ bib ]
[3592] P. G. Meredith, I. G. Main, and C. Jones. Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophys., 175:249--268, 1990. [ bib ]
[3593] A. S. Meriaux, F. J. Ryerson, P. Tapponnier, J. van der Woerd, R. C. Finkel, X. W. Xu, Z. Q. Xu, and M. W. Caffee. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. J. Geophys. Res.: Sol. Earth, 109(B06401), 2004. [ bib | DOI ]
[3594] A. S. Meriaux, K. Sieh, R. Finkel, C. Rubin, M. Taylor, A. S. Meltzer, , and F. Ryerson. Kinematic behavior of southern Alaska constrained by westward-decreasing post-glacial slip-rates on the Denali fault, Alaska. J. Geophys. Res.: Sol. Earth, 114(B03404), 2009. [ bib | DOI ]
[3595] Catherine A Mériaux, João C Duarte, Wouter P Schellart, and Anne-Sophie Mériaux. A two-way interaction between the Hainan plume and the Manila subduction zone. Geophys. Res. Lett., 42:5796--5802, 2015. [ bib ]
[3596] P. Merifield and T. R. Rockwell. A sliprate... Eng. Geol. Geotech. Eng., 27:1--21, 1991. [ bib ]
[3597] S. Merkel, A. K. McNamara, A. Kubo, S. Speziale, L. Miyagi, Y. Meng, T. S. Duffy, and H.-R. Wenk. Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy. Science, 316(5832):1729--32, 2007. [ bib ]
[3598] Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment. Linux j., 2014(239):2, 2014. [ bib ]
[3599] J. E. Meulenkamp, M. Kovac, and I. Cicha. On late Oligocene to Pliocene depocentre migrations and the evolution of the Carpathian-Pannonian system. Tectonophys., 266:301--317, 1995. [ bib ]
[3600] A. A. Meyerhoff. Arthur Holmes: originator of spreading ocean floor hypothesis. J. Geophys. Res.: Sol. Earth, 73:6563--6565, 1969. [ bib ]
[3601] Stephen R Meyers and Alberto Malinverno. Proterozoic Milankovitch cycles and the history of the solar system. Proc. Natl. Acad. Sci. USA, 115:6363--6368, 2018. [ bib ]
[3602] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and S. Zampini. MFEM: A modular finite element methods library. Comp. & Math. Appl., 81:42--74, 2021. [ bib ]
[3603] MGL1801 Participants. The NZ3D experiment: Adding a new dimension for understanding slow slip events. In GeoPRISMS Newletter, volume 40, pages 14--15. GeoPRISMS Program, 2018. [ bib ]
[3604] A. J. Michael. Determination of stress from slip data; faults and folds. J. Geophys. Res.: Sol. Earth, 89:11517--11526, 1984. [ bib ]
[3605] A. J. Michael. Use of focal mechanisms to determine stress; a control study. J. Geophys. Res.: Sol. Earth, 92:357--368, 1987. [ bib ]
[3606] Andrew J Michael. Energy constraints on kinematic models of oblique faulting: Loma Prieta versus Parkfield-Coalinga. Geophys. Res. Lett., 17:1453--1456, 1990. [ bib ]
[3607] Chloe Michaut, Claude Jaupart, and Jean-Claude Mareschal. Thermal evolution of cratonic roots. Lithos, 109:47--60, 2009. [ bib ]
[3608] Sylvain Michel, Adriano Gualandi, and Jean-Philippe Avouac. Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature, 574:522--526, 2019. [ bib ]
[3609] A. Mignan. Modeling aftershocks as a stretched exponential relaxation. Geophys. Res. Lett., 42:9726--9732, 2015. [ bib ]
[3610] P. Mihálffy, B. Steinberger, and H. Schmeling. Plume-ridge interaction in the North Atlantic influenced by large-scale mantle flow. DGG Tagung Berlin, Abstracts, 2004. [ bib ]
[3611] P. Mihálffy, B. Steinberger, and H. Schmeling. The effect of the large-scale mantle flow field on the Iceland hotspot track. Tectonophys., 447:5--18, 2008. [ bib ]
[3612] J. M. Mihaljan. A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J., 136:1126--1133, 1962. [ bib ]
[3613] Stephen A Miller, Cristiano Collettini, Lauro Chiaraluce, Massimo Cocco, Massimiliano Barchi, and Boris JP Kaus. Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427:724--727, 2004. [ bib ]
[3614] K. G. Miller, M. A Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie-Blick, and S. F. Pekar. The Phanerozoic record of global sea-level change. Science, 310:1293--1298, 2005. [ bib ]
[3615] M. S. Miller, A. Gorbatov, and B. L. N. Kennett. Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques. Earth Planet. Sci. Lett., 235:331--342, 2005. [ bib ]
[3616] M. S. Miller, A. Gorbatov, and B. L. N. Kennett. Three-dimensional visualization of a near-vertical slab tear beneath the southern mariana arc. Geochem., Geophys., Geosys., 7:Q06012, 2006. [ bib | DOI ]
[3617] M. S. Miller, B. L. N. Kennett, and V. G. Toy. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. J. Geophys. Res.: Sol. Earth, 111(B02401), 2006. [ bib | DOI ]
[3618] M. S. Miller, A. Levander, Y. Xu, M. Jiang, and M. Collier. SdP receiver function images of the lithosphere-asthenosphere boundary beneath the Western U.S using USArray data. Eos Trans. AGU, 89(53):U43B--0061, 2008. [ bib ]
[3619] M. S. Miller and F. Niu. Bulldozing the core-mantle boundary: localized seismic scatterers beneath the Caribbean Sea. Phys. Earth Planet. Inter., 170:89--94, 2008. [ bib ]
[3620] M. S. Miller, A. Levander, F. Niu, and A. Li. Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography. J. Geophys. Res.: Sol. Earth, 114(B01312), 2009. [ bib | DOI ]
[3621] M. S. Miller and A. Levander. Receiver function images of the Western US Lithosphere. EarthScope OnSite, pages 2--3, 2009. [ bib ]
[3622] R. B. Miller, S. R. Paterson, and J. P. Matzel. Plutonism at different crustal levels: insights from the ~5-40 km (paleodepth) North Cascades crustal section, Washington. Geol. Soc. Am. Spec. Pap., 456:125--149, 2009. [ bib ]
[3623] M. S. Miller, A. Allam, L. A. Alpert, and T. W. Becker. Mantle structure and dynamics beneath the Western Mediterranean constrained by seismic anisotropy and global flow models (abstract). EGU General Assembly, Vienna Austria, EGU2011-8902, 2011. [ bib ]
[3624] M. S. Miller and T. W. Becker. Mantle flow deflected by interactions between subducted slabs and cratonic keels. Nat. Geosc., 5:726--730, 2012. [ bib ]
[3625] Meghan S Miller and Nicola Piana Agostinetti. Insights into the evolution of the Italian lithospheric structure from S receiver function analysis. Earth Planet. Sci. Lett., 345:49--59, 2012. [ bib ]
[3626] M. S. Miller, A. A. Allam, T. W. Becker, J. Di Leo, and J. Wookey. Constraints on the geodynamic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth Planet. Sci. Lett., 375:234--243, 2013. [ bib ]
[3627] Scott R Miller, Peter B Sak, Eric Kirby, and Paul R Bierman. Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates. Earth Planet. Sci. Lett., 369:1--12, 2013. [ bib ]
[3628] M. S. Miller and T. W. Becker. Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains. Geology, 42:35--38, 2014. [ bib ]
[3629] M. S. Miller, P. Zhang, and J.F. Dolan. Moho structure across the San Jacinto fault zone: insights into strain localization at depth. Lithosph., 6:43--47, 2014. [ bib ]
[3630] E.L. Miller, P.B. Gans, and J. Garing. The snake range décollement: an exhumed mid-tertiary ductile-brittle transition. Tectonics, 2:239--263, 1983. [ bib ]
[3631] Meghan Samanth Miller, Ping Zhang, Maxwell Philip Dahlquist, A Joshua West, Thorsten W Becker, and CW Harris. Inherited lithospheric structures control arc-continent collisional heterogeneity. Geology, 49:652--656, 2021. [ bib ]
[3632] B. Miller, C. O'Hern, and R. P. Behringer. stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett., 77:3110--3113, 1996. [ bib ]
[3633] Elizabeth L Miller, Trevor A Dumitru, Roderick W Brown, and Phillip B Gans. Rapid Miocene slip on the Snake Range--Deep Creek range fault system, east-central Nevada. Geol. Soc. Amer. Bull., 111:886--905, 1999. [ bib ]
[3634] CWD Milliner, C Sammis, AA Allam, JF Dolan, J Hollingsworth, S Leprince, and F Ayoub. Resolving fine-scale heterogeneity of co-seismic slip and the relation to fault structure. Scient. Rep., 6:27201, 2016. [ bib ]
[3635] L.M. Milne-Thomson. Theoretical Hydrodynamics. Macmillan, New York, 1968. [ bib ]
[3636] G. A. Milne, J. L. Davis, J. X. Mitrovica, H.-G. Scherneck, J. M. Johansson, M. Vermeer, and H. Koivula. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science, 291:2381--2385, 2001. [ bib ]
[3637] G. A. Milne, W. R. Gehrels, C. W. Hughes, and M. E. Tamisiea. Identifying the causes of sea-level change. Nature Geosc., 2:471--478, 2009. [ bib ]
[3638] K. Milner, T. W. Becker, L. Boschi, J. Sain, D. Schorlemmer, and H. Waterhouse. The Solid Earth Research and Teaching Environment: a new software framework to share research tools in the classroom and across disciplines. Eos Trans. AGU, 90(12):104, 2009. available online at www-udc.ig.utexas.edu/external/becker/seatree/, accessed 05/2023. [ bib ]
[3639] Kevin R Milner, Bruce E Shaw, Christine A Goulet, Keith B Richards-Dinger, Scott Callaghan, Thomas H Jordan, James H Dieterich, and Edward H Field. Toward physics-based nonergodic PSHA: A prototype fully deterministic seismic hazard model for southern California. Bull. Seismol. Soc. Am., 2021. [ bib | DOI ]
[3640] Shohei Minato, Takeshi Tsuji, Shiro Ohmi, and Toshifumi Matsuoka. Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records. Geophys. Res. Lett., 39(L09309), 2012. [ bib | DOI ]
[3641] Liliana Minelli and Claudio Faccenna. Evolution of the Calabrian accretionary wedge (central Mediterranean). Tectonics, 29(TC4004), 2010. [ bib | DOI ]
[3642] J. B. Minster and T. H. Jordan. Present-day plate motions. J. Geophys. Res.: Sol. Earth, 83:5331--5354, 1978. [ bib ]
[3643] J Bernard Minster and Don L Anderson. A model of dislocation-controlled rheology for the mantle. Phil. Trans. Royal Soc. London. A, 299:319--356, 1981. [ bib ]
[3644] J. B. Minster and T. H. Jordan. Vector constraints on western U.S. deformation from space geodesy, neotectonics and plate motions. J. Geophys. Res.: Sol. Earth, 92:4798--4804, 1987. [ bib ]
[3645] Y.A. Mishin, T.V. Gerya, J.P. Burg, and J.A.D. Connolly. Dynamics of double subduction: numerical modeling. Phys. Earth Planet. Inter., 171:280--295, 2008. [ bib ]
[3646] EK Mitchell, Y Fialko, and KM Brown. Velocity-weakening behavior of Westerly granite at temperature up to 600o c. J. Geophys. Res.: Sol. Earth, 121:6932--6946, 2016. [ bib ]
[3647] Ross N Mitchell, Nan Zhang, Johanna Salminen, Yebo Liu, Christopher J Spencer, Bernhard Steinberger, J Brendan Murphy, and Zheng-Xiang Li. The supercontinent cycle. Nature Rev. Earth & Environ., 2:358--374, 2021. [ bib ]
[3648] Jerry X Mitrovica, Glenn A Milne, and James L Davis. Glacial isostatic adjustment on a rotating earth. Geophys. J. Int., 147:562--578, 2001. [ bib ]
[3649] J. X. Mitrovica, M. E. Tamisiea, and G. A. Milne. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409:1026--1029, 2001. [ bib ]
[3650] J. X. Mitrovica and G. A. Milne. On post-glacial sea level: I. General theory. Geophys. J. Int., 154:253--267, 2003. [ bib ]
[3651] J. X. Mitrovica and A. M. Forte. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225:177--189, 2004. [ bib ]
[3652] J. X. Mitrovica, J. Wahr, I. Matsuyama, and A. Paulson. The rotational stability of an ice-age Eearth. Geophys. J. Int., 161:491--506, 2005. [ bib ]
[3653] Jerry X Mitrovica, Natalya Gomez, and Peter U Clark. The sea-level fingerprint of west antarctic collapse. Science, 323:753--753, 2009. [ bib ]
[3654] Jerry X Mitrovica, N Gomez, E Morrow, C Hay, K Latychev, and ME Tamisiea. On the robustness of predictions of sea level fingerprints. Geophys. J. Int., 187:729--742, 2011. [ bib ]
[3655] Jerry X Mitrovica and John Wahr. Ice age Earth rotation. Ann. Rev. Earth Planet. Sci., 39:577--616, 2011. [ bib ]
[3656] J. X. Mitrovica and G. T. Jarvis. Surface deflections due to transient subduction in a convecting mantle. Tectonophys., 120:211--237, 1985. [ bib ]
[3657] J. X. Mitrovica, C. Beaumont, and G. T. Jarvis. Tilting of continental interiors by the dynamical effects of subduction. Tectonophys., 8:1079--1094, 1989. [ bib ]
[3658] J. X. Mitrovica and W. R. Peltier. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res.: Sol. Earth, 96:20053--20071, 1991. [ bib ]
[3659] JX Mitrovica and WR Peltier. Present-day secular variations in the zonal harmonics of Earth's geopotential. J. Geophys. Res.: Sol. Earth, 98:4509--4526, 1993. [ bib ]
[3660] J. X. Mitrovica. [2186] revisited. J. Geophys. Res.: Sol. Earth, 101:555--569, 1996. [ bib ]
[3661] J. X. Mitrovica and A. M. Forte. Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables. J. Geophys. Res.: Sol. Earth, 102:2751--2769, 1997. [ bib ]
[3662] Y. Mitsui, N. Kato, Y. Fukahata, and K. Hirahara. Megaquake cycle at the Tohoku subduction zone with thermal fluid pressurization near the surface. 2012, 325:21--26, Earth Planet. Sci. Lett. [ bib ]
[3663] Eric Mittelstaedt, Garrett Ito, and Jeroen van Hunen. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration. J. Geophys. Res.: Sol. Earth, 116(B1), 2011. [ bib ]
[3664] Akiho Miyashiro. Evolution of metamorphic belts. J. Petrology, 2:277--311, 1961. [ bib ]
[3665] S. Miyazaki, P. Segall, J. Fukuda, and T. Kato. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophys. Res. Lett., 31(L06623), 2004. [ bib | DOI ]
[3666] Shin’ichi Miyazaki, Jeffery J McGuire, and Paul Segall. Seismic and aseismic fault slip before and during the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planet. Space, 63(7):23, 2011. [ bib ]
[3667] T. Miyazaki, K. Sueyoshi, and T. Hiraga. Olivine crystals align during diffusion creep of Earth's upper mantle. Nature, 502:321--327, 2013. [ bib ]
[3668] T. Mizukami, S. R. Wallis, and J. Yamamoto. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427:432--436, 2004. [ bib ]
[3669] E. Mochizuki. The free oscillations of an anisotropic and heterogeneous earth. Geophys. J. R. Astr. Soc., 86:167--176, 1986. [ bib ]
[3670] P. Mozco, J. Kristek, and L. Halada. The finite-difference method for seismologists. An introduction. Comenius University, Bratislava, 2004. Online at www.spice-rtn.org/events/workshops/venice2004/downloads/spicefdmcourse.tgz. [ bib ]
[3671] K. Mogi. Experimental rock mechanics. Taylor & Francis, 2007. [ bib ]
[3672] K. Mogi. Seismicity in western Japan and long-term earthquake forecasting. In D. W. Simpson and P. G. Richards, editors, Earthquake prediction. American Geophysical Union, 1982. [ bib ]
[3673] R. W. Mogk. Bridges: Connecting research and education in the earth system sciences. Recommendations from the pre-planning committee of the “Geoscience Education in the Next Millennium” meeting at the National Science Foundation. National Science Foundation, Washington DC. Online at serc.carleton.edu/research_education/bridges.html, accessed 06/2006, 2000. [ bib ]
[3674] Anwar Mohiuddin, Shun-ichiro Karato, and Jennifer Girard. Slab weakening during the olivine to ringwoodite transition in the mantle. Nature Geosc., 13:170--174, 2020. [ bib ]
[3675] A. Mohorovičić. Earthquake of 8 October 1909. Geofizika, 9:3--55, 1992. [ bib ]
[3676] A. Mohorovičić. Das Beben vom 8. X. 1909. Jahrbuch des meteorologischen Observatoriums in Zagreb (Agram) für das Jahr 1909, 9(4):63pp, 1910. Translated and reprinted in [3675]. [ bib ]
[3677] S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409:178--181, 2001. [ bib ]
[3678] Stephen J Mojzsis, Gustaf Arrhenius, KD McKeegan, TM Harrison, AP Nutman, and CRL Friend. Evidence for life on Earth before 3,800 million years ago. Nature, 384:55--59, 1996. [ bib ]
[3679] G. M. Molchan and Y. Y. Kagan. Earthquake prediction and its optimization. J. Geophys. Res.: Sol. Earth, 97:4823--4838, 1992. [ bib ]
[3680] Alain Molinari and Hugo Perfettini. Fundamental aspects of a new micromechanical model of rate and state friction. J. Mech. Phys. Sol., 124:63--82, 2019. [ bib ]
[3681] P. Molnar and C. H. Jones. A test of laboratory based rheological parameters of olivine from an analysis of late Cenozoic convective removal of mantle lithosphere beneath the Sierra Nevada, California, USA. Geophys. J. Int., 156:555--564, 2004. [ bib ]
[3682] P. Molnar and G. A. Houseman. The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophys. J. Int., 158:1134--1150, 2004. [ bib ]
[3683] Peter Molnar. Late cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Ann. Rev. Earth Planet. Sci., 32:67--89, 2004. [ bib ]
[3684] P. Molnar, P. C. England, and C. H. Jones. Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res.: Sol. Earth, 120:1932--1957, 2015. [ bib | DOI ]
[3685] P. Molnar and C. H. Jones. A test of laboratory based rheological parameters of olivine from an analysis of late cenozoic convective removal of mantle lithosphere beneath the sierra nevada, california, usa. Geophys. J. Int., 156:555--564, 2004. [ bib ]
[3686] P. Molnar and L. Sykes. Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity. Geol. Soc. Am. Bull., 80:1639--1684, 1969. [ bib ]
[3687] P. Molnar and P. Tapponnier. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189:419--426, 1975. [ bib ]
[3688] P. Molnar and T. Atwater. Interarc spreading and cordillera tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci. Lett., 41:330--340, 1978. [ bib ]
[3689] P. Molnar and J. Stock. Relative motions of hotspots in the Pacific, Atlantic, and Indian Oceans since Late Cretaceous time. Nature, 327:587--591, 1987. [ bib ]
[3690] P. Molnar. Continental tectonics in the aftermath of plate tectonics. Nature, 335:131--137, 1988. [ bib ]
[3691] Peter Molnar, Hélène Lyon-Caen, et al. Some simple physical aspects of the support, structure, and evolution of mountain belts. In Jr. Sydney P. Clark, B. Clark Burchfiel, and John Suppe, editors, Processes in continental lithospheric deformation, volume 218 of GSA Spec. Pap., pages 179--207. Geological Society of America, 1988. [ bib ]
[3692] P. Molnar and P. England. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346:29--34, 1990. [ bib ]
[3693] P. Molnar and P. England. Temperatures, heat flux, and frictional stress near major thrust faults. J. Geophys. Res.: Sol. Earth, 95:4833--4856, 1990. [ bib ]
[3694] Peter Molnar, Philip England, and Joseph Martinod. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys., 31:357--396, 1993. [ bib ]
[3695] P. Molnar and P. C. England. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet. Sci. Lett., 131:57--70, 1995. [ bib ]
[3696] P. Molnar, G. A. Houseman, and C. P. Conrad. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys. J. Int., 133:568--584, 1998. [ bib ]
[3697] P. Molnar, H. J. Anderson, E. Audoine, D. Eberhart-Phillips, K. R. Gledhill, E. R. Klosko, T. V. McEvilly, D. Okaya, M. K. Savage, T. Stern, and F. T. Wu. Continuous deformation versus faulting through the continental lithosphere of New Zealand. Science, 286:516--519, 1999. [ bib ]
[3698] C. Monaco and L. Tortorici. Tectonic role of ophiolite-bearing terranes in the development of the Southern Apennines orogenic belt. Terra Nova, 7:153--160, 1995. [ bib ]
[3699] P. Mondal and M. D. Long. A model space search approach to finite-frequency SKS splitting intensity tomography in a reduced parameter space. Geophys. J. Int., 217:238--256, 2019. [ bib ]
[3700] P. Monié, L. Jolivet, C. Brunet, R. L. Torres-Roldan, R. Caby, B. Goffé, and R. Dubois. Cooling paths of metamorphic rocks in the western Mediterranean region and tectonic implications. In The Mediterranean basins: Tertiary extension within the alpine orogen. An international workshop. Abstracts, Cergy-Pentoise, 1996. Université Cergy-Pentoise. [ bib ]
[3701] G. Monsalve, A. Sheehan, V. Schulte-Pelkum, S. Rajaure, M. R. Pandey, and F. Wu. Seismicity and one-dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. J. Geophys. Res.: Sol. Earth, 111(B10301), 2006. [ bib | DOI ]
[3702] G. Monsalve. Deformation and seismic structure of the upper lithosphere beneath the Himalayan collision. PhD thesis, University of Colorado at Boulder, 2007. [ bib ]
[3703] G. A. Monsalve, A. Sheehan, C. Rowe, and S. Rajaure. Seismic structure of the crust and upper mantle beneath the Himalayas: Evidence for eclogitizaton of lower crustal rocks in the Indian Plate. J. Geophys. Res.: Sol. Earth, 113(B08315), 2008. [ bib | DOI ]
[3704] M. Monsalve, P. J. McGovern, and A. Sheehan. Mantle fault zones beneath the Himalayan Collision: Flexure of the continental lithosphere. Tectonophys., 477:66--76, 2009. [ bib ]
[3705] M. L. Monsalve, A. M. Correa, and M. Arcila. Firma adakitica en los productos recientes de los volcanoes Nevado del Huila y puracé. in prep., 2011. [ bib ]
[3706] J.-P. Montagner and L. Guillot. Seismic anisotropy in the Earth's mantle. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 217--253, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[3707] J.-P. Montagner, D.-A. Griot-Pommera, and J. Lavé. How to relate body wave and surface wave anisotropy? J. Geophys. Res.: Sol. Earth, 105:19015--19027, 2000. [ bib ]
[3708] J.-P. Montagner. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202:263--274, 2002. [ bib ]
[3709] J.-P. Montagner. Upper mantle structure: Global isotropic and anisotropic elastic tomography. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, volume 1, pages 559--589. Elsevier, 2007. [ bib ]
[3710] J.-P. Montagner and D. L. Anderson. The Pacific Megagash: A future plate boundary? In G. R. Foulger, editor, D. L. Anderson Honor Volume, volume 514 of GSA Spec. Papers. Geol. Soc. Amer., 2015. [ bib | DOI ]
[3711] J.-P. Montagner and H.-C. Nataf. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res.: Sol. Earth, 91:511--520, 1986. [ bib ]
[3712] J.-P. Montagner and H. C. Nataf. Vectorial tomography-I. Theory. Geophys. J., 94:295--307, 1988. [ bib ]
[3713] J.-P. Montagner and N. Jobert. Vectorial tomography; II. application to the Indian Ocean. Geophys. J. Int., 94:309--344, 1988. [ bib ]
[3714] J.-P. Montagner and D. L. Anderson. Petrological constraints on seismic anisotropy. Phys. Earth Planet. Inter., 54:82--105, 1989. [ bib ]
[3715] J.-P. Montagner and T. Tanimoto. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J. Geophys. Res.: Sol. Earth, 95:4797--4819, 1990. [ bib ]
[3716] J.-P. Montagner and T. Tanimoto. Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res.: Sol. Earth, 96:20337--20351, 1991. [ bib ]
[3717] J.-P. Montagner. What can seismology tell us about mantle convection? Rev. Geophys., 32:115--137, 1994. [ bib ]
[3718] J. P. Montagner and B. L. N. Kennett. How to reconcile body-wave and normal-mode reference Earth models? Geophys. J. Int., 125:229--248, 1995. [ bib ]
[3719] J.-P. Montagner. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers. Pure Appl. Geophys., 151:223--256, 1998. [ bib ]
[3720] V. Monteiller and S. Chevrot. High-resolution imaging of the deep anisotropic structure of the San Andreas Fault system beneath southern California. Geophys. J. Int., 182:418--446, 2011. [ bib ]
[3721] V. Monteiller and S. Chevrot. How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy. Geophys. J. Int., 182:311--328, 2010. [ bib ]
[3722] R. Montelli, G. Nolet, F. A. Dahlen, G. Masters, R. D. Engdahl, and S.-H. Hung. Finite frequency tomography reveals a variety of plumes in the mantle. Science, 303:338--343, 2004. [ bib ]
[3723] R. Montelli, G. Nolet, G. Masters, F. A. Dahlen, G. Masters, and S.-H. Hung. Global P and PP traveltime tomography: rays versus waves. Geophys. J. Int., 158:637--654, 2004. [ bib ]
[3724] R. Montelli, G. Nolet, F. A. Dahlen, and G. Masters. A catalog of deep mantle plumes: New results from finite-frequency tomography. Geochem., Geophys., Geosys., 7(Q11007), 2006. [ bib ]
[3725] L. G. J. Montési and M. Zuber. A unified description of localization for application to large-scale tectonics. J. Geophys. Res.: Sol. Earth, 107(B3), 2002. [ bib | DOI ]
[3726] L. G. J. Montési and G. Hirth. Grain size evolution and the rheology of ductile shear zones: from laboratory experiments to postseismic creep. Earth Planet. Sci. Lett., 211:97--110, 2003. [ bib ]
[3727] L. G. J. Montési. Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol., 50:254--266, 2013. [ bib ]
[3728] L.G.J. Montesi and M. T. Zuber. Spacing of faults at the scale of the lithosphere and localization instability: 1. Theory. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[3729] L.G.J. Montesi and M. T. Zuber. Spacing of faults at the scale of the lithosphere and localization instability. 2: Application to the Central Indian Basin. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[3730] E. K. Montgomery-Brown, C. W. Wicks, P. F. Cervelli, J. O. Langbein, J. L. Svarc, D. R. Shelly, D. P. Hill, and M. Lisowski. Renewed inflation of Long Valley Caldera, California (2011 to 2014). Geophys. Res. Lett., 42:5250--5257, 2015. [ bib | DOI ]
[3731] David R Montgomery, Greg Balco, and Sean D Willett. Climate, tectonics, and the morphology of the Andes. Geology, 29:579--582, 2001. [ bib ]
[3732] W. D. Mooney, G. Laske, and G. Masters. CRUST 5.1: a global crustal model at 5 degrees × 5 degrees. J. Geophys. Res.: Sol. Earth, 103:727--747, 1998. [ bib ]
[3733] William B Moore and Gerald Schubert. The tidal response of Europa. Icarus, 147:317--319, 2000. [ bib ]
[3734] M. M. Moore, E. J. Garnero, T. Lay, and Q. Williams. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. J. Geophys. Res.: Sol. Earth, 103, 2004. [ bib | DOI ]
[3735] J. C. Moore, C. Rowe, and F. Meneghini. How acretionary prisms elucidate seismogenesis in subduction zones. In T. H. Dixon and J. C. Moore, editors, The seismogenic zone of subduction thrust faults, pages 288--315. Columbia University Press, New York, 2007. [ bib ]
[3736] W. B. Moore. Heat transport in a convecting layer heated from within and below. J. Geophys. Res.: Sol. Earth, 113(B11407), 2008. [ bib | DOI ]
[3737] William B Moore and A Alexander G Webb. Heat-pipe earth. Nature, 501:501--505, 2013. [ bib ]
[3738] William B Moore, Justin I Simon, and A Alexander G Webb. Heat-pipe planets. Earth Planet. Sci. Lett., 474:13--19, 2017. [ bib ]
[3739] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), 1965. [ bib ]
[3740] D. E. Moore, D. A. Lockner, S. Ma, R. Summers, and J. D. Byerlee. Strengths of serpentinite gouges at elevated temperatures. J. Geophys. Res.: Sol. Earth, 102:14787--14801, 1997. [ bib ]
[3741] W. B. Moore, G. Schubert, and P. Tackley. Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science, 279:1008--1011, 1998. [ bib ]
[3742] E. Moores. Pre-1 ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. GSA Bull., 114:80--95, 2002. [ bib ]
[3743] A. Mora, M. Parra, M. R. Strecker, A. Kammer, C. Dimaté, and F. Rodriguez. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 2006. [ bib | DOI ]
[3744] A. Mora, M. Parra, M. R. Strecker, E. R. Sobel, H. Hooghiemstra, C. Torres, and J. V. Jaramillo. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. GSA Bull., 120:930--949, 2008. [ bib ]
[3745] A. Mora, B. K Horton, A. Mesa, J. Rubiano, R. A. Ketcham, M. Parra, V. Blanco, D. Garcia, and D. F. Stockli. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. Am. Assoc. Petro. Geol. Bull., 94:1543--1580, 2010. [ bib ]
[3746] A. Mora, M. Parra, M. R. Strecker, E. R. Sobel, G. Zeilinger, and C. Jaramillo. The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. Geol. Soc. Am. Bull., 122:1846--1864, 2010. [ bib ]
[3747] P. Mora and D. Place. Simulation of the frictional stick-slip instability. Pure Appl. Geophys., 143:61--87, 1994. [ bib ]
[3748] P. Mora and D. Place. Numerical simulation of earthquake faults with gouge: toward a comprehensive explanation for the heat flow paradox. J. Geophys. Res.: Sol. Earth, 103:21067--21089, 1998. [ bib ]
[3749] A. Mordret, M. Landès, N.M. Shapiro, S.C. Singh, P. Roux, and O.I. Barkved. Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophys. J. Int., 193:1627--1643, 2013. [ bib ]
[3750] M. G. Moreau, J. Y. Berthou, and J.-A. Malod. New paleomagnetic Mesozoic data from the Algarve (Portugal): fast rotation of Iberia between the Hauterivian and the Aptian. Earth Planet. Sci. Lett., 146:686--701, 1997. [ bib ]
[3751] A. Morelli, A. M. Dziewoński, and J. H. Woodhouse. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett., 13:1545--1548, 1986. [ bib ]
[3752] Marcos Moreno, Christian Haberland, Onno Oncken, Andreas Rietbrock, Samuel Angiboust, and Oliver Heidbach. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nature Geosc., 7:292--296, 2014. [ bib ]
[3753] L. N. Moresi, F. Dufour, and H. B. Mühlhaus. Mantle convection modeling with viscoelastic/brittle lithosphere: numerical modeling and plate tectonic modeling. Pure Appl. Geophys., 159:2335--2356, 2002. [ bib ]
[3754] L. N. Moresi, F. Dufour, and H.-B. Mühlhaus. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. Comp. Phys., 184:476--497, 2003. [ bib ]
[3755] L. N. Moresi, S. Quenette, V. Lemiale, C. Mériaux, W. Appelbe, and H.-B. Mühlhaus. Computational approaches to studying non-linear dynamics of the crust and mantle. Phys. Earth Planet. Inter., 163:69--82, 2007. [ bib ]
[3756] L. N. Moresi, H. B. Mühlhaus, V. Lemiale, and D. May. Incompressible viscous formulations for deformation and yielding of the lithosphere. Geol. Soc. London Spec. Pub., 282:457--472, 2007. [ bib ]
[3757] L. M. Moresi, P. G. Betts, M. S. Miller, and R. A. Cayley. Dynamics of continental accretion. Nature, 508:245--248, 2014. [ bib ]
[3758] L. N. Moresi and V. S. Solomatov. Numerical investigations of 2D convection with extremely large viscosity variations. Phys. Fluids, 7:2154--2162, 1995. [ bib ]
[3759] L. N. Moresi and M. Gurnis. Constraints on the lateral strength of slabs from three-dimensional dynamic flow models. Earth Planet. Sci. Lett., 138:15--28, 1996. [ bib ]
[3760] L. N. Moresi and V. S. Solomatov. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int., 133:669--682, 1998. [ bib ]
[3761] A. M. Moretta and R. Sabadini. The styles of Tyrrhenian subduction. Geophys. Res. Lett., 22:747--750, 1995. [ bib ]
[3762] J. Phipps-Morgan, T.J. Reston, and C.R. Ranero. Contemporaneous mass extinctions, continental flood basalts, and `impact signals': are mantle plume-induced lithospheric gas explosions the causal link? Earth Planet. Sci. Lett., 217:263--284, 2004. [ bib ]
[3763] W. J. Morgan and J. Phipps-Morgan. Plate velocities in the hotspot reference frame. In J. R. Foulger and D. M. Jurdy, editors, Plates, Plumes, and Planetary Processes, volume 430 of Special Papers, pages 65--78. Geological Society of America, Boulder, CO, 2007. [ bib ]
[3764] W. J. Morgan. Gravity anomalies and convection currents: 1. A sphere and a cylinder sinking beneath the surfae of a viscous fluid. J. Geophys. Res.: Sol. Earth, 70:6175--6187, 1965. [ bib ]
[3765] W. J. Morgan. Rises, trenches, great faults, and crustal blocks. J. Geophys. Res.: Sol. Earth, 73:1959--1982, 1968. [ bib ]
[3766] J. P. Morgan. Convection plumes in the lower mantle. Nature, 230:42--43, 1971. [ bib ]
[3767] W Jason Morgan. Plate motions and deep mantle convection. Geol. Soc. Amer. Mem., 132:7--22, 1972. [ bib ]
[3768] W Jason Morgan. Deep mantle convection plumes and plate motions. AAPG Bull., 56:203--213, 1972. [ bib ]
[3769] W. J. Morgan. Hotspot tracks and the opening of the Atlantic and Indian Oceans. In C. Emiliani, editor, The Oceanic Lithosphere, volume 7 of The Sea, pages 443--487. John Wiley, New York, 1981. [ bib ]
[3770] Jason Phipps-Morgan and Peter M Shearer. Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection. Nature, 365:506--511, 1993. [ bib ]
[3771] J. K. Morgan and M. S. Boettcher. Numerical simulations of granular shear zones using the distinct element method. 1. Shear zone kinematics and the micromechanics of localization. J. Geophys. Res.: Sol. Earth, 104:2703--2719, 1999. [ bib ]
[3772] J. K. Morgan. Numerical simulations of granular shear zones using the distinct element method. 2. Effects of particle size distribution and interparticle friction on mechanical behavior. J. Geophys. Res.: Sol. Earth, 104:2721--2732, 1999. [ bib ]
[3773] Jason Phipps-Morgan and W Jason Morgan. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett., 170:215--239, 1999. [ bib ]
[3774] Jim Mori and Donald V Helmberger. Localized boundary layer below the mid-Pacific velocity anomaly identified from a PcP precursor. J. Geophys. Res.: Sol. Earth, 100:20359--20365, 1995. [ bib ]
[3775] Manabu Morishige, Satoru Honda, and PJ Tackley. Construction of semi-dynamic model of subduction zone with given plate kinematics in 3D sphere. Earth, Planet. Space, 62:665--673, 2010. [ bib ]
[3776] M Morishige, S Honda, and M Yoshida. Possibility of hot anomaly in the sub-slab mantle as an origin of low seismic velocity anomaly under the subducting Pacific plate. Phys. Earth Planet. Inter., 183:353--365, 2010. [ bib ]
[3777] Manabu Morishige and Peter E van Keken. Along-arc variation in the 3-D thermal structure around the junction between the Japan and Kurile arcs. Geochem., Geophys., Geosys., 15:2225--2240, 2014. [ bib ]
[3778] LW Morley and Andr Larochelle. Paleomagnetism as a means of dating geological events. Geochronology in Canada, 8:39--51, 1964. [ bib ]
[3779] G. Morra, K. Regenauer-Lieb, and D. Giardini. Curvature of oceanic arcs. Geology, 34:877--880, 2006. [ bib ]
[3780] G. Morra, D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutsakos, and P. J. Tackley. The fate of the slabs interacting with a viscosity hill in mid-mantle. Phys. Earth Planet. Inter., 180:271--282, 2010. [ bib ]
[3781] G. Morra, M. Seton, L. Quevedo, and R. D. Müller. Organization of the tectonic plates in the last 200 Myr. Earth Planet. Sci. Lett., 373:93--101, 2013. [ bib ]
[3782] G. B. Morris, R. W. Raitt, and G. G. Shor Jr. Velocity anisotropy and delay-time maps of the mantle near Hawaii. J. Geophys. Res.: Sol. Earth, 74:4300--4316, 1969. [ bib ]
[3783] S Morris and D Canright. A boundary-layer analysis of Benard convection in a fluid of strongly temperature-dependent viscosity. Phys. Earth Planet. Inter., 36:355--373, 1984. [ bib ]
[3784] JD Morris, William P Leeman, and F Tera. The subducted component in island arc lavas: constraints from Be isotopes and B--Be systematics. Nature, 344:31--36, 1990. [ bib ]
[3785] Emily A. Morton and Susan L. Bilek. Preliminary event detection of earthquakes using the Cascadia initiative data. Seismol. Res. Lett., 86:1270--1277, 2015. [ bib ]
[3786] D. M. Morton, J. C. Matti, F. K. Miller, and C. A. Repenning. Pleistocene conglomerate from the San Timoteo badlands, Southern California; constraints on strike-slip displacements on the San Andreas and San Jacinto faults. Geol. Soc. Am. Abs. Program, 18:161, 1986. [ bib ]
[3787] M P Moschetti, MH Ritzwoller, F Lin, and Y Yang. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature, 464(7290):885, 2010. [ bib ]
[3788] Richard H. Moss, Mustafa Babiker, Sander Brinkman, Eduardo Calvo, Timothy Carter, Jae Edmonds, Ismail Elgizouli, Seita Emori, Lin Erda, Kathy Hibbard, Roger Jones, Mikiko Kainuma, Jessica Kelleher, Jean Francois Lamarque, Martin Manning, Ben Matthews, Jerry Meehl, Leo Meyer, John Mitchell, Nebojsa Nakicenovic, Brian O'Neill, Ramon Pichs, Keywan Riahi, Steven Rose, Paul Runci, Ron Stouffer, Detlef van Vuuren, John Weyant, Tom Wilbanks, Jean Pascal van Ypersele, and Monika Zurek. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 2008. [ bib ]
[3789] R. Moucha, A. M. Forte, J. X. Mitrovica, and A. Daradich. Geodynamic implications of lateral variations in mantle rheology on convection related observables and inferred viscosity models (abstract). Eos Trans. AGU, 86(52):S41C--1037, 2005. [ bib ]
[3790] R. Moucha, A. M. Forte, J. X. Mitrovica, and A. Daradich. Lateral variations in mantle rheology: implications for convection related surface observables and inferred viscosity models. Geophys. J. Int., 169:113--135, 2007. [ bib ]
[3791] R. Moucha, A. M. Forte, D. B. Rowley, J. X. Mitrovica, N. A. Simmons, and S. P. Grand. Mantle convection and the recent evolution of the Colorado Plateau and the Rio Grande Rift valley. Geology, 36:439--442, 2008. [ bib ]
[3792] R. Moucha, A. M. Forte, D. B. Rowley, J. X. Mitrovica, N. A. Simmons, and S. P. Grand. Deep mantle forces and the uplift of the Colorado Plateau. Geophys. Res. Lett., 36(L19310), 2009. [ bib | DOI ]
[3793] R. Moucha and A. M. Forte. Changes in African topography driven by mantle convection. Nature Geosc., 4:707--712, 2011. [ bib ]
[3794] R. Moucha, G. A. Ruetenik, G. D. Hoke, and A. Rovere. Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. EGU General Assembly Conference Abstracts, 17:8034, 2015. [ bib ]
[3795] P. Moulik and G. Ekström. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int., 199:1713--1738, 2014. [ bib ]
[3796] J. E. Mound and C. J. Davies. Longitudinal structure of Earth’s magnetic field controlled by lower mantle heat flow. Nature Geosc., 16:380--385, 2023. [ bib ]
[3797] Sima Mousavi, Hrvoje Tkalčić, Rhys Hawkins, and Malcolm Sambridge. Lowermost mantle shear-velocity structure from hierarchical trans-dimensional bayesian tomography. J. Geophys. Res.: Sol. Earth, 126:e2020JB021557, 2021. [ bib ]
[3798] F. Mouthereau, A. B. Watts, and E. B. Burov. Structure of orogenic belts controlled by lithosphere age. Nature Geosc., 6:785--789, 2013. [ bib ]
[3799] M. Simons, Y. Fialko, and L. Rivera. Co-seismic static deformation from the 1999 Mw7.1 Hector Mine California earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am., 92:1390--1402, 2002. [ bib ]
[3800] NSF-FRES: MTMOD Collaboration. MTMOD Summer School. lecture and tutorial material and software repository. Available online at sites.utexas.edu/mtmod/mtmod-summer-school/, accessed 03/2024, 2024. [ bib ]
[3801] H.-B. Mühlhaus, L. N. Moresi, B. Hobbs, and F. Dufour. Large amplitude folding in finely layered viscoelastic rock structures. Pure Appl. Geophys., 159:2311--2333, 2002. [ bib ]
[3802] H.-B. Mühlhaus, L. N. Moresi, and M. Cada. Emergent anisotropy and flow alignment in viscous rock. Pure Appl. Geophys., 161:2451--2463, 2004. [ bib ]
[3803] H. B. Mühlhaus and K. Regenauer-Lieb. A self-consistent plate mantle model that includes elasticity: computational aspects and application to basic modes of comvection. Geophys. J. Int., 2005. [ bib | DOI ]
[3804] B. Müller, J. Reinecker, and K. Fuchs. The 2000 release of the World Stress Map, 2000. Online at www.world-stress-map.org, cf. [6095]. [ bib ]
[3805] R. D. Müller, M. Sdrolias, C. Gaina, and W. R. Roest. Age, spreading rates and spreading asymmetry of the world's ocean crust. Geochem., Geophys., Geosys., 9(Q04006), 2008. [ bib | DOI ]
[3806] R. D. Müller, M. Sdrolias, C. Gaina, B. Steinberger, and C. Heine. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319:1357--1362, 2008. [ bib ]
[3807] R. D. Müller, M. Seton, S. Zahirovic, S. E. Williams, K. J. Matthews, N. M. Wright, G. E. Shephard, K. T. Maloney, N. Barnett-Moore, M. Hosseinpour, D. J. Bower, and J. Cannon. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Ann. Rev. Earth Planet. Sci., 44:107--138, 2016. [ bib ]
[3808] R Dietmar Müller, Nicolas Flament, John Cannon, Michael G Tetley, Simon E Williams, Xianzhi Cao, Ömer F Bodur, Sabin Zahirovic, and Andrew Merdith. A tectonic-rules-based mantle reference frame since 1 billion years ago--implications for supercontinent cycles and plate--mantle system evolution. Solid Earth, 13:1127--1159, 2022. [ bib ]
[3809] S. Mueller and R. J. Phillips. On the initiation of subduction. J. Geophys. Res.: Sol. Earth, 96:651--665, 1991. [ bib ]
[3810] D. Müller, W. R. Roest, J.-Y. Royer, L. M. Gahagan, and J. G. Sclater. Digital isochrons of the world's ocean floor. J. Geophys. Res.: Sol. Earth, 102:3211--3214, 1997. http://Omphacite.es.su.oz.au/StaffProfiles/dietmar/Agegrid/agegrid.html. [ bib ]
[3811] D. Müller, W. R. Roest, J.-Y. Royer, L. M. Gahagan, and J. G. Sclater. Digital isochrons of the world's ocean floor. J. Geophys. Res.: Sol. Earth, 102:3211--3214, 1997. [ bib ]
[3812] G. Müller. Starch columns - analog model for basalt columns. J. Geophys. Res.: Sol. Earth, 103:15239--15253, 1998. [ bib ]
[3813] B. Müller, V. Wehrle, and K. Fuchs. The 1997 release of the World Stress Map. http://www-wsm.physik.uni-karlsruhe.de/pub/Rel97/wsm97.html, 1997. [ bib ]
[3814] G. Müller. Theorie elastischer Wellen. Skriptum zur Vorlesung. [ bib ]
[3815] G. Müller and J. Schweitzer. Beschreibungen der Herdlösungstechnik. [ bib ]
[3816] G. Müller. Seismologie. Skriptum zur Vorlesung. [ bib ]
[3817] H.-B. Mühlhaus and K. Regenauer-Lieb. Towards a self-consistent plate mantle model that includes elasticity: simple benchmarks and application to basic modes of convection. Geophys. J. Int., 163:788--800, 2005. [ bib ]
[3818] Joshua MR Muir, Feiwu Zhang, and John P Brodholt. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone. Earth Planet. Sci. Lett., 565:116909, 2021. [ bib ]
[3819] Sujoy Mukhopadhyay. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 486:101--104, 2012. [ bib ]
[3820] Sujoy Mukhopadhyay and Rita Parai. Noble gases: A record of Earth’s evolution and mantle dynamics. Ann. Rev. Earth Planet. Sci., 47:389--419, 2019. [ bib ]
[3821] F. Mulargia and P. Gasperini. Evaluation of the applicability of the time- and slip-predictable earthquake recurrence models to Italian seismicity. Geophys. J. Int., 120:453--473, 1995. [ bib ]
[3822] Iskander A Muldashev and Stephan V Sobolev. What controls maximum magnitudes of giant subduction earthquakes? Geochem., Geophys., Geosys., 21(9):e2020GC009145, 2020. [ bib ]
[3823] Iyan E Mulia and Kenji Satake. Developments of tsunami observing systems in japan. Front. Earth Sci., 8:145, 2020. [ bib ]
[3824] R. Mulyukova and D. Bercovici. Collapse of passive margins by lithospheric damage and pluning grain size. Earth Planet. Sci. Lett., 484:341--352, 2018. [ bib ]
[3825] Andrea Mundl-Petermeier, Mathieu Touboul, Matthew G Jackson, James MD Day, Mark D Kurz, Vedran Lekic, Rosalind T Helz, and Richard J Walker. Tungsten-182 heterogeneity in modern ocean island basalts. Science, 356:66--69, 2017. [ bib ]
[3826] Anomalous Mundl-Petermeier, RJ Walker, RA Fischer, V Lekic, MG Jackson, and MD Kurz. Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth’s core? Geochim. Cosmochim. Acta, 271:194--211, 2020. [ bib ]
[3827] Motohiko Murakami, Kei Hirose, Hisayoshi Yurimoto, Satoru Nakashima, and Naoto Takafuji. Water in Earth's lower mantle. Science, 295:1885--1887, 2002. [ bib ]
[3828] Tomoya Muramoto, Yoshihiro Ito, Daisuke Inazu, Laura M Wallace, Ryota Hino, Syuichi Suzuki, Spahr C Webb, and Stuart Henrys. Seafloor crustal deformation on ocean bottom pressure records with nontidal variability corrections: Application to Hikurangi Margin, New Zealand. Geophys. Res. Lett., 46:303--310, 2019. [ bib ]
[3829] J Brendan Murphy and R Damian Nance. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence. Geology, 31:873--876, 2003. [ bib ]
[3830] J Brendan Murphy, R Damian Nance, and Peter A Cawood. Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondw. Res., 15:408--420, 2009. [ bib ]
[3831] M. Murphy, V. Sanchez, and M. Taylor. Syncollisional extension along the India-Asia suture zone, south-central Tibet: Implications for crustal deformation of Tibet. Earth Planet. Sci. Lett., 290:233--243, 2010. [ bib ]
[3832] J Brendan Murphy and R Damian Nance. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology, 19:469--472, 1991. [ bib ]
[3833] M. Musgrave. Crystal Acoustics. Holden-Day, San Francisco, 1970. [ bib ]
[3834] J. Muto, J. D. P. Moore, S. Barbot, T. Iinuma, Y. Ohta, and H. Iwamori. Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Science adv., 5(9):10.1126/sciadv.aaw1164, 2019. [ bib ]
[3835] John C Mutter, Manik Talwani, and Paul L Stoffa. Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial sea-floor spreading”. Geology, 10:353--357, 1982. [ bib ]
[3836] F. R. N. Nabarro. Deformation of crystals by the motion of single lons. In Report of a Conference on the Strength of Solids (Bristol, U.K.), pages 75--90. Physical Society, London, 1948. [ bib ]
[3837] Elisabeth S. Nadin and Jason B. Saleeby. Quaternary reactivation of the Kern Canyon fault system, southern Sierra Nevada, California. Geol. Soc. Am. Bull., 122:1671--1685, 2010. [ bib ]
[3838] K Nagata, M Nakatani, and S Yoshida. A revised rate-and state-dependent friction law obtained by constraining constitutive and evolution laws separately with laboratory data. J. Geophys. Res.: Sol. Earth, 117(B02314), 2012. [ bib | DOI ]
[3839] K. Nagata, B. Kilgore, N.M. Beeler, and M. Nakatani. High-frequency imaging of elastic contrast and contact area with implications for naturally observed changes in fault properties. J. Geophys. Res.: Sol. Earth, 119:5855--5875, 2014. [ bib ]
[3840] T. J. Nagel, W. B. F. Ryan, A. Malinverno, and W. R. Buck. Pacific trench motions controlled by the asymmetric plate configuration. Tectonics, 27, 2008. [ bib | DOI ]
[3841] S. Nagihara, C. R. B. Lister, and J. G. Sclater. Reheating of old oceanic lithosphere: Deductions from observations. Earth Planet. Sci. Lett., 139:91--104, 1996. [ bib ]
[3842] S. Naif, K. Key, S. Constable, and R. L. Evans. Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495:356--359, 2013. [ bib ]
[3843] S. Naif, K. Key, S. Constable, and R. L. Evans. Water-rich bending faults at the Middle America Trench. Geochem., Geophys., Geosys., 16:2582--2597, 2015. [ bib | DOI ]
[3844] Yani Najman and Eduardo Garzanti. Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol. Soc. Amer. Bull., 112:435--449, 2000. [ bib ]
[3845] Takashi Nakagawa and Paul J Tackley. Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophys. Res. Lett., 31(16), 2004. [ bib ]
[3846] Takashi Nakagawa and Paul J Tackley. Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal--chemical-phase boundary layer in 3D spherical convection. Earth Planet. Sci. Lett., 271:348--358, 2008. [ bib ]
[3847] T. Nakagawa, P. J. Tackley, F. Deschamps, and J. A. D. Connolly. Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth's mantle. Geochem., Geophys., Geosys., 10(Q03004), 2009. [ bib | DOI ]
[3848] H Nakagawa. Development and validation of GEONET new analysis strategy (Version 4) (in Japanese). J. Geogr. Surv. Inst., 118:1--8, 2009. [ bib ]
[3849] T. Nakagawa, P. J. Tackley, F. Deschamps, and J. A. D. Connolly. The influence of MORB and Harzburgite composition on the thermo-chemical mantle convection in a 3D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett., 296:403--412, 2010. [ bib ]
[3850] Takashi Nakagawa and Tomoeki Nakakuki. Dynamics in the uppermost lower mantle: insights into the deep mantle water cycle based on the numerical modeling of subducted slabs and global-scale mantle dynamics. Ann. Rev. Earth Planet. Sci., 47:41--66, 2019. [ bib ]
[3851] Takashi Nakagawa and Shun-ichiro Karato. Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties. Geophys. J. Int., 226:1986--1996, 2021. [ bib ]
[3852] J. Nakajima, T. Matsuzawa, A. Hasegawa, and D. Zhao. Seismic imaging of arc magma and fluids under the central part of northeastern Japan. Tectonophys., 341:1--17, 2001. [ bib ]
[3853] T. Nakakuki, M. Tagawa, and Y. Iwase. Dynamical mechanisms controlling formation and avalanche of a stagnant slab. Phys. Earth Planet. Inter., 183:309–--320, 2010. [ bib ]
[3854] T. Nakakuki and E. Mura. Dynamics of slab rollback and induced back-arc basin formation. Earth Planet. Sci. Lett., 361:287--297, 2013. [ bib ]
[3855] W. Nakamura, N. Uchida, and T. Matsuzawa. Spatial distribution of the faulting types of small earthquakes around the 2011 Tohoku-oki earthquake: A comprehensive search using template events. J. Geophys. Res.: Sol. Earth, 121:2591--2607, 10.1002/2015JB012584 2016. [ bib ]
[3856] Yosio Nakamura. Seismic velocity structure of the lunar mantle. J. Geophys. Res.: Sol. Earth, 88:677--686, 1983. [ bib ]
[3857] A. Nakanishi, N. Takahashi, Y. Yamamoto, T. Takahashi, S.O. Citak, T. Nakamura, K. Obana, S. Kodaira, and Y. Kaneda. Three-dimensional plate geometry and P-wave velocity models of the subduction zone in SW Japan: Implications for seismogenesis. In T. Byrne, M.B. Underwood, D. Fisher, L. McNeill, D. Saffer, K. Ujiie, and A. Yamaguchi, editors, Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura, volume 534 of Geol Soc. Amer. Spec. Pap., pages 69--86. Geological Society of America, 2018. [ bib ]
[3858] H. Nakanishi. Cellular automaton model of earthquakes with deterministic dynamics. Phys. Rev. A, 41:7086--7089, 1990. [ bib ]
[3859] Nori Nakata and Roel Snieder. Near-surface weakening in Japan after the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(17), 2011. [ bib ]
[3860] M. Nakatani. Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology. J. Geophys. Res.: Sol. Earth, 106:13347--13380, 2001. [ bib ]
[3861] S. M. Nakiboglu. Hydrostatic theory of the Earth and its mechanical implications. Phys. Earth Planet. Inter., 28:302--311, 1982. [ bib ]
[3862] S Mete Nakiboglu and Kurt Lambeck. A reevaluation of the isostatic rebound of Lake Bonneville. J. Geophys. Res.: Sol. Earth, 88:10439--10447, 1983. [ bib ]
[3863] Suleyman S Nalbant, John McCloskey, Sandy Steacy, and Aykut A Barka. Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet. Sci. Lett., 195:291--298, 2002. [ bib ]
[3864] S. Nalbant, A. A. Barka, and Ö. Alpetkin. Failure stress change caused by the 1992 Erzincan earthquake (Ms=6.8). Geophys. Res. Lett., 23:1561--15, 1996. [ bib ]
[3865] S. S. Nalbant, A. Hubert, and G. C. P. King. Stress coupling between earthquakes in northwest Turkey and the north Agean Sea. J. Geophys. Res.: Sol. Earth, 103:24469--24486, 1998. [ bib ]
[3866] John Benjamin Naliboff, C Lithgow-Bertelloni, Larry J Ruff, and N de Koker. The effects of lithospheric thickness and density structure on Earth's stress field. Geophys. J. Int., 188:1--17, 2012. [ bib ]
[3867] John B. Naliboff, Magali I. Billen, Taras Gerya, and Jessie Saunders. Dynamics of outer-rise faulting in oceanic-continental subduction systems. Geochem., Geophys., Geosys., 14:2310--2327, 2013. [ bib ]
[3868] John Naliboff, A Glerum, and S Brune. 3D numerical simulations of multiphase continental rifting. In AGU Fall Meeting Abstracts, 2017. [ bib ]
[3869] R. D. Nance, J. B. Murphy, and M. Santosh. The supercontinent cycle: A retrospective essay. Gondw. Res., 25:4--29, 2014. [ bib ]
[3870] K. Z. Nanjo, N. Hirata, K. Obara, and K. Kasahara. Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys. Res. Lett., 39(L20304), 2012. [ bib | DOI ]
[3871] F. Nansen. The strandflat and isostasy. Kristiania. I Kommission hos Jacob Dybwad, 1922. [ bib ]
[3872] J. L. Naranjo, H. Sigurdsson, S. N. Carey, and W. G. Fritz. Eruption of Nevado del Ruiz volcano, Colombia, on 13 November, 1985: Tephra fall and lahars. Science, 233:961--963, 1986. [ bib ]
[3873] C. Narteau, S. Byrdina, P. Shebalin, and D. Schorlemmer. Common dependence on stress for the two fundamental laws of statistical seismology. Nature, 462:642--646, 2009. [ bib ]
[3874] L. Narváez and R. Tobón. Petrografía y geoquímica del campo de lavas de Tarapacá, Santa Rosa de Cabal, Risaralda, Trabajo de Grado. Departamento de Geología Universidad de Caldas, 2007. [ bib ]
[3875] National Academies of Sciences, Engineering, and Medicine. A Vision for NSF Earth Sciences 2020-2030: Earth in Time. The National Academies Press, Washington DC, 2020. [ bib | DOI ]
[3876] National Academies of Sciences, Engineering, and Medicine. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing. The National Academies Press, Washington DC, 2017. [ bib | DOI ]
[3877] NASA. Earth science enterprise strategy 2003. National Aeronautics and Space Administration, Washington DC, 2003. [ bib ]
[3878] NASA Exoplanet Science Institute. NASA Exoplanet Archive. California Institute of Technology, 2023. Available online at exoplanetarchive.ipac.caltech.edu/, accessed 11/2023. [ bib | DOI ]
[3879] NASEM. Foundational Research Gaps and Future Directions for Digital Twins. The National Academies Press, Washington, DC, 2023. National Academies of Sciences, Engineering, and Medicine. [ bib | DOI ]
[3880] John Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931--954, 1958. [ bib ]
[3881] H.-C. Nataf. Seismic imaging of mantle plumes. Ann. Rev. Earth Planet. Sci., 28:391--417, 2000. [ bib ]
[3882] H.-C. Nataf, I. Nakanishi, and D. L. Anderson. Anisotropy and shear velocity heterogeneity in the upper mantle. Geophys. Res. Lett., 11:109--112, 1984. [ bib ]
[3883] H.-C. Nataf, I. Nakanishi, and D. L. Anderson. Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. Part III. Inversion. J. Geophys. Res.: Sol. Earth, 91:7261--7307, 1986. [ bib ]
[3884] H.-C. Nataf and Y. Ricard. 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Inter., 95:101--122, 1996. [ bib ]
[3885] S. I. Natarov and C. P. Conrad. The role of Poiseuille flow in creating depth-variation of asthenospheric shear. Geophys. J. Int., 190:1297--1310, 2012. [ bib ]
[3886] MA Naylor and CHK Supesteijn. Fault geometries in basement-induced wrench faulting under different initial stress states. J. Struct. Geol., 8:737--752, 1986. [ bib ]
[3887] NCEDC. Northern California Earthquake Data Center. Dataset. UC Berkeley Seismological Laboratory, 2014. accessed 12/2014. [ bib | DOI ]
[3888] USGS NCSN. Usgs ncsn catalog. Northern California Earthquake Data Center, Berkeley CA, 2008. Available online at www.ncedc.org/ncedc/catalog-search.html, accessed January 2008. [ bib ]
[3889] B. Nehl. Statistische untersuchungen von erdbeben in der türbei im zeitraum 1800--1981. Master's thesis, Institut für Geophysik der Christian-Albrechts-Universität zu Kiel, Kiel, ? [ bib ]
[3890] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308--313, 1965. [ bib ]
[3891] Alan R Nelson, Harvey M Kelsey, and Robert C Witter. Great earthquakes of variable magnitude at the Cascadia subduction zone. Quat. Res., 65:354--365, 2006. [ bib ]
[3892] Peter L Nelson and Stephen P Grand. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nature Geosc., 11:280--284, 2018. [ bib ]
[3893] R. Nerlich, L. Colli, S. Ghelichkhan, B. Schuberth, and H.-P. Bunge. Mantle convection models constrain central Neo-Tethys Ocean reconstructions. Geophys. Res. Lett., 42:9595--9603, 2016. [ bib ]
[3894] M. Nettles and A. M. Dziewoński. Radially anisotropic shear-velocity structure of the upper mantle globally and beneath North America. J. Geophys. Res.: Sol. Earth, 113(B02303), 2008. [ bib | DOI ]
[3895] J. Neugebauer. Structures and kinematics of the North Anatolian Fault zone, Adapazarri-Bolu region, northwest Turkey. Tectonophys., 243:119--134, 1995. [ bib ]
[3896] KR Newcomb and WR McCann. Seismic history and seismotectonics of the Sunda Arc. J. Geophys. Res.: Sol. Earth, 92:421--439, 1987. [ bib ]
[3897] P. K. Dunbar, P. A. Lockridge, and L. S. Whitewide. Catalog of Significant Earthquakes 2150 B.C.--1991 A.D. Report SE-49. National Geophysical Data Center, Boulder, Colorado, 1997. http://www.ngdc.noaa.gov/seg/hazard/sigintro.html. [ bib ]
[3898] SD Ni, Tan E, Gurnis M, and Helmberger DV. Sharp sides to the African superplume. Science, 296:1850--1852, 2002. [ bib ]
[3899] T. Nicholson, M. Sambridge, and Ó. Gudmundsson. On entropy and clustering in earthquake hypocentre distributions. Geophys. J. Int., 142:37--51, July 2000. [ bib ]
[3900] C Nicholson, CC Sorlien, T Atwater, JC Crowell, and BP Luyendyk. Microplate capture, rotation of the Western Transverse Ranges, and initiation of the San-Andreas transform as a low-angle fault system. Geology, 22:491--495, 1994. [ bib ]
[3901] A. Nicolas, F. Boudier, and A. M. Bouillier. Mechanisms of flow in naturally and experimentally deformed peridotites. Am. J. Seis., 273:853--876, 1973. [ bib ]
[3902] A. Nicolas and N. I. Christensen. Formation of anisotropy in upper mantle peridotites; a review. In K. Fuchs and C. Froidevaux, editors, Composition, structure and dynamics of the lithosphere-asthenosphere system, volume 16 of Geodynamics, pages 111--123. American Geophysical Union, Washington DC, 1987. [ bib ]
[3903] J. Nie, B. K. Horton, A. Mora, J. E. Saylor, T. B. Housh, J. Rubiano, and J. Naranjo. Tracking exhumation of Andean ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38:451--454, 2010. [ bib ]
[3904] NIED. F-net NIED seismic moment tensor catalogue. Technical report, National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan, 2016. Available online at www.fnet.bosai.go.jp/fnet/event, accessed 09/2016. [ bib ]
[3905] Steven A Niederer, Michael S Sacks, Mark Girolami, and Karen Willcox. Scaling digital twins from the artisanal to the industrial. Nature Comp. Sci., 1:313--320, 2021. [ bib ]
[3906] K. Niehuus and H. Schmeling. Temporal geoid variations as constraint in global geodynamics. In E. Boschi, editor, 9th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, volume 36 of International School of Geophysics, pages 15--16, Erice, Sicily, 2005. Ettore Majorana Foundation and Centre for Scienftific Culture. [ bib ]
[3907] S. B. Nielsen and A. Tarantola. Numerical model of seismic rupture. J. Geophys. Res.: Sol. Earth, 97:15291--15295, October 1992. [ bib ]
[3908] S. Nielsen, L. Knopoff, and A. Tarantola. Model of earthquake recurrence: Role of elastic wave radiation, relaxation of friction, and inhomogeneity. J. Geophys. Res.: Sol. Earth, 100:12423--12430, 1995. [ bib ]
[3909] N. A. Niemi, M. Oskin, and T. K. Rockwell. Southern California Earthquake Center geologic vertical motion database. Geochem., Geophys., Geosys., 9(Q07010), 2008. [ bib | DOI ]
[3910] Mehdi Nikkhoo and Thomas R Walter. Triangular dislocation: an analytical, artefact-free solution. Geophys. J. Int., 201:1119--1141, 2015. [ bib ]
[3911] K. Nikolaeva, T. V. Gerya, and F. O. Marques. Subduction initiation at passive margins: Numerical modeling. J. Geophys. Res.: Sol. Earth, 115(B03406):10.1029/2009JB006549, 2010. [ bib ]
[3912] K. Nikolaeva, T. V. Gerya, and F. O. Marques. Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology, 39:463--466, 2011. [ bib ]
[3913] Francis Nimmo and Michael Manga. Causes, characteristics and consequences of convective diapirism on Europa. Geophys. Res. Lett., 29(23):2109, 2002. [ bib | DOI ]
[3914] Francis Nimmo. Why does Venus lack a magnetic field? Geology, 30:987--990, 2002. [ bib ]
[3915] Francis Nimmo and Michael Manga. Geodynamics of Europa's icy shell. In Europa, pages 381--404. University of Arizona Press Tucson, 2009. [ bib ]
[3916] F Nimmo and D McKenzie. Volcanism and tectonics on Venus. Ann. Rev. Earth Planet. Sci., 26:23--51, 1998. [ bib ]
[3917] S. P. Nishenko and R. Buland. A generic recurrence interval distribution for earthquake forecasting. Bull. Seismol. Soc. Am., 77:1382--13899, 1987. [ bib ]
[3918] T. Nishikawa and S. Ide. Earthquake size distribution in subduction zones linked to slab buoyancy. Nature Geosc., 7:904--908, 2014. [ bib ]
[3919] T Nishikawa, T Matsuzawa, K Ohta, N Uchida, T Nishimura, and S Ide. The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories. Science, 365:808--813, 2019. [ bib ]
[3920] Tomoaki Nishikawa, Satoshi Ide, and Takuya Nishimura. A review on slow earthquakes in the Japan Trench. Prog. Earth Planet. Sci., 10:1--51, 2023. [ bib ]
[3921] T. Nishimura, T. Hirasawa, S. Miyazaki, T. Sagiya, T. Tada, S. Miura, and K. Tanaka. Temporal change of interplate coupling in northeastern Japan during 1995-2002 estimated from continuous GPS observations. Geophys. J. Int., 157:901--916, 2004. [ bib ]
[3922] T. Nishimura, H. Munekane, and H. Yarai. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET. Earth, Planet. Space, 63:631--636, 2011. [ bib ]
[3923] T. Nishimura, Y. Hiramatsu, and Y. Ohta. Episodic transient deformation revealed by the analysis of multiple GNSS networks in the Noto Peninsula, central Japan. Sci. Rep., 13:8381, 2023. [ bib ]
[3924] C. E. Nishimura and D. W. Forsyth. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. Int., 96:203--229, 1989. [ bib ]
[3925] O Nishizawa and T Yoshino. Seismic velocity anisotropy in mica-rich rocks: An inclusion model. Geophys. J. Int., 145(1):19--32, 2001. [ bib ]
[3926] O. Nishizawa, K. Onai, and K. Kusunose. Hypocenter distribution and focal mechanism of AE events during two stress stage creep in Yugawara andesite. Pure Appl. Geophys., 122:36--52, 19984. [ bib ]
[3927] F. Niu and L. Wen. Strong seismic scatterers near the core-mantle boundary west of Mexico. Geophys. Res. Lett., 28:3557--3560, 2001. [ bib ]
[3928] F. Niu, H. Kawakatsu, and Y. Fukao. Seismic evidence for a chemical heterogeneity in the mid-mantle: a strong and slightly dipping seismic reflector beneath the Marianas subduction zone. J. Geophys. Res.: Sol. Earth, 108(2419), 2003. [ bib | DOI ]
[3929] F. Niu and A. M. Perez. Seismic anisotropy in the lower mantle: A comparison of waveform splitting of SKS and SKKS. Geophys. Res. Lett., 31(L24612), 2004. [ bib | DOI ]
[3930] F. Niu, A. Levander, S. Ham, and M. Obayashi. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions. Earth Planet. Sci. Lett., 239:9--17, 2005. [ bib ]
[3931] F. Niu, T. Baldwin, G. Pavlis, F. Vernon, H. Rendon, and A. Levander. Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela. J. Geophys. Res.: Sol. Earth, 112(B11308), 2007. [ bib | DOI ]
[3932] Yaoling Niu. The meaning of global ocean ridge basalt major element compositions. J. Petrol., 57:2081--2103, 2016. [ bib ]
[3933] Z.-R. Niu and D.-M. Chen. Lyapunov exponent and dimension of the strange attractor of elastic frictional system. Acta Seimol. Sin., 8:575--584, 1995. [ bib ]
[3934] NOAA. ETOPO 2022 15 Arc-Second Global Relief Model. NOAA National Centers for Environmental Information, 2022. accessed 12/2023. [ bib | DOI ]
[3935] Lena Noack and Doris Breuer. Plate tectonics on rocky exoplanets: influence of initial conditions and mantle rheology. Plane. Space Sc., 98:41--49, 2014. [ bib ]
[3936] T. Noack, P. Kruspan, Fäh, and E. Rüttener. A detailed rating scheme for seismic microzonation based on geological and geotechnical data and numerical modelling applied to the city of Basel. Eclogae geol. Helv., 90:433--448, 1997. [ bib ]
[3937] Hiroyuki Noda and Nadia Lapusta. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature, 493:518--521, 2013. [ bib ]
[3938] H. Noda and N. Lapusta. Three-dimensional earthquake sequence simulations with evolving temperature and pore pressure due to shear heating: effect of heterogeneous hydraulic diffusivity. J. Geophys. Res.: Sol. Earth, B12314, 115. [ bib | DOI ]
[3939] Atsushi Noda. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. GSA Bull., 128:879--895, 2016. [ bib ]
[3940] G. Nolet, S.-i. Karato, and R. Montelli. Plume fluxes from seismic tomography. Earth Planet. Sci. Lett., 248:685--699, 2006. [ bib ]
[3941] Guust Nolet, Richard Allen, and Dapeng Zhao. Mantle plume tomography. Chem. Geol., 241:248--263, 2007. [ bib ]
[3942] G. Nolet. Slabs do not go gently. Science, 324:1152--1153, 2009. [ bib ]
[3943] G. Nolet and A. Zielhuis. Low S velocities nuder the Tornquist-Teisseyre zone: evidence for water injection into the transition zone by subduction. J. Geophys. Res.: Sol. Earth, 99:15813--15820, 1994. [ bib ]
[3944] E. Norabuena, L. Leffler-Griffin, A. Mao, T. Dixon, S. Stein, I. S. Sacks, L. Ocola, and M. Ellis. Space geodetic observations of Nazca-South America convergence across the central Andes. Science, 279:358--362, 1998. [ bib ]
[3945] Richard J Norris and Virginia G Toy. Continental transforms: A view from the Alpine Fault. J. Struct. Geol., 64:3--31, 2014. [ bib ]
[3946] C. Nostro, M. Cocco, and M. E. Belardinelli. Static stress changes in extensional regimes: An application to Southern Apennines (Italy). Bull. Seismol. Soc. Am., 87:234--248, 1997. [ bib ]
[3947] C. Nostro, A. Piersanti, A. Antonioli, and G. Spada. Spherical versus flat models of coseismic and postseismic deformations. J. Geophys. Res.: Sol. Earth, 104:13115--13134, 1999. [ bib ]
[3948] S. Nothard, J. Haines, J. Jackson, and B. Holt. Distributed deformation in the subducting lithosphere at Tonga. Geophys. J. Int., 127:328--338, 1996. [ bib ]
[3949] Hendro Nugroho, Ron Harris, Amin W. Lestariya, and Bilal Maruf. Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements. Tectonophys., 479:52 --65, 2009. [ bib ]
[3950] Amos Nur. Effects of stress on velocity anisotropy in rocks with cracks. J. Geophys. Res.: Sol. Earth, 76(8):2022--2034, 1971. [ bib ]
[3951] A. Nur and J. Booker. Aftershocks caused by pore fluid flow? Science, 175:885--887, 1972. [ bib ]
[3952] Amos Nur and Gerald Mavko. Postseismic viscoelastic rebound. Science, 183:204--206, 1974. [ bib ]
[3953] Allen P Nutman, Clark RL Friend, and Vickie C Bennett. Evidence for 3650--3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archaean tectonics. Tectonics, 21:5--1, 2002. [ bib ]
[3954] Allen P Nutman, Jan H Allaart, David Bridgwater, Erich Dimroth, and Minik Rosing. Stratigraphic and geochemical evidence for the depositional environment of the early Archaean Isua supracrustal belt, southern West Greenland. Precamb. Res., 25:365--396, 1984. [ bib ]
[3955] Andrew A Nyblade and Scott W Robinson. The African superswell. Geophys. Res. Lett., 21:765--768, 1994. [ bib ]
[3956] J. F. Nye. Physical Properties of Crystals. Oxford University Press, London, 1985. [ bib ]
[3957] K. Obara. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296:1679--1681, 2002. [ bib ]
[3958] Kazushige Obara, Hitoshi Hirose, Fumio Yamamizu, and Keiji Kasahara. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett., 31(L23602), 2004. [ bib | DOI ]
[3959] Kazushige Obara. Characteristics and interactions between non-volcanic tremor and related slow earthquakes in the Nankai subduction zone, southwest Japan. J. Geodynamics, 52:229--248, 2011. [ bib ]
[3960] A. Obara and K. Kato. Connecting slow earthquakes to huge earthquakes. Science, 353:253--257, 2016. [ bib ]
[3961] M. Obayashi, J. Yoshimitsu, and Y. Fukao. Tearing of stagnant slab. Science, 324:1173--1175, 2009. [ bib ]
[3962] M. Obayashi, J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, and Y. Gao. Finite frequency whole mantle P-wave tomography: Inprovement of subducted slab. Geophys. Res. Lett., 40:5652--5657, 2013. [ bib ]
[3963] M. Obrebski, R. M. Allen, M. Xue, and S.-H. Hung. Slab-plume interaction beneath the Pacific Northwest. Geophys. Res. Lett., 37(L14305), 2010. [ bib | DOI ]
[3964] M. Obrebski, R. M. Allen, F. Pollitz, and S.-H. Hung. Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophys. J. Int., 185:1003--1021, 2011. [ bib ]
[3965] Richard J O'Connell. Pleistocene glaciation and the viscosity of the lower mantle. Geophys. J. Int., 23:299--327, 1971. [ bib ]
[3966] R. J. O'Connell and B. Budiansky. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res.: Sol. Earth, 79:5412--5426, 1974. [ bib ]
[3967] R. J. O'Connell. On the scale of mantle convection. Tectonophys., 38:119--136, 1977. [ bib ]
[3968] Richard J O'Connell and Bernard Budiansky. Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res.: Sol. Earth, 82:5719--5735, 1977. [ bib ]
[3969] R. J. O'Connell and B. H. Hager. On the thermal state of the Earth. In A. Dziewoński and E. Boschi, editors, Physics of the Earth's Interior, pages 270--317. North Holland, Amsterdam, 1980. [ bib ]
[3970] R. J. O'Connell, C. W. Gable, and B. H. Hager. Toroidal-poloidal partitioning of lithospheric plate motions. In R. Sabadini and K. Lambeck, editors, Glacial Isostasy, Sea-Level and Mantle Rheology, pages 535--551. Kluwer Academic Publishers, Norwell MA, 1991. [ bib ]
[3971] J. W. Eaton et al. Octave homepage. Available online at www.gnu.org/software/octave/, accessed 05/2023, 2023. [ bib ]
[3972] M. Oda and K. Iwashita. Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci., 38:1713--1740, 2000. [ bib ]
[3973] L. J. O'Driscoll, E. D. Humphreys, and F. Saucier. Subduction adjacent to deep continental roots: Enhanced negative pressure in the mantle wedge, mountain building and continental motion. Earth Planet. Sci. Lett., 280:61--70, 2009. [ bib ]
[3974] Leland J O'Driscoll, Mark A Richards, and Eugene D Humphreys. Nazca--South America interactions and the late Eocene--late Oligocene flat-slab episode in the central Andes. Tectonics, 31(TC2013), 2012. [ bib | DOI ]
[3975] A. R. Oganov, J. P. Brodholt, and G. D. Price. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature, 411:934--937, 2001. [ bib ]
[3976] Y. Ogata and J. Zhuang. Space-time ETAS models and an improved extension. Tectonophys., 413:13--23, 2006. [ bib ]
[3977] Y. Ogata. Space-time point-process models for earthquake occurrences. Ann. Stat., 50:379--402, 1998. [ bib ]
[3978] M. Ogawa. Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity. J. Geophys. Res.: Sol. Earth, 108(B2):2067, 2003. [ bib | DOI ]
[3979] M. Ogawa. Variety of plumes and the fate of subducted basaltic crusts. Phys. Earth Planet. Inter., 183:366--–375, 2010. [ bib ]
[3980] Masaki Ogawa. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. J. Geophys. Res.: Sol. Earth, 92:13801--13810, 1987. [ bib ]
[3981] M. Ogawa, G. Schubert, and A. Zebib. Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J. Fluid Mech., 233:299--328, 1991. [ bib ]
[3982] David Oglesby. Rupture termination and jump on parallel offset faults. Bull. Seismol. Soc. Am., 98:440--447, 2008. [ bib ]
[3983] A. Ohira, S. Kodaira, Y. Nakamura, G. Fujie, R. Arai, and S. Miura. Evidence for frozen melts in the mid-lithosphere detected from active-source seismic data. Sci. Rep., 7(15770), 2017. [ bib | DOI ]
[3984] Kazuaki Ohta, Yoshihiro Ito, Ryota Hino, Shukei Ohyanagi, Takanori Matsuzawa, Hajime Shiobara, and Masanao Shinohara. Tremor and inferred slow slip associated with afterslip of the 2011 Tohoku earthquake. Geophys. Res. Lett., 46:4591--4598, 2019. [ bib ]
[3985] Eiji Ohtani, Konstantin Litasov, Tomofumi Hosoya, Tomoaki Kubo, and Tadashi Kondo. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter., 143:255--269, 2004. [ bib ]
[3986] E. Ohtani. Water in the mantle. Elements, 1:25--30, 2005. [ bib ]
[3987] E. Ohtani and T. Sakai. Recent advances in the study of mantle phase transitions. Phys. Earth Planet. Inter., 170:240--247, 2008. [ bib ]
[3988] M. Ohtsu. Generation of acoustic emission waves and moment tensor analysis. J. acoust. Emission, 14:S104, 1996. [ bib ]
[3989] T. Ohuchi, T. Kawazoe, Y. Nishihara, and T. Irifune. Change of olivine a-axis alignment induced by water: Origin of seismic anisotropy in subduction zones. Earth Planet. Sci. Lett., 317:111--119, 2012. [ bib ]
[3990] T. Ohuchi and T. Irifune. Development of A-type olivine fabric in water-rich deep upper mantle. Earth Planet. Sci. Lett., 361:20--30, 2013. [ bib ]
[3991] Gregory W. Ojakangas and David J. Stevenson. Thermal state of an ice shell on Europa. Icarus, 81:220--241, 1989. [ bib ]
[3992] A. Ojeda and J. Havskov. Crustal structure and local seismicity in Colombia. J. Seismol., 5:575--593, 2001. [ bib ]
[3993] Y. Okada, K. Kasahara, S. Hori, K. Obara, S. Sekiguchi, H. Fujiwara, and A. Yamamoto. Recent progress of seismic observation networks in Japan Hi-net, F-net, K-NET and KiK-net. Earth, Planet. Space, 56:15--28, 2004. [ bib ]
[3994] Y. Okada. Surface deformations due to shear and tensile faults in a halfspace. Bull. Seismol. Soc. Am., 75:1135--1154, 1985. [ bib ]
[3995] Y. Okada. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 82:1018--1040, 1992. [ bib ]
[3996] Emile A Okal. Energy and magnitude: a historical perspective. Pure Appl. Geophys., 176:3815--3849, 2019. [ bib ]
[3997] Emile A Okal and Stephen H Kirby. Frequency-moment distribution of deep earthquakes; implications for the seismogenic zone at the bottom of slabs. Phys. Earth Planet. Inter., 92:169--187, 1995. [ bib ]
[3998] A. Okamoto and H. Shimizu. Contrasting fracture patterns induced by volume-increasing and -decreasing reactions: implications for the progress of metamorphic reactions. Earth Planet. Sci. Lett., 417:9--18, 2015. [ bib ]
[3999] D. A. Okaya and T. V. McEvilly. Elastic wave propagation in anisotropic crustal material possessing arbitrary internal tilt. Geophys. J. Int., 153:344--358, 2003. [ bib ]
[4000] D. Okaya, W. Rabbel., T. Beilecke, and J. Hasenclever. P-wave material anisotropy of a tecton-metamorphic terrane: An active-source seismic experiment at the KTB super-deep drill hole, southeast Germany. Geophys. Res. Lett., 31(L24703):10.1029/2004GL020855, 2004. [ bib ]
[4001] Tomohisa Okazaki, Yukitoshi Fukahata, and Takuya Nishimura. Consistent estimation of strain-rate fields from GNSS velocity data using basis function expansion with ABIC. Earth, Planets and Space, 73:1--22, 2021. [ bib ]
[4002] Paul G Okubo and Keiiti Aki. Fractal geometry in the San Andreas fault system. J. Geophys. Res.: Sol. Earth, 92:345--355, 1987. [ bib ]
[4003] P. G. Okubo. Dynamic rupture modeling with laboratory-derived constitutive relations. J. Geophys. Res.: Sol. Earth, 94:12321--12335, 1989. [ bib ]
[4004] D. Olbertz, M. J. R. Wortel, and U. Hansen. Trench migration and subduction zone geometry. Geophys. Res. Lett., 24:221--224, 1997. [ bib ]
[4005] D. W. Oldenburg and J. N. Brune. Ridge transform fault spreading pattern in freezing wax. Science, 178:301--304, 1972. [ bib ]
[4006] Douglas W. Oldenburg and James N. Brune. An explanation for the orthogonality of ocean ridges and transform faults. J. Geophys. Res.: Sol. Earth, 80:2575--2585, 1975. [ bib ]
[4007] Richard Dixon Oldham. The constitution of the interior of the Earth, as revealed by earthquakes. Quart. J. Geol. Soc., 62:456--475, 1906. [ bib ]
[4008] Thomas O'Leary-Roseberry, Peng Chen, Umberto Villa, and Omar Ghattas. Derivative-informed neural operator: an efficient framework for high-dimensional parametric derivative learning. J. Comp. Phys., 496:112555, 2024. [ bib ]
[4009] J.-A. Olive, M. D. Behn, and L. C. Malatesta. Modes of extensional faulting controlled by surface processes. Geophys. Res. Lett., 41:6725--6733, 2014. [ bib ]
[4010] Jean-Arthur Olive, Mark D Behn, Eric Mittelstaedt, Garrett Ito, and Benjamin Z Klein. The role of elasticity in simulating long-term tectonic extension. Geophys. J. Int., 205:728--743, 2016. [ bib ]
[4011] Jean-Arthur Olive and Pierre Dublanchet. Controls on the magmatic fraction of extension at mid-ocean ridges. Earth Planet. Sci. Lett., 549:116541, 2020. [ bib ]
[4012] Jean-Arthur Olive. Mid-ocean ridges: Geodynamics written in the seafloor. In J. C. Duarte, editor, Dynamics of Plate Tectonics and Mantle Convection, pages 483--510. Elsevier, 2023. [ bib ]
[4013] J.-L. Olivet. La cinematique de la plaues Iberique. Bull. Centres Recherches Expl.-Prod. Elf Aquitane, 20:131--195, 1996. [ bib ]
[4014] M. Olivieri and G. Ekström. Rupture depths and source processes of the 1997--1998 earthquake sequence in central Italy. Bull. Seismol. Soc. Am., 89:305--310, 1999. [ bib ]
[4015] P. Olson and U. Christensen. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett., 250:561–--571, 2006. [ bib ]
[4016] Peter Olson. Mantle control of the geodynamo: Consequences of top-down regulation. Geochem., Geophys., Geosys., 17:1935--1956, 2016. [ bib ]
[4017] Stephanie L Olson, Malte Jansen, and Dorian S Abbot. Oceanographic considerations for exoplanet life detection. Astrophys. J., 895:19, 2020. [ bib ]
[4018] P. Olson. Mantle convection with spherical effects. J. Geophys. Res.: Sol. Earth, pages 4881--4890, 1981. [ bib ]
[4019] Peter Olson, David A Yuen, and Derick Balsiger. Mixing of passive heterogeneities by mantle convection. J. Geophys. Res.: Sol. Earth, 89:425--436, 1984. [ bib ]
[4020] P. Olson, D. A. Yuen, and Balsiger D. Convective mixing and the fine-structure of mantle heterogeneity. Phys. Earth Planet. Inter., 36:291--304, 1984. [ bib ]
[4021] L. F. Olson and H. Degn. Chaos in biological systems. Quaterly Rev. Biophys., 18:165, 1985. [ bib ]
[4022] P. Olson and I. S. Nam. Formation of seafloor swells by mantle plumes. J. Geophys. Res.: Sol. Earth, 91:7181--7191, 1986. [ bib ]
[4023] P. Olson. Hot spots, swells and mantle plumes. In M. P. Ryan, editor, Magma Transport and Storage, pages 33--51. John Wiley & Sons, 1990. [ bib ]
[4024] P. Olson and D. Bercovici. On the equipartitioning of kinematic energy in plate tectonics. Geophys. Res. Lett., 18:1751--1754, 1991. [ bib ]
[4025] F. Omori. On the afterschocks of earthquakes. J. Coll. Sci. Imp. Univ. Tokyo, 7:111--200, 1894. [ bib ]
[4026] Onno Oncken, David Hindle, Jonas Kley, Kirsten Elger, Pia Victor, and Kerstin Schemmann. Deformation of the central Andean upper plate system-Facts, fiction, and constraints for plateau models. In Onno Oncken, Guillermo Chong, Gerhard Franz, Peter Giese, Hans-Jürgen Götze, Victor A. Ramos, Manfred R. Strecker, and Peter Wigger, editors, The Andes: Active Subduction Orogeny, Frontiers in Earth Sciences, pages 3--27. Springer, 2006. [ bib ]
[4027] Onno Oncken, David Boutelier, Georg Dresen, and Kerstin Schemmann. Strain accumulation controls failure of a plate boundary zone: Linking deformation of the Central Andes and lithosphere mechanics. Geochem., Geophys., Geosys., 13(Q12007), 2012. [ bib | DOI ]
[4028] Onno Oncken, S Angiboust, and G Dresen. Slow slip in subduction zones: Reconciling deformation fabrics with instrumental observations and laboratory results. Geosphere, 18:104--129, 2022. [ bib ]
[4029] C. O'Neill, D. Müller, and B. Steinberger. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem., Geophys., Geosys., 6(Q0400), 2005. [ bib | DOI ]
[4030] C. O'Neill and A. Lenardic. Geological consequences of super-sized Earths. Geophys. Res. Lett., 34(L19204), 2007. [ bib | DOI ]
[4031] Craig O'Neill, Adrian Lenardic, L Moresi, Trond Helge Torsvik, and C-TA Lee. Episodic precambrian subduction. Earth Planet. Sci. Lett., 262:552--562, 2007. [ bib ]
[4032] C. O'Neill, A. Lenardic, W. L. Griffin, and S. Y. O'Reilly. Dynamics of cratons in an evolving mantle. Lithos, 102:12--24, 2008. [ bib ]
[4033] R. K. O'Nions, N. M. Evensen, and P. J. Hamilton. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res.: Sol. Earth, 84:6091--6101, 1979. [ bib ]
[4034] ND Opdyke and KW Henry. A test of the dipole hypothesis. Earth Planet. Sci. Lett., 6:139--151, 1969. [ bib ]
[4035] S. Operto, J. Virieux, J. X. Dessa, and G. Pascal. Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough. J. Geophys. Res.: Sol. Earth, 111(B09306), 2006. [ bib | DOI ]
[4036] D. H. Oppenheimer, P. A. Reasenberg, and R. W. Simpson. Fault plane solutions for the 1984 Morgan Hill, California, earthquake sequence: Evidence for the state of stress on the Calaveras fault. J. Geophys. Res.: Sol. Earth, 93:9007--9026, August 1988. [ bib ]
[4037] O. Ordoñez and M.Pimentel. Geoquímica isotópica del magmatismo reciente (<11 Ma), en los Andes Colombianos. Memorias del VIII Congreso Colombiano de Geología, page 4 p., 2001. [ bib ]
[4038] O. Ordoñez and M. M. Pimentel. Rb-sr and sm-nd isotopic study of the puquí complex, colombian andes. J. South Amer. Earth Sci., 15:173--182, 2002. [ bib ]
[4039] Suzanne Y O'Reilly, William L Griffin, Yvette H Poudjom Djomani, and Paul Morgan. Are lithospheres forever? Tracking changes in subcontinental lithospheric mantle through time. GSA Today, 11:4--10, 2001. [ bib ]
[4040] Thomas C O'Reilly and Geoffrey F Davies. Magma transport of heat on Io: A mechanism allowing a thick lithosphere. Geophys. Res. Lett., 8:313--316, 1981. [ bib ]
[4041] S. Oreshin, L. Vinnik, G. Kosarev, R. Kind, and F. Wenzel. Combined analysis of SKS splitting and regional P travel times in Siberia. Geophys. J. Int., 151:393--402, 2002. [ bib ]
[4042] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis expansion analysis for interpretable time series forecasting. In Int. Conf. on Learning Representations (ICLR), 2020. arXiv preprint arXiv:1905.10437. [ bib ]
[4043] Naomi Oreskes and Homer Eugene LeGrand, editors. Plate tectonics: An insider's history of the modern theory of the Earth. Westview Press, 2001. [ bib ]
[4044] Naomi Oreskes. The rejection of continental drift: Theory and method in American earth science. Oxford University Press, 1999. [ bib ]
[4045] GG Ori and PF Friend. Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12:475--478, 1984. [ bib ]
[4046] Egon Orowan. Fracture and strength of solids. Rep. Prog. Phys., 12:185--232, 1948. [ bib ]
[4047] E. Orowan. Mechanism of seismic faulting in rock deformation. Geol. Soc. Amer. Mem., 79:323--345, 1960. [ bib ]
[4048] Abraham Ortelius. Thesaurus Geographicus. Officina Plantiniana, Antwerp, Scan online at https://books.google.com/books?id=AWhXAAAAcAAJ&pg=PP750#v, accessed 12/2021 1596. [ bib ]
[4049] Anthony Osei Tutu, Bernhard Steinberger, Stephan V Sobolev, Irina Rogozhina, and Anton A Popov. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography. Solid Earth, 9:649--668, 2018. [ bib ]
[4050] Anthony Osei Tutu, Stephan V Sobolev, Bernhard Steinberger, Anton A Popov, and Irina Rogozhina. Evaluating the influence of plate boundary friction and mantle viscosity on plate velocities. Geochem., Geophys., Geosys., 19:642--666, 2018. [ bib ]
[4051] M. Oskin, L. Perg, D. Blumentritt, S. Mukhopadhyay, and A. Iriondo. Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone. J. Geophys. Res.: Sol. Earth, 112(B03402), 2007. [ bib | DOI ]
[4052] É. Ostanciaux, L. Husson, G. Choblet, C. Robin, and K. Pedoja. Present-day trends of vertical ground motion along the coast lines. Earth-Sci. Rev., 110:74--92, 2012. [ bib ]
[4053] K. Otsuki. Empirical relationships among the convergence rate of plates, rollback rate of trench axis and island-arc tectonics: “law of convergence rate of plates”. Tectonophys., 159:73--94, 1989. [ bib ]
[4054] E. Ott. Chaos in dynamical systems. Cambridge University Press, Cambridge, 1993. [ bib ]
[4055] J. K. Ousterhout. TCL and the TK Toolkit. Addison-Wesley, Reading, MA, 1993. [ bib ]
[4056] ER Oxburgh. Thermal gradients and regional metamorphism in overthrust terrains with special ewference to the eastern Alps. Schweiz. Mineral. Petrogr. Mitt., 54:641--662, 1974. [ bib ]
[4057] E. R. Oxburgh and D. L. Turcotte. The physico-chemical behaviour of the descending lithosphere. Tectonophys., 32:107--128, 1976. [ bib ]
[4058] Volker Oye, Hilmar Bungum, and Michael Roth. Source parameters and scaling relations for mining-related seismicity within the Pyhasalmi ore mine, Finland. Bull. Seismol. Soc. Am., 95:1011--1026, 2005. [ bib ]
[4059] A Arda Ozacar and George Zandt. Crustal seismic anisotropy in central Tibet: Implications for deformational style and flow in the crust. Geophys. Res. Lett., 31(23), 2004. [ bib ]
[4060] Yaman Ozakin and Yehuda Ben-Zion. Systematic Receiver Function Analysis of the Moho Geometry in the Southern California Plate-Boundary Region. Pure Appl. Geophys., 172:1167--1184, 2015. [ bib ]
[4061] S. Özalaybey and M. K. Savage. Shear-wave splitting beneath western United States in relation to plate tectonics. J. Geophys. Res.: Sol. Earth, 100:18135--18149, 1995. [ bib ]
[4062] S. Ozawa, T. Nishimura, H. Munekane, H. Suito, T. Kobayashi, M. Tobita, and T. Imakiire. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake. J. Geophys. Res.: Sol. Earth, 117(B07404):10.1029/2011JB009120, 2012. [ bib ]
[4063] Shinzaburo Ozawa. Shortening of recurrence interval of Boso slow slip events in Japan. Geophys. Res. Lett., 41:2762--2768, 2014. [ bib ]
[4064] So Ozawa and Ryosuke Ando. Mainshock and aftershock sequence simulation in geometrically complex fault zones. J. Geophys. Res.: Sol. Earth, 126:e2020JB020865, 2021. [ bib ]
[4065] K. M. Pakanovsky, D. M. Davis, R. M. Richardson, and D. D. Coblentz. Intraplate stresses and plate-driving forces in the Philippine Sea plate. J. Geophys. Res.: Sol. Earth, 104:1095--1110, 1999. [ bib ]
[4066] J. F. Pacheco, L. R. Sykes, and C. H. Scholz. Nature of seismic coupling along simple plate boundaries of the subduction type. J. Geophys. Res.: Sol. Earth, 98:14133--14159, 1993. [ bib ]
[4067] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a time series. Phys. Rev. Lett., 45:714, 1980. [ bib ]
[4068] M Page, K Felzer, R Weldon, and G Biasi. The magnitude-frequency distribution on the southern San Andreas fault follows the Gutenberg-Richter distribution (abstract). AGU Fall Meeting, 2008(S31C--06), 2008. [ bib ]
[4069] Morgan T. Page and Karen Felzer. Southern San Andreas fault seismicity is consistent with the Gutenberg--Richter magnitude--frequency distribution. Bull. Seismol. Soc. Am., 105:2070--2080, 2015. [ bib ]
[4070] Morgan T Page. More fault connectivity is needed in seismic hazard analysis. Bull. Seismol. Soc. Am., 111:391--397, 2021. [ bib ]
[4071] B. M. Page and T. M. Brocher. Thrusting of the central California margin over the edge of the Pacific plate during the transform regime. Geology, 21:635--638, 1993. [ bib ]
[4072] C. C. Paige and M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparse least-squares. Trans. Math. Software, 8:43--71, 1982. [ bib ]
[4073] Kadek Hendrawan Palgunadi, Alice-Agnes Gabriel, Thomas Ulrich, José Ángel López-Comino, and Paul Martin Mai. Dynamic fault interaction during a fluid-injection-induced earthquake: The 2017 Mw 5.5 Pohang event. Bull. Seismol. Soc. Am., 110:2328--2349, 2020. [ bib ]
[4074] H. Palme and H. S. C. O'Neill. Cosmochemical estimates of mantle composition. In R. W. Carlson, editor, The Mantle and Core, volume 2, pages 1--38. Elsevier, 2005. [ bib ]
[4075] Andrew Clennel Palmer and James Robert Rice. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. Royal Soc. London. A, 332:527--548, 1973. [ bib ]
[4076] R. Palmer, R. J. Weldon, E. Humphrey, and F. Saucier. Earthquake recurrence on the southern San Andreas modulated by fault-normal stress. Geophys. Res. Lett., 22:535--538, March 1 1995. [ bib ]
[4077] S. V. Panasyuk and B. H. Hager. Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors. Geophys. J. Int., 143:821--836, 2000. [ bib ]
[4078] S. V. Panasyuk and B. H. Hager. Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties. J. Geophys. Res.: Sol. Earth, 105:28199--28209, 2000. [ bib ]
[4079] S. V. Panasyuk, B. H. Hager, and A. M. Forte. Understanding the effects of mantle compressibility on geoid kernels. Geophys. J. Int., 124:121--133, 1996. [ bib ]
[4080] S. V. Panasyuk and B. H. Hager. A model of transformational superplasticity of the upper mantle. Geophys. J. Int., 133:741--755, 1998. [ bib ]
[4081] J. Panian and D.V. Wiltschko. Ramp initiation in a thrust wedge. Nature, 427:624--627, 2004. [ bib ]
[4082] M. Panning and B. A. Romanowicz. Inferences on flow at the base of Earth's mantle based on seismic anisotropy. Science, 303:351--353, 2004. [ bib ]
[4083] M. Panning and B. A. Romanowicz. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int., 167:361--379, 2006. [ bib ]
[4084] M. P. Panning and G. Nolet. Surface wave tomography for azimuthal anisotropy in a strongly reduced parameter space. Geophys. J. Int., 174:629--648, 2008. [ bib ]
[4085] M. P. Panning, V. Lekic, and B. A. Romanowicz. Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res.: Sol. Earth, 115, 2010. [ bib | DOI ]
[4086] Sanja Panovska, M Korte, and CG Constable. One hundred thousand years of geomagnetic field evolution. Rev. Geophys., 57:1289--1337, 2019. [ bib ]
[4087] H. Panuntun, S. Miyazaki, Y. Fukuda, and Y. Orihara. Probing the Poisson's ratio of poroelastic rebound following the 2011 M w 9.0 Tohoku earthquake. Geophys. J. Int., 215:2206--2221, 2018. [ bib ]
[4088] Andreea M Papuc and Geoffrey F Davies. The internal activity and thermal evolution of Earth-like planets. Icarus, 195:447--458, 2008. [ bib ]
[4089] Kitware, Inc. Paraview: Parallel Visualization Application. Online at www.paraview.org/, accessed 02/2022, 2022. [ bib ]
[4090] N. Pardo, H. Cepeda, and J. M. Jaramillo. The Paipa Volcano, Eastern Colombia, Eastern Cordillera of Colombia, South America: Volcanic stratigraphy. Earth Sci. Res J., 9:3--18, 2005. [ bib ]
[4091] N. Pardo, J. M. Jaramillo, and H. Cepeda. The Paipa Volcano, Eastern Colombia, Eastern Cordillera of Colombia, South America: Volcanic (Part ii): Petrography and major elements petrology. Earth Sci. Res. J., 9:148--164, 2005. [ bib ]
[4092] G. Pari and W. R. Peltier. Subcontinental mantle dynamics: a further analysis based on the joint constraints of dynamic surface topography and free-air gravity. J. Geophys. Res.: Sol. Earth, 105:5635, 2000. [ bib ]
[4093] J. Park and V. Levin. Seismic anisotropy: Tracing plate dynamics in the mantle. Science, 296:485--489, 2002. [ bib ]
[4094] C.-H. Park, K. Tamaki, and K. Kobayashi. Age-depth correlation of the Philippine sea back-arc basins and other marginal basins in the world. Tectonophys., 181:351--371, 1990. [ bib ]
[4095] RL Parker and DW Oldenburg. Thermal model of ocean ridges. Nature, 242:137--139, 1973. [ bib ]
[4096] R. L. Parker. Geophysical Inverse Theory. Princeton University Press, Princeton, New Jersey, 1994. [ bib ]
[4097] J. Park and V. Levin. Anisotropic shear zones revealed by backazimuthal harmonics of teleseismic receiver functions. Geophysical Journal International, 207:1216--1243, 2016. [ bib ]
[4098] M. M. Parks, J. Bigg, T. A. Mather, D. M. Pyle, F. Amelung, M. L. Monsalve, and L. Narváez Medina. Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006--2009). J. Volcanol. Geotherm. Res., 202:228--240, 2011. [ bib ]
[4099] Stephen W Parman, Timothy L Grove, Jesse C Dann, and Maarten J De Wit. A subduction origin for komatiites and cratonic lithospheric mantle. South Afr. J. Geol., 107:107--118, 2004. [ bib ]
[4100] E. M. Parmentier. A study of thermal convection in non-Newtonian fluids. J. Fluid Mech., 84:1--11, 1978. [ bib ]
[4101] E. Parmentier and J Morgan. Thermal convection in non-Newtonian fluids: Volumetric heating and boundary layer scaling. J. Geophys. Res.: Sol. Earth, 87:7757--7762, 1982. [ bib ]
[4102] EM Parmentier, C Sotin, and BJ Travis. Turbulent 3-D thermal convection in an infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics. Geophys. J. Int., 116:241--251, 1994. [ bib ]
[4103] Ross Parnell-Turner, RA Sohn, Christine Peirce, TJ Reston, CJ MacLeod, RC Searle, and NM Simão. Oceanic detachment faults generate compression in extension. Geology, 45:923--926, 2017. [ bib ]
[4104] M. Parra, A. Mora, C. Jaramillo, M. R. Strecker, E.R. Sobel, L. Quiroz, M. Rueda, and V. Torres. Orogenic wedge advance in the northernAndes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. GSA Bull., 121:780--800, 2009. [ bib ]
[4105] M. Parra, A. Mora, E. R. Sobel, M. R. Strecker, and R. González. Episodic orogenic-front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28, 2009. [ bib | DOI ]
[4106] M. Parra, A. Mora, C. Jaramillo, V. Torres, G. Zeilinger, and M. R. Strecker. Tectonic controls on Cenozoic foreland basin development in the northeastern Andes, Colombia. Basin Res., 22:874--903, 2010. [ bib ]
[4107] Tom Parsons. Global Omori law decay of triggered earthquakes: Large aftershocks outside the classical aftershock zone. J. Geophys. Res.: Sol. Earth, 107(2199), 2002. [ bib | DOI ]
[4108] T. Parsons. Recalculated probability of M >= 7 earthquakes beneath the Sea of Marmara, Turkey. J. Geophys. Res.: Sol. Earth, 109(B05304), 2004. [ bib | DOI ]
[4109] T. Parsons. Tectonic stressing in California modeled from GPS observations. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[4110] T. Parsons. Forecast experiment: Do temporal and spatial b value variations along the calaveras fault portend M 4.0 earthquakes? J. Geophys. Res.: Sol. Earth, 112(B03308), 2007. [ bib ]
[4111] Tom Parsons and Wayne Thatcher. Diffuse Pacific- North American plate boundary: 1000 km of dextral shear inferred from modeling geodetic data. Geology, 39:943--946, 2011. [ bib ]
[4112] T. Parsons, K. M. Johnson, P. Bird, J.M. Bormann, T.E. Dawson, E.H. Field, W.C. Hammond, T.A. Herring, R. McCaffrey, Z.-K. Shen, W.R. Thatcher, R.J. Weldon II, , and Y. Zeng. Appendix C—Deformation models for UCERF3. Technical Report 1165, USGS Open-File report, 2013. [ bib ]
[4113] B. Parsons and J. G. Sclater. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res.: Sol. Earth, 82:803--827, 1977. [ bib ]
[4114] Barry Parsons and Dan McKenzie. Mantle convection and the thermal structure of the plates. J. Geophys. Res.: Sol. Earth, 83:4485--4496, 1978. [ bib ]
[4115] B. Parsons and F. M. Richter. A relation between the driving force and geoid anomaly associated with mid-ocean ridges. Earth Planet. Sci. Lett., 51:445--450, 1980. [ bib ]
[4116] B. Parsons. Causes and consequences of the relation between area and age of the ocean floor. J. Geophys. Res.: Sol. Earth, 87:289--302, 1982. [ bib ]
[4117] T. Parsons, G. A. Thompson, and N. H. Sleep. Mantle plume influence on the Neogene uplift and extension of the U.S. western Cordillera. Geology, 22:83--86, 1994. [ bib ]
[4118] T. Parsons and J. McCarthy. The active southwest margin of the Colorado Plateau: Uplift of mantle origin. Geology, 107:139--147, 1995. [ bib ]
[4119] T. Parsons and J. McCarthy. Crustal and upper mantle velocity structure of the Salton Trough, southeast California. Tectonics, 15:456--471, 1996. [ bib ]
[4120] S. Parthasarathy and J. M. Dixon. Analytic structure and chaotic dynamics of the damped driven Toda oscillator. Phys. Rev. E, 55:3942--3947, 1997. [ bib ]
[4121] Cees W Passchier and Rudolph AJ Trouw. Microtectonics. Springer Science & Business Media, Heidelberg, 2 edition, 2005. [ bib ]
[4122] M. E. Pasyanos, T. G. Masters, G. Laske, and Z. Ma. LITHO1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res.: Sol. Earth, 119:2153--2173, 2014. [ bib | DOI ]
[4123] E. Patacca, R. Sartori, and P. Scadone. Tyrrhenian Basin and Apenninic arcs; kinematic relations since late Tortonian times. Memorie della Societa Geologica Italiana, 45:425--451, 1990. [ bib ]
[4124] P. Patriat and J. Achache. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615--621, 1984. [ bib ]
[4125] Jason R Patton, Chris Goldfinger, Ann E Morey, Ken Ikehara, Chris Romsos, Joseph Stoner, Yusuf Djadjadihardja, Udrekh, Sri Ardhyastuti, Eddy Zulkarnaen Gaffar, et al. A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake. Geosphere, 11:2067--2129, 2015. [ bib ]
[4126] J. Paul, C. P. Conrad, T. W. Becker, and A. Ghosh. Convective self-compression of cratons and the stabilization of old lithosphere. Geophys. Res. Lett., 50, 2023. [ bib | DOI ]
[4127] A. Paulson, S. Zhong, and J. Wahr. Modelling post-glacial rebound with lateral viscosity variations. Geophys. J. Int., 163:357--371, 2005. [ bib ]
[4128] Archie Paulson, Shijie Zhong, and John Wahr. Limitations on the inversion for mantle viscosity from postglacial rebound. Geophys. J. Int., 168:1195--1209, 2007. [ bib ]
[4129] G. L. Pavlis, F. Vernon, D. Harvey, and D. Quinlan. The generalized earthquake-location (GENLOC) package: An earthquake-location library. Comput. Geosci., 30:1079--1091, 2004. [ bib ]
[4130] G. L. Pavlis, K. Sigloch, S. Burdick, M. J. Fouch, and F. Vernon. Unraveling the geometry of the Farallon plate: Synthesis of three-dimensional imaging results from USArray. Tectonophys., 532:82--102, 2012. [ bib ]
[4131] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.: Sol. Earth, 117(B04406), 2012. [ bib | DOI ]
[4132] USGS. USGS National Earthquake Information Center. Global PDE earthquake database. USGS, 1998. http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html. [ bib ]
[4133] S. Peacock. Thermal structure and metamorphic evolution of subducting slabs. In J. Eiler, editor, Inside the Subduction Factory, volume 138, pages 7--22. American Geophysical Union, Washington DC, 2003. [ bib ]
[4134] S. M. Peacock. Advances in the thermal and petrologic modeling of subduction zones. Geosphere, 16:936--952, 2020. [ bib ]
[4135] Simon M Peacock and Kelin Wang. On the stability of talc in subduction zones: a possible control on the maximum depth of decoupling between the subducting plate and mantle wedge. Geophys. Res. Lett., 48:e2021GL094889, 2021. [ bib ]
[4136] Simon M Peacock. Large-scale hydration of the lithosphere above subducting slabs. Chem. Geol., 108:49--59, 1993. [ bib ]
[4137] S. Peacock. Thermal and petrological structure of subduction zones. In G. E. Beobout, D. Scholl, S. Kirby, and J. Platt, editors, Subduction: Top to Bottom, volume 96 of Geophys. Mono., pages 119--135. American Geophysical Union, Washington DC, 1996. [ bib ]
[4138] S. M. Peacock and K. Wang. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286:937--939, 1999. [ bib ]
[4139] DG Pearson, GJ Irvine, RW Carlson, MG Kopylova, and DA Ionov. The development of lithospheric keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. Geol. Soc., Lond., Spec. Pub., 199:65--90, 2002. [ bib ]
[4140] D Graham Pearson, James M Scott, Jingao Liu, Andrew Schaeffer, Lawrence Hongliang Wang, Jeroen van Hunen, Kristoffer Szilas, Thomas Chacko, and Peter B Kelemen. Deep continental roots and cratons. Nature, 596:199--210, 2021. [ bib ]
[4141] J. Pearson. On convection cells induced by surface tension. J. Fluid Mech., 4:489--500, 1958. [ bib ]
[4142] H. A. Pedersen, M. Bruneton, V. Maupin, and SVEKALAPKO Seismic Tomography Working Group. Lithospheric and sublithospheric anisotropy beneath the Baltic shield from surface-wave array analysis. Earth Planet. Sci. Lett., 244:590--605, 2006. [ bib ]
[4143] K. Pedoja, L. Husson, V. Regard, P. R. Cobbold, E. Ostanciaux, M. E. Johnson, S. Kershaw, M. Saillard, J. Martinod, L. Furgerot, P. Weill, and B. Delcaillau. Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide? Earth-Sci. Rev., 108:1--15, 2011. [ bib ]
[4144] G. Pegler and S. Das. An enhanced image of the Pamir-Hindu Kush seismic zone from relocated earthquake hypocentres. Geophys. J. Int., 134:573--595, 1998. [ bib ]
[4145] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev., 60:550--591, 2018. [ bib ]
[4146] C. Pekeris. Thermal convection in the interior of the earth. Roy. Astron. Soc., Geophys. Supp., 3:343--367, 1935. [ bib ]
[4147] J. D. Pelletier. Spring-block models of seismicity: review and analysis of a structurally heterogeneous model coupled to a viscous asthenosphere. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the physics of earthquakes, volume 120 of Geophys. Mono., pages 27--42. American Geophysical Union, Washington, DC, 2000. [ bib ]
[4148] B. Pelletier, S. Calmant, and R. Pillet. Current tectonics of the Tonga-New Hebrides region. Earth Planet. Sci. Lett., 164:263--276, 1998. [ bib ]
[4149] W Richard Peltier. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann. Rev. Earth Planet. Sci., 32:111--149, 2004. [ bib ]
[4150] W.R. Peltier, D.F. Argus, and R. Drummond. Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res.: Sol. Earth, 120:450--487, 2015. [ bib ]
[4151] William R Peltier and John T Andrews. Glacial-isostatic adjustment—I. The forward problem. Geophys. J. Int., 46:605--646, 1976. [ bib ]
[4152] W. R. Peltier. Mantle phase transitions and layered chaotic convection. Geophys. Res. Lett., 19:321--324, 1992. [ bib ]
[4153] C. Pelties, J. de la Puente, J.-P. Ampuero, G. B. Brietzke, and M. Kaeser. Three-dimensional ynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res.: Sol. Earth, 117(B02309), 2012. [ bib | DOI ]
[4154] C. Pelties, A.-A. Gabriel, and J.-P. Ampuero. Verification of an ADER-DG method for complex dynamic rupture problems. Geosci. Model Dev., 7:847--866, 2014. [ bib ]
[4155] G. Peltzer, E. Crampe, S. Hensley, and P. A. Rosen. Transient strain accumulation and fault interaction in the Eastern California shear zone. Geology, 29:975--978, 2001. [ bib ]
[4156] Z. Peng and Y. Ben-Zion. Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the north Anatolian fault. Geophys. J. Int., 159:252--274, 2004. [ bib ]
[4157] Zhigang Peng and Joan Gomberg. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geosc., 3:599--607, 2010. [ bib ]
[4158] D. Peng and L. Liu. Quantifying slab sinking rates using global geodynamic models with data-assimilation. Earth-Sci. Rev., 230:104039, 2022. [ bib ]
[4159] X. Peng and E. D. Humphreys. Crustal velocity structure of northwestern Nevada from teleseismic receiver function analysis. Bull. Seismol. Soc. Am., 87:745--754, 1997. [ bib ]
[4160] Giorgio Pennacchioni. Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites, Southern Alps (Italy). J. Struct. Geol., 27:627--644, 2005. [ bib ]
[4161] W. D. Pennington. Subduction of the eastern Panama basin and seismotectonics of northwestern South America. J. Geophys. Res.: Sol. Earth, 86:10753--10770, 1981. [ bib ]
[4162] S.C. Penniston-Dorland, M.J. Kohn, and C.E. Manning. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet. Sci. Lett., 428:243--254, 2015. [ bib ]
[4163] O. J. Pérez, R. Bilham, R. Bendick, J. R. Velandia, N. Hernández, C. Moncayo, M. Hoyer, and M. Kozuch. Velocity field across the southern Caribbean plate boundary and estimates of Caribbean/South-American plate motion. Geophys. Res. Lett., 28:2987--2990, 2001. [ bib ]
[4164] Xyoli Pérez-Campos and Gregory C Beroza. An apparent mechanism dependence of radiated seismic energy. J. Geophys. Res.: Sol. Earth, 106:11127--11136, 2001. [ bib ]
[4165] O. J. Pérez, R. Bilham, M. Sequera, L. Molina, P. Gavotti, H. Codallo, C. Moncayo, C. Rodríguez, R. Velandia, M. Guzmán, and P. Molnar. Campo de velocidades GPS en el occidente de Venezuela: Componente lateral derecha asociada a la falla de Boconó y componente convergente perpendicular a los Andes. Intersciencia, 36:39--44, 2011. [ bib ]
[4166] H. Perfettini and J. P. Avouac. The seismic cycle in the area of the 2011 Mw9.0 Tohoku-Oki earthquake. J. Geophys. Res.: Sol. Earth, 119:4469--4515, 2014. [ bib | DOI ]
[4167] Hugo Perfettini, WB Frank, D Marsan, and M Bouchon. A model of aftershock migration driven by afterslip. Geophys. Res. Lett., 45:2283--2293, 2018. [ bib ]
[4168] H Perfettini and A Molinari. The interaction between frictional slip and viscous fault root produces slow slip events. J. Geophys. Res.: Sol. Earth, 128:e2022JB024645, 2023. [ bib | DOI ]
[4169] Michael R Perfit and William W Chadwick. Magmatism at mid-ocean ridges: Constraints from volcanological and geochemical investigations. In Faulting and Magmatism at Mid-Ocean Ridges, pages 59--116. American Geophysical Union, 1998. [ bib ]
[4170] Clement Perrin, Felix Waldhauser, and Christopher H Scholz. The shear deformation zone and the smoothing of faults with displacement. J. Geophys. Res.: Sol. Earth, 126:e2020JB020447, 2021. [ bib ]
[4171] G. Perrin, J. R. Rice, and G. Zheng. Self-healing slip pulse on a frictional surface. J. Mech. Phys. Solids, 43:1461--1495, 1995. [ bib ]
[4172] J. Perry-Houts and L. Karlstrom. Anisotropic viscosity and time-evolving lithospheric instabilities due to aligned igneous intrusions. Geophys. J. Int., 216:794--802, 2019. [ bib ]
[4173] H. K. C. Perry, A. M. Forte, and D. W. S. Eaton. Upper-mantle thermochemical structure below North America from seismic-geodynamic flow models. Geophys. J. Int., 154:279--299, 2003. [ bib ]
[4174] Patricia Persaud, Edward H Pritchard, and Joann M Stock. Scales of stress heterogeneity near active faults in the Santa Barbara Channel, southern California. Geochem., Geophys., Geosys., 21(1):e2019GC008744, 2020. [ bib ]
[4175] L. Peselnick and A. Nicolas. Seismic anisotropy in an ophiolite peridotite: application to oceanic upper mantle. J. Geophys. Res.: Sol. Earth, 83:1227--1235, 1978. [ bib ]
[4176] D. Peter, L. Boschi, F. Deschamps, B. Fry, G. Ekström, and D. Giardini. Surface-wave tomography: finite-frequency shear-velocity inversions for the European-Mediterranean region. Geophys. Res. Lett., 35(L16315), 2008. [ bib | DOI ]
[4177] M. D. Petersen, Y. Zeng, K. M. Haller, R. McCaffrey, W. C. Hammond, P. Bird, M. Moschetti, Z. Shen, J. Bormann, and W. Thatcher. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps. Technical report, U.S. Geological Survey, 2014. Open-File Report 2013–1293, available online at dx.doi.org/10.3133/ofr20131293, accessed 09/2015. [ bib ]
[4178] Giuseppe Petrillo, Eugenio Lippiello, François P Landes, and Alberto Rosso. The influence of the brittle-ductile transition zone on aftershock and foreshock occurrence. Nature Comm., 11:3010, 2020. [ bib ]
[4179] Claudio Petrini, Taras Gerya, Viktoriya Yarushina, Ylona van Dinther, James Connolly, and Claudio Madonna. Seismo-hydro-mechanical modelling of the seismic cycle: methodology and implications for subduction zone seismicity. Tectonophys., 791:228504, 2020. [ bib ]
[4180] Antonio Petruccelli, Danijel Schorlemmer, Thessa Tormann, Antonio Pio Rinaldi, Stefan Wiemer, Paolo Gasperini, and Gianfranco Vannucci. The influence of faulting style on the size-distribution of global earthquakes. Earth Planet. Sci. Lett., 527:115791, 2019. [ bib ]
[4181] AG Petrunin and Stephan V Sobolev. Three-dimensional numerical models of the evolution of pull-apart basins. Phys. Earth Planet. Inter., 171:387--399, 2008. [ bib ]
[4182] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163--202. Birkhäuser Press, 1997. [ bib ]
[4183] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Todd Munson, Karl Rupp, Patrick Sanan, Barry F. Smith, Stefano Zampini, Hong Zhang, and Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.14, Argonne National Laboratory, 2020. [ bib | http ]
[4184] Sophie Peyrat, Kim Olsen, and Raúl Madariaga. Dynamic modeling of the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 106:26467--26482, 2001. [ bib ]
[4185] S Peyrat and KB Olsen. Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake. Geophys. Res. Lett., 31(L05604), 2004. [ bib | DOI ]
[4186] C. Pfund, C. M. Pribbenow, J. Branchaw, S. M. Lauffer, and J. Handelsman. The merits of training mentors. Science, 311:473--474, 2006. [ bib ]
[4187] C. Pfund, Branchaw J., and J. Handelsman. Entering Mentoring. Freeman, New York, 2 edition, 2014. [ bib ]
[4188] Thanh-Son Pham and Hrvoje Tkalčić. Toward Improving Point-Source Moment-Tensor Inference by Incorporating 1D Earth Model's Uncertainty: Implications for the Long Valley Caldera Earthquakes. J. Geophys. Res.: Sol. Earth, 126(11):e2021JB022477, 2021. [ bib ]
[4189] T. S. Pham and H. Tkalčić. Up-to-fivefold reverberating waves through the Earth’s center and distinctly anisotropic innermost inner core. Nature Comm., 14(754), 2023. [ bib | DOI ]
[4190] Belle Philibosian and Aron J Meltzner. Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide. Quat. Sci. Rev., 241:106390, 2020. [ bib ]
[4191] Mélody Philippon and Giacomo Corti. Obliquity along plate boundaries. Tectonophys., 693:171--182, 2016. [ bib ]
[4192] B. R. Phillips and H.-P. Bunge. Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett., 233:121--135, 2005. [ bib ]
[4193] R. J. Phillips. A mechanism for tectonic deformation on Venus. Geophys. Res. Lett., 13:1141--1144, 1986. [ bib ]
[4194] Robert A Phinney. Structure of the Earth's crust from spectral behavior of long-period body waves. J. Geophys. Res.: Sol. Earth, 69:2997--3017, 1964. [ bib ]
[4195] R. A. Phinney and R. Burridge. Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics. Geophys. J. R. Astr. Soc., 34:451--487, 1973. [ bib ]
[4196] Jason Phipps-Morgan and Y John Chen. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature, 364:706--708, 1993. [ bib ]
[4197] J. Phipps-Morgan, W. J. Morgan, Y.-S. Zhang, and W. H. F. Smith. Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys. Res.: Sol. Earth, 100:12753--12767, 1995. [ bib ]
[4198] J. Phipps-Morgan and W. J. Morgan. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett., 170:215--239, 1999. [ bib ]
[4199] Planetary Habitability Lab. The habitable exoplanets catalog. The University of Puerto Rico at Arecibo, 2023. Available online at phl.upr.edu/projects/habitable-exoplanets-catalog, accessed 04/2023. [ bib ]
[4200] N. Piana Agostinetti and C. Faccenna. Deep structure of Northern Apennines subduction orogen (Italy) as revealed by a joint interpretation of passive and active seismic data. Geophys. Res. Lett., 45:4017--4024, 2018. [ bib ]
[4201] D. Piepenbreier and B. Stöckhert. Plastic flow of omphacite in eclogites at temperatures below 500oC - implications for interplate coupling in subduction zones. Int. J. Earth Sci., 90(197), 2001. [ bib | DOI ]
[4202] R. T. Pierrehumbert. Principles of Planetary Climate. Cambridge University Press, Cambridge UK, 2010. [ bib ]
[4203] A. Piersanti, G. Spada, R. Sabadini, and M. Bonafede. Global post-seismic deformation. Geophys. J. Int., 120:544--566, 1995. [ bib ]
[4204] A. Piersanti, A. Spada, and R. Sabadini. Global postseismic rebound of a viscoelastic Earth: theory for finite faults and application to the 1964 Alaska earthquake. J. Geophys. Res.: Sol. Earth, 102:477--492, 1997. [ bib ]
[4205] J. E. Pikser, D. W. Forsyth, and G. Hirth. Along-strike translation of a fossil slab. Earth Planet. Sci. Lett., 331:315--321, 2012. [ bib ]
[4206] J. L. Pindell and L. Kennan. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. In K. James, M. A Lorente, and J. Pindell, editors, The origin and evolution of the Caribbean Plate, volume 328 of Special pub., pages 1--55. Geological Society of London, 2009. [ bib ]
[4207] N. Pinter, S. Lueddecke-Pinter, and E. A. Keller. Short-term and long-term activity on the Santa Cruz Island Fault, California (abstract). In The Geological Society of America, 1995 Annual meeting. Abstracts with Programs, volume 27, page 105, 1995. [ bib ]
[4208] C. Piromallo, A. P. Vincent, D. A. Yuen, and A. Morelli. Dynamics of the transition zone under Europe inferred from wavelet cross-spectra of seismic tomography. Phys. Earth Planet. Inter., 125:125--139, 2001. [ bib ]
[4209] C. Piromallo and A. Morelli. P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res.: Sol. Earth, 108:2065, 2003. [ bib | DOI ]
[4210] C. Piromallo and C. Faccenna. How deep can we find the traces of Alpine subduction? Geophys. Res. Lett., 31(L06605), 2004. [ bib | DOI ]
[4211] C. Piromallo, T. W. Becker, F. Funiciello, and C. Faccenna. Three-dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett., 33(L08304), 2006. [ bib | DOI ]
[4212] C. Piromallo and A. Morelli. Imaging the Mediterranean upper mantle by P-wave travel time tomography. Annal. Geof., 4:963--979, 1997. [ bib ]
[4213] C. Piromallo and A. Morelli. P-wave propagation heterogeneity and earthquake location in the Mediterranean region. Geophys. J. Int., 135:232--254, 1998. [ bib ]
[4214] W. C. Pitman III. Relationship between eustacy and stratigraphic sequences of passive margins. Geol. Soc. Amer. Bull., 89:1389--1403, 1978. [ bib ]
[4215] K. S. Pitzer and S. M. Sterner. Equation of state valid continuously from zero to extreme pressures for H2O and CO2. J. Chem. Phys., 101:3111--3116, 1994. [ bib ]
[4216] H. P. Plag and H. U. Jüttner. Inversion of global tide gauge data for present-day ice load changes. Mem. Natl. Inst. Polar Res., 54:301--317, 2001. [ bib ]
[4217] Terry Plank and Charles H Langmuir. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 362:739--743, 1993. [ bib ]
[4218] T. Plank and C. H. Langmuir. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145:325--394, 1998. [ bib ]
[4219] J. P. Platt, B. J. P. Kaus, and T. W. Becker. The San Andreas transform system and the tectonics of California: an alternative approach. Earth Planet. Sci. Lett., 274:380--391, 2008. [ bib ]
[4220] J. P. Platt and T. W. Becker. Where is the true transform boundary in california? 2009 SCEC Annual Meeting Abstracts, 19:283, 2009. [ bib ]
[4221] J. P. Platt and T. W. Becker. Where is the real transform boundary in California? Geochem., Geophys., Geosys., 11(Q06013), 2010. [ bib | DOI ]
[4222] J. P. Platt and W. M. Behr. Deep structure of lithospheric fault zones. Geophys. Res. Lett., 38(L24308), 2011. [ bib ]
[4223] J. P. Platt and W. M. Behr. Lithospheric shear zones as constant stress experiments. Geology, 39:127--130, 2011. [ bib ]
[4224] J. P. Platt and T. W. Becker. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy? Geophys. J. Int., 194:1295--1301, 2013. [ bib ]
[4225] J. P. Platt. Dynamics of orogenic wedges and the uplift of high-pressure metamorphic rocks. GSA Bull., 97:1037--1053, 1986. [ bib ]
[4226] J. P. Platt and R. L. M. Vissers. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arcs. Geology, 17:540--543, 1989. [ bib ]
[4227] J. P. Platt and P. C. England. Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Amer. J. Science, 293:307--335, 1993. [ bib ]
[4228] T. Plenefisch and K.-P. Bonjer. The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophys., 275:71--97, 1997. [ bib ]
[4229] A. Plesch, J. H. Shaw, J. Dolan, L. Grant, E. Hauksson, M. Kamerling, M. Legg, S. Lindvall, C. Nicholson, T. Rockwell, C. Sorlien, and R. Yeats. SCEC 3D community fault model for southern California (abstract). Eos Trans. AGU, 83(47):S21A--0966, 2002. [ bib ]
[4230] Andreas Plesch, John H. Shaw, Christine Benson, William A. Bryant, Sara Carena, Michele Cooke, James Dolan, Gary Fuis, Eldon Gath, Lisa Grant, Egill Hauksson, Thomas Jordan, Marc Kamerling, Mark Legg, Scott Lindvall, Harold Magistrale, Craig Nicholson, Nathan Niemi, Michael Oskin, Sue Perry, George Planansky, Thomas Rockwell, Peter Shearer, Christopher Sorlien, M. Peter Suss, John Suppe, Jerry Treiman, and Robert Yeats. Community fault model (CFM) for southern California. Bull. Seismol. Soc. Am., 97:1793--1802, 2007. [ bib ]
[4231] J. Plomerová, D. Kouba, and V. Babuška. Mapping the lithosphere-asthenosphere boundary through changes in surface-wave anisotropy. Tectonophys., 58:175--185, 2002. [ bib ]
[4232] J. Plomerová, V. Babuška, L. Vecsey, D. Kouba, and TOR Working Group. Seismic anisotropy of the lithosphere around the Trans-European Suture Zone (TESZ) based on teleseismic body-wave data of the TOR experiment. Tectonophys., 360:89--114, 2002. [ bib ]
[4233] J. Plomerová, J. Šílený, and V. Babuška. Joint interpretation of upper-mantle anisotropy based on teleseismic P-travel time delays and inversion of shear-wave splitting parameters. Phys. Earth Planet. Inter., 95:293--309, 1996. [ bib ]
[4234] A. Plunder, C. Thieulot, and D. J. J. van Hinsbergen. The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling. Solid Earth, 9:749--776, 2018. [ bib ]
[4235] N. S. Podolefsky, S. Zhong, and A. K. McNamara. The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear. Geophys. J. Int., 158:287--296, 2004. [ bib ]
[4236] J. P. Poirier and R. C. Liebermann. On the activation volume for creep and its variation with depth in the Earth's lower mantle. Phys. Earth Planet. Inter., 35:283--293, 1982. [ bib ]
[4237] J.-P. Poirier. Creep of Crystals. High-Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, 1985. [ bib ]
[4238] JP Poirier. Transport properties of liquid metals and viscosity of the Earth's core. Geophys. J. Int., 92:99--105, 1988. [ bib ]
[4239] J. Pokorný, H. Čížková, and A. van den Berg. Feedbacks between subduction dynamics and slab deformation: Combined effects of nonlinear rheology of a weak decoupling layer and phase transitions. Phys. Earth Planet. Inter., 313:106679, 2021. [ bib ]
[4240] J. Polet, P. G. Silver, S. Beck, T. Wallace, G. Zandt, S. Ruppert, R. Kind, and A. Rudloff. Shear wave anisotropy beneath the Andes from the BANJO, SEDA, and PISCO experiments. J. Geophys. Res.: Sol. Earth, 105:6287--6304, 2000. [ bib ]
[4241] J. Polet and H. Kanamori. Anisotropy beneath California: shear wave splitting measurements using a dense broadband array. Geophys. J. Int., 149:313--327, 2002. [ bib ]
[4242] J. Polet and H. Anderson. Depth extent of cratons as inferred from tomographic studies. Geology, 23:205--208, 1995. [ bib ]
[4243] J. Polet and H. Kanamori. Upper mantle shear velocities beneath southern California determined using long period surface waves. Bull. Seismol. Soc. Am., 87:200--209, 1997. [ bib ]
[4244] S. Poli and M. W. Schmidt. Petrology of subducted slabs. Ann. Rev. Earth Planet. Sci., 30:207--235, 2002. [ bib ]
[4245] A. N. B. Poliakov, P. A. Cundall, Y. Y. Podladchikov, and V. A. Lyakhovsky. An explicit inertial method for the simulation of viscoelastic flow: An evaluation of elastic effects on diapiric flow in two and three-layers models. In D. B. Stone and S. K. Runcorn, editors, Flow and Creep in the Solar Systems: Observations, Modeling and Theory, Proc. NATO Adv. Study Institute, pages 175--195. Kluwer Academic Publishers, Dordrecht, 1993. [ bib ]
[4246] O. V. Poliannikov. Retrieving reflections by source- receiver wavefield interferometry. Geophysics, 76:SA1--SA8, 2011. [ bib ]
[4247] O. V. Poliannikov, S. Rondenay, and L. Chen. Imaging the underside of subducted slabs by interferometry. In 81st Ann. Internat. Mtg. Soc. Expl. Geophys. (Expanded Abstracts), pages 3799--3803, 2011. [ bib ]
[4248] Henry N Pollack and Shaopeng Huang. Climate reconstruction from subsurface temperatures. Ann. Rev. Earth Planet. Sci., 28:339--365, 2000. [ bib ]
[4249] Henry N Pollack. Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett., 80:175--182, 1986. [ bib ]
[4250] H. N. Pollack, S. J. Hurter, and J. R. Johnston. Heat flow from the Earth's interior: Analysis of the global dataset. Rev. Geophys., 31:267--280, 1993. [ bib ]
[4251] D. D. Pollard and A. Aydin. Propagation and linkage of oceanic ridge segments. J. Geophys. Res.: Sol. Earth, 89:10017--10028, 1984. [ bib ]
[4252] D. D. Pollard and P. Segall. Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 8, pages 277--350. Academic Press, London, 1987. [ bib ]
[4253] D. D. Pollard, S. D. Saltzer, and A. Rubin. Stress inversion methods: are they based on faulty assumptions? J. Struct. Geol., 15:1045--1054, 1993. [ bib ]
[4254] F. F. Pollitz, C. Wicks, and W. Thatcher. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake. Science, 293:1814--1818, 2001. [ bib ]
[4255] F. F. Pollitz. The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere. Geophys. J. Int., 153:595--608, 2003. [ bib ]
[4256] F. Pollitz and M. Vergnolle. Mechanical deformation model of the western United States instantaneous strain-rate field. Geophys. J. Int., 167:421--444, 2006. [ bib ]
[4257] F. Pollitz, R. Bürgmann, and P. Banerjee. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys. J. Int., 167:397--420, 2006. [ bib ]
[4258] F. F. Pollitz, P. McCrory, J. Svarc, and J. Murray. Dislocation models of interseismic deformation in the western United States. J. Geophys. Res.: Sol. Earth, 113(B04413), 2008. [ bib | DOI ]
[4259] F. F. Pollitz, R. Bürgmann, and W. Thatcher. Illumination of rheological mantle heterogeneity by the M7.2 2010 El Mayor-Cucapah earthquake. Geochem., Geophys., Geosys., 13, 2012. [ bib | DOI ]
[4260] F. F. Pollitz, A. Wech, H. Kao, and R. Bürgmann. Annual modulation of non-volcanic tremor in northern Cascadia. J. Geophys. Res.: Sol. Earth, 118:2445--2459, 2013. [ bib | DOI ]
[4261] F. F. Pollitz. Post-earthquake relaxation using a spectral element method: 2.5-D Case. Geophys. J. Int., 198:308--326, 2014. [ bib ]
[4262] F.F. Pollitz. Post-earthquake relaxation evidence for laterally variable viscoelastic structure and water content in the southern California mantle. J. Geophys. Res.: Sol. Earth, 120:2672--2696, 2015. [ bib | DOI ]
[4263] Fred F Pollitz. Lithosphere and shallow asthenosphere rheology from observations of post-earthquake relaxation. Phys. Earth Planet. Inter., 293:106271, 2019. [ bib ]
[4264] F. F. Pollitz, E. L. Evans, E. H. Field, A. E. Hatem, E. H. Hearn, K. Johnson, J. R. Murray, P. M. Powers, Z.-K. Shen, C. Wespestad, and Y. Zeng. Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model. Seismol. Res. Lett., 93:3068--3086, 2022. [ bib ]
[4265] F. F. Pollitz and I. S. Sacks. The 1995 Kobe, Japan, earthquake: A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes. Bull. Seismol. Soc. Am., 87:1--10, February 1997. [ bib ]
[4266] F. F. Pollitz. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. J. Geophys. Res.: Sol. Earth, 102:17921--17941, 1997. [ bib ]
[4267] Fred F Pollitz, Roland Burgmann, and Barbara Romanowicz. Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science, 280:1245--1249, 1998. [ bib ]
[4268] Anna Pomyalov, Fabian Barras, Thibault Roch, Efim A Brener, and Eran Bouchbinder. The dynamics of unsteady frictional slip pulses. Proc. Natl. Acad. Sci. USA, 120:e2309374120, 2023. [ bib ]
[4269] Nicolas Pondard, Rolando Armijo, Geoffrey CP King, Bertrand Meyer, and Frédéric Flerit. Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences. Geophys. J. Int., 171:1185--1197, 2007. [ bib ]
[4270] R. M. Ponte, K. J. Quinn, C. Wunsch, and P. Heimbach. A comparison of model and GRACE estimates of the large-scale seasonal cycle in ocean bottom pressure. Geophys. Res. Lett., 34(L09603), 2007. [ bib | DOI ]
[4271] A. A. Popov, S. V. Sobolev, and M. D. Zoback. Modeling evolution of the San Andreas Fault system in northern and central California. Geochem., Geophys., Geosys., 13(Q08016), 2012. [ bib | DOI ]
[4272] R. W. Porritt, T. W. Becker, and G Monsalve. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia. Geophys. Res. Lett., 41, 2014. [ bib | DOI ]
[4273] R. W. Porritt, T. W. Becker, L. Boschi, and L. Auer. Mantle structure and dynamics under the continuous United States inferred from tomographic imaging of radially anisotropic shear velocity (abstract). AGU Fall Meeting, (S44A-04), 2019. [ bib ]
[4274] Robert W Porritt, Thorsten W Becker, Lapo Boschi, and Ludwig Auer. Multiscale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global data sets. Geophys. J. Int., 226:1730--1746, 2021. [ bib ]
[4275] R. Porter, G. Zandt, and N. McQuarrie. Pervasive lower-crustal seismic anisotropy in Southern California: Evidence for underplated schists and active tectonics. Lithosphere, 2011. [ bib | DOI ]
[4276] R. Porth. A strain-rate dependent force model of lithospheric strength. Geophys. J. Int., 141:647--660, 2000. [ bib ]
[4277] D. E. Portner, S. Beck, G. Zandt, and A. Scire. The nature of subslab slow velocity anomalies beneath South America. Geophys. Res. Lett., 44:4747--4755, 2017. [ bib ]
[4278] RIKEN AICS. post-K computer: Priority Issue 3 - Development of integrated simulation systems for hazards and disasters induced by earthquakes and tsunamis. Available online at www.aics.riken.jp/en/postk/outcome/pi3, accessed 12/2017, 2017. [ bib ]
[4279] Lea Pousse-Beltran, Riccardo Vassallo, Franck Audemard, François Jouanne, Julien Carcaillet, Erwan Pathier, and Matthieu Volat. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela. Tectonics, 36:1207--1231, 2017. [ bib ]
[4280] W. L. Power, T. E. Tullis, and J. D. Weeks. Roughness and wear during brittle faulting. J. Geophys. Res.: Sol. Earth, 93:15268--15278, 1988. [ bib ]
[4281] W. L. Power and T. E. Tullis. Euclidean and fractal models for the description of rock surface roughness. J. Geophys. Res.: Sol. Earth, 96:415--424, 1991. [ bib ]
[4282] W. L. Power and T. E. Tullis. The contact between opposing fault surfaces at Dixie Valley, Nevada and implications for fault mechanics. J. Geophys. Res.: Sol. Earth, 97:15425--15435, 1992. [ bib ]
[4283] P. M. Powers and T. H. Jordan. Distribution of seismicity across strike-slip faults in California. Eos Trans. AGU, 89(53):S21B--1831, 2008. [ bib ]
[4284] P. M. Powers and T. H. Jordan. Distribution of seismicity across strike-slip faults in California. J. Geophys. Res.: Sol. Earth, 115(B05305), 2010. [ bib | DOI ]
[4285] C. Pozrikidis. Introduction to Finite and Spectral Element Methods Using MATLAB. Chapman & Hall, 2005. [ bib ]
[4286] Casper Pranger, Patrick Sanan, Dave A May, Laetitia Le Pourhiet, and Alice-Agnes Gabriel. Rate and state friction as a spatially regularized transient viscous flow law. J. Geophys. Res.: Sol. Earth, 127:e2021JB023511, 2022. [ bib ]
[4287] Michael J Prather, Christopher D Holmes, and Juno Hsu. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett., 39(9), 2012. [ bib ]
[4288] M. Prather, G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao, and P. Rasch. IPCC, 2013: Annex II: Climate System Scenario Tables. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 1395--1445. Cambridge University Press, Cambridge UK, 2013. [ bib ]
[4289] John Henry Pratt. I. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India. Phil. Trans. Royal Soc. London, 145:53--100, 1855. [ bib ]
[4290] J. Précigout and F. Gueydan. Mantle weakening and strain localization: Implications for the long-term strength of the continental lithosphere. Geology, 37:147--150, 2009. [ bib ]
[4291] J. Précigout, C. Prigent, L. Palasse, and A. Pochon. Water pumping in mantle shear zones. Nature Comm., 8(15736), 2017. [ bib | DOI ]
[4292] S. Prejean, W. Ellsworth, M. Zoback, and F. Waldhauser. Fault structure and kinematics of the Long Valley Caldera region, California; revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversion. J. Geophys. Res.: Sol. Earth, 107(2355), 2002. [ bib | DOI ]
[4293] C. S. Prentice, R. J. Weldon, and K. E. Sieh. Distribution of slip between the San Andreas and San Jacinto faults near San Bernardino, southern California (abstract). In The Geological Society of America, Cordilleran Section, 82nd annual meeting. Abstracts with Programs, volume 18, page 172, 1986. [ bib ]
[4294] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2 edition, 1993. [ bib ]
[4295] S. Preuss, R. Herrendörfer, T. Gerya, J.-P. Ampuero, and Y. van Dinther. Seismic and aseismic fault growth lead to different fault orientations. J. Geophys. Res.: Sol. Earth, 124:8867--8889, 2019. [ bib ]
[4296] Simon Preuss, Jean Paul Ampuero, Taras Gerya, and Ylona van Dinther. Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults. Solid Earth, 11:1333--1360, 2020. [ bib ]
[4297] K. Priestley and D. McKenzie. The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett., 244:285--301, 2006. [ bib ]
[4298] K. Priestley, E. Debayle, D. McKenzie, and S. Pilidou. Upper mantle structure of eastern Asia from multimode surface waveform tomography. J. Geophys. Res.: Sol. Earth, 111(B10304), 2006. [ bib | DOI ]
[4299] K. Priestley and D. McKenzie. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett., 381:78--91, 2013. [ bib ]
[4300] G. A. Prieto, P. M. Shearer, F. L. Vernon, and D. Kilb. Earthquake source scaling and self-similarity estimation from stacking P and S spectra. J. Geophys. Res.: Sol. Earth, 109(B08310), 2004. [ bib | DOI ]
[4301] G. A. Prieto, D. J. Thomson, F. L. Vernon, P. M. Shearer, and R. L. Parker. Confidence intervals of earthquake source parameters. Geophys. J. Int., 168:1227--1234, 2007. [ bib ]
[4302] G. Principi and B. Treves. Il sistema corso-appennino come prisma d'accrezione. Riflessi sul problema generale del limite Alpi-Appennino. Mem. Soc. Geol. It., 28:529--576, 1984. [ bib ]
[4303] K. Prindle-Sheldrake and T. Tanimoto. Teleseismic surface wave study for S-wave velocity structure under an array: Southern California. Geophys. J. Int., 166:601--621, 2006. [ bib ]
[4304] K. L. Prindle-Sheldrake and T. Tanimoto. Southern California plate parallel azimuthal anisotropy from surface wave data (abstract). Eos Trans. AGU, 85(47):T33A--1351, 2004. [ bib ]
[4305] D Pritchard, GG Roberts, NJ White, and CN Richardson. Uplift histories from river profiles. Geophys. Res. Lett., 36(L24301), 2009. [ bib | DOI ]
[4306] M. E. Pritchard, R. M. Allen, T. W. Becker, M. D. Behn, E. E. Brodsky, R. Bürgmann, C. Ebinger, J. T. Freymueller, M. Gerstenberger, B. Haines, Y. Kaneko, S. D. Jacobsen, N. Lindsey, J. J. McGuire, M. Page, S. Ruiz, M. Tolstoy, L. Wallace, W. R. Walter, W. Wilcock, and H. Vincent. New opportunities to study earthquake precursors. Seismol. Res. Lett., 91:2444--2447, 2020. [ bib ]
[4307] B. Proctor and G. Hirth. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: Implications for subduction-​ zone seismicity. Earth Planet. Sci. Lett., 42:1--12, 2015. [ bib ]
[4308] C. Prodehl. Crustal Structure of the Western United States, volume 1034 of U. S. Geol. Surv. Prof. Pap. United States Geological Survey, 1979. [ bib ]
[4309] Simon R Proud, Andrew T Prata, and Simeon Schmauß. The January 2022 eruption of Hunga Tonga-Hunga Ha’apai volcano reached the mesosphere. Science, 378:554--557, 2022. [ bib ]
[4310] A.-S. Provost and J. Chéry. Relation between effective friction and fault slip rates across the Northern San Andreas fault system. In S. J. H. Buiter and G. Schreurs, editors, Numerical modeling of crustal scale processes, volume 253 of Spec. Pub., pages 429--436. Geological Society of London, London, 2006. [ bib ]
[4311] S. Puel, E. Khattatov, U. Villa, D. Liu, O. Ghattas, and T. W Becker. Mixed, unified forward/inverse framework for earthquake problems: Fault implementation and coseismic slip estimate. Geophys. J. Int., 230:733--758, 2022. [ bib ]
[4312] S. Puel, T. W. Becker, U. Villa, O. Ghattas, and D. Liu. An adjoint-based optimization method for jointly inverting heterogeneous material properties and fault slip from earthquake surface deformation data. Geophys. J. Int., 236:778--797, 2024. [ bib ]
[4313] S. Puel, T. W. Becker, U. Villa, O. Ghattas, and D. Liu. Volcanic arc rigidity variations illuminated by coseismic deformation of the 2011 Tohoku-oki M9. Sci. Adv., in revision, 2024. [ bib ]
[4314] C. Püthe and T. Gerya. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondw. Res., 25:270--283, 2014. [ bib ]
[4315] G. Purcaru and H. Berckhemer. A magnitude scale for very large earthquakes. Tectonophys., 49:189--198, 1978. [ bib ]
[4316] Edward M Purcell. Life at low Reynolds number. Amer. J. Phys., 45:3--11, 1977. [ bib ]
[4317] A. E. Pusok and Boris J. P. Kaus. Development of topography in 3-D continental-collision models. Geochem., Geophys., Geosys., 16:1378--1400, 2015. [ bib ]
[4318] Adina E Pusok, Boris JP Kaus, and Anton A Popov. The effect of rheological approximations in 3-D numerical simulations of subduction and collision. Tectonophys., 746:296--311, 2018. [ bib ]
[4319] Adina E Pusok and Dave R Stegman. The convergence history of India-Eurasia records multiple subduction dynamics processes. Science adv., 6(19):eaaz8681, 2020. [ bib ]
[4320] P. Puster, B. H. Hager, and T. H. Jordan. Mantle convection experiments with evolving plates. Geophys. Res. Lett., 22:2223--2226, 1995. [ bib ]
[4321] P. Puster and T. H. Jordan. How stratified is mantle convection? J. Geophys. Res.: Sol. Earth, 102:7625--7646, 1997. [ bib ]
[4322] B. Aagaard, M. Knepley B., and C. Williams. PyLith User Manual, Version 2.2.0. Computational Infrastructure for Geodynamics, Davis, CA, 2017. availabline online at geodynamics.org/cig/software/github/pylith/v2.2.0/pylith-2.2.0_manual.pdf, accessed 01/2021. [ bib ]
Keywords: PyLith
[4323] Caltech Center for Advanced Computing Research. PYRE homepage. Online at www.cacr.caltech.edu/projects/pyre/, accessed 06/2006, 2006. [ bib ]
[4324] R. N. Pysklywec and M. Ishii. Time dependent subduction dynamics driven by the instability of stagnant slabs in the transition zone. Phys. Earth Planet. Inter., 149:115--132, 2005. [ bib ]
[4325] R. N. Pysklywec and J. X. Mitrovica. Mantle avalanches and the dynamic topography of continents. Earth Planet. Sci. Lett., 148:447--455, 1997. [ bib ]
[4326] Russell N Pysklywec and Jerry X Mitrovica. Mantle flow mechanisms for the large-scale subsidence of continental interiors. Geology, 26:687--690, 1998. [ bib ]
[4327] Python Software Foundation. Python. Online at www.python.org/, accessed 06/2006, 2006. [ bib ]
[4328] Y. Qin, Y. Capdeville, J.-P. Montagner, L. Boschi, and T. W. Becker. Reliability of mantle tomography models assessed by spectral-element simulation. Geophys. J. Int., 177:125--144, 2009. [ bib ]
[4329] Y. Qin and S. C. Singh. Detailed seismic velocity of the incoming subducting sediments in the 2004 great Sumatra earthquake rupture zone from full waveform inversion of long offset seismic data. Geophys. Res. Lett., 44:3090--3099, 2017. [ bib ]
[4330] Chuan Qin, Shijie Zhong, and Roger Phillips. Formation of the lunar fossil bulges and its implication for the early Earth and Moon. Geophys. Res. Lett., 45:1286--1296, 2018. [ bib ]
[4331] Hongrui Qiu, Fan-Chi Lin, and Yehuda Ben-Zion. Eikonal Tomography of the Southern California Plate Boundary Region. J. Geophys. Res.: Sol. Earth, 124:9755--9779, 2019. [ bib | DOI ]
[4332] J. Quinteros and S. V. Sobolev. Why has the Nazca plate slowed since the Neogene? Geology, 41:32--34, 2013. [ bib ]
[4333] E. Rabinowicz. The nature of static and kinetic coefficients of friction. J. Appl. Phys., 22:1373--1379, 1951. [ bib ]
[4334] E. Rabinowicz. The intrinsic variables affecting the stick-slip process. Proc. Phys. Soc. London, 71:668--675, 1958. [ bib ]
[4335] M. Rabinowicz et al. Three dimensional models of mantle flow across a low-viscosity zone: implications for hotpots dynamics. Earth Planet. Sci. Lett., 99:170--184, 1990. [ bib ]
[4336] HS Rabinowitz, HM Savage, RM Skarbek, Matt J Ikari, Brett M Carpenter, and C Collettini. Frictional behavior of input sediments to the Hikurangi Trench, New Zealand. Geochem., Geophys., Geosys., 19:2973--2990, 2018. [ bib ]
[4337] E. Rader, E. Emry, N. Schmerr, D. Frost, C. Cheng, J. Menard, C.-Y. Yu, and D. Geist. Characterization and petrological constraints of the midlithospheric discontinuity. Geochem., Geophys., Geosys., 16:3484--3504, 2015. [ bib | DOI ]
[4338] M. Radiguet, H. Perfettini, N. Cotte, A. Gualandi, B. Valette, V. Kostoglodov, T. Lhomme, A. Walpersdorf, E. C. Cano, and M. Campillo. Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geosc., 9:829--833, 2016. [ bib ]
[4339] R Si Raghavan, S Schoenert, S Enomoto, J Shirai, F Suekane, and A Suzuki. Measuring the global radioactivity in the Earth by multidetector antineutrino spectroscopy. Phys. Rev. Lett., 80:635, 1998. [ bib ]
[4340] R. W. Raitt. Seismic-refraction studies of the Pacific Ocean basin: Part 1: Crustal thickness of the Equatorial Pacific. Geol. Soc. Amer. Bull., 67:1623--1640, 1956. [ bib ]
[4341] Tahiry A Rajaonarison, D Sarah Stamps, and John Naliboff. Role of lithospheric buoyancy forces in driving deformation in East Africa from 3D geodynamic modeling. Geophys. Res. Lett., 48(6):e2020GL090483, 2021. [ bib ]
[4342] Victor A Ramos and Andrés Folguera. Andean flat-slab subduction through time. Geol. Soc., London, Spec. Pub., 327:31--54, 2009. [ bib ]
[4343] Marlon D Ramos and Yihe Huang. How the transition region along the Cascadia megathrust influences coseismic behavior: Insights from 2-D dynamic rupture simulations. Geophys. Res. Lett., 46:1973--1983, 2019. [ bib ]
[4344] Michael R Rampino and Richard B Stothers. Flood basalt volcanism during the past 250 million years. Science, 241:663--668, 1988. [ bib ]
[4345] J. Ramsay, M. D. Kohler, P. M. Davis, X. Wang, W. Holt, and D. S. Weeraratne. North America plate boundary offshore southern California. Geophys. J. Int., 207:244--256, 2015. [ bib ]
[4346] Joseph Ramsay, Monica D. Kohler, Paul M. Davis, Xinguo Wang, William Holt, and Dayanthie S. Weeraratne. Anisotropy from SKS splitting across the Pacific-North America plate boundary offshore southern California. Geophys. J. Int., 207:244--258, 2016. [ bib ]
[4347] G. Ranalli. Westward drift of the lithosphere: not a result of rotational drag. Geophys. J. Int., 141:535--537, 2000. [ bib ]
[4348] G. Ranalli. How soft is the crust? Tectonophys., 361:319--320, 2003. [ bib ]
[4349] G. Ranalli. On the possibility of Newtonian flow in the upper mantle. Tectonophys., 108:179--192, 1984. [ bib ]
[4350] G. Ranalli and D. C. Murphy. Rheological stratification of the lithosphere. Tectonophys., 132:291--295, 1986. [ bib ]
[4351] Giorgio Ranalli and Donald C Murphy. Rheological stratification of the lithosphere. Tectonophys., 132:281--295, 1987. [ bib ]
[4352] G. Ranalli. Rheology of the Earth. Chapman & Hall, London, 2nd edition, 1995. [ bib ]
[4353] Giorgio Ranalli. Rheology of the lithosphere in space and time. Geol. Soc., London, Spe. Pub., 121:19--37, 1997. [ bib ]
[4354] C. Ranero, J. Phipps-Morgan, K. McIntosh, and C. Reichert. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425:367--373, 2003. [ bib ]
[4355] César R Ranero and Valentí Sallarès. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology, 32:549--552, 2004. [ bib ]
[4356] K. Ranjith and J. R. Rice. Stability of quasi-static slip in a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids, 47:1207--1218, 1999. [ bib ]
[4357] R. H. Rapp, Y. M. Wang, and N. Pavlis. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models. Rep. 410, Dept. of Geod. Sci. and Surv., Ohio State University, Columbus, Ohio, 1991. [ bib ]
[4358] R. H. Rapp, C. Zhang, and Y. Yi. Analysis of dynamic ocean topography using topex data and orthonormal functions. J. Geophys. Res.: Sol. Earth, 101:22583--22598, 1996. [ bib ]
[4359] R. H. Rapp. Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J. Geodesy, 71:282--289, 1997. [ bib ]
[4360] PNJ Rasolofosaon, W Rabbel, S Siegesmund, and A Vollbrecht. Characterization of crack distribution: fabric analysis versus ultrasonic inversion. Geophys. J. Int., 141:413--424, 2000. [ bib ]
[4361] James Todd Ratcliff, Gerald Schubert, and Abdelfattah Zebib. Steady tetrahedral and cubic patterns of spherical shell convection with temperature-dependent viscosity. J. Geophys. Res.: Sol. Earth, 101:25473--25484, 1996. [ bib ]
[4362] J. T. Ratcliff, D. Bercovici, G. Schubert, and L. W. Kroenke. Mantle plume heads and the initiation of plate tectonic reorganizations. Earth Planet. Sci. Lett., 156:195--207, 1998. [ bib ]
[4363] Florian Rathgeber, David A Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew TT McRae, Gheorghe-Teodor Bercea, Graham R Markall, and Paul HJ Kelly. Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Software (TOMS), 43:1--27, 2016. [ bib ]
[4364] V. Ratnaswamy, G. Stadler, and M. Gurnis. Adjoint-based estimation of plate coupling in a non-linear mantle flow model: theory and examples. Geophys. J. Int., 202:768--786, 2015. [ bib ]
[4365] M. Le Ravalec and Y. Guéguen. Comment on “the elastic modulus of media containing strongly interacting antiplane cracks” by paul m. davis and leon knoppoff. J. Geophys. Res.: Sol. Earth, 101:25373--25375, November 1996. [ bib ]
[4366] M. Ravenna, S. Lebedev, J. Fullea, and J. M.-C. Adam. Shear-wave velocity structure of Southern Africa's lithosphere: Variations in the thickness and composition of cratons and their effect on topography. Geochem., Geophys., Geosys., 19:1499--1518, 2018. [ bib | DOI ]
[4367] M. Ravenna. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy and the structure and evolution of southern Africa's lithosphere. PhD thesis, University College Dublin, Dublin, 2018. [ bib ]
[4368] Matteo Ravenna and Sergei Lebedev. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy. Geophys. J. Int., 213(1):278--300, 2018. [ bib ]
[4369] T. R. Ray and D. L. Anderson. Spherical disharmonics in the Earth sciences and the spatial solution: Ridges, hotspots, slabs, geochemistry and tomography correlations. J. Geophys. Res.: Sol. Earth, 99:9605--9614, 1994. [ bib ]
[4370] M. D. Read, M. R. Ayling, P. G. Meredith, and S. A. F. Murrell. Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties: II Pore volumometry and acoustic emission measurements on water saturated rocks. Tectonophys., 245:223--235, 1995. [ bib ]
[4371] P. Reasenberg and D. Oppenheimer. FPFIT, FPPLOT, and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions. U. S. Geological Survey Open File Report, 85-739:109, 1985. [ bib ]
[4372] Paul Reasenberg. Second-order moment of central California seismicity, 1969--1982. J. Geophys. Res.: Sol. Earth, 90:5479--5495, 1985. [ bib ]
[4373] P. A. Reasenberg and L. M. Jones. Earthquake hazard after a mainshock in California. Science, 243:1173--1176, 1989. [ bib ]
[4374] P. A. Reasenberg and R. W. Simpson. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake. Science, 255:1687--1690, 1992. [ bib ]
[4375] Jacqueline E Reber, Luc L Lavier, and Nicholas W Hayman. Experimental demonstration of a semi-brittle origin for crustal strain transients. Nature Geosc., 8:712--715, 2015. [ bib ]
[4376] A. L. Rechenmacher and R. J. Finno. Digital image correlation to evaluate shear banding in dilative sands. ASTM Geotech. Test. J., 27:13--33, 2004. [ bib ]
[4377] A. L. Rechenmacher. Grain-scale processes governing shear band initiation and evolution in sands. J. Mech. Phys. Sol., 54:22--45, 2006. [ bib ]
[4378] Z. Reches and D. A. Lockner. Nucleation and growth of faults in brittle rocks. J. Geophys. Res.: Sol. Earth, 99:18159--18173, 1994. [ bib ]
[4379] J. Regan and D. L. Anderson. Anisotropic models of the upper mantle. Phys. Earth Planet. Inter., 35:227--263, 1984. [ bib ]
[4380] V. Regard, C. Faccenna, O. Bellier, and J. Martinod. Laboratory experiments of slab break-off and slab dip reversal: insight into the Alpine Oligocene reorganization. Terra Nova, 20:267--273, 2008. [ bib ]
[4381] K. Regenauer Lieb, D. A. Yuen, and J. Branlund. The initiation of subduction; criticality by addition of water? Science, 294:578--580, 2001. [ bib ]
[4382] Regenauer-Lieb and D. Yuen. Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches. Earth-Sci. Rev., 63:295--349, 2003. [ bib ]
[4383] H. F. Reid. The mechanics of the earthquake. In The California Earthquake of April 18, 1906, volume 2. Carnegie Institute, Washington, 1910. [ bib ]
[4384] H. F. Reid. The elastic-rebound theory of earthquakes. Bull. Dep. Geol. Sci, 6:413--444, 1911. [ bib ]
[4385] M. R. Reid, R. A. Bouchet, J. Blichert-Toft, A. Levander, K. Liu, M. S. Miller, and F. C. Ramos. Melting under the Colorado Plateau, USA. Geology, 40:387--390, 2012. [ bib ]
[4386] Robert Reilinger, Simon McClusky, Philippe Vernant, Shawn Lawrence, Semih Ergintav, Rahsan Cakmak, Haluk Ozener, Fakhraddin Kadirov, Ibrahim Guliev, Ruben Stepanyan, et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res.: Sol. Earth, 111(B5), 2006. [ bib ]
[4387] Robert Reilinger and Simon McClusky. Nubia--Arabia--Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys. J. Int., 186:971--979, 2011. [ bib ]
[4388] A. Reinarz, D.E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri, A.-A. Gabriel, J.M. Gallard, S. Köppel, and L. Krenz. Exahype: an engine for parallel dynamically adaptive simulations of wave problems. Comp. Phys. Comm., 254, 2020. Package available online at www.exahype.eu, accessed 01/2021. [ bib | DOI ]
[4389] C. Reinders. Oberflächenneigung an geologischen Kontrasten. Eine FEM-Modellierung. Diplomarbeit, Fachbereich Geophysik der Westfälischen-Wilhelms-Universität Münster, Juli 1996. [ bib ]
[4390] J. Reinecker, O. Heidbach, and B. Müller. The 2003 release of the World Stress Map. (Online at www.world-stress-map.org), 2003. [ bib ]
[4391] J. Reinecker, O. Heidbach, M. Tingay, B. Sperner, and B. Müller. The 2005 release of the World Stress Map. (Online at www.world-stress-map.org). Cf. [6095]., 2005. [ bib ]
[4392] Peter W Reiners and Mark T Brandon. Using thermochronology to understand orogenic erosion. Ann. Rev. Earth Planet. Sci., 34:419--466, 2006. [ bib ]
[4393] M. C. Reiss, G. Rümpker, F. Tilmann, X. Yuan, J. Giese, and Rindraharisaona E. J. Seismic anisotropy of the lithosphere and asthenosphere beneath southern Madagascar from teleseismic shear wave splitting analysis and waveform modeling. J. Geophys. Res.: Sol. Earth, 121:6627--6643, 2016. [ bib | DOI ]
[4394] M. C. Reiss and G. Rümpker. SplitRacer: MATLAB Code and GUI for Semiautomated Analysis and Interpretation of Teleseismic Shear‐Wave Splitting. Seis. Res. Lett., 88:392--409, 2017. [ bib ]
[4395] Y. Ren, E. Stutzmann, R. D. van der Hilst, and J. Besse. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. J. Geophys. Res.: Sol. Earth, 112(B01302), 2007. [ bib | DOI ]
[4396] Y. Ren, J. Geersen, and I. Grevemeyer. Impact of spreading rate and age-offset on oceanic transform fault morphology. Geophys. Res. Lett., 49:e2021GL096170, 2022. [ bib ]
[4397] F. Renard and T. Candela. Scaling of fault roughness and implications for earthquake mechanics. In Marion Y. Thomas, Thomas M. Mitchell, and Harsha S. Bhat, editors, Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, volume 227 of Geophys. Monog., pages 197--215. John Wiley & Sons, 2017. [ bib ]
[4398] J. Repka, R. Anderson, and R. Finkel. Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth Planet. Sci. Lett., 152:59--73, 1997. [ bib ]
[4399] Anne Replumaz and P Tapponnier. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res.: Sol. Earth, 108(B6), 2003. [ bib | DOI ]
[4400] Anne Replumaz, Hrafnkell Karason, Rob D van der Hilst, Jean Besse, and Paul Tapponnier. 4-D evolution of SE Asia's mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett., 221:103--115, 2004. [ bib ]
[4401] A. Replumaz, A. M. Negredo, S. Guillot, and A. Villaseñor. Multiple episodes of continental subduction during India/Asia convergence: Insight from seismic tomography and tectonic reconstruction. Tectonophys., 483:125--134, 2010. [ bib ]
[4402] J. Resovsky, J. Trampert, and R. D. van der Hilst. Error bars for the global seismic Q profile. Earth Planet. Sci. Lett., 230:413--423, 2005. [ bib ]
[4403] A. Restivo and G. Helffrich. Core-mantle boundary structure investigated using SKS and SKKS polarization anomalies. Geophys. J. Int., 165:288--302, 2006. [ bib ]
[4404] S. A. Restrepo-Moreno, D. A. Foster, D. Stockli, and L. N. Parra-Sánchez. Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U–Th)/He thermochronology. Earth Planet. Sci. Lett., 278:1--12, 2009. [ bib ]
[4405] A. Reuss. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9:49--58, 1929. [ bib ]
[4406] J. Revenaugh and T. H. Jordan. Mantle layering from ScS reverberations: 3. The upper mantle. J. Geophys. Res.: Sol. Earth, 96:19781--19810, 1991. [ bib ]
[4407] J. Revenaugh and T. H. Jordan. Mantle layering from ScS reverberations: 2. The transition zone. J. Geophys. Res.: Sol. Earth, 96:19763--19780, 1991. [ bib ]
[4408] J. Revenaugh. A scattered-wave image of subduction beneath the Transverse Ranges. Science, 268:1888--1892, 1995. [ bib ]
[4409] R. K. Rew, G. P. Davis, S. Emmerson, and H. Davies. NetCDF User's Guide for C, An Interface for Data Access. University Corporation for Atmospheric Research, 3 edition, 1997. [ bib ]
[4410] PF Rey, C Teyssier, and DL Whitney. The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophys., 477:135--144, 2009. [ bib ]
[4411] Patrice F Rey, Nicolas Coltice, and Nicolas Flament. Spreading continents kick-started plate tectonics. Nature, 513:405--408, 2014. [ bib ]
[4412] O. Reynolds. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Royal Soc. London, 174:935--982, 1883. [ bib ]
[4413] David A Rhoades, Matthew C Gerstenberger, Annemarie Christophersen, J Douglas Zechar, Danijel Schorlemmer, MJ Werner, and Thomas H Jordan. Regional earthquake likelihood models II: Information gains of multiplicative hybrids. Bull. Seismol. Soc. Am., 104:3072--3083, 2014. [ bib ]
[4414] N. M. Ribe. Bending and stretching of thin viscous sheets. J. Fluid. Mech., 433:135--160, 2001. [ bib ]
[4415] N. M. Ribe. A general theory for the dynamics of thin viscous sheets. J. Fluid. Mech., 457:255--283, 2002. [ bib ]
[4416] N. M. Ribe. Periodic folding of viscous sheets. Phys. Rev. E, 86(036305), 2003. [ bib ]
[4417] N. M. Ribe, E. Stutzmann, Y. Ren, and R. van der Hilst. Buckling instabilities of subducted lithosphere beneath the transition zone. Earth Planet. Sci. Lett., 254:173--179, 2007. [ bib ]
[4418] N. M. Ribe. Bending mechanics and mode selection in free subduction: a thin-sheet analysis. Geophys. J. Int., 180:559--576, 2010. [ bib ]
[4419] N. M. Ribe, R. Hielscher, and O. Castelnau. An analytical finite-strain parametrization for texture evolution in deforming olivine polycrystals. Geophys. J. Int., 486--514, 2018. [ bib ]
[4420] Neil M Ribe, Paul J Tackley, and Patrick Sanan. The strength of the Iceland plume: A geodynamical scaling approach. Earth Planet. Sci. Lett., 551:116570, 2020. [ bib ]
[4421] N. M. Ribe. Seismic anisotropy and mantle flow. J. Geophys. Res.: Sol. Earth, 94:4213--4223, 1989. [ bib ]
[4422] N. M. Ribe and Y. Yu. A theory for plastic deformation and textural evolution of olivine polycrystals. J. Geophys. Res.: Sol. Earth, 96:8325--8335, 1991. [ bib ]
[4423] N. M. Ribe. The dynamics of thin shells with variable viscosity and the origin of toroidal flow in the mantle. Geophys. J. Int., 110:537--552, 1992. [ bib ]
[4424] N. M. Ribe. On the relation between seismic anisotropy and finite strain. J. Geophys. Res.: Sol. Earth, 97:8737--8747, 1992. [ bib ]
[4425] N. M. Ribe and U. R. Christensen. Three-dimensional modeling of plume-lithosphere interaction. J. Geophys. Res.: Sol. Earth, 99:669--682, 1994. [ bib ]
[4426] N. N. Ribe and U. R. Christensen. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett., 171:517--531, 1994. [ bib ]
[4427] N. N. Ribe, U. R. Christensen, and J. Theissing. The dynamics of plume-ridge interaction, 1: Ridge-centered plumes. Earth Planet. Sci. Lett., 134:155--168, 1995. [ bib ]
[4428] N. M. Ribe. The dynamics of plume-ridge interaction. 2. Off-ridge plumes. J. Geophys. Res.: Sol. Earth, 1001:16195--16204, 1996. [ bib ]
[4429] N. M. Ribe and U. R. Christensen. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett., 171:517--531, 1999. [ bib ]
[4430] Yanick Ricard and David Bercovici. Two-phase damage theory and crustal rock failure: the theoretical “void” limit, and the prediction of experimental data. Geophys. J. Int., 155:1057--1064, 2003. [ bib ]
[4431] Y. Ricard, E. Mattern, and J. Matas. Synthetic tomographic images of slabs from mineral physics. In R. D. van der Hilst, J. D. Bass, J. Matas, and J. Trampert, editors, Changing Views on the Structure, Composition, and Evolution of Earth's Deep Mantle, pages 285--302. American Geophysical Union, Washington DC, 2005. [ bib ]
[4432] Y. Ricard. Physics of mantle convection. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, 2007. [ bib ]
[4433] Y. Ricard and D. Bercovici. A continuum theory of grain size evolution and damage. J. Geophys. Res.: Sol. Earth, 114(B01204), 2009. [ bib | DOI ]
[4434] Y. Ricard, L. Fleitout, and C. Froidevaux. Geoid heights and lithospheric stresses for a dynamic Earth. Ann. Geophys., 2:267--286, 1984. [ bib ]
[4435] Y. Ricard and C. Froidevaux. Stretching instabilities and lithospheric boudinage. J. Geophys. Res.: Sol. Earth, 91:8314--8324, 1986. [ bib ]
[4436] Y. Ricard and C. Vigny. Mantle dynamics with induced plate tectonics. J. Geophys. Res.: Sol. Earth, 94:17543--17559, 1989. [ bib ]
[4437] Y. Ricard, C. Doglioni, and R. Sabadini. Differential rotation between lithosphere and mantle: A consequence of lateral mantle viscosity variations. J. Geophys. Res.: Sol. Earth, 96:8407--8415, 1991. [ bib ]
[4438] Y. Ricard and W. Bai. Inferring the viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities. Geophys. J. Int., 105:561--571, 1991. [ bib ]
[4439] Y. Ricard, M. A. Richards, C. Lithgow-Bertelloni, and Y. Le Stunff. A geodynamic model of mantle density heterogeneity. J. Geophys. Res.: Sol. Earth, 98:21895--21909, 1993. [ bib ]
[4440] Y. Ricard, H.-C. Nataf, and J.-P. Montagner. The 3-SMAC model: confrontation with data. J. Geophys. Res.: Sol. Earth, 101:8457--8472, 1996. [ bib ]
[4441] J. R. Rice, C. G. Sammis, and R. Parsons. Off-fault secondary failure induced by a dynamic slip pulse. Bull. Seismol. Soc. Am., 95:109--134, 2005. [ bib ]
[4442] J. R. Rice. Plastic yielding at a crack tip. In T. Yokobori, T. Kawasaki, and J. L. Swedlow, editors, Proceedings of the 1st International Conference on Fracture, volume 1, pages 283--308. Japanese Society for Strength and Fracture of Materials, Sendai, 1966. [ bib ]
[4443] J. R. Rice and M. P. Cleary. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14:227--241, May 1976. [ bib ]
[4444] J. R. Rice. The mechanics of earthquake rupture. In A. M. Dziewoński and E. Boschi, editors, Physics of the Earth's Interior, pages 555--649. Italian Physical Society and North-Holland, 1980. [ bib ]
[4445] J. R. Rice and A. L. Ruina. Stability of steady frictional slipping. J. Appl. Mech., 50:343--349, 1983. [ bib ]
[4446] J. R. Rice and S. T. Tse. Dynamic motion of a single degree of freedom system following a rate and state dependent friction law. J. Geophys. Res.: Sol. Earth, 91:521--530, 1986. [ bib ]
[4447] James R Rice. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In B. Evans and T.-F. Wong, editors, Fault Mechanics and Transport Properties of Rocks, volume 51, pages 475--503. Academic Press, 1992. [ bib ]
[4448] J. R. Rice. Spatio-temporal complexity of slip on a fault. J. Geophys. Res.: Sol. Earth, 98:9885--9907, 1993. [ bib ]
[4449] J. R. Rice. Mechanics of Solids, volume 23, chapter Mechanics, pages 733--747. Encyclopaedia Britannica, 15 edition, 1993. [ bib ]
[4450] J. R. Rice and Y. Ben-Zion. Slip complexity in earthquake fault models. Proc. Natl. Acad. Sci. USA, 93:3811--3818, 1996. [ bib ]
[4451] Guillaume C Richard and Hikaru Iwamori. Stagnant slab, wet plumes and cenozoic volcanism in east asia. Phys. Earth Planet. Inter., 183:280--287, 2010. [ bib ]
[4452] K. Richards-Dinger and J. H. Dieterich. RSQSim earthquake simulator. Seismol. Res. Lett., 83:983--990, 2012. [ bib ]
[4453] M. A. Richards, W.-S. Yang, J. Baumgardner, and H.-P Bunge. Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem., Geophys., Geosys., 2, 2001. [ bib | DOI ]
[4454] Mark A Richards, Walter Alvarez, Stephen Self, Leif Karlstrom, Paul R Renne, Michael Manga, Courtney J Sprain, Jan Smit, Loÿc Vanderkluysen, and Sally A Gibson. Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull., 127:1507--1520, 2015. [ bib ]
[4455] M. A. Richards and A. Lenardic. The Cathles parameter (Ct): A geodynamic definition of the asthenosphere and implications for the nature of plate tectonics. Geochem., Geophys., Geosys., 19:4858--4875, 2018. [ bib | DOI ]
[4456] M. A. Richards and B. H. Hager. Geoid anomalies in a dynamic Earth. J. Geophys. Res.: Sol. Earth, 89:5987--6002, 1984. [ bib ]
[4457] M. A. Richards, B. H. Hager, and N. H. Sleep. Dynamically supported geoid highs over hotspots: Observation and theory. J. Geophys. Res.: Sol. Earth, 93:7690--7708, 1988. [ bib ]
[4458] M. Richards and B. H. Hager. The Earth's geoid and the large-scale structure of mantle convection. In S. K. Runcorn, editor, The Physics of the Planets, pages 247--272. Wiley, Chichester, 1988. [ bib ]
[4459] M. A. Richards and B. H. Hager. Effects of lateral viscosity variations on long-wavelength geoid anomalies and topography. J. Geophys. Res.: Sol. Earth, 94:10299--10313, 1989. [ bib ]
[4460] Mark A Richards, Robert A Duncan, and Vincent E Courtillot. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246:103--107, 1989. [ bib ]
[4461] M. A. Richards. Hotspots and the case for a high-viscosity lower mantle. In R. Sabadini and K. Lambeck, editors, Glacial Isostasy, Sea-Level and Mantle Rheology, pages 571--588. Kluwer Academic Publishers, Norwell MA, 1991. [ bib ]
[4462] R. M. Richardson, S. C. Solomon, and N. H. Sleep. Tectonic stresses in plates. Rev. Geophys. Space Phys., 17:981--1019, 1979. [ bib ]
[4463] R. M. Richardson and B. L. Cox. Evolution of oceanic lithospere: A driving force study of the Nazca plate. J. Geophys. Res.: Sol. Earth, 89:10043--10052, 1984. [ bib ]
[4464] R. M. Richardson and L. M. Reding. North American plate dynamics. J. Geophys. Res.: Sol. Earth, 96:12201--12223, 1991. [ bib ]
[4465] R. M. Richardson. Ridge forces, absolute plate motions, and the intraplate stress field. J. Geophys. Res.: Sol. Earth, 97:11739--11748, 1992. [ bib ]
[4466] Nicolas Richart and Jean-François Molinari. Implementation of a parallel finite-element library: Test case on a non-local continuum damage model. Finite Elem. Anal. Design, 100:41--46, 2015. [ bib ]
[4467] Charles F Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 25:1--32, 1935. [ bib ]
[4468] F. M. Richter. Dynamical models for sea floor spreading. Rev. Geophys. Space Phys., 11:223--287, 1973. [ bib ]
[4469] F. M. Richter. Convection and the large-scale circulation of the mantle. J. Geophys. Res.: Sol. Earth, 78:8735--8745, 1973. [ bib ]
[4470] F. M. Richter and B. Parsons. On the interaction of two scale convection in the mantle. J. Geophys. Res.: Sol. Earth, J. Geophys. Res.: Sol. Earth:2529--2541, 1975. [ bib ]
[4471] F. M. Richter and D. McKenzie. Simple plate models of mantle convection. J. Geophys. Res.: Sol. Earth, 44:441--471, 1978. [ bib ]
[4472] F. M. Richter and S. F. Daly. Convection models having a multiplicity of large horizontal scales. J. Geophys. Res.: Sol. Earth, 83:4951--4956, 1978. [ bib ]
[4473] Andy Ridgwell. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Marine Geol., 217:339--357, 2005. [ bib ]
[4474] W. Riedel. Zur Mechanik geologischer Brucherscheinungen ein Beitrag zum Problem der Fiederspatten. Zentbl. Miner. Geol. Palont. B, pages 354--368, 1929. [ bib ]
[4475] M. R. Riedel and S.-i. Karato. Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett., 148:27--43, 1997. [ bib ]
[4476] M. Riedesel and T. H. Jordan. Display and assessment of seismic moment tensors. Bull. Seismol. Soc. Am., 79(1):85--100, February 1989. [ bib ]
[4477] Elenora van Rijsingen, Serge Lallemand, Michel Peyret, Diane Arcay, Arnauld Heuret, Francesca Funiciello, and Fabio Corbi. How subduction interface roughness influences the occurrence of large interplate earthquakes. Geochem., Geophys., Geosys., 19:2342--2370, 2018. [ bib ]
[4478] Tsuneji Rikitake. Oscillations of a system of disk dynamos. In Proc. Cambridge Philos. Soc, volume 54, pages 89--105, 1958. [ bib ]
[4479] A. E. Ringwood. Role of the transition zone and 660 km discontinuity in mantle dynamics. Phys. Earth Planet. Inter., 86:5--24, 1994. [ bib ]
[4480] A. Risse, R. B. Trumbull, B. L. Coira, S. M. Kay, and P. van den Bogaard. 40Ar/39Ar geochronology of basaltic volcanism in the back-arc region of the southern Puna plateau, Argentina. J. South Am. Earth Sci., 26:1--15, 2008. [ bib ]
[4481] J. Ritsema and H. J. van Heijst. Seismic imaging of structural heterogeneity in Earth's mantle: Evidence for large-scale mantle flow. Sci. Progr., 83:243--259, 2000. [ bib ]
[4482] J. Ritsema, H. van Heijst, and J. H. Woodhouse. Global transition zone tomography. J. Geophys. Res.: Sol. Earth, 109(B02302), 2004. [ bib | DOI ]
[4483] Jeroen Ritsema, Allen K McNamara, and Abigail L Bull. Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. J. Geophys. Res.: Sol. Earth, 112(B01303), 2007. [ bib | DOI ]
[4484] J. Ritsema, H. J. van Heijst, A. Deuss, and J. H. Woodhouse. S40RTS: a degree-40 shear velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal-mode splitting function measurements. Geophys. J. Int., 184:1223--1236, 2011. [ bib ]
[4485] Jeroen Ritsema and Vedran Lekić. Heterogeneity of seismic wave velocity in Earth's mantle. Ann. Rev. Earth Planet. Sci., 48:377--401, 2020. [ bib ]
[4486] J. Ritsema, H. J. van Heijst, and J. H. Woodhouse. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286:1925--1928, 1999. [ bib ]
[4487] M. H. Ritzwoller, N. M. Shapiro, M. P. Barmin, and A. L. Levshin. Global surface wave diffraction tomography. J. Geophys. Res.: Sol. Earth, 107:2335, 2002. [ bib ]
[4488] M. H. Ritzwoller, N. M. Shapiro, and S. Zhong. Cooling history of the Pacific lithosphere. Earth Planet. Sci. Lett., 226:69--84, 2004. [ bib ]
[4489] M. H. Ritzwoller and E. M. Lavely. Three dimensional models of the Earth's mantle. Rev. Geophys. Space Phys., 33:1--66, 1995. [ bib ]
[4490] L. Rivera and H. Kanamori. Spatial heterogeneity of tectonic stress and friction in the crust. Geophys. Res. Lett., 29, 2002. [ bib | DOI ]
[4491] L. Rivera and A. Cisternas. Stress tensor and fault plane solution for a population of earthquakes. Bull. Seismol. Soc. Am., 80:600--614, 1990. [ bib ]
[4492] J. Rivière, Z. Lv, P.A. Johnson, and C. Marone. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults. Earth Planet. Sci. Lett., 482:407--413, 2018. [ bib ]
[4493] Paul H Roberts and Eric M King. On the genesis of the earth's magnetism. Rep. Prog. Physics, 76:1--55, 2013. [ bib ]
[4494] G. S. Robertson and J. H. Woodhouse. Ratio of relative S to P velocity heterogeneity in the lower mantle. J. Geophys. Res.: Sol. Earth, 101:20041--20052, 1996. [ bib ]
[4495] R. Robinson and R. Benites. Synthetic seismicity models of multiple interacting faults. J. Geophys. Res.: Sol. Earth, 100:18229--18238, September 1995. [ bib ]
[4496] R. Robinson and R. Benites. Synthetic seismicity models for the Wellington region, New Zealand: implications for the temporal distribution of large events. J. Geophys. Res.: Sol. Earth, 101:27833--27844, 1996. [ bib ]
[4497] A. Robock. Volcanic eruptions and climate. Rev. Geophys., 38:191--219, 2000. [ bib ]
[4498] T. Roch, E. A. Brener, J.-F. Molinari, and E. Bouchbinder. A finite geometry, inertia assisted coarsening-to-complexity transition in homogeneous frictional systems. arXiv preprint arXiv: 2402.07178, 2024. [ bib ]
[4499] T. K. Rockwell, S. Lindvall, M. Herzberg, D. Murbach, T. Dawson, and G. Berger. Paleoseismology of the Johnson Valley, Kickapoo, and Homestead Valley faults: clustering of earthquakes in the Eastern California Shear Zone. Bull. Seismol. Soc. Am., 90:1200--1236, 2000. [ bib ]
[4500] T. K. Rockwell. Open intervals, clusters and supercycles: 1100 years of moment release in the southern San Andreas fault system: Are we ready for the century of earthquakes? Southern California Earthquake Center Annual Meeting Proceedings Volume, page 121, 2016. Available online at s3-us-west-2.amazonaws.com/files.scec.org/s3fs-public/SCEC2016Proceedings.pdf, accessed 11/2016. [ bib ]
[4501] T. K. Rockwell. Neotectonics of the San Cayetano Fault, Transverse Ranges, California. Geol. Soc. Am. Bull., 100:500--513, 1988. [ bib ]
[4502] T. K. Rockwell, C. Loughman, and P. Merifield. Late Quaternary rate of slip along the San Jacinto fault zone near Anza, southern California. J. Geophys. Res.: Sol. Earth, 95:8593--8605, 1990. [ bib ]
[4503] M. V. Rodkin and A. G. Rodnikov. Origin and structure of back-arc basins: new data and model discussion. Phys. Earth Planet. Inter., 93:123--131, 1996. [ bib ]
[4504] Mathieu Rodriguez, Maëlis Arnould, Nicolas Coltice, and Mathieu Soret. Long-term evolution of a plume-induced subduction in the neotethys realm. Earth Planet. Sci. Lett., 561:116798, 2021. [ bib ]
[4505] G. H. Roe, Drew B. Stolar, and Sean D. Willett. Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing. In S.D. Willett, N. Hovius, M.T. Brandon, and D.M. Fisher, editors, Tectonics, Climate, and Landscape Evolution, pages 227--239. Geological Society of America, 2006. [ bib ]
[4506] S. Roecker, C. Thurber, K. Roberts, and L. Powell. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Bull. Seismol. Soc. Am., 426:189--205, 2006. [ bib ]
[4507] D. Roeder and R. L. Chamberlain. Eastern Cordillera of Colombia: Jurassic to Neogene crustal evolution. In R. Tankard, R. Suarez, and H. J. Welsink, editors, Petroleum basins of South America, volume 62 of Amer. Assoc. Petrol. Geol. Mem., pages 633--645. American Association of Petroleum Geologists, 1995. [ bib ]
[4508] J. Röder, J. E. Hammerberg, B. L. Holian, and A. R. Bishop. Multichain Frenkel-Kontorova model for interfacial slip. Phys. Rev. B, 57:2759--2766, 1998. [ bib ]
[4509] E. Roelofs. Poroelastic techniques in the study of earthquake-related hydrologic phenomena. Advances in Geophys., 37:135--195, 1996. [ bib ]
[4510] B. Rösler and S. Stein. Consistency of non-double-couple components of seismic moment tensors with earthquake magnitude and mechanism. Seismol. Res. Lett., 93:1510--1523, 2022. [ bib ]
[4511] G. Rogers and H. Dragert. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300:1942--1943, 2003. [ bib ]
[4512] T. Rolf and P. J. Tackley. Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett., 38(L18301), 2011. [ bib | DOI ]
[4513] T. Rolf, N. Coltice, and P. J. Tackley. Linking continental drift, plate tectonics and the thermal state of the Earth's mantle. Earth Planet. Sci. Lett., 351:134--146, 2012. [ bib ]
[4514] Tobias Rolf, Fabio Antonio Capitanio, and Paul J Tackley. Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophys., 746:339--351, 2018. [ bib ]
[4515] Pierre Romanet, Harsha S Bhat, Romain Jolivet, and Raúl Madariaga. Fast and slow slip events emerge due to fault geometrical complexity. Geophys. Res. Lett., 45:4809--4819, 2018. [ bib ]
[4516] Pierre Romanet and Satoshi Ide. Ambient tectonic tremors in Manawatu, Cape Turnagain, Marlborough, and Puysegur, New Zealand. Earth, Planet. Space, 71:1--9, 2019. [ bib ]
[4517] B. A. Romanowicz. Global mantle tomography: Progress status in the last 10 years. Ann. Rev. Earth Planet. Sci., 31:303--328, 2003. [ bib ]
[4518] B. A. Romanowicz. The thickness of tectonic plates. Science, 324:474--476, 2009. [ bib ]
[4519] B. A. Romanowicz and H. Yuan. On the interpretation of SKS splitting measurements in the presence of several layers of anisotropy. Geophys. J. Int., 188:1129--1140, 2012. [ bib ]
[4520] B. A. Romanowicz and B. Mitchell. Deep earth structure: Q of the Earth from crust to core. In Treatise on Geophysics, volume 1, chapter 1.25, pages 789--827. Elsevier, 2 edition, 2015. [ bib ]
[4521] B. A. Romanowicz and H.-R. Wenk. Anisotropy in the deep Earth. Phys. Earth Planet. Inter., 269:58--90, 2017. [ bib ]
[4522] B. A. Romanowicz and R. Snieder. A new formalism for the effect of lateral heterogeneity on normal modes and surface waves. II. General anisotropic perturbation. Geophys. J., 93:91--99, 1988. [ bib ]
[4523] B. A. Romanowicz. Seismic tomography of the Earth's mantle. Ann. Rev. Earth Planet. Sci., 19:77--99, 1991. [ bib ]
[4524] S. Rondenay, M. G. Bostock, and J. Shragge. Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set. J. Geophys. Res.: Sol. Earth, 106:30795--30807, 2001. [ bib ]
[4525] Stéphane Rondenay, Geoffrey A Abers, and Peter E Van Keken. Seismic imaging of subduction zone metamorphism. Geology, 36:275--278, 2008. [ bib ]
[4526] N. Roosmawati and R. Harris. Surface uplift history of the incipient Banda arc-continent collision: geology and synorogenic foraminifera of Rote and Savu Islands, Indonesia. Tectonophys., 479:95--110, 2009. [ bib ]
[4527] Ian Rose, Bruce A. Buffett, and Timo Heister. Stability and accuracy of free surface time integration in viscous flows. Phys. Earth Planet. Inter., 262:90--100, 2017. [ bib ]
[4528] Matthias Rosenau and Onno Oncken. Fore-arc deformation controls frequency-size distribution of megathrust earthquakes in subduction zones. J. Geophys. Res.: Sol. Earth, 114(B10311), 2009. [ bib | DOI ]
[4529] M. Rosenau, F. Corbi, and S. Dominguez. Analogue earthquakes and seismic cycles: experimental modelling across timescales. Solid Earth, 8:597--635, 2017. [ bib ]
[4530] G. Rosenbaum, K. Regenauer-Lieb, and R. Weinberg. Continental extension: from core complexes to rigid block faulting. Geology, 33:609--612, 2005. [ bib ]
[4531] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths. Phase synchronization of chaotic oscillators. Phys. Rev. Lett., 76:1804--1807, 1996. [ bib ]
[4532] Zachary E Ross, Egill Hauksson, and Yehuda Ben-Zion. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Sci. adv., 3:e1601946, 2017. [ bib ]
[4533] Zachary E. Ross, Men-Andrin Meier, and Egill Hauksson. P wave arrival picking and first-motion polarity determination with deep learning. J. Geophys. Res.: Sol. Earth, 123:5120--5129, 2018. [ bib ]
[4534] Zachary E Ross, Elizabeth S Cochran, Daniel T Trugman, and Jonathan D Smith. 3D fault architecture controls the dynamism of earthquake swarms. Science, 368:1357--1361, 2020. [ bib ]
[4535] Zachary E Ross, Yehuda Ben-Zion, and Ilya Zaliapin. Geometrical properties of seismicity in California. Geophys. J. Int., 231:493--504, 2022. [ bib ]
[4536] MN Ross and G Schubert. Evolution of the lunar orbit with temperature- and frequency-dependent dissipation. J. Geophys. Res.: Sol. Earth, 94:9533--9544, 1989. [ bib ]
[4537] Cyrille Rossant. IPython Cookbook. Packt, 2018. Online at https://ipython-books.github.io/, accessed 02/2022. [ bib ]
[4538] F. Rossetti, C. Faccenna, G. Ranalli, and F. Storti. Convergence rate-dependent growth of experimental viscous orogenic wedges. Earth Planet. Sci. Lett., 178:367--372, 2000. [ bib ]
[4539] R. Rossetti, C. Faccenna, B. Goffé, P. Monié, A. Argentieri, R. Funiciello, and M. Mattei. Alpine structural and metamorphic evolution of the Sila Piccola Massif: Insights for the tectonic evolution of the Calabrian Arc. Tectonics, 20:112--133, 2001. [ bib ]
[4540] F Rossetti, F Tecce, L Aldega, M Brilli, and C Faccenna. Deformation and fluid flow during orogeny at the palaeo-Pacific active margin of Gondwana: The Early Palaeozoic Robertson Bay accretionary complex (North Victoria Land, Antarctica). J. Metamorph. Geol., 24:33--53, 2006. [ bib ]
[4541] D Roten, KB Olsen, SM Day, Y Cui, and D Fäh. Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity. Geophys. Res. Lett., 41:2769--2777, 2014. [ bib ]
[4542] Daniel Roten, Yifeng Cui, Kim B Olsen, Steven M Day, Kyle Withers, William H Savran, Peng Wang, and Dawei Mu. High-frequency nonlinear earthquake simulations on petascale heterogeneous supercomputers. In SC'16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 957--968. IEEE, 2016. [ bib ]
[4543] D Roten, KB Olsen, and R Takedatsu. Numerical simulation of M9 megathrust earthquakes in the Cascadia subduction zone. Pure Appl. Geophys., 177:2125--2141, 2020. [ bib ]
[4544] J. B. Roth, M. J. Fouch, D. E. James, and R. W. Carlson. Three-dimensional seismic velocity structure of the northwestern United States. Geophys. Res. Lett., 35(L15304), 2008. [ bib | DOI ]
[4545] F. Roth. Modeling of stress patterns along the western part of the North Anatolian fault zone. Tectonophys., 152:215--226, 1988. [ bib ]
[4546] F. Roth. Subsurface deformations in a layered elastic half-space. Geophys. J. Int., 103:147--155, 1990. [ bib ]
[4547] F. Roth. Modellierung von Vorgängen an Verwerfungen mit Hilfe der Dislokationstheorie. Habilitationsschrift. Berichte des Instituts für Geophysik der Ruhr-Universität Bochum. Ruhr-Universiät, Bochum, 1992. [ bib ]
[4548] M. Roth and M. Korn. Single scattering theory versus numerical modeling in 2-D random media. Geophys. J. Int., 112:124--140, 1993. [ bib ]
[4549] Daniel H Rothman. Thresholds of catastrophe in the Earth system. Sci. Adv., 3:e1700906, 2017. [ bib ]
[4550] Bertrand Rouet-Leduc, Claudia Hulbert, Nicholas Lubbers, Kipton Barros, Colin J Humphreys, and Paul A Johnson. Machine learning predicts laboratory earthquakes. Geophys. Res. Lett., 44:9276--9282, 2017. [ bib ]
[4551] Baptiste Rousset, Roland Bürgmann, and Michel Campillo. Slow slip events in the roots of the San Andreas fault. Science adv., 5:eaav3274, 2019. [ bib ]
[4552] E. Roux, M. Moorkamp, A.-G. Jones, M. Bischoff, B. Endrun, S. Lebedev, and T. Meier. Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure: Application to data from Central Germany. Geophys. Res. Lett., 38(L05304), 2011. [ bib | DOI ]
[4553] C. J. Rowan and D. B. Rowley. Spreading behaviour of the Pacific-Farallon ridge system since 83 Ma. Geophys. J. Int., 197:1273--1283, 2014. [ bib ]
[4554] C. D. Rowe, J. C., F. Meneghini, and A. W. McKeirnan. Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault. Geology, 33:937--940, 2005. [ bib ]
[4555] D. B. Rowley. Rate of plate creation and destruction: 180 Ma to present. GSA Bull., 114:927--933, 2002. [ bib ]
[4556] David B Rowley. Extrapolating oceanic age distributions: Lessons from the Pacific region. J. Geology, 116:587--598, 2008. [ bib ]
[4557] D. B. Rowley, A. M. Forte, R. Moucha, J. X. Mitrovica, N. A. Simmons, and S. P. Grand. Dynamic topography change of the eastern United States since 3 million years ago. Science, 340:1560--1563, 2013. [ bib ]
[4558] David B Rowley, Alessandro M Forte, Christopher J Rowan, Petar Glišović, Robert Moucha, Stephen P Grand, and Nathan A Simmons. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling. Science adv., 2:e1601107, 2016. [ bib ]
[4559] David B Rowley. Oceanic axial depth and age-depth distribution of oceanic lithosphere: Comparison of magnetic anomaly picks versus age-grid models. Lithosphere, 11:21--43, 2019. [ bib ]
[4560] M. Roy and L. H. Royden. Crustal rheology and faulting at strike-slip plate boundaries (1): An analytic model. J. Geophys. Res.: Sol. Earth, 105:5583--5597, 2000. [ bib ]
[4561] M. Roy and L. H. Royden. Crustal rheology and faulting at strike-slip plate boundaries (2): Effects of lower crustal flow. J. Geophys. Res.: Sol. Earth, 105:5599--5613, 2000. [ bib ]
[4562] M. Roy, T. H. Jordan, and J. Pederson. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere. Nature, 459:978--984, 2009. [ bib ]
[4563] K. Roy and W. R. Peltier. Relative sea level in the Western Mediterranean basin: A regional test of the ICE-7G_NA (VM7) model and a constraint on Late Holocene Antarctic deglaciation. Quaternary Sci. Rev., 183:76--87, 2018. [ bib ]
[4564] L. H. Royden and L. Husson. Trench motion, slab geometry and viscous stresses in subduction systems. Geophys. J. Int., 167:881--905, 2006. [ bib ]
[4565] L. H. Royden. The geological evolution of the Tibetan Plateau. Science, 321:1054--1058, 2008. [ bib ]
[4566] L. H. Royden and D. J. Papanikolaou. Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem., Geophys., Geosys., 12(Q03010), 2011. [ bib | DOI ]
[4567] Leigh H. Royden and J Taylor Perron. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J. Geophys. Res.: Earth Surf., 118:497--518, 2013. [ bib ]
[4568] Leigh H. Royden and Claudio Faccenna. Subduction orogeny and the late cenozoic evolution of the mediterranean arcs. Ann. Rev. Earth Planet. Sci., 46:261--289, 2018. [ bib ]
[4569] Leigh H Royden and Adam F Holt. Subduction dynamics and mantle pressure: 1. An analytical framework relating subduction geometry, plate Motion, and asthenospheric pressure. Geochem., Geophys., Geosys., 21:e2020GC009032, 2020. [ bib ]
[4570] L. H. Royden and C. E. Keen. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth Planet. Sci. Lett., 51:343--361, 1980. [ bib ]
[4571] Leigh H. Royden, Etta Patacca, and Paolo Scandone. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology, 15:714--717, 1987. [ bib ]
[4572] L. H. Royden. Evolution of retreating subduction boundaries formed during continental collision. Tectonics, 12:629--638, 1993. [ bib ]
[4573] Leigh H Royden. The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12:303--325, 1993. [ bib ]
[4574] L. H. Royden, B. C. Burchfiel, B. C. King, E. Wang, Z. Chen, F. Shen, and Y. Liu. Surface deformation and lower crustal flow in eastern Tibet. Science, 276:788--790, 1997. [ bib ]
[4575] A. Rozel, Y. Ricard, and D. Bercovici. A thermodynamically self-consistent damage equation for grain size evolution during dynamic recrystallization. Geophys. J. Int., 184:719--728, 2011. [ bib ]
[4576] Allen M Rubin and J-P Ampuero. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res.: Sol. Earth, 110(B11312), 2005. [ bib | DOI ]
[4577] Allan M Rubin. Episodic slow slip events and rate-and-state friction. J. Geophys. Res.: Sol. Earth, 113(B11), 2008. [ bib ]
[4578] A. M. Rubin. Designer friction laws for bimodal slow slip propagation speeds. Geochem., Geophys., Geosys., 12(Q04007), 2011. [ bib | DOI ]
[4579] C. Rucker and B. A. Erickson. Physics-informed deep learning of rate-and-state fault friction. arXiv preprint arXiv:2312.09403, 2023. [ bib ]
[4580] J. F. Rudge, D. Bercovici, and M. Spiegelman. Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Int., 184:699--718, 2011. [ bib ]
[4581] John F Rudge, John Maclennan, and Andreas Stracke. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochim. Cosmochim. Acta, 114:112--143, 2013. [ bib ]
[4582] Johann Rudi, Georg Stadler, and Omar Ghattas. Weighted BFBT preconditioner for Stokes flow problems with highly heterogeneous viscosity. SIAM J. Scient. Comp., 39:S272--S297, 2017. [ bib ]
[4583] Johann Rudi, Michael Gurnis, and Georg Stadler. Simultaneous inference of plate boundary stresses and mantle rheology using adjoints: large-scale 2-D models. Geophys. J. Int., 231:597--614, 2022. [ bib ]
[4584] R. L. Rudnick and S. Gao. Composition of the continental crust. In Treatise on Geochemistry, volume 3, pages 1--64. Elsevier, New York, 2003. [ bib ]
[4585] Roberta L Rudnick. Making continental crust. Nature, 378:571--578, 1995. [ bib ]
[4586] Roberta L Rudnick and David M Fountain. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 33:267--309, 1995. [ bib ]
[4587] R. L. Rudnick, W. McDonough, and R. J. O'Connell. Thermal structure, thickness and composition of continental lithosphere. Chem. Geology, 145:395--411, 1998. [ bib ]
[4588] M. L. Rudolph and S. J. Zhong. History and dynamics of net rotation of the mantle and lithosphere. Geochem., Geophys., Geosys., 15:3645--3657, 2014. [ bib ]
[4589] M. Rudolph, V. Lekic, and C. Lithgow-Bertelloni. Viscosity jump in the mid mantle. Science, 350:1349--1352, 2015. [ bib ]
[4590] T. Ruedas. Dynamics, crustal thicknesses, seismic anomalies, and electrical conductivities in dry and hydrous ridge-centered plumes. Phys. Earth Planet. Inter., 155:16--41, 2006. [ bib ]
[4591] T. Ruedas, G. Marquart, and H. Schmeling. Iceland: The current picture of a ridge-centered mantle plume. In J. R. R. Ritter and U. R. Christensen, editors, Mantle plumes - A multidisciplinary approach, pages 71--126. Springer, 2007. [ bib ]
[4592] T. Ruedas. Radioactive heat production of six geologically important nuclides. Geochem., Geophys., Geosys., 18:3530--3541, 2017. [ bib ]
[4593] D. Ruelle. Strange attractors. Math. Intell., 2:126--137, 1980. [ bib ]
[4594] G. Rümpker, T. Ryberg, G. Bock, and Desert Seismology Group. Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy. Nature, 425:497--501, 2003. [ bib ]
[4595] G. Rümpker and P. G. Silver. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophys. J. Int., 135:790--800, 1998. [ bib ]
[4596] G. Rümpker, A. Tommasi, and J.-M. Kendall. Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects. J. Geophys. Res.: Sol. Earth, 104:23141--23154, 1999. [ bib ]
[4597] L. H. Rüpke, J. Phipps-Morgan, M. Hort, and J. Connolly. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett., 223:17--34, 2004. [ bib ]
[4598] L. Rüpke, J. Phipps-Morgan, and J. E. Dixon. Implications of subduction rehydration for Earth's deep water cycle. In Earth's Deep Water Cycle, volume 168 of Geophys. Mono., pages 263--276. American Geophysical Union, 2006. [ bib ]
[4599] Larry J Ruff. Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl. Geophys., 129:263--282, 1989. [ bib ]
[4600] L. J. Ruff. Large earthquakes in subduction zones: Segment interaction and recurrence times. In G. E. Bebout, D. W. Scholl, S. H. Kirby, and J. P. Platt, editors, Subduction: Top to Bottom, volume 96 of Geophys. Mono. American Geophysical Union, 1996. [ bib ]
[4601] Jonas B Ruh, Valentí Sallarès, César R Ranero, and Taras Gerya. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling. J. Geophys. Res.: Sol. Earth, 121:6880--6902, 2016. [ bib ]
[4602] A. L. Ruina. Friction Laws and Instabilities: A Quasistatic Analysis of some Dry Frictional Behavior. PhD thesis, Brown University, Providence, 1980. [ bib ]
[4603] A. L. Ruina. Slip instability and state variable friction laws. J. Geophys. Res.: Sol. Earth, 88:10359--10370, 1983. [ bib ]
[4604] Sergio Ruiz and Raul Madariaga. Determination of the friction law parameters of the Mw 6.7 Michilla earthquake in northern Chile by dynamic inversion. Geophys. Res. Lett., 38(L09317), 2011. [ bib | DOI ]
[4605] S Ruiz and R Madariaga. Kinematic and dynamic inversion of the 2008 Northern Iwate earthquake. Bull. Seismol. Soc. Am., 103:694--708, 2013. [ bib ]
[4606] S. Ruiz, M. Metois, A. Fuenzalida, J. Ruiz, F. Leyton, R. Grandin, C. Vigny, R. Madariaga, and J. Campos. Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science, 345:1165--1169, 2014. [ bib ]
[4607] S. K. Runcorn. Paleomagnetic comparisons between Europe and North America. Proc. Geol. Assoc. Canada, 8:77--85, 1956. [ bib ]
[4608] S. K. Runcorn. Towards a theory of continental drift. Nature, 193:311--314, 1962. [ bib ]
[4609] S. K. Runcorn. Satellite gravity measurements and convection in the mantle. Nature, 200:628--630, 1963. [ bib ]
[4610] J. B. Rundle, P. B. Rundle, W. Klein, J. de sa Martins, K. Tiampo, A. Donnellan, and L. H. Kellogg. GEM plate boundary simluations for the Plate Boundary Observatory: a program for understanding the physics of earthquakes on complex fault networks via oservations, theory, and numerical simulations. Pure Appl. Geophys., 159:2357--2381, 2002. [ bib ]
[4611] J. B. Rundle and D. D. Jackson. A three-dimensional viscoelastic model of a strike slip fault. Geophys. J. R. Astr. Soc., 49:575--591, 1977. [ bib ]
[4612] J. B. Rundle. Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered Earth. J. Geophys. Res.: Sol. Earth, 87:7787--7796, 1982. [ bib ]
[4613] J. B. Rundle and H. Kanamori. Application of an inhomogeneous stress (patch) model to complex subduction zone earthquakes: A discrete interaction matrix approach. J. Geophys. Res.: Sol. Earth, 92:2606--2616, 1987. [ bib ]
[4614] J. B. Rundle. A physical model for earthquakes. 1. Fluctuations and interactions. J. Geophys. Res.: Sol. Earth, 93:6237--6254, June 1988. [ bib ]
[4615] J.B. Rundle. A physical model for earthquakes. 2. Applications to Southern California. J. Geophys. Res.: Sol. Earth, 93:6255--6274, June 1988. [ bib ]
[4616] J. B. Russell, J. B. Gaherty, P.-Y. P. Lin, D. Lizarralde, J. A. Collins, G. Hirth, and R. L. Evans. High-resolution constraints on Pacific upper mantle petrofabric inferred from surface-wave anisotropy. J. Geophys. Res.: Sol. Earth, 124, 2019. [ bib | DOI ]
[4617] Joshua B Russell, James B Gaherty, Hannah Mark, Greg Hirth, Lars Hansen, Daniel Lizarralde, John A Collins, and Rob L Evans. Seismological evidence for girdled olivine lattice-preferred orientation in oceanic lithosphere and implications for mantle deformation processes during seafloor spreading. J. Geophys. Res.: Sol. Earth, 2022. [ bib | DOI ]
[4618] R. M. Russo, J. C. VanDecar, D. Comte, V. I. Mocanu, A. Gallego, and R. E. Murdie. Subduction of the Chile Ridge: Upper mantle structure and flow. GSA Today, 20:4--10, 2010. [ bib ]
[4619] R. M. Russo and P. G. Silver. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science, 263:1105--1111, 1994. [ bib ]
[4620] R. M. Russo and P. G. Silver. Cordillera formation, mantle dynamics, and the Wilson cycle. Geology, 24:511--514, 1996. [ bib ]
[4621] EH Rutter and KH Brodie. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. J. Struct. Geol., 26:259--270, 2004. [ bib ]
[4622] EH Rutter. A discussion on natural strain and geological structure-the kinetics of rock deformation by pressure solution. Phil. Trans. Royal Soc. London. A, 283:203--219, 1976. [ bib ]
[4623] E. H. Ruttler and K. H. Brodie. The role of tectonic grain size reduction in the rheological stratification of the lithosphere. Geol. Rundschau, 77:295--308, 1988. [ bib ]
[4624] W. B. F. Ryan, S.M. Carbotte, J. Coplan, S. O'Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky. Global Multi-Resolution Topography (GMRT) synthesis data set. Geochem., Geophys., Geosys., 10(Q03014), 2009. [ bib | DOI ]
[4625] Kenny J Ryan and David D Oglesby. Dynamically modeling fault step overs using various friction laws. J. Geophys. Res.: Sol. Earth, 119:5814--5829, 2014. [ bib ]
[4626] Erik Rybacki, Matthias Gottschalk, Richard Wirth, and Georg Dresen. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. J. Geophys. Res.: Sol. Earth, 111(B03203), 2006. [ bib | DOI ]
[4627] T. Ryberg, G. Rümpker, C. Haberland, D. Stromeyer, and M. Weber. Simultaneous inversion of shear wave splitting observations from seismic arrays. J. Geophys. Res.: Sol. Earth, 110(B03301), 2005. [ bib | DOI ]
[4628] K. Rybicki. Dependence of the spatial distribution of aftershocks on the side of the dislocated area at the time of the main earthquake. Publ. Inst. Geophys. Pol. Ac. Sci., 36:117--126, 1970. [ bib ]
[4629] K. Rybicki. The elastic residual field of a very long strike-slip fault in the presence of a discontinuity. Bull. Seismol. Soc. Am., 61:79--92, 1971. [ bib ]
[4630] K. Rybicki. Analysis of aftershocks on the basis of dislocation theory. Phys. Earth Planet. Inter., 7:409--422, 1973. [ bib ]
[4631] K. Rybicki and K. Kasahara. A strike-slip fault in a laterally inhomogeneous medium. Tectonophys., 42:127--138, 1977. [ bib ]
[4632] K. A. Rychert, K. M. Fischer, and S. Rondenay. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America. Nature, 436:542--545, 2005. [ bib ]
[4633] C. A. Rychert, K. M. Fischer, G. A. Abers, T. Plank, E. Syracuse, J. M. Protti, V. Gonzalez, and W. Strauch. Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua. Geochem., Geophys., Geosys., 9(Q10S10), 2008. [ bib | DOI ]
[4634] C. A. Rychert and P. M. Shearer. A global view of the lithosphere-asthenosphere boundary. Science, 495--498, 2009. [ bib ]
[4635] C. A. Rychert, P. M. Shearer, and K. M. Fischer. Scattered wave imaging of the lithosphere-asthenosphere boundary. Lithos, 120:173--185, 2010. [ bib ]
[4636] Catherine A Rychert, Gabi Laske, Nicholas Harmon, and Peter M Shearer. Seismic imaging of melt in a displaced Hawaiian plume. Nature Geosc., 6:657--660, 2013. [ bib ]
[4637] C. A. Rychert and N. Harmon. Constraints on the anisotropic contributions to velocity discontinuities at ~60 km depth beneath the Pacific. Geochem., Geophys., Geosys., 18:2855--2871, 2017. [ bib ]
[4638] Catherine A Rychert, Nicholas Harmon, Steven Constable, and Shunguo Wang. The nature of the lithosphere-asthenosphere boundary. J. Geophys. Res.: Sol. Earth, 125:e2018JB016463, 2020. [ bib ]
[4639] P. A. Rydelek and I. S. Sacks. Asthenospheric viscosity and stress diffusion: a mechanism to explain correlated earthquakes and surface deformations in NE Japan. Geophys. J. Int., 100:39--58, 1990. [ bib ]
[4640] R. Sabadini, A. Y. Yuen, and E. Boschi. Interaction of cryospheric forcings with rotational dynamics has consequences for ice ages. Nature, 296:338--341, 1982. [ bib ]
[4641] R. Sabadini, A. Y. Yuen, and E. Boschi. Dynamic effects from mantle phase transitions on true polar wander during ice ages. Nature, 303:694--696, 1983. [ bib ]
[4642] Roberto Sabadini, Carlo Doglioni, and David A Yuen. Eustatic sea level fluctuations induced by polar wander. Nature, 345:708--710, 1990. [ bib ]
[4643] M. K. Sachs, E. M. Heien, D. L. Turcotte, M. B. Yikilmaz, J. B. Rundle, and L. H. Kellogg. Virtual California earthquake simulator. Seismol. Res. Lett., 83:973--978, 2012. [ bib ]
[4644] I. S. Sacks. The subduction of young lithosphere. J. Geophys. Res.: Sol. Earth, 88:3355--3366, 1983. [ bib ]
[4645] Demian M Saffer and Chris Marone. Comparison of smectite-and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett., 215:219--235, 2003. [ bib ]
[4646] Demian M Saffer and Harold J Tobin. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Ann. Rev. Earth Planet. Sci., 39:157--186, 2011. [ bib ]
[4647] D. M. Saffer and L. M. Wallace. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nature Geosc., 8:594--600, 2015. [ bib ]
[4648] Demian M Saffer. Mapping fluids to subduction megathrust locking and slip behavior. Geophys. Res. Lett., 44:9337--9340, 2017. [ bib ]
[4649] VS Safronov. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Israel Program for Scientific Translations, 1972. p. 206. [ bib ]
[4650] Carl Sagan, W Reid Thompson, Robert Carlson, Donald Gurnett, and Charles Hord. A search for life on Earth from the Galileo spacecraft. Nature, 365:715--721, 1993. [ bib ]
[4651] T. Sagiya. A decade of GEONET: 1994-2003 -- The continuous GPS observation in Japan and its impact on earthquake studies. Earth, Planet. Space, 56:29--41, 2004. [ bib ]
[4652] A. Sagy, E. E. Brodsky, and G. J. Axen. Evolution of fault-surface roughness with slip. Geology, 35:283--286, 2007. [ bib ]
[4653] A. Sagy and E. E. Brodsky. Geometric and rheological asperities in an exposed fault zone. J. Geophys. Res.: Sol. Earth, 114(B02301), 2009. [ bib | DOI ]
[4654] T. Saito. Synthesis of scalar-wave envelopes in two-dimensional weakly anisotropic random media by using the Markov approximation. Geophys. J. Int., 165:501--515, 2006. [ bib ]
[4655] T. Sakamaki, A. Suzuki, E. Ohtani an H. Terasaki, S. Urakawa, Y. Katayama, K.-I. Funakoshi, Y. Wang, J. W. Hernlund, and M. D. Ballmer. Ponded melt at the boundary between the lithosphere and asthenosphere. Nature Geosc., 6:1041--1044, 2013. [ bib ]
[4656] Valentí Sallarès and César R Ranero. Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature, 576:96--101, 2019. [ bib ]
[4657] R. L. Saltzer, J. B. Gaherty, and T. H. Jordan. How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? Geophys. J. Int., 141:374--390, 2000. [ bib ]
[4658] R. L. Saltzer, R. D. van der Hilst, and H. Kárason. Comparing P and S wave heterogeneity in the mantle. Geophys. Res. Lett., 28:1335--1338, 2001. [ bib ]
[4659] R. L. Saltzer and E. D. Humphreys. Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. J. Geophys. Res.: Sol. Earth, 102:11829--11842, 1997. [ bib ]
[4660] P. Samaniego, C. Robin, G. Chazot, E. Bourdon, and J. Cotton. Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador). Contrib. Mineral. Petrol., 160:239--260, 2010. [ bib ]
[4661] M. Sambridge, C. Beghein, F. Simons, and R. Snieder. How do we understand and visualize uncertainty ? The Leading Edge, 25:542--546, 2006. [ bib ]
[4662] M. Sambridge. Geophysical inversion with a neighbourhood algorithm I - Searching a parameter space. Geophys. J. Int., 138:479--494, 1999. [ bib ]
[4663] M. Sambridge. Geophysical inversion with a neighbourhood algorithm II - Appraising the ensemble. Geophys. J. Int., 138:727--746, 1999. [ bib ]
[4664] C. G. Sammis and D. Sornette. Postitive feedback, memory, and the predictability of earthquakes. Proc. Nat. Acad. Sci., 99:2501--2508, 2002. [ bib ]
[4665] C. G. Sammis, D. D. Bowman, and G. C. P. King. Anomalous seismicity and accelerating moment release preceding the 2001 and 2002 Earthquakes in Northern Baja California, Mexico. Pure Appl. Geophys., 161:2369--2378, 2004. [ bib ]
[4666] C. G. Sammis and G. C. P. King. Mechanical origin of power law scaling in fault zone rock. Geophys. Res. Lett., 34(L04312), 2007. [ bib | DOI ]
[4667] C. Sammis and Y. Ben-Zion. The mechanics of grain-size reduction in fault zones. J. Geophys. Res.: Sol. Earth, 113(B02306), 2008. [ bib | DOI ]
[4668] C. G. Sammis, A. J. Rosakis, and H. S. Bhat. Effects of off-fault damage on earthquake rupture propagation: Experimental studies. Pure Appl. Geophys., 166:1629--1648, 2009. [ bib ]
[4669] Charles G Sammis and Stewart W Smith. Triggered tremor, phase-locking, and the global clustering of great earthquakes. Tectonophys., 589:167--171, 2013. [ bib ]
[4670] C. G. Sammis, G. C. P. King, and R. C. Biegel. The kinematics of gouge deformation. Pure Appl. Geophys., 125:777--812, 1987. [ bib ]
[4671] C. Sammis and S. J. Steacy. The micromechanics of friction in a granular layer. Pure Appl. Geophys., 142:777--794, 1994. [ bib ]
[4672] L. G. Sammon and W. F. McDonough. Quantifying Earth's radiogenic heat budget. Earth Planet. Sci. Lett., 593:117684, 2022. [ bib ]
[4673] P. Sammonds, P. R. Meredith, and P. G. Main. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature, 359:228--230, 1992. [ bib ]
[4674] P. Sammonds and M. Ohnaka. Evolution of microseismicity during frictional sliding. Geophys. Res. Lett., 25:699--702, 1998. [ bib ]
[4675] H. Samuel and M. Evonuk. Modeling advection in geophysical flows with particle level sets. Geochem., Geophys., Geosys., 11(8), 2010. [ bib | DOI ]
[4676] Omer San and Jeff Borggaard. Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows. Int. J. Numer. Meth. Fluids, 78:37--62, 2015. [ bib ]
[4677] DJ Sanderson and WRD Marchini. Transpression. J. Struct. Geol., 6:449--458, 1984. [ bib ]
[4678] Mike Sandiford. The tilting continent: a new constraint on the dynamic topographic field from Australia. Earth Planet. Sci. Lett., 261:152--163, 2007. [ bib ]
[4679] M. Sandiford. Slab rupture beneath the banda sea: seismic constraints on style and rates. Geophys. J. Int., 174:659--671, 2008. [ bib ]
[4680] Dan Sandiford and Louis Moresi. Improving subduction interface implementation in dynamic numerical models. Solid Earth, 10:969--985, 2019. [ bib ]
[4681] Constantin Sandu, Adrian Lenardic, and Patrick McGovern. The effects of deep water cycling on planetary thermal evolution. J. Geophys. Res.: Sol. Earth, 116(B12), 2011. [ bib ]
[4682] E. Sandvol and T. Hearn. Bootstrapping shear-wave splitting errors. Bull. Seismol. Soc. Am., 84:1971--1977, 1994. [ bib ]
[4683] D. T. Sandwell, T. W. Becker, P. Bird, Y. Fialko, A. Freed, W. E. Holt, C. Kreemer, J. Loveless, B. Meade, R. McCaffrey, F. Pollitz, B. Smith-Konter, and Y. Zeng. Comparison of strain-rate maps of western North America. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 19:278, 2009. Available online at www.scec.org/meetings/2009am/2009SCECAnnualMeetingVolume.pdf, accessed 10/2011. [ bib ]
[4684] D. T. Sandwell, T. W. Becker, P. Bird, Y. Fialko, A. Freed, W. E. Holt, C. Kreemer, J. Loveless, B. Meade, R. McCaffrey, F. Pollitz, B. Smith-Konter, and Y. Zeng. Comparison of strain-rate maps of western North America. UNAVCO Meeting Poster, 2010. Available online at https://www.unavco.org/community/meetings-events/2010/sciworkshop10/presentations/UNVSW10_030910_2.1_STS_Sandwell_ComparisonStrainRateMaps.pdf. [ bib ]
[4685] D. T. Sandwell and P. Wessel. Interpolation of 2-D vector data using constraints from elasticity. Geophys. Res. Lett., 43:10703--10709, 2016. [ bib ]
[4686] D. T. Sandwell, Y. Zeng, Z.-K. Shen, B. Crowell, J. Murray, R. McCaffrey, and X. Xu. The SCEC Community Geodetic Model V1: Horizontal velocity grid. Technical report, Scripps Institution of Oceanography, UCSD, San Diego, 2016. Online at http://topex.ucsd.edu/CGM/technical_report/CGM_V1.pdf, accessed 08/2021. [ bib ]
[4687] D. T. Sandwell and W. H. F. Smith. Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J. Geophys. Res.: Sol. Earth, 102:10039--10050, 1997. [ bib ]
[4688] A. Santamaría-Gómez, M. Gravelle, X. Collilieux, M. Guichard, B. Martín Mígueze, P. Tiphaneau, and G. Wöppelmann. Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global Planet. Change, 98:6--17, 2012. [ bib ]
[4689] R. Sartori. The main results of ODP Leg 107 in the frame of Neogene to recent geology of peri-tyrrhenian areas. In K. A. Kastens and J. Mascle, editors, Proc. ODP, Scientific Results, volume 107, pages 715--730. ODP Program, 1990. [ bib ]
[4690] Kenji Satake and Brian F Atwater. Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Ann. Rev. Earth Planet. Sci., 35(1):349--374, 2007. [ bib ]
[4691] Kenji Satake. Geological and historical evidence of irregular recurrent earthquakes in japan. Phil. Trans. Royal Soc. A, 373(2053):20140375, 2015. [ bib ]
[4692] Kenji Satake, Mohammad Heidarzadeh, Marco Quiroz, and Rodrigo Cienfuegos. History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies. Earth-Sci. Rev., 202:103112, 2020. [ bib ]
[4693] Kenji Satake and Takeo Ishibe. Toward homogeneous estimation of long-term seismicity from historical materials: number of felt earthquakes in Tokyo since 1668. Seismol. Res. Lett., 91:2601--2610, 2020. [ bib ]
[4694] Kenji Satake. Recurrence and long-term evaluation of Kanto earthquakes. Bull. Seismol. Soc. Am., 113:1826--1841, 2023. [ bib ]
[4695] D S K Sato, M Nakatani, and R Ando. Reconciling aging and slip state evolutions from laboratory-derived canons of rate-and-state friction. arXiv preprint arXiv:2402.04478, 2024. [ bib ]
[4696] Tamao Sato and Tomowo Hirasawa. Body wave spectra from propagating shear cracks. J. Phys. Earth, 21:415--431, 1973. [ bib ]
[4697] H. Sato. H2O and magmatism in island arc mantle inferred from seismic anelasticity and heat flow data. J. Phys. Eearth, 42:439--453, 1994. [ bib ]
[4698] F. Saucier, E. D. Humphreys, and R. J. Weldon. Stress near geometrically complex strike-slip faults: Application to the San Andreas fault at Cajon pass, Southern California. J. Geophys. Res.: Sol. Earth, 97:5081--5094, April 1992. [ bib ]
[4699] Daniel Sauter and Mathilde Cannat. The ultraslow spreading southwest indian ridge. In Peter A. Rona, Colin W. Devey, Jérôme Dyment, and Bramley J. Murton, editors, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, volume 188 of Geophys. Mono., pages 153--173. American Geophysical Union, Washington DC, 2010. [ bib ]
[4700] Daniel Sauter, Mathilde Cannat, Stéphane Rouméjon, Muriel Andreani, Dominique Birot, Adrien Bronner, Daniele Brunelli, Julie Carlut, Adélie Delacour, Vivien Guyader, et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geosc., 6:314--320, 2013. [ bib ]
[4701] M. K. Savage and A. F. Sheehan. Seismic anisotropy and mantle flow from the Great Basin to the Great Plains, western United States. J. Geophys. Res.: Sol. Earth, 105:13715--13734, 2000. [ bib ]
[4702] M. K. Savage. Seismic anisotropy and mantle deformation in the western United States and southwestern Canada. Int. Geology Rev., 44:913--937, 2002. [ bib ]
[4703] J. C. Savage. Viscoelastic-coupling model for the earthquake cycle driven from below. J. Geophys. Res.: Sol. Earth, 105:25525--25532, 2002. [ bib ]
[4704] M. K. Savage, K. M. Fischer, and C. E. Hall. Strain modelling, seismic anisotropy and coupling at strike-slip boundaries: Applications in New Zealand and the San Andreas fault. In J. Grocott, B. Tikoff, K. J. W. McCaffrey, and G. Taylor, editors, Vertical Coupling and Decoupling in the Lithosphere, volume 227 of Geol. Soc. Lond. Spec. Pubs, pages 9--40. Geological Society of London, London, 2004. [ bib ]
[4705] M. K. Savage, K. M. Fischer, and C. E. Hall. Seismic Anisotropy in South Island, New Zealand. In D. Okaya, T. Stern, and F. Davey, editors, Geotectonic Investigation of a Modern Continent-Continent Collisional Orogen: Southern Alps, NZ, volume 175 of Geophys. Mono., pages 289--305. American Geophysical Union, 2007. [ bib ]
[4706] Brian Savage and Paul G Silver. Evidence for a compositional boundary within the lithospheric mantle beneath the Kalahari craton from S receiver functions. Earth Planet. Sci. Lett., 272:600--609, 2008. [ bib ]
[4707] M. K. Savage, A. Wessel, N. A. Teanby, and A. W. Hurst. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J. Geophys. Res.: Sol. Earth, 115(B12), 2010. [ bib | DOI ]
[4708] M.K. Savage, Y. Aoki, K. Unglert, T. Ohkura, K. Umakoshi, H. Shimizu, Iguchi, T. Tameguri, T. Ohminato, and J. Mori. Stress, strain rate and anisotropy in Kyushu, Japan. Earth Planet. Sci. Lett., 439:129--142, 2016. [ bib ]
[4709] J. C. Savage and R. Burford. Geodetic determination of relative plate motion in central California. J. Geophys. Res.: Sol. Earth, 78:832--845, 1973. [ bib ]
[4710] J. C. Savage and W. H. Prescott. Asthenosphere readjustment and the earthquake cycle. J. Geophys. Res.: Sol. Earth, 83:3369--3376, 1978. [ bib ]
[4711] J. C. Savage. A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res.: Sol. Earth, 88:4984--4996, 1983. [ bib ]
[4712] J. C. Savage. Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere Earth models. J. Geophys. Res.: Sol. Earth, 95:4873--4879, 1990. [ bib ]
[4713] M. K. Savage and P. G. Silver. Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. Phys. Earth Planet. Inter., 78:207--227, 1993. [ bib ]
[4714] J. C. Savage. Interseismic uplift at the Nankai subduction zone, southwest Japan. J. Geophys. Res.: Sol. Earth, 100:6339--6350, 1995. [ bib ]
[4715] J. C. Savage and R. W. Simpson. Surface strain accumulation and the seismic moment tensor. Bull. Seismol. Soc. Am., 87:1345--1353, 1997. [ bib ]
[4716] J. C. Savage and M. Lisowski. Viscoelastic coupling model of the San Andreas fault along the Big Bend, Southern California. J. Geophys. Res.: Sol. Earth, 103:7281--7289, 1998. [ bib ]
[4717] M. K. Savage. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J. Geophys. Res.: Sol. Earth, 103:15069--15087, 1998. [ bib ]
[4718] M. K. Savage. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys., 37:65--106, 1999. [ bib ]
[4719] Lucas Sawade, Stephen Beller, Wenjie Lei, and Jeroen Tromp. Global centroid moment tensor solutions in a heterogeneous earth: the CMT3D catalogue. Geophys. J. Int., 231:1727--1738, 2022. [ bib ]
[4720] T. Sawaguchi and K. Ishii. Three-dimensional numerical modeling of lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites. J. Struct. Geol., 25:1425--1444, 2003. [ bib ]
[4721] J. E. Saylor, B. K. Horton, J. Nie, J. Corredor, and A. Mora. Evaluating foreland basin partitioning in the northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Res., 23:377--402, 2011. [ bib ]
[4722] SCEC Crustal Deformation Group. Finite Element benchmarks - assemblers, solvers, and meshers. Online at bowie.mit.edu/fe/, 2002. [ bib ]
[4723] SCEC. Faults of Southern California. Southern California Earthquake Center, www.scecdc.scec.org/smfltmap.html, 1996. [ bib ]
[4724] JF Schaefer, L Boschi, TW Becker, and E Kissling. Radial anisotropy in the European mantle: Tomographic studies explored in terms of mantle flow. Geophys. Res. Lett., 38(L23304), 2011. [ bib | DOI ]
[4725] A. Schaeffer and S. Lebedev. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int., 194:417--449, 2013. [ bib ]
[4726] A. Schaeffer, S. Lebedev, and T. W. Becker. Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates. Geophys. J. Int., 207:901--933, 2016. [ bib ]
[4727] Katherine M Scharer, Glenn P Biasi, Ray J Weldon, and Tom E Fumal. Quasi-periodic recurrence of large earthquakes on the southern san andreas fault. Geology, 38:555--558, 2010. [ bib ]
[4728] Katherine M Scharer, Glenn P Biasi, and Ray J Weldon. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California. J. Geophys. Res.: Sol. Earth, 116(B12), 2011. [ bib ]
[4729] K M Scharer and D Yule. A maximum rupture model for the southern San Andreas and San Jacinto Faults, California, derived from paleoseismic earthquake ages: Observations. Geophys. Res. Lett., 47(e2020GL088532), 2020. [ bib ]
[4730] W. P. Schellart. Quantifying the net slab pull forces as a driving mechanism for plate tectonics. Geophys. Res. Lett., 31, 2004. [ bib | DOI ]
[4731] W. P. Schellart. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[4732] W. P. Schellart, J. Freeman, D. R. Stegman, and L. N. Moresi. Evolution and diversity of subduction zones controlled by slab width. Nature, 446:308--311, 2007. [ bib ]
[4733] W. P. Schellart. Overriding plate shortening and extension above subduction zones: A parametric study to explain formation of the Andes Mountains. Geol. Soc. Amer. Bull., 120:1441--1454, 2008. [ bib ]
[4734] W. P. Schellart, D. R. Stegman, and J. Freeman. Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Sci. Rev., 88:118--144, 2008. [ bib ]
[4735] W. P. Schellart, D. R. Stegman, R. J. Farrington, J. Freeman, and L. Moresi. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab. Science, 329:316--319, 2010. [ bib ]
[4736] W. P. Schellart and L. N. Moresi. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: results from dynamic subduction models with an overriding plate. J. Geophys. Res.: Sol. Earth, 118, 2013. [ bib | DOI ]
[4737] H. Schelle and G. Grünthal. Modeling of Neogene crustal block rotation: Case study of southeastern California. Tectonics, 15:700--710, June 1996. [ bib ]
[4738] M. Scherwarth, A. Melhuish, T. Stern, and P. Molnar. Pn anisotropy and distributed upper mantle deformation associated with a continental transform fault. Geophys. Res. Lett., 2002. [ bib | DOI ]
[4739] Jana C Schierjott, Marcel Thielmann, Antoine B Rozel, Gregor J Golabek, and Taras V Gerya. Can grain size reduction initiate transform faults? Insights from a 3-D numerical study. Tectonics, 39:e2019TC005793, 2020. [ bib | DOI ]
[4740] Taylor F Schildgen, C Yildirim, Domenico Cosentino, and Manfred Reinhard Strecker. Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Sci. Rev., 128:147--168, 2014. [ bib ]
[4741] J.-G. Schilling. Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature, 242:565--571, 1973. [ bib ]
[4742] Fritz Schlunegger and Jon Mosar. The last erosional stage of the Molasse Basin and the Alps. Int. J. Earth Sci., 100:1147--1162, 2011. [ bib ]
[4743] S. M. Schmalholz, Y.Y. Podladchikov, and D. W. Schmid. A spectral/finite difference method for simulating large deformations of heterogeneous, viscoelastic materials. Geophys. J. Int., 145:199--208, 2001. [ bib ]
[4744] Stefan M Schmalholz, Boris JP Kaus, and Jean-Pierre Burg. Stress-strength relationship in the lithosphere during continental collision. Geology, 37:775--778, 2009. [ bib ]
[4745] S. M. Schmalholz, Y. Y. Podladchikov, and J. P. Burg. Control of folding by gravity and matrix thickness: Implications for large-scale folding. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[4746] J Schmalzl, GA Houseman, and U Hansen. Mixing in vigorous, time-dependent three-dimensional convection and application to earth's mantle. J. Geophys. Res.: Sol. Earth, 101:21847--21858, 1996. [ bib ]
[4747] G. M. Schmalzle, R. McCaffrey, and K. C. Creager. Central Cascadia subduction zone creep. Geochem., Geophys., Geosys., 15:1515--1532, 2014. [ bib ]
[4748] B. Schmandt and E. Humphreys. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet. Sci. Lett., 297:435--445, 2010. [ bib ]
[4749] B. Schmandt and E. Humphreys. Seismic heterogeneity and small-scale convection in the southern California upper mantle. Geochem., Geophys., Geosys., 11(Q05004), 2010. [ bib | DOI ]
[4750] B. Schmandt and E. Humphreys. Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39:175--178, 2011. [ bib ]
[4751] B. Schmandt, S. D. Jacobsen, T. W. Becker, Z. Liu, and K. G. Dueker. Dehydration melting at the top of the lower mantle. Science, 334:1265--1268, 2014. [ bib ]
[4752] B. Schmandt and F.-C. Lin. P and S wave tomography of the mantle beneath the United States. Geophys. Res. Lett., 41:6342--6349, 2014. [ bib | DOI ]
[4753] H. Schmeling. Partial melting and melt segregation in a convecting mantle. In N. Bagdassarov and A. B. Laporte, editors, Physics and Chemistry of Partially Molten Rocks, pages 141--178. Thompson, Kluwer Academic, Dordrecht, 2000. [ bib ]
[4754] H. Schmeling, A. Babeyko, S. Grigull, A. Enns, T. Gerya, J. van Hunen, F. Funiciello, C. Faccenna, G. Morra, and T. W. Becker. Benchmarking subduction: the decoupling problem. EGU Abstract volume, 2005. European Geophysical Union meeting. [ bib ]
[4755] H Schmeling. A model of episodic melt extraction for plumes. J. Geophys. Res.: Sol. Earth, 111(B03202), 2006. [ bib | DOI ]
[4756] H. Schmeling, A. Babeyko, A. Enns, C. Faccenna, F. Funiciello, T. Gerya, G. Golabek, S. Grigull, Kaus B. J. P., G. Morra, S. Schmalholz, and van Hunen J. A benchmark comparison of spontaneous subduction models - towards a free surface. Phys. Earth Planet. Inter., 171:198--223, 2008. [ bib ]
[4757] Harro Schmeling, Jan Philipp Kruse, and Guillaume Richard. Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophys. J. Int., 190:1571--1578, 2012. [ bib ]
[4758] H. Schmeling, G. Marquart, and V. Nawa. The role of hydrothermal cooling of the oceanic lithosphere for oceanfloor bathymetry and heat flow. J. Geophys. Res.: Sol. Earth, 122:3934--3952, 2017. [ bib ]
[4759] Harro Schmeling, Gabriele Marquart, Roberto Weinberg, and Pirunthavan Kumaravel. Dynamic two-phase flow modeling of melt segregation in continental crust: Batholith emplacement versus crustal convection, with implications for magmatism in thickened plateaus. Geochem., Geophys., Geosys., 24:e2023GC010860, 2023. [ bib ]
[4760] H. Schmeling and W. R. Jacoby. On modelling the lithosphere in mantle convection with non-linear rheology. J. Geophys., 50:89--100, 1981. [ bib ]
[4761] H. Schmeling. Numerical models on the influence of partial melt on elastic, anelastic, and electric properties of rocks. part I: elasticity and anelasticity. Phys. Earth Planet. Inter., 41:34--57, 1985. [ bib ]
[4762] H. Schmeling. A simple statistical model on the degree of interconnection in partially molten rocks. J. Geophysics, 59:142--145, 1986. [ bib ]
[4763] H. Schmeling. On the interaction between small- and large-scale convection and postglacial rebound flow in a power-law mantle. Earth Planet. Sci. Lett., 84:254--262, 1987. [ bib ]
[4764] H. Schmeling. Compressible convection with constant and variable viscosity: The effect on slab formation, geoid, and Topography. J. Geophys. Res.: Sol. Earth, 94:12463--12481, 1989. [ bib ]
[4765] H. Schmeling, R. Monz, and D. C. Rubie. The influence of olivine metastability on the dynamics of subduction. Earth Planet. Sci. Lett., 165:55--66, 1999. [ bib ]
[4766] H. Schmeling. Skriptum: Geodynamik. Institut für Meteorologie und Geophysik, Universiät Frankfurt am Main, 1994. [ bib ]
[4767] H. Schmeling. Skriptum: Numerische Methoden in der Geophysik. Institut für Meteorologie und Geophysik, Universiät Frankfurt am Main, 1994. [ bib ]
[4768] N. Schmerr and E. Garnero. Upper mantle discontinuity topography from thermal and chemical heterogeneity. Science, 318:623--626, 2007. [ bib ]
[4769] N. Schmerr. The Gutenberg discontinuity: Melt at the lithosphere-asthenosphere boundary. Science, 335:1480--1483, 2012. [ bib ]
[4770] C. Schmid, S. Goes, S. van der Lee, and D. Giardini. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth Planet. Sci. Lett., 204:17--32, 2002. [ bib ]
[4771] S. M. Schmid, O. A. Pfiffner, N. Froitzheim, G. Schönborn, and E. Kissling. Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15:1036--1064, 1996. [ bib ]
[4772] DA Schmidt and H Gao. Source parameters and time-dependent slip distributions of slow slip events on the Cascadia subduction zone from 1998 to 2008. J. Geophys. Res.: Sol. Earth, 115(B00A18), 2010. [ bib | DOI ]
[4773] J. Schmittbuhl, J.-P. Vilotte, and S. Roux. Propagative macrodislocation modes in an earthquake fault model. Europhys. Lett., 21:375--380, 1993. [ bib ]
[4774] J. Schmittbuhl, J.-P. Vilotte, and S. Roux. Velocity weakening friction: A renormalization approach. J. Geophys. Res.: Sol. Earth, 101:13911--13917, 1996. [ bib ]
[4775] M. Schmitz, J. Avila, M. Bezada, E. Vieira, M. Yáñeza, A. Levander, C. A. Zelt, M. I. Jácome, M. B. Magnani, and the BOLIVAR active seismic working group. Crustal thickness variations in Venezuela from deep seismic observations. Tectonophys., 459:14--26, 2008. [ bib ]
[4776] Tapio Schneider, Swadhin Behera, Giulio Boccaletti, Clara Deser, Kerry Emanuel, Raffaele Ferrari, L Ruby Leung, Ning Lin, Thomas Müller, Antonio Navarra, et al. Harnessing AI and computing to advance climate modelling and prediction. Nature Clim. Change, 13:887--889, 2023. [ bib ]
[4777] Tapio Schneider, Swadhin Behera, Giulio Boccaletti, et al. Harnessing AI and computing to advance climate modelling and prediction. Nature Clim. Change, 13:887--889, 2023. [ bib ]
[4778] G. Schneider. Erdbeben -- Entstehung, Ausbreitung, Wirkung. Enke Verlag, Stuttgart, 1975. [ bib ]
[4779] J. F. Schneider, W. D. Pennington, and R. P. Meyer. Microseismicity and focal mechanisms of the intermediate-depth Bucaramanga Nest, Colombia. J. Geophys. Res.: Sol. Earth, 92:13913--13926, 1987. [ bib ]
[4780] H.-J. Schöffel and S. Das. Fine details of the Wadati-Benioff zone under Indonesia and its geodynamic implications. J. Geophys. Res.: Sol. Earth, 104:13101--13114, 1999. [ bib ]
[4781] M. P. J. Schöpfer, C. Childs, and J. J. Walsh. 2D Distinct Element modeling of the structure and growth of normal faults in multilayer sequences. Part 1: Model calibration, boundary conditions and selected results. J. Geophys. Res.: Sol. Earth, 103(B10404), 2007. [ bib ]
[4782] David W Scholl, Stephen H Kirby, Roland von Huene, Holly Ryan, Ray E Wells, and Eric L Geist. Great (>=Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor. Geosphere, 11:236--265, 2015. [ bib ]
[4783] C. H. Scholz. Evidence for a strong San Andreas fault. Geology, 28:163--166, 2000. [ bib ]
[4784] C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, 2 edition, 2002. [ bib ]
[4785] C. H. Scholz. The strength of the San Andreas fault: A critical analysis. In R. Abercrombie, A. McGarr, H. Kanamori, and G. DiToro, editors, Earthquakes: radiated energy and the physics of faulting, volume 170 of AGU Gepophys. Mono., pages 301--311. American Geophysical Union, Washington DC, 2006. [ bib ]
[4786] Christopher H Scholz and Jaime Campos. The seismic coupling of subduction zones revisited. J. Geophys. Res.: Sol. Earth, 117(B05310), 2012. [ bib | DOI ]
[4787] C. H. Scholz. On the stress dependence of the earthquake b value. Geophys. Res. Lett., 42:1399--1402, 2015. [ bib ]
[4788] C. H. Scholz. The frequency magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am., 58:399--415, 1968. [ bib ]
[4789] C. H. Scholz. Microfracturing and the inelastic deformation of rock in compression. J. Geophys. Res.: Sol. Earth, 73:1417--1432, 1968. [ bib ]
[4790] C. H. Scholz. Mechanism of creep in brittle rock. J. Geophys. Res.: Sol. Earth, 73:3295--3302, 1968. [ bib ]
[4791] Christopher H Scholz, Lynn R Sykes, and Yash P Aggarwal. Earthquake Prediction: A Physical Basis: Rock dilatancy and water diffusion may explain a large class of phenomena precursory to earthquakes. Science, 181:803--810, 1973. [ bib ]
[4792] C. H. Scholz. Post-earthquake dilatancy recovery. Geology, 2:551--554, 1974. [ bib ]
[4793] C. H. Scholz. Scaling laws for large earthquakes: Consequences for physical models. Bull. Seismol. Soc. Am., 72:1--14, 1982. [ bib ]
[4794] C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, 1990. [ bib ]
[4795] C. H. Scholz and J. Campos. On the mechanism of seismic decoupling and back arc spreading at subduction zones. J. Geophys. Res.: Sol. Earth, 100:22103--22115, 1995. [ bib ]
[4796] C. H. Scholz. Earthquakes and friction laws. Nature, 391:37--42, 1998. [ bib ]
[4797] D. Schorlemmer, S. Wiemer, and M. Wyss. Earthquake statistics at Parkfield: 1. Stationarity of b-values. J. Geophys. Res.: Sol. Earth, 109(B12307), 2004. [ bib | DOI ]
[4798] D. Schorlemmer, S. Wiemer, M. Wyss, and D. D. Jackson. Earthquake statistics at Parkfield: 2. Probabilistic forecasting and testing. J. Geophys. Res.: Sol. Earth, 109(B12308), 2004. [ bib | DOI ]
[4799] D. Schorlemmer and S. Wiemer. Microseismicity data forecast rupture area. Nature, 434:1086, 2005. [ bib ]
[4800] D. Schorlemmer, S. Wiemer, and M. Wyss. Variations in earthquake-size distribution across different stress regimes. Nature, 437:539--542, 2005. [ bib ]
[4801] D. Schorlemmer, M. Gerstenberger, S. Wiemer, D. D. Jackson, and D. A. Rhoades. Earthquake likelihood model testing. Seismol. Res. Lett., 78:17--29, 2007. [ bib ]
[4802] D. Schorlemmer and M. Gerstenberger. RELM Testing Center. Seismol. Res. Lett., 78:30--36, 2007. [ bib ]
[4803] D. Schorlemmer and J. Woessner. Probability of detecting an earthquake. Bull. Seismol. Soc. Am., 98:2103--2117, 2008. [ bib ]
[4804] B. Schott, D. A. Yuen, and H. Schmeling. The significance of shear heating in continental delamination. Phys. Earth Planet. Inter., 118:273--290, 2000. [ bib ]
[4805] B. Schott and H. Schmeling. Delamination and detachment of a lithospheric root. Tectonophys., 296:225--247, 1998. [ bib ]
[4806] Guido Schreurs, Susanne JH Buiter, Jennifer Boutelier, Caroline Burberry, Jean-Paul Callot, Cristian Cavozzi, Mariano Cerca, Jian-Hong Chen, Ernesto Cristallini, Alexander R Cruden, et al. Benchmarking analogue models of brittle thrust wedges. J. Struct. Geol., 92:116--139, 2016. [ bib ]
[4807] J. M. Schroeder, J. Lee, L. A. Owen, and R. C. Finkel. Quaternary dextral fault slip history along the White Mountains fault zone, California (abstract). In The Geological Society of America, Cordilleran Section, 98th annual meeting. Abstracts with Programs, volume 34, page 87, 2002. [ bib ]
[4808] G. Schubert, D. L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets. Cambridge University Press, 2001. [ bib ]
[4809] Gerald Schubert, G Masters, P Olson, and P Tackley. Superplumes or plume clusters? Phys. Earth Planet. Inter., 146:147--162, 2004. [ bib ]
[4810] Gerald Schubert, David A Yuen, and Donald L Turcotte. Role of phase transitions in a dynamic mantle. Geophys. J. Int., 42(2):705--735, 1975. [ bib ]
[4811] G. Schubert, D. J. Stevenson, and P. Cassen. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. J. Geophys. Res.: Sol. Earth, 85:2531--2538, 1980. [ bib ]
[4812] G Schubert, P Olson, C Anderson, and P Goldman. Solitary waves in mantle plumes. J. Geophys. Res.: Sol. Earth, 94:9523--9532, 1989. [ bib ]
[4813] B. S. A. Schuberth, H.-P. Bunge, and J. Ritsema. Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochem., Geophys., Geosys., 10(Q05W03), 2009. [ bib | DOI ]
[4814] V. Schulte-Pelkum, G. Monsalve, A. F. Sheehan, M. Pandey, S. Sapkota, R. Bilham, and F. Wu. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435:1222--1225, 2005. [ bib ]
[4815] V. Schulte-Pelkum, G. Biasi, A. Sheehan, and C. Jones. Differential motion between upper crust and lithospheric mantle in the central Basin and Range. Nature Geosc., 4:619--623, 2011. [ bib ]
[4816] V. Schulte-Pelkum and K. H. Mahan. A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray. Earth Planet. Sci. Lett., 402:221--233, 2014. [ bib ]
[4817] V. Schulte-Pelkum, J. S Cain, J. V. Jones II, and T. W. Becker. Imaging the tectonic grain of the northern Cordillera orogen using Transportable Array receiver functions. Seismol. Res. Lett., 91:3086--3105, 2020. [ bib ]
[4818] Vera Schulte-Pelkum, Thorsten W Becker, Whitney M Behr, and Meghan S Miller. Tectonic inheritance during plate boundary evolution in southern California constrained from seismic anisotropy. Geochem., Geophys., Geosys., 22:e2021GC010099, 2021. [ bib | DOI ]
[4819] V. Schulte-Pelkum, G. Masters, and P. M. Shearer. Upper mantle anistropy from long-period P polarization. J. Geophys. Res.: Sol. Earth, 106:21917--21934, 2001. [ bib ]
[4820] V. Schulte-Pelkum. Mantle structure and anisotropy from the particle motion and slowness of compressional body waves. PhD thesis, University of California, San Diego, La Jolla CA, 2001. [ bib ]
[4821] V. Schulte-Pelkum and D. K. Blackman. A synthesis of seismic P and S anisotropy. Geophys. J. Int., 154:166--178, 2003. [ bib ]
[4822] V. Schulte-Pelkum, Zachary E. Ross, K. Mueller, and Y. Ben-Zion. Tectonic inheritance with dipping faults and deformation fabric in the brittle and ductile southern California crust. J. Geophys. Res.: Sol. Earth, 125(8), 2020. [ bib | DOI ]
[4823] Vera Schulte-Pelkum and Kevin H. Mahan. Imaging faults and shear zones using receiver functions. Pure Appl. Geophys., 171:2967--2991, 2014. [ bib ]
[4824] B. Schurr, G. Asch, S. Hainzl, J. Bedford, A. Hoechner, M. Palo, R. Wang, M. Moreno, M. Bartsch, Y. Zhang, O. Oncken, F. Tilmann, T. Dahm, P. Victor, S. Barrientos, and J.-P. Vilotte. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature, 512:299--302, 2014. [ bib ]
[4825] G. T. Schuster, J. Yu, J. Sheng, and J. Rickett. Interferometric/daylight seismic imaging. Geophys. J. Int., 157:838--852, 2004. [ bib ]
[4826] D. Schutt and A. Kubo. Anisotropy Resource Page. Carnegie Institution of Washington, www.ciw.edu/schutt/anisotropy/aniso_source.html, access 04/2001, 2001. [ bib ]
[4827] D. L. Schutt and E. D. Humphreys. Evidence for a deep asthenosphere beneath North America from western United States SKS splits. Geology, 29:291--294, 2001. [ bib ]
[4828] D. L. Schutt and E. D. Humphreys. P and S wave velocity and Vp/Vs in the wake of the Yellowstone hotspot. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[4829] D. L. Schutt and C. E. Lesher. The effects of melt depletion on the density and seismic velocity of spinel and garnet lherzolite. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[4830] DL Schutt and CE Lesher. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res.: Sol. Earth, 111(B5), 2006. [ bib ]
[4831] Tobias Schwaiger, Thomas Gastine, and Julien Aubert. Force balance in numerical geodynamo simulations: a systematic study. Geophys. J. Int., 219:S101--S114, 2019. [ bib ]
[4832] Susan Y Schwartz and Juliana M Rokosky. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys., 45(RG3004), 2007. [ bib | DOI ]
[4833] J. G. Sclater and J. Franchetau. The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the earth. Geophys. J. R. Astr. Soc., 20:509--542, 1970. [ bib ]
[4834] J. G. Sclater, J. Croove, and R. N. Anderson. On the reliability of oceanic heat flow averages. J. Geophys. Res.: Sol. Earth, 81:2957--3006, 1976. [ bib ]
[4835] J. G. Sclater, C. Jaupart, and D. Galson. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys., 18:269--311, 1980. [ bib ]
[4836] J. G. Sclater, B. Parsons, and C. Jaupart. Oceans and continents: similarties and differences in the mechanism of heat loss. J. Geophys. Res.: Sol. Earth, 86:11535--11552, 1981. [ bib ]
[4837] CR Scotese. PALEOMAP Project. Available online at www.scotese.com/pzanim.htm, accessed 01/2023, 2000. [ bib ]
[4838] D. R. Scott and D. J. Stevenson. Magma solitons. Geophys. Res. Lett., 11:1161--1164, 1984. [ bib ]
[4839] O. Scotti, A. Nur, and R. Estevez. Distributed deformation and block rotation in three dimensions. J. Geophys. Res.: Sol. Earth, 96:1225--12243, 1991. [ bib ]
[4840] M. Sdrolias and R. D. Müller. Controls on back-arc basin formation. Geochem., Geophys., Geosys., 7, 2006. [ bib | DOI ]
[4841] J. Seales, A. Lenardic, and M. R. Richards. Buffering of mantle conditions through water cycling and thermal feedbacks maintains magmatism over geologic time. Comm. Earth & Environ., 3:1--11, 2022. [ bib ]
[4842] MP Searle, BF Windley, MP Coward, DJW Cooper, AJ Rex, D Rex, Li Tingdong, Xiao Xuchang, MQ Jan, VC Thakur, et al. The closing of Tethys and the tectonics of the Himalaya. Geol. Soc. Amer. Bull., 98:678--701, 1987. [ bib ]
[4843] K. Milner, T. W. Becker, L. Boschi, F. Cadieux, H. Waterhouse, J. Sain, and D. Schorlemmer. SEATREE -- Solid Earth Research and Teaching Environment. Online at http://www-udc.ig.utexas.edu/external/becker/seatree/, accessed 08/2020, 2013. [ bib ]
[4844] Cornell University GIS Group. US Moho Depth. Cornell University, 2000. online at atlas.geo.cornell.edu, original references listed at atlas.geo.cornell.edu/geoid/metadata/htmls/image_grid/us_moho_eq.html. [ bib ]
[4845] D. Seber, M. Barazangi, A. Ibenbrahim, and A. Demnati. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature, 379:785--790, 1996. [ bib ]
[4846] R. A. Secco. Viscosity of the outer core. In Thomas J. Ahrens, editor, Mineral Physics and Crystallography: A Handbook of Physical Constants, pages 216--226. American Geophysical Union, 1995. [ bib ]
[4847] L. Seeber and J. G. Armbruster. Earthquakes as beacons of stress change. Nature, 407:69--72, 2000. [ bib ]
[4848] P. Segall. Earthquake and Volcano Deformation. Princeton University Press, 2010. [ bib ]
[4849] Paul Segall and Andrew M Bradley. Slow-slip evolves into megathrust earthquakes in 2D numerical simulations. Geophys. Res. Lett., 39(L18308), 2012. [ bib | DOI ]
[4850] P. Segall and D.D Pollard. Mechanics of discontinuous faults. J. Geophys. Res.: Sol. Earth, 85:4337--4350, August 1980. [ bib ]
[4851] P. Segall. Earthquakes triggered by fluid extraction. Geology, 17:942--946, October 1989. [ bib ]
[4852] P. Segall and J. R. Rice. Dilatancy, compaction, and slip instability of a fluid infiltrated fault. J. Geophys. Res.: Sol. Earth, 100:22155--22171, 1995. [ bib ]
[4853] P. Segall and J. L. Davis. GPS applications for geodynamics and earthquake studies. Annual Rev. Earth Planet. Sci., 25:301--336, 1997. [ bib ]
[4854] Paul Segall and Mark Matthews. Time dependent inversion of geodetic data. J. Geophys. Res.: Sol. Earth, 102:22391--22409, 1997. [ bib ]
[4855] C. M. Segedin. Note on a penny-shaped crack under shear. Proc. Camb. Phil. Soc., 47:396--400, 1950. [ bib ]
[4856] E. Seidler, W. R. Jacoby, and H. Cavsak. Hotspot distribution, gravity, mantle tomography: evidence for plumes. J. Geodynamics, 27:585--608, 1999. [ bib ]
[4857] N. D. Selby and J. H. Woodhouse. The Q structure of the upper mantle: constraints from Rayleigh wave amplitudes. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[4858] G. F. Sella, T. H. Dixon, and A. Mao. REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[4859] G. F. Sella, S. Stein, T. H. Dixon, M. Craymer, T. S. James, S. Mazzotti, and R. K. Dokka. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett., 34(L02306), 2007. [ bib | DOI ]
[4860] Paul Antony Selvadurai. Laboratory insight into seismic estimates of energy partitioning during dynamic rupture: An observable scaling breakdown. J. Geophys. Res.: Sol. Earth, 124(11):11350--11379, 2019. [ bib ]
[4861] G. Selvaggi and A. Amato. Subcrustal earthquakes in the northern Appennines (Italy): evidence for a still active subduction? Geophys. Res. Lett., 19:2127--2130, 1992. [ bib ]
[4862] G. Selvaggi and C. Chiarabba. Seismicity and p-wave velocity image of the Southern Tyrrhenian subduction zone. Geophys. J. Int., 122:818--826, 1995. [ bib ]
[4863] K. Selway, H. Ford, and P. Kelemen. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett., 414:45--57, 2015. [ bib ]
[4864] A. C. Sembroni, C. Faccenna, T. W. Becker, P. Molin, and B. Abebe. Longterm, deep-mantle support of the Ethiopia-Yemen Plateau. Tectonics, 35:469--488, 2016. [ bib ]
[4865] A. C. Sembroni, A. Kiraly, C. Faccenna, , F. Funiciello, T. W. Becker, and J. Globig ad M. Fernandez. Impact of the lithosphere on dynamic topography: Insights from analogue modeling. Geophys. Res. Lett., 44:2693--2702, 2017. [ bib ]
[4866] A. G. Semple and A. Lenardic. Plug flow in the Earth's asthenosphere. Earth Planet. Sci. Lett., 496:29--36, 2018. [ bib ]
[4867] A. M. C. Şengör, R. E. Ernst, and K. L. Buchan. Elevation as indicator of mantle-plume activity. In Mantle plumes: their identification through time, volume 352 of Geolog. Soc. Amer. Spec. Pap., pages 183--225. Geological Society of America, 2001. [ bib ]
[4868] A. M. C. Şengör, Okan Tüysüz, Caner Imren, Mehmet Sakinç, Haluk Eyidoğan, Naci Görür, Xavier Le Pichon, and Claude Rangin. The North Anatolian fault: A new look. Ann. Rev. Earth Planet. Sci., 33:37--112, 2005. [ bib ]
[4869] A. M. C. Şengör and K. Burke. Relative timing of rifting and volcanism on earth and its tectonic implications. Geophys. Res. Lett., 5:419--421, 1978. [ bib ]
[4870] A. M. C. Şengör, Y. Yilmaz, and O. Sungurlu. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys. Geol. Soc., London, Spec. Pub., 17:77--112, 1984. [ bib ]
[4871] Tetsuzo Seno. Subducted sediment thickness and Mw 9 earthquakes. J. Geophys. Res.: Sol. Earth, 122:470--491, 2017. [ bib ]
[4872] T. Seno and Y. Yamanaka. Arc stresses determined by slabs: implications for mechanisms of back-arc spreading. Geophys. Res. Lett., 25:3227--3230, 1998. [ bib ]
[4873] T. Seno. Syntheses of the regional stress fields of the Japanese islands. Island Arc, 8:66--79, 1999. [ bib ]
[4874] JJ Sepkoski Jr. Phanerozoic overview of mass extinction. In Patterns and Processes in the History of Life, pages 277--295. Springer, Berlin, 1986. [ bib ]
[4875] M. Seranne. The Gulf of Lyon continental margin (NW Mediterranean) revisited by IBS: an overview. In B. Durand, L. Mascle, A. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 21--53. Geological Society of London, London, 1999. [ bib ]
[4876] C. Manduca. Science Education Resource Center (SERC). Carleton College, Nothfield MN. Online at serc.carleton.edu/index.html, accessed 06/2006, 2006. [ bib ]
[4877] E. Serpelloni, C. Faccenna, G. Spada, D. Dong, and S. D. P. Williams. Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary. J. Geophys. Res.: Sol. Earth, 118:6003--6024, 2013. [ bib ]
[4878] Isabel Serra and Álvaro Corral. Deviation from power law of the global seismic moment distribution. Scient. Rep., 7:40045, 2017. [ bib ]
[4879] D. Serri, F. Innocenti, and P. Manetti. Geochemical and petrological evidence of the subduction of deliminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophys., 223:117--147, 1993. [ bib ]
[4880] Solid Earth Science Working Group. Living on a Restless Planet. Solid Earth Science Working Group Report. National Aeronautics and Space Administration, 2002. Available online at solidearth.jpl.nasa.gov/PDF/SESWG_final_combined.pdf, accessed 08/2015. [ bib ]
[4881] J. P. Sethna, K. A. Dahmen, and C. R. Myers. Crackling noise. Nature, 410:242--250, 2001. [ bib ]
[4882] Müller Seton, RD Müller, S Zahirovic, C Gaina, T Torsvik, G Shephard, A Talsma, M Gurnis, M Turner, S Maus, et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev., 113:212--270, 2012. [ bib ]
[4883] Maria Seton, R. Dietmar Müller, Sabin Zahirovic, Simon Williams, Nicky M. Wright, John Cannon, Joanne M. Whittaker, Kara J. Matthews, and Rebecca McGirr. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem., Geophys., Geosys., 21(10):e2020GC009214, 2020. [ bib ]
[4884] J. Severinghaus and T. Atwater. Cenozoic geometry and thermal state of the subducting slabs beneath western North America. In B. P. Wernicke, editor, Basin and Range Extensional Tectonics Near the Latitude of Las Vegas, Nevada, volume 176, pages 1--22. Geol. Soc. Am. Mem., Boulder CO, 1990. [ bib ]
[4885] Heather R Shaddox and Susan Y Schwartz. Subducted seamount diverts shallow slow slip to the forearc of the northern Hikurangi subduction zone, New Zealand. Geology, 47:415--418, 2019. [ bib ]
[4886] M. H. Shanas and W. R. Peltier. Layered convection and the impacts of the perovskite-postperovskite phase transition on mantle dynamics under isochemical conditions. J. Geophys. Res.: Sol. Earth, 115(B11408), 2010. [ bib | DOI ]
[4887] TJ Shankland, RJ O’Connell, and HS Waff. Geophysical constraints on partial melt in the upper mantle. Rev. Geophys., 19:394--406, 1981. [ bib ]
[4888] N. M. Shapiro and M. H. Ritzwoller. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophys. J. Int., 151:88--105, 2002. [ bib ]
[4889] N. M. Shapiro and M. H. Ritzwoller. Thermodynamic constraints on seismic inversions. Geophys. J. Int., 157:1175--1188, 2004. [ bib ]
[4890] N. M Shapiro, M. H. Ritzwoller, P. Molnar, and V. Levin. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305:233--236, 2004. [ bib ]
[4891] N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller. High-resolution surface-wave tomography from ambient seismic noise. Science, 307:1615--1618, 2005. [ bib ]
[4892] W. D. Sharp and D. A. Clague. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313:1281--1284, 2006. [ bib ]
[4893] R. V. Sharp. Variable rates of Late Quaternary strike-slip on the San Jacinto fault zone. J. Geophys. Res.: Sol. Earth, 86:1754--1762, 1981. [ bib ]
[4894] W. Sharples, M. A. Jadamec, Moresi L. N., and F. A. Capitanio. Overriding plate controls on subduction evolution. J. Geophys. Res.: Sol. Earth, 119, 2014. [ bib | DOI ]
[4895] W. Sharples, L. N. Moresi, M. Velic, M. A. Jadamec, and D. A. May. Simulating faults and plate boundaries with a transversely isotropic plasticity model. Phys. Earth Planet. Inter., 252:77--90, 2016. [ bib ]
[4896] B. E. Shaw and J. R. Rice. Existence of continuum complexity in the elastodynamics of repeated fault ruptures. J. Geophys. Res.: Sol. Earth, 105:23791--23810, 2000. [ bib ]
[4897] J. Shaw, A. Plesch, and G. Planansky. Community fault model last updated 1/4/04. Technical report, Harvard College Geology Department, 2004. Online at structure.harvard.edu/cfm. [ bib ]
[4898] Bruce E Shaw. Earthquake surface slip-length data is fit by constant stress drop and is useful for seismic hazard analysis. Bull. Seismol. Soc. Am., 103:876--893, 2013. [ bib ]
[4899] Bruce E Shaw, Kevin R Milner, Edward H Field, Keith Richards-Dinger, Jacquelyn J Gilchrist, James H Dieterich, and Thomas H Jordan. A physics-based earthquake simulator replicates seismic hazard statistics across California. Science adv., 4(8):eaau0688, 2018. [ bib ]
[4900] Bruce E Shaw, Bill Fry, Andrew Nicol, Andrew Howell, and Matthew Gerstenberger. An earthquake simulator for New Zealand. Bull. Seismol. Soc. Am., 112:763--778, 2022. [ bib ]
[4901] B. E. Shaw. Complexity in a spatially uniform continuum fault model. Geophys. Res. Lett., 21:1983--1986, 1994. [ bib ]
[4902] B. E. Shaw. Frictional weakening and slip complexity in earthquake faults. J. Geophys. Res.: Sol. Earth, 100:18239--18251, 1995. [ bib ]
[4903] J. H. Shaw and P. M. Shearer. An elusive blind-thrust fault beneath metropolitan Los Angeles. Science, 283:1516--1518, 1999. [ bib ]
[4904] P. Shearer, E. Hauksson, G. Lin, and D. Kilb. Comprehensive waveform cross-correlation of southern California seismograms: Part 2. Event locations obtained using cluster analysis (abstract). Eos Trans. AGU, 84(46):S21D--0326, 2003. [ bib ]
[4905] P. M. Shearer, G. A. Prieto, and E. Hauksson. Comprehensive analysis of earthquake source spectra in southern California. J. Geophys. Res.: Sol. Earth, 111(B06303), 2006. [ bib | DOI ]
[4906] Peter M Shearer. Self-similar earthquake triggering, Båth's law, and foreshock/aftershock magnitudes: Simulations, theory, and results for southern California. J. Geophys. Res.: Sol. Earth, 117(B06310), 2012. [ bib | DOI ]
[4907] Peter M Shearer, Rachel E Abercrombie, and Daniel T Trugman. Improved stress drop estimates for M 1.5 to 4 earthquakes in southern California from 1996 to 2019. J. Geophys. Res.: Sol. Earth, 127:e2022JB024243, 2022. [ bib ]
[4908] P. M. Shearer and T. G. Masters. Global mapping of topography on the 660 km discontinuity. Nature, 355:791--796, 1992. [ bib ]
[4909] P. M. Shearer and M. Flanegan. Seismic velocity and density jumps across the 410- and 660-kilometer discontinuities. Science, 285:1545--1548, 1999. [ bib ]
[4910] P. M. Shearer. Introduction to Seismology. Cambridge Univ. Press, New York, 1999. [ bib ]
[4911] A. F. Sheehan, P. M. Shearer, H. Gilbert, and K. G. Dueker. Seismic migration processing of P-SV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States. J. Geophys. Res.: Sol. Earth, 105:19055--19065, 2000. [ bib ]
[4912] A. F. Sheehan, T. de la Torre, G. Monsalve, V. Schulte-Pelkum, R. Bilham, F. Blume, R. Bendick, F. Wu, M. R. Pandey, S. Sapkota, and S. Rajaure. Earthquakes and crustal structure of the Himalaya from the Himalayan Nepal Tibet Seismic Experiment (HIMNT). J. Nepal Geol. Soc., 38:1--8, 2008. [ bib ]
[4913] D. R. Shelly, G. C. Beroza, S. Ide, and S. Nakamula. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature, 442:188--191, 2006. [ bib ]
[4914] D. R. Shelly and J. L. Hardebeck. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault. Geophys. Res. Lett., 37(L14301), 2010. [ bib | DOI ]
[4915] David R Shelly. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault. Science, 328:1385--1388, 2010. [ bib ]
[4916] David R Shelly. Complexity of the deep San Andreas Fault zone defined by cascading tremor. Nature Geosc., 8:145--151, 2015. [ bib ]
[4917] A. I. Shemenda. Subduction of the lithosphere and back arc dynamics: insights from physical modeling. J. Geophys. Res.: Sol. Earth, 98:16167--16185, 1993. [ bib ]
[4918] A. I. Shemenda. Subduction: Insights from Physical Modelling. Modern Approaches in Geophysics. Kluwer Academic Publishers, Dordrecht, 1994. [ bib ]
[4919] Z.-K. Shen, D. C. Agnew, R. W. King, K. W. Hudnut, D. Dong, T. A. Herring, M. Wang, H. Johnson, G. Anderson, R. Nikolaidis, Y. Bock, and D. D. Jackson. The SCEC crustal motion map, version 3.0, 2003. epicenter.usc.edu/cmm3/. [ bib ]
[4920] Z.-K. Shen, R. W. King, D. C. Agnew, M. Wang, T. A. Herring, D. Dong, and P. Fang. A unified analysis of crustal motion in Southern California, 1970–2004: The SCEC crustal motion map. J. Geophys. Res.: Sol. Earth, 116(B11402), 2011. [ bib | DOI ]
[4921] Shu-zhong Shen, James L Crowley, Yue Wang, Samuel A Bowring, Douglas H Erwin, Peter M Sadler, Chang-qun Cao, Daniel H Rothman, Charles M Henderson, Jahandar Ramezani, et al. Calibrating the end-Permian mass extinction. Science, 334:1367--1372, 2011. [ bib ]
[4922] W. Shen, M. H. Ritzwoller, and V. Schulte-Pelkum. Crustal and uppermost mantle structure in the central U.S. encompassing the Midcontinent Rift. J. Geophys. Res.: Sol. Earth, 118:4325--–4344, 2013. [ bib | DOI ]
[4923] Weisen Shen, Michael H Ritzwoller, Vera Schulte-Pelkum, and Fan-Chi Lin. Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophys. J. Int., 192:807--836, 2013. [ bib ]
[4924] Z.-K. Shen and P. Bird. NeoKinema deformation model for the 2023 update to the U.S. National Seismic Hazard Model. Seismol. Res. Lett., 93:3037--3052, 2022. [ bib ]
[4925] Z.-K. Shen, D. D. Jackson, and B. X. Ge. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements. J. Geophys. Res.: Sol. Earth, 101:27957--27980, 1996. [ bib ]
[4926] V. Shenk. U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite facies basement of the Serre, southern Calabria (Italy). Contrib. Min. Petrol., 73:23--38, 1980. [ bib ]
[4927] G. E. Shepard, L. Liu, R. D. Müller, and M. Gurnis. Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Res., 22:658--663, 2012. [ bib ]
[4928] J. M. Sheridan and Y. Ben-Zion. High-resolution strain variability in southern California from analysis of 80,000 earthquakes (abstract). Eos Trans. AGU, 81(48):S22A--06, 2000. [ bib ]
[4929] J. Sheridan. Secondary deformation near strike-slip faults, southern California: seismic and structural studies. PhD thesis, University of Oregon, June 1997. [ bib ]
[4930] E. M. Sherrill and K.M. Johnson. New insights into the slip budget at Nankai: an interative approach to estimate coseismic slip and afterslip. J. Geophys. Res.: Sol. Earth, 125(e2020JB020833), 2020. [ bib | DOI ]
[4931] Heather Folsom Sherrington, George Zandt, and Andrew Frederiksen. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. J. Geophys. Res.: Sol. Earth, 109(B02312), 2004. [ bib | DOI ]
[4932] J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Comput. Geom.: Theor. Appl., 22:21--74, 2002. [ bib ]
[4933] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Available online at www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf, accessed 10/2008., 1994. [ bib ]
[4934] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In First Workshop on Applied Computational Geometry, pages 124--133. Association for Computing Machinery, May 1996. [ bib ]
[4935] Zheqiang Shi and Steven M Day. Rupture dynamics and ground motion from 3-d rough-fault simulations. J. Geophys. Res.: Sol. Earth, 118:1122--1141, 2013. [ bib ]
[4936] Q. Shi, S. Barbot, S. Wei, P. Tapponnier, T. Matsuzawa, and B. Shibazaki. Structural control and system-level behavior of the seismic cycle at the Nankai trough. Earth, Planet. Space, 72:1--31, 2020. [ bib ]
[4937] Fuqiang Shi, Shaoyang Li, and Marcos Moreno. Megathrust locking and viscous mantle flow induce continental shortening in Central Andes. Pure Appl. Geophys., pages 1--12, 2020. [ bib ]
[4938] Bunichiro Shibazaki and Yoshihisa Iio. On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophys. Res. Lett., 30(9), 2003. [ bib | DOI ]
[4939] Bunichiro Shibazaki and Toshihiko Shimamoto. Modelling of short-interval silent slip events in deeper subduction interfaces considering the frictional properties at the unstablestable transition regime. Geophys. J. Int., 171:191--205, 2007. [ bib ]
[4940] B Shibazaki, T Matsuzawa, A Tsutsumi, K Ujiie, A Hasegawa, and Y Ito. 3D modeling of the cycle of a great Tohoku-oki earthquake, considering frictional behavior at low to high slip velocities. Geophys. Res. Lett., 38(L21305), 2011. [ bib | DOI ]
[4941] Bunichiro Shibazaki, Laura M Wallace, Yoshihiro Kaneko, Ian Hamling, Yoshihiro Ito, and Takanori Matsuzawa. Three-dimensional modeling of spontaneous and triggered slow-slip events at the hikurangi subduction zone, new zealand. J. Geophys. Res.: Sol. Earth, 2019. [ bib ]
[4942] K. Shimazaki and T. Nakata. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett., 7:279--282, 1980. [ bib ]
[4943] D. Shimozuru, K. Kamo, and W. T. Kinoshita. Volcanic tremor of Kilauea volcano, Hawaii, during July-December 1963. Bull. Earthquake Res. Inst. Univ. Tokyo, 44:1093--1133, 1966. [ bib ]
[4944] William J Shinevar, Mark D Behn, and Greg Hirth. Compositional dependence of lower crustal viscosity. Geophys. Res. Lett., 42:8333--8340, 2015. [ bib ]
[4945] William J Shinevar, Mark D Behn, Greg Hirth, and Oliver Jagoutz. Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California. Earth Planet. Sci. Lett., 494:83--91, 2018. [ bib ]
[4946] S. B. Shirey and S. H. Richardson. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333:434--436, 2011. [ bib ]
[4947] S Shkoller and J-B Minster. Reduction of Dietrich-Ruina attractors to unimodal maps. Nonlin. Proc. Geophys., 4:63--69, 1997. [ bib ]
[4948] Parisa Shokouhi, Vrushali Girkar, Jacques Rivière, Srisharan Shreedharan, Chris Marone, C Lee Giles, and Daniel Kifer. Deep learning can predict laboratory quakes from active source seismic data. Geophys. Res. Lett., 48:e2021GL093187, 2021. [ bib ]
[4949] O. Shorttle, J. F. Rudge, J. Maclennan, and K. H. Rubin. A statistical description of concurrent mixing and crystallization during MORB differentiation: Implications for trace element enrichment. J. Petrol., 57:2127--2162, 2016. [ bib ]
[4950] Srisharan Shreedharan, David Chas Bolton, Jacques Rivière, and Chris Marone. Preseismic fault creep and elastic wave amplitude precursors scale with lab earthquake magnitude for the continuum of tectonic failure modes. Geophys. Res. Lett., 47(8):e2020GL086986, 2020. [ bib ]
[4951] Srisharan Shreedharan, David Chas Bolton, Jacques Rivière, and Chris Marone. Machine learning predicts the timing and shear stress evolution of lab earthquakes using active seismic monitoring of fault zone processes. J. Geophys. Res.: Sol. Earth, 126:e2020JB021588, 2021. [ bib ]
[4952] Brandon Shuck, Sean PS Gulick, Harm JA Van Avendonk, Michael Gurnis, Rupert Sutherland, Joann Stock, and Erin Hightower. Stress transition from horizontal to vertical forces during subduction initiation. Nature Geosc., 15:149--155, 2022. [ bib ]
[4953] Ashley Shuler, Meredith Nettles, and Göran Ekström. Global observation of vertical-CLVD earthquakes at active volcanoes. J. Geophys. Res.: Sol. Earth, 118:138--164, 2013. [ bib ]
[4954] Alexey Shulgin, Heidrun Kopp, Dirk Klaeschen, Cord Papenberg, Frederik Tilmann, Ernst R Flueh, D Franke, U Barckhausen, Anne Krabbenhoeft, and Y Djajadihardja. Subduction system variability across the segment boundary of the 2004/2005 Sumatra megathrust earthquakes. Earth Planet. Sci. Lett., 365, 2013. [ bib ]
[4955] L. L. Siame, O. Bellier, M. Sebrier, and M. Araujo. Deformation partitioning in flat subduction setting: Case of the Andean foreland of western Argentina (28oS-33oS). Tectonics, 24(TC5003), 2005. [ bib | DOI ]
[4956] A. L. R. Sibrant, A. Davaille, and E. Mittlstaedt. Rheological control on the segmentation of the mid-ocean ridges: Laboratory experiments with extension initially perpendicular to the axis. Earth Planet. Sci. Lett., 557:116706, 2021. [ bib ]
[4957] Richard H Sibson. Brecciation processes in fault zones: inferences from earthquake rupturing. Pure Appl. Geophys., 124:159--175, 1986. [ bib ]
[4958] Richard H Sibson. Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth-Sci. Rev., 32:141--144, 1992. [ bib ]
[4959] I. Sidorin, M. Gurnis, and D. V. Helmberger. Dynamics of a phase change at the base of the mantle consistent with seismological observation. J. Geophys. Res.: Sol. Earth, 104:15005--15023, 1999. [ bib ]
[4960] L. Siebert and T. Simkin. Volcanoes of the World: an Illustrated Catalog of Holocene Volcanoes and their Eruptions, volume GVP-3 of Global Volcanism Program Digital Information Series. Smithsonian Institution, 2023. Updated since 2002, available online at volcano.si.edu/search_volcano.cfm, accessed 07/2023. [ bib ]
[4961] Stefan G Siegel, Juergen Seidel, Casey Fagley, D M Luchtenburg, Kelly Cohen, and Thomas McLaughlin. Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid. Mech., 610:1--42, 2008. [ bib ]
[4962] Kerry Sieh and Danny Natawidjaja. Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res.: Sol. Earth, 105:28295--28326, 2000. [ bib ]
[4963] K. Sieh, D. H. Natawidjaja, A. J. Meltzner, C.-C. Shen, H. Cheng, K.-S. Li, B. W. Suwargadi, J. Galetzka, B. Philibosian, and R. L. Edwards. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science, 322:1674--1678, 2008. [ bib ]
[4964] K. E. Sieh. A review of geological evidence for recurrence times of large earthquakes. In D. Simpson and P. Richards, editors, Earthquake Prediction, an International Review, volume 4 of Maurice Ewing, pages 209--216. American Geophysical Union, Washington DC, 1981. [ bib ]
[4965] K. E. Sieh and R. Jahns. Holocene activity of the San Andreas fault at Wallace Creek, California. Geol. Soc. Am. Bull., 95:883--896, 1984. [ bib ]
[4966] K. E. Sieh, M. Stuiver, and D. Brillinger. A more precise chronology of earthquakes produced by the San Andreas fault in Southern California. J. Geophys. Res.: Sol. Earth, 94:603--623, 1989. [ bib ]
[4967] K. E. Sieh and P. L. Williams. Behavior of the southernmost San Andreas fault during the past 300 years. J. Geophys. Res.: Sol. Earth, 95:6629--6645, 1990. [ bib ]
[4968] K. Sieh, L. B. Grant, and S. T. Freeman. Late Quaternary slip rate of the north branch of the San Andreas Fault at City Creek, California (abstract). In The Geological Society of America, Cordilleran Section, 90th annual meeting. Abstracts with Programs, volume 26, page 91, 1994. [ bib ]
[4969] A. Sieminski, Q. Liu, J. Trampert, and J. Tromp. Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophys. J. Int., 168:1153--–1174, 2007. [ bib ]
[4970] A. Sieminski, J. Trampert, and J. Tromp. Principal component analysis of anisotropic finite-frequency sensitivity kernels. Geophys. J. Int., 179:1186--1198, 2009. [ bib ]
[4971] K. Sigloch, N. McQuarrie, and G. Nolet. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geosc., 1:458, 2008. [ bib ]
[4972] K. Sigloch. Mantle provinces under North America from multifrequency P wave tomography. Geochem., Geophys., Geosys., 12(Q02W08), 2011. [ bib | DOI ]
[4973] K. Sigloch and M. G. Mihalynuk. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature, 496:50--56, 2013. [ bib ]
[4974] G.C. Sih. Proc. 2nd Conf. Theoretical Appl. Mech., chapter 1, pages 117--130. Pergamon, Oxford, 1964. [ bib ]
[4975] J. Šíleny and J. Plomerová. Inversion of shear-wave splitting parameters to retrieve three-dimensional orientation of anisotropy in continental lithosphere. Phys. Earth Planet. Inter., 95:277--292, 1996. [ bib ]
[4976] P. G. Silver and W. E. Holt. The mantle flow field beneath Western North America. Science, 295:1054--1057, 2002. [ bib ]
[4977] P. G. Silver and M. D. Behn. Intermittent plate tectonics? Science, 319:85--88, 2008. [ bib ]
[4978] P. G. Silver and M. D. Long. The non-commutivity of shear wave splitting operators at low frequencies and implications for anisotropy tomography. Geophys. J. Int., 184:1415--1427, 2011. [ bib ]
[4979] E. A. Silver, D. Reed, and R. McCaffrey. Back arc thrusting in the eastern Sunda arc, Indonesia: A consequence of arc-continent collision. J. Geophys. Res.: Sol. Earth, 88:7429--7448, 1983. [ bib ]
[4980] P. G. Silver, R. W. Carlson, and P. Olson. Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16:477--541, 1988. [ bib ]
[4981] P. G. Silver and H. H. Chan. Implications for continental structure and evolution from seismic anisotropy. Nature, 335:34--39, 1988. [ bib ]
[4982] P. G. Silver and Chan. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Sol. Earth, 96:16429--16454, 1991. [ bib ]
[4983] P. G. Silver and M. K. Savage. The interpretation of shear wave splitting parameters in the presence of two anisotropic layers. Geophys. J. Int., 119:949--963, 1994. [ bib ]
[4984] P. G. Silver. Seismic anisotropy beneath the continents: Probing the depths of geology. Ann. Rev. Earth Planet. Sci., 24:385--432, 1996. [ bib ]
[4985] P. G. Silver, R. M. Russo, and C. Lithgow-Bertelloni. Coupling of South American and African plate motion and plate deformation. Science, 279:60--63, 1998. [ bib ]
[4986] Shi J Sim, Marc Spiegelman, Dave R Stegman, and Cian Wilson. The influence of spreading rate and permeability on melt focusing beneath mid-ocean ridges. Phys. Earth Planet. Inter., 304:106486, 2020. [ bib ]
[4987] T. Simkin and L. Siebert. Volcanoes of the World. Geoscience Press, Tucson, Arizona, 2nd edition, 1994. http://www.volcano.si.edu/gvp/volcdata/index.htm. [ bib ]
[4988] N. A. Simmons and H. Gurrola. Multiple seismic dicontinuities near the base of the transition zone in the Earth's mantle. Nature, 405:559, 2000. [ bib ]
[4989] N. A. Simmons, A. M. Forte, and S. P. Grand. Constraining mantle flow with seismic and geodynamic data: A joint approach. Earth Planet. Sci. Lett., 246:109--124, 2006. [ bib ]
[4990] N. A. Simmons, A. M. Forte, and S. P. Grand. Thermochemical structure and dynamics of the African superplume. Geophys. Res. Lett., 34, 2007. [ bib | DOI ]
[4991] Nathan A Simmons, Alessandro M Forte, and Stephen P Grand. Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: Implications for the relative importance of thermal versus compositional heterogeneity. Geophys. J. Int., 177:1284--1304, 2009. [ bib ]
[4992] N. A. Simmons, A. M. Forte, L. Boschi, and S. P. Grand. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res.: Sol. Earth, 115(B12310), 2010. [ bib | DOI ]
[4993] A. R. Simms, H. Rouby, and K. Lambeck. Marine terraces and rates of vertical tectonic motion: The importance of glacio-isostatic adjustment along the Pacific coast of central North America. GSA Bull., 2015. [ bib | DOI ]
[4994] F. J. Simons, R. D. van der Hilst, J.-P. Montagner, and A. Zielhuis. Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophys. J. Int., 151(3):738--754, 2002. [ bib ]
[4995] F. J. Simons and R. D. van der Hilst. Seismic and mechanical anisotropy and the past and present deformation of the Australian lithosphere. Earth Planet. Sci. Lett., 211:271--286, 2003. [ bib ]
[4996] F. J. Simons, T. W. Becker, J. B. Kellogg, M. Billen, J. Hardebeck, C.-T. Lee, L. G. J. Montési, W. Panero, and S. Zhong. Young solid earth researchers of the world unite! Eos Trans. AGU, 85(60):160, 2004. [ bib ]
[4997] F. J. Simons, T. W. Becker, J. B. Kellogg, M. Billen, J. Hardebeck, C.-T. Lee, L. G. J. Montési, W. Panero, and S. Zhong. MYRES: A Program to Unite Young Solid Earth Researchers. Eos Trans. AGU, 86(5):48, 2005. [ bib ]
[4998] M. Simons, S. E. Minson, A. Sladen, F. Ortega, J. Jiang, S. E. Owen, L. Meng, J.-P. Ampuero, S. Wei, R. Chu, D. V. Helmberger, H. Kanamori, E. Hetland, A. W. Moore, and F. H. Webb. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332:1421--1425, 2011. [ bib ]
[4999] G. Simpson, M. Spiegelman, and M. I. Weinstein. A multiscale model of partial melts: 2. numerical results. J. Geophys. Res.: Sol. Earth, 115(B04411), 2010. [ bib | DOI ]
[5000] R. W. Simpson and P. A. Reasenberg. Earthquake-induced static-stress changes on Central Californian faults. Professional paper, United States Geological Survey, 1994. [ bib ]
[5001] Robert W Simpson. Quantifying Anderson's fault types. J. Geophys. Res.: Sol. Earth, 102:17909--17919, 1997. [ bib ]
[5002] P.K. Sims, Z.E. Peterman, and K.J. Schultz. The dunbar gneiss-granitoid dome: Implications for early proterozoic tectonic evolution of northern wisconsin. Geol. Soc. Am. Bull., 96:1101--1112, 1985. [ bib ]
[5003] HD Sinclair. Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff. Geology, 25:1123--1126, 1997. [ bib ]
[5004] Arun Singh, Chandrani Singh, and BLN Kennett. A review of crust and upper mantle structure beneath the Indian subcontinent. Tectonophys., 644:1--21, 2015. [ bib ]
[5005] SC Singh, GM Kent, JS Collier, AJ Harding, and JA Orcutt. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature, 394:874--878, 1998. [ bib ]
[5006] S. Singletary and G. Hirth. Evolution of olivine lattice preferred orientation with increasing strain: A natural experiment. Eos Trans. AGU, 82(47):T22B--0916, 2001. [ bib ]
[5007] John M Sinton and Robert S Detrick. Mid-ocean ridge magma chambers. J. Geophys. Res.: Sol. Earth, 97:197--216, 1992. [ bib ]
[5008] S. A. Sipkin and P. G. Silver. Characterization of the time-dependent strain field at seismogenic depths using first-motion focal mechanisms: Observations of large-scale decadal variations in stress along the San Andreas Fault system. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[5009] Gaia Siravo, Claudio Faccenna, Mélanie Gérault, Thorsten W Becker, Maria Giuditta Fellin, Frédéric Herman, and Paola Molin. Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth Planet. Sci. Lett., 512:100--110, 2019. [ bib ]
[5010] Gaia Siravo, Fabio Speranza, Catalina Hernandez-Moreno, and Anita Di Chiara. Orogen-parallel transition from a decoupled fore-arc sliver to Andean-type mountain chain: Paleomagnetic and geologic evidence from southern Chile (37--39 S). Tectonics, 39:e2019TC005881, 2020. [ bib ]
[5011] P. Skemer, J. M. Warren, and G. Hirth. The influence of deformation history on the interpretation of seismic anisotropy. Geochem., Geophys., Geosys., 2012. [ bib | DOI ]
[5012] P. Skemer and L. N. Hansen. Inferring upper-mantle flow from seismic anisotropy: An experimental perspective. Tectonophys., 668:1--14, 2016. [ bib ]
[5013] S. M. Skinner and R. W. Clayton. An evaluation of proposed mechanisms of slab flattening in Central Mexico. Pure Appl. Geophys., 168:1461--1474, 2011. [ bib ]
[5014] B. J. Skinner and S. C. Porter. The Dynamic Earth: An Introduction to Physical Geology. John Wiley & Son, New York, 3 edition, 1995. [ bib ]
[5015] A. T. Skjeltorp and P. Meakin. Fracture in microsphere monolayers studied by experiment and computer simulation. Nature, 335, 1988. [ bib ]
[5016] N. H. Sleep. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res.: Sol. Earth, 105:17563--1578, 2000. [ bib ]
[5017] N. H. Sleep. Simple features of mantle-wide convection and the interpretation of lower-mantle tomograms. C. R. Geoscience, 335:9--22, 2003. [ bib ]
[5018] N. H. Sleep. Survival of Archean cratonal lithosphere. J. Geophys. Res.: Sol. Earth, 108(2302), 2003. [ bib | DOI ]
[5019] N. H. Sleep. Mantle plumes from top to bottom. Earth-Sci. Rev., 77:231--271, 2006. [ bib ]
[5020] N. H. Sleep. Plate tectonics through time. In G. Schubert, editor, Treatise on Geophysics, volume 9, pages 145--169. Elsevier, Amsterdam, 2007. [ bib ]
[5021] Norman H Sleep and A Mark Jellinek. Scaling relationships for chemical lid convection with applications to cratonal lithosphere. Geochem., Geophys., Geosys., 9, 2008. [ bib ]
[5022] N. H. Sleep. Segregation of magma from a mostly crystalline mush. Geol. Soc. Am. Bull., 85:1225--1232, 1974. [ bib ]
[5023] N. H. Sleep. Lithospheric heating by mantle plumes. Geophys. J. R. Astr. Soc., 91:1--11, 1987. [ bib ]
[5024] N. H. Sleep. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res.: Sol. Earth, 95:6715--6736, 1990. [ bib ]
[5025] Jan Smit and Jan Hertogen. An extraterrestrial event at the Cretaceous--Tertiary boundary. Nature, 285:198--200, 1980. [ bib ]
[5026] B. K. Smith-Konter, G. M. Thornton, and D. T. Sandwell. Vertical crustal displacement due to interseismic deformation along the San Andreas fault: Constraints from tide gauges. Geophys. Res. Lett., 41:3793--3801, 2014. [ bib | DOI ]
[5027] B. Smith-Konter and D. T. Sandwell. Stress evolution of the San Andreas Fault System: Recurrence interval versus locking depth. Geophys. Res. Lett., 36(L13304), 2009. [ bib | DOI ]
[5028] B. R. Smith-Konter, L. Burkhard, L. Ward, X. Xu, P. Wessel, and D.T. Sandwell. San Andreas Fault System stress evolution (1600-2020). Figshare, 2020. [ bib | DOI ]
[5029] G. P. Smith, D. A. Wiens, K. M. Fischer, L. M. Dorman, S. C. Webb, and J. A. Hildebrand. A complex pattern of mantle flow in the Lau backarc. Science, 292:713--716, 2001. [ bib ]
[5030] B. R. Smith and D. T. Sandwell. Coulomb stress accumulation along the San Andreas fault system. J. Geophys. Res.: Sol. Earth, 108(2296), 2003. [ bib | DOI ]
[5031] D. B. Smith, M. H. Ritzwoller, and N. M. Shapiro. Stratification of anisotropy in the Pacific upper mantle. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[5032] B. R. Smith and D. T. Sandwell. A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[5033] Deborah K Smith, Johnson R Cann, and Javier Escartín. Widespread active detachment faulting and core complex formation near 13 N on the Mid-Atlantic Ridge. Nature, 442:440--443, 2006. [ bib ]
[5034] D. E. Smith and J. H. Dieterich. Evolving aftershock seismicity using rate-state equations in a 3D heterogeneous stress field. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 18:208, 2008. Available online at www.scec.org/meetings/2008am/2008SCECAnnualMeetingVolume.pdf, accessed 01/2009. [ bib ]
[5035] D. E. Smith and T. H. Heaton. Models of stochastic, spatially varying stress in the crust compatible with focal-mechanism data, and how stress inversions can be biased toward the stress rate. Bull. Seismol. Soc. Am., 101:1396--1421, 2011. [ bib ]
[5036] M. L. Smith and F. A. Dahlen. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res.: Sol. Earth, 78:3321--3333, 1973. Correction in doi: 10.1029/JB080i014p01923. [ bib ]
[5037] M. L. Smith and F. A. Dahlen. Correction to `The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium'. J. Geophys. Res.: Sol. Earth, 80:1923, 1975. [ bib ]
[5038] W. H. F. Smith and P. Wessel. Gridding with continuous curvature splines in tension. Geophysics, 55:293--305, 1990. [ bib ]
[5039] W. H. F. Smith. On the accuracy of digital bathymetric data. J. Geophys. Res.: Sol. Earth, 98:9591--9603, 1993. ETOPO5 and the like are inaccurate for sqrt regressions. [ bib ]
[5040] Deborah K Smith and Johnson R Cann. Building the crust at the Mid-Atlantic Ridge. Nature, 365:707--715, 1993. [ bib ]
[5041] W. H. F. Smith and D. T. Sandwell. Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277:195--196, 1997. http://topex.ucsd.edu/marine_topo/mar_topo.html. [ bib ]
[5042] G. P. Smith and G. Ekström. A global study of Pn anisotropy beneath continents. J. Geophys. Res.: Sol. Earth, 104:963--980, 1999. [ bib ]
[5043] D. E. Smith and T. H. Heaton. Interpreting focal mechanisms in a heterogeneous stress field (abstract). Eos Trans. AGU, 84(46):S41C--0105, 2003. [ bib ]
[5044] P. K. Smolarkiewicz. A simple positive definite advection scheme with small implicit diffusion. Mon. Weather Rev., 111:479--486, 1983. [ bib ]
[5045] Suzanne E Smrekar, Linda Elkins-Tanton, Johannes J Leitner, Adrian Lenardic, Steve Mackwell, Louis Moresi, Christophe Sotin, and Ellen R Stofan. Tectonic and thermal evolution of venus and the role of volatiles: implications for understanding the terrestrial planets. Geophys. Mono., 176:45, 2007. [ bib ]
[5046] Richard A Snay, Jeffrey T Freymueller, Michael R Craymer, Chris F Pearson, and Jarir Saleh. Modeling 3-D crustal velocities in the United States and Canada. J. Geophys. Res.: Sol. Earth, 121:5365--5388, 2016. [ bib ]
[5047] R. A. Snay, M. W. Cline, C. R. Philip, D. D. Jackson, Y. Feng, Z.-K. Shen, and M. Lisowski. Crustal velocity field near the big bend of California's San Andreas fault. J. Geophys. Res.: Sol. Earth, 101:3173--3185, 1996. [ bib ]
[5048] Jens-Erik Lund Snee and Mark D Zoback. Multiscale variations of the crustal stress field throughout north america. Nature Comm., 11:1--9, 2020. [ bib ]
[5049] Kathryn E Snell, Paul L Koch, Peter Druschke, Brady Z Foreman, and John M Eiler. High elevation of the “Nevadaplano” during the Late Cretaceous. Earth Planet. Sci. Lett., 386:52--63, 2014. [ bib ]
[5050] A. Snider-Pellegrini. La Création es ses mystères dévoilé. Librairie A. Franck, Paris, 1858. [ bib ]
[5051] R. Snieder. Surface wave scattering theory with applications to forward and inverse problems in seismology. PhD thesis, University of Utrecht, 1987. [ bib ]
[5052] M. Snir and W. Gropp. MPI: The Complete Reference. MIT Press,, Cambridge MA, 2 edition, 1998. [ bib ]
[5053] D. B. Snyder, H. Prasetyo, D. J. Blundell, C. J. Pigram, A. J. Barber, A. Richardson, and S. Tjokosaproetro. A dual doubly vergent orogen in the Banda Arc continent-arc collision zone as observed on deep seismic profiles. Tectonics, 15:34--53, 1996. [ bib ]
[5054] M. Sobiesiak, U. Meyer, S. Schmidt, H.-J. Gotze, and C. M Krawczyk. Asperity generating upper crustal sources revealed by b value and isostatic residual anomaly grids in the area of Antofagasta, Chile. J. Geophys. Res.: Sol. Earth, 112(B12308), 2007. [ bib | DOI ]
[5055] S. V. Sobolev and A. Y. Babeyko. What drives orogeny in the Andes? Geology, 33:617--620, 2005. [ bib ]
[5056] S. V. Sobolev and A. Y. Babeyko. Mechanism of the Andean orogeny: Insight from numerical modeling. In O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V. A. Ramos, M. R. Strecker, and P. Wigger, editors, The Andes, Frontiers in Earth Sciences, pages 513--535. Springer, 2006. [ bib ]
[5057] Stephan V Sobolev, Alexander V Sobolev, Dmitry V Kuzmin, Nadezhda A Krivolutskaya, Alexey G Petrunin, Nicholas T Arndt, Viktor A Radko, and Yuri R Vasiliev. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477:312--316, 2011. [ bib ]
[5058] S. V. Sobolev and I. A. Muldashev. Modeling seismic cycles of great megathrust earthquakes across the scales with focus at postseismic phase. Geochem., Geophys., Geosys., 18:4387--4408, 2017. [ bib ]
[5059] Stephan V Sobolev and Michael Brown. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature, 570:52--57, 2019. [ bib ]
[5060] A. Socquet, J. P. Valdes, J. Jara, F. Cotton, A. Walpersdorf, N. Cotte, S. Specht, F. Ortega-Culaciati, D. Carrizo, and E. Norabuena. An 8 month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett., 44:4046--4053, 2017. [ bib ]
[5061] S. Sol, A. Meltzer, R. Bürgmann, R. D. van der Hilst, Z. Chen, P. O. Koons, E. Lev, Y. P. Liu, P. K. Zeitler, X. Zhang, J. Zhang, and B. Zurek. Geodynamics of the southeastern Tibetan plateau from seismic anisotropy and geodesy. Geology, 35:563–--566, 2007. [ bib ]
[5062] G. Soldati and L. Boschi. Whole earth tomographic models: a resolution analysis (abstract). Eos Trans. AGU, 85(47):S13D--1092, 2004. [ bib ]
[5063] G. Soldati and L. Boschi. The resolution of whole Earth seismic tomographic models. Geophys. J. Int., 161:143--153, 2005. [ bib ]
[5064] M. M. Soler, P. J. Caffe, B. L. Coira, A. T. Onoe, and S. M. Kay. Geology of the Vilama caldera: new interpretation of a large scale explosive event in the Central Andean plateau during the Upper Miocene. J. Volc. Geotherm. Res., 164:27--53, 2007. [ bib ]
[5065] Larry P Solheim and WR Peltier. Avalanche effects in phase transition modulated thermal convection: A model of Earth's mantle. J. Geophys. Res.: Sol. Earth, 99:6997--7018, 1994. [ bib ]
[5066] V. S. Solomatov and L.-N. Moresi. Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res.: Sol. Earth, 105:21795--21817, 2000. [ bib ]
[5067] S. Solomatov. Grain size-dependent viscosity convection and the thermal evolution of the Earth. Earth Planet. Sci. Lett., 191:203--212, 2001. [ bib ]
[5068] V. S. Solomatov and C. C. Reese. Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities. J. Geophys. Res.: Sol. Earth, 113(B07408), 2008. [ bib | DOI ]
[5069] V. S. Solomatov. Magma oceans and primordial mantle differentiation. In Treatise on Geophysics, volume 9, chapter 9.04, pages 81--104. Elsevier, 2 edition, 2015. [ bib ]
[5070] V. S. Solomatov. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids, 7:266--274, 1995. [ bib ]
[5071] V. S. Solomatov and L. N. Moresi. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett., 24:1907--1910, 1997. [ bib ]
[5072] S. C. Solomon and N. H. Sleep. Some simple physical models for absolute plate motions. J. Geophys. Res.: Sol. Earth, 79:2557--2567, 1974. [ bib ]
[5073] S. C. Solomon, N. H. Sleep, and R. M. Richardson. On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stress. Geophys. J. R. Astr. Soc., 42:769--801, 1975. [ bib ]
[5074] Surendra Nadh Somala, Jean-Paul Ampuero, and Nadia Lapusta. Finite-fault source inversion using adjoint methods in 3-D heterogeneous media. Geophys. J. Int., 214:402--420, 2018. [ bib ]
[5075] P. G. Somerville. A post-Tohoku earthquake review of earthquake probabilities in the Southern Kanto District, Japan. Geosci. Lett., 1(10), 2014. [ bib | DOI ]
[5076] A. Sommaruga. Decollement tectonics in the Jura foreland fold-and-thrust belt. Marine Petrol. Geol., 16:111--134, 1999. [ bib ]
[5077] L. Sonder, P.C. England, B.P. Wernicke, and R.L. Christiansen. A physical model for Cenozoic extension of western North America. In M. Coward, J. Dewey, and P. L. Hancock, editors, Continental Extensional Tectonics, volume 28 of Geol. Soc. Lond. Spec. Pubs, pages 187--201. Geological Society of London, Oxford, 1987. [ bib ]
[5078] LJ Sonder, PC England, Brian P Wernicke, and RL Christiansen. A physical model for Cenozoic extension of western North America. Geol. Soc., London, Spec. Pub., 28:187--201, 1987. [ bib ]
[5079] Leslie J Sonder and Philip C England. Effects of a temperature-dependent rheology on large-scale continental extension. J. Geophys. Res.: Sol. Earth, 94:7603--7619, 1989. [ bib ]
[5080] L. J. Sonder. Effects of density contrasts on the orientation of stresses in the lithosphere: Relation to principal stress directions in the Transverse Ranges, California. Tectonics, 9:761--771, 1990. [ bib ]
[5081] L.J. Sonder and C. H. Jones. Western United States extension: How the West was Widened. Ann. Rev. Earth Planet. Sci., 27:417--462, 1999. [ bib ]
[5082] Teh-Ru Alex Song and Mark Simons. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science, 301:630--633, 2003. [ bib ]
[5083] T.-R. A. Song and D. V. Helmberger. Validating tomographic model with broad-band waveform modelling: an example from the LA RISTRA transect in the southwestern United States. Geophys. J. Int., 171:244--258, 2007. [ bib ]
[5084] T.-R. A. Song and H. Kawakatsu. Subduction of oceanic asthenosphere: evidence from sub-slab seismic anisotropy. Geophys. Res. Lett., 39(L17301), 2012. [ bib | DOI ]
[5085] T.-R. A. Song and H. Kawakatsu. Subduction of oceanic asthenosphere: A critical appraisal in central Alaska. Earth Planet. Sci. Lett., 367:82--94, 2013. [ bib ]
[5086] X. Song and T. H. Jordan. Stochastic representations of seismic anisotropy: transversely isotropic effective media models. Geophys. J. Int., 209:1831--1850, 2017. [ bib ]
[5087] Henry Clifton Sorby. II. The Bakerian lecture.—On the direct correlation of mechanical and chemical forces. Proc. Royal Soc. London, 12:538--550, 1863. [ bib ]
[5088] A. Sornette and D. Sornette. Self-organized criticality and earthquakes. Europhys. Lett., 9:197--202, 1989. [ bib ]
[5089] A. Souriau. The Earth's core. In B. A. Romanowicz and A. Dziewoński, editors, Treatise on Geophysics, volume 1, pages 655--693. Elsevier, Amsterdam, 2007. [ bib ]
[5090] M. de Sousa Vieira. Exponential distributions in a mechanical model for earthquakes. Phys. Rev. E, 54:5925--5928, 1996. [ bib ]
[5091] G. Spadini, S. Cloething, and G. Bertotti. Thermo-mechanical modeling of the Tyrrhenian sea: lithospheric necking and kinematics of rifting. Tectonics, 14:629--644, 1995. [ bib ]
[5092] W. Spakman and M. C. J. Nyst. Inversion of relative motion data for estimates of the velocity gradient field and fault slip. Earth Planet. Sci. Lett., 203:577--591, 2002. [ bib ]
[5093] W. Spakman and R. Hall. Surface deformation and slab-mantle interaction during banda arc subduction rollback. Nature Geosc., 3:562--566, 2010. [ bib ]
[5094] W. Spakman, S. van der Lee, and R. D. van der Hilst. Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys. Earth Planet. Inter., 79:3--74, 1993. [ bib ]
[5095] R. S. J. Sparks and K. V. Cashman. Dynamic magma systems: Implications for forecasting volcanic activity. Elements, 13:35--40, 2017. [ bib ]
[5096] S. Spasojevic, L. Liu, and M. Gurnis. Adjoint models of mantle convection with seismic, plate motion, and stratigraphic constraints: North America since the Late Cretaceous. Geochem., Geophys., Geosys., 10(Q05W02), 2009. [ bib | DOI ]
[5097] S. Spasojevic, M. Gurnis, and R. Sutherland. Mantle upwellings above slab graveyards linked to the global geoid lows. Nature Geosc., 3:435--438, 2010. [ bib ]
[5098] P. Speciale, L. Tokle, and W. M. Behr. Feldspar and orthopyroxene piezometers constrained using quartz–feldspar and olivine–orthopyroxene mineral pairs from natural mylonites. J. Struct. Geol., 154(104495), 2022. [ bib ]
[5099] W. Spence. Aleutian arc - tectonic blocks, episodic subduction, strain diffusion, and magma generation. J. Geophys. Res.: Sol. Earth, 82:213--230, 1977. [ bib ]
[5100] W. Spence. The 1977 Sumba earthquake series: Evidence for slab pull force acting at a subduction zone. J. Geophys. Res.: Sol. Earth, 91:7225--7239, 1986. [ bib ]
[5101] W. Spence. Slab pull and the seismotectonics of subducting lithosphere. Rev. Geophys., 25:55--69, 1987. [ bib ]
[5102] R. L. Spencer and M. Ware. Introduction to Matlab. Brigham Young University, 2008. available online, accessed 07/2008. [ bib ]
[5103] Jon E Spencer and Stephen J Reynolds. Relationship between Mesozoic and Cenozoic tectonic features in west central Arizona and adjacent southeastern California. J. Geophys. Res.: Sol. Earth, 95(B1):539--555, 1990. [ bib ]
[5104] J. E. Spencer. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction. J. Geophys. Res.: Sol. Earth, 101:13595--13609, 1996. [ bib ]
[5105] J. Spetzler, J. Trampert, and R. Snieder. The effect of scattering in surface wave tomography. Geophys. J. Int., 149:755--767, 2002. [ bib ]
[5106] E. A. Spiegel and G. Veronis. On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131:442--447, 1960. [ bib ]
[5107] Marc Spiegelman and Peter B Kelemen. Extreme chemical variability as a consequence of channelized melt transport. Geochem., Geophys., Geosys., 4(7), 2003. [ bib | DOI ]
[5108] M. Spiegelman. Myths and Methods in Modeling. Columbia University Course Lecture Notes, 2004. Available online at www.ldeo.columbia.edu/~mspieg/mmm/course.pdf, accessed 06/2006. [ bib ]
[5109] Marc Spiegelman, Dave A May, and Cian R Wilson. On the solvability of incompressible Stokes with viscoplastic rheologies in geodynamics. Geochem., Geophys., Geosys., 17:2213--2238, 2016. [ bib ]
[5110] M. Spiegelman. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech., 247:17--38, 1993. [ bib ]
[5111] M. Spiegelman. Flow in deformable porous media. Part 2. Numerical analysis-The relationship between shock waves and solitary waves. J. Fluid Mech., 247:39--63, 1993. [ bib ]
[5112] M. Spiegelman. Physics of melt extraction--Theory, implications and applications. Phil. Trans. Roy. Soc. London A, 342:23--41, 1993. [ bib ]
[5113] Glenn A Spinelli and Demian M Saffer. Along-strike variations in underthrust sediment dewatering on the nicoya margin, costa rica related to the updip limit of seismicity. Geophys. Res. Lett., 31(L04613), 2004. [ bib | DOI ]
[5114] T Spohn and G Schubert. Modes of mantle convection and the removal of heat from the Earth's interior. J. Geophys. Res.: Sol. Earth, 87:4682--4696, 1982. [ bib ]
[5115] T Spohn and D Breuer. Evolution of the Earth and planets, volume 74 of Geophys. Mono., chapter Mantle differentiation through continental crust growth and recycling and the thermal evolution of the Earth, pages 55--71. American Geophysical Union, 1993. [ bib ]
[5116] J. A. Spotila, L. A. Farley, and K. Sieh. Uplift and erosion of the San Bernardino Mountains, associated with transpression along the San Andreas fault, CA, as constrained by radiogenic helium thermochronometry. Tectonics, 17:360--378, 1998. [ bib ]
[5117] D. Sprague and H. N. Pollack. Heat flow in the Mesozoic and Cenozoic. Nature, 285:393--395, 1980. [ bib ]
[5118] P. Spudich, L. K. Steck, M. Hellweg, J. B. Fletcher, and L. Baker. Transient stresses at Parkfield, California, produced by the M7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J. Geophys. Res.: Sol. Earth, 100:675--690, 1995. [ bib ]
[5119] J. J. Becker, D. T. Sandwell, W. H. F. Smith, J. Braud, B. Binder, J. Depner, D. Fabre, J. Factor, S. Ingalls, S-H. Kim, R. Ladner, K. Marks, S. Nelson, A. Pharaoh, R. Trimmer, J. Von Rosenberg, G. Wallace, and P. Weatherall. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, 32:355--371, 2009. [ bib ]
[5120] Frank D Stacey. Kelvin's age of the earth paradox revisited. J. Geophys. Res.: Sol. Earth, 105:13155--13158, 2000. [ bib ]
[5121] F. D. Stacey and P. M. Davis. Physics of the Earth. Cambridge University Press, Cambridge, 2008. [ bib ]
[5122] F. D. Stacey. A thermal model of the Earth. Phys. Earth Planet. Inter., 15:341--348, 1977. [ bib ]
[5123] F. D. Stacey. Cooling of the earth -- A constraint on paleotectonic hypotheses. In R. J. O'Connell and W. S. Fyfe, editors, Evolution of the Earth, volume 5 of Geodyn. Ser., pages 272--276. American Geophysical Union, Washington DC, 1981. [ bib ]
[5124] F. D. Stacey. Physics of the Earth. Brookfield Press, Kenmore, Australia, 3rd edition, 1992. [ bib ]
[5125] F. D. Stacey. Theory of thermal and elastic properties of the lower mantle and core. Phys. Earth Planet. Inter., 89:219--245, 1995. [ bib ]
[5126] F. D. Stacey. Thermoelasticity of (Mg, Fe)SiO3 perovskite and a comparison with the lower mantle. Phys. Earth Planet. Inter., 98:65--77, 1996. [ bib ]
[5127] F. D. Stacey. Bullen's seismological homogeneity parameter, η, applied to a mixture of minerals: the case of the lower mantle. Phys. Earth Planet. Inter., 99:189--193, 1997. [ bib ]
[5128] F. D. Stacey. Thermoelasticity of a mineral composite and a reconsideration of lower mantle properties. Phys. Earth Planet. Inter., 106:219--236, 1998. [ bib ]
[5129] J. C. Stachnik, G. A. Abers, and D. H. Christensen. Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J. Geophys. Res.: Sol. Earth, 109(B10304), 2004. [ bib | DOI ]
[5130] G. Stadler, M. Gurnis, C. Burstedde, L. C. Wilcox, L. Alisic, and O. Ghattas. The dynamics of plate tectonics and mantle flow: From local to global scales. Science, 329:1033--1038, 2010. [ bib ]
[5131] GM Stampfli, C Hochard, C Vérard, C Wilhem, et al. The formation of Pangea. Tectonophys., 593:1--19, 2013. [ bib ]
[5132] D. S. Stamps, C. Kreemer, R. Fernandes, T. A. Rajaonarison, and G. Rambolamanana. Redefining East African Rift System kinematics. Geology, 49:150--155, 2021. [ bib ]
[5133] S. A. Stanchits, D. A. Lockner, and A. V. Ponomarev. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite. Bull. Seismol. Soc. Am., 93:1803--1822, 2003. [ bib ]
[5134] S. Stanchits and G. Dresen. Separation of tensile and shear cracks based on acoustic emission analysis of rock fracture. In Int. Symp. (NDT-CE 2003), Non-destructive Testing in Civil Engineering, pages 293--302, 2003. [ bib ]
[5135] S. A. Stanchits, G. Dresen, and E. Görgün. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite. Pure Appl. Geophys., 163:975--994, 2006. [ bib ]
[5136] S. Stanchits, G. Dresen, and the JAGUARS Group. Formation of faults in Diorite and Quartzite samples extracted from a deep gold mine (South Africa). Geophys. Res. Abstr., 12(EGU2010):5605, 2010. EGU General Assembly. [ bib ]
[5137] Jared J Standish and Kenneth WW Sims. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nature Geosc., 3:286--292, 2010. [ bib ]
[5138] A. T. Starr. Slip on a crystal and rupture in a solid due to shear. In Proceedings of the Cambridge Philosophical Society, volume 24, pages 489--500, 1928. [ bib ]
[5139] S. J. Steacy and C. G. Sammis. An automaton for the simulation of fractal fragmentation. Nature, 353:250--252, 1991. [ bib ]
[5140] C. E. Steedman, B. J. P. Kaus, D. Okaya, and T. W. Becker. Lithosphere-scale modeling of the Taiwan orogeny (abstract). Eos Trans. AGU, 86(52):T11B--0370, 2005. [ bib ]
[5141] C. E. Steedman, B. J. P. Kaus, T. W. Becker, D. Okaya, and F. T. Wu. The geodynamics of continental lithosphere entering a subduction zone (abstract). Eos Trans. AGU, 87(52):T11F--07, 2006. [ bib ]
[5142] M. Stefanick and D. M. Jurdy. Stress observations and driving force models for the South American plate. J. Geophys. Res.: Sol. Earth, 97:11905--11913, 1992. [ bib ]
[5143] D. R. Stegman, J. Freeman, W. P. Schellart, L. N. Moresi, and D. May. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochem., Geophys., Geosys., 7, 2006. [ bib | DOI ]
[5144] D. R. Stegman, R. Farrington, F. A. Capitanio, and W. P. Schellart. A regime diagram for subduction styles from 3-D numerical models of free subduction. Tectonophys., 483:29--45, 2010. [ bib ]
[5145] C. Stein, J. Schmalz, and U. Hansen. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys. Earth Planet. Inter., 142:225--255, 2004. [ bib ]
[5146] S. Stein, R. J. Geller, and M. Liu. Why earthquake hazard maps often fail and what to do about it. Tectonophys., 562:1--25, 2012. [ bib ]
[5147] C. Stein and U. Hansen. Arrhenius rheology versus Frank-Kamenetskii rheology--Implications for mantle dynamics. Geochem., Geophys., Geosys., 14:2757--2770, 2013. [ bib ]
[5148] C. Stein and U. Hansen. Numerical investigation of a layered temperature-dependent viscosity convection in comparison to convection with a full temperature dependence. Phys. Earth Planet. Inter., 226:1--13, 2014. [ bib ]
[5149] R. S. Stein and M. Lisowski. The 1979 Homestead Valley earthquake sequence, California: Control of aftershocks and postseismic deformation. J. Geophys. Res.: Sol. Earth, 88:6477--6490, 1983. [ bib ]
[5150] R. S. Stein, G. C. P. King, and J. Lin. Change in failure stress on the San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake. Science, 258:1328--1332, 1992. [ bib ]
[5151] C. A. Stein and S. Stein. A model for the global variations in oceanic depth and heat flow with lithospheric age. Nature, 359:123--129, 1992. [ bib ]
[5152] S. Stein. Space geodesy and plate motions. In D. E. Smith and D. L. Turcotte, editors, Contributions of Space Geodesy to Geodynamics: Crustal Dynamics, volume 23 of Geodynamics, pages 5--20. American Geophysical Union, Washington, DC, 1993. [ bib ]
[5153] R. S. Stein, G. C. P. King, and J. Lin. Stress triggering of the 1994 m=6.7 Northridge, California, earthquake by its predecessors. Science, 265:1432--1435, 1994. [ bib ]
[5154] Carol A Stein and Seth Stein. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J. Geophys. Res.: Sol. Earth, 99:3081--3095, 1994. [ bib ]
[5155] R. S. Stein, A. A. Barka, and J. H. Dieterich. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys. J. Int., 128:594--604, 1997. [ bib ]
[5156] R. Stein. The role of stress transfer in earthquake occurrence. Nature, 402:605--609, 1999. [ bib ]
[5157] M. Stein. Interpolation of Spatial Data, Some Theory for Kriging. Springer Verlag, New York, 1999. [ bib ]
[5158] S. Stein and C. A. Stein. Sea-floor depth and the Lake Wobegon effect. Science, 275:1613--1614, 1997. [ bib ]
[5159] B. Steinberger. Slabs in the lower mantle -- results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Inter., 118:241--257, 2000. [ bib ]
[5160] B. Steinberger. Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res.: Sol. Earth, 105:11127--11152, 2000. [ bib ]
[5161] B. Steinberger and R. J. O'Connell. Effects of mantle flow on hotspot motion. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The history and dynamics of global plate motions, volume 121 of Geophys. Mono., pages 377--398. American Geophysical Union, Washington DC, 2000. [ bib ]
[5162] B. Steinberger, H. Schmeling, and G. Marquart. Large-scale lithospheric stress field and topography induced by global mantle circulation. Earth Planet. Sci. Lett., 186:75--91, 2001. [ bib ]
[5163] B. Steinberger and R. J. O'Connell. The convective mantle flow signal in rates of true polar wander. In J. Mitrovica and L. Vermeersen, editors, Ice Sheets, Sea-Level and the Dynamic Earth Geodynamic Series, volume 29, pages 233--256. American Geophysical Unions, Washington DC, 2002. [ bib ]
[5164] B. Steinberger, R. Sutherland, and R. J. O'Connell. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature, 430:167--173, 2004. [ bib ]
[5165] B. Steinberger and A. Calderwood. Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations. Geophys. J. Int., 167:1461--1481, 2006. [ bib ]
[5166] B. Steinberger and M. Antretter. Conduit diameter and buoyant hot rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits. Geochem., Geophys., Geosys., 7(Q11018), 2006. [ bib | DOI ]
[5167] B. Steinberger and T. H. Torsvik. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature, 452:620--623, 2008. [ bib ]
[5168] B. Steinberger and T. H. Torsvik. Toward an explanation for the present and past locations of the poles. Geochem., Geophys., Geosys., 11(Q06W06), 2010. [ bib | DOI ]
[5169] Bernhard Steinberger, Stephanie C Werner, and Trond H Torsvik. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus, 207:564--577, 2010. [ bib ]
[5170] B. Steinberger, T. H. Torsvik, and T. W. Becker. Subduction to the lower mantle - a comparison between geodynamic and tomographic models. Solid Earth, 3:415--432, 2012. [ bib ]
[5171] B. Steinberger and T. H. Torsvik. A geodynamic model of plumes from the margins of large low shear velocity provinces. Geochem., Geophys., Geosys., 13(Q01W09), 2012. [ bib | DOI ]
[5172] B. Steinberger. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int., 205:604--621, 2016. [ bib ]
[5173] B. Steinberger and T. W. Becker. A comparison of lithospheric thickness models. Tectonophys., 2016. [ bib | DOI ]
[5174] B. Steinberger and T. W. Becker. A comparison of lithospheric thickness models. Tectonophys., 746:325--338, 2018. [ bib ]
[5175] Bernhard Steinberger, Clinton P Conrad, Anthony Osei Tutu, and Mark J Hoggard. On the amplitude of dynamic topography at spherical harmonic degree two. Tectonophys., 760:221--228, 2019. [ bib ]
[5176] B Steinberger, PL Nelson, SP Grand, and W Wang. Yellowstone plume conduit tilt caused by large-scale mantle flow. Geochem., Geophys., Geosys., 20:5896--5912, 2019. [ bib ]
[5177] B. Steinberger. Motion of hotspots and changes of the Earth's rotation axis caused by a convecting mantle. PhD thesis, Harvard University, Cambridge MA, 1996. [ bib ]
[5178] B. Steinberger and R. J. O'Connell. Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities. Nature, 387:169--173, 1997. [ bib ]
[5179] B. Steinberger and R. J. O'Connell. Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity, and plume distribution. Geophys. J. Int., 132:412--434, 1998. [ bib ]
[5180] C. A. Stein and S. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359:123--129, 1992. [ bib ]
[5181] S. A. Steiner and C. P. Conrad. Does active mantle upwelling help drive plate motions? Phys. Earth Planet. Inter., 161:103--114, 2007. [ bib ]
[5182] M. G. Steltenpohl and J. M. Bartley. Cross folds and back folds in the Ofoten-Tysfjord area, north Norway, and their significance for Caledonian tectonics. Geol. Soc. Am. Bull., 100:140--151, 1988. [ bib ]
[5183] R. J. Stern. Subduction zones. Rev. Geophys., 40(1012), 2002. [ bib | DOI ]
[5184] D. P. Stern. A millennium of geomagnetism. Rev. Geophys., 40, 2002. [ bib | DOI ]
[5185] C. R. Stern. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile, 31:161--206, 2004. [ bib ]
[5186] Robert J Stern. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett., 226:275--292, 2004. [ bib ]
[5187] Robert J Stern. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33:557--560, 2005. [ bib ]
[5188] T. A. Stern, S. A. Henrys, D. Okaya, J. N. Louie, M. K. Savage, S. Lamb, H. Sato, R. Sutherland, and T. Iwasak. A seismic reflection image for the base of a tectonic plate. Nature, 518:85--88, 2015. [ bib ]
[5189] Robert J Stern and Taras Gerya. Subduction initiation in nature and models: A review. Tectonophys., 746:173--198, 2018. [ bib ]
[5190] Robert J Stern and Sherman H Bloomer. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. GSA Bull., 104:1621--1636, 1992. [ bib ]
[5191] T. A. Stern and W. E. Holt. Platform subsidence behind an active subduction zone. Nature, 368:233--236, 1994. [ bib ]
[5192] P. Sternai, J.-P. Avouac, L. Jolivet, C. Faccenna, T. Gerya, T. W. Becker, and A. Menant. Sub-crustal forcing on the tectonics and topography along the eastern Tibetan margin. J. Geodyn, 2016. [ bib | DOI ]
[5193] Pietro Sternai, Christian Sue, Laurent Husson, Enrico Serpelloni, Thorsten W Becker, Sean D Willett, Claudio Faccenna, Andrea Di Giulio, Giorgio Spada, Laurent Jolivet, et al. Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions. Earth-Sci. Rev., 190:589--604, 2019. [ bib ]
[5194] David J Stevenson. Planetary magnetic fields. Earth Planet. Sci. Lett., 208:1--11, 2003. [ bib ]
[5195] D. J. Stevenson. A planetary perspective on the deep Earth. Nature, 451:261--265, 2008. [ bib ]
[5196] D. J. Stevenson and J. S. Turner. Angle of subduction. Nature, 270:334--336, 1972. [ bib ]
[5197] D J Stevenson, T Spohn, and G Schubert. Magnetism and thermal evolution of the terrestrial planets. Icarus, 54:466--489, 1983. [ bib ]
[5198] DJ Stevenson. Limits on lateral density and velocity variations in the Earth's outer core. Geophys. J. Int., 88:311--319, 1987. [ bib ]
[5199] D. J. Stevenson. Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett., 16:1067--1070, 1989. [ bib ]
[5200] D. J. Stevenson. Formation and early evolution of the Earth. In W. R. Peltier, editor, Mantle convection: Plate tectonics and global dynamics, volume 4 of Fluid Mech. Astrophys. Geophys., pages 865--868. Gordon and Breach Science Pub., New York, NY, 1989. [ bib ]
[5201] Vidar Stiernström, Martin Almquist, and Eric M Dunham. Adjoint-based inversion for stress and frictional parameters in earthquake modeling. arXiv preprint arXiv:2310.12279, 2023. [ bib ]
[5202] Michael Stipp and Jan Tullis. The recrystallized grain size piezometer for quartz. Geophys. Res. Lett., 30(21), 2003. [ bib ]
[5203] M. W. Stirling, S. G. Wesnousky, and K. Shimazaki. Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophys. J. Int., 124:833--868, 1996. [ bib ]
[5204] J. Stix, G. D. Layne, and S. N. Williams. Mechanisms of degassing at Nevado del Ruiz volcano, Colombia. J. Geol. Soc. London, 160:507--521, 2003. [ bib ]
[5205] L. Stixrude and C. Lithgow-Bertelloni. Thermodynamics of mantle minerals I: Physical properties. Geophys. J. Int., 162:610--632, 2005. [ bib ]
[5206] L. Stixrude and C. Lithgow-Bertelloni. Mineralogy and elasticity of the upper mantle: Origin of the low velocity zone. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[5207] L. Stixrude and C. Lithgow-Bertelloni. Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle. Earth Planet. Sci. Lett., 263:45--55, 2007. [ bib ]
[5208] L. Stixrude and C. Lithgow-Bertelloni. Thermodynamics of the Earth's mantle. Rev. Mineral. Geochem., 71:465--484, 2010. [ bib ]
[5209] L. Stixrude and C. Lithgow-Bertelloni. Thermodynamics of mantle minerals: II. Phase equilibria. Geophys. J. Int., 184:1180--1213, 2011. [ bib ]
[5210] L. Stixrude and C. Lithgow-Bertelloni. Geophysics of chemical heterogeneity in the mantle. Ann. Rev. Earth Planet. Sci., 40:569--595, 2012. [ bib ]
[5211] L. Stixrude and C. Lithgow-Bertelloni. Thermal expansivity, heat capacity and bulk modulus of the mantle. Geophys. J. Int., 228:1119--1149, 2022. [ bib ]
[5212] J. Stock and P. Molnar. Uncertainties and implications of the late Cretaceous and Tertiary position of North America relative to the Farallon, Kula, and Pacific plates. Tectonics, 6:1339--1384, 1998. [ bib ]
[5213] T. F. Stocker, T.F., D. Qin, G.-K. Plattner, L.V. Alexander, S.K. Allen, N.L. Bindoff, F.-M. Bréon, J.A. Church, S. Emori U. Cubasch, P. Forster, P. Friedlingstein, N. Gillett, J.M. Gregory, D.L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-Delmotte, G.A. Meehl, I.I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L.D. Talley, D.G. Vaughan, and S.-P. Xie. Technical summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 33--115. Cambridge University Press, Cambridge UK, 2013. [ bib ]
[5214] R. L. Stocker and M. F. Ashby. On the empirical constants in the Dorn equation. Scripta Met., 7:115--120, 1973. [ bib ]
[5215] P. R. Stoddard and D. Abbott. Influence of the tectosphere upon plate motion. J. Geophys. Res.: Sol. Earth, 101:5425--5433, 1996. [ bib ]
[5216] G. G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums. Cambridge Philos. Trans., 9:8--106, 1851. [ bib ]
[5217] Drew B. Stolar, Sean D. Willett, and Gerard H. Roe. Climatic and tectonic forcing of a critical orogen. In S.D. Willett, N. Hovius, M.T. Brandon, and D.M. Fisher, editors, Tectonics, Climate, and Landscape Evolution, pages 241--250. Geological Society of America, 2006. [ bib | DOI ]
[5218] J. O. Stone. Air pressure and cosmogenic isotope production. J. Geophys. Res.: Sol. Earth, 105:23753--23759, 2000. [ bib ]
[5219] Ian Stone, John E. Vidale, Shuoshuo Han, and Emily Roland. Catalog of offshore seismicity in Cascadia: Insights into the regional distribution of microseismicity and its relation to subduction processes. J. Geophys. Res.: Sol. Earth, 123:641--652, 2018. [ bib ]
[5220] Dmitry A Storchak, Domenico Di Giacomo, István Bondár, E Robert Engdahl, James Harris, William HK Lee, Antonio Villaseñor, and Peter Bormann. Public release of the ISC--GEM global instrumental earthquake catalogue (1900--2009). Seismol. Res. Lett., 84:810--815, 2013. [ bib ]
[5221] B. C. Storey. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature, 377:301--308, 1995. [ bib ]
[5222] F. Storti, F. Salvini, and K. McClay. Synchronous and velocity-partitioned thrusting and thrust polarity reversal in experimentally produced, doubly-vergent thrust wedges: Implications for natural orogens. Tectonics, 19:378--396, 2000. [ bib ]
[5223] Fabrizio Storti, Robert E Holdsworth, and Francesco Salvini. Intraplate strike-slip deformation belts. Geological Society, London, Special Publications, 210:1--14, 2003. [ bib ]
[5224] Andreas Stracke, Michael Bizimis, and Vincent JM Salters. Recycling oceanic crust: Quantitative constraints. Geochem., Geophys., Geosys., 4(3), 2003. [ bib | DOI ]
[5225] A. Stracke, M. Willig, F. Genske, P. Béguelin, and E. Todd. Chemical geodynamics insights from a machine learning approach. Geochem., Geophys., Geosys., 23:e2022GC010606, 2022. [ bib ]
[5226] E. O. Straume, C. Gaina, S. Medvedev, K. Hochmuth, K. Gohl, J. M. Whittaker, R. Abdul Fattah, J. C. Doornenbal, and J. R. Hopper. GlobSed: Updated Total Sediment Thickness in the World's Oceans. Geochem., Geophys., Geosys., 20:1756--1772, 2019. [ bib ]
[5227] MR Strecker, RN Alonso, B Bookhagen, B Carrapa, GE Hilley, ER Sobel, and MH Trauth. Tectonics and climate of the southern central Andes. Ann. Rev. Earth Planet. Sci., 35:747--787, 2007. [ bib ]
[5228] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, MA, 1994. [ bib ]
[5229] J. W. Strutt (Lord Rayleigh). On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. London, Edinburgh, and Dublin Phil. Mag. J. Sci., 32:529--546, 1916. [ bib ]
[5230] W. D. Stuart. Forecast model for large and great earthquakes in Southern California. J. Geophys. Res.: Sol. Earth, 91:13771--13786, 1986. [ bib ]
[5231] W. S. Gosset. The probable error of a mean. Biometrika, 6:1--25, 1908. [ bib ]
[5232] R. Styron, M. Taylor, and K. Okoronkwo. Database of active structures from the Indo-Asian collision (abstract). Eos Trans. AGU, 91(20), 2010. [ bib ]
[5233] R. Styron, M. Taylor, and M. Murphy. Oblique convergence, arc parallel extension, and strike-slip faulting in the high Himalaya. Geosphere, 7:1--15, 2011. [ bib ]
[5234] Richard Styron and Marco Pagani. The GEM Global Active Faults Database. Earthquake Spec., 36:160--180, 2020. [ bib ]
[5235] Yulong Su, Sidao Ni, Baolong Zhang, Yulin Chen, Wenbo Wu, Mingming Li, Heping Sun, Mingqiang Hou, Xiaoming Cui, and Daoyuan Sun. Detections of ultralow velocity zones in high-velocity lowermost mantle linked to subducted slabs. Nature Geosc., pages 1--8, 2024. [ bib | DOI ]
[5236] W.-j. Su and A. M. Dziewoński. Predominance of long-wavelength heterogeneity in the mantle. Nature, 352:121--126, 1991. [ bib ]
[5237] W.-j. Su and A. M. Dziewoński. On the scale of mantle heterogeneity. Phys. Earth Planet. Inter., 74:29--45, 1992. [ bib ]
[5238] W.-j. Su, R. L. Woodward, and A. M. Dziewoński. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res.: Sol. Earth, 99:6945--6980, 1994. [ bib ]
[5239] W.-j. Su and A. M. Dziewoński. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter., 100:135--156, 1997. [ bib ]
[5240] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick. Version Control with Subversion. O'Reilly Media, 2004. [ bib ]
[5241] J. Suckale, J.-C. Nave, and B. H. Hager. It takes three to tango 1: Simulating buoyancy-driven flow in the presence of large viscosity contrasts. J. Geophys. Res.: Sol. Earth, 115(B7), 2010. [ bib | DOI ]
[5242] E. Suess. Das Antlitz der Erde. Freytag, Leipzig, 1885. [ bib ]
[5243] Hiroko Sugioka, Taro Okamoto, Takeshi Nakamura, Yasushi Ishihara, Aki Ito, Koichiro Obana, Masataka Kinoshita, Kazuo Nakahigashi, Masanao Shinohara, and Yoshio Fukao. Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nature Geosc., 5:414--418, 2012. [ bib ]
[5244] Yuichi Sugiyama. Neotectonics of southwest Japan due to the right-oblique subduction of the Philippine Sea plate. Geofisica Inter., 33, 1994. [ bib ]
[5245] P. Suhadolc and G. F. Panza. Physical properties of the lithosphere-asthenosphere system in Europe from geophysical data. In A. Boriani, M. Bonafede, G. B. Piccardo, and G. B. Vai, editors, The Lithosphere in Italy. Advances in Science Research, pages 15--40. Accademia Nazionale dei Lincei, Rome, 1989. [ bib ]
[5246] Hisashi Suito and Jeffrey T Freymueller. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res.: Sol. Earth, 114(B11404), 2009. [ bib | DOI ]
[5247] H. Suito, T. Nishimura, M. Tobita, T. Imakiire, and S. Ozawa. Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake as inferred from GPS data. Earth Planets Space, 63:615--619, 2011. [ bib ]
[5248] J. van Summeren, C. P. Conrad, and C. Lithgow-Bertelloni. The importance of slab pull and a global asthenosphere to plate motions. Geochem., Geophys., Geosys., 13(Q0AK03), 2012. [ bib | DOI ]
[5249] W. Sun and S. Okubo. Effects of earth's spherical curvature and radial heterogeneity in dislocation studies--for a point dislocation. Geophys. Res. Lett., 29(10.1029/2001GL014497), 2002. [ bib ]
[5250] D. Sun and D. Helmberger. Upper-mantle structure beneath USArray derived from waveform complexity. Geophys. J. Int., 184:416--438, 2011. [ bib ]
[5251] D. Sun, M. S. Miller, A. F. Holt, and T. W. Becker. Hot upwelling conduit beneath the Atlas Mountains, Morocco. Geophys. Res. Lett., 41:8037--8044, 2014. [ bib ]
[5252] T. Sun, K. Wang, T. Iinuma, R. Hino, J. He, H. Fujimoto, M. Kido, Y. Osada, S. Miura, Y. Ohta, and Y. Hu. Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature, 514:84--87, 2014. [ bib ]
[5253] T. Sun and K. Wang. Viscoelastic relaxation following subduction earthquakes and its effects on afterslip determination. J. Geophys. Res.: Sol. Earth, 120:1329--1344, 2015. [ bib ]
[5254] D. Sun, M. Gurnis, J. Saleeby, and D. Helmberger. A dipping, thick segment of the Farallon Slab beneath central U.S. J. Geophys. Res.: Sol. Earth, 122:2911--2928, 2017. [ bib | DOI ]
[5255] T. Sun, K. Wang, and J. He. Crustal deformation following great subduction earthquakes controlled by earthquake size and mantle rheology. J. Geophys. Res.: Sol. Earth, 123:5323--5345, 2018. [ bib ]
[5256] Tianhaozhe Sun, Demian Saffer, and Susan Ellis. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. Nature Geosc., 13:249--255, 2020. [ bib ]
[5257] M. Sundberg and R. F. Cooper. Crystallographic preferred orientation produced by diffusional creep of harzburgite: Effects of chemical interactions among phases during plastic flow. J. Geophys. Res.: Sol. Earth, 113(B12208), 2008. [ bib | DOI ]
[5258] K. Sundell, M. Taylor, D. Stockli, P. Kapp, R. Styron, and D. Lin. Late Miocene -- Pliocene rifting in western Tibet: Evidence from (U-Th)/He thermochronology of the North Lunggar Rift. GSA Bull., in prep, 2011. [ bib ]
[5259] L. Y. Sung and D. D. Jackson. Crustal and uppermost mantle structure under southern California. Bull. Seismol. Soc. Am., 82:934--961, 1992. [ bib ]
[5260] M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, and S. R. McNeill. Application of an optimized digital correlation method to planar deformation analysis. Image Vis. Comp., 4:143--151, 1986. [ bib ]
[5261] Y. Suwa, S. Miura an A. Hasegawa, T. Sato, and K. Tachibana. Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. J. Geophys. Res.: Sol. Earth, 111(B04402), 2006. [ bib | DOI ]
[5262] Ilya Svetlizky and Jay Fineberg. Classical shear cracks drive the onset of dry frictional motion. Nature, 509:205--208, 2014. [ bib ]
[5263] L. R. Sykes and R. C. Quittmeyer. Repeat times of great earthquakes on simple plate boundaries. In D. W. Simpson and P.G. Richards, editors, Third Maurice Ewing Symposium on Earthquake Predictions, volume 4. AGU, Washington, DC, 1981. [ bib ]
[5264] L.R. Sykes. Aftershock sequences of great earthquakes, seismicity gaps, and erathquake prediction for Alaska and Aleutians. J. Geophys. Res.: Sol. Earth, 76:8021--8041, 1971. [ bib ]
[5265] L. R. Sykes. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Rev. Geophys., 16:621--688, 1978. [ bib ]
[5266] L. R. Sykes, J. Kisslinger, L. House, J. Davies, and K. H. Jakob. Rupture zones and repeat times of great earthquakes along the Alaska-Aleutian arc. In D. Simpson and P. Richards, editors, Earthquake Prediction, an International Review, volume 4 of Maurice Ewing, pages 217--247. American Geophysical Union, Washington DC, 1981. [ bib ]
[5267] L. R. Sykes and S. C. Jaumé. Seismic activity on neighboring faults as a long-term precursor to large earthquakes in the San Francisco bay region. Nature, 348:595--599, 1990. [ bib ]
[5268] L. R. Sykes, B. E. Shaw, and C. H. Scholz. Rethinking earthquake prediction. Pure Appl. Geophys., 155:207--232, 1999. [ bib ]
[5269] Arthur G Sylvester. Strike-slip faults. Geol. Soc. Amer. Bull., 100:1666--1703, 1988. [ bib ]
[5270] Ellen M Syracuse and Geoffrey A Abers. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem., Geophys., Geosys., 7(Q05017), 2006. [ bib | DOI ]
[5271] E. Syracuse, P. van Keken, and G. A. Abers. The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183:73--90, 2010. [ bib ]
[5272] Walter Szeliga, T Melbourne, Marcelo Santillan, and Meghan Miller. GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997--2005. J. Geophys. Res.: Sol. Earth, 113(B04404), 2008. [ bib | DOI ]
[5273] IRIS Subduction Zone Observatory Initiative. Online at www.iris.edu/hq/initiatives/subduction-zone-observatory, accessed 11/2016, 2016. [ bib ]
[5274] A. Taboada, L. A. Rivera, A. Fuenzalida, A. Cisternas, P. Herve, H. Bijwaard, J. Olaya, and C. Rivera. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19:787--813, 2000. [ bib ]
[5275] P. J. Tackley. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem., Geophys., Geosys., 1(1021), 2000. [ bib | DOI ]
[5276] P. J. Tackley. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem., Geophys., Geosys., 1(1026), 2000. [ bib | DOI ]
[5277] P. J. Tackley. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288:2002--2007, 2000. [ bib ]
[5278] P. J. Tackley. The quest for self-consistent incorporation of plate tectonics in mantle convection. In M. Richards, R. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motions, volume 121 of Geophys. Mono. American Geophysical Union, Washington, DC, 2000. [ bib ]
[5279] P. J. Tackley. Strong heterogeneity caused by deep mantle layering. Geochem., Geophys., Geosys., 3(1024), 2002. [ bib | DOI ]
[5280] P. J. Tackley and S. D. King. Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem., Geophys., Geosys., 4, 2003. [ bib | DOI ]
[5281] P. J. Tackley. Mantle geochemical geodynamics. In D. Bercovici and G. Schubert, editors, Treatise on Geophysics Volume 7: Mantle Dynamics, pages 437--505. Elsevier, 2007. [ bib ]
[5282] P. J. Tackley. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter., 171:7--18, 2008. [ bib ]
[5283] P. J. Tackley, D. J. Stevenson, G. A. Glatzmaier, and G. Schubert. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature, 361:699--704, 1993. [ bib ]
[5284] P. J. Tackley, D. J. Stevenson, G. A. Glatzmaier, and G. Schubert. Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle. J. Geophys. Res.: Sol. Earth, 99:15877--15901, 1994. [ bib ]
[5285] P. J. Tackley. Three-dimensional numerical models of mantle convection; recent developments (abstract). In AGU fall meeting 1995, Eos Trans. AGU. AGU, 1995. [ bib ]
[5286] P. J. Tackley. On the penetration of an endothermic phase transition by upwellings and downwellings. J. Geophys. Res.: Sol. Earth, 100:15477--15488, 1995. [ bib ]
[5287] P. J. Tackley. Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res.: Sol. Earth, 101:3311--3332, 1996. [ bib ]
[5288] P. J. Tackley. On the ability of phase transitions and viscosity layering to induce long-wavelength heterogeneity in the mantle. Geophys. Res. Lett., 23:1985--1988, 1996. [ bib ]
[5289] P. J. Tackley. Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth Planet. Sci. Lett., 157:9--22, 1998. [ bib ]
[5290] Eiichi Tajika and Takafumi Matsui. Evolution of terrestrial proto-co2 atmosphere coupled with thermal history of the earth. Earth Planet. Sci. Lett., 113:251--266, 1992. [ bib ]
[5291] Ryota Takagi, Kazushige Obara, and Takuto Maeda. Slow slip event within a gap between tremor and locked zones in the nankai subduction zone. Geophys. Res. Lett., 43:1066--1074, 2016. [ bib ]
[5292] Y. Takei and B. K. Holtzman. Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 3. Causes and consequences of viscous anisotropy. J. Geophys. Res.: Sol. Earth, 114(B06207), 2009. [ bib | DOI ]
[5293] Y. Takei. Elasticity, anelasticity, and viscosity of a partially molten rock. In S. i. Karato, editor, Physics and Chemistry of the Deep Earth, pages 66--93. John Wiley & Sons, 2013. [ bib ]
[5294] Y. Takei. Effects of partial melting on seismic velocity and attenuation: A new insight from experiments. Ann. Rev. Earth Planet. Sci., 45:447--470, 2017. [ bib ]
[5295] Y. Takei and M. Kumazawa. Why have the single force and torque been excluded from seismic source models? Geophys. J. Int., 118:20--30, 1994. [ bib ]
[5296] S. Takemura, K. Shiomi, T. Kimura, and T. Saito. Systematic difference between first-motion and waveform-inversion solutions for shallow offshore earthquakes due to a low-angle dipping slab. Earth, Planet. Space, 68, 2016. [ bib | DOI ]
[5297] A. Takeo, K. Nishida, T. Isse, H. Kawakatsu, H. Shiobara, H. Sugioka, and T. Kanazawa. Radially anisotropic structure beneath the Shikoku Basin from broadband surface wave analysis of ocean bottom seismometer records. J. Geophys. Res.: Sol. Earth, 118:2878--2892, 2013. [ bib | DOI ]
[5298] A. Takeo, D. W. Forsyth, D. S. Weeraratne, and K. Nishida. Estimation of azimuthal anisotropy in the NW Pacific from seismic ambient noise in seafloor records. Geophys. J. Int., 199:11--22, 2014. [ bib ]
[5299] A. Takeo, H. Kawakatsu, T. Isse, K. Nishida, H. Sugioka, A. Ito, H. Shiobara, and D. Suetsugu. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface-wave analysis of OBS array records at 60 Ma seafloor. J. Geophys. Res.: Sol. Earth, 121:1927--1947, 2016. [ bib | DOI ]
[5300] A. Takeo, H. Kawakatsu, T. Isse, K. Nishida, H. Shiobara, H. Sugioka, A. Ito, and H. Utada. In situ characterization of the lithosphere-asthenosphere system beneath NW Pacific ocean via broadband dispersion survey with two OBS arrays. Geochem., Geophys., Geosys., 19:3529--3539, 2018. [ bib ]
[5301] N. Takeuchi. Whole mantle SH velocity model constrained by waveform inversion based on three-dimensional Born kernels. Geophys. J. Int., 169:1153--1163, 2007. [ bib ]
[5302] T. S. Takeuchi and Y. Fialko. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. J. Geophys. Res.: Sol. Earth, 117(B05403), 2012. [ bib | DOI ]
[5303] H. Takeuchi. Time scales of isostatic compensation. J. Geophys. Res.: Sol. Earth, 68:2357, 1963. [ bib ]
[5304] H. Takeuchi and Y. Hasegawa. Viscosity distribution within the Earth. Geophys. J. Int., 9:503--508, 1965. [ bib ]
[5305] Yuval Tal, Bradford H Hager, and Jean Paul Ampuero. The effects of fault roughness on the earthquake nucleation process. J. Geophys. Res.: Sol. Earth, 123:437--456, 2018. [ bib ]
[5306] Mark E Tamisiea, Chris W Hughes, Simon DP Williams, and Richard M Bingley. Sea level: measuring the bounding surfaces of the ocean. Phil. Trans. Royal Soc. A, 372:20130336, 2014. [ bib ]
[5307] E. Tan, M. Gurnis, and L. Han. Slabs in the lower mantle and their modulation of plume formation. Geochem., Geophys., Geosys., 3(1067), 2002. [ bib | DOI ]
[5308] E. Tan, E. Chol, P. Thoutireddy, L. L. Lavier, S. Quenette, Tan. E., M. Gurnis, and M. Aivazis. GeoFramework: Coupling multiple models of mantle convection within a computational framework (abstract). Eos Trans. AGU, 85(47), 2004. SF41A-0752. [ bib ]
[5309] E. Tan, E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis. GeoFramework: Coupling multiple models of mantle convection within a computational framework. Geochem., Geophys., Geosys., 7, 2006. [ bib | DOI ]
[5310] B. H. Tan, I. Jackson, and J. D. Fitz Gerald. Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophys. Res. Lett., 24:1055--1058, 1997. [ bib ]
[5311] Y. Tanaka, J. Okuno, and S. Okubo. A new method for the computation of global viscoelastic post-seismic deformation in a realistic earth model (I)—vertical displacement and gravity variation. Geophys. J. Int., 164:273--289, 2006. [ bib ]
[5312] Genyang Tang, Penny J. Barton, Lisa C. McNeill, Timothy J. Henstock, Frederik Tilmann, Simon M. Dean, Muhammad D. Jusuf, Yusuf S. Djajadihardja, Haryadi Permana, Frauke Klingelhoefer, and Heidrun Kopp. 3-D active source tomography around Simeulue Island offshore Sumatra: Thick crustal zone responsible for earthquake segment boundary. Geophys. Res. Lett., 40:48--53, 2013. [ bib ]
[5313] Youcai Tang, Masayuki Obayashi, Fenglin Niu, Stephen P Grand, Yongshun John Chen, Hitoshi Kawakatsu, Satoru Tanaka, Jieyuan Ning, and James F Ni. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geosc., 7:470--475, 2014. [ bib ]
[5314] Ming Tang, Kang Chen, and Roberta L Rudnick. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351:372--375, 2016. [ bib ]
[5315] T. Tanimoto. The azimuthal dependence of surface wave polarization in a slightly anisotropic medium. Geophys. J. Int., 156:73--78, 2004. [ bib ]
[5316] T. Tanimoto and D. L. Anderson. Mapping convection in the mantle. Geophys. Res. Lett., 11:287--290, 1984. [ bib ]
[5317] T. Tanimoto and D. L. Anderson. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100--250 s. J. Geophys. Res.: Sol. Earth, 90:1842--1858, 1985. [ bib ]
[5318] T. Tanimoto. Free oscillations of a slightly anisotropic earth. Geophys. J. R. Astr. Soc., 87:493--517, 1985. [ bib ]
[5319] T. Tanimoto. The Backus-Gilbert approach to the 3-D structure in the upper mantle--II. SH and SV velocity. Geophys. J. R. Astr. Soc., 84:49--69, 1986. [ bib ]
[5320] Y. Tanioka, L. Ruff, and K. Satake. What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6:261--266, 1997. [ bib ]
[5321] Kai Tao, Stephen P Grand, and Fenglin Niu. Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography. Geochem., Geophys., Geosys., 19:2732--2763, 2018. [ bib ]
[5322] W. C. Tao. Ablative subduction and the dynamics of weak slabs. PhD thesis, Harvard University, Cambridge, MA, 1991. [ bib ]
[5323] W. C. Tao and R. J. O'Connell. Ablative subduction: A two-sided alternative to the conventional subduction model. J. Geophys. Res.: Sol. Earth, 97:8877--8904, 1992. [ bib ]
[5324] W. C. Tao and R. J. O'Connell. Back-arc spreading and slab-plate interactions: a feedback mechanism for episodic back-arc spreading (abstract). Eos Trans. AGU, 73:281, 1992. [ bib ]
[5325] W. C. Tao and R. J. O'Connell. Deformation of a weak subducted slab and variation of seismicity with depth. Nature, 361:626--628, 1993. [ bib ]
[5326] C. H. Tape. Waves on a spherical membrane. Master's thesis, Oxford University, 2003. [ bib ]
[5327] C. Tape, P. Musé, M. Simons, D. Dong, and F. Webb. Multiscale estimation of GPS velocity fields. Geophys. J. Int., 179:945--971, 2009. [ bib ]
[5328] W. Tape and C. Tape. A geometric setting for moment tensors. Geophys. J. Int., 190:476--498, 2012. with useful technical notes on ε and Γ and visualizations at https://sites.google.com/alaska.edu/carltape/home/research/beachball, accessed 09/2023. [ bib ]
[5329] Paul Tapponnier, Xu Zhiqin, Francoise Roger, Bertrand Meyer, Nicolas Arnaud, Gérard Wittlinger, and Yang Jingsui. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294:1671--1677, 2001. [ bib ]
[5330] P. Tapponnnier and P. Molnar. Slip-line field theory and large-scale continental tectonics. Nature, 264:319--324, 1976. [ bib ]
[5331] P Tapponnier, G Peltzer, AY Le Dain, and P Cobbold. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10:611--616, 1982. [ bib ]
[5332] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49:1259--1266, 1984. [ bib ]
[5333] J. A. Tarduno, R. A. Duncan, D. W. Scholl, R. D. Cottrell, B. Steinberger, T. Thordarson, B. C. Kerr, C. R. Neal, F. A. Frey, M. Torii, and C. Carvallo. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301:1064--1069, 2003. [ bib ]
[5334] John A. Tarduno, Rory D. Cottrell, Richard K. Bono, Nicole Rayner, William J. Davis, Tinghong Zhou, Francis Nimmo, Axel Hofmann, Jaganmoy Jodder, Mauricio Ibañez-Mejia, Michael K. Watkeys, Hirokuni Oda, and Gautam Mitra. Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism. Nature, 618:531--536, 2023. [ bib ]
[5335] C. C. G. Tassinari, F. D. Pinzon, and J. Buena Ventura. Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene- Pliocene epizonal gold deposit. Ore Geology Reviews, 33:505--518, 2008. [ bib ]
[5336] DJ Tatham, GE Lloyd, R W H Butler, and M Casey. Amphibole and lower crustal seismic properties. Earth Planet. Sci. Lett., 267(1-2):118--128, 2008. [ bib ]
[5337] Yoshiyuki Tatsumi, Masanori Sakuyama, Hiroyuki Fukuyama, and Ikuo Kushiro. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J. Geophys. Res.: Sol. Earth, 88:5815--5825, 1983. [ bib ]
[5338] Y. Tatsumi. Formation of the volcanic front in subduction zones. Geophys. Res. Lett., 13:717--720, 1986. [ bib ]
[5339] L. Tauxe. Paleomagnetic Principles and Practice. Kluwer Academic Publishers, 1998. [ bib ]
[5340] M. Taylor, A. Yin, F. Ryerson, P. Kapp, and L. Ding. Conjugate strike slip fault accommodate coeval north-south shortening and east-west extension along the Bangong-Nujiang suture zone in central Tibet. Tectonics, 22(1044), 2003. [ bib | DOI ]
[5341] M. Taylor and A. Yin. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5:199--214, 2009. [ bib ]
[5342] M. Taylor, P. Kapp, and B. Horton. Basin response to active extension and strike-slip deformation in the hinterland of the Tibetan plateau. In C. Busby and A. A. Pérez, editors, Recent Advances in Tectonics of Sedimentary Basins. Wiley, 2012. [ bib | DOI ]
[5343] M. Taylor, A. Mora, G. Veloza, D. Stockli, J. Gosse, J.D. Walker, and B. Mocek. Along strike shortening rates along the eastern Andes of Colombia -- examples from the Llanos basin. In Thick-skin-dominated orogens; from initial inversion to full accretion, Barichara, Colombia, 2011. [ bib ]
[5344] B. Taylor and G. D. Karner. On the evolution of marginal basins. Rev. Geophys. Space Phys., 21:1727--1741, 1983. [ bib ]
[5345] M. A. J. Taylor, G. Zheng, J. R. Rice, W. D. Stuart, and R. Dmowska. Cyclic stressing and seismicity at strongly coupled subduction zones. J. Geophys. Res.: Sol. Earth, 101:8363--8381, 1996. [ bib ]
[5346] JS Tchalenko. Similarities between shear zones of different magnitudes. Geol. Soc. Amer. Bull., 81:1625--1640, 1970. [ bib ]
[5347] The MELT Seismic Team. Imaging the deep seismic structure beneath a mid-ocean ridge: The MELT experiment. Science, 280:1215--1218, 1998. [ bib ]
[5348] Elizabeth L Templeton and James R Rice. Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes. J. Geophys. Res.: Sol. Earth, 113(B9), 2008. [ bib ]
[5349] U. S. ten Brink, R. Katzman, and J. Lin. Three-dimensional models of deformation near strike-slip faults. J. Geophys. Res.: Sol. Earth, 101:16205--16220, July 1996. [ bib ]
[5350] U. S. ten Brink, J. Zhang, T. M. Brocher, D. A. Okaya, K. D. Klitgord, and G. S. Fuis. Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex. J. Geophys. Res.: Sol. Earth, 105:5835--5857, 2000. [ bib ]
[5351] T. Terekawa and M. Matsu'ura. The 3-D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events. Tectonics, 29(TC6008), 2010. [ bib | DOI ]
[5352] Michael G Tetley, Simon E Williams, Michael Gurnis, Nicolas Flament, and R Dietmar Müller. Constraining absolute plate motions since the Triassic. J. Geophys. Res.: Sol. Earth, 124:7231--7258, 2019. [ bib ]
[5353] M. Tetzlaff and H. Schmeling. The influence of olivine metastability on deep subduction of oceanic lithosphere. Phys. Earth Planet. Inter., 120:29--38, 2000. [ bib ]
[5354] M. Tetzlaff and H. Schmeling. Time-dependent interaction between subduction dynamics and phase transition kinetics. Geophys. J. Int., 178:826--844, 2009. [ bib ]
[5355] C. Teyssier and D. L. Whitney. Gneiss domes and orogeny. Geology, 30:1139--1142, 2002. [ bib ]
[5356] Marie Tharp. Connect the dots: Mapping the sea floor and discovering the Mid-Ocean Ridge. In Lamont-Doherty Earth Observatory of Columbia: Twelve Perspectives on the First Fifty Years 1949-1999, pages 31--37. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 1999. [ bib ]
[5357] W. Thatcher and F. F. Pollitz. Temporal evolution of continental lithospheric strength in actively deforming regions. GSA Today, 18:4--11, 2008. [ bib ]
[5358] W. Thatcher. How the continents deform: The evidence from tectonic geodesy. Ann. Rev. Earth Planet. Sci., 37:237--262, 2009. [ bib ]
[5359] Wayne Thatcher. Strain accumulation and release mechanism of the 1906 San Francisco Earthquake. J. Geophys. Res.: Sol. Earth, 80:4862--4872, 1975. [ bib ]
[5360] W. Thatcher. The earthquake deformation cycle at the Nankai Trough, southwest Japan. J. Geophys. Res.: Sol. Earth, 89:3087--3101, 1984. [ bib ]
[5361] Wayne Thatcher and John B Rundle. A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones. J. Geophys. Res.: Sol. Earth, 89:7631--7640, 1984. [ bib ]
[5362] W. Thatcher. Present-day crustal movements and the mechanics of cyclical deformation, volume 1515 of U.S. Geol. Surv. Prof. Pap. United States Geological Survey, 1990. [ bib ]
[5363] Wayne Thatcher and David P Hill. Fault orientations in extensional and conjugate strike-slip environments and their implications. Geology, 19:1116--1120, 1991. [ bib ]
[5364] Marcel Thielmann and Boris JP Kaus. Shear heating induced lithospheric-scale localization: Does it result in subduction? Earth Planet. Sci. Lett., 359:1--13, 2012. [ bib ]
[5365] M. Thielmann, Kaus B. J. P., and Popov A. Effects of elasticity and a free surface on convection. Geophys. J. Int., 203:2200--2219, 2015. [ bib ]
[5366] Marcel Thielmann. Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: Impact of complex rheologies. Tectonophys., 746:611--623, 2018. [ bib ]
[5367] C. Thieulot, P. Steer, and R. S. Huismans. Three-dimensional numerical simulations of crustal systems undergoing orogeny and subjected to surface processes. Geochem., Geophys., Geosys., 15:4936--4957, 2014. [ bib | DOI ]
[5368] K. Thirumalai, F. W. Taylor, C.-C. Shen, L. L. Lavier, C. Frohlich, L. M. Wallace, C.-C. Wu, H. Sun, and A. K. Papabatu. Variable Holocene deformation above a shallow subduction zone extremely close to the trench. Nature Comm., 6(7607), 2015. [ bib | DOI ]
[5369] C. A. Thom, L. N. Hansen, D. L. Goldsby, and E. E. Brodsky. A microphysical model of rock friction and the brittle-ductile transition controlled by dislocation glide and backstress evolution. J. Geophys. Res.: Sol. Earth, 2023. [ bib | DOI ]
[5370] Sylvia-Monique Thomas, Craig R Bina, Steven D Jacobsen, and Alexander F Goncharov. Radiative heat transfer in a hydrous mantle transition zone. Earth Planet. Sci. Lett., 357:130--136, 2012. [ bib ]
[5371] Marion Y. Thomas, Nadia Lapusta, Hiroyuki Noda, and Jean Philippe Avouac. Quasi-dynamic versus fully dynamic simulations of earthquakes and aseismic slip with and without enhanced coseismic weakening. J. Geophys. Res.: Sol. Earth, 119:1986--2004, 2014. [ bib ]
[5372] D. Thomas, S. Moore, and L. Turner. From young learner to young professional: Creating a GeoSTEM ecosystem within a large geoscience college (abstract). In GSA 2020 Connects Online. Geological Society of America, 2020. [ bib ]
[5373] A. P. Thomas and T. K. Rockwell. A 300- to 550-year history of slip on the Imperial Fault near the U.S.-Mexico border; missing slip at the Imperial Fault bottleneck. J. Geophys. Res.: Sol. Earth, 101:5587--5997, 1996. [ bib ]
[5374] C. Thomas, M. Weber, C. W. Wicks, and F. Scherbaum. Small scatterers in the lower mantle observed at German broadband arrays. J. Geophys. Res.: Sol. Earth, 104:15073--15088, 1999. [ bib ]
[5375] B. D. Thompson, R. P. Young, and D. A. Lockner. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite. Geophys. Res. Lett., 32(L10304), 2005. [ bib | DOI ]
[5376] B. D. Thompson, R. P. Young, and D. A. Lockner. Fracture in Westerly granite under AE feedback and constant strain rate loading: nucleation, quasi-static propagation, and the transition to unstable fracture propagation. Pure Appl. Geophys., 163:947--973, 2006. [ bib ]
[5377] B. D. Thompson, R. P. Young, and D. A. Lockner. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite. J. Geophys. Res.: Sol. Earth, 114(B02205), 2009. [ bib | DOI ]
[5378] Maggie A Thompson, Joshua Krissansen-Totton, Nicholas Wogan, Myriam Telus, and Jonathan J Fortney. The case and context for atmospheric methane as an exoplanet biosignature. Proc. Natl. Acad. Sci. USA, 119:e2117933119, 2022. [ bib ]
[5379] Schmitty B Thompson, Jessica R Creveling, Konstantin Latychev, and Jerry X Mitrovica. Three-dimensional glacial isostatic adjustment modeling reconciles conflicting geographic trends in North American marine isotope stage 5a relative sea level observations. Geology, 51:808--812, 2023. [ bib ]
[5380] B. Thompson (Lord Rumsford). On the propagation of heat in fluids. Nicolson's J., 1:298--341, 1797. [ bib ]
[5381] L. Thomsen. Weak elastic anisotropy. Geophysics, 51:1954--1966, 1986. [ bib ]
[5382] W. T. Thomson. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys., 21:89--93, 1950. [ bib ]
[5383] W. Thomson (Lord Kelvin). On the secular cooling of the Earth. Philos. Mag., 25:1--14, 1863. [ bib ]
[5384] David J Thomson. Spectrum estimation and harmonic analysis. Proc. IEEE, 70:1055--1096, 1982. [ bib ]
[5385] C. Thoraval and M. A. Richards. The geoid constraint in global geodynamics: viscosity structure, mantle heterogeneity models and boundary conditions. Geophys. J. Int., 131:1--8, 1997. [ bib ]
[5386] M. S. Thorne, E. J. Garnero, and S. P. Grand. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter., 146:47--63, 2004. [ bib ]
[5387] Kip S. Thorne and Roger D. Blandford. Modern Classical Physics. Princeton University Press, Princeton, NJ, 2017. [ bib ]
[5388] G. Thornton, B. R. Konter, and J. G. Konter. Investigating vertical motion discrepancies in Southern California using geologic, geodetic, and well log data. The University of Texas at El Paso, 2015. Available online at digitalcommons.utep.edu/geo_papers/18/, accessed 09/2015. [ bib ]
[5389] C. Thurber. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, Central California. J. Geophys. Res.: Sol. Earth, 88:8226--8236, 1983. [ bib ]
[5390] C. Thurber. Local earthquake tomography: Velocities and Vp/Vs -- theory. In H. Iyer and K. Hirahara, editors, Seismic Tomography: Theory and Practice, pages 563--583. Chapman and Hall, New York, 1993. [ bib ]
[5391] C.H. Thurber. Creep events preceeding small to moderate earthquakes on the San Andreas fault. Nature, 380:425--428, April 1996. [ bib ]
[5392] H. Thybo. The heterogeneous upper mantle low velocity zone. Tectonophys., 416:53--79, 2006. [ bib ]
[5393] Y. Tian, Y. Zhou, K. Sigloch, G. Nolet, and G. Laske. Structure of North American mantle constrained by simultaneous inversion of multiple-frequency SH, SS, and Love waves. J. Geophys. Res.: Sol. Earth, 116(B02307), 2011. [ bib | DOI ]
[5394] Bart W Tichelaar and Larry J Ruff. Seismic coupling along the Chilean subduction zone. J. Geophys. Res.: Sol. Earth, 96:11997--12022, 1991. [ bib ]
[5395] Basil Tikoff and Christian Teyssier. Strain modeling of displacement-field partitioning in transpressional orogens. J. Struct. Geol., 16:1575--1588, 1994. [ bib ]
[5396] R. I. Tilling and P. W. Lipman. Lessons in reducing volcano risk (commentary). Nature, 364:277--280, 1993. [ bib ]
[5397] Frederik Tilmann, James Ni, and Indepth III Seismic Team. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science, 300:1424--1427, 2003. [ bib ]
[5398] S. Tinti and F. Mulargia. Confidence intervals of b-values for grouped magnitudes. Bull. Seismol. Soc. Am., 77:2125--2134, 1987. [ bib ]
[5399] C. Tirel, J. P. Brun, and E. B. Burov. Thermomechanical modeling of extensional gneiss domes. In D. L. Whitney, C. Teyssier, and C. S. Siddoway, editors, Gneiss domes in orogeny, volume 380 of Geol. Soc. Am. Spec. Pap., pages 67--78. Geological Society of America, Boulder, Colorardo, 2004. [ bib ]
[5400] Céline Tirel, Jean-Pierre Brun, and Evgueni Burov. Dynamics and structural development of metamorphic core complexes. J. Geophys. Res.: Sol. Earth, 113(B4), 2008. [ bib ]
[5401] C. Tirel, J. P. Brun, E. B. Burov, M. J. R. Wortel, and S. Lebedev. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust. Geology, 41:555--558, 2013. [ bib ]
[5402] Hrvoje Tkalčić. Complex inner core of the Earth: The last frontier of global seismology. Rev. Geophys., 53:59--94, 2015. [ bib ]
[5403] Harold J Tobin and Demian M Saffer. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology, 37:679--682, 2009. [ bib ]
[5404] OT Tobisch, JB Saleeby, PR Renne, B McNulty, and WX Tong. Variations in deformation fields during development of a large-volume magmatic arc, central Sierra-Nevada, California. Geol. Soc. Amer. Bull., 107:148--166, 1995. [ bib ]
[5405] Mikio Tobita. Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake. Earth, Planet. Space, 68:1--12, 2016. [ bib ]
[5406] S. Toda, J. Lin, and R. S. Stein. Using the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure. Earth, Planet. Space, 63(39), 2011. [ bib | DOI ]
[5407] M. Toda. Theory of nonlinear lattices, volume 20 of Springer series in solid-state sciences. Springer, Berlin, 1981. [ bib ]
[5408] S. Toda, R. S. Stein, P. A. Reasenberg, and A. Yoshida. Stress transferred by the 1995 mw=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. J. Geophys. Res.: Sol. Earth, 103:24543--24565, 1998. [ bib ]
[5409] Erin K Todd, Susan Y Schwartz, Kimihiro Mochizuki, Laura M Wallace, Anne F Sheehan, Spahr C Webb, Charles A Williams, Jenny Nakai, Jefferson Yarce, Bill Fry, Stuart Henrys, and Yoshihior Ito. Earthquakes and tremor linked to seamount subduction during shallow slow slip at the Hikurangi margin, New Zealand. J. Geophys. Res.: Sol. Earth, 123:6769--6783, 2018. [ bib ]
[5410] V. R. Todd, S.E. Shaw, and J.M. Hammarstrom. Cretaceous plutons of the Peninsular Ranges batholith, San Diego and westernmost Imperial Counties, California: Intrusion across a Late Jurassic continental margin. In S. E. Johnson, S.R. Paterson, J.M. Fletcher, G.H. Girty, D.L. Kimbrough, and A. Martin-Barajas, editors, Tectonic evolution of northwestern Mexico and the southwestern USA, volume 374 of Special Paper, pages 185--235. Geol. Soc. Amer., Boulder, Colorado, 2003. [ bib ]
[5411] V. R. Todd, B. G. Erskine, and D. M. Morton. Metamorphic and tectonic evolution of the northern Peninsular Ranges batholith, southern California. In W. G. Ernst, editor, Metamorphic and Crustal Evolution of the Northern Peninsular Ranges Batholith, southern California, Rubey Volume no. VIII. Prentice-Hall, Englewood Cliffs, New Jersey, 1988. [ bib ]
[5412] Leif Tokle, Greg Hirth, and Whitney M Behr. Flow laws and fabric transitions in wet quartzite. Earth Planet. Sci. Lett., 505:152--161, 2019. [ bib ]
[5413] M Nafi Toksöz, Anton M Dainty, Sean C Solomon, and Kenneth R Anderson. Structure of the moon. Rev. Geophys., 12:539--567, 1974. [ bib ]
[5414] M. N. Toksöz and A. T. Hsui. Numerical studies of back-arc convection and the formation of marginal basins. Tectonophys., 50:177--196, 1978. [ bib ]
[5415] MN Toksöz, AF Shakal, and AJ Michael. Space-time migration of earthquakes along the North Anatolian fault zone and seismic gaps. Pure Appl. Geophys., 117:1258--1270, 1979. [ bib ]
[5416] I.N. Tolstikhin. Helium isotopes in the Earth's interior and in the atmosphere: A degassing model of the Earth. Earth Planet. Sci. Lett., 26:88--96, 1975. [ bib ]
[5417] A. Tommasi, D. Mainprice, G. Canova, and Y. Chastel. Viscoplastic self-consistent and equilibrium-based modelling of olivine lattice preferred orientation. 1. Implications for the upper mantle seismic anisotropy. J. Geophys. Res.: Sol. Earth, 105:7893--7908, 2000. [ bib ]
[5418] A Tommasi, B. Gibert, U. Seipold, and D. Mainprice. Anisotropy of thermal diffusivity in the upper mantle. Nature, 411:783--786, 2001. [ bib ]
[5419] A. Tommasi, M. Knoll, A. Vauchez, J. W. Signorelli, C. Thoraval, and R. Logé. Structural reactivation in plate tectonics controlled by olivine crystals anisotropy. Nature Geosc., 2:423--427, 2009. [ bib ]
[5420] A. Tommasi, A. Goryaeva, P. Carrez, P. Cordier, and D. Mainprice. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D” layer. Earth Planet. Sci. Lett., 492:35--46, 2018. [ bib ]
[5421] A. Tommasi. Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet. Sci. Lett., 160:1--13, 1998. [ bib ]
[5422] A. Tommasi, B. Tikoff, and A. Vauchez. Upper mantle tectonics: three-dimensional deformation, crystallographic fabrics and seismic properties. Earth Planet. Sci. Lett., 168:173--186, 1999. [ bib ]
[5423] A. Gorbatov, A. Limaye, and M. Sambridge. Tomoeye: A matlab package for visualization of three-dimensional tomographic models. Geochem., Geophys., Geosys., 5, 2004. [ bib | DOI ]
[5424] T. Tonegawa, K. Hirahara, T. Shibutani, H. Iwamori, H. Kanamori, and K. Shiomi. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet. Sci. Lett., 274:346--354, 2008. [ bib ]
[5425] P. Tong and T.H.H. Pian. On the convergence of the finite element method for problems with singularity. Int. J. Solids Struct., 9:313--321, 1972. [ bib ]
[5426] X. Tong, D. T. Sandwell, and B. Smith-Konter. High-resolution interseismic velocity data along the San Andreas Fault from GPS and InSAR. J. Geophys. Res.: Sol. Earth, 118:369--389, 2013. [ bib | DOI ]
[5427] X. Tong, B. Smith-Konter, and D. T. Sandwell. Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? J. Geophys. Res.: Sol. Earth, 119:2518--2538, 2014. [ bib ]
[5428] X. Tong and L. L. Lavier. Connecting the seismic cycle th the long-term topographic evolution at convergent margins (abstract). AGU Fall Meeting Abstract Volume, (T13A-2660), 2016. [ bib ]
[5429] Xinyue Tong and Luc L Lavier. Simulation of slip transients and earthquakes in finite thickness shear zones with a plastic formulation. Nature Comm., 9:1--8, 2018. [ bib ]
[5430] Douglas R Toomey, David Jousselin, Robert A Dunn, William SD Wilcock, and RS Detrick. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature, 446:409--414, 2007. [ bib ]
[5431] Douglas R. Toomey, Richard M. Allen, Andrew H. Barclay, Samuel W. Bell, Peter D. Bromirski, Richard L. Carlson, Xiaowei Chen, John A. Collins, Robert P. Dziak, Brent Evers, Donald W. Forsyth, Peter Gerstoft, Emilie E.E. Hooft, Dean Livelybrooks, Jessica A. Lodewyk, Douglas S. Luther, Jeffrey J. McGuire, Susan Y. Schwartz, Maya Tolstoy, Anne M. Tréhu, Michelle Weirathmueller, and William S.D. Wilcock. The Cascadia Initiative: A sea change in seismological studies of subduction zones. Oceanography, 27:138--150, 2014. [ bib ]
[5432] A. Tordesillas. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Phil. Mag., 87:4987--5016, 2007. [ bib ]
[5433] Y. Torii and S. Yoshioka. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophys., 445:200--209, 2007. [ bib ]
[5434] T. Tormann, S. Wiemer, and J. L. Hardebeck. Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophys. Res. Lett., 39(L18310), 2012. [ bib | DOI ]
[5435] T. Tormann, B. Enescu, J. Woessner, and S. Wiemer. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geosc., 8:152--158, 2015. [ bib ]
[5436] L.M. Toro, M. Alvaran-Echeverri, and C. Borrero. Rocas con afinidad adakitica al sur-este de Manizales: rasgos petrogenéticos y geoquímicos. Boletín de Geología, 30:23--34, 2008. [ bib ]
[5437] L.M. Toro, C. Borrero, and A.L.F. Ayala. Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología, 32:95--105, 2010. [ bib ]
[5438] C. Torrence and C.P. Compo. A practical guide to wavelet analysis. Bull. Am. Metereol. Soc., 79:61--78, 1997. [ bib ]
[5439] T. H. Torsvik, R. D. Tucker, L. D. Ashwal, L. M. Carter, B. Jamtveit, K. T. Vidyadharan, and P. Venkataramana. Late Cretaceous India-Madagascar fit and timing of break-up related magmatism. Terra Nova, 13:220--224, 2000. [ bib ]
[5440] T. H. Torsvik, B. Steinberger, L. R. M. Cocks, and K. Burke. Longitude: Linking Earth's ancient surface to its deep interior. Earth Planet. Sci. Lett., 276:273--282, 2008. [ bib ]
[5441] T. H. Torsvik, R. D. Müller, R. van der Voo, B. Steinberger, and C. Gaina. Global plate motion frames: Toward a unified model. Rev. Geophys., 46(RG3004), 2008. [ bib | DOI ]
[5442] Trond H Torsvik, Sonia Rousse, Cinthia Labails, and Mark A Smethurst. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int., 177:1315--1333, 2009. [ bib ]
[5443] T. Torsvik, B. Steinberger, M. Gurnis, and C. Gaina. Plate tectonics and net lithosphere rotation over the past 150 my. Earth Planet. Sci. Lett., 291:106--112, 2010. [ bib ]
[5444] Trond H Torsvik, Kevin Burke, Bernhard Steinberger, Susan J Webb, and Lewis D Ashwal. Diamonds sampled by plumes from the core--mantle boundary. Nature, 466:352--355, 2010. [ bib ]
[5445] T. H. Torsvik, R. van der Voo, P. V. Doubrovine, K. Burke, B. Steinberger, L. D. Ashwal, R. Trønnes, S. J. Webb, and A. L. Bull. Deep mantle structure as a reference frame for movements in and on the Earth. P. Natl. Acad. Sci. USA, 111:8735--8740, 2014. [ bib ]
[5446] Trond H Torsvik, Pavel V Doubrovine, Bernhard Steinberger, Carmen Gaina, Wim Spakman, and Mathew Domeier. Pacific plate motion change caused the hawaiian-emperor bend. Nature Comm., 8:1--12, 2017. [ bib ]
[5447] Trond H Torsvik, Bernhard Steinberger, Grace E Shephard, Pavel V Doubrovine, Carmen Gaina, Mathew Domeier, Clinton P Conrad, and William W Sager. Pacific-panthalassic reconstructions: Overview, errata and the way forward. Geochem., Geophys., Geosys., 20:3659--3689, 2019. [ bib ]
[5448] Trond H. Torsvik, Henrik H. Svensen, Bernhard Steinberger, Dana L. Royer, Dougal A. Jerram, Morgan T. Jones, and Mathew Domeier. Connecting the deep Earth and the atmosphere. In Hauke Marquardt, Maxim Ballmer, Sanne Cottaar, and Jasper Konter, editors, Mantle convection and surface expressions, volume 263 of Geophys. Mono., pages 413--453. John Wiley & Sons, 2021. [ bib ]
[5449] Nicola Tosi, Ondřej Čadek, and Zdeněk Martinec. Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid. Geophys. J. Int., 179:813--826, 2009. [ bib ]
[5450] Nicola Tosi, David A Yuen, Nico de Koker, and Renata M Wentzcovitch. Mantle dynamics with pressure-and temperature-dependent thermal expansivity and conductivity. Phys. Earth Planet. Inter., 217:48--58, 2013. [ bib ]
[5451] J. Toth and M. Gurnis. Dynamics of subduction initiation at pre-existing fault zones. J. Geophys. Res.: Sol. Earth, 103:18053--18067, 1998. [ bib ]
[5452] G. Toussaint, E. B. Burov, and L. Jolivet. Continental plate collision: Unstable vs. stable slab dynamics. Geology, 32:33--36, 2004. [ bib ]
[5453] A. Tovish and G. Schubert. Island arc curvature, velocity of continents and angle of subduction. Geophys. Res. Lett., 5:329--332, 1978. [ bib ]
[5454] J. Townend and M. D. Zoback. How faulting keeps the crust strong. Geology, 28:399--402, 2000. [ bib ]
[5455] J. Townend and M. D. Zoback. Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system. In R. E. Holdsworth, R. A. Strachan, J. F. Magloughlin, and R. J. Knipe, editors, The Nature and Tectonic Significance of Fault Zone Weakening, volume 186 of Geol. Soc. London Spec. Pub., pages 13--21. The Geological Society of London, 2001. [ bib ]
[5456] J. Townend and M. D. Zoback. Regional tectonic stress near the San Andreas fault in central and southern California. Geophys. Res. Lett., 31, 2004. [ bib | DOI ]
[5457] J. Townend and M. D. Zoback. Stress, strain, and mountain building in central Japan. J. Geophys. Res.: Sol. Earth, 111(B03411), 2006. [ bib | DOI ]
[5458] B. Tozer, D. T. Sandwell, W. H. F. Smith, C. Olson, J. R. Beale, and P. Wessel. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci., 6:1847--1864, 2019. [ bib | DOI ]
[5459] D. C. Tozer. Heat transfer and convection currents. Philos. Trans. R. Soc. London Ser. A, 258:252--271, 1965. [ bib ]
[5460] D. C. Tozer. Thermal history of the Earth: I. The formation of the core. Geophys. J. Int., 9:95--112, 1965. [ bib ]
[5461] J. Trampert, P. Vacher, and N. Vlaar. Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle. Phys. Earth Planet. Inter., 124:255--267, 2001. [ bib ]
[5462] J. Trampert and H. J. van Heijst. Global azimuthal anisotropy in the transition zone. Science, 296:1297--1299, 2002. [ bib ]
[5463] J. Trampert and J. H. Woodhouse. Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s. Geophys. J. Int., 154:154--165, 2003. [ bib ]
[5464] J. Trampert, F. Deschamps, J. Resovsky, and D. Yuen. Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science, 306:853--856, 2004. [ bib ]
[5465] J. Trampert and J. Spetzler. Surface wave tomography: Finite frequency effects lost in the null space. Geophys. J. Int., 164:394--400, 2006. [ bib ]
[5466] J. Trampert and J. H. Woodhouse. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds. Geophys. J. Int., 122:675--690, 1995. [ bib ]
[5467] Bryan Travis and Peter Olson. Convection with internal heat sources and thermal turbulence in the Earth's mantle. Geophys. J. Int., 118:1--19, 1994. [ bib ]
[5468] P. Tregoning, F. K. Brunner, Y. Bock, S. S. O. Puntodewo, R. McCaffrey, J. F. Genrich, E. Calais, J. Rais, , and C. Subarya. First geodetic measurement of convergence across the Java Trench. Geophys. Res. Lett., 21:2135--2138, 1994. [ bib ]
[5469] Anne M. Tréhu, Jochen Braunmiller, and Elizabeth Davis. Seismicity of the central Cascadia continental margin near 44.5 N: A decadal view. Seismol. Res. Lett., 86:819--829, 2015. [ bib ]
[5470] J. A. Treiman. Geomorphic clues to paleoseismicity; examples from the eastern Ventura Basin, Los Angeles County, California. In C. S. Prentice and R. S. Schwartz, D. P. Yeats, editors, Proceedings of the workshop on Paleoseismology, Open-File Report, pages 182--184. U. S. Geological Survey, 1994. Report: OF 94-0568. [ bib ]
[5471] R. Trenkamp, J. N. Kellogg, J. T. Freymueller, and H. P. Mora. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. South Amer. Earth Sci., 15:157--171, 2002. [ bib ]
[5472] C. Troise, G. DeNatale, F. Pingue, and S. M. Petrazzuoli. Evidence for static stress interaction among earthquakes in the south-central Apennines (Italy). Geophys. J. Int., 134:809--817, 1998. [ bib ]
[5473] J. Tromp. Inner core anisotropy and rotation. Ann. Rev. Earth Planet. Sci., 29:47--69, 2001. [ bib ]
[5474] Jeroen Tromp, Carl Tape, and Qinya Liu. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int., 160:195--216, 2005. [ bib ]
[5475] J. Tromp, D. Komatitsch, and Q. Liu. Spectral-element and adjoint methods in seismology. Comm. Comput. Phys., 3:1--32, 2008. [ bib ]
[5476] J. Tromp. Seismic wavefield imaging of Earth's interior across scales. Nature Rev., 1:40--53, 2020. [ bib ]
[5477] R. Trompert and U. Hansen. Mantle convection simulations with rheologies that generate plate-like behaviour. Nature, 395:686--689, 1998. [ bib ]
[5478] Daniel T. Trugman and Peter M. Shearer. GrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismol. Res. Lett., 88:379--391, 2017. [ bib ]
[5479] D. T. Trugman and Z. E. Ross. Pervasive foreshock activity across southern California. Geophys. Res. Lett., 46:8772--8781, 2019. [ bib ]
[5480] Daniel T. Trugman, Zachary E. Ross, and Paul A. Johnson. Imaging stress and faulting complexity through earthquake waveform similarity. Geophys. Res. Lett., 47:e2019GL085888, 2020. [ bib | DOI ]
[5481] Daniel T. Trugman, Ian W. McBrearty, David C. Bolton, Robert A. Guyer, Chris Marone, and Paul A. Johnson. The spatiotemporal evolution of granular microslip precursors to laboratory earthquakes. Geophys. Res. Lett., 47:e2020GL088404, 2020. [ bib | DOI ]
[5482] Victor C Tsai and David J Stevenson. Theoretical constraints on true polar wander. J. Geophys. Res.: Sol. Earth, 112(B5), 2007. [ bib ]
[5483] C. M. Tschanz, A. Jimeno, and J. Cruz. Mapa Geologico de Reconocimiento de la Sierra Nevada de Santa Marta, scale 1:200,000. INGEOMINAS, Bogota, 1969. [ bib ]
[5484] S. T. Tse and J. R. Rice. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res.: Sol. Earth, 91:9452--9472, 1986. [ bib ]
[5485] Tatsuki Tsujimori, Virginia B Sisson, Juhn G Liou, George E Harlow, and Sorena S Sorensen. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92:609--624, 2006. [ bib ]
[5486] T. E. Tullis, K. Richards-Dinger, M. Barall, J. H. Dieterich, E. H. Field, E. M. Heien, L. H. Kellogg, F. F. Pollitz, J. B. Rundle, M. K. Sachs, D. L. Turcotte, S. N. Ward, and M. B. Yikilmaz. A comparison among observations and earthquake simulator results for the allcal2 California fault model. Seismol. Res. Lett., 83(6), 2012. [ bib | DOI ]
[5487] T. E. Tullis. Rock friction constitutive behavior from laboratory experiments and its implications for an earthquake prediction field monitoring program. Pure Appl. Geophys., 126, 1988. [ bib ]
[5488] T. E. Tullis and J. D. Weeks. Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys., 124:383--414, 1996. [ bib ]
[5489] D. L. Turcotte and G. Schubert. Geodynamics. Cambridge University Press, Cambridge, 2 edition, 2002. [ bib ]
[5490] D. L. Turcotte and G. Schubert. Geodynamics. Cambridge University Press, Cambridge, 3 edition, 2014. [ bib ]
[5491] D. L. Turcotte and E. R. Oxburgh. Finite amplitude convective cells and continental drift. J. Fluid Mech., 28:29--42, 1967. [ bib ]
[5492] D. L. Turcotte and G. Schubert. Frictional heating of the descending lithosphere. J. Geophys. Res.: Sol. Earth, 78:5876--5886, 1973. [ bib ]
[5493] D.L. Turcotte, A.T. Hsui, K.E. Torrance, and G. Schubert. Influence of viscous dissipation on Benard convetion. J. Fluid Mech., 64:369--374, 1974. [ bib ]
[5494] DL Turcotte. On the thermal evolution of the Earth. Earth Planet. Sci. Lett., 48:53--58, 1980. [ bib ]
[5495] D. L. Turcotte and G. Schubert. Geodynamics. Applications of Continuum Physics to Geological Problems. John Wiley, New York, 1982. [ bib ]
[5496] D. L. Turcotte, J. Y. Liu, and F. H. Kulhawy. The role of an intracrustal asthenosphere on the behavior of major strike-slip faults. J. Geophys. Res.: Sol. Earth, 89:5801--5816, 1984. [ bib ]
[5497] Donald Lawson Turcotte. A heat pipe mechanism for volcanism and tectonics on Venus. J. Geophys. Res.: Sol. Earth, 94:2779--2785, 1989. [ bib ]
[5498] D. L. Turcotte. Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge, UK, 2nd edition, 1997. [ bib ]
[5499] Andrew J Turner, Richard F Katz, Mark D Behn, and Tobias Keller. Magmatic focusing to mid-ocean ridges: The role of grain-size variability and non-Newtonian viscosity. Geochem., Geophys., Geosys., 18:4342--4355, 2017. [ bib ]
[5500] Simon Turner, Simon Wilde, Gerhard Wörner, Bruce Schaefer, and Yi-Jen Lai. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nature Comm., 11:1--5, 2020. [ bib ]
[5501] Stephen J Turner and Charles H Langmuir. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett., 584:117424, 2022. [ bib ]
[5502] R. J. Twiss and J. R. Unruh. Structure, deformation, and strength of the Loma Prieta fault, northern California, USA, as inferred from the 1989--1990 Loma Prieta aftershock sequence. GSA Bull., 119(9):1079--1106, 2007. [ bib ]
[5503] Robert J Twiss. Theory and applicability of a recrystallized grain size paleopiezometer. Pure Appl. Geophys., 115:227--244, 1977. [ bib ]
[5504] R. J. Twiss and J. R. Unruh. Analysis of fault slip inversions: Do they constrain stress or strain rate? J. Geophys. Res.: Sol. Earth, 103:12205--12222, 1998. [ bib ]
[5505] Robert H Tyler. On the tidal history and future of the Earth--Moon orbital system. Planet. Sci. J., 2(70), 2021. [ bib ]
[5506] N. Uchida, Y. Asano, and A. Hasegawa. Acceleration of regional plate subduction beneath Kanto, Japan, after the 2011 Tohoku-oki earthquake. Geophys. Res. Lett., 43:9002--9008, 2016. [ bib ]
[5507] Naoki Uchida and R Bürgmann. A Decade of Lessons Learned from the 2011 Tohoku-Oki Earthquake. Rev. Geophys., 59(2):e2020RG000713, 2021. [ bib ]
[5508] Takahiko Uchide, Peter M. Shearer, and Kazutoshi Imanishi. Stress drop variations among small earthquakes before the 2011 Tohoku-Oki, Japan, earthquake and implications for the main shock. J. Geophys. Res.: Sol. Earth, 119, 2014. [ bib | DOI ]
[5509] A. Udias. Source mechanism of earthquakes. Pure Appl. Geophys., pages 81--141, 1991. [ bib ]
[5510] Kosuke Ueda, Taras Gerya, and Stephan V Sobolev. Subduction initiation by thermal--chemical plumes: numerical studies. Phys. Earth Planet. Inter., 171:296--312, 2008. [ bib ]
[5511] K. Ueda, S. D. Willett, T. Gerya, and J. Ruh. Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics. Tectonophys., 659:12--30, 2015. [ bib ]
[5512] T. W. Becker and J. Yu. Unified Geodynamics Earth Science Computing Environment (UGESCE). Available online at www-udc.ig.utexas.edu/external/becker/ugesce.html, accessed 06/2016, 2016. [ bib ]
[5513] Jonathan T Uhl, Shivesh Pathak, Danijel Schorlemmer, Xin Liu, Ryan Swindeman, Braden AW Brinkman, Michael LeBlanc, Georgios Tsekenis, Nir Friedman, Robert Behringer, et al. Universal quake statistics: From compressed nanocrystals to earthquakes. Scient. Rep., 5:1--10, 2015. [ bib ]
[5514] K. Ujiie, H. Tanaka, T. Saito, A. Tsutsumi, J. J. Mori, J. Kameda, E. E. Brodsky, F. M. Chester, N. Eguchi, S. Toczko, and Expedition 343 and 343T Scientists. Low coseismic shear stress on the Tohoku-oki megathrust determined from laboratory experiments. Science, 342:1211--1214, 2013. [ bib ]
[5515] Kohtaro Ujiie, Hanae Saishu, Åke Fagereng, Naoki Nishiyama, Makoto Otsubo, Haruna Masuyama, and Hiroyuki Kagi. An explanation of episodic tremor and slow slip constrained by crack-seal veins and viscous shear in subduction mélange. Geophys. Res. Lett., 45:5371--5379, 2018. [ bib ]
[5516] Laura Ullrich and Rob Van Der Voo. Minimum continental velocities with respect to the pole since the archean. Tectonophys., 74:17--27, 1981. [ bib ]
[5517] Thomas Ulrich, A.-A. Gabriel, Jean-Paul Ampuero, and Wenbin Xu. Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Comm., 10(1213), 2019. [ bib ]
[5518] Thomas Ulrich, Stefan Vater, Elizabeth H Madden, Jörn Behrens, Ylona van Dinther, Iris Van Zelst, Eric J Fielding, Cunren Liang, and A-A Gabriel. Physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami. Pure Appl. Geophys., 176:4069--4109, 2019. [ bib ]
[5519] Martina M Ulvrova, Nicolas Coltice, Simon Williams, and Paul J Tackley. Where does subduction initiate and cease? A global scale perspective. EPSL, 528:115836, 2019. [ bib ]
[5520] UNAVCO. UNAVCO PBO GPS velocity release, 2014. Online at ftp://data-out.unavco.org/pub/products/velocity/pbo.final_frame.vel, accessed 04/2015, with date stamp 20141121065349. [ bib ]
[5521] J. Unruh, J. Humphrey, and A. Barron. Transtensional model for the Sierra Nevada frontal fault system, eastern California. Geology, 31:327--330, 2003. [ bib ]
[5522] J. R. Unruh, R. J. Twiss, and E. Hauksson. Seismogenic deformation field in the Mojave block from a micropolar inversion of the 1992 Landers earthquake aftershocks: Implications for tectonics of the Eastern California Shear Zone. J. Geophys. Res.: Sol. Earth, 101:8335--8361, 1996. [ bib ]
[5523] J. R. Unruh, R. J. Twiss, and E. Hauksson. Kinematics of postseismic relaxation from aftershock focal mechanisms of the 1994 Northridge, California earthquake. J. Geophys. Res.: Sol. Earth, 102:24589--24603, 1997. [ bib ]
[5524] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich, S. Wollherr, and A.-A. Gabriel. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake. In SC'17: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--16, 2017. [ bib ]
[5525] U.S. Geological Survey and California Geological Survey. Quaternary fault and fold database for the United States. Online at www.usgs.gov/natural-hazards/earthquake-hazards/faults, accessed 03/2023, 2023. [ bib ]
[5526] USGS/NEIC. National Earthquake Information Center, World Data Center A for Seismology. Global Earthquake Search. United States Geological Survey, National Earthquake Information Center, http://wwwneic.cr.usgs.gov/neis/epic/epic_global.html, 1998. [ bib ]
[5527] SCEC. Landers Slideshow. Southern California Earthquake Center, www.scecdc.scec.org/landslideshow.html, 1994. [ bib ]
[5528] T. Utsu. A list of deadly earthquakes in the world: 1500-2000. In W. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, editors, International Handbook of Earthquake and Engineering Seismology, pages 691--717. Academic Press, San Diego CA, 2002. [ bib ]
[5529] T. Utsu. A statistical study on the occurrence of aftershocks. Geophys. Mag., 30:521--605, 1961. [ bib ]
[5530] T. Utsu, Y. Ogata, and M. Ritsuko. The centenary of Omori formula for a decay law of afterhock activity. J. Phys. Earth, 43:1--33, 1965. [ bib ]
[5531] T. Utsu. Aftershocks and earthquake statistics (2): further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J. Fac. Sci. Hokkaido Univ. Ser. 7 Geophys., 3:197--266, 1971. [ bib ]
[5532] Seiya Uyeda and Zvi Ben-Avraham. Origin and development of the Philippine Sea. Nature, 240:176--178, 1972. [ bib ]
[5533] S. Uyeda and H. J. Kanamori. Back-arc opening and the mode of subduction. J. Geophys. Res.: Sol. Earth, 84:1049--1061, 1979. [ bib ]
[5534] P. R. Vail, R. M. Mitchum Jr., R. G. Todd, J. M. Widmier, S. Thompson, J. B. Sangree, J. N. Bubb, and W. G. Hatlelid. Seismic stratigraphy and global changes of sea level. In C. E Payton, editor, Seismic stratigraphy -- Applications to Hydrocarbon Exploration, volume 26 of Amer. Assoc. Petrol. Geol. Mem., pages 49--205. American Association of Petroleum Geologists, 1977. [ bib ]
[5535] Vivi Vajda, Stephen McLoughlin, Chris Mays, Tracy D Frank, Christopher R Fielding, Allen Tevyaw, Veiko Lehsten, Malcolm Bocking, and Robert S Nicoll. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett., 529:115875, 2020. [ bib ]
[5536] RD Valdez II, H Kitajima, and DM Saffer. Effects of temperature on the frictional behavior of material from the Alpine Fault Zone, New Zealand. Tectonophys., 762:17--27, 2019. [ bib ]
[5537] Diana Valencia, Richard J O'Connell, and Dimitar Sasselov. Internal structure of massive terrestrial planets. Icarus, 181:545--554, 2006. [ bib ]
[5538] Diana Valencia, Dimitar D Sasselov, and Richard J O'Connell. Radius and structure models of the first super-earth planet. Astrophys. J., 656:545, 2007. [ bib ]
[5539] Diana Valencia, Richard J O'Connell, and Dimitar D Sasselov. Inevitability of plate tectonics on Super-Earths. Astrophys. J., 670:L45--L48, 2007. [ bib ]
[5540] Martin Vallée, Jean Paul Ampuero, Kévin Juhel, Pascal Bernard, Jean-Paul Montagner, and Matteo Barsuglia. Observations and modeling of the elastogravity signals preceding direct seismic waves. Science, 358:1164--1168, 2017. [ bib ]
[5541] Elenora Van Rijsingen, Serge Lallemand, Michel Peyret, Diane Arcay, Arnauld Heuret, Francesca Funiciello, and Fabio Corbi. How subduction interface roughness influences the occurrence of large interplate earthquakes. Geochem., Geophys., Geosys., 19:2342--2370, 2018. [ bib ]
[5542] Harm J. A. Van Avendonk, Nicholas W. Hayman, Jennifer L. Harding, Ingo Grevemeyer, Christine Peirce, and Anke Dannowski. Seismic structure and segmentation of the axial valley of the Mid-Cayman Spreading Center. Geochem., Geophys., Geosys., 18:2149--2161, 2017. [ bib ]
[5543] R. W. Van Bemmelen and H. P. Berlage. Versuch einer mathematischen Behandlung geotektonischer Bewegungen unter besonderer Berücksichtigung der Undationstheorie. Gerlands Beiträge zur Geophysik, 43:19--55, 1935. [ bib ]
[5544] T. van Dam, J. Wahr, P. C. D. Milly, A. B. Shmakin, G. Blewitt, D. Lavellee, and K. M. Larson. rustal displacements due to continental water loading. Geophys. Res. Lett., 28:651--654, 2001. [ bib ]
[5545] J. C. VanDecar and R. S. Crosson. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc. Am., 80:150--169, 1990. [ bib ]
[5546] A. P. van den Berg and D. A. Yuen. Is the lower-mantle rheology Newtonian today? Geophys. Res. Lett., 23:2033--2036, 1996. [ bib ]
[5547] A. P. van den Berg and D. A. Yuen. The role of shear heating in lubricating mantle flow. Earth Planet. Sci. Lett., 151:33--42, 1997. [ bib ]
[5548] MPA Van den Ende, J Chen, J-P Ampuero, and AR Niemeijer. A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip. Tectonophys., 733:273--295, 2018. [ bib ]
[5549] O. Vanderhaeghe and C. Teyssier. Partial melting and flow of orogens. Tectonophys., 342:451--472, 2001. [ bib ]
[5550] Olivier Vanderhaeghe. The thermal--mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle. J. Geodyn., 56:124--145, 2012. [ bib ]
[5551] S. van der Lee, D. James, and P. Silver. Upper mantle S velocity structure of central and western South America. J. Geophys. Res.: Sol. Earth, 106:30821--30834, 2001. [ bib ]
[5552] S. van der Lee and G. Nolet. Upper mantle S velocity structure of North America. J. Geophys. Res.: Sol. Earth, 102:22815--22838, 1997. [ bib ]
[5553] D. G. van der Meer, W. Spakman, D. J. J. van Hinsbergen, M. L. Amaru, and T. H. Torsvik. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geo., 3:36--40, 2010. [ bib ]
[5554] D. G. van der Meer, D. J. J. van Hinsbergen, and W. Spakman. Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophys., 723:309--448, 2018. [ bib ]
[5555] M. van der Meijde, F. Marone, D. Giardini, and S. van der Lee. Seismic evidence for water deep in Earth's upper mantle. Science, 300:1556--1558, 2003. [ bib ]
[5556] R. van der Voo, W. Spakman, and H. Bijwaard. Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171:7--20, 1999. [ bib ]
[5557] Wouter van der Wal, Pippa L Whitehouse, and Ernst JO Schrama. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett., 414:134--143, 2015. [ bib ]
[5558] Y. van Dinther, G. Morra, F. Funiciello, and C. Faccenna. Role of the overriding plate in the subduction process: Insights from numerical models. Tectonophys., 484:74--86, 2010. [ bib ]
[5559] Y. van Dinther, T. V. Gerya, L. A. Dalguer, F. Corbi, F. Funiciello, and P. M. Mai. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models. J. Geophys. Res.: Sol. Earth, 118:1502--1525, 2013. [ bib ]
[5560] Y. van Dinther, T. V. Gerya, L. A. Dalguer, P. M. Mai, G. Morra, and D. Giardini. The seismic cycle at subduction thrusts: Insights from seismo-thermo-mechanical model. J. Geophys. Res.: Sol. Earth, 118:6183--6202, 2013. [ bib ]
[5561] Y. van Dinther, P. M. Mai, L.A. Dalguer, and T. V. Gerya. Modeling the seismic cycle in subduction zones: the role of off-megathrust earthquakes. Geophys. Res. Lett., 41:1194--1201, 2014. [ bib | DOI ]
[5562] Y. van Dinther, H. R. Künsch, and A. Fichtner. Ensemble data assimilation for earthquake sequences: probabilistic estimation and forecasting of fault stresses. Geophys. J. Int., 217:1453--1478, 2019. [ bib ]
[5563] Ylona van Dinther, Lukas E Preiswerk, and Taras V Gerya. A secondary zone of uplift due to megathrust earthquakes. Pure Appl. Geophys., 176:4043--4068, 2019. [ bib ]
[5564] D. J. J. van Hinsbergen, B. Steinberger, P. Doubrovine, and R. Gassmöller. Acceleration-deceleration cycles of India-Asia convergence: roles of mantle plumes and continental collision. J. Geophys. Res.: Sol. Earth, 116(B06101), 2011. [ bib | DOI ]
[5565] Douwe JJ van Hinsbergen, Bernhard Steinberger, Carl Guilmette, Marco Maffione, Derya Gürer, Kalijn Peters, Alexis Plunder, Peter J McPhee, Carmen Gaina, Eldert L Advokaat, et al. A record of plume-induced plate rotation triggering subduction initiation. Nature Geosc., 14:626--630, 2021. [ bib ]
[5566] J. van Hunen and A. P. van den Berg. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103:217--235, 2008. [ bib ]
[5567] J. van Hunen and O. Čadek. Reduced oceanic seismic anisotropy by small-scale convectin. Earth Planet. Sci. Lett., 284:622--629, 2009. [ bib ]
[5568] J. van Hunen and M. B. Allen. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett., 302:27--37, 2011. [ bib ]
[5569] P. E. van Keken, C. J. Ballentine, and D. Porcelli. A dynamical investigation of the heat and helium imbalance. Earth Planet. Sci. Lett., 188:421--434, 2001. [ bib ]
[5570] P. E. van Keken. The structure and dynamics of the mantle wedge. Earth Planet. Sci. Lett., 215:323--338, 2003. [ bib ]
[5571] P. van Keken, C. J. Ballentine, and E. H. Hauri. Convective mixing the Earth's mantle. In R. Carlson, editor, Treatise of Geochemistry. Elsevier, Amsterdam, 2004. [ bib ]
[5572] P. E. van Keken and S. D. King. Thermal structure and dynamics of subduction zones: insights from observations and modeling. Phys. Earth Planet. Inter., 149:1--6, 2005. [ bib ]
[5573] P. van Keken, C. Currie, S.D. King, M.D. Behn, A. Canioncle, J. He, R.F. Katz, S.-C. Lin, E.M. Parmentier, M. Spiegelman, and K. Wang. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter., 171:187--197, 2008. [ bib ]
[5574] Peter E van Keken, Bradley R Hacker, Ellen M Syracuse, and Geoff A Abers. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res.: Sol. Earth, 116(B01401), 2011. [ bib | DOI ]
[5575] P. E. van Keken, S. Kita, and J. Nakajima. Thermal structure and intermediate-depth seismicity in the Tohoku-Hokkaido subduction zones. Solid Earth, 3:355--364, 2012. [ bib ]
[5576] P. E. van Keken and C. R. Wilson. An introductory review of the thermal structure of subduction zones: I -- motivation and selected examples. Prog. Earth Planet. Sci., 10:42, 2023. [ bib ]
[5577] P. van Keken, S.-i. Karato, and D. A. Yuen. Rheological control of oceanic crust separation in the transition zone. Geophys. Res. Lett., 23:1821--1824, 1996. [ bib ]
[5578] P. E. van Keken and C. J. Ballentine. Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett., 156:19--32, 1998. [ bib ]
[5579] P. E. van Keken and C. J. Ballentine. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res.: Sol. Earth, 104:7137--7151, 1999. [ bib ]
[5580] P. E. van Keken and S. Zhong. Mixing in a 3D spherical model of present-day mantle convection . Earth Planet. Sci. Lett., 171:533--547, 1999. [ bib ]
[5581] Martin J Van Kranendonk. Two types of Archean continental crust: Plume and plate tectonics on early Earth. Amer. J. Sci., 310:1187--1209, 2010. [ bib ]
[5582] P. Vannucchi. Scaly fabric and slip within fault zones. Geosphere, 15:342--356, 2019. [ bib ]
[5583] G. Vannucci, P. Gasperini, G. Ferrari, and E. Guidoboni. Encoding and computer analysis of macroseismic effects. Phys. Chem. Earth A, 24:505--510, 1999. [ bib ]
[5584] Joost van Summeren, Eric Gaidos, and Clinton P Conrad. Magnetodynamo lifetimes for rocky, Earth-mass exoplanets with contrasting mantle convection regimes. J. Geophys. Res.: Planet., 118:938--951, 2013. [ bib ]
[5585] P. van Thienen, N. J. Vlaar, and A. P. van den Berg. Plate tectonics on the terrestrial planets. Phys. Earth Planet. Inter., 142:61--74, 2004. [ bib ]
[5586] J. W. van Wijk, W. S. Baldridge, J. van Hunen, S. Goes, R. Aster, D.D. Coblentz, S. P. Grand, and J. Ni. Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology, 38:611--614, 2010. [ bib ]
[5587] K. Van Wijk, T. D. Mikesell, V. Schulte-Pelkum, and J. Stachnik. Estimating the Rayleigh-wave impulse response between seismic stations with the cross terms of the Green tensor. Geophys. Res. Lett., 38(L16301), 2011. [ bib | DOI ]
[5588] Iris van Zelst, Stephanie Wollherr, Alice-Agnes Gabriel, Elizabeth H Madden, and Ylona van Dinther. Modeling megathrust earthquakes across scales: One-way coupling from geodynamics and seismic cycles to dynamic rupture. J. Geophys. Res.: Sol. Earth, 124:11414--11446, 2019. [ bib ]
[5589] Iris van Zelst, Leonhard Rannabauer, Alice-Agnes Gabriel, and Ylona van Dinther. Earthquake rupture on multiple splay faults and its effect on tsunamis. EarthArXiv, 2021. [ bib | DOI ]
[5590] C. A. Vargas, A. Ugalde, L. Pujades, and J. A. Canas. Spatial Variation of Coda wave attenuation in northwestern Colombia. Geophys. J. Int., 158:609--624, 2004. [ bib ]
[5591] C. A. Vargas, L. G. Pujades, and L. Montes. Seismic structure of south-central andes of colombia by tomographic inversion. Geofis. Int., 46:117--127, 2007. [ bib ]
[5592] C. A. Vargas. Tomographic constraints on subducted slabs beneath colombia: Implications for tectonics and exploration. In XIV Congreso Latinoamericano de Geologia, Memorias, Medellin, Colombia, 2011. p. 22. [ bib ]
[5593] Carlos A Vargas and Paul Mann. Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with northwestern south america. Bull. Seismol. Soc. Am., 103:2025--2046, 2013. [ bib ]
[5594] O. V. Vasilyev, D. A. Yuen, and Y. Y. Podladchikov. Applicability of wavelet algorithm for geophysical viscoelastic flow. Geophys. Res. Lett., 24:3097--3100, 1997. [ bib ]
[5595] M. Vasquez, U. Altenberger, and R.L. Romer. Neogene magmatism and its possible causal relationship with hydrocarbon generation in SW Colombia. Int. J. Earth Sci., 98:1053--1062, 2009. [ bib ]
[5596] M. S. Vassiliou and H. Kanamori. The energy release in earthquakes. Bull. Seismol. Soc. Am., 72:371--387, 1982. [ bib ]
[5597] M. S. Vassiliou and B. H. Hager. Subduction zone earthquakes and stress in slabs. Pure Appl. Geophys., 128:547--624, 1988. [ bib ]
[5598] N. Vatin-Perignon, P. Goemans, R. Oliver, and E. Parra-Palacio. Evaluation of magmatic processes for the products of the Nevado del Ruiz Volcano, Colombia from geochemical and petrological data. J. Volcanol. Geotherm. Res., 41:153--176, 1990. [ bib ]
[5599] A. Vauchez, A. Tommasi, and D. Mainprice. Faults (shear zones) in the Earth's mantle. Tectonophys., 558:1--27, 2012. [ bib ]
[5600] P. R. Vaughan, K. M. Thorup, and T. K. Rockwell. Paleoseismology of the Elsinore Fault at Agua Tibia Mountain, southern California. Bull. Seismol. Soc. Am., 89:1447--1457, 1999. [ bib ]
[5601] Václav Vavryčuk. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int., 199:69--77, 2014. [ bib ]
[5602] D. M. Veedu and S. Barbot. The Parkfield tremors reveal slow and fast ruptures on the same asperity. Nature, 532:361--365, 2016. [ bib ]
[5603] F. Velandia, A. Nuñez, and G. Marquinez. Memoria explicativa del mapa geológico del Departamento del Huila Esc: 1:300.000. INGEOMINAS, Bogota, 2001. 152 pp. [ bib ]
[5604] Isabella Velicogna and John Wahr. Greenland mass balance from GRACE. Geophys. Res. Lett., 32(18), 2005. [ bib ]
[5605] F. A. Vening Meinesz. Gravity Expeditions At Sea. Vol. I. The Expeditions, The Computations And The Results. Publication Of The Netherlands Geodetic Commission. N.V. Technische Boekhandel en Drukkerij J. Waltman Jr, Delft, 1932. [ bib ]
[5606] E. Venzke, editor. Global Volcanism Program, 2013. Volcanoes of the World, v. 4.9.0. Smithsonian Institution, 2013. Downloaded 08 Aug 2020. https://doi.org/10.5479/si.GVP.VOTW4-2013. [ bib ]
[5607] D. Verdonck and K. P. Furlong. Stress accumulation and release at complex transform plate boundaries. Geophys. Res. Lett., 19:1967--1970, 1992. [ bib ]
[5608] P. Vernant, F. Hivert, J. Chéry, P. Steer, R. Cattin, and A. Rigo. Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges. Geology, 41:467--470, 2013. [ bib ]
[5609] U. Vetter and J.-B. Minster. pn velocity anisotropy in southern California. Bull. Seismol. Soc. Am., 71:1511--1530, 1981. [ bib ]
[5610] J. E. Vidale. Waveform effects of a high-velocity, subducted slab. Geophys. Res. Lett., 14:542--545, 1987. [ bib ]
[5611] J. E. Vidale, W. L. Ellsworth, A. Cole, and C. Marone. Variations in rupture process with recurrence interval in a repeated small earthquake. Nature, 368:624--627, 1994. [ bib ]
[5612] J. E. Vidale, D. C. Agnew, M. J. S. Johnston, and D. H. Oppenheimer. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate. J. Geophys. Res.: Sol. Earth, 103:24567--24572, 1998. [ bib ]
[5613] J. E. Vidale and M. A. H. Hedlin. Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature, 391:682--684, 1998. [ bib ]
[5614] Robert C Viesca and Dmitry I Garagash. Ubiquitous weakening of faults due to thermal pressurization. Nature Geosc., 8:875--879, 2015. [ bib ]
[5615] Robert C Viesca. Self-similar slip instability on interfaces with rate-and state-dependent friction. Proc. Royal Soc. A, 472:20160254, 2016. [ bib ]
[5616] Robert C Viesca and Pierre Dublanchet. The slow slip of viscous faults. J. Geophys. Res.: Sol. Earth, 124(5):4959--4983, 2019. [ bib ]
[5617] Robert C Viesca. Frictional state evolution laws and the non-linear nucleation of dynamic shear rupture. J Mech. Phys. Sol., 173:105221, 2023. [ bib ]
[5618] Umberto Villa, Noemi Petra, and Omar Ghattas. hippylib: An extensible software framework for large-scale inverse problems. J. Open Source Software, 3(30):940, 2018. [ bib ]
[5619] Umberto Villa, Noemi Petra, and Omar Ghattas. HIPPYlib: an extensible software framework for large-scale inverse problems governed by PDEs: part I: deterministic inversion and linearized Bayesian inference. ACM Trans Math. Soft. (TOMS), 47:1--34, 2021. [ bib ]
[5620] D. Villagómez, R. Spikings, A. Mora, G. Guzmán, G. Ojeda, E. Cortés, and R. van der Lelij. Vertical tectonics at a continental crust‐oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(TC4004), 2011. [ bib | DOI ]
[5621] D. Villagómez, R. Spikings, T. Magna, A. Kammer, W. Winkler, and A. Beltran. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125:875--896, 2011. [ bib ]
[5622] F. J. Vine and D. H. Matthews. Magnetic anomalies over ocean ridges. Nature, 199:947--949, 1963. [ bib ]
[5623] G. E. Vink, W. J. Morgan, and W.-L. Zhao. Preferential rifting of continents: A source of displaced terranes. J. Geophys. Res.: Sol. Earth, 89:10072--10076, 1984. [ bib ]
[5624] L. Vinnik, I. Aleshin, S. Kiselev, G. Kosarev, and L. Makeyev. Depth localized azimuthal anisotropy from SKS and P receiver functions: the Tien Shan. Geophys. J. Int., 169:1289--1299, 2007. [ bib ]
[5625] LP Vinnik. Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Inter., 15(1):39--45, 1977. [ bib ]
[5626] L. P. Vinnik, R. A. Avetisjan, and N. G. Mikhailova. Heterogeneities in the mantle transition zone from observations of P-to-SV converted waves. Phys. Earth Planet. Inter., 33:149--163, 1983. [ bib ]
[5627] L. Vinnik, G. L. Kosarev, and L. I. Makeyeva. Anisotropy of the lithosphere from the observations of SKS and SKKS phases. Proc. Acad. Sci. USSR, 278:1335--1339, 1984. [ bib ]
[5628] L. P. Vinnik, V. Farra, and B. A. Romanowicz. Azimuthal anisotropy in the Earth from observations of SKS at Geoscope and Nars broadband stations. Bull. Seismol. Soc. Am., 79:1542--1558, 1989. [ bib ]
[5629] L. P. Vinnik, R. Kind, G. L. Kosarev, and L. Makeyeva. Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int., 99:549--559, 1989. [ bib ]
[5630] L. P. Vinnik, L. I. Makeyeva, A. Milev, and Y. Usenko. Global patterns of azimuthal anisotropy and deformation in the continental mantle. Geophys. J. Int., 111:433--447, 1992. [ bib ]
[5631] L. P. Vinnik, R. W. E. Green, and L. O. Nicolaysen. Recent deformations of the deep continental root beneath southern Africa. Nature, 375:50--52, 1995. [ bib ]
[5632] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51:889--901, 1986. [ bib ]
[5633] S. Zhong, M. Barmin, J. Yambert, and L. Moresi. Virtual Earth: An interactive tool to learn how the Earth's interior works. Online at virtual-earth.colorado.edu/, accessed 06/2006, 2003. [ bib ]
[5634] K. Visser, J. Trampert, S. Lebedev, and B. L. N. Kennett. Probability of radial anisotropy in the deep mantle. Earth Planet. Sci. Lett., 270:241--250, 2008. [ bib ]
[5635] K. Visser, J. Trampert, and B. L. N. Kennett. Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. Geophys. J. Int., 172:1016--1032, 2008. [ bib ]
[5636] W. Voigt. Lehrbuch der Kristallphysik. Teuber Verlag, 1928. [ bib ]
[5637] C. Voisin, F. Renard, and J.-R. Grasso. Long term friction: From stick-slip to stable sliding. Geophys. Res. Lett., 34, 2007. [ bib | DOI ]
[5638] Friedhelm von Blanckenburg and J Huw Davies. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14:120--131, 1995. [ bib ]
[5639] Roland von Huene, César R Ranero, and Paola Vannucchi. Generic model of subduction erosion. Geology, 32:913--916, 2004. [ bib ]
[5640] Roland von Huene and Serge Lallemand. Tectonic erosion along the Japan and Peru convergent margins. GSA Bull., 102:704--720, 1990. [ bib ]
[5641] Roland von Huene and David W Scholl. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys., 29:279--316, 1991. [ bib ]
[5642] R von Huene and D Klaeschen. Opposing gradients of permanent strain in the aseismic zone and elastic strain across the seismogenic zone of the Kodiak shelf and slope, Alaska. Tectonics, 18:248--262, 1999. [ bib ]
[5643] R. van der Voo. Paleomagnetism of the Atlantic Thethys and Iapetus Oceans. Cambridge University Press, Cambridge, 1993. [ bib ]
[5644] N. Voss, T. H. Dixon, R. Malservisi, M. Protti, and S. Schwartz. Do slow slip events trigger large and great megathrust earthquakes? Sci. Adv., 4(eaat8472), 2018. [ bib ]
[5645] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics. Prentice Hall, 2 edition, 1997. [ bib ]
[5646] A.V. Vvedenskaya. Determination of displacement fields for earthquakes by means of the dislocation theory. Izv. Akad. Nauk. SSSR. Ser. Geophys., 3:277--284, 1959. [ bib ]
[5647] Ikuko Wada, Kelin Wang, Jiangheng He, and Roy D Hyndman. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J. Geophys. Res.: Sol. Earth, 113(B4), 2008. [ bib ]
[5648] I. Wada and K. Wang. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem., Geophys., Geosys., 10(Q10009), 2009. [ bib | DOI ]
[5649] I. Wada, C. A. Rychert, and K. Wang. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophys. Res. Lett., 38(L13308), 2011. [ bib | DOI ]
[5650] I. Wada, J. He, A. Hasegawa, and J. Nakajima. Mantle wedge flow pattern and thermal structure in Northeast Japan: Effects of oblique subduction and 3-D slab geometry. Earth Planet. Sci. Lett., 426:76--88, 2015. [ bib ]
[5651] Ikuko Wada and Jiangheng He. Thermal structure of the Kanto region, Japan. Geophys. Res. Lett., 44:7194--7202, 2017. [ bib ]
[5652] Ikuko Wada, Leif Karlstrom, Diane Arcay, Luca Caricchi, Patrick Fulton, Taras Gerya, Kayla Iacovino, Tobias Keller, Rachel Lauer, Gabriel Lotto, Laurent Montesi, Tianhaozhe Sun, Hans Vrijmoed, and Jessica Warren. Modeling Collaboratory for Subduction RCN Fluid Migration Workshop Report. Technical report, Modeling Collaboratory for Subduction, Austin TX, 2019. Available online at https://bit.ly/3p5ia6R, accessed 10/2021. [ bib ]
[5653] Ikuko Wada and L. Karlstrom. Modeling fluid migration in subduction zones. Eos, 101, 2020. [ bib | DOI ]
[5654] Kiyoo Wadati. Shallow and deep earthquakes. Geophys. Mag., 1:162--202, 1928. [ bib ]
[5655] K Wadati. Shallow and deep earthquakes (2nd paper). Geophys. Mag., 2:1--36, 1929. [ bib ]
[5656] K Wadati. Shallow and deep earthquakes (3rd paper). Geophys. Mag., 4:231--283, 1931. [ bib ]
[5657] K Wadati. On the activity of deep-focus earthquakes in the Japan islands and neighbourhoods. Geophys. Mag., 8:305--325, 1935. [ bib ]
[5658] L. S. Wagner, S. Beck, and G. Zandt. Upper mantle structure in the south central Chilean subduction zone (30o to 36oS). J. Geophys. Res.: Sol. Earth, 110(B01308), 2005. [ bib | DOI ]
[5659] L. S. Wagner, S. Beck, G. Zandt, and M. N. Ducea. Depleted lithosphere, cold, trapped asthenosphere, and frozen melt puddles above the flat slab in central Chile and Argentina. Earth Planet. Sci. Lett., 245:289--301, 2006. [ bib ]
[5660] L. Wagner, J. S. Jaramillo, L. F. Ramírez-Hoyos, G. Monsalve, A. Cardona, and T. W. Becker. Transient slab flattening beneath Colombia. Geophys. Res. Lett., 44:6616--6623, 2017. [ bib ]
[5661] John Wahr, Han Dazhong, Andrew Trupin, and Varna Lindqvist. Secular changes in rotation and gravity: evidence of post-glacial rebound or of changes in polar ice? Adv. Space Res., 13:257--269, 1993. [ bib ]
[5662] R. I. Walcott. Past sea levels, eustasy and deformation of the earth. Quatern. Res., 2:1--14, 1972. [ bib ]
[5663] Richard I Walcott. Structure of the earth from glacio-isostatic rebound. Ann. Rev. Earth Planet. Sci., 1:15--37, 1973. [ bib ]
[5664] D. J. Wald and T. H. Heaton. Spatial and temporal distribution of slip for the 1992 Landers, California earthquake. Bull. Seismol. Soc. Am., 84, 1994. 668-691. [ bib ]
[5665] David J Wald and Thomas H Heaton. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Am., 84:668--691, 1994. [ bib ]
[5666] F. Waldhauser and W. L. Ellsworth. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am., 90(6):1353--1368, 2000. [ bib ]
[5667] F. Waldhauser. HypoDD-A program to compute double-difference hypocenter locations. US Geological Survey, 2001. Open File Report, 01-113. [ bib ]
[5668] Felix Waldhauser and William L Ellsworth. Fault structure and mechanics of the Hayward fault, California, from double-difference earthquake locations. J. Geophys. Res.: Sol. Earth, 107(B3), 2002. [ bib | DOI ]
[5669] K. T. Walker, G. H. R. Bokelmann, and S. L. Klemperer. Shear-wave splitting beneath the Snake River Plain suggests a mantle upwelling beneath eastern Nevada, USA. Earth Planet. Sci. Lett., 222:529--542, 2004. [ bib ]
[5670] Kristoffer T Walker, Andrew A Nyblade, Simon L Klemperer, Götz HR Bokelmann, and Thomas J Owens. On the relationship between extension and anisotropy: Constraints from shear wave splitting across the East African Plateau. J. Geophys. Res.: Sol. Earth, 109(B08302), 2004. [ bib | DOI ]
[5671] K. T. Walker, G. H. R. Bokelmann, S. L. Klemperer, and A. Nyblade. Shear-wave splitting around hotspots: Evidence for upwelling-related mantle flow? In G. Foulger, J. H. Natland, D. C. Presnall, and D. L. Anderson, editors, Plates, Plumes, and Paradigms, volume 388 of Geolog. Soc. Amer. Spec. Pap., pages 171--192. Geological Society of America, 2005. [ bib ]
[5672] A. M. Walker, A. M. Forte, J. Wookey, A. Nowacki, and J.-M. Kendall. Elastic anisotropy of D” predicted from global models of mantle flow. Geochem., Geophys., Geosys., 12(Q10006), 2011. [ bib | DOI ]
[5673] J.D. Walker, J.W. Geissman, S.A. Bowring, and L.E. Babcock. Geologic Time Scale v. 5.0. 10.1130/2018.CTS005R3C, 2018. The Geological Society of America. [ bib ]
[5674] J. G. C. Walker, P. Hayes, and J. Kasting. A negative feedback mechanism for the longterm stabilization of Earth's surface temperature. J. Geophys. Res.: Sol. Earth, 86:9776--9782, 1981. [ bib ]
[5675] James CG Walker. Climatic factors on the archean earth. Palaeogeo., Palaeoclim., Palaeoecol., 40:1--11, 1982. [ bib ]
[5676] L. M. Wallace, M. Reyners, U. Cochran, S. Bannister, P. M. Barnes, K. Berryman, G. Downes, D. Eberhart-Phillips, Å. Fagereng, S. Ellis, A. Nicol, R. McCaffrey, R. J. Beavan, S. Henrys, R. Sutherland, D. H. N. Barker, N. Litchfield, J. Townend, R. Robinson, R. Bell, K. Wilson, and W. Power. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem., Geophys., Geosys., 10(Q10006), 2009. [ bib | DOI ]
[5677] Laura M Wallace, John Beavan, Stephen Bannister, and Charles Williams. Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin, New Zealand: Implications for processes that control slow slip event occurrence, duration, and migration. J. Geophys. Res.: Sol. Earth, 117(B11402), 2012. [ bib | DOI ]
[5678] Laura M Wallace, Spahr C Webb, Yoshihiro Ito, Kimihiro Mochizuki, Ryota Hino, Stuart Henrys, Susan Y Schwartz, and Anne F Sheehan. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science, 352:701--704, 2016. [ bib ]
[5679] Laura M Wallace, Yoshihiro Kaneko, Sigrún Hreinsdóttir, Ian Hamling, Zhigang Peng, Noel Bartlow, Elisabetta D'Anastasio, and Bill Fry. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geosc., 10:765--770, 2017. [ bib ]
[5680] L. M. Wallace, S. Hreinsdóttir, Sa. Ellis, I. Hamling, E. D'Anastasio, and P. Denys. Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophys. Res. Lett., 45:4710--4718, 2018. [ bib ]
[5681] L.M. Wallace, D.M. Saffer, P.M. Barnes, I.A. Pecher, K.E. Petronotis, L.J. LeVay, and the Expedition 372/375 Scientists. Hikurangi subduction margin coring, logging, and observatories. In Proc. Int. Ocean Discovery Prog., volume 372B/375, College Station, TX, 2019. [ bib | DOI ]
[5682] Laura M Wallace. Slow slip events in New Zealand. Ann. Rev. Earth Planet. Sci., 48, 2020. [ bib | DOI ]
[5683] R. E. Wallace. Grouping and migration of surface faulting and variation in slip rates on faults in the Great Basin province. Bull. Seismol. Soc. Am., 77:868--877, 1987. [ bib ]
[5684] C. Walls, T. K. Rockwell, J. Pfanner, M. Bornyaxz, and S. Lindvall. Uplift gradient along the Sierra Madre-Cucamonga fault zone, Los Angeles, California (abstract). In The Geological Society of America, Cordilleran Section. Abstracts with Programs, volume 29, page 72, 1997. [ bib ]
[5685] A. W. Walter and W. D. Mooney. Crustal structure of the Diablo and Gabilan ranges, central California: A reinterpretation of existing data. Bull. Seismol. Soc. Am., 72:1567--1590, 1982. [ bib ]
[5686] S Walton, O Hassan, and K Morgan. Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions. Appl. Math. Model., 37:8930--8945, 2013. [ bib ]
[5687] M A L Walton, L M Staisch, T Dura, J K Pearl, B Sherrod, J Gomberg, S Engelhart, A Tréhu, J Watt, J Perkins, R C Witter, N. Bartlow, C. Goldfinger, H. Kelsey, A E. Morey, V. J. Sahakian, H. Tobin, K. Wang, R. Wells, and E. Wirth. Toward an integrative geological and geophysical view of Cascadia subduction zone earthquakes. Ann. Rev. Earth Planet. Sci., 49:367--398, 2021. [ bib ]
[5688] U. Walzer and R. Hendel. Mantle convection and evolution with growing continents. J. Geophys. Res.: Sol. Earth, 113, 2008. [ bib | DOI ]
[5689] U. Walzer and R. Hendel. Time-dependent thermal convection, mantle differentiation and continental-crust growth. Geophys. J. Int., 130:303--325, 1997. [ bib ]
[5690] U. Walzer and R. Hendel. Tectonic episodicity and convective feedback mechanisms. Phys. Earth Planet. Inter., 100:167--188, 1997. [ bib ]
[5691] U. Walzer and R. Hendel. A new convection-fractionation model for the evolution of the principal geochemical reservoirs of the Earth's mantle. Phys. Earth Planet. Inter., 112:211--256, 1999. [ bib ]
[5692] K. Wang. Stress–strain `paradox', plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones. Tectonophys., 319:321--338, 2000. [ bib ]
[5693] S. Wang and R. Wang. Current plate velocities relative to hotspots: implications for hotspot motion, mantle viscosity and global reference frame. Earth Planet. Sci. Lett., 189:133--140, 2001. [ bib ]
[5694] K. Wang, R. Wells, S. Mazzotti, R. D. Hyndman, and T. Sagiya. A revised dislocation model of interseismic deformation of the Cascadia subduction zone. J. Geophys. Res.: Sol. Earth, 108(2026), 2003. [ bib | DOI ]
[5695] Y. Wang and L. Wen. Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle. J. Geophys. Res.: Sol. Earth, 109(B10305), 2004. [ bib | DOI ]
[5696] Z. Wang, D. Zhao, O. P. Mishra, and A. Yamada. Structural heterogeneity and its implications for the low frequency tremors in Southwest Japan. Earth Planet. Sci. Lett., 251:66--78, 2005. [ bib ]
[5697] Y. Wang and L. Wen. Complex seismic anisotropy at the border of a very low velocity province at the base of the Earth’s mantle. J. Geophys. Res.: Sol. Earth, 112(B09305), 2007. [ bib | DOI ]
[5698] K. Wang. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In T. Dixon and J. C. Moore, editors, The seismogenic zone of subduction thrust faults, pages 540--575. Columbia University Press, 2007. [ bib ]
[5699] J. Wang and D. Zhao. P-wave anisotropic tomography beneath Northeast Japan. Phys. Earth Planet. Inter., 170:115--133, 2008. [ bib ]
[5700] X. Wang and F. Niu. Imaging the mantle transition zone beneath eastern and central China with CEArray receiver functions. Earthq. Sci., 24:65--75, 2011. [ bib ]
[5701] Kelin Wang and Susan L Bilek. Do subducting seamounts generate or stop large earthquakes? Geology, 39:819--822, 2011. [ bib ]
[5702] K. Wang, Y. Hu, and J. He. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484:327--332, 2012. [ bib ]
[5703] Jian Wang and Dapeng Zhao. P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan. Geochem., Geophys., Geosys., 13, 2012. [ bib | DOI ]
[5704] X. Wang, W. E. Holt, and A. Ghosh. The lithospheric stress field from joint modeling of lithosphere and mantle circulation using constraints from the latest global tomography models (abstract). In Eos Trans. AGU, 2013. AGU Fall Meeting - abstract T51E-2516. [ bib ]
[5705] N. Wang, J.-P. Montagner, A. Fichtner, and Y. Capdeville. Intrinsic versus extrinsic seismic anisotropy: The radial anisotropy in reference Earth models. Geophys. Res. Lett., 40:4284--4288, 2013. [ bib ]
[5706] K. Wang and S. L. Bilek. Fault creep caused by subduction of rough seafloor relief. Tectonophys., 610:1--24, 2014. [ bib ]
[5707] Hongliang Wang, Jeroen van Hunen, D Graham Pearson, and Mark B Allen. Craton stability and longevity: The roles of composition-dependent rheology and buoyancy. Earth Planet. Sci. Lett., 391:224--233, 2014. [ bib ]
[5708] K. Wang and A. M. Trèhu. Some outstanding issues in the study of great megathrust earthquakes - The Cascadia example. J. Geodynamics, 98:1--18, 2016. [ bib ]
[5709] K. Wang, T. Sun, L. Brown, R. Hino, F. Tomita, M. Kido, T. Iinuma, S. Kodaira, and T. Fujiwara. Learning from crustal deformation associated with the M9 2011 Tohoku-oki earthquake. Geosphere, 14:552--571, 2018. [ bib ]
[5710] Hongliang Wang, Jeroen van Hunen, and D Graham Pearson. Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model. Tectonophys., 746:562--571, 2018. [ bib ]
[5711] Q.-Y. Wang, M. Campillo, F. Brenguier, A. Lecointre, T. Takeda, and A. Hashima. Evidence of changes of seismic properties in the entire crust beneath Japan after the Mw 9.0, 2011 Tohoku-oki earthquake. J. Geophys. Res.: Sol. Earth, 124:8924--8941, 2019. [ bib ]
[5712] K. Wang, L. Brown, Y. Hu, K. Yoshida, J. He, and T. Sun. Stable forearc stressed by a weak megathrust: Mechanical and geodynamic implications of stress changes caused by the M=9 Tohoku-oki earthquake. J. Geophys. Res.: Sol. Earth, 124:6179--6194, 2019. [ bib ]
[5713] W. Wang and T. W. Becker. Upper mantle seismic anisotropy as a constraint for mantle flow and continental dynamics of the North American Plate. Earth Planet. Sci. Lett., 514:143--155, 2019. [ bib ]
[5714] Chengzu Wang, Richard G Gordon, Tuo Zhang, and Lin Zheng. Observational test of the global moving hot spot reference frame. Geophys. Res. Lett., 46:8031--8038, 2019. [ bib ]
[5715] Xinxin Wang, Boris JP Kaus, Liang Zhao, Jianfeng Yang, and Yang Li. Mountain building in Taiwan: Insights from 3-D geodynamic models. J. Geophys. Res.: Sol. Earth, 124:5924--5950, 2019. [ bib ]
[5716] Kun Wang, Christopher W Johnson, Kane C Bennett, and Paul A Johnson. Predicting future laboratory fault friction through deep learning transformer models. Geophys. Res. Lett., 49:e2022GL098233, 2022. [ bib ]
[5717] Zhikai Wang and Satish C Singh. Seismic evidence for uniform crustal accretion along slow-spreading ridges in the equatorial Atlantic Ocean. Nature Comm., 13:7809, 2022. [ bib ]
[5718] Meng Wang, Songlin Shi, and Jay Fineberg. Tensile cracks can shatter classical speed limits. Science, 381:415--419, 2023. [ bib ]
[5719] Y. Wang, D. J. Weidner, R. C. Liebermann, and Y. Zhao. P--V--T equations of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys. Earth Planet. Inter., 83:13--40, 1994. [ bib ]
[5720] Z. Wang and F. A. Dahlen. Spherical-spline parameterization of three-dimensional Earth models. Geophys. Res. Lett., 22:3099--3102, 1995. [ bib ]
[5721] Y. Wang and D. J. Weidner. (μ/t)p of the lower mantle. Pure Appl. Geophys., 146:533--549, 1996. [ bib ]
[5722] C. Wang and Y. Cal. Sensitivity of earthquakes cycles onthe San Andreas fault to small changes in regional compression. Nature, 388:159--161, 1997. [ bib ]
[5723] Kelin Wang and Jiangheng He. Mechanics of low-stress forearcs: Nankai and Cascadia. J. Geophys. Res.: Sol. Earth, 104:15191--15205, 1999. [ bib ]
[5724] Kai Wang, Chengxin Jiang, Yingjie Yang, Vera Schulte-Pelkum, and Qinya Liu. Crustal deformation in southern California constrained by radial anisotropy from ambient noise adjoint tomography. Geophys. Res. Lett., 47(12), 2020. [ bib | DOI ]
[5725] P. E. Wannamaker, R. L. Evans, P. A. Bedrosian, M. J. Unsworth, V. Maris, and R. S. McGary. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem., Geophys., Geosys., 15:4230--4253, 2014. [ bib ]
[5726] S. N. Ward. San Francisco Bay Area earthquake simulations, a step toward a standard physical earthquake model. Bull. Seismol. Soc. Am., 90:370--386, 2000. [ bib ]
[5727] Steven N Ward. ALLCAL earthquake simulator. Seismol. Res. Lett., 83:964--972, 2012. [ bib ]
[5728] Kevin M Ward, George Zandt, Susan L Beck, Lara S Wagner, and Hernando Tavera. Lithospheric structure beneath the northern central andean plateau from the joint inversion of ambient noise and earthquake-generated surface waves. J. Geophys. Res.: Sol. Earth, 121:8217--8238, 2016. [ bib ]
[5729] P. L. Ward. On plate tectonics and the geological evolution of southwestern North America. J. Geophys. Res.: Sol. Earth, 96:12479--12496, 1991. [ bib ]
[5730] S. N. Ward and S. D. B. Goes. How regularly do earthquakes recur? A synthetic seismicity model for the San Andreas fault. Geophys. Res. Lett., 20:2131--2134, October 1993. [ bib ]
[5731] S. N. Ward. Constraints on the seismotectonics of the central Mediterranean from Very Long Baseline Interferometry. Geophys. J. Int., 117:441--452, 1994. [ bib ]
[5732] S. N. Ward. A synthetic seismicity model for Southern California: Cycles, probabilities, and hazard. J. Geophys. Res.: Sol. Earth, 101:22393--22418, October 1996. [ bib ]
[5733] S. N. Ward. On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: the United States. J. Geophys. Res.: Sol. Earth, 134:172--186, 1998. [ bib ]
[5734] K. N. Warners-Ruckstuhl, R. Govers, and R. Wortel. Lithosphere-mantle coupling and the dynamics of the Eurasian plate. Geophys. J. Int., 189:1253--1276, 2012. [ bib ]
[5735] E Warren-Smith, B Fry, L Wallace, E Chon, S Henrys, A Sheehan, K Mochizuki, S Schwartz, S Webb, and S Lebedev. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geosc., 12:475--481, 2019. [ bib ]
[5736] L. Warren and P. Shearer. Mapping lateral variations in upper mantle attenuation by stacking P and PP spectra. J. Geophys. Res.: Sol. Earth, 107(10.1029/2001JB001195), 2002. [ bib ]
[5737] L. M. Warren, A. N. Hughes, and P. G. Silver. Earthquake mechanics and deformation in the Tonga-Kermadec subduction zones from fault-plane orientations of intermediate- and deep-focus earthquakes. J. Geophys. Res.: Sol. Earth, 112(B05314), 2007. [ bib | DOI ]
[5738] L. M. Warren, M. A. Langstaff, and P. G. Silver. Fault-plane orientations of intermediate-depth earthquakes in the Middle America Trench. J. Geophys. Res.: Sol. Earth, 113(B01304), 2008. [ bib | DOI ]
[5739] E Warren-Smith, B Fry, L Wallace, E Chon, S Henrys, A Sheehan, K Mochizuki, S Schwartz, S Webb, and S Lebedev. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geosc., 12:475--481, 2019. [ bib ]
[5740] G. J. Wasserburg and D. J. DePaolo. Models of earth structure inferred from neodymium and strontium isotopic abundances. Proc. Natl. Acad. Sci. USA, 76:3594--3598, 1979. [ bib ]
[5741] H. D. Waterhouse, K. Milner, and T. W. Becker. SEATREE: An Interactive Visual Environment for Earthquake Science. In 2008 SCEC Annual Meeting, pages 1--007, 2008. [ bib ]
[5742] G. S. Watson. Statistics on spheres. John Wiley & Sons, New York, 1983. [ bib ]
[5743] J Peter Watt, Geoffrey F Davies, and Richard J O'Connell. The elastic properties of composite materials. Rev. Geophys., 14:541--563, 1976. [ bib ]
[5744] J. Watterson. Fault dimensions, displacements and growth. Pure Appl. Geophys., 124:365--373, 1986. [ bib ]
[5745] A. B. Watts. Isostasy and flexure of the lithosphere. Cambridge University Press, 2001. [ bib ]
[5746] A. B. Watts, S. J. Zhong, and J. Hunter. The behavior of the lithosphere on seismic to geologic timescales. Ann. Rev. Earth Planet. Sci., 41:443--468, 2013. [ bib ]
[5747] A. B. Watts and J. D. P. Moore. Flexural isostasy: Constraints from gravity and topography power spectra. J. Geophys. Res.: Sol. Earth, 122:8417--8430, 2017. [ bib ]
[5748] A. B. Watts. An analysis of isostasy in the World's Oceans 1. Hawaiian-Emperor Seamount Chain. J. Geophys. Res.: Sol. Earth, 83:5989--6004, 1978. [ bib ]
[5749] S. Wdowinski, Y. Sudman, and Y. Bock. Geodetic detection of active faults in S. California. Geophys. Res. Lett., 28:2321--2324, 2001. [ bib ]
[5750] S. Wdowinski, R. J. O'Connell, and P. C. England. A continuum model of continental deformation above subduction zones: Application to the Andes and the Aegean. J. Geophys. Res.: Sol. Earth, 94:10331--10346, 1989. [ bib ]
[5751] Sam Webber, Susan Ellis, and Åke Fagereng. “Virtual shear box” experiments of stress and slip cycling within a subduction interface mélange. Earth Planet. Sci. Lett., 488:27--35, 2018. [ bib ]
[5752] J. C. Weber, T. H. Dixon, C. DeMets, W. B. Ambeh, P. Jansma, G. Mattioli, J. Saleh, G. Sella, R. Bilham, and O. Pérez. GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela. Geology, 29:75--78, 2001. [ bib ]
[5753] A. G. Wech and K. C. Creager. A continuum of stress, strength and slip in the Cascadia subduction zone. Nature Geosc., 4:624--628, 2011. [ bib ]
[5754] Neta Wechsler, Thomas K Rockwell, and Yann Klinger. Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel. Tectonophys., 722:210--226, 2018. [ bib ]
[5755] Johannes Weertman and Julia Randall Weertman. Elementary dislocation theory. Macmillan, 1964. [ bib ]
[5756] J. Weertman. The creep strength of the Earth's mantle. Rev. Geophys. Space Phys., 8:145--168, 1970. [ bib ]
[5757] Johannes Weertman and Julia R Weertman. High temperature creep of rock and mantle viscosity. Ann. Rev. Earth Planet. Sci., 3:293--315, 1975. [ bib ]
[5758] A. Wegener. Die Entstehung der Kontinente. Geolog. Rundsch., 3:276--292, 1912. [ bib ]
[5759] A. Wegener. Die Entstehung der Kontinente und Ozeane. Vieweg, Braunschweig, 1915. [ bib ]
[5760] A. Wegener. Die Entstehung der Kontinente und Ozeane. Vieweg, Braunschweig, 3 edition, 1922. [ bib ]
[5761] A. Wegener. The Origin of Continents and Oceans. Methuen and Co., London, 1924. Translation of [5760]. [ bib ]
[5762] A. Wegener. Die Entstehung der Kontinente und Ozeane. Vieweg, Braunschweig, 4 edition, 1929. [ bib ]
[5763] M. Wei and D. T. Sandwell. Estimates of heat flow from Cenozoic seafloor using global depth and age data. Tectonophys., 417:325--335, 2006. [ bib ]
[5764] Meng Wei, David T. Sandwell, and Bridget Smith-Konter. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Adv Space Res., 46:236--249, 2010. [ bib ]
[5765] Meng Wei, Yoshihiro Kaneko, Pengcheng Shi, and Yajing Liu. Numerical modeling of dynamically triggered shallow slow slip events in New Zealand by the 2016 Mw 7.8 Kaikoura earthquake. Geophys. Res. Lett., 45:4764--4772, 2018. [ bib ]
[5766] R. Weijermars. Flow behavior and physical chemistry of bouncing putty and related polymers in view of tectonic laboratory applications. Tectonophys., 124:325--358, 1992. [ bib ]
[5767] R. Weijermars and H. Schmeling. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Phys. Earth Planet. Inter., 43:316--330, 1986. [ bib ]
[5768] Ruud Weijermars, VB Alekseev, Julia Cuevas, Jean Louis Vigneresse, and Stefan Schmid. Principles of Rock Mechanics. Alboran Science Publishing, Amsterdam, 1997. [ bib ]
[5769] Jonathan R Weiss, Richard J Walters, Yu Morishita, Tim J Wright, Milan Lazecky, Hua Wang, Ekbal Hussain, Andrew J Hooper, John R Elliott, Chris Rollins, et al. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data. Geophys. Res. Lett., 47:e2020GL087376, 2020. [ bib ]
[5770] M. Weiss and F.-J. Elmer. A simple model for wearless friction: the Frenkel-Kontorova-Tomlinson model. In B. N. J. Persson and E. Tosatti, editors, Physics of sliding friction, pages 163--178. Kluwer Academic, Dordrecht, The Netherlands, 1996. [ bib ]
[5771] M. Weiss and F.-J. Elmer. Dry friction in the Frenkel-Kontorova-Tomlinson model: dynamical properties. Zeitschr. f. Phys. B, 104:55--69, 1997. [ bib ]
[5772] T. Weiss, S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl. Seismic velocities and anisotropy of the lower continental crust: A review. Pure Appl. Geophys., 156:97--122, 1999. [ bib ]
[5773] T Weiss, S Siegesmund, W Rabbel, T Bohlen, and M Pohl. Seismic velocities and anisotropy of the lower continental crust: a review. In Seismic Exploration of the Deep Continental Crust, pages 97--122. Springer, 1999. [ bib ]
[5774] Jeffrey K Weissel and Dennis E Hayes. The australian-antarctic discordance: New results and implications. J. Geophys. Res.: Sol. Earth, 79:2579--2587, 1974. [ bib ]
[5775] R. J. Weldon and K. E. Sieh. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, Southern California. Geol. Soc. Am. Bull., 96:793--812, 1985. [ bib ]
[5776] M. B. Weller and A. Lenardic. Hysteresis in mantle convection: Plate tectonics systems. Geophys. Res. Lett., 39(L10202), 2012. [ bib | DOI ]
[5777] M. B. Weller, L. Fuchs, T. W. Becker, and K. M. Soderlund. Convection in thin shells of icy satellites: Effects of latitudinal surface temperature variations. J. Geophys. Res.: Planets, 124:2029--2053, 2019. [ bib ]
[5778] P. Wellman. Gravity trends and the growth of Australia: a tentative correlation. J. Geol. Soc. Austral., 23:11--14, 1976. [ bib ]
[5779] Ray E Wells, Richard J Blakely, Yuichi Sugiyama, David W Scholl, and Philip A Dinterman. Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion? J. Geophys. Res.: Sol. Earth, 108(B10):2507, 2003. [ bib | DOI ]
[5780] D. L. Wells and K. J. Coppersmith. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84:974--1002, 1994. [ bib ]
[5781] L. Wen. Intense seismic scattering near the Earth's core-mantle boundary beneath the Comoros hotspot. Geophys. Res. Lett., 27:3627--2630, 2000. [ bib ]
[5782] Lianxing Wen and Don L Anderson. The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett., 133:185--198, 1995. [ bib ]
[5783] L. Wen and D. L. Anderson. Present-day plate motion constraint on mantle rheology and convection. J. Geophys. Res.: Sol. Earth, 102:24639--24653, 1997. [ bib ]
[5784] L. Wen and D. L. Anderson. Slabs, hotspots, cratons and mantle convection revealed from residual seismic tomography in the upper mantle. Phys. Earth Planet. Inter., 99:131--143, 1997. [ bib ]
[5785] Lianxing Wen and Donald V Helmberger. Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors. Science, 279:1701--1703, 1998. [ bib ]
[5786] H.-R. Wenk, S. Speziale, A. K. McNamara, and E. J. Garnero. Modeling lower mantle anisotropy development in a subducting slab. Earth Planet. Sci. Lett., 245:302--314, 2006. [ bib ]
[5787] H.-R. Wenk, S. Cottaar, C. Tomé, A. McNamara, and B. A. Romanowicz. Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth Planet. Sci. Lett., 306:33--45, 2011. [ bib ]
[5788] H.-R. Wenk, K. Bennett, G. R. Canova, and A. Molinari. Modelling plastic deformation of peridotite with the self-consistent theory. J. Geophys. Res.: Sol. Earth, 96:8337--8349, 1991. [ bib ]
[5789] H.-R. Wenk and C. N. Tomé. Modeling dynamic recrystallization of olivine aggregates deformed in simple shear. J. Geophys. Res.: Sol. Earth, 104:25513--25527, 1999. [ bib ]
[5790] L. Wennerberg and R. V. Sharp. Bulk-friction modeling of afterslip and the modified Omori law. Tectonophys., 277:109--136, 1997. [ bib ]
[5791] B. Wernicke, J. L. Davis, N. A. Niemi, and P. Luffi. Active megadetachment beneath the western United States. J. Geophys. Res.: Sol. Earth, 113(B11409), 2008. [ bib | DOI ]
[5792] Brian Wernicke. Uniform-sense normal simple shear of the continental lithosphere. Canadian J. Earth sci., 22:108--125, 1985. [ bib ]
[5793] S. G. Wesnousky. The San Andreas and Walker Lane fault systems, western North America: transpression, transtension, cumulative slip and the structural evolution of a major transform plate boundary. J. Struct. Geol., 27:1505--1512, 2005. [ bib ]
[5794] S. G. Wesnousky. Predicting the endpoints of earthquake ruptures. Nature, 444:358--360, 2006. [ bib ]
[5795] S. Wesnousky. Seismological and structural evolution of strike-slip faults. Nature, 335:340--342, 1988. [ bib ]
[5796] S.G. Wesnousky. The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bull. Seismol. Soc. Am., 84:1940--1959, 1994. [ bib ]
[5797] Paul Wessel and Loren W Kroenke. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. J. Geophys. Res.: Sol. Earth, 113(B06101), 2008. [ bib | DOI ]
[5798] P. Wessel, W. H. F. Smith, R. Scharroo, J. F. Luis, and F. Wobbe. Generic Mapping Tools: Improved version released. Eos Trans. AGU, 94:409--410, 2013. [ bib ]
[5799] Paul Wessel, JF Luis, L Uieda, Remko Scharroo, Florian Wobbe, Walter HF Smith, and Dongdong Tian. The generic mapping tools version 6. Geochem., Geophys., Geosys., 20:5556--5564, 2019. [ bib ]
[5800] P. Wessel and W. H. F. Smith. New version of the Generic Mapping Tools released. Eos Trans. AGU, 76:329, 1995. [ bib ]
[5801] Paul Wessel and Loren Kroenke. A geometric technique for relocating hotspots and refining absolute plate motions. Nature, 387:365--369, 1997. [ bib ]
[5802] P. Wessel and W. H. F. Smith. New, improved version of the Generic Mapping Tools released. Eos Trans. AGU, 79:579, 1998. [ bib ]
[5803] F. C. Wessling. Radiation and convection heat transfer from an internally heated slab, cylinder or sphere. J. Heat Transf., 94:245--246, 1972. [ bib ]
[5804] J. D. West, M. J. Fouch, J. B. Roth, and L. T. Elkins-Tanton. Vertical mantle flow associated with a lithospheric drip beneath the Great Basin. Nature Geosc., 2:438--443, 2009. [ bib ]
[5805] H.M. Westergaard. Bearing Pressures and Cracks. J. Appl. Mech., 6:49, 1939. [ bib ]
[5806] M. Westerhaus, M. Wyss, R. Yilmaz, and J. Zschau. Correlating variations of b values and crustal deformations during the 1990s may have pinpointed the rupture initiation of the Mw=7.4 Izmit earthquake of 1999 August 17. Geophys. J. Int., 184:139--152, 2002. [ bib ]
[5807] NIMA. Department of Defense, World Geodetic System 1984, Its definition and relationships with local geodetic systems. Technical Report 8350.2, National Geospatial-Intelligence Agency, 1984. Available online at www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf, accesses 01/2024. [ bib ]
[5808] Kelin X Whipple and Gregory E Tucker. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res.: Sol. Earth, 104:17661--17674, 1999. [ bib ]
[5809] R. S. White, T. A. Minshull, M. J. Bickle, and C. J. Robinson. Melt generation at very slow-spreading oceanic ridges: Constraints from geochemical and geophysical data. J. Petrol., 42:1171--1196, 2001. [ bib ]
[5810] Rosalind V White and Andrew D Saunders. Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos, 79:299--316, 2005. [ bib ]
[5811] Malcolm C. A. White, Yehuda Ben-Zion, and Frank L. Vernon. A detailed earthquake catalog for the San Jacinto Fault-zone region in Southern California. J. Geophys. Res.: Sol. Earth, 124:6908--6930, 2019. [ bib ]
[5812] William M White and Albrecht W Hofmann. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296:821--825, 1982. [ bib ]
[5813] William M White. Sources of oceanic basalts: Radiogenic isotopic evidence. Geology, 13:115--118, 1985. [ bib ]
[5814] Robert White and Dan McKenzie. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res.: Sol. Earth, 94:7685--7729, 1989. [ bib ]
[5815] Nicky White and Bryan Lovell. Measuring the pulse of a plume with the sedimentary record. Nature, 387:888--891, 1997. [ bib ]
[5816] J. A. Whitehead and M. D. Behn. The continental drift convection cell. Geophys. Res. Lett., 42:4301--4308, 2015. [ bib ]
[5817] John A Whitehead Jr and Douglas S Luther. Dynamics of laboratory diapir and plume models. J. Geophys. Res.: Sol. Earth, 80:705--717, 1975. [ bib ]
[5818] P. L. Whitehouse, P. C. England, and G. A. Houseman. A physical model for the motion of the Sierra Block relative to North America. Earth Planet. Sci. Lett., 237:590--600, 2005. [ bib ]
[5819] Pippa L Whitehouse. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dyn., 6:401--429, 2018. [ bib ]
[5820] J. M. Whittaker, R. D. Müller, M. Sdrolias, and C. Heine. Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth Planet. Sci. Lett., 255:445--457, 2007. [ bib ]
[5821] A. Whittaker, M. H. P. Bott, and G. D. Waghorn. Stress and plate boundary forces associated with subduction plate margins. J. Geophys. Res.: Sol. Earth, 97:11933--11944, 1992. [ bib ]
[5822] Christopher AJ Wibberley and Toshihiko Shimamoto. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 436:689--692, 2005. [ bib ]
[5823] Christopher AJ Wibberley, Graham Yielding, and Giulio Di Toro. Recent advances in the understanding of fault zone internal structure: a review. Geol. Soc., London, Spec. Pub., 299:5--33, 2008. [ bib ]
[5824] Johannes Wicht and Sabrina Sanchez. Advances in geodynamo modelling. Geophys. & Astrophys. Fluid Dyn., 113:2--50, 2019. [ bib ]
[5825] C. W. Wicks Jr. and M. A. Richards. A detailed map of the 660km-kilometer discontinuity beneath the Izu-Bonin subduction zone. Science, 261:1424--1427, 1993. [ bib ]
[5826] S. Widiyantoro, A. Gorbatov, B. L. N. Kennett, and Y. Fukao. Improving global shear wave traveltime tomography using three-dimensional ray tracing and iterative inversion. Geophys. J. Int., 141:747--758, 2000. [ bib ]
[5827] S. Widiyantoro and R. D. van der Hilst. Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science, 271:1566--1569, 1996. [ bib ]
[5828] S. Widiyantoro and R. D. van der Hilst. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys. J. Int., 130:167--182, 1997. [ bib ]
[5829] Ernst Wiechert. Üeber die Massenverteilung im Inneren der Erde. Nachr. Ges. Wiss. Göttingen, 1897:221--243, 1897. [ bib ]
[5830] M. A. Wieczorek. Gravity and topography of the terrestrial planets, chapter 10, pages 103--112. Treatise on Geophysics. Elsevier, 2015. [ bib ]
[5831] Michael Wiederkehr, Masafumi Sudo, Romain Bousquet, Alfons Berger, and Stefan M Schmid. Alpine orogenic evolution from subduction to collisional thermal overprint: The 40Ar/39Ar age constraints from the Valaisan Ocean, central Alps. Tectonics, 28(TC6009), 2009. [ bib | DOI ]
[5832] Stefan Wiemer and John P Benoit. Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones. Geophys. Res. Lett., 23:1557--1560, 1996. [ bib ]
[5833] S. Wiemer and M. Wyss. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophys. Res.: Sol. Earth, 102:15115--15128, 1997. [ bib ]
[5834] S. Wiemer and K. Katsumata. Spatial variability of seismicity parameters in aftershock zones. J. Geophys. Res.: Sol. Earth, 104:13135--13151, 1999. [ bib ]
[5835] D. A. Wiens, K. A. Kelley, and T. Plank. Mantle temperature variations beneath back-arc spreading centers inferred from seismology, petrology, and bathymetry. Earth Planet. Sci. Lett., 248:30--42, 2006. [ bib ]
[5836] D. A. Wiens and S. Stein. Implications of oceanic intraplate seismicity for plate stresses, driving forces and rheology. Tectonophys., 116:143--162, 1985. [ bib ]
[5837] Douglas A Wiens and Hersh J Gilbert. Effect of slab temperature on deep-earthquake aftershock productivity and magnitude--frequency relations. Nature, 384:153--156, 1996. [ bib ]
[5838] Chris Wiggins and Marc Spiegelman. Magma migration and magmatic solitary waves in 3-D. Geophys. Res. Lett., 22:1289--1292, 1995. [ bib ]
[5839] Wikipedia. The Free Encyclopedia. Online at en.wikipedia.org/, accessed 06/2006, 2006. [ bib ]
[5840] W. S. Wilcock, D. A. Schmidt, J. E. Vidale, M. J. Harrington, P. Bodin, G. S. Cram, J. R. Delaney, F. I. Gonzalez, D. S. Kelley, R. J. LeVeque, et al. Designing an offshore geophysical network in the Pacific Northwest for earthquake and tsunami early warning and hazard research. In OCEANS 2016 MTS/IEEE Monterey, pages 1--8, 2016. Proceedings of the IEEE Conference held September 19-23, 2016. [ bib ]
[5841] M. Wilde and J. Stock. Compression directions in southern California (from Santa Barbara to Los Angeles Basin) obtained from borehole breakouts. J. Geophys. Res.: Sol. Earth, 102:4969--4983, 1997. [ bib ]
[5842] R. J. Willeman and D. L. Turcotte. Support of topographic and other loads on the moon and on the terrestrial planets. Proc. Lunar Planet Sci., 12B:837--851, 1981. [ bib ]
[5843] Jane K Willenbring and Friedhelm Von Blanckenburg. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465:211--214, 2010. [ bib ]
[5844] S. D. Willett and M. T. Brandon. On steady states in mountain belts. Geology, 30:175--178, 2002. [ bib ]
[5845] S. D. Willett and D. Pope. Rheology and Deformation of the Lithosphere at Continental Margins, chapter Finite Element Models of Mechanical Processes in Convergent Orogens. Columbia University Press, 2004. [ bib ]
[5846] Sean D Willett, Scott W McCoy, J Taylor Perron, Liran Goren, and Chia-Yu Chen. Dynamic reorganization of river basins. Science, 343:1117--1127, 2014. [ bib ]
[5847] Sean D Willett, Frédéric Herman, Matthew Fox, Nadja Stalder, Todd A Ehlers, Ruohong Jiao, and Rong Yang. Bias and error in modelling thermochronometric data: Resolving a potential increase in Plio-Pleistocene erosion rate. Earth Surf. Dyn., 9:1153--1221, 2021. [ bib ]
[5848] S. D. Willett, C. Beaumont, and P. Fullsack. A mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21:371--374, 1993. [ bib ]
[5849] S. D. Willett. Orogeny and orography: The effects of erosion on the structure of mountain belts. J. Geophys. Res.: Sol. Earth, 104:28957--28981, 1999. [ bib ]
[5850] George E Williams. Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Rev. Geophys., 38:37--59, 2000. [ bib ]
[5851] Quentin Williams and Russell J Hemley. Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci., 29:365--418, 2001. [ bib ]
[5852] S. Williams, N. Flament, R. D. Müller, and N. Butterworth. Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth Planet. Sci. Lett., 418:66--77, 2015. [ bib ]
[5853] S. Williams, N. Flament, and D. Müller. Alignment between seafloor spreading directions and absolute plate motions through time. Geophys. Res. Lett., 2016. [ bib | DOI ]
[5854] Charles A Williams and Laura M Wallace. The impact of realistic elastic properties on inversions of shallow subduction interface slow slip events using seafloor geodetic data. Geophys. Res. Lett., 45:7462--7470, 2018. [ bib ]
[5855] Curtis D Williams, Sujoy Mukhopadhyay, Maxwell L Rudolph, and B Romanowicz. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem., Geophys., Geosys., 20:4130--4145, 2019. [ bib ]
[5856] G. E. Williams. Tidal rhythmites: geochronometers for the ancient Earth-Moon system. Episodes, 12:162--170, 1989. [ bib ]
[5857] George E Williams. Late Precambrian tidal rhythmites in South Australia and the history of the Earth's rotation. J. Geol. Soc. London, 146:97--111, 1989. [ bib ]
[5858] C. A. Williams and R. M. Richardson. A rheologically layered three-dimensional model of the San Andreas fault in central and southern California. J. Geophys. Res.: Sol. Earth, 96:16597--16623, 1991. [ bib ]
[5859] Quentin Williams and Edward J Garnero. Seismic evidence for partial melt at the base of Earth's mantle. Science, 273:1528--1530, 1996. [ bib ]
[5860] Q Williams, J Revenaugh, and E Garnero. A correlation between ultra-low basal velocities in the mantle and hot spots. Science, 281:546--549, 1998. [ bib ]
[5861] C. K. Wilson, C. H. Jones, P. Molnar, A. F. Sheehan, and O. S. Boyd. Distributed deformation in the lower crust and upper mantle beneath a continental strike-slip fault zone: Marlborough fault system, South Island, New Zealand. Geology, page 837, 2004. [ bib ]
[5862] D. Wilson, R. Aster, J. Ni, S. Grand, M. West, W. Gao, W.S. Baldridge, and S. Semken. Imaging the seismic structure of the crust and upper mantle beneath the Great Plains, Rio Grande rift, and Colorado Plateau using receiver functions. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[5863] D. Wilson and R. Aster. Seismic imaging of the crust and uppermantle using regularized joint receiver functions,frequency.wave number filtering, and multimode Kirchhoff migration. J. Geophys. Res.: Sol. Earth, 110(B05305), 2005. [ bib | DOI ]
[5864] C. R. Wilson, M. Spiegelman, P. E. van Keken, and B. R. Hacker. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett., 401:261--274, 2014. [ bib ]
[5865] Cian R Wilson, Marc Spiegelman, and Peter E van Keken. Terra FERMA: The T ransparent F inite E lement R apid M odel A ssembler for multiphysics problems in E arth sciences. Geochem., Geophys., Geosys., 18:769--810, 2017. [ bib ]
[5866] J Tuzo Wilson. Continental and oceanic differentiation. Nature, 192:125--128, 1961. [ bib ]
[5867] J. T. Wilson. A possible origin of the Hawaiian Islands. Canad. J. Phys., 41:863--870, 1963. [ bib ]
[5868] J. T. Wilson. A new class of faults and their bearing on continental drift. Nature, 207:343--347, 1965. [ bib ]
[5869] J Tuzo Wilson. Transform faults, oceanic ridges, and magnetic anomalies southwest of Vancouver Island. Science, 150:482--485, 1965. [ bib ]
[5870] J. T. Wilson. Did the Atlantic close and then reopen? Nature, 211:676--681, 1966. [ bib ]
[5871] J Tuzo Wilson and Kevin Burke. Two types of mountain building. Nature, 239:448--449, 1972. [ bib ]
[5872] J. T. Wilson. Mantle plumes and plate motions. Tectonophys., 19:149--164, 1973. [ bib ]
[5873] R. O. Winder and S. M. Peacock. Viscous forces acting on subducting lithosphere. J. Geophys. Res.: Sol. Earth, 106:21937--21951, 2001. [ bib ]
[5874] B. F. Windley and M. B. Allen. Mongolian plateau: Evidence for a late Cenozoic mantle plume under central Asia. Geology, 21:295--298, 1993. [ bib ]
[5875] J. Winterbourne, A. Crosby, and N. White. Depth, age and dynamic topography of oceanic lithosphere beneath heavily sedimented Atlantic margins. Earth Planet. Sci. Lett., 287:137--151, 2009. [ bib ]
[5876] J. Winterbourne, N. White, and A. Crosby. Accurate measurements of residual topography from the oceanic realm. Tectonophys., 33:982--1015, 2014. [ bib | DOI ]
[5877] Erin A Wirth and Arthur D Frankel. Impact of down-dip rupture limit and high-stress drop subevents on coseismic land-level change during Cascadia megathrust earthquakes. Bull. Seismol. Soc. Am., 109:2187--2197, 2019. [ bib ]
[5878] T. Withers. Fugacity calculator. online at publish.uwo.ca/~awither5/fugacity/index.htm, accessed 01/2022, 2021. [ bib ]
[5879] J. van der Woerd, Y. Klinger, K. E. Sieh, P. Tapponnier, and F. Ryerson. First Long-Term slip-Rate Along the San Andreas Fault Based on 10Be-26Al Surface Exposure Dating: The Biskra Palms Site, 23 mm/yr for the last 30,000 years (abstract). Eos Trans. AGU, 82(47):S52D--0673, 2001. [ bib ]
[5880] J. van der Woerd, Y. Klinger, K. Sieh, P. Tapponnier, F. J. Ryerson, and A. S. Meriaux. Long-term slip rate of the southern San Andreas Fault from Be-10-Al-26 surface exposure dating of an offset alluvial fan. J. Geophys. Res.: Sol. Earth, 111(B04407), 2006. [ bib | DOI ]
[5881] S. Wolf, A.-A. Gabriel, and M. Bader. Optimization and local time stepping of an ADER-DG scheme for fully anisotropic wave propagation in complex geometries. In V. Krzhizhanovskaya, editor, Computational Science ICCS 2020, volume 12139. Springer, 2020. [ bib | DOI ]
[5882] S. G. Wolf, R. S. Huismans, J. Braun, and X. Xuan. Topography of mountain belts controlled by rheology and surface processes. Nature, 606:516--521, 2022. [ bib ]
[5883] Cecily J Wolfe, Sean C Solomon, Gabi Laske, John A Collins, Robert S Detrick, John A Orcutt, David Bercovici, and Erik H Hauri. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science, 326(5958), 2009. [ bib ]
[5884] C. J. Wolfe and S. C. Solomon. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific rise. Science, 280:1230--1232, 1998. [ bib ]
[5885] C. J. Wolfe and P. G. Silver. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. J. Geophys. Res.: Sol. Earth, 103:749--771, 1998. [ bib ]
[5886] M. Wolfson-Schwehr and M. S. Boettcher. Global characteristics of oceanic transform fault structure and seismicity. In J. C. Duarte, editor, Transform Plate Boundaries and Fracture Zones, pages 21--59. Elsevier, 2019. [ bib ]
[5887] S. Wollherr, A.-A. Gabriel, and C. Uphoff. Off-fault plasticity in three-dimensional dynamic rupture simulations using a modal discontinuous galerkin method on unstructured meshes: Implementation, verification, and application. Geophys. J. Int., 214:1556--1584, 2018. [ bib ]
[5888] Stephanie Wollherr, A.-A. Gabriel, and P Martin Mai. Landers 1992 reloaded: Integrative dynamic earthquake rupture modeling. J. Geophys. Res.: Sol. Earth, 124:6666--6702, 2019. [ bib ]
[5889] M Wolstencroft, John Huw Davies, and David Rhodri Davies. Nusselt--rayleigh number scaling for spherical shell Earth mantle simulation up to a Rayleigh number of 109. Phys. Earth Planet. Inter., 176:132--141, 2009. [ bib ]
[5890] V.Y. Womack, C.V. Wood, S.C. House, S.C. Quinn, S.B. Thomas, R. McGee, and A Byars-Winston. Culturally aware mentorship: Lasting impacts of a novel intervention on academic administrators and faculty. PLoS One, 15(8), 2020. [ bib | DOI ]
[5891] NH Woodcock and K Mort. Classification of fault breccias and related fault rocks. Geological Mag., 145:435--440, 2008. [ bib ]
[5892] J. H. Woodhouse and A. M. Dziewoński. Mapping the upper mantle: three dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res.: Sol. Earth, 89:5953--5986, 1984. [ bib ]
[5893] J. H. Woodhouse, D. Giardini, and X.-D. Li. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett., 13:1549--1552, 1986. [ bib ]
[5894] K. Woods, L.M. Wallace, S.C. Webb, Y. Ito, M.K. Savage, C.D. Chadwell, C.A. Williams, R. Hino, K. Mochizuki, E. Warren-Smith, and D.H.N. Barker. Updip migration of slow slip revealed through seafloor geodesy during the 2019 East Coast slow slip at the Hikurangi margin (abstract). In AGU Fall Meeting, number T022-04, Washington DC, 2020. American Geophysical Union. [ bib ]
[5895] R. S. Woodward. On the form and position of mean sea level. United States Geolog. Survey Bull., 48:87--170, 1888. [ bib ]
[5896] J. Wookey, J.-M. Kendall, and G. Barruol. Mid-mantle deformation inferred from seismic anisotropy. Nature, 415:777--780, 2002. [ bib ]
[5897] J. Wookey and J.-M. Kendall. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[5898] J. Wookey, S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. D. Price. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature, 438:1004--1007, 2005. [ bib ]
[5899] J. Wookey, J.-M. Kendall, and G. Rümpker. Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting. Geophys. J. Int., 161:829--838, 2005. [ bib ]
[5900] Rhea K Workman and Stanley R Hart. Major and trace element composition of the depleted morb mantle (dmm). Earth Planet. Sci. Lett., 231:53--72, 2005. [ bib ]
[5901] M. J. R. Wortel and W. Spakman. Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 209:1910--1917, 2000. [ bib ]
[5902] M. J. R. Wortel. Seismicity and rheology of subducted slabs. Nature, 296:553--556, 1982. [ bib ]
[5903] J. Worthen, G. Stadler, N. Petra, M. Gurnis, and O. Ghattas. Towards an adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow. Phys. Earth Planet. Inter., 234:23--34, 2014. [ bib ]
[5904] Tim J Wright, Barry Parsons, Philip C England, and Eric J Fielding. InSAR observations of low slip rates on the major faults of western Tibet. Science, 305:236--239, 2004. [ bib ]
[5905] B. Wu, C. P. Conrad, A. Heuret, C. Lithgow-Bertelloni, and S. Lallemand. Reconciling strong slab pull and weak plate bending: The plate motion constraint on the strength of mantle slabs. Earth Planet. Sci. Lett., 272:412--421, 2008. [ bib ]
[5906] Yan Wu and Xiaofei Chen. The scale-dependent slip pattern for a uniform fault model obeying the rate-and state-dependent friction law. J. Geophys. Res.: Sol. Earth, 119:4890--4906, 2014. [ bib ]
[5907] Z. Wu and R. M. Wentzcovitch. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. USA, 111:10468--10472, 2014. [ bib ]
[5908] Keyi Wu, Peng Chen, and Omar Ghattas. A fast and scalable computational framework for large-scale high-dimensional Bayesian optimal experimental design. J. Uncert. Quant., 11:235--261, 2023. [ bib ]
[5909] Z. L. Wu, Y. T. Chen, and S. G. Kim. Physical significance of earthquake quanta. Bull. Seismol. Soc. Am., 86:1623--1626, 1996. [ bib ]
[5910] A. Wüstefeld and G. Bokelmann. Null detection in shear-wave splitting measurements. Bull. Seismol. Soc. Am., 97:1204--1211, 2007. [ bib ]
[5911] A. Wüstefeld, G. Bokelmann, C. Zaroli, and G. Barruol. SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosc., 34:515--528, 2008. [ bib ]
[5912] A. Wüstefeld, G. H. R. Bokelmann, G. Barruol, and J.-P. Montagner. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth Planet. Inter., 176:198--212, 2009. Available online at www.gm.univ-montp2.fr/splitting/DB/, accessed 09/2022. [ bib ]
[5913] W. Bai, C. Vigny, Y. Ricard, and C. Froidevaux. On the origin of deviatoric stresses in the lithosphere. J. Geophys. Res.: Sol. Earth, 97:11729--11737, 1992. [ bib ]
[5914] A. Wüstefeld, G. Bokelmann, C. Zaroli, and G. Barruol. SplitLab: A shear-wave splitting environment in Matlab. Comput. Geosc., 34:518--528, 2008. [ bib ]
[5915] F. K. Wyatt, D. C. Agnew, and M. Gladwin. Continuous measurements of crustal deformation for the 1992 Landers earthquake sequence. Bull. Seismol. Soc. Am., 84:768--779, 1994. [ bib ]
[5916] Max Wyss, Danijel Schorlemmer, and Stefan Wiemer. Mapping asperities by minima of local recurrence time: The San Jacinto-Elsinore fault zones. J. Geophys. Res.: Sol. Earth, 105:7829--7844, 2000. [ bib ]
[5917] M Wyss, A Hasegawa, and J Nakajima. Source and path of magma for volcanoes in the subduction zone of northeastern Japan. Geophys. Res. Lett., 28:1819--1822, 2001. [ bib ]
[5918] M. Wyss and S. Matsumura. Most likely locations of large earthquakes in the Kanto and Tokai areas, Japan, based on the local recurrence times. Phys. Earth Planet. Inter., 131:173--184, 2002. [ bib ]
[5919] K. W. Xia, A. J. Rosakis, and H. Kanamori. Laboratory earthquakes: the sub-Rayleigh to supershear rupture transition. Science, 303:1859--1861, 2004. [ bib ]
[5920] Haoran Xia and John P Platt. Structural and rheological evolution of the Laramide subduction channel in southern California. Solid Earth, 8(2):379, 2017. [ bib ]
[5921] Shunxing Xie and Paul J Tackley. Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics. J. Geophys. Res.: Sol. Earth, 109(B11204), 2004. [ bib | DOI ]
[5922] Jiayi Xie, Michael H Ritzwoller, SJ Brownlee, and BR Hacker. Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States. Geophys. J. Int., 201:996--1021, 2015. [ bib ]
[5923] Jiayi Xie, Michael H Ritzwoller, Weisen Shen, and Weitao Wang. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium. Geophys. J. Int., 209:466--491, 2017. [ bib ]
[5924] P. Xu. Determination of regional stress tensors from fault-slip data. Geophys. J. Int., 157:1316--1330, 2004. [ bib ]
[5925] Y. Xu, T. J. Shankland, S. Linhardt, D. C. Rubie, F. Lagenhorst, and K. Klasinsk. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Phys. Earth Planet. Inter., 143:321--336, 2004. [ bib ]
[5926] X. Xu, C. Lithgow-Bertelloni, and C. P. Conrad. Reconstructions of Cenozoic seafloor ages: Implications for sea level. Earth Planet. Sci. Lett., 243:552--564, 2006. [ bib ]
[5927] W. Xu, C. Lithgow-Bertelloni, L. Stixrude, and J. Ritsema. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett., 275:70--79, 2008. [ bib ]
[5928] Xiaohua Xu, David T Sandwell, and Bridget Smith-Konter. Coseismic displacements and surface fractures from Sentinel-1 InSAR: 2019 Ridgecrest earthquakes. Seismol. Res. Lett., 91:1979--1985, 2020. [ bib ]
[5929] Xiaohua Xu, David T Sandwell, Lauren A Ward, Chris WD Milliner, Bridget R Smith-Konter, Peng Fang, and Yehuda Bock. Surface deformation associated with fractures near the 2019 Ridgecrest earthquake sequence. Science, 370:605--608, 2020. [ bib ]
[5930] Xiaohua Xu, David T Sandwell, Emilie Klein, and Yehuda Bock. Integrated Sentinel-1 InSAR and GNSS Time-Series Along the San Andreas Fault System. J. Geophys. Res.: Sol. Earth, 126(11):e2021JB022579, 2021. [ bib ]
[5931] M. Xue and R. M. Allen. Asthenospheric channeling of the Icelandic upwelling: Evidence from seismic anisotropy. Earth Planet. Sci. Lett., 235:167--182, 2005. [ bib ]
[5932] M. Xue and R. M. Allen. The Fate of the Juan de Fuca Plate: Implications for a Yellowstone plume head. Earth Planet. Sci. Lett., 264:266--276, 2007. [ bib ]
[5933] Yojiro Yamamoto, Koichiro Obana, Shuichi Kodaira, Ryota Hino, and Masanao Shinohara. Structural heterogeneities around the megathrust zone of the 2011 Tohoku earthquake from tomographic inversion of onshore and offshore seismic observations. J. Geophys. Res.: Sol. Earth, 119:1165--1180, 2014. [ bib ]
[5934] Y. Yamanaka and M. Kikuchi. Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[5935] Futoshi Yamashita, Eiichi Fukuyama, Shiqing Xu, Hironori Kawakata, Kazuo Mizoguchi, and Shigeru Takizawa. Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nature comm., 12:4302, 2021. [ bib ]
[5936] T. Yamashita and L. Knopoff. Model for intermediate-term precursory clustering of earthquakes. J. Geophys. Res.: Sol. Earth, 97:19873--19879, 1992. [ bib ]
[5937] T. Yamashita and Y. Umeda. Earthquake rupture complexity due to dynamic nucleation and interaction of subsidiary faults. Pure Appl. Geophys., 143, 1994. [ bib ]
[5938] T. Yamashita. Simulation of seismicity due to ruptures on noncoplanar interactive faults. J. Geophys. Res.: Sol. Earth, 100:8339--8350, 1995. [ bib ]
[5939] T. Yamashita and Eiichi Fukoyama. Apparent critical slip displacement caused by the existence of a fault zone. Geophys. J. Int., 125:459--472, 1996. [ bib ]
[5940] Philippe Yamato, Laurent Husson, Jean Braun, Christelle Loiselet, and Cédric Thieulot. Influence of surrounding plates on 3D subduction dynamics. Geophys. Res. Lett., 36(L07303), 2009. [ bib | DOI ]
[5941] Y. Yamato, L. Husson, T. W. Becker, and K. Pedoja. Passive margins getting squeezed in the mantle convection vice. Tectonics, 31:1--12, 2013. [ bib ]
[5942] Changda Yan and Shin’ichi Miyazaki. Post-seismic gravity change modelling based on non-linear power-law upper mantle rheology. Geophys. J. Int., 235:2581--2597, 2023. [ bib ]
[5943] T. Yanagisawa, Y. Yamagishi, Y. Hamano, and D. R. Stegman. Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions. Phys. Earth Planet. Inter., 183:341--352, 2010. [ bib ]
[5944] T. Yanagisawa and Y. Hamano. “Skewness” of S-wave velocity in the mantle. Geophys. Res. Lett., 26:791--794, 1999. [ bib ]
[5945] Zhimei Yan and R. W. Clayton. Regional mapping of the crustal structure in southern California from receiver functions. J. Geophys. Res.: Sol. Earth, 112(B5), 2007. [ bib | DOI ]
[5946] Y. Yang and D. W. Forsyth. Rayleigh wave phase velocities, small-scale convection, and azimuthal anisotropy beneath southern California. J. Geophys. Res.: Sol. Earth, 111(B07306), 2006. [ bib | DOI ]
[5947] Y. Yang and D. Forsyth. Regional tomographic inversion of amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys. J. Int., 166:1148--1160, 2006. [ bib ]
[5948] Z. Yang, H. P. Zhang, and M. Marder. Dynamics of static friction between steel and silicon. Proc. Natl. Acad. Sci. USA, 105:13264--13268, 2008. [ bib ]
[5949] Z. Yang, A. Sheehan, and P. Shearer. Stress-induced upper crustal anisotropy in southern California. J. Geophys. Res.: Sol. Earth, 116, 2011. [ bib | DOI ]
[5950] W. Yang, E. Hauksson, and P. Shearer. Computing a large refined catalog of focal mechanisms for southern California (1981 -- 2010): Temporal stability of the style of faulting. Bull. Seismol. Soc. Am., 102:1179--1194, 2012. [ bib ]
[5951] Hongfeng Yang, Yajing Liu, and Jian Lin. Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation. Geophys. Res. Lett., 39(L24302), 2012. [ bib | DOI ]
[5952] W. Yang and E. Hauksson. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophys. J. Int., 194:100--117, 2013. [ bib ]
[5953] Y.-R. Yang, K. M. Johnson, and R. Y. Chuang. Inversion for absolute deviatoric crustal stress using focal mechanisms and coseismic stress changes: The 2011 M9 Tohoku-oki, Japan, earthquake. J. Geophys. Res.: Sol. Earth, 118:5516--5529, 2013. [ bib ]
[5954] T. Yang and M. Gurnis. Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow. Geophys. J. Int., 207:1186--1202, 2016. [ bib ]
[5955] Ting Yang, Michael Gurnis, and Sabin Zahirovic. Slab avalanche-induced tectonics in self-consistent dynamic models. Tectonophys., 746:251--265, 2018. [ bib ]
[5956] Hongfeng Yang, Suli Yao, Bing He, Andrew V. Newman, and Huihui Weng. Deriving rupture scenarios from interseismic locking distributions along the subduction megathrust. J. Geophys. Res.: Sol. Earth, 124:10376--10392, 2019. [ bib ]
[5957] Jianfeng Yang and Manuele Faccenda. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature, 579:88--91, 2020. [ bib ]
[5958] Shuting Yang, Zhong-Hai Li, Bo Wan, Ling Chen, and Boris JP Kaus. Subduction-induced back-arc extension versus far-field stretching: Contrasting modes for continental marginal break-up. Geochem., Geophys., Geosys., 22(3):e2020GC009416, 2021. [ bib ]
[5959] Gaoxue Yang. Subduction initiation triggered by collision: A review based on examples and models. Earth-Sci. Rev., 232:104129, 2022. [ bib ]
[5960] Yuyun Yang and Eric M Dunham. Influence of creep compaction and dilatancy on earthquake sequences and slow slip. J. Geophys. Res.: Sol. Earth, 128:e2022JB025969, 2023. [ bib ]
[5961] X. Yang, K. M. Fischer, and G. A. Abers. Seismic anisotropy beneath the Shumagin Island segment of the Aleutian-Alaska subduction zone. J. Geophys. Res.: Sol. Earth, 100:18165--18177, 1995. [ bib ]
[5962] Y. Yarce, G. Monsalve, T. W. Becker, A. Cardona, E. Poveda, D. Alvira, and O. Ordoñez-Carmona. Seismological observations in Northwestern South America: Evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophys., 637:57--67, 2014. [ bib ]
[5963] J Yarce, AF Sheehan, JS Nakai, SY Schwartz, K Mochizuki, MK Savage, LM Wallace, SA Henrys, SC Webb, Y Ito, R. E. Abercrombie, B. Fry, H. Shaddox, and E. K. Todd. Seismicity at the northern Hikurangi Margin, New Zealand, and investigation of the potential spatial and temporal relationships with a shallow slow slip event. J. Geophys. Res.: Sol. Earth, 124:4751--4766, 2019. [ bib ]
[5964] Viktoriya M. Yarushina and Yuri Y. Podladchikov. (De)compaction of porous viscoelastoplastic media: Model formulation. J. Geophys. Res.: Sol. Earth, 120:4146--4170, 2015. [ bib ]
[5965] A Aristides Yayanos. Microbiology to 10,500 meters in the deep sea. Ann. Rev. Microbio., 49:777--804, 1995. [ bib ]
[5966] Lingling Ye, Thorne Lay, Hiroo Kanamori, and Luis Rivera. Rupture characteristics of major and great (Mw>=7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. J. Geophys. Res.: Sol. Earth, 121:826--844, 2016. [ bib ]
[5967] Lingling Ye, Hiroo Kanamori, and Thorne Lay. Global variations of large megathrust earthquake rupture characteristics. Science adv., 4:eaao4915, 2018. [ bib ]
[5968] A. Yin and T. M. Harrison. Geologic evolution of the Himalayan-Tibetan orogen. Ann. Rev. Earth Planet. Sci., 28:211--280, 2000. [ bib ]
[5969] A. Yin and M. Taylor. A paired-simple-shear-zone model for the formation of conjugate strike-slip faults: An alternative to the classic Anderson fault theory. GSA Bull., 123:1798--1821, 2011. [ bib ]
[5970] Z.-M. Yin and G.C. Rogers. Towards a physical understanding of earthquake scaling relations. Pure Appl. Geophys., 146:661--675, 1996. [ bib ]
[5971] E. H. Yoffe. The angular dislocation. Philos. Mag., 5:161--175, 1960. [ bib ]
[5972] R Yohler, N Bartlow, LM Wallace, and C Williams. Time-dependent behavior of a near-trench slow-slip event at the Hikurangi subduction zone. Geochem., Geophys., Geosys., 20:4292--4304, 2019. [ bib ]
[5973] Y. Yokota and K. Koketsu. A very long-term transient event preceding the 2011 Tohoku earthquake. Nature Comm., 6(5934), 2015. [ bib | DOI ]
[5974] Y. Yokota, T. Ishikawa, S. i. Watanabe, T. Tashiro, and A. Asada. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534:374--377, 2016. [ bib ]
[5975] M. Yoshida, S. Honda, M. Kido, and Y. Iwase. Numerical simulation for the prediction of the plate motions: effects of lateral viscosity variations in the lithosphere. Earth Planets Space, 53:709--721, 2001. [ bib ]
[5976] M. Yoshida. Mantle convection with longest-wavelength thermal heterogeneity in a 3-D spherical model: Degree one or two? Geophys. Res. Lett., 35(L23302), 2008. [ bib | DOI ]
[5977] M. Yoshida and T. Nakakuki. Effects on the long-wavelength geoid anomaly of lateral viscosity variations caused by stiff subducting slabs, weak plate margins and lower mantle rheology. Phys. Earth Planet. Inter., 172:278--288, 2008. [ bib ]
[5978] M. Yoshida. Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere. Earth Planet. Sci. Lett., Earth Planet. Sci. Lett.:205--218, 2010. [ bib ]
[5979] K. Yoshida, A. Hasegawa, T. Okada, T. Iinuma, Y Ito, and Y. Asano. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophys. Res. Lett., 39(L03302), 2012. [ bib | DOI ]
[5980] Masaki Yoshida. Dynamic role of the rheological contrast between cratonic and oceanic lithospheres in the longevity of cratonic lithosphere: A three-dimensional numerical study. Tectonophys., 532:156--166, 2012. [ bib ]
[5981] Masaki Yoshida and Yozo Hamano. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection. Scient. Rep., 5(1):8407, 2015. [ bib ]
[5982] Masaki Yoshida. On approximations of the basic equations of terrestrial mantle convection used in published literature. Phys. Earth Planet. Inter., 268:11--17, 2017. [ bib ]
[5983] Nana Yoshimitsu, Hironori Kawakata, and Naoki Takahashi. Magnitude -7 level earthquakes: A new lower limit of self-similarity in seismic scaling relationships. Geophys. Res. Lett., 41:4495--4502, 2014. [ bib ]
[5984] S. Yoshioka, M. Hashimoto, and K. Hirahara. Displacement fields due to the 1946 Nankaido earthquake in a laterally inhomogeneous structure with the subducting Philippine Sea plate --a three dimensional finite element approach. Tectonophys., 159:121--136, 1989. [ bib ]
[5985] S. Yoshioka and M. J. R. Wortel. Three-dimensional numerical modeling of detachment of subducted lithosphere. J. Geophys. Res.: Sol. Earth, 100:20223--20244, 1995. [ bib ]
[5986] S. Yoshioka, R. Daessler, and D. A. Yuen. Stress fields associated with metastable phase transitions in descending slabs and deep-focus earthquakes. Phys. Earth Planet. Inter., 104:345--361, 1997. [ bib ]
[5987] A. Young, N. Flament, K. Maloney, S. Williams, K. Matthews, S. Zahirovic, and R.. D. Müller. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosc. Frontiers, 2018. [ bib | DOI ]
[5988] Maryam Yousefi, Glenn Milne, Shaoyang Li, Kelin Wang, and Alan Bartholet. Constraining Interseismic Deformation of the Cascadia Subduction Zone: New Insights From Estimates of Vertical Land Motion Over Different Timescales. J. Geophys. Res.: Sol. Earth, 125:e2019JB018248, 2020. [ bib ]
[5989] J. Yu, T. W. Becker, J. Hardebeck, and SCEC CSM working group. The SCEC Community Stress Model web site -- v.0.1. In Annual Meeting 2014, Proceedings Volume XXIII, page 159, Los Angeles, CA, 2013. Southern California Earthquake Center. Available online at www.scec.org/meetings/2013am/SCEC2013Proceedings.pdf, also see sceczero.usc.edu/projects/CSM, both accessed 10/2014. [ bib ]
[5990] Shule Yu and Edward J Garnero. Ultralow velocity zone locations: A global assessment. Geochem., Geophys., Geosys., 19:396--414, 2018. [ bib ]
[5991] Y. Yu and J. Park. Hunting for azimuthal anisotropy beneath the Pacific Ocean region. J. Geophys. Res.: Sol. Earth, 99:15399--15421, 1994. [ bib ]
[5992] T.-T. Yu, J. B. Rundle, and J. Fernández. Surface deformation due to a strike-slip fault in an elastic gravitational layer overlying a viscoelastic graviational half-space. J. Geophys. Res.: Sol. Earth, 101:3199--3214, 1996. [ bib ]
[5993] T.-T. Yu, J. B. Rundle, and J. Fernández. Correction to “Surface deformation due to a strike-slip fault in an elastic gravitational layer overlying a viscoelastic graviational half-space” by Ting-To Yu, John B. Rundle, and José Fernández. J. Geophys. Res.: Sol. Earth, 104:15313--15315, 1999. [ bib ]
[5994] H. Yuan and B. A. Romanowicz. Lithospheric layering in the North American continent. Nature, 466:1063--1069, 2010. [ bib ]
[5995] H. Yuan, B. A. Romanowicz, K. M. Fischer, and D. Abt. 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int., 184:1237--1260, 2011. [ bib ]
[5996] K. Yuan and C. Beghein. Seismic anisotropy changes across upper mantle phase transitions. Earth Planet. Sci. Lett., 374:132--144, 2013. [ bib ]
[5997] Zhaode Yuan, Jing Liu-Zeng, Wei Wang, Ray J Weldon II, Michael E Oskin, Yanxiu Shao, Zhanfei Li, Zhigang Li, Peng Wang, and Jinyu Zhang. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China. Earth Planet. Sci. Lett., 497:193--203, 2018. [ bib ]
[5998] Qian Yuan, Mingming Li, Steven J Desch, Byeongkwan Ko, Hongping Deng, Edward J Garnero, Travis SJ Gabriel, Jacob A Kegerreis, Yoshinori Miyazaki, Vincent Eke, and P. D. Asimov. Moon-forming impactor as a source of Earth's basal mantle anomalies. Nature, 623:95--99, 2023. [ bib ]
[5999] D. A. Yuen, L. Fleitout, G. Schubert, and C. Froidevaux. Shear deformation zones along major transform faults and subducting slabs. Geophys. J. Int., 54:93--119, 1978. [ bib ]
[6000] D. A. Yuen and R. Sabadini. Viscosity stratification of the lower mantle as inferred from the 2 observation. Ann. Geophys., 3:647--654, 1985. [ bib ]
[6001] D. A. Yuen, F. Quareni, and H.-J. Hong. Effects from equation of state and rheology in dissipative heating in compressible mantle convection. Nature, 326:67--69, 1987. [ bib ]
[6002] D. Yuen, D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. J. Smedmoa. Various influences on three-dimensional mantle convection with phase transitions. Phys. Earth Planet. Inter., 86:185--203, 1994. [ bib ]
[6003] Youqiang Yu and Dapeng Zhao. Lithospheric deformation and asthenospheric flow associated with the Isabella anomaly in southern California. J. Geophys. Res.: Sol. Earth, 123:8842--8857, 2018. [ bib | DOI ]
[6004] Norman J Zabusky and Martin D Kruskal. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240, 1965. [ bib ]
[6005] J. Zachariasen and K. E. Sieh. The transfer of slip between two en echelon strike-slip faults: A case study from the 1992 Landers earthquake, Southern California. J. Geophys. Res.: Sol. Earth, 100:15281--15301, August 1995. [ bib ]
[6006] James Zachos, Mark Pagani, Lisa Sloan, Ellen Thomas, and Katharina Billups. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686--693, 2001. [ bib ]
[6007] S. Zahirovic, R. D. Müller, M. Seton, and N. Flament. Tectonic speed limits from plate kinematic reconstructions. Earth Planet. Sci. Lett., 418:40--52, 2015. [ bib ]
[6008] Hubert Jerzy Zal, Katrina Jacobs, Martha Kane Savage, Jefferson Yarce, Stefan Mroczek, Kenny Graham, Erin K. Todd, Jenny Nakai, Yuriko Iwasaki, Anne Sheehan, Kimihiro Mochizuki, Laura Wallace, Susan Schwartz, Spahr Webb, and Stuart Henrys. Temporal and spatial variations in seismic anisotropy and VP/VS ratios in a region of slow slip. Earth Planet. Sci. Lett., 532:115970, 2020. [ bib ]
[6009] Ilya Zaliapin, Andrei Gabrielov, Vladimir Keilis-Borok, and Henry Wong. Clustering analysis of seismicity and aftershock identification. Phys. Rev. Lett., 101:018501, 2008. [ bib ]
[6010] I. Zaliapin and Y. Ben-Zion. Earthquake clusters in southern California I: Identification and stability. J. Geophys. Res.: Sol. Earth, 118:2847--2864, 2013. [ bib ]
[6011] G. Zandt, H. Gilbert, T. J. Owens, M. Ducea, and C. H. Jones. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature, 431:41--46, 2004. [ bib ]
[6012] G. Zandt and E. Humphreys. Toroidal mantle flow through the western U.S. slab window. Geology, 36:295--298, 2008. [ bib ]
[6013] A. Zang, F. C. Wagner, S. Stanchits, G. Dresen, R. Andresen, and M. A. Haidek. Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads. Geophys. J. Int., 135:1113--1130, 1998. [ bib ]
[6014] Z. Zarifi, J. Havskov, and A. Hanyga. An insight into the Bucaramanga nest. Tectonophys., 443:93--105, 2007. [ bib ]
[6015] S. Zatman, R. G. Gordon, and M. A. Richards. Analytic models for the dynamics of diffuse oceanic plate boundaries. Geophys. J. Int., 145:145--156, 2001. [ bib ]
[6016] J. Zechar and T. Jordan. Testing alarm-based earthquake predictions. Geophys. J. Int., 172:715--724, 2008. [ bib ]
[6017] H. P. Zeck. Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics. Tectonophys., 254:1--16, 1996. [ bib ]
[6018] Yuehua Zeng and Zheng-Kang Shen. A Fault-Based Model for Crustal Deformation, Fault Slip Rates, and Off-Fault Strain Rate in California. Bull. Seismol. Soc. Am., 106:766--784, 2016. [ bib ]
[6019] Yuehua Zeng and Zheng-Kang Shen. A Fault-Based Model for Crustal Deformation in the Western United States Based on a Combined Inversion of GPS and Geologic Inputs. Bull. Seismol. Soc. Am., 107:2597--2612, 2017. [ bib ]
[6020] Xiangfang Zeng and Clifford Thurber. Three-dimensional shear wave velocity structure revealed with ambient noise tomography in the Parkfield, California region. Phys. Earth Planet. Inter., 292:67--75, 2019. [ bib ]
[6021] A. Zerr and R. Boehler. Melting of (Mg, Fe)SiO3-perovskite to 625 kilobars: indication of a high melting temperature in the lower mantle. Science, 262:553--555, 1993. [ bib ]
[6022] A. Zerr and R. Boehler. Constraints on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesiowustite. Nature, 371:506--508, 1994. [ bib ]
[6023] S. Zeumann, R. Sharma, R. Gassmöller, T. Jahr, and G. Jentzsch. New finite-element modelling of subduction processes in the Andes using realistic geometries. In C. Rizos and P. Willis, editors, Earth on the Edge: Science for a Sustainable Planet, volume 139 of International Association of Geodesy Symposia, pages 105--111. Springer-Verlag, Berlin Heidelberg, 2014. [ bib ]
[6024] Y. Zhai and A. Levander. Receiver function imaging in strongly laterally heterogeneous crust: Synthetic modeling of BOLIVAR data. Eq. Sci., 24:45--54, 2011. [ bib ]
[6025] Z. Zhan. Gutenberg–Richter law for deep earthquakes revisited: a dual-mechanism hypothesis. Earth Planet. Sci. Lett., 461:1--7, 2017. [ bib ]
[6026] Zhongwen Zhan. Mechanisms and implications of deep earthquakes. Ann. Rev. Earth Planet. Sci., 48:147--174, 2020. [ bib ]
[6027] S. Zhang, S.-i. Karato, J. F. Gerald, U. H. Faul, and Y. Zhou. Simple shear deformation of olivine aggregates. Tectonophys., 316:133--152, 2000. [ bib ]
[6028] H. J. Zhang and C. H. Thurber. Double-difference tomography: The method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93:1875--1889, 2003. [ bib ]
[6029] Z.-K. Zhang, M. Wang, W. Gan, R. Bürgmann, Q. Wang, Z. Niu, J. Sun, J. Wu, S. Hanrong, and Y. Xinzhao. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32:809--812, 2004. [ bib ]
[6030] H. J. Zhang, C. H. Thurber, D. Shelly, S. Ide, G. C. Beroza, and A. Hasegawa. High-resolution subducting slab structure beneath northern Honshu, Japan, revealed by double difference tomography. Geology, 32:361--364, 2004. [ bib ]
[6031] N. Zhang, S. Zhong, W. Leng, and Z.-X. Li. A model for the evolution of the Earth's mantle structure since the Early Paleozoic. J. Geophys. Res.: Sol. Earth, 115(B06401), 2010. [ bib | DOI ]
[6032] Nan Zhang and Shijie Zhong. Heat fluxes at the Earth's surface and core--mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet. Sci. Lett., 306:205--216, 2011. [ bib ]
[6033] Han Zhang, Brandon Schmandt, Wen-Yi Zhou, Jin S. Zhang, and Ross Maguire. A Single 520 km Discontinuity Beneath the Contiguous United States With Pyrolitic Seismic Properties. Geophys. Res. Lett., 49(24):e2022GL101300, 2022. [ bib ]
[6034] Y. S. Zhang and T. Tanimoto. Global Lover wave phase velocity variation and its significance to plate tectonics. Phys. Earth Planet. Inter., 66:160--202, 1991. [ bib ]
[6035] S. Zhang and U. Christensen. Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophys. J. Int., 114:531--547, 1993. [ bib ]
[6036] S. Zhang and S.-i. Karato. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375:774--777, 1995. [ bib ]
[6037] Y. S. Zhang and T. Lay. Global surface wave phase velocity variations. J. Geophys. Res.: Sol. Earth, 101:8415--8436, 1996. [ bib ]
[6038] S. Zhao and S. Takemoto. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modeling. Geophys. J. Int., 142:300--318, 2000. [ bib ]
[6039] S. Zhao and S. Takemoto. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling. Geophys. J. Int., 142:300--318, 2000. [ bib ]
[6040] L. Zhao, T. H. Jordan, and C. H. Chapman. Three-dimensional Fréchet differential kernels for seismic delay times. Geophys. J. Int., 141:558--576, 2000. [ bib ]
[6041] D. Zhao, O. P. Mishra, and R. Sanda. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132:249--267, 2002. [ bib ]
[6042] Yong-Hong Zhao, SB Ginsberg, and David L Kohlstedt. Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib. Mineral. Petrol., 147:155--161, 2004. [ bib ]
[6043] D. Zhao, Y. Tian, J. Lei, L. Liu, and S. Zheng. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter., 173:197--206, 2009. [ bib ]
[6044] D. Zhao, Z. Huang, N. Umino, A. Hasegawa, and H. Kanamori. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0). Geophys. Res. Lett., 38(L17308), 2011. [ bib | DOI ]
[6045] Liang Zhao, Anne Paul, Stéphane Guillot, Stefano Solarino, Marco G Malusà, Tianyu Zheng, Coralie Aubert, Simone Salimbeni, Thierry Dumont, Stéphane Schwartz, et al. First seismic evidence for continental subduction beneath the Western Alps. Geology, 43:815--818, 2015. [ bib ]
[6046] W-L Zhao, DM Davis, FA Dahlen, and J Suppe. Origin of convex accretionary wedges: Evidence from Barbados. J. Geophys. Res.: Sol. Earth, 91:10246--10258, 1986. [ bib ]
[6047] Yong-Fei Zheng, Bin Fu, Bing Gong, and Long Li. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie--Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Sci. Rev., 62:105--161, 2003. [ bib ]
[6048] L. Zheng, R. G. Gordon, and C. Kreemer. Absolute plate velocities from seismic anisotropy: Importance of correlated errors. J. Geophys. Res.: Sol. Earth, 119:7336--7352, 2014. [ bib ]
[6049] L. Zheng, D. May, T. Gerya, and M. Bostock. Fluid-assisted deformation of the subduction interface: Coupled and decoupled regimes from 2-D hydromechanical modeling. J. Geophys. Res.: Sol. Earth, 121:6132--6149, 2016. [ bib | DOI ]
[6050] X. Zheng and D. Vere-Jones. Further applications of the stochastic stress release model to historical earthauake data. Tectonophys., 229:101--121, 1994. [ bib ]
[6051] G. Zheng, R. Dmowska, and J. R. Rice. Modeling earthquake cycles in the Shumagin subduction segment, Alaska, with seismic and geodetic constraints. J. Geophys. Res.: Sol. Earth, 101:8383--8392, 1996. [ bib ]
[6052] N. Zhiren and D. Chen. Period-doubling bifurcation and chaotic phenomena in a single degree of freedom elastic system with a two-state variable friction law. In W. I. Newman, A. Gabrielov, and D. L. Turcotte, editors, Nonlinear dynamics and predictability of geophysical phenomena, volume 83 of Geophys. Mono., pages 75--80. American Geophysical Union, Washington, DC, 1994. [ bib ]
[6053] S. Zhong, M. T. Zuber, L. N. Moresi, and M. Gurnis. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res.: Sol. Earth, 105:11063--11082, 2000. [ bib ]
[6054] S. Zhong. Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid. J. Geophys. Res.: Sol. Earth, 106:703--712, 2001. [ bib ]
[6055] S. Zhong and M. T. Zuber. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett., 189:75--84, 2001. [ bib ]
[6056] S. Zhong and A. B. Watts. Constraints on the dynamics of mantle plumes from uplift of the Hawaiian islands. Earth Planet. Sci. Lett., 203:105--116, 2002. [ bib ]
[6057] S. Zhong and B. H. Hager. Entrainment of a dense layer by thermal plumes. Geophys. J. Int., 154:666--676, 2003. [ bib ]
[6058] S. Zhong. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[6059] S. Zhong, N. Zhang, Z.-X. Li, and J. H. Roberts. Supercontinent cycles, true polar wander, and very long wavelength mantle convection. Earth Planet. Sci. Lett., 261:551--564, 2007. [ bib ]
[6060] S. Zhong, M. Ritzwoller, N. Shapiro, W. Landuyt, J. Huang, and P. Wessel. Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics. J. Geophys. Res.: Sol. Earth, 112(B06412), 2007. [ bib | DOI ]
[6061] S. J. Zhong, D. A. Yuen, and L. N. Moresi. Numerical methods in mantle convection. In G. Schubert and D. Bercovici, editors, Treatise in Geophysics, volume 7, pages 227--252. Elsevier, 2007. [ bib ]
[6062] S. Zhong. Iterative solutions of PDE. Available online at anquetil.colorado.edu/szhong/TEMP/tutorial_mg.tar.gz, accessed 10/2008, 2008. [ bib ]
[6063] Shijie Zhong and AB Watts. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology. J. Geophys. Res.: Sol. Earth, 118:6025--6048, 2013. [ bib ]
[6064] S. Zhong and M. Gurnis. Viscous flow model of a subduction zone with a faulted lithosphere: long and short wavelength topography, gravity. Geophys. Res. Lett., 18:1891--1894, 1992. [ bib ]
[6065] S. Zhong and M. Gurnis. Dynamic feedback between a continentlike raft and thermal convection. J. Geophys. Res.: Sol. Earth, 98:12219--12232, 1993. [ bib ]
[6066] S. Zhong and M. Gurnis. Controls on trench topography from dynamic models of subducted slabs. J. Geophys. Res.: Sol. Earth, 99:15683--15695, 1994. [ bib ]
[6067] Shijie Zhong and Michael Gurnis. Role of plates and temperature-dependent viscosity in phase change dynamics. J. Geophys. Res.: Sol. Earth, 99:15903--15917, 1994. [ bib ]
[6068] S. Zhong and M. Gurnis. Mantle convection with plates and mobile, faulted plate margins. Science, 267:838--842, 1995. [ bib ]
[6069] S. Zhong and M. Gurnis. Towards a realistic simulation of plate margins in mantle convection. Geophys. Res. Lett., 22:981--984, 1995. [ bib ]
[6070] S. Zhong and M. Gurnis. Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow. Nature, 383:245--247, 1996. [ bib ]
[6071] S. Zhong, M. Gurnis, and L. N. Moresi. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res.: Sol. Earth, 103:15255--15268, 1998. [ bib ]
[6072] S. Zhong and G. F. Davies. Effects of plate and slab viscosities on geoid. Earth Planet. Sci. Lett., 170:487--496, 1999. [ bib ]
[6073] Y. Zhou, G. Nolet, F. A. Dahlen, and G. Laske. Global upper-mantle structure from finite-frequency surface-wave tomography. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[6074] Q. Zhou, J. S. Hu, L. J. Liu, T. Chaparro, D.R. Stegman, and M. Faccenda. Western US seismic anisotropy revealing complex mantle dynamics. Earth Planet. Sci. Lett., 500:156--167, 2018. [ bib ]
[6075] Xin Zhou and Kelin Wang. Viscoelastic response of a self-gravitational spherical Earth to shear dislocation obtained using the Fixed-Talbot method. J. Geophys. Res.: Sol. Earth, 128:e2022JB025912, 2023. [ bib ]
[6076] H.-W. Zhou. Observations on earthquake stress axes and seismic morphology of deep slabs. Geophys. J. Int., 103:377--401, 1990. [ bib ]
[6077] H. Zhou and G. Chen. Waveform response to the morphology of 2-D subducted slabs. Geophys. J. Int., 121:511--522, 1995. [ bib ]
[6078] Lupei Zhu and Xiaofeng Zhou. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence. Phys. Chem. Earth, A/B/C, 95:10--18, 2016. [ bib ]
[6079] Hejun Zhu, Siwei Li, Sergey Fomel, Georg Stadler, and Omar Ghattas. A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration. Geophysics, 81:R307--R323, 2016. [ bib ]
[6080] Hongyu Zhu, Noemi Petra, Georg Stadler, Tobin Isaac, Thomas JR Hughes, and Omar Ghattas. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model. The Cryosphere, 10:1477--1494, 2016. [ bib ]
[6081] Weiqiang Zhu, S. Mostafa Mousavi, and Gregory C. Beroza. Seismic signal denoising and decomposition using deep neural networks. IEEE Trans. Geosc. Remote Sens., 57:9476--9488, 2019. [ bib ]
[6082] Weiqiang Zhu, Kali L Allison, Eric M Dunham, and Yuyun Yang. Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nature Comm., 11:1--11, 2020. [ bib ]
[6083] L. Zhu and D. V. Helmberger. Advancement in source estimation techniques using broadband regional seismograms. Bull. Seismol. Soc. Am., 86:163--1641, 1996. [ bib ]
[6084] LP Zhu and H Kanamori. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res.: Sol. Earth, 105(B2):2969--2980, 2000. [ bib | DOI ]
[6085] Peter A Ziegler and Sierd Cloetingh. Dynamic processes controlling evolution of rifted basins. Earth-Sci. Rev., 64:1--50, 2004. [ bib ]
[6086] O Zielke and JR Arrowsmith. Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution. Geophys. Res. Lett., 35(L24301), 2008. [ bib | DOI ]
[6087] O. Zielke, Y. Klinger, and J. R. Arrowsmith. Fault slip and earthquake recurrence along strike-slip faults -- Contributions of high-resolution geomorphic data. Tectonophys., 638:43--62, 2015. [ bib ]
[6088] Olaf Zielke and Paul Martin Mai. MCQsim: A multicycle earthquake simulator. Bull. Seismol. Soc. Am., 113:889–--908, 2023. [ bib ]
[6089] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill Book Company, London, 1971. [ bib ]
[6090] O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill Book Company, London, 3 edition, 1977. [ bib ]
[6091] A. Zindler, E. Jagoutz, and S. Goldstein. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective. Nature, 298:519--523, 1982. [ bib ]
[6092] A. Zindler and S. R. Hart. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14:493--571, 1986. [ bib ]
[6093] R. Zippel. renumber: Programm zur Optimierung der Knotennumerierung. Erstellt im Rahmen der Diplomarbeit: Numerische Modellierung der elastischen Eigenschaften partiell geschmolzener Gesteine, Institut für Meteorologie und Geophysik der Universität Frankfurt am Main, 1996. [ bib ]
[6094] M. D. Zoback, M. L. Zoback, V. S. Mount, J. Suppe, J. P. Eaton, J. H. Healy, D. Oppenheimer, P. Reasenberg, L. Jones, C. B. Raleigh, I. G. Wong, O. Scotti, and C Wentworth. New evidence on the state of stress of the San Andreas fault system. Science, 238:1105--1111, 1987. [ bib ]
[6095] M. L. Zoback. First- and second-order patterns of stress in the lithosphere: The World Stress Map project. J. Geophys. Res.: Sol. Earth, 97:11703--11728, 1992. [ bib ]
[6096] M. L. Zoback, E. H. McKee, R. J. Blakely, and G. A. Thompson. The northern Nevada rift: Regional tectono-magmatic relations and middle Miocene stress direction. Geol. Soc. Am. Bull., 106:371--382, 1994. [ bib ]
[6097] T. I. Zohdi. An Introduction to Modeling and Simulation of Particulate Flows. SIAM, 2007. [ bib ]
[6098] M. T. Zuber, E. M. Parmentier, and R. C. Fletcher. Extension of the continental lithosphere: A model for two scales of Basin and Range deformation. J. Geophys. Res.: Sol. Earth, 91:4826--4838, 1986. [ bib ]

This file was generated by bibtex2html 1.99.