[1] Alen Alexanderian, Philip J. Gloor, and Omar Ghattas. On Bayesian A-and D-optimal experimental designs in infinite dimensions. Bayesian Analysis, 11:671-695, 2016. [ bib ]
[2] Ilona Ambartsumyan and Omar Ghattas. Fast and scalable methods for Bayesian inverse problems with uncertain PDE forward models. In preparation, 2020. [ bib ]
[3] O. Bashir, K. Willcox, O. Ghattas, B. van Bloemen Waanders, and J. Hill. Hessian-based model reduction for large-scale systems with initial condition inputs. Int. J. Numer. Meth. Eng., 73:844-868, 2008. [ bib ]
[4] Tan Bui-Thanh, Carsten Burstedde, Omar Ghattas, James Martin, Georg Stadler, and Lucas C. Wilcox. Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In SC'12: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2012. Gordon Bell Prize finalist. [ bib ]
[5] Tan Bui-Thanh and Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part II: Inverse medium scattering of acoustic waves. Inverse Probl., 28(5), 2012. [ bib | DOI ]
[6] Tan Bui-Thanh and Omar Ghattas. Analysis of an hp-non-conforming discontinuous Galerkin spectral element method for wave propagation. SIAM J. Numerical Analysis, 50:1801-1826, 2012. [ bib ]
[7] Tan Bui-Thanh and Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves. Inverse Probl. Imaging, 7:1139-1155, 2013. [ bib ]
[8] Tan Bui-Thanh and Omar Ghattas. An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation. SIAM J. Uncert. Quant., 2:203-222, 2014. [ bib ]
[9] Tan Bui-Thanh and Omar Ghattas. A scalable MAP solver for Bayesian inverse problems with Besov priors. Inverse Probl. Imaging, 9:27-54, 2015. [ bib ]
[10] Tan Bui-Thanh, Omar Ghattas, and David Higdon. Adaptive Hessian-based nonstationary Gaussian process response surface method for probability density approximation with application to Bayesian solution of large-scale inverse problems. SIAM J. Scient. Comp., 34:A2837-A2871, 2012. [ bib | arXiv ]
[11] Tan Bui-Thanh, Omar Ghattas, James Martin, and Georg Stadler. A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion. SIAM J. Scient. Comp., 35:A2494-A2523, 2013. [ bib ]
[12] P. Chen, U. Villa, and O. Ghattas. Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems. Computer Meth. Appl. Mech. Eng., 327:147-172, 2017. [ bib ]
[13] P. Chen, K. Wu, J. Chen, T. O'Leary-Roseberry, and O. Ghattas. Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions. NeurIPS, 2019. arxiv.org/abs/1901.08659. [ bib ]
[14] Peng Chen, Keyi Wu, Joshua Chen, Thomas O'Leary-Roseberry, and Omar Ghattas. Projected Stein variational Newton: A fast and scalable Bayesian inference method in high dimensions. Adv. Neural Inf. Proc. Systems, 2019. [ bib ]
[15] Benjamin Crestel, Georg Stadler, and Omar Ghattas. A comparative study of regularizations for joint inverse problems. Inverse Probl., 35(2):024003, 2018. [ bib ]
[16] Pearl H. Flath, Lucas C. Wilcox, Volkan Akçelik, Judy Hill, Bart van Bloemen Waanders, and Omar Ghattas. Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations. SIAM J. Sci. Comp., 33:407-432, 2011. [ bib ]
[17] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Nonlinear model reduction for uncertainty quantification in large-scale inverse problems. Int. J. Numerical Meth. Eng., 81:1581-1608, 2010. [ bib ]
[18] Nathan Halko, Per Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217-288, 2011. [ bib ]
[19] Bamdad Hosseini. Well-posed Bayesian inverse problems with infinitely divisible and heavy-tailed prior measures. SIAM/ASA J. Uncert. Quant., 5(1):1024-1060, 2017. [ bib ]
[20] Tobin Isaac, Carsten Burstedde, and Omar Ghattas. Low-cost parallel algorithms for 2:1 octree balance. In Proceedings of the 26th IEEE International Parallel & Distributed Processing Symposium. IEEE, 2012. [ bib | DOI ]
[21] Tobin Isaac, Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. Recursive algorithms for distributed forests of octrees. SIAM J. Scient. Comp., 37, 2015. [ bib | DOI ]
[22] Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas. Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet. J. Comp. Phys., 296:348-368, 2015. [ bib ]
[23] Tobin Isaac, Georg Stadler, and Omar Ghattas. Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics. SIAM J. Scient. Comp., 37:B804-B833, 2015. [ bib ]
[24] Chad Lieberman, Karen Willcox, and Omar Ghattas. Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Scient. Comp., 32:2523-2542, 2010. [ bib ]
[25] James Martin, Lucas C. Wilcox, Carsten Burstedde, and Omar Ghattas. A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion. SIAM J. Scient. Comp., 34:A1460-A1487, 2012. [ bib ]
[26] T. O'Leary-Roseberry, P. Heimbach, and O. Ghattas. Parsimonious deep learning based on low-rank Jacobians of parameter-to-observable maps, with application to ice sheet dynamics. In preparation, 2019. [ bib ]
[27] Noemi Petra, James Martin, Georg Stadler, and Omar Ghattas. A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet inverse problems. SIAM J. Scient. Comp., 36(4):A1525-A1555, 2014. [ bib ]
[28] N. Petra and R. Nicholson. Bayesian Inversion for the Basal Sliding Parameter Field in a Nonlinear Stokes Ice Sheet Model Under Uncertain Rheology. In AGU Fall Meeting Abstracts, volume 2018, pages S31E-0551, Dec 2018. [ bib ]
[29] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis, Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and Omar Ghattas. An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in earth's mantle. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2015. [ bib | DOI ]
[30] Johann Rudi, Georg Stadler, and Omar Ghattas. Weighted BFBT preconditioner for Stokes flow problems with highly heterogeneous viscosity. SIAM J. Scient. Comp., 39:S272-S297, 2017. [ bib ]
[31] Andrew M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica, 19:451-559, 2010. [ bib | DOI ]
[32] Hari Sundar, George Biros, Carsten Burstedde, Johann Rudi, Omar Ghattas, and Georg Stadler. Parallel geometric-algebraic multigrid on unstructured forests of octrees. In SC'12: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Salt Lake City, UT, 2012. ACM/IEEE. [ bib ]
[33] U. Villa, N. Petra, and O. Ghattas. hIPPYlib: An extensible software framework for large-scale deterministic and Bayesian inversion. J. Open Source Software, 3(30):940, 2018. Available online at hippylib.github.io/, accessed 02/2020. [ bib ]
[34] Umberto Villa, Noemi Petra, and Omar Ghattas. hIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs; Part I: Deterministic inversion and linearized Bayesian inference. ACM Trans. Math. Software, submitted, 2019. Available online at http://arxiv.org/abs/1909.03948, accessed 01/2020. [ bib ]
[35] K. Wang, T. Bui-Thanh, and O. Ghattas. A randomized maximum a posteriori method for posterior sampling of high dimensional nonlinear Bayesian inverse problems. SIAM J. Scient. Comp., 40:A142-A171, 2018. [ bib ]
[36] Lucas C. Wilcox, Georg Stadler, Tan Bui-Thanh, and Omar Ghattas. Discretely exact derivatives for hyperbolic PDE-constrained optimization problems discretized by the discontinuous Galerkin method. J. Scient. Comp., 63:138-162, 2015. [ bib ]
[37] Jennifer Worthen, Georg Stadler, Noemi Petra, Michael Gurnis, and Omar Ghattas. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow. Phys. Earth Planet. Inter., 234:23-34, 2014. [ bib ]
[38] Shan Yang, Georg Stadler, Robert Moser, and Omar Ghattas. A shape Hessian-based boundary roughness analysis of Navier-Stokes flow. SIAM J. Appl. Math., 71(1):333-355, 2011. [ bib | DOI ]
[39] B. Aagaard abd C. Williams and M. Knepley. Pylith: A finite-element code for modeling quasi- static and dynamic crustal deformation (abstract). Eos Trans. AGU, 89(53), 2008. Abstract T41A-1925. [ bib ]
[40] B.T. Aagaard, M.G. Knepley, and C.A. Williams. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res., 118:3059-3079, 2013. [ bib ]
[41] Abaqus. Software product, online at http://www.3ds.com/products-services/simulia/products/abaqus/, accessed 11/2016, 2016. [ bib ]
[42] M. R. Abbassi and N. S. Mancktelow. Single layer buckle folding in nonlinear materials: 1. experimental-study of fold development from an isolated initial perturbation. J. Struc. Geology, 14:85-104, 1992. [ bib ]
[43] E. Abbate. Pre-orogenic tectonics and metamorphism in western Tethys Ophiolites. Ofioliti, 9:245-278, 1984. [ bib ]
[44] S. Abe and K. Mair. Grain fracture in 3D numerical simulations of granular shear. Geophys. Res. Lett., 32(L05305), 2005. [ bib | DOI ]
[45] R. E. Abercrombie. The magnitude-frequency distribution of earthquakes recorded with deep seismometers at Cajon Pass, southern california. Tectonophys., 261:1-7, 1996. [ bib ]
[46] G. A. Abers. Hydrated subducted crust at 100-250 km depth. Earth Planet. Sci. Lett., 176:323-330, 2000. [ bib ]
[47] G. A. Abers and J. W. Gephart. Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California. J. Geophys. Res., 106:26523-26540, 2001. [ bib ]
[48] G. A. Abers, T. Plank, and B. R. Hacker. The wet Nicaragua slab. Geophys. Res. Lett., 30(L1098), 2003. [ bib | DOI ]
[49] G.A. Abers, P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik. The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet. Sci. Lett., 241:387-397, 2006. [ bib ]
[50] G. A. Abers, P. E. van Keken, and B. R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosc., 10:333-337, 2017. [ bib ]
[51] M. Abramowitz and I. A. Stegun. Handbook of Mathematical functions. Dover Publications, Inc., 1972. [ bib ]
[52] E. H. Abramson, J. M. Brown, L. J. Slutsky, and J. Zaug. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res., 102:12253-12263, 1997. [ bib ]
[53] D. L. Abt and K. M. Fischer. Resolving three-dimensional anisotropic structure with shear-wave splitting tomography. Geophys. J. Int., 173:859-886, 2008. [ bib ]
[54] D. L. Abt, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. González. Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. Geochem., Geophys., Geosys., 10(Q05S15), 2009. [ bib | DOI ]
[55] D. Abt, K. M. Fischer, S. W. French, H. A. Ford, H. Yuan, and B. A. Romanowicz. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res., 115(B09301), 2010. [ bib | DOI ]
[56] A. Acrivos. Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field. J. Fluid. Mech., 46:233-240, 1971. [ bib ]
[57] J. M.-C. Adam and S. Lebedev. Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys. J. Int., 191:155-174, 2012. [ bib ]
[58] D. C. Adams and E. D. Humphreys. New constraints on the properties of the Yellowstone mantle plume from P and S wave attenuation tomography. J. Geophys. Res., 115(B12311), 2010. [ bib | DOI ]
[59] T. Affolter and J.-P. Gratier. Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. J. Geophys. Res., 109:doi:10.1029/2002JB002270, 2004. [ bib ]
[60] J. C. Afonso, G. Ranalli, M. Fernandez, W. L. Griffin, S. Y. O'Reilly, and U. Faul. On the Vp/Vs–Mg# correlation in mantle peridotites: implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet. Sci. Lett., 289:606-618, 2010. [ bib ]
[61] R. Agata, S. D. Barbot, K. Fujita, M. Hyodo, T. Iinuma, R. Nakata, T. Ichimura, and Takane Hori. Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nature comm., 10(1):1-11, 2019. [ bib ]
[62] C. B. Agee. Phase transformations and seismic structure in the upper mantle and transition zone. In R. J. Hemley, editor, Ultrahigh-Pressure Mineralogy. Physics and Chemistry of the Earth's Deep Interior, volume 37 of Reviews in Mineralogy, pages 165-203. Mineralogical Society of America, Washington DC, 1998. [ bib ]
[63] M. R. Agius and S. Lebedev. Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophys. J. Int., 199:1395-1415, 2014. [ bib ]
[64] M. R. Agius and S. Lebedev. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophys. J. Int., 210:1823-1844, 2017. [ bib ]
[65] D. C. Agnew. SPOTL: Some programs for ocean-tide loading. Technical report, Scripps Institution of Oceanography, 2012. [ bib ]
[66] D. C. Agnew. Strainmeters and tiltmeters. Rev. Geophys., 24:579-624, 1986. [ bib ]
[67] J. C. Aitchison, J. R. Ali, and A. M. Davis. When and where did India and Asia collide? J. Geophys. Res., 112(B05423), 2007. [ bib | DOI ]
[68] H. Akaike. On entropy. In P. R. Krishnaiah, editor, Applications of Statistics, pages 27-41. North Holland, Amsterdam, 1977. [ bib ]
[69] M. Akaogi and E. Ito. Calorimetric study on majorite-perovskite transition in the system mg4si4o12-mg3al2si3o_12: transition boundaries with positive pressure-temperature slopes. Phys. Earth Planet. Inter., 114:129-140, 1999. [ bib ]
[70] M. Akaogi, Y. Hamada, T. Suzuki, and M. Kobayashi. High pressure transitions in the system mgal2o4-caal2o4: a new hexagonal aluminous phase with implication for the lower mantle. Phys. Earth Planet. Inter., 115:67-77, 1999. [ bib ]
[71] K. Aki and P. G. Richards. Quantitative Seismology. University Science Books, Sausalito, California, 2 edition, 2002. [ bib ]
[72] K. Aki and K. Kaminuma. Phase velocity in Japan. Part I. Love waves from the Aleutian shock of March 9, 1957. Bull. Earthq. Res. Inst. Tokyo Univ., 41:243-259, 1963. [ bib ]
[73] K. Aki. Maximum likelihood estimate of b in the formula logn = a-bm and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ., 43:237-239, 1965. [ bib ]
[74] K. Aki. Generation and propagation of G waves from the Niigata earthquake of June 16 1964. 2. Estimation of earthquake movement released energy and stress-strain drop from G wave spectrum. Bull. Earthq. Res. Inst. Tokyo Univ., 44:23-88, 1966. [ bib ]
[75] K. Aki. Scaling law of seismic spectrum. J. Geophys. Res., 72:1217-1231, 1967. [ bib ]
[76] K. Aki and B. Chouet. Origin of coda waves: source, attenuation and scattering effects. J. Geophys. Res., 80:3322-3342, 1975. [ bib ]
[77] K. Aki. Characterization of barriers on an earthquake fault. J. Geophys. Res., 84:6140-6148, 1979. [ bib ]
[78] K. Aki and P. G. Richards. Quantitative Seismology, volume 1. Freeman and Company, New York, 1980. [ bib ]
[79] K. Aki. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res., 89:5867-5872, 1984. [ bib ]
[80] K. Aki and P. G. Richards. Quantitative Seismology, volume 2. Freeman and Company, New York, 1980. [ bib ]
[81] F. Albarede and R. D. van der Hilst. Zoned mantle convection. Phil. Trans. Roy. Soc. Lon. A, 360:2569-2592, 2002. [ bib ]
[82] F. Albarede. Introduction to geochemical modeling. Cambridge University Press, 1995. [ bib ]
[83] F. Albarède. Time-dependent models of the U-Th-He and K-Ar evolution and the layering of mantle convection. Chem. Geol., 145:413-429, 1998. [ bib ]
[84] F. Albarède and R. D. van der Hilst. New mantle convection model may reconcile conflicting evidence. Eos Trans. AGU, 80:533-539, 1999. [ bib ]
[85] C. Alder, T. Bodin, Y. Ricard, Y. Capdeville, E. Debayle, and J. P. Montagner. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities. Geophys. J. Int., 211:1585-1600, 2017. [ bib ]
[86] S. T. Ali and A. M. Freed. Contemporary deformation and stressing rates in Southern Alaska. Geophys. J. Int., 183:557-571, 2010. [ bib ]
[87] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, L. C. Wilcox, and O. Ghattas. Slab stress and strain rate as constraints on global mantle flow. Geophys. Res. Lett., 37(L22308), 2010. [ bib | DOI ]
[88] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, and O. Ghattas. Multi-scale dynamics and rheology of mantle flow with plates. J. Geophys. Res., 117(B10402), 2012. [ bib | DOI ]
[89] C. Allégre. The evolution of mantle mixing. Phil. Trans. R. Soc. Lond. A, 360:2411-2431, 2002. [ bib ]
[90] C. J. Allègre and D. L. Turcotte. Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys. Res. Lett., 12:207-210, 1985. [ bib ]
[91] C. J. Allègre and D. L. Turcotte. Implications of a two-component marble-cake mantle. Nature, 323:123-127, 1986. [ bib ]
[92] C. Allègre. The behavior of the Earth. Harvard University Press, Cambridge MA, 1988. [ bib ]
[93] C. J. Allègre, J. L. Mouöl, H. D. Chau, and C. Narteau. Scaling organization of fracture tectonics (soft) and earthquake mechanism. Earth Planet. Sci. Lett., 92:215-233, 1995. [ bib ]
[94] C. J. Allègre, A. Hofmann, and K. O'Nions. The Argon constraints on mantle structure. Geophys. Res. Lett., 23:3555-3557, 1996. [ bib ]
[95] C. J. Allègre, J.L. Birck, F. Capmas, and V. Courtillot. Age of the deccan traps using 187re–187os systematics. Earth Planet. Sci. Lett., 170:197-204, 1999. [ bib ]
[96] C. R Allen. Active faulting in Northern Turkey. Technical Report 1577, Div. Sci. Calif. Inst. Tech., 1969. [ bib ]
[97] M. B. Allen and H. A. Armstrong. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr., Palaeoclim., Palaeoeco., 265:3152-3158, 2008. [ bib ]
[98] K. L. Allison and E. M. Dunham. Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophys., 733:232-258, 2018. [ bib ]
[99] Rafael Almeida, Eric O. Lindsey, Kyle Bradley, Judith Hubbard, Rishav Mallick, and Emma M. Hill. Can the updip limit of frictional locking on megathrusts be detected geodetically? Quantifying the effect of stress shadows on near-trench coupling. Geophys. Res. Lett., 45:4754-4763, 2018. [ bib ]
[100] Bjarne S.G. Almqvist and David Mainprice. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev. Geophys., 55(2):367-433, 2017. [ bib ]
[101] L. A. Alpert, A. Ghosh, T. W. Becker, I. W. Bailey, and M. S. Miller. Coseismic subduction zone strain-release as a constraint for slab dynamics. Eos Trans. AGU, 89(53):DI53A-1674, 2008. [ bib ]
[102] L. A. Alpert, T. W. Becker, and I. Bailey. Coseismic sbuduction zone strain-release as a constraint for slab dynamics. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 26, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[103] L. A. Alpert, T. W. Becker, and I. W. Bailey. Global slab deformation and centroid moment constraints on viscosity. Geochem., Geophys., Geosys., 11(Q12006), 2010. [ bib | DOI ]
[104] L. A. Alpert, I. W. Bailey, and T. W. Becker. Deformation and geometry of subducted lithosphere from an analysis of global centroid moment tensor data (abstract). Eos Trans. AGU, pages DI31A-1947, 2010. [ bib ]
[105] L. A. Alpert, M. S. Miller, and T. W. Becker. Slab tearing in 3-D models of subduction and continental collision: Application to the Banda Sea (abstract). XXV IUGG General Assembly, Melbourne, Australia, 2011. [ bib ]
[106] L. A. Alpert, M. S. Miller, T. W. Becker, and A. A. Allam. Structure beneath the Alboran from geodynamic flow models and seismic anisotropy. J. Geophys. Res., 118:1-13, 2013. [ bib | DOI ]
[107] P. Alvarado, S. Beck, G. Zandt, M. Araujo, and E. Triep. Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling. Geophys. J. Int., 163:580-598, 2005. [ bib ]
[108] W. Alvarez. Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet. Sci. Lett., 296:434-442, 2010. [ bib ]
[109] W. Alvarez. Geologic evidence for the plate-driving mechanism: the continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics, 9:1213-1220, 1990. [ bib ]
[110] C. Amante and B. W. Eakins. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. Technical report, National Geophysical Data Center, NOAA, 2009. NOAA Technical Memorandum NESDIS NGDC-24. Available online at www.ngdc.noaa.gov/mgg/global/global.html, accessed 11/2016. [ bib | DOI ]
[111] N.N. Ambraseys. Some characteristic features of the North Anatolian fault zone. Tectonophys., 9:143-165, 1970. [ bib ]
[112] F. Amelung and G. C. P. King. Large-scale tectonic deformation inferred from small earthquakes. Nature, 386:702-705, 1997. [ bib ]
[113] D. Amitrano and J. Schmittbuhl. Fracture roughness and gouge distribution of a granite shear band. J. Geophys. Res., 107(2375), 2002. [ bib | DOI ]
[114] D. Amitrano. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res., 108(2044), 2003. [ bib | DOI ]
[115] D. Amitrano, J.-R. Grasso, and D. Hantz. From diffuse to localised damage through elastic interaction. Geophys. Res. Lett., 26:2109-2112, 1999. [ bib ]
[116] C. J. Ammon and G. E. Randall. mtinv. Available online at http://eqseis.geosc.psu.edu/~cammon/HTML/MTinvDocs/mtinv01.html, accessed 10/2011, 1994. [ bib ]
[117] C. B. Amos, D. W. Burbank, D. C. Nobes, and S. A. L. Read. Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand. J. Geophys. Res., 112(B03S11), 2007. [ bib | DOI ]
[118] C. B. Amos, P. Audet, W. C. Hammond, R. Bürgmann, I. A. Johanson, and G. Blewitt. Uplift and seismicity driven by groundwater depletion in central California. Nature, 509:483-486, 2014. [ bib ]
[119] D. L. Anderson. The thermal state of the upper mantle: no role for mantle plumes. Geophys. Res. Lett., 27:3623-3626, 2000. [ bib ]
[120] D. L. Anderson. Topside tectonics. Science, 293:2016-2018, 2001. [ bib ]
[121] M. L. Anderson, G. Zandt, E. Triep, M. Fouch, and S. Beck. Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis. Geophys. Res. Lett., 31(L23608), 2004. [ bib | DOI ]
[122] D. L. Anderson. New theory of the Earth. Cambridge University Press, 2 edition, 2007. [ bib ]
[123] M. Anderson, P. Alvarado, G. Zandt, and S. Beck. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int., 171:419-434, 2007. [ bib ]
[124] K. Anderson and P. Segall. Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J. Geophys. Res., 116(B07204), 2011. [ bib | DOI ]
[125] K. Anderson and P. Segall. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004–2008. J. Geophys. Res., 118:2017-2037, 2013. [ bib | DOI ]
[126] D. L. Anderson. Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66:2953-2963, 1961. [ bib ]
[127] D. L. Anderson. Recent evidence concerning the structure and composition of the Earth's mantle. In Physics and Chemistry of the Earth, volume 6, pages 1-131. Pergmanon Press, Oxford UK, 1966. [ bib ]
[128] D. L. Anderson. A seismic equation of state. Geophys. J. R. Astr. Soc., 13:9-30, 1967. [ bib ]
[129] D. L. Anderson. Latest information from seismic observations. In T. F. Gaskell, editor, The Earth's Mantle, pages 355-420. Academic Press, New York, 1967. [ bib ]
[130] O. L. Anderson, E. Schreiber, and R. C. Liebermann. Some elastic constant data on minerals relevant to geophysics. Rev. Geophys. Space Phys., 6:491-524, 1968. [ bib ]
[131] D. L. Anderson. Chemical stratification of the mantle. J. Geophys. Res., 84:6297-6298, 1979. [ bib ]
[132] D. L. Anderson and A. M. Dziewoński. Upper mantle anisotropy: evidence from free oscillations. Geophys. J. R. Astr. Soc., 69:383-404, 1982. [ bib ]
[133] D. L. Anderson. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297:391-393, 1982. [ bib ]
[134] D. L. Anderson. A seismic equation of state. II. Shear properties and thermodynamics of the lower mantle. Phys. Earth Planet. Inter., 45:307-323, 1987. [ bib ]
[135] D. L. Anderson. Theory of the Earth. Blackwell Scientific Publications, Boston, 1989. Available online at http://resolver.caltech.edu/CaltechBOOK:1989.001, accessed 01/2019. [ bib ]
[136] O. Anderson and D. G. Isaak. Elastic constants of mantle minerals at high temperature. In T. Ahrens, editor, A Handbook of Physical Constants: Mineral Physics and Crystallography, volume 2 of AGU Handbook, pages 64-98. AGU, Washington, DC, 1995. [ bib ]
[137] R. Anderson, J. Repka, and G. Dick. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology, 24:47-51, 1996. [ bib ]
[138] M. Ando. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophys., 27:119-140, 1975. [ bib ]
[139] M. Ando, Y. Ishikawa, and H. Wada. S-wave anisotropy in the upper mantle under a volcanic area in Japan. Nature, 286:43-46, 1980. [ bib ]
[140] M. Ando, Y. Ishikawa, and F. Yamasaki. Shear-wave polarization anisotropy in the mantle beneath Honshu, Japan. J. Geophys. Res., 88:5850-5864, 1983. [ bib ]
[141] E. Andrews and M. I. Billen. Rheologic controls on slab detachment. Tectonophys., 464:60-69, 2009. [ bib ]
[142] D. J. Andrews and N. H. Sleep. Numerical modeling of tectonic flow behind Island Arc. Geophys. J. R. Astr. Soc., 38:237-251, 1974. [ bib ]
[143] J. Andrieux, S. Över, A. Poisson, and B. Olivier. The North Anatolian Fault Zone: distributed Neogene deformation in its northward convex part. Tectonophys., 243:135-154, 1995. [ bib ]
[144] J. Angelier, A. Tarantola, S. Manoussis, and B. Valette. Inversion of field data in fault tectonics to obtain the regional stress. 1: single phase fault populations: a new method of computing the stress tensor. Geophys. J. R. Astr. Soc., 69:607-621, 1982. [ bib ]
[145] D. K. Anglin and M. Fouch. Seismic anisotropy in the Izu-Bonin subduction system. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[146] F. Anguita and F. Hernán. The Canary Islands origin: a unifying model. J. Volc. Geoth. Res., 103:1-26, 2000. [ bib ]
[147] ANKORP working group. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature, 397:341-344, 1999. [ bib ]
[148] ANSYS, Inc. ANSYS Academic Research, Release 14.0, Help System, Coupled Field Analysis Guide, 2013. [ bib ]
[149] Boulder Real Time Technologies. Antelope, 2011. Available online at http://www.brtt.com/software.html, accessed 11/2011. [ bib ]
[150] M. Antolik, G. Ekström, A. M. Dziewoński, Y. J. Gu, J.-f. Pan, and L. Boschi. A new joint P and S velocity model of the mantle parameterized in cubic B-splines. In 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT): Proceedings, volume II, 2001. [ bib ]
[151] Hideo Aochi and Eiichi Fukuyama. Three-dimensional nonplanar simulation of the 1992 Landers earthquake. J. Geophys. Res., 107(B2), 2002. [ bib | DOI ]
[152] Eiichiro Araki, Demian M Saffer, Achim J Kopf, Laura M Wallace, Toshinori Kimura, Yuya Machida, Satoshi Ide, Earl Davis, and IODP Expedition 365 shipboard scientists. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust. Science, 356:1157-1160, 2017. [ bib ]
[153] C. Arenas, H. Millan, G. Pardo, and A. Pocovi. Ebro basin continental sedimentation associated with late compressional pyrhenean tectonics (north-eastern iberia): controld on basin margin fans and fluvial systems. Basin Research, 13:65-89, 2001. [ bib ]
[154] R. Arevalo, A. Ghosh, V. Lekic, V. C. Tsai, A. M. Dziewoński, L. H. Kellogg, J. Matas, W. R. Panero, and B. A. Romanowicz. Degree-2 in the Transition Zone and Near the CMB: Bottom up Tectonics? EOS Trans AGU, 89(53):DI21A-1744, 2008. [ bib ]
[155] E. Argand. La tectonique de l'asie. In Compte-rendu du 13e congrès Géologique International, pages 171-372, Brussels, 1924. [ bib ]
[156] D. F. Argus, R. G. Gordon, and C. DeMets. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem., Geophys., Geosys., 12(Q11001), 2011. [ bib | DOI ]
[157] D. F. Argus, Y. Fu, and F. W. Landerer. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett., 41:1971-1980, 2014. [ bib | DOI ]
[158] D. F. Argus, W. R. Peltier, R. Drummond, and A.W. Moore. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int., 198:537-563, 2014. [ bib ]
[159] D. F. Argus and R. G. Gordon. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett., 18:2039-2042, 1991. [ bib ]
[160] A. Arnulf, D. Bassett, A. J. Harding, S. Kodaira, and A. Nakanishi. Anatomy of the Nankai subduction zone. In AGU Fall Meeting 2019, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[161] A. ArRajehi, S. McClusky, R. Reilinger, M. Daoud, A. Alchalbi, S. Ergintav, F. Gomez, J. Sholan, F. Bou-Rabee, G. Ogubazghi, B. Haileab, S. Fisseha, L. Asfaw, S. Mahmoud, A. Rayan, R. Bendik, and L. Kogan. Geodetic constraints on present day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29(TC3011), 2010. [ bib | DOI ]
[162] I. Artemieva. Global 1o ×1o thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophys., 416:245-277, 2006. [ bib ]
[163] E. V. Artyushkov. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res., 78:7675-7708, 1973. [ bib ]
[164] M. F. Ashby and R. A. Verrall. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Phil. Trans. Roy. Soc. London A, 288:59-95, 1977. [ bib ]
[165] M. F. Ashby and C. G. Sammis. The damage mechanics of brittle solids in compression. Pure Appl. Geophys., 133:489-521, 1990. [ bib ]
[166] J. Aspden, W. McCourt, and M. Brook. Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia. J. Geol. Soc. London, 144:893-905, 1987. [ bib ]
[167] B. K. Atkinson. Fracture Mechanics of Rock. Academic Press, London, 1987. [ bib ]
[168] B. K. Atkinson. Introduction to fracture mechanics. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 1, pages 1-23. Academic Press, London, 1987. [ bib ]
[169] D. D. Pollard and P. Segall. Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 8, pages 277-350. Academic Press, London, 1987. [ bib ]
[170] V. C. Li. Mechanics of shear rupture applied to earthquake zones. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 9, pages 351-424. Academic Press, London, 1987. [ bib ]
[171] T. Atwater. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Amer. Bull., 81:3513-3536, 1970. [ bib ]
[172] T. Atwater and J. Stock. Pacific-North America plate tectonics of the Neogene southwestern United States: An update. Int. Geol. Rev., 40:375-402, 1998. [ bib ]
[173] P. Audet, M. G. Bostock, N. I. Christensen, and S. M. Peacock. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457:76-78, 2009. [ bib ]
[174] P. Audet and R. Bürgmann. Dominant role of tectonic inheritance in supercontinent cycles. Nature Geosc., 4:184-187, 2011. [ bib ]
[175] Pascal Audet and YoungHee Kim. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophys., 670:1-15, 2016. [ bib ]
[176] L. Auer, L. Boschi, T. W. Becker, T. Nissen-Meyer, and D. Giardini. Savani: A variable-resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets. J. Geophys. Res., 119:3006-3034, 2014. [ bib | DOI ]
[177] L. Auer, T. W. Becker, L. Boschi, and N. Schmerr. Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers. Geophys. Res. Lett., 42:9740-9742, 2015. [ bib | DOI ]
[178] N. J. Austin and B. Evans. Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35:343-346, 2007. [ bib ]
[179] J.-P. Avouac. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Ann. Rev. Earth Planet. Sci., 43:233-271, 2015. [ bib ]
[180] T. Baba, Y. Tanioka, P. R. Cummins, and K. Uhira. The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Phys. Earth Planet. Inter., 132:59-73, 2002. [ bib ]
[181] A. Babeyko and S. V. Sobolev. Quantifying different modes of the late Cenozoic shortening in the central Andes. Geology, 33:621-624, 2005. [ bib ]
[182] A. Y. Babeyko and S. Soboloev. High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs. Lithos, 103:205-216, 2008. [ bib ]
[183] V. Babuška and J. Plomerová. European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys. Earth Planet. Inter., 158:264-280, 2006. [ bib ]
[184] V. Babuška, J. Plomerová, and J. Šíleny. Spatial variations of P residuals and deep structure of the European lithospere. Geophys. J. R. Astr. Soc., 79:363-383, 1984. [ bib ]
[185] V. Babuška, J.-P. Montagner, J. Plomerová, and N. Girardin. Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy. Pure Appl. Geophys., 151:257-280, 1998. [ bib ]
[186] V. Babuška and M. Cara. Seismic Anisotropy in the Earth. Kluwer Academic Publishers, Dordrecht, 1991. [ bib ]
[187] P. Baccheschi, L. Margheriti, and M. S. Steckler. Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys. Res. Lett., 34(L05302), 2007. [ bib | DOI ]
[188] C. E. Bachmann, S. Wiemer, B. P. Goertz-Allmann, and J. Woessner. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett., 39(L09302), 2012. [ bib | DOI ]
[189] G. E. Backus. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67:4427-4440, 1962. [ bib ]
[190] G. E. Backus. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res., 70:3429-3439, 1965. [ bib ]
[191] G. Backus, J. Park, and D. Garbasz. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 67:415-435, 1981. [ bib ]
[192] Jeffrey L Bada and Jun Korenaga. Exposed areas above sea level on Earth> 3.5 Gyr ago: implications for prebiotic and primitive biotic chemistry. Life, 8(4):55, 2018. [ bib ]
[193] M. Baes, R. Gover, and R. Wortel. Switching between alternative responses of the lithosphere to continental collision. Geophys. J. Int., 2011. [ bib | DOI ]
[194] Q. Bai, S. J. Mackwell, and D. L. Kohlstedt. High-temperature creep of olivine single crystals, 1. mechanical results for buffered samples. J. Geophys. Res., 96:2441-2463, 1991. [ bib ]
[195] I. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of crustal coseismic strain release associated with different earthquake sizes as imaged by a tensor summation method. In 2005 SCEC Annual Meeting Abstracts, page 9, Los Angeles, CA, 2005. Southern California Earthquake Center. Available online at http://www.scec.org/meetings/2005am/2005abstracts.doc. [ bib ]
[196] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Strain release in southern california based on earthquake catalog data (abstract). Seis. Res. Lett., 76(2), 2005. [ bib ]
[197] I. Bailey, T. W. Becker, and Y. Ben-Zion. Characterization of co-seismic strain patterns inferred from ~ 180,000 focal mechanisms in Southern California. In 2006 SCEC Annual Meeting Abstracts, page 72, Los Angeles, CA, 2006. Southern California Earthquake Center. Available online at http://www.scec.org/meetings/2006am/. [ bib ]
[198] I. Bailey, T. W. Becker, Y. Ben-Zion, and M. Holschneider. Characterization of co-seismic strain patterns inferred from ~ 180,000 focal mechanisms in Southern California (abstract). Eos Trans. AGU, 87(52):T11C-0448, 2006. [ bib ]
[199] I. Bailey, T. W. Becker, and Y. Ben-Zion. Characterization of coseismic strain patterns inferred from ~180,000 focal mechanisms in Southern California. In 26th IUGG Conference on Mathematical Geophysics, Sea of Galilae, Israel, 2006. [ bib ]
[200] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Strain release in southern california based on earthquake catalog data. In Seismological Society of America Annual Meeting, San Francisco CA, 2006. [ bib ]
[201] I. W. Bailey, Y. Ben-Zion, T. W. Becker, and M. Holschneider. Heterogeneity of focal mechanism orientations in different parts of the San Jacinto fault zone. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 18:191, 2008. Available online at http://www.scec.org/meetings/2008am/2008SCECAnnualMeetingVolume.pdf, accessed 01/2009. [ bib ]
[202] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of co-seismic strain computed from southern California focal mechanisms. Geophys. J. Int., 177:1015-1036, 2009. [ bib ]
[203] I. W. Bailey, Y. Ben-Zion, T. W. Becker, and M. Holschneider. Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophys. J. Int., 183:433-450, 2010. [ bib ]
[204] I. W. Bailey, L. A. Alpert, T. W. Becker, and M. S. Miller. Co-seismic deformation of deep slabs based on summed CMT data. J. Geophys. Res., 177(B04404), 2012. [ bib | DOI ]
[205] I. W. Bailey, M. S. Miller, A. Levander, and K. Liu. VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. J. Geophys. Res., 117, 2012. [ bib | DOI ]
[206] F. Bajolet, J. Galeano-Prieto, F. Funiciello, A. M. Negredo, M. Moroni, and C. Faccenna. Continental delamination: insights from laboratory models. Geochem., Geophys., Geosys., 13, 2011. [ bib | DOI ]
[207] R. Burridge and L. Knopoff. Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am., 54:1875-1888, 1964. [ bib ]
[208] R. Burridge and L. Knopoff. Model and theoretical seismicity. Bull. Seismol. Soc. Am., 57:341-371, 1967. [ bib ]
[209] P. Bak and C. Tang. Earthquakes as a self-organized crititcal phenomenon. J. Geophys. Res., 94:15636-15637, 1989. [ bib ]
[210] P. Bak and Z. Christensen, K. Olami. Self-organized criticality: Consequences for statistics and predictability of earthquakes. In ?, editor, Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 18 of Geophys. Monograph, pages 69-74. International Union of Geodesy and Geophysics, 1994. [ bib ]
[211] A. Baker, R. W. Allmendinger, and J. A. Rech. Permanent deformation caused by subduction earthquakes in northern Chile. Nature Geosc., 6:492-496, 2013. [ bib ]
[212] W.H. Bakun et al. Seismic slip, aseismic slip and the mechanics of repeating earthquakes on the Calaveras fault, California. In S. Das et al., editors, Earthquake Source Mechanics, volume 37 of AGU Geophys. Mono., pages 195-207. American Geophysical Union, Washington DC, 1986. [ bib ]
[213] W.H. Bakun and T.V. McEvilly. Recurrence models and Parkfield, California earthquakes. J. Geophys. Res., 89:3051-3058, 1984. [ bib ]
[214] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.4, Argonne National Laboratory, 2013. [ bib ]
[215] Satish Balay, Shrirang Abhyankar, Mark Adams, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, W Gropp, et al. PETSc users manual. Argonne National Laboratory, 2019. [ bib ]
[216] G. Baldock and T. Stern. Width of mantle deformation across a continental transform: Evidence from upper mantle (Pn) seismic anisotropy measurements. Geology, 33:741-744, 2005. [ bib ]
[217] M. D. Ballmer, C. P. Conrad, E. I. Smith, and N. Harmon. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise. Geology, 41:479-482, 2012. [ bib ]
[218] Maxim D. Ballmer, Clinton P. Conrad, Eugene I. Smith, and Racheal Johnsen. Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling. Geochem., Geophys., Geosys., 2015. [ bib | DOI ]
[219] A. Baltay, G. Prieto, and G. C. Beroza. Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J. Geophys. Res., 115(B08314), 2010. [ bib | DOI ]
[220] D. Bamford. Pn velocity anisotropy in a continental upper mantle. Geophys. J. R. Astr. Soc., 49:29-48, 1977. [ bib ]
[221] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II - a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1-24/27, 2007. [ bib ]
[222] M. Barazangi and B. L. Isacks. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4:686-692, 1976. [ bib ]
[223] S. Barbot, Y. Fialko, and D. Sandwell. Effect of a compliant fault zone on the inferred earthquake slip distribution. J. Geophys. Res., 113(B06404), 2008. [ bib | DOI ]
[224] S. Barbot, N. Lapusta, and J. P. Avouac. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle. Science, 336:707-710, 2012. [ bib ]
[225] S. Barbot. Asthenosphere flow modulated by megathrust earthquake cycles. Geophys. Res. Lett., 45:6018-6031, 2018. [ bib ]
[226] M. Barchi, G. Minelli, and G. Pialli. The CROP03 profile: a synthesis of result on deep structures of the Northern Apennines. Mem. Soc. Geol. It., 52:383-400, 1998. [ bib ]
[227] D. H. N. Barker, S. Henrys, F. Caratori Tontini, P. M. Barnes, D. Bassett, E. Todd, and L. Wallace. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand. Geophys. Res. Lett., 45:12804-12813, 2018. [ bib ]
[228] A. Barnhoorn, S. F. Cox, D. J. Robinson, and T. Senden. Stress- and fluid-driven failure during fracture array growth: Implications for coupled deformation and fluid flow in the crust. Geology, 38:779-782, 2010. [ bib ]
[229] T. D. Barr and G. A. Houseman. Deformation fields around a fault embedded in a non-linear ductile medium. Geophys. J. Int., 125:473-490, 1996. [ bib ]
[230] G. Barruol and F. R. Fontaine. Mantle flow beneath La Réunion hotspot track from SKS splitting. Earth Planet. Sci. Lett., 362:108-121, 2013. [ bib ]
[231] G. Barruol and H. Kern. P and S wave velocities and shear wave splitting in the lower crustal/upper mantle transition (Ivrea zone). Experimental and calculated data. Phys. Earth Planet. Inter., 95:175-194, 1996. [ bib ]
[232] Guilhem Barruol and Hartmut Kern. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the ivrea zone容xperimental and calculated data. Phys. Earth Planet. Inter., 95(3-4):175-194, 1996. [ bib ]
[233] N. M. Bartlow and Y. Fialko. Modeling horizontal GPS seasonal signals caused by ocean loading. AGU Fall Meeting Abstract Volume, pages G23B-0486, 2014. Available online at http://adsabs.harvard.edu/abs/2014AGUFM.G23B0486B, accessed 08/2015. [ bib ]
[234] R. Bartole. The North Tyrrhenian-Northern Apennines post-collisional system: constraint for a geodynamic model. Terra Nova, 7:7-30, 1995. [ bib ]
[235] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochem., Geophys., Geosys., 16:1508-1540, 2015. [ bib ]
[236] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior. Geochem., Geophys., Geosys., 16:1541-1576, 2015. [ bib ]
[237] D. Bassett, D. T. Sandwell, Y. Fialko, and A. B. Watts. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature, 531:92-96, 2016. [ bib ]
[238] C. Bassin, G. Laske, and G. Masters. The current limits of resolution for surface wave tomography in North America (abstract). Eos Trans. AGU, 81:F897, 2000. [ bib ]
[239] G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, Cambridge UK, 1967. [ bib ]
[240] K.-J. Bathe. Finite Element Procedures. Prentice-Hall, London, 2007. [ bib ]
[241] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, London, 1982. [ bib ]
[242] M. Battaglia, M. H. Murray, E. Serpelloni, and R. Bürgmann. The Adriatic regions: an independent microplate within the Africa-Eurasia collision zone. Geophys. Res. Lett., 31, 2004. [ bib | DOI ]
[243] Alexander Bauer, Fabian Scheipl, Helmut Küchenhoff, and A.-A. Gabriel. Modeling spatio-temporal earthquake dynamics using generalized functional additive regression. In Proceedings of the 32nd International Workshop on Statistical Modelling, volume 2, pages 146-149, 2017. [ bib ]
[244] T. Baumann, B. J. P. Kaus, and A. Popov. Constraining effective rheology through parallel joint geodynamic inversion. Tectonophys., 631:197-211, 2014. [ bib ]
[245] T. Baumann and B. J. P. Kaus. Geodynamic inversion to constrain the nonlinear rheology of the lithosphere. Geophys. J. Int., 202:1299-1316, 2015. [ bib ]
[246] Y. Baumberger, P. Berthoud, and C. Caroli. Physical analysis of the state- and rate-dependent friction law. II. Dynamic friction. Phys. Rev. E, 60:3928-3939, 1999. [ bib ]
[247] G. Bayona, M. Cortes, C. Jaramillo, G. Ojeda, J. Aristizábal, Reyes, and A. Harker. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull., 120:1171-1197, 2008. [ bib ]
[248] Adam Beall, Åke Fagereng, and Susan Ellis. Strength of strained two-phase mixtures: Application to rapid creep and stress amplification in subduction zone mélange. Geophys. Res. Lett., 46:169-178, 2019. [ bib ]
[249] S. Beanland and M. M. Clark. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake (abstract). In The Geological Society of America, Cordilleran Section, 89th annual meeting. Abstracts with Programs, volume 25, page 7, 1993. [ bib ]
[250] B. C. Beaudoin, J. A. Hole, S. L. Klemperer, and A. M. Trehu. Location of the southern edge of the Gorda slab and evidence for an adjacent asthenospheric window: results from seismic profiling and gravity. J. Geophys. Res., 103:30101-30115, 1998. [ bib ]
[251] C. Beaumont, R. A. Jamieson, M. H. Nguyen, and B. Lee. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414:738-742, 2001. [ bib ]
[252] J. Beavan, P. Denys, M. Denham, B. Hager, T. Herring, and P. Molnar. Distribution of present-day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys. Res. Lett., 37(L16305), 2010. [ bib | DOI ]
[253] L. Beccaluva, P. Brotzu, G. Macciotta, L. Morbidelli, G. Serri, and G. Traversa. Cainozoic tectono-magmatic evolution and inferred mantle sources in the Sardo-Tyrrhenian area. In A. Boriani, M. Bonafede, G. B. Piccardo, and G. B. Vai, editors, The Lithosphere in Italy. Advances in Science Research, pages 15-40. Accademia Nazionale dei Lincei, Rome, 1989. [ bib ]
[254] T. W. Becker. Finite Elemente Modellierung zur Bruchaktivierung in Scherzonen. Master's thesis, Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. [ bib ]
[255] T. W. Becker. Deterministic chaos in two state-variable friction sliders and the effect of elastic interactions. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the physics of earthquakes, volume 120 of Geophys. Monograph, pages 5-26. American Geophysical Union, Washington, DC, 2000. [ bib ]
[256] T. W. Becker and L. Boschi. A comparison of tomographic and geodynamic mantle models. Geochem., Geophys., Geosys., 3(1), 2002. [ bib | DOI ]
[257] T. W. Becker and R. J. O'Connell. Predicting plate velocities with geodynamic models. Geochem., Geophys., Geosys., 2(12), 2001. [ bib | DOI ]
[258] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology. In Workshop on numerical modeling of mantle convection and lithospheric dynamics, Aussois, France, 2001. [ bib ]
[259] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology (abstract). Eos Trans. AGU, 82(47):T12C-0921, 2001. [ bib ]
[260] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Global azimuthal anisotropy from Rayleigh waves and circulation-derived finite strain (abstract). In MIT/WHOI/New England Workshop on Anisotropy and Imaging, Massachusetts Institute of Technology, Cambridge MA, 2002. [ bib ]
[261] T. W. Becker. Lithosphere-Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. [ bib ]
[262] T. W. Becker. Lithosphere-Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. Available at http://www-udc.ig.utexas.edu/external/becker/thesis.tp.times10.pdf. [ bib ]
[263] T. W. Becker and B. Schott. On boundary-element models of elastic fault interaction (abstract). Eos Trans. AGU, 83(47):NG62A-0925, 2002. [ bib ]
[264] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models. Geophys. J. Int., 155:696-714, 2003. [ bib ]
[265] T. W. Becker, D. K. Blackman, and V. Schulte-Pelkum. Seismic anisotropy in the western US as a testbed for advancing combined models of upper mantle geodynamics and texturing (abstract). Eos Trans. AGU, 85(47):T33A-1338, 2004. [ bib ]
[266] T. W. Becker, J. L. Hardebeck, and G. Anderson. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions. Geophys. J. Int., 160:634-650, 2005. [ bib ]
[267] T. W. Becker. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys. J. Int., 167:943-957, 2006. [ bib ]
[268] T. W. Becker and the CIG Global Flow Code Benchmark Group. Global spectral flow code benchmark and development plan. Technical report, University of Southern California, 2006. Available online at http://www-udc.ig.utexas.edu/external/becker/flow_code_project.051706.pdf, accessed 06/2016. [ bib ]
[269] T. W. Becker, G. Ekström, L. Boschi, and J. W. Woodhouse. Length-scales, patterns, and origin of azimuthal seismic anisotropy in the upper mantle as mapped by Rayleigh waves. Geophys. J. Int., 171:451-462, 2007. [ bib ]
[270] T. W. Becker, S. Chevrot, V. Schulte-Pelkum, and D. K. Blackman. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res., 111(B08309), 2006. [ bib | DOI ]
[271] T. W. Becker, V. Schulte-Pelkum, D. K. Blackman, J. B. Kellogg, and R. J. O'Connell. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett., 247:235-251, 2006. [ bib ]
[272] T. W. Becker. Stress and strain in southern California. Invited presentation at the Southern California Earthquake Center Annual Meeting, 2006. [ bib ]
[273] T. W. Becker, J. T. Browaeys, and T. H. Jordan. Stochastic analysis of shear wave splitting length scales. Earth Planet. Sci. Lett., 259:29-36, 2007. [ bib ]
[274] T. W. Becker. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett., 35(L05303), 2008. correction: doi:10.1029/2008GL033946. [ bib | DOI ]
[275] T. W. Becker, B. Kustowski, and G. Ekström. Radial seismic anisotropy as a constraint for upper mantle rheology. Earth Planet. Sci. Lett., 267:213-237, 2008. [ bib ]
[276] T. W. Becker, C. P. Conrad, B. Buffett, and R. D. Müller. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth Planet. Sci. Lett., 278:233-242, 2009. [ bib ]
[277] T. W. Becker, B. Steinberger, and C. O'Neill. HC - A global mantle circulation solver following [1452] and [3489] [ bib ]
[278] T. W. Becker and C. Faccenna. A review of the role of subduction dynamics for regional and global plate motions. In F. Funiciello and S. Lallemand, editors, Subduction Zone Geodynamics, Int. J. Earth Sci., pages 3-34. Springer, 2009. [ bib ]
[279] T. W. Becker. Fine-scale modeling of global plate tectonics. Science, 329:1020-1021, 2010. [ bib ]
[280] T. W. Becker and B. J. P. Kaus. Numerical Geodynamics. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, 2010. Lecture notes, 162 p., available online at http://www-udc.ig.utexas.edu/external/becker/preprints/Geodynamics540.pdf, accessed 05/2016. [ bib ]
[281] T. W. Becker and M. S. Miller. Caribbean slab-craton interactions constrained by shear wave splitting (abstract). Eos Trans. AGU, 91(26):T43A-06, 2010. [ bib ]
[282] T. W. Becker. Seismic anisotropy. In H. K. Gupta, editor, Encyclopedia of Solid Earth Geophysics. Springer, 2011. [ bib | DOI ]
[283] T. W. Becker and H. Kawakatsu. On the role of anisotropic viscosity for plate-scale flow. Geophys. Res. Lett., 38(L17307), 2011. [ bib | DOI ]
[284] T. W. Becker and C. Faccenna. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310:453-461, 2011. [ bib ]
[285] T. W. Becker. On recent seismic tomography for the western United States. Geochem., Geophys., Geosys., 13(Q01W10), 2012. [ bib | DOI ]
[286] T. W. Becker, S. Lebedev, and M. D. Long. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res., 117(B01306), 2012. Original and updated splitting data base available online from http://www-udc.ig.utexas.edu/external/becker/sksdata.html, accessed 01/2019. [ bib | DOI ]
[287] T. W. Becker and B. J. P. Kaus. Numerical Modeling of Earth Systems. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, Los Angeles, 2013. Lecture notes (215 pages), available online at http://www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf, accessed 12/2013. [ bib ]
[288] T. W. Becker, C. Faccenna, E. D. Humphreys, A. R. Lowry, and M. S. Miller. Static and dynamic support of western U.S. topography. Earth Planet. Sci. Lett., 402:234-246, 2014. [ bib ]
[289] T. W. Becker, C. P. Conrad, A. J. Schaeffer, and S. Lebedev. Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth Planet. Sci. Lett., 401:236-250, 2014. [ bib ]
[290] T. W. Becker, A. R. Lowry, C. Faccenna, B. Schmandt, A. Borsa, and C Yu. Western U.S. intermountain seismicity caused by changes in upper mantle flow. Nature, 524:458-461, 2015. [ bib ]
[291] T. W. Becker, A. J. Schaeffer, S. Lebedev, and C. P. Conrad. Implications of a comprehensive, spreading-aligned plate motion reference frame in light of seismic anisotropy and global trench migration (abstract). Eos Trans. AGU, (DI13C-01), 2015. [ bib ]
[292] T. W. Becker, A. J. Schaeffer, S. Lebedev, and S. P. Conrad. Toward a generalized plate motion reference frame. Geophys. Res. Lett., 42:3188-3196, 2015. [ bib | DOI ]
[293] T. W. Becker. Superweak asthenosphere in light of upper-mantle seismic anisotropy. Geochem., Geophys., Geosys., 18:1986-2003, 2017. [ bib | DOI ]
[294] T. W. Becker and W. Wang. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics (abstract). Eos Trans. AGU, 2017. AGU Fall Meeting, New Orleans. [ bib | DOI ]
[295] T. W. Becker, A. Hashima, A. M. Freed, and H. Sato. Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth Planet. Sci. Lett., 504:174-184, 2018. [ bib ]
[296] T. W. Becker and S. Lebedev. Dynamics of the lithosphere and upper mantle in light of seismic anisotropy. In H. Marquardt, M. Ballmer, S. Cottaar, and J. Konter, editors, Mantle Convection and Surface Expressions. American Geophysical Union, 2019. Preprint submitted to EarthArXiv, doi.org/10.31223/osf.io/kaznt. [ bib ]
[297] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1996, Freiberg/Sachsen, 1996. Deutsche Geophysikalische Gesellschaft. [ bib ]
[298] T. W. Becker and H. Schmeling. Finite element modeling of fault zone interactions. In EUG9 abstracts, Strassburg, 1997. European Union of Geosciences. [ bib ]
[299] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1997, Potsdam, 1997. Deutsche Geophysikalische Gesellschaft. [ bib ]
[300] T. Dahm and T. W. Becker. The elastic and viscous properties of highly fractured media. In EGS 1997 abstracts, Wien, 1997. European Geophysical Society. [ bib ]
[301] T. W. Becker and H. Schmeling. Earthquake recurrence time variations with and without fault zone interactions. Geophys. J. Int., 135:165-176, 1998. [ bib ]
[302] T. W. Becker, C. Faccenna, and R. J. O'Connell. The development of slabs in the upper mantle: insight from numerical and laboratory experiments (abstract). EOS, Trans. AGU, 79:S349, 1998. [ bib ]
[303] T. W. Becker, C. Faccenna, and R. J. O'Connell. Mantle winds and back-arc spreading: the influence of background flow on subdution in the upper mantle (abstract). Eos Trans. AGU, 79:F849, 1998. [ bib ]
[304] T. W. Becker, S. V. Panasyuk, R. J. O'Connell, and C. Faccenna. The backward-bent Indonesia slab. Eos Trans. AGU, 80:S18, 1999. [ bib ]
[305] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle (abstract). Eos Trans. AGU, 79:F599, 1998. [ bib ]
[306] T. W. Becker and A. Braun. New program maps geoscientific data sets interactively. Eos Trans. AGU, 79:505, 1998. [ bib ]
[307] T. W. Becker, C. Faccenna, R. J. O'Connell, and D. Giardini. The development of slabs in the upper mantle: insight from numerical and laboratory experiments. J. Geophys. Res., 104:15207-15225, 1999. [ bib ]
[308] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett., 171:351, 1999. [ bib ]
[309] T. W. Becker. On the spherical harmonic expansion of discontinuities on the Earth's surface. Final project for Harvard University course EPS202 “Inverse Theory” by Prof. A. M. Dziewoński, 1999. [ bib ]
[310] T. W. Becker. Finite Element Modeling of Fault Zone Interactions. Diploma thesis. Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. (In German). [ bib ]
[311] T. W. Becker and B. J. P. Kaus. Numerical Modeling of Earth Systems. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, Los Angeles, 2016. Lecture notes (224 pages), available online at http://www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf, accessed 09/2017. [ bib ]
[312] N. M. Beeler, T. E. Tullis, and J. D. Weeks. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett., 21:1987-1990, 1994. [ bib ]
[313] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151-162, 2003. [ bib ]
[314] C. Beghein and J. Trampert. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299:552-555, 2003. [ bib ]
[315] C. Beghein and J. Trampert. Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood algorithm. Geophys. J. Int., 157:163-1174, 2004. [ bib ]
[316] C. Beghein and J. Trampert. Lateral variations in radial anisotropy and consequences for the upper 1200km of the mantle. Geophys. Res. Abstr., 6:1348, 2004. [ bib ]
[317] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151-162, 2004. [ bib ]
[318] C. Beghein, J. Trampert, and H. J. van Heijst. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[319] C. Beghein, J. Resovsky, and R. D. van der Hilst. The signal of mantle anisotropy in the coupling of normal modes. Geophys. J. Int., 175:1209-1234, 2008. [ bib ]
[320] C. Beghein, K. Yuan, N. Schmerr, and Z. Xing. Changes in seismic anisotropy shed light on the nature of the Gutenberg discontinuity. Science, 343:1237-1240, 2014. [ bib ]
[321] N. Beghoul and M. Barazangi. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res., 94:7083-7104, 1989. [ bib ]
[322] M. D. Behn, J. Lin, and M. T. Zuber. A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting. Earth Planet. Sci. Lett., 202:725-740, 2002. [ bib ]
[323] M. D. Behn, C. P. Conrad, and P. G. Silver. Detection of upper mantle flow associated with the African Superplume. Earth Planet. Sci. Lett., 224:259-274, 2004. [ bib ]
[324] M. D. Behn, G. Hirth, and P. Kelemen. Trench-parallel anisotropy produced by foundering of arc lower crust. Science, 317:108-111, 2007. [ bib ]
[325] M. D. Behn, G. Hirth, and J. R. Elsenbeck II. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett., 282:178-189, 2009. [ bib ]
[326] M. Behn, K. Barnhart, T. W. Becker, J. Brown, E. Choi, C. Cooper, J. Dannberg, N. Gasparini, R. Gassmoeller, L. Hwang, B. Kaus, L. Kellogg, L. Lavier, E. Mittelstaedt, L. Moresi, A. Pusok, G. Tucker, P. Upton, and P. Val. Whitepaper reporting outcomes from NSF-sponsored workshop: CTSP: Coupling of tectonic and surface processes April 25-27, 2018; Boulder CO. Technical report, CSDMS, Boulder CO, 2018. 41 pp., available online at https://csdms.colorado.edu/mediawiki/images/CTSP_WhitePaper_Final.pdf, accessed 01/2020. [ bib ]
[327] M. Běhounková and H. Čížková. Long-wavelength character of subducted slabs in the lower mantle. Earth Planet. Sci. Lett., 275:43-53, 2008. [ bib ]
[328] W. M. Behr and J. P. Platt. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet. Sci. Lett., 303:181-192, 2011. [ bib ]
[329] W. M. Behr and J. P. Platt. Kinematic and thermal evolution during two-stage exhumation of a Mediterranean subduction complex. Earth Planet. Sci. Lett., 31(TC4025), 2012. [ bib | DOI ]
[330] W. M. Behr and J. P. Platt. Brittle faults are weak, yet the ductile middle crust is strong: implications for lithospheric mechanics. Geophys. Res. Lett., 41:8067-–8075, 2015. [ bib | DOI ]
[331] Whitney M. Behr and Douglas Smith. Deformation in the mantle wedge associated with Laramide flat-slab subduction. Geochem., Geophys., Geosys., 17:2643-2660, 2016. [ bib | DOI ]
[332] W. M. Behr and T. W. Becker. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett., 502:166-173, 2018. [ bib ]
[333] Whitney M Behr, Alissa J Kotowski, and Kyle T Ashley. Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology, 46:475-478, 2018. [ bib ]
[334] M. E. Bellardinelli, M. Cocco, O. Coutant, and F. Cotton. Redistribution of dynamic stress during coseismic ruptures: Evidence for fault interaction and earthquake triggering. J. Geophys. Res., 104:14925-14945, 1999. [ bib ]
[335] N. Bellahsen, C. Faccenna, Funiciello R., Daniel J.M., and L. Jolivet. Why did Arabia separate from Africa? Insight from 3D laboratory experiments. Earth Planet. Sci. Lett., 216:365-381, 2003. [ bib ]
[336] N. Bellahsen, C. Faccenna, and F. Funiciello. Dynamics of subduction and plate motion in laboratory experiments: insights into the plate tectonics behavior of the Earth. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[337] O. Bellier, S. Över, A. Poisson, and A. Anrieux. Recent temporal change in the stress state and modern stress field along the North Anatolian Fault Zone (Turkey). Geophys. J. Int., 131:61-86, 1997. [ bib ]
[338] L. Bello, N. Coltice, P. J. Tackley, D. Müller, and J. Cannon. Assessing the role of slab rheology in coupled plate-mantle convection models. Earth Planet. Sci. Lett., 430:191-201, 2015. [ bib ]
[339] Y. Ben-Zion. A note on quantification of the earthquake source. Seism. Res. Lett., 72:151-152, 2001. [ bib ]
[340] Y. Ben-Zion and L. Zhu. Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophys. J. Int., 148:F1-F5, 2002. [ bib ]
[341] Y. Ben-Zion and V. Lyakhovsky. Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure Appl. Geophys., 159:2385-2412, 2002. [ bib ]
[342] Y. Ben-Zion and C. G. Sammis. Characterization of fault zones. Pure Appl. Geophys., 160:677-715, 2003. [ bib ]
[343] Y. Ben-Zion. Key formulas in earthquake seismology. In International Handbook of Earthquake and Engineering Seismology, pages 1857-1875. Academic Press, 2003. [ bib ]
[344] Y. Ben-Zion, Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, N. Ozer, A. J. Michael, S. Baris, and M. Aktar. A shallow fault zone structure illuminated by trapped waves in the Karadere-Düuzce branch of the North Anatolian fault, western Turkey. Geophys. J. Int., 152:699-717, 2003. [ bib ]
[345] Y. Ben-Zion and V. Lyakhovsky. Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology. Geophys. J. Int., pages 197-210, 2006. 165. [ bib ]
[346] Y. Ben-Zion. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes. Rev. Geophys., 46(RG4006), 2008. [ bib | DOI ]
[347] Y. Ben-Zion, Rice, and R. J. R. Dmowska. Interaction of the San Andreas fault creeping segment with adjacent great rupture zones and earthquake recurrence at Parkfield. J. Geophys. Res., 98:2135-2144, 1993. [ bib ]
[348] Y. Ben-Zion and J. R. Rice. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res., 100:12959-12983, 1995. [ bib ]
[349] Y. Ben-Zion and J. R. Rice. Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res., 102:17771-17784, 1997. [ bib ]
[350] Y. Ben-Zion, K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon. Self-driven mode switching of earthquake activity on a fault system. Earth Planet. Sci. Lett., 172:11-21, 1999. [ bib ]
[351] G. Benettin, A. Galgani, A. Giorgilli, and J.-M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. part 2: Numerical application. Meccanica, 15:21, 1980. [ bib ]
[352] W. Ben Ismail and D. Mainprice. An olivine fabric database; an overview of upper mantle fabrics and seismic anisotropy. Tectonophys., 296:145-157, 1998. [ bib ]
[353] R. A. Bennett, B. P. Wernicke, N. A. Niemi, A. M. Friedrich, and J. L. Davis. Comtemporary strain rates in the northern Basin and Range province from GPS data. Tectonics, 22, 2003. [ bib | DOI ]
[354] R. A. Bennett, W. Rodi, and R. E. Reilinger. Global Positioning System constraints on fault slip rates in southern California and northern Baja. J. Geophys. Res., 101:21943-21960, 1996. [ bib ]
[355] R. A. Bennett, J. L. Davis, and B. P. Wernicke. Present-day pattern of cordilleran deformation in the Western United States. Geology, 27:371-374, 1999. [ bib ]
[356] G. D. Bensen, M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169:1239-1260, 2007. [ bib ]
[357] G. D. Bensen, M. H. Ritzwoller, and N. M. Shapiro. Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res., 113(B05306):10.1029/2007JB005248, 2008. [ bib ]
[358] H. Berckhemer. Grundlagen der Geophysik. Wiss. Buchgesellschaft, Darmstadt, 1990. [ bib ]
[359] D. Bercovici, Y. Ricard, and M. Richards. The relationship between mantle dynamics and plate tectonics: a primer. In M. Richards, R. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motions, volume 121 of Geophys. Monograph, pages 5-46. American Geophysical Union, Washington, DC, 2000. [ bib ]
[360] D. Bercovici, Y. Ricard, and G. Schubert. A two-phase model for compaction and damage. 3. Applications to shear localization and plate boundary formation. J. Geophys. Res., 106:8925-8939, 2001. [ bib ]
[361] D. Bercovici. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205:107-121, 2003. [ bib ]
[362] D. Bercovici and S.-i. Karato. Whole-mantle convection and the transition-zone water filter. Nature, 425:39-44, 2003. [ bib ]
[363] D. Bercovici and Y. Ricard. Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res., 110(B0340), 2005. [ bib | DOI ]
[364] D. Bercovici and Y. Ricard. Plate tectonics, damage and inheritance. Nature, 508:513-516, 2014. [ bib ]
[365] D. Bercovici, P. T. Tackley, and Y. Ricard. The generation of plate tectonics from mantle convection. In Treatise on Geophysics, pages 271-318. Elsevier, 2 edition, 2015. [ bib ]
[366] D. Bercovici and Y. Ricard. Grain-damage hysteresis and plate tectonic states. Phys. Earth Planet. Inter., 253:31-47, 2016. [ bib ]
[367] David Bercovici. A simple model of plate generation from mantle flow. Geophys. J. Int., 114:635-650, 1993. [ bib ]
[368] D. Bercovici. A source-sink model of the generation of plate-tectonics from non-Newtonian mantle flow. J. Geophys. Res., 100:2013-2030, 1995. [ bib ]
[369] D. Bercovici. On the purpose of toroidal motion in a convecting mantle. Geophys. Res. Lett., 22:3107-3110, 1995. [ bib ]
[370] D. Bercovici. Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication. Earth Planet. Sci. Lett., 133:41-51, 1996. [ bib ]
[371] P. A. Berge, J. G. Berryman, and B. P. Bonner. Influence of microstructure on rock elastic properties. Geophys. Res. Lett., 20:2619-2622, 1993. [ bib ]
[372] S. Y. Bergeron, D. A. Yuen, and A. P. Vincent. Capabilities of 3-D wavelet transforms to detect plume-like structures from seismic tomography. Geophys. Res. Lett., 27:3433-3436, 2000. [ bib ]
[373] Rachel E Bernard and Whitney M Behr. Fabric heterogeneity in the Mojave lower crust and lithospheric mantle in Southern California. J. Geophys. Res., 122:5000-5025, 2017. [ bib ]
[374] Rachel E. Bernard and Whitney M. Behr. Fabric heterogeneity in the Mojave lower crust and lithospheric mantle in Southern California. J. Geophys. Res., 122:5000-5025, 2017. [ bib | DOI ]
[375] R. A. Bernard, W. M. Behr, T. W. Becker, and D. Young. Relationships between olivine LPO and deformation conditions in naturally deformed rocks and implications for mantle seismic anisotropy (abstract). Eos Trans. AGU, 2018. MR41-02. AGU Fall Meeting, New Orleans. [ bib ]
[376] R. Bernard, W. M. Behr, T. W. Becker, and D. Young. Relationships between olivine CPO and deformation parameters in naturally deformed rocks and implications for mantle seismic anisotropy. Geochem., Geophys., Geosys., 2019. [ bib | DOI ]
[377] Gregory C Beroza and Satoshi Ide. Slow earthquakes and nonvolcanic tremor. Ann. Rev. Earth Planet. Sci., 39:271-296, 2011. [ bib ]
[378] G. C. Beroza and M. D. Zoback. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction. Science, 259:210-212, 1993. [ bib ]
[379] É. Beucler, É. Stutzmann, and J.-P. Montagner. Surface wave higher mode phase velocity measurements usig a roller coaster type algorithm. Geophys. J. Int., 155:289-307, 2003. [ bib ]
[380] É. Beucler and J.-P. Montagner. Computation of large anisotropic seismic heterogeneities (CLASH). Geophys. J. Int., 165:447-468, 2006. [ bib ]
[381] M. Bevis and B. L. Isacks. Hypocentral trend surface analysis: Probing the geometry of Benioff zones. J. Geophys. Res., 89:6153-6170, 1984. [ bib ]
[382] M. Bevis. The curvature of Wadati-Benioff zones and the torsional rigidity of subducting plates. Nature, 323:52-53, 1986. [ bib ]
[383] M. Bevis. Seismic slip and down dip strain rate in Wadati-Benioff zones. Science, 240:1317-1319, 1988. [ bib ]
[384] M. Bevis, F. W. Taylor, B. E. Schutz, J. Recy, B. L. Isacks, S. Helu, R. Singh, E. Kendrick, J. Stowell, B. Taylor, and S. Calmant. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature, 374:249-251, 1995. [ bib ]
[385] M. J. Bezada, M. B. Magnani, C. A. Zelt, M. Schmitz, and A. Levander. The Caribbean-South American plate boundary at 65oW: Results from wide-angle seismic data. J. Geophys. Res., 115(B08402), 2010. [ bib | DOI ]
[386] M. J. Bezada, A. Levander, and B. Schmandt. Subduction in the southern Caribbean: Images from finite-frequency P wave tomography. J. Geophys. Res., 115(B12333), 2010. [ bib | DOI ]
[387] M. J. Bezada and E. D. Humphreys. Contrasting rupture processes during the April 11, 2010 deep-focus earthquake beneath Granada, Spain. Earth Planet. Sci. Lett., 353:38-46, 2012. [ bib ]
[388] M. J. Bezada, E. D. Humphreys, D. R. Toomey, M. Harnafi, and J. M. Dávila. Western mediterranean slab rollback revealed by upper mantle tomography. Earth Planet. Sci. Lett., submitted, 2013. [ bib ]
[389] R. Bhagavatula, K. Chen, and C. Jayaprakash. Earthquakes in a model of seismic zone with embedded pre-existing faults. Geophys. Res. Lett., 22:1301-1304, May 1995. [ bib ]
[390] T. A. Bianco, G. Ito, J. M. Becker, and M. O. Garcia. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem., Geophys., Geosys., 8, 2005. [ bib | DOI ]
[391] R. Biegel and C. G. Sammis. Relating fault mechanics to fault zone structure. Adv. Geophys., 47:65-276, 2004. [ bib ]
[392] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. nteraction of a dynamic rupture on a fault plane with short frictionless fault branches. Pure Appl. Geophys., 164:1881-1904, 2007. [ bib ]
[393] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. An experimental study of the effect of off-fault damage on the velocity of a slip pulse. J. Geophys. Res., 113(B04302), 2008. [ bib | DOI ]
[394] R. L. Biegel, C. G. Sammis, and J. H. Dieterich. The frictional properties of a simulated gouge having a fractal particle distribution. J. Struct. Geol., 11:827-846, 1989. [ bib ]
[395] H. Bijwaard, W. Spakman, and E.R. Engdahl. Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103:30055-30078, 1998. [ bib ]
[396] Susan L Bilek, Susan Y Schwartz, and Heather R DeShon. Control of seafloor roughness on earthquake rupture behavior. Geology, 31:455-458, 2003. [ bib ]
[397] S. Bilek, C. P. Conrad, and C. Lithgow-Bertelloni. Slab pull, slab weakening and their relation to deep intra-slab seismicity. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[398] Susan L Bilek and Thorne Lay. Subduction zone megathrust earthquakes. Geosphere, 14:1468-1500, 2018. [ bib ]
[399] R. Bilham and G. C. P. King. The morphology of strike-slip-faults: Examples from the San-Andreas fault, California. J. Geophys. Res., 94:10204-10216, August 1989. [ bib ]
[400] R. Bilham. Earthquakes and sea level: space and terrestrial metrology on a changing planet. Rev. Geophys., 29:1-29, 1991. [ bib ]
[401] M. I. Billen and M. Gurnis. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett., 193:227-236, 2001. [ bib ]
[402] M. I. Billen and M. Gurnis. Comparison of dynamic flow models for the Central Aleuitan and Tonga-Kermadec subduction zones. Geochem., Geophys., Geosys., 4, 2003. [ bib | DOI ]
[403] M. I. Billen and M. Gurnis. Multiscale dynamics of the Tonga-Kermadec subduction zone. Geophys. J. Int., 153:359-388, 2003. [ bib ]
[404] M. I. Billen and G. A. Houseman. Lithospheric instability in obliquely convergent margins: San Gabriel Mountains, southern California. J. Geophys. Res., 109(B01404), 2004. [ bib | DOI ]
[405] M. I. Billen and G. Hirth. Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[406] M. I. Billen and M. Gurnis. Constraints on subducting plate strength within the Kermadec trench. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[407] M. I. Billen and G. Hirth. Rheologic controls on slab dynamics. Geochem., Geophys., Geosys., 8(Q08012), 2007. [ bib | DOI ]
[408] M. I. Billen. Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci., 36:325-356, 2008. [ bib ]
[409] M. I. Billen. Slab dynamics in the transition zone. Phys. Earth Planet. Inter., 183:296–-308, 2010. [ bib ]
[410] B. Bills, K. D. Adams, and S. G. Wesnousky. Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. J. Geophys. Res., 112, 2007. [ bib | DOI ]
[411] C. R. Bina and H. Kawakatsu. Buoyancy, bending, and seismic visibility in deep slab stagnation. Phys. Earth Planet. Inter., 183:330–-340, 2010. [ bib ]
[412] P. Bird. Stress direction history of the western United States and Mexico since 85 Ma. Tectonics, 21(3), 2002. [ bib | DOI ]
[413] P. Bird. Neotectonic velocity field of the western United States (abstract). Eos Trans. AGU, 83(47):NG62A-0931, 2002. [ bib ]
[414] P. Bird. An updated digital model of plate boundaries. Geochem., Geophys., Geosys., 4(3):1027, 2003. [ bib | DOI ]
[415] P. Bird, Z. Liu, and W. K. Rucker. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis. J. Geophys. Res., 113(B11406), 2008. [ bib | DOI ]
[416] P. Bird. Fault slip rates in the western U.S. from a joint fit to geologic offsets, GPS velocities, and stress directions (abstract). Eos Trans. AGU, 89(52):T23R-08, 2008. [ bib ]
[417] P. Bird. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. J. Geophys. Res., 114(B11403), 2009. [ bib | DOI ]
[418] P. Bird. Thin-shell dynamic F-E model SHELLS with faults, 3-D structure, and realistic rheology. Unpublished model derived for the SCEC CSM using the method of [427], available online at http://sceczero.usc.edu/projects/CSM/model_metadata?type=stress&model=SHELLS, accessed 10/2013, 2012. [ bib ]
[419] P. Bird. Continental delamination and the Colorado Plateau. J. Geophys. Res., 84:7561-7571, 1979. [ bib ]
[420] P. Bird and K. Piper. Plane-stress finite-element models of tectonic flow in Southern California. Phys. Earth Planet. Inter., 21:158-175, 1980. [ bib ]
[421] P. Bird and J. Baumgardner. Fault friction, regional stress, and crust-mantle coupling in Southern California from finite element models. J. Geophys. Res., 89:1932-1944, 1984. [ bib ]
[422] P. Bird. Formation of the Rocky Mountains, western United States: a continuum computer model. Science, 239:1501-1507, 1988. [ bib ]
[423] P. Bird. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res., 96:10275-10286, 1991. [ bib ]
[424] P. Bird and X. Kong. Computer simulations of California tectonics confirm very low strength of major faults. Bull. Seismol. Soc. Am., 106:159-174, 1994. [ bib ]
[425] P. Bird and Y. Li. Interpolation of principal stress directions by nonparametric statistics: global maps with confidence limits. J. Geophys. Res., 101:5435-5443, 1996. [ bib ]
[426] P. Bird. Testing hypothesis on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res., 103:10115-10129, 1998. [ bib ]
[427] P. Bird. Thin-plate and thin-shell finite element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosc., 25:383-394, 1999. [ bib ]
[428] Thomas Birren and Jacqueline E Reber. The impact of rheology on the transition from stick-slip to creep in a semibrittle analog. J. Geophys. Res., 124:3144-3154, 2019. [ bib ]
[429] C. B. Biryol, G. Zandt, S. L. Beck, A. A. Ozacar, H. E. Adiyaman, and C. R. Gans. Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone. Geophys. J. Int., 181:1201-1213, 2010. [ bib ]
[430] R. Biswas, A. F. Arnulf, M. K. Sen, D. Datta, and P. Jaysaval. Ray-based tomography and acoustic full waveform inversion with the reversible jump Markov chain Monte Carlo algorithm. In AGU Fall Meeting Abstract Volumne. American Geophysical Union, 2018. S31D-0526. [ bib ]
[431] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DES3D on Bitbucket. Online at bitbucket.org/tan2/dynearthsol3d/src, accessed 11/2016, 2016. [ bib ]
[432] D. Bittner and H. Schmeling. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int., 123(59-70), 1995. [ bib ]
[433] D. K. Blackman, H.-R. Wenk, and J.-M. Kendall. Seismic anisotropy of the upper mantle: 1. Factors that affect mineral texture and effective elastic properties. Geochem., Geophys., Geosys., 3(2001GC000248), 2002. [ bib ]
[434] D. K. Blackman and J.-M. Kendall. Seismic anisotropy of the upper mantle: 2. Predictions for current plate boundary flow models. Geochem., Geophys., Geosys., 3(2001GC000247), 2002. [ bib ]
[435] D. Blackman. Use of mineral physics, with geodynamic modelling and seismology, to investigate flow in the Earth's mantle. Rep. Prog. Phys., 70:659-689, 2007. [ bib ]
[436] D.K. Blackman, D.E. Boyce, O. Castelnau, P. R. Dawson, and G Laske. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy. Geophys. J. Int., 210:1481-1493, 2017. [ bib ]
[437] D. K. Blackman, J.-M. Kendall, P. R. Dawson, and H.-R. Wenk. Teleseismic imaging of subaxial flow at mid-ocean ridges: traveltime effects of anisotropic mineral texture in the mantle. Geophys. J. Int., 127:415-426, 1996. [ bib ]
[438] D. K. Blackman and J.-M. Kendall. Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Phil. Trans. Roy. Soc. Lond. A, 235:217-231, 1997. [ bib ]
[439] D. D. Blackwell and M. Richards. Calibration of the AAPG Geothermal Survey of North America BHT data base (abstract). In AAPG Annual Meeting, Dallas, TX, page 87616, 2004. updated data compilation based on [440], available online at http://www.smu.edu/geothermal/2004NAMap/, accessed 05/2005. [ bib ]
[440] D. D. Blackwell, J. L. Steele, and L. S. Carter. Heat flow patterns of the North American continent: A discussion of the DNAG geothermal map of North America. In D. B. Slemmons, E. R. Engdahl, and D. D. Blackwell, editors, Neotectonics of North America, volume 1 of Geol. Soc. Amer. DNAG Decade Map, pages 423-437. Geol. Soc. Amer., 1991. [ bib ]
[441] M. Blanco and W. Spakman. The P-wave velocity structure of the mantle below the Iberian Peninsula: evidence for subducted lithosphere below southern Spain. Tectonophys., 221:13-34, 1993. [ bib ]
[442] M. L. Blanpied and T. E. Tullis. The stability and behavior of a frictional system with a two state variable constitutive law. Pure Appl. Geophys., 124:415-444, 1986. [ bib ]
[443] W. Bleeker. The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71:99-134, 2003. [ bib ]
[444] Q. Bletery, A. M. Thomas, A. W. Rempel, L. Karlstrom, A. Sladen, and L. De Barros. Mega-earthquakes rupture flat megathrusts. Science, 354:1027-1031, 2016. [ bib ]
[445] G. Blewitt. NGL/UNR GPS Data Analysis Strategy Summary. Technical report, Nevada Geodetic Laboratory, University of Nevada, 2016. Available online at http://geodesy.unr.edu/gps/ngl.acn.txt, accessed 11/2016. [ bib ]
[446] H. Blumenauer and G. Pusch. Technische Bruchmechanik. Dtsch. Verlag f"ur Grundstoffindustrie, Leipzig, 3 edition, 1993. [ bib ]
[447] M. Boccaletti, P. Elter, and G. Guazzone. Polaritá strutturali delle alpi e dell' appennino settentrionale in rapporto all'inversione di una zona di subduzione nord-tirrenica. Mem. Soc. Geol. It., 10:371-378, 1971. [ bib ]
[448] Y. Bock, R. M. Nikolaidis, P. J. de Jonge, and M. Bevis. Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res., 105:28223-28253, 2000. [ bib ]
[449] P. Bodin and J.N. Brune. On the scaling of slip with rupture length for shallow strike-slip earthquakes: Quasi-static models and dynamic rupture propagation. Bull. Seismol. Soc. Am., 86:1292-1299, October 1996. [ bib ]
[450] T. Bodin, M. Sambridge, H. Tkalcic, P. Arroucau, K. Gallagher, and N. Rawlinson. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res., 117, 2012. [ bib | DOI ]
[451] T. Bodin, J. Leiva, B. A. Romanowicz, V. Maupin, and H. Yuan. Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophys. J. Int., 206:605-629, 2016. [ bib ]
[452] M. Bodmer, D. R. Toomey, E. E. Hooft, and J. Braunmiller. Seismic anisotropy beneath the Juan de Fuca plate system: Evidence for heterogeneous mantle flow. Geology, 43, 2015. [ bib | DOI ]
[453] L. Bodri and B. Bodri. Numerical investigation of tectonic flow in island-arc areas. Tectonophys., 50:163-175, 1978. [ bib ]
[454] G. Bokelmann and E. D. Humphreys. Plate-mantle interaction and forces that move plates. Eos Trans. AGU, 81(48), 2000. Special session at AGU Fall Meeting. [ bib ]
[455] G. H. R. Bokelmann and G. C. Beroza. Depth-dependent earthquake focal mechanism orientation: evidence for a weak zone in the lower crust. J. Geophys. Res., 105:21683-21696, 2000. [ bib ]
[456] G. H. R. Bokelmann. Convection-driven motion of the north American craton: evidence from P-wave anisotropy. Geophys. J. Int., 148:278-287, 2002. [ bib ]
[457] G. Bokelmann. Which forces drive North America? Geology, 30:1027, 2002. [ bib ]
[458] G. Bokelmann and E. Maufroy. Mantle structure under Gibraltar constrained by dispersion of body waves. Geophys. Res. Lett., 34(L22305), 2007. [ bib | DOI ]
[459] A. N. B. Boliakov and H. J. Herrmann. Self-organized criticality of plastic shear bands in rocks. Geophys. Res. Lett., 21:2143-2146, 1994. [ bib ]
[460] M. Bonafede and A. Neri. Effects induced by an earthquake on its fault plane: a boundary element study. Geophys. J. Int., 141:43-56, 2000. [ bib ]
[461] M. Bonafede, M. Dragoni, and E. Boschi. Quasi-static crack models and the frictional stress threshold criterion for slip arrest. J. Geophys. Res., 83:615-637, 1985. [ bib ]
[462] M. Bonafede, M. Dragoni, and A. Morelli. On the existence of a periodic dislocation cycle in horizontally layered viscoelastic model. J. Geophys. Res., 91:6396-6404, May 1986. [ bib ]
[463] Y. Boneh and Y. Skemer. The effect of deformation history on the evolution of olivine CPO. Earth Planet. Sci. Lett., 406:213-222, 2014. [ bib ]
[464] Y. Boneh, L. F. Morales, É. Kaminski, and P. Skemer. Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle. Geochem., Geophys., Geosys., 16(10):3436-3455, 2015. [ bib | DOI ]
[465] Y. Boneh, D. Wallis, L. N. Hansen, M. Krawczynski, and P. Skemer. Oriented grain growth and modification of “frozen anisotropy” in the lithospheric mantle. Earth Planet. Sci. Lett., 474:368-374, 2017. [ bib ]
[466] N. L. Boness and M. D. Zoback. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34:825-828, 2006. [ bib ]
[467] M. G. Bonilla and J. M. Buchanan. Interim report on worldwide historic surface faulting. U.S. Geol. Surv., Open-File Rept., Washington, D.C., 1970. [ bib ]
[468] M. Bonini. Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics, 22, 2003. [ bib | DOI ]
[469] M. Bonnin, A. Tommasi, R. Hassani, S. Chevrot, J. Wookey, and G. Barruol. Numerical modelling of the upper-mantle anisotropy beneath a migrating strike-slip plate boundary: the San Andreas Fault system. Geophys. J. Int., 191:436-458, 2012. [ bib ]
[470] D. C. Booth and S. Crampin. The anisotropic reflectivity technique: theory. Geophys. J. R. Astr. Soc., 72:31-45, 1985. [ bib ]
[471] C. Borrero and H. Castillo. Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología UIS, 28:23-34, 2006. [ bib ]
[472] C. Borrero, L. M. Toro, M. Alvarán, and H. Castillo. Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruíz volcano, Colombia. Geofís. Inter., 48:149-169, 2009. [ bib ]
[473] A. A. Borsa, D. C. Agnew, and D. R. Cayan. Ongoing drought-induced uplift in the western United States. Science, 345:1587-1590, 2014. [ bib ]
[474] A. A. Borsa and D. C. Agnew. Drought-induced stress changes on faults associated with the 2014 South Napa earthquake. AGU Fall Meeting Abtract Volume, pages S44D-05, 2014. Available online at http://http://adsabs.harvard.edu/abs/2014AGUFM.S44D..05B, accessed 08/2015. [ bib ]
[475] S. Borsi and R. Dubois. Donnes geochronologiques sue l'histoire hercynienne et alpine de la Calabre centrale. C. R. Acad. Sci. Paris, 266:72-75, 1968. [ bib ]
[476] V. Bortolotti, G. Principi, and B. Treves. Mesozoic evolution of western Tethys and the Europe/Iberia/Adria plate junction. Mem. Soc. Geol. It., 45:393-407, 1990. [ bib ]
[477] L. Boschi and A. M Dziewoński. Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res., 105:25567-25594, 2000. [ bib ]
[478] L. Boschi and G. Ekström. New images of the Earth's upper mantle from measurements of surface-wave phase velocity anomalies. J. Geophys. Res., 107, 2002. [ bib | DOI ]
[479] L. Boschi. Measures of resolution in global body wave tomography. Geophys. Res. Lett., 30, 2003. [ bib | DOI ]
[480] L. Boschi, G. Ekström, and B. Kustowski. Multiple resolution surface wave tomography: the Mediterranean basin. Geophys. J. Int., 157:293-304, 2004. [ bib ]
[481] L. Boschi and J. H. Woodhouse. Surface wave ray tracing and azimuthal anisotropy: generalized spherical harmonic approach. Geophys. J. Int., 164:569-578, 2006. [ bib ]
[482] L. Boschi, T. W. Becker, G. Soldati, and A. M. Dziewoński. On the relevance of Born theory in global seismic tomography. Geophys. Res. Lett., 33(L06302), 2006. [ bib | DOI ]
[483] L. Boschi, T. W. Becker, and B. Steinberger. Mantle plumes: dynamic models and seismic images. Geochem., Geophys., Geosys., 8(Q10006), 2007. [ bib | DOI ]
[484] L. Boschi, T. W. Becker, and B. Steinberger. On the statistical significance of correlations between synthetic mantle plumes and tomographic models. Phys. Earth Planet. Inter., 167:230-238, 2008. [ bib ]
[485] L. Boschi, T. W. Becker, G. Ekström, H. J. van Heijst, N. A. Simmons, and J. Trampert. Vertical coherency of heterogeneity in the Earth's mantle constrained from a comprehensive set of global seismic data (abstract). Eos Trans. AGU, 90(52):U23D-0064, 2009. [ bib ]
[486] L. Boschi, B. Fry, G. Ekström, and D. Giardini. The European upper mantle as seen by surface waves. Surv. Geophys., 30:463-501, 2009. [ bib ]
[487] L. Boschi, C. Faccenna, and T. W. Becker. Mantle structure and dynamic topography in the Mediterranean Basin. Geophys. Res. Lett., 37(L20303), 2010. [ bib | DOI ]
[488] L. Boschi, T. W. Becker, F. Cammarano, and S. Speziale. Mapping mineralogical phase transformations from global seismic data. Abstract U51A-0020 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec., 2010. [ bib ]
[489] L. Boschi and T. W. Becker. Vertical coherence in mantle heterogeneity from global seismic data. Geophys. Res. Lett., 38(L20306), 2011. [ bib | DOI ]
[490] L. Boschi and A. M. Dziewoński. `High' and `low' resolution images of the Earth's mantle - Implications of different approaches to tomographic modeling. J. Geophys. Res., 104:25567-25594, 1999. [ bib ]
[491] M. G. Bostock, S. Rondenay, and J. Shragge. Multi-parameter 2-D inversion of scattered teleseismic body waves I. Theory for oblique incidence. J. Geophys. Res., 107:30771-30782, 2001. [ bib ]
[492] M. G. Bostock. Kirchhoff-approximate inversion of teleseismic wavefields. Geophys. J. Int., 149:787-795, 2002. [ bib ]
[493] M. G. Bostock, R. D. Hyndman, S. Rondenay, and S. M. Peacock. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417:536-538, 2002. [ bib ]
[494] M. g. Bostock and N. I. Christensen. Split from slip and schist: Crustal anisotropy beneath northern cascadia from non-volcanic tremor. J. Geophys. Res., 117(B08303), 2012. [ bib | DOI ]
[495] M. G. Bostock. Seismic imaging of lithospheric discontinuities and continental evolution. Lithos, 48:1-16, 1999. [ bib ]
[496] W. Bosworth, R. Guirath, and L. G. Kessler II. Late Cretaceous (ca. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): far-field stress effects of the “Santonian event” and origin of the Syrian arc deformation belt. Geology, 27:633-636, 1999. [ bib ]
[497] M. Bouchon, D. Marsan, V. Durand, M. Campillo, H. Perfettini, R. Madariaga, and B. Gardonio. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geosc., 9, 2016. [ bib | DOI ]
[498] A. M. Bouillier and A. Nicolas. Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys. Chem. Earth, 9:467-475, 1975. [ bib ]
[499] S. J. Bourne, P. C. England, and B. Parsons. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391:655-659, 1998. [ bib ]
[500] D. J. Bower, M. Gurnis, J. M. Jackson, and W. Sturhahn. Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase. Geophys. Res. Lett., 36(L10306), 2009. [ bib | DOI ]
[501] D. J. Bower, M. Gurnis, and N. Flament. Assimilating lithosphere and slab history in 4-D dynamic Earth models. Phys. Earth Planet. Inter., 238:8-22, 2015. [ bib ]
[502] J. R. Bowman and M. A. Ando. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys. J. R. Astr. Soc., 88:24-41, 1987. [ bib ]
[503] D. D. Bowman, G. Ouillon, C. G. Sammis, D. Sornette, and A. Sornette. An observational test of the critical earthquake concept. Eos Trans. AGU, 78:F463, 1997. [ bib ]
[504] D. D. Bowman, C. G. Ouillon, G. Samnis, A. Sornette, and D. Sornette. An observational test of the critical earthquake concept. J. Geophys. Res., 103:24359-24372, 1998. [ bib ]
[505] C. H. Boyd, O. S. Jones and A. F. Sheehan. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California. Science, 305:660-662, 2004. [ bib ]
[506] O. S. Boyd and A. F. Sheehan. Attenuation tomography beneath the Rocky Mountain Front: Implications for the physical state of the upper mantle. In The Rocky Mountain Region: An Evolving Lithosphere, volume 154 of Geophys. Monograph, pages 361-377. American Geophysical Union, 2005. [ bib ]
[507] E. Bozdag and J. Trampert. Assessment of tomographic mantle models using spectral element seismograms. Geophys. J. Int., 180:1187-1199, 2010. [ bib ]
[508] W. F. Brace and J. D. Beyerlee. Stick-slip as a mechanism for earthquakes. Science, 153:990-992, 1966. [ bib ]
[509] W. F. Brace and D. L. Kohlstedt. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 85:6248-6252, 1980. [ bib ]
[510] Y. Brainman, F. Family, and H. G. E. Hentschel. Nonlinear friction in the periodic stick-slip motion of coupled oscillators. Phys. Rev. B., 55:5491-5504, 1997. [ bib ]
[511] J. P. Brandenburg and P. E. van Keken. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res., 112:B06403, 2007. [ bib | DOI ]
[512] J. P. Brandenburg, E. H. Hauri, P. E. van Keken, and C. J. Ballentine. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett., 276:1-13, 2008. [ bib ]
[513] J. Braun. The many surface expressions of mantle dynamics. Nature Geosc., 3:825-833, 2010. [ bib ]
[514] J. Braun and S. D. Willett. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorph., 180:170-179, 2013. [ bib ]
[515] J. Braun, X. Robert, and T. Simon-Labric. Eroding dynamic topography. Geophys. Res. Lett., 40:1494-1499, 2013. [ bib | DOI ]
[516] J. Braun and M. Sambridge. Dynamical lagrangian remeshing (dlr): A new algorithm for solving large strain deformation problems and its application to fault-propagation folding. Earth Planet. Sci. Lett., 124:211-220, 1994. [ bib ]
[517] J. Braun and M. Sambridge. A numerical methode for solving partial differential equations on highly irregular evolving grids. Nature, 376:655-660, 1995. [ bib ]
[518] J. Braun and C. Beaumont. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand. J. Geophys. Res., 100:18059-18074, 1995. [ bib ]
[519] O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard. Nonlinear mobility of the generalized Frenkel-Kontorova model. Phys. Rev. E, 55:3598-3612, 1997. [ bib ]
[520] J. Braun, A. Poliakov, D. Mainprice, A. Vauchez, A. Tomassi, and M. Daigniéres. A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine. J. Geophys. Res., 104:25167-25181, 1999. [ bib ]
[521] N. A. Breen and E. A. Silver. The Wetar back arc thrust belt, eastern Indonesia: The effect of accretion against an irregularly shaped arc. Tectonics, 8:85-8, 1989. [ bib ]
[522] J. H. P. de Bresser, J. H. ter Heege, and C. H. Spiers. Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int. J. Earth Sci., 90:28-45, 2001. [ bib ]
[523] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. The Society for Industrial and Applied Mathematics, 2 edition, 2000. [ bib ]
[524] E. E. Brodsky and T. Lay. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344:700-702, 2014. [ bib ]
[525] Emily E Brodsky, James J Mori, Louise Anderson, Frederick M Chester, Marianne Conin, Eric M Dunham, Nobu Eguchi, Patrick M Fulton, Ryota Hino, Takehiro Hirose, et al. The state of stress on the fault before, during, and after a major earthquake. Ann. Rev. Earth Planet. Sci., 48, 2020. [ bib | DOI ]
[526] J. Browaeys and S. Chevrot. Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int., 159:667-678, 2004. [ bib ]
[527] J. T. Browaeys, T. W. Becker, and T. H. Jordan. Stochastic description of seismic anisotropy in the lithosphere and upper mantle (abstract). Eos Trans. AGU, 86(52):S43C-08, 2005. [ bib ]
[528] E. T. Brown, R. Bendick, D. L. Bourles, V. Gaur, P. Molnar, G. M. Raisbeck, , and F. Yiou. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J. Geophys. Res., 107(B92192), 2002. [ bib | DOI ]
[529] R. D. Brown. Quaternary deformation. In The San Andreas Fault System, California, volume 1515 of U. S. Geol. Surv. Prof. Pap., pages 83-113. United States Geological Survey, 1990. [ bib ]
[530] E. T. Brown, D. L. Bourles, B. C. Burchfiel, D. Qidong, L. Jun, P. Molnar, G. M. Raisbeck, and F. Yiou. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. GSA Bull., 110:377-386, 1998. [ bib ]
[531] S. J. Brownlee, V. Schulte-Pelkum, A. Raju, K. Mahan, C. Condit, and O. F. Orlandini. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 36:1835-1857, 2017. [ bib | DOI ]
[532] J. N. Brune. Seismic moment seismicity and rate of slip along major fault zones. J. Geophys. Res., 73:777-784, 1968. [ bib ]
[533] W.M. Bruner. Comment on `Seismic velocities in dry and saturated cracked solids' by Richard J. O'Connell and Bernard Budiansky. J. Geophys. Res., 81:2573-2576, Mai 1976. [ bib ]
[534] C. Brunet, P. Monié, L. Jolivet, and J. P. Cadet. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics, 321:127-155, 2000. [ bib ]
[535] J. A. Bryant, G. M. Yogodzinski, M. L. Hall, J. L. Lewicki, and D. G. Bailey. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J. Petrol., 47:1147-1175, 2006. [ bib ]
[536] C. A. Langston, editor. The 1992, Landers, California, Earthquake Sequence, volume 84 of Bull. Seismol. Soc. Am., El Cerrito, Kalifornien, June 1994. Seismological Society of America. [ bib ]
[537] W. R. Buck, L. L. Lavier, and Babeyko A. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. Int. Geol. Rev., 45:712-723, 2003. [ bib ]
[538] W. R. Buck and A. Poliakov. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392:272-275, 1998. [ bib ]
[539] W. R. Buck, L.L. Lavier, and A. Babeyko. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. International Geology Review, 45:712-723, 2003. [ bib ]
[540] W. R. Buck, L Lavier, and A. Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434:719-723, 2005. [ bib ]
[541] B. Budiansky. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13:223-227, 1965. [ bib ]
[542] R. Budiansky and G. F. Carrier. The pointless wedge. SIAM J. Appl. Mech., 25:378-387, 1973. [ bib ]
[543] J. S. Buehler and P. M. Shearer. Pn tomography of the western United States using US Array. J. Geophys. Res., 115(B09315), 2010. [ bib | DOI ]
[544] JS Buehler and PM Shearer. Anisotropy and Vp/Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases. J. Geophys. Res., 119:1200-1219, 2014. [ bib ]
[545] C. G. Bufe and D. J. Varnes. Predictive modeling of the seismic cycle of the greater San Francisco Bay region. J. Geophys. Res., 98:9871-9883, 1993. [ bib ]
[546] B. A. Buffett. Earth's core and the geodynamo. Science, 288:2007-2012, 2000. [ bib ]
[547] B. A. Buffett. Thermal state of Earth's core. Science, 299:1675-1677, 2003. [ bib ]
[548] B. A. Buffett and D. B. Rowley. Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet. Sci. Lett., 245:359-364, 2006. [ bib ]
[549] B. A. Buffett. Plate force due to bending at subduction zones. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[550] B. Buffett. Onset and orientation of convection in the inner core. Geophys. J. Int., 179:711-719, 2009. [ bib ]
[551] B. Buffett and T. W. Becker. Bending stress and dissipation in subducted lithosphere. J. Geophys. Res., 117(B05413), 2012. [ bib | DOI ]
[552] B. Buffett, C. W. Gable, and R. J. O'Connell. Marginal stability of a layered fluid with mobile surface plates. J. Geophys. Res., 99:1985-19900, 1994. [ bib ]
[553] S. J. H. Buiter, R. Govers, and M. J. R. Wortel. Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophys., 354:195-210, 2002. [ bib ]
[554] S. J. H. Buiter, A. Y. Babeyko, S. Ellis, T. V. Gerya, B. J. P. Kaus, A. Kellner, G. Schreurs, and Y. Yamada. The numerical sandbox: Comparison of model results for a shortening and an extension experiment. In S. J. H. Buiter and G. Schreurs, editors, Analogue and Numerical Modelling of Crustal-Scale Processes, volume 253 of Geol. Soc. London Spec. Pub., pages 29-64, London, 2006. [ bib ]
[555] A. L. Bull, A. McNamara, T. W. Becker, and J. Ritsema. Global scale models of the mantle flow field predicted by synthetic tomography models. Phys. Earth Planet. Inter., 182:129-138, 2010. [ bib ]
[556] E. C. Bullard, C. Freedman, H. Gellman, and J. Nixon. The westward drift of the Eearth's magnetic field. Phil. Trans. Roy. Soc. Lond., 243:67-92, 1950. [ bib ]
[557] H.-P. Bunge and S. P. Grand. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405:337-340, 2000. [ bib ]
[558] H.-P. Bunge and J. H. Davies. Tomographic images of a mantle circulation model. Geophys. Res. Lett., 28:77-80, 2001. [ bib ]
[559] H.-P. Bunge and J. H. Davies. Seismically “fast” geodynamic models. Geophys. Res. Lett., 28:73-76, 2001. [ bib ]
[560] H.-P. Bunge, C. Hagelberg, and B. Travis. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography (abstract). Eos Trans. AGU, 82(47):NG51C-07, 2001. [ bib ]
[561] H.-P. Bunge, L. Stixrude, J. Tromp, and R. Hollerbach. Virtual Earth laboratories. Eos Trans. AGU, 82(47), 2001. Special session at AGU Fall Meeting. [ bib ]
[562] H.-P. Bunge, C. R. Hagelberg, and B. J. Travis. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int., 152:280-301, 2003. [ bib ]
[563] H.-P. Bunge and J. Tromp. Supercomputing moves to universities and makes possible new ways to organize computational research. Eos Trans. AGU, 84(4):30-33, 2003. [ bib ]
[564] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379:436-438, 1996. [ bib ]
[565] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. A sensitivity study of 3-D spherical mantle convection at 108 Rayleigh number: Effects of depth dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res., 102:11991-12007, 1997. [ bib ]
[566] H.-P. Bunge, M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, and B. A. Romanowicz. Time scales and heterogeneous structure in geodynamic earth models. Science, 280:91-95, 1998. [ bib ]
[567] L. Buontempo, G. H. R. Bokelmann, G. Barruol, and J. Morales. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth Planet. Sci. Lett., 273:237-250, 2008. [ bib ]
[568] S. Burdick, C. Li, V. Martynov, T. Cox, J. Eakins, T. Mulder, L. Astiz, F. L. Vernon, G. L. Pavlis, and R. D. van der Hilst. Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seis. Res. Lett., 79:384-392, 2008. [ bib ]
[569] S. Burdick, R. D. van der Hilst, F. L. Vernon, V. Martynov, T. Cox, J. Eakins, L. Astiz, and G. L. Pavlis. Model Update January 2010: Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seism. Res. Lett., 81:689-693, 2010. [ bib ]
[570] J. P. Burg and Y. Podladchikov. Lithospheric scale folding: numerical modeling and application to the himalayan syntaxes. Int. J. Earth Sci., 88(2):190-200, 1999. [ bib ]
[571] J. P. Burg, B. J. P. Kaus, and Y. Podladchikov. Dome structures in collision orogens. mechanical investigation of the gravity/compression interplay. In D.L. Whitney, C. Teyssier, and C.S. Siddoway, editors, Gneiss domes in orogeny, volume 380, pages 47-66. Geological Society of America, Boulder, 2004. [ bib ]
[572] R. Bürgmann, P. A. Rosen, and E. J. Fielding. Synthetic aperature radar interferometry to measure Earth's surface topography and its deformation. Ann. Rev. Earth Planet. Sci., 28:169-209, 2000. [ bib ]
[573] Roland Bürgmann, Mikhail G Kogan, Grigory M Steblov, George Hilley, Vasily E Levin, and Edwin Apel. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res., 110(B07405), 2005. [ bib | DOI ]
[574] R. Bürgmann, G. Hilley, A. Ferretti, and F. Novali. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 34:221-224, 2006. [ bib ]
[575] R. Bürgmann and G. Dresen. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36:531-567, 2008. [ bib ]
[576] R. Bürgmann. The geophysics, geology, and mechanics of slow fault slip. Earth Planet. Sci. Lett., 495:112-134, 2018. [ bib ]
[577] G. Burgos, J.-P. Montagner, E. Beucler, Y. Capdeville, A. Mocquet, and M. Drilleau. Oceanic lithosphere/asthenosphere boundary from surface wave dispersion data. J. Geophys. Res., 119:1079-1093, 2014. [ bib | DOI ]
[578] K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett., 265:49-60, 2008. [ bib ]
[579] E.R. Burkett and M.I. Billen. Dynamics and implications of slab detachment due to ridge-trench collision. J. Geophys. Res., 114(B12402), 2009. [ bib | DOI ]
[580] E. Burkett and M. I. Billen. Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation. Geochem., Geophys., Geosys., 11(Q11012), 2010. [ bib | DOI ]
[581] E. Burkett and M. Gurnis. Stalled slab dynamics. Lithosphere, 5:92-97, 2013. [ bib ]
[582] M. Burkhard and A. Sommaruga. Evolution of the western swiss molasse basin: structural relations with the alps and the jura belt. In A. Mascle, editor, Foreland Basins of the Western Alpine Thrust Belts, pages 279-298. Geological Society Special Publication, London, 1998. [ bib ]
[583] E. B. Burov. The upper crust is softer than dry quartzite. Tectonophys., 361:321-326, 2003. [ bib ]
[584] E. Burov and L. Guillou-Frottier. The plume-head continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys. J. Int., 58:469-490, 2005. [ bib ]
[585] E. B. Burov and A. B. Watts. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”. GSA Today, 16:4, 2006. [ bib ]
[586] E. B. Burov and P. Molnar. Small and large-amplitude gravitational instability of an elastically compressible viscoelastic Maxwell solid overlying an inviscid incompressible fluid: dependence of growth rates on wave number and elastic constants at low Deborah numbers. Earth Planet. Sci. Lett., 275:370-381, 2008. [ bib ]
[587] E. Burov and T. Gerya. Asymmetric three-dimensional topography over mantle plumes. Nature, 513:85-89, 2014. [ bib ]
[588] E. Burov, T. Francois, P. Agard, L. Le Pourhiet, B. Meyer, C. Tirel, S. Lebedev, P. Yamato, and J.-P. Brun. Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models. Tectonophys., 631:212-250, 2014. [ bib ]
[589] E. Burov and S. Cloetingh. Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet. Sci. Lett., 150:7-26, 1997. [ bib ]
[590] E. Burov and L. Guillou-Frottier. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys. J. Int., 161:469-490, 2005. [ bib ]
[591] E. B. Burov and M. Diament. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res., 100:3905-3927, 1995. [ bib ]
[592] E. Burov, Y. Y. Podladchikov, G. Grandjean, and J. P. Burg. Thermo-mechanical approach to validation of deep crustal and lithospheric structures inferred from multidisciplinary data: application to the Western and Northern Alps. Terra Nova, 11:124-131, 1999. [ bib ]
[593] R. Burridge and G.S. Halliday. Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. R. Astr. Soc., 25:261-283, 1971. [ bib ]
[594] J. Burrus. Contribution to a geodynamic synthesis of the Provençal basin (north-western Mediterranean). Mar. Geol., 55:247-269, 1984. [ bib ]
[595] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox. Parallel scalable adjoint-based adaptive solution for variable-viscosity Stokes flows. Comp. Meth. Appl. Mech. Eng., 198:1691-1700, 2009. [ bib ]
[596] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Scient. Comp., 33:1103-1133, 2011. Available online at p4rest.org, accessed 02/2020. [ bib ]
[597] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan, Michael Gurnis, and Omar Ghattas. Large-scale adaptive mantle convection simulation. Geophys. J. Int., 192:889-906, 2013. [ bib ]
[598] F. H. Busse, M. A. Richards, and A. Lenardic. A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int., 164:160-167, 2006. [ bib ]
[599] J. Buttles and P. Olson. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett., 164:245-262, 1998. [ bib ]
[600] J.D. Byerlee. Friction of rock. Pure Appl. Geophys., 116:615-626, 1978. [ bib ]
[601] M. Bystricky, K. Kunze, L. Burlini, and J.-P. Burg. High shear strain of olivine aggregrates: rheological and seismic consequences. Science, 290:1564-1567, 2000. [ bib ]
[602] G. Allen, R. Benger, R. Dramlitsch, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, and E. Seidel. Cactus grid computing: Review of current development. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors, Euro-Par 2001: Parallel Processing, Proceedings of 7th International Euro-Par Conference Manchester. Springer Verlag, New York, 2001. [ bib ]
[603] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid, dynamic topography and lithospheric stresses. In European Geophysical Society, 25th general assembly, volume 2 of Geophys. Res. Abstr. European Geophysical Society, 2000. [ bib ]
[604] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid and dynamic topography. Geophys. J. Int., 152:566-580, 2003. [ bib ]
[605] O. Čadek. Constraints on global mantle-flow models from geophysical data (abstract). In E. Boschi, editor, 9th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, volume 25 of International School of Geophysics, pages 15-16, Erice, Sicily, 2005. Ettore Majorana Foundation and Centre for Scienftific Culture. [ bib ]
[606] O. Čadek, Y. Ricard, Z. Martinec, and C. Matyska. Comparison between Newtonian and non-Newtonian flow driven by internal loads. Geophys. J. Int., 112:103-114, 1993. [ bib ]
[607] O. Čadek, H. Kyvalova, and D. A. Yuen. Geodynamical implications from the correlation of surface geology and seismic tomographic structure. Earth Planet. Sci. Lett., 136:615-627, 1995. [ bib ]
[608] O. Čadek, H. Čížková, and D. A. Yuen. Can long-wavelength dynamical signatures be compatible with layered mantle convection? Geophys. Res. Lett., 16:2091-2094, 1997. [ bib ]
[609] Florence Cagnard, Jean-Pierre Brun, and Denis Gapais. Modes of thickening of analogue weak lithospheres. Tectonophys., 421:145-160, 2006. [ bib ]
[610] Florence Cagnard, Nicolas Durrieu, Denis Gapais, Jean-Pierre Brun, and Carl Ehlers. Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova, 18:72-78, 2006. [ bib ]
[611] F. Cai, L. Ding, and Y. Yue. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet. Sci. Lett., 305:195-206, 2011. [ bib ]
[612] E. Calais, L. Dong, M. Wang, Z. Shen, and M. Vergnolle. Continental deformation in Asia from a combined GPS solution. Geophys. Res. Lett., 33(L24319), 2006. [ bib | DOI ]
[613] E. Calais, J. Y. Han, C. DeMets, and J. M. Nocquet. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res., 111(B06402), 2006. [ bib | DOI ]
[614] F. J. Calixto, D. Robinson, E. Sandvol, S. Kay, D. Abt, K. Fischer, B. Heit, X. Yuan, D. Comte, and P. Alvarado. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau. Geophys. J. Int., 199:688-699, 2014. [ bib ]
[615] J. P. Calpin. Paleoseismology. Academic Press, London, 1996. [ bib ]
[616] M. L. Calvache and S. N. Williams. Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J. Volcanol. Geothermal Res., 77:21-38, 1997. [ bib ]
[617] M. Calvet, S. Chevrot, and A. Souriau. P-wave propagation in transversely isotropic media. II. Application to inner core anisotropy: Effects of data averaging, parameterization and a priori information. Phys. Earth Planet. Inter., 156:21-40, 2006. [ bib ]
[618] F. Cammarano, S. Goes, P. Vacher, and D. Giardini. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 138:197-222, 2003. [ bib ]
[619] F. Cammarano, A. Deuss, S. Goes, and D. Giardini. One-dimensional physical reference models for the upper mantle and transition zone: combining seismic and mineral physics constraints. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[620] F. Cammarano, P. Tackley, and L. Boschi. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermo-chemical models. Geophys. J. Int., 187:1301-1318, 2011. [ bib ]
[621] M. Campillo, I. R. Ionescu, J. C. Paumier, and Y. Renard. On the dynamic sliding with friction of a rigid block and of an infinite elastic slab. Phys. Earth Planet. Inter., 96:15-23, 1996. [ bib ]
[622] S. C. Cande, P. Patriat, and J. Dyment. Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophys. J. Int., 183:127-149, 2010. [ bib ]
[623] S. C. Cande and D. R. Stegman. Indian and African plate motions driven by the push force of the Réunion plume head. Nature, 475:47-52, 2011. [ bib ]
[624] Y. Caniven, S. Dominguez, R. Soliva, R. Cattin, M. Peyret, M. Marchandon, C. Romano, and V. Strak. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle. Tectonics, 34:232-264, 2015. [ bib | DOI ]
[625] A. Cao and B. A. Romanowicz. Locating scatterers in the mantle using array analysis of PKIKP precursors from an earthquake doublet. Earth Planet. Sci. Lett., 255:22-31, 2007. [ bib ]
[626] F. A. Capitanio, G. Morra, and S. Goes. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet. Sci. Lett., 262:284-297, 2007. [ bib ]
[627] F. A. Capitanio, S. Goes, G. Morra, and D. Giardini. Signatures of downgoing plate-buoyancy driven subduction in motions and seismic coupling at major subduction zones. Earth Planet. Sci. Lett., 262:298-306, 2007. [ bib ]
[628] F. A. Capitanio, G. Morra, S. Goes, R. F. Weinberg, and L. Moresi. India-Asia convergence driven by the subduction of the Greater Indian continent. Nature Geosc., 3:136-139, 2010. [ bib ]
[629] F. A. Capitanio, D. R. Stegman, L. Moresi, and W. Sharples. Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophys., 483:80-92, 2010. [ bib ]
[630] F. A. Capitanio, C. Faccenna, S. Zlotnik, and D. R. Stegman. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature, 480:83-86, 2011. [ bib ]
[631] F. A. Capitanio and G. Morra. The bending mechanics in a dynamic subduction system: Constraints from numerical modelling and global compilation analysis. Tectonophys., 2012. [ bib | DOI ]
[632] F. A. Capitanio, A. Replumaz, and N. Riel. Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochem., Geophys., Geosys., 16:962-982, 2015. [ bib | DOI ]
[633] S. Crampin. A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3:343-391, 1981. [ bib ]
[634] S. Carannante and L. Boschi. Databases of surface wave dispersion. Annal. Geophys., 48:945-955, 2005. [ bib ]
[635] A. Cardona, V. A. Valencia, G. Bayona, J. Duque, M. Ducea, G. Gehrels, C. Jaramillo, C. Montes, G. Ojeda, and J. Ruiz. Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23:26-34, 2011. [ bib ]
[636] R. L. Carlson, T. W. C. Hilde, and S. Uyeda. The driving mechanism of plate tectonics: relation to age of the lithosphere at trenches. Geophys. Res. Lett., 10:297-300, 1983. [ bib ]
[637] R. L. Carlson and P. J. Melia. Subduction hinge migration. Tectonophys., 102:1-16, 1984. [ bib ]
[638] R. L. Carlson and C. A. Mortera-Gutiérrez. Subduction hinge migration along The Izu-Bonin-Mariana arc. Tectonophys., 181:331-344, 1990. [ bib ]
[639] R. W. Carlson. Mechanisms of earth differentiation: consequences for the chemical structure of the mantle. Rev. Geophys., 32:337-361, 1994. [ bib ]
[640] J. M. Carlson and J. S. Langer. Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett., 62:2632-2635, 1989. [ bib ]
[641] J. M. Carlson, J. S. Langer, and B. E. Shaw. Dynamics of earthquake faults. Rev. Mod. Physics, 66:657-670, 1994. [ bib ]
[642] R. L. Carlson and H. P. Johnson. On modeling the thermal evolution of the oceanic upper-mantle - an assessment of the cooling plate model. J. Geophys. Res., 99:3201-3214, 1994. [ bib ]
[643] L. Carmignani and R. Kligfield. Crustal extension in the Northern Apennines: the transition from compression to extension in the Alpi Apuane core complex. Tectonics, 9:1275-1305, 1990. [ bib ]
[644] E. Carminati and P. Petricca. State of stress in slabs as a function of large-scale plate kinematics. Geochem., Geophys., Geosys., 11(Q04006), 2010. [ bib | DOI ]
[645] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, London, 2nd edition, 1959. p. 243. [ bib ]
[646] N. L. Carter. Steady state flow of rock. Rev. Geophys. Space Phys., 14:301-360, 1976. [ bib ]
[647] D. J. Carter, Audley-Charles, M. G., and A. J. Barber. Stratigraphic analysis of island arc– continental margin collision in eastern Indonesia. J. Geol. Soc. London, 132:197–-198, 1976. [ bib ]
[648] J. H. E. Cartwright, E. Hernández-Garcia, and O. Piro. Burridge-knopoff models as elastic excitable media. Phys. Rev. Lett., 79:527-530, 1997. [ bib ]
[649] E. Casarotti, A. Piersanti, F. P. Lucente, and E. Boschi. Global postseismic stress diffusion and fault interaction at long distances. Earth Planet. Sci. Lett., 191:75-84, 2001. [ bib ]
[650] K. V. Cashman, R. S. J. Sparks, and J. D. Blundy. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355, 2017. [ bib | DOI ]
[651] S. J. Caskey and S. G. Wesnousky. Static stress change and earthquake triggering during the 1954 Fairview Peak and Dixie Valley earthquakes, Central Nevada. Bull. Seismol. Soc. Am., 87:521-527, June 1997. [ bib ]
[652] O. Castelnau, D. K. Blackman, R. A. Lebensohn, and P. Ponte Castaneda. Micromechanical modeling of the viscoplastic behavior of olivine. J. Geophys. Res., 113(B09202), 2008. [ bib | DOI ]
[653] O. Castelnau, D. K. Blackman, and T. W. Becker. Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow. Geophys. Res. Lett., 36(L12304), 2009. [ bib | DOI ]
[654] J. C. Castle and R. D. van der Hilst. Searching for seismic observations of deep mantle structure (abstract). Eos Trans. AGU, 81:F832, 2000. [ bib ]
[655] J. C. Castle and R. D. van der Hilst. Searching for seismic scattering off mantle interfaces between 800 and 2000 km depth. J. Geophys. Res., 108:10.1029/2001JB000286, 2003. [ bib ]
[656] J. C. Castle and K. C. Craeger. Seismic evidence against a mantle chemical discontinutity near 660km depth beneath Izu-Bonin. Geophys. Res. Lett., 24:241-244, 1997. [ bib ]
[657] J. C. Castle and K. C. Creager. NW Pacific slab rheology, the seismicity cutoff, and the olicvine to spinel phase change. Earth Planets Space, 50:977-985, 1998. [ bib ]
[658] J. C. Castle and K. C. Creager. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. J. Geophys. Res., 104:7279-7292, 1999. [ bib ]
[659] R. D. Catchings and W. M. Kohler. Reflected seismic waves and their effect on strong shaking during the 1989 Loma Prieta, California Earthquake CA. Bull. Seismol. Soc. Am., 86:1401-1416, 1996. [ bib ]
[660] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin. Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81:1841-1844, 1998. [ bib ]
[661] Camilla Cattania and Paul Segall. Crack models of repeating earthquakes predict observed moment-recurrence scaling. J. Geophys. Res., 124:476-503, 2019. [ bib ]
[662] C Cattania. Complex earthquake sequences on simple faults. Geophys. Res. Lett., 46:10384-10393, 2019. [ bib ]
[663] C. Cattania and P. Segall. Foreschoks on rough rate-state faults. In AGU Fall Meeting Abstracts, San Francisco CA, 2019. American Geophysical Union. S24B-07. [ bib ]
[664] F. Cediel, R.P. Shaw, and C. Cáceres. Tectonic assembly of the Northern Andean Block. In C. Bartolini, R.T. Buffler, and J. Blickwede, editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, volume 79 of AAPG Memoir, pages 815-848. AAPG, 2003. [ bib ]
[665] N. G. Cerpa, R. Araya, M. Gerbault, and R. Hassani. Relationship between slab dip and topography segmentation in an oblique subduction zone: Insights from numerical modeling. Geophys. Res. Lett., 42:5786-5795, 2015. [ bib ]
[666] N. G. Cerpa, I. Wada, and C. Wilson. Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction. J. Geophys. Res., 2017. [ bib | DOI ]
[667] M. Chai, J. M. Brown, and L. J. Slutsky. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J. Geophys. Res., 102:14779-14785, 1997. [ bib ]
[668] F. Chambat, Y. Ricard, and B. Valette. Flattening of the earth: further from hydrostaticity than previously estimated. Geophys. J. Int., 183:727-732, 2010. [ bib ]
[669] N. Chamot-Rooke, J.-M. Gaulier, and F. Jestin. Constraints on Moho depth and crustal thickness in the Liguro-Provençal Basin from a 3D gravity inversion; geodynamic implications. In B. Durand, A. Mascle, L. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 37-61. Geological Society of London, London, 1999. [ bib ]
[670] J. D. Champagnac, P. Molnar, R. S. Anderson, C. Sue, and B. Delacou. Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35:195-198, 2007. [ bib ]
[671] T. R. Chandrupatla and A. D. Belegundu. Introduction to finite elements in engineering. Prentice-Hall, London, 1991. [ bib ]
[672] Chandong Chang, Jun Bok Lee, and Tae-Seob Kang. Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophys., 485:164-177, 2010. [ bib ]
[673] S.-J. Chang, A. M. G. Ferreira, J. Ritsema, H. J. van Heijst, and J. H. Woodhouse. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res., 120:4278-4300, 2015. [ bib | DOI ]
[674] J. E. T. Channell. Paleomagnetism and continental collision in the Alpine belt and the formation of late-tectonic extensional basins. In M. P. Coward and A. C. Reis, editors, Collision Tectonics, volume 19 of Geol. Soc. Lond. Spec. Pubs., pages 261-284. Geological Society of London, London, 1986. [ bib ]
[675] Alan D Chapman. The Pelona-Orocopia-Rand and related schists of southern California: a review of the best-known archive of shallow subduction on the planet. Int. Geol. Rev., 59:664-701, 2017. [ bib ]
[676] C. H. Chapman and P. M. Shearer. Ray tracing in azimuthally anisotropic media - II. Quasi-shear wave coupling. Geophys. J., 96:65-83, 1989. [ bib ]
[677] W. M. Chapple and T. E. Tullis. Evaluation of the forces that drive the plates. J. Geophys. Res., 82:1967-1984, 1977. [ bib ]
[678] E.-M. Charalampidou, S. A. Hall, S. Stanchits, L. Helen, and G. Viggiani. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression. Tectonophys., 2010. [ bib | DOI ]
[679] Dominique Chardon, Pierre Choukroune, and Mudlappa Jayananda. Sinking of the Dharwar basin (South India): implications for Archaean tectonics. Precambrian Research, 91(1-2):15-39, 1998. [ bib ]
[680] T. R. Charlton. Postcollisional extension in arc-continent collision zones, eastern Indonesia. Geology, 19:28-31, 1991. [ bib ]
[681] T. R. Charlton. Backthrusting on the birps deep seismic reflection profiles, banda arc, indonesia, a repsonse to changing slab inclination? J. Geol. Soc., 154:169-172, 1997. [ bib ]
[682] C. G. Chase, J. A. Libarkin, and A. J. Sussman. Colorado Plateau: Geoid and means of isostatic support. Int. Geol. Rev., 44:575-587, 2002. [ bib ]
[683] C. G. Chase. Extension behind island arcs and motion relative to hot spots. J. Geophys. Res., 83:5385-5387, 1978. [ bib ]
[684] C. G. Chase. Subduction, the geoid, and lower mantle convection. Nature, 282:464-468, 1979. [ bib ]
[685] Y. B. Chastel, P. R. Dawson, H.-R. Wenk, and K. Bennett. Anisotropic convection with implications for the upper mantle. J. Geophys. Res., 98:17757-17771, 1993. [ bib ]
[686] ChEESE Project, 2020. Available online at cheese-coe.eu/about/objectives, accessed 02/2020. [ bib ]
[687] A. I. Chemenda, J. P. Burg, and M. Mattauer. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett., 174:397-409, 2000. [ bib ]
[688] N. Chemingui. Modeling 3-D anisotropic fractal media. Technical report, Stanford University, 2001. Stanford Exploration Project, Report 80. [ bib ]
[689] P.-F. Chen, C. R. Bina, and E. A. Okal. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophys. J. Int., 159:721-733, 2004. [ bib ]
[690] P. Chen and T. H. Zhao, L. Jordan. Full 3D tomography for the crustal structure of the Los Angeles region. Bull. Seismol. Soc. Am., 97:1094-1120, 2007. [ bib ]
[691] M. Chen, J. Tromp, D. Helmberger, and H. Kanamori. Waveform modeling of the slab beneath Japan. J. Geophys. Res., 112(B02305), 2007. [ bib | DOI ]
[692] Ting Chen and Nadia Lapusta. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. J. Geophys. Res., 114(B01311), 2009. [ bib | DOI ]
[693] L. Chen and Y. Ai. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J. Geophys. Res., 114(B06307), 2009. [ bib | DOI ]
[694] L. Chen, T. V. Gerya, Z.-J. Zhang, A. Aitken, Z.-H. Li, and X.-F. Liang. Formation mechanism of steep convergent intracontinental margins: Insights from numerical modeling. Geophys. Res. Lett., 40:2000-2005, 2013. [ bib | DOI ]
[695] Peng Chen, Umberto Villa, and Omar Ghattas. Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty. J. Comp. Phys., 385:163-186, 2019. [ bib ]
[696] Peng Chen and Omar Ghattas. Hessian-based sampling for high-dimensional model reduction. Int. J. Uncert. Quant., 9(2), 2019. [ bib ]
[697] K. Chen, P. Bak, and S. P. Obukhov. Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A, 43:625-629, January 1991. [ bib ]
[698] P. Chen and S. J. Duda. Fracture mechanics rupture model of earthquakes and an estimate of ambient shear stress. Phys. Earth Planet. Inter., 93:299-308, 1996. [ bib ]
[699] J. Chen and S. D. King. The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Phys. Earth Planet. Inter., 106:75-91, 1998. [ bib ]
[700] A. Cherchi and L. Montandert. Oligo-Miocene rift of Sardinia and the early history of the Western Mediterranean basin. Nature, 298:736-739, 1982. [ bib ]
[701] L. A. Chernov. Wave propagation in a random medium. McGraw-Hill, New York, 1960. [ bib ]
[702] M. V. Chertova, W. Spakman, T. Geenen, A. P. Berg, and D. J. J. Hinsbergen. Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J. Geophys. Res., 119:5876-5902, 2014. [ bib | DOI ]
[703] J. Chéry, M. D. Zoback, and R. Hassani. An integrated mechanical model of the San Andreas fault in central and northern California. J. Geophys. Res., 106:22051-22066, 2001. [ bib ]
[704] J. Chéry. Geodetic strain across the San Andreas fault reflects elastic plate thickness variations (rather than fault slip rate). Earth Planet. Sci. Lett., 269:352-365, 2008. [ bib ]
[705] F. M. Chester, C. Rowe, K. Ujiie, J. Kirkpatrick, C. Regalla, F. Remitti, J. C. Moore, V. Toy, M. Wolfson-Schwehr, S. Bose, J. Kameda, J. J. Mori, E. E. Brodsky, N. Eguchi, S. Toczko, and Expedition 343 and 343T Scientists. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342:1208-1211, 2013. [ bib ]
[706] F. M. Chester and J. S. Chester. Ultracataclasite structure and friction processes of the Punchbowl fault San Andreas system, California. Tectonophys., 295:199-221, 1998. [ bib ]
[707] S. Chevrot. Multichannel analysis of shear wave splitting. J. Geophys. Res., 105:21579-21590, 2000. [ bib ]
[708] S. Chevrot and R. D. van der Hilst. On the effects of a dipping axis of symmetry on shear wave splitting measurements. Geophys. J. Int., 152:497-505, 2003. [ bib ]
[709] S. Chevrot, N. Favier, and D. Komatitsch. Shear wave splitting in three-dimensional anisotropic media. Geophys. J. Int., 159:711-720, 2004. [ bib ]
[710] S. Chevrot. Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophys. J. Int., 165:641-657, 2006. [ bib ]
[711] S. Chevrot and V. Monteiller. Principles of vectorial tomography - the effects of model parametrization and regularization in tomographic imaging of seismic anisotropy. Geophys. J. Int., 179:1726-1736, 2009. [ bib ]
[712] S. Chevrot, L. Vinnik, and J.-P. Montagner. Global-scale analysis of the mantle PdS phases. J. Geophys. Res., 104:20203-20219, 1999. [ bib ]
[713] M. Chiaradia, O. Muntener, and B. Beate. Enriched basaltic andesites from mid-crustal fractional crystal lization, recharge and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). J. Petrol., 52:1107-1141, 2011. [ bib ]
[714] M. A. Chinnery. The stress changes that accompany strike-slip faulting. Bull. Seismol. Soc. Am., 53:921-932, 1963. [ bib ]
[715] E. Choi, P. Thoutireddy, L. Lavier, S. Quenette, Tan. E., M. Gurnis, M. Aivazis, and B. Appelbee. Coupling models of crustal deformation and mantle convection: An application of GeoFramework (abstract). Eos Trans. AGU, 85(47):T31A-1261, 2004. [ bib ]
[716] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation. J. Geophys. Res., 118:2429-2444, 2013. [ bib | DOI ]
[717] A. Chopelas and R. Boehler. Thermal expansion measurements at very high pressure, systematics, and a case for a chemically homogeneous mantle. Geophys. Res. Lett., 16:1347-1350, 1989. [ bib ]
[718] R. Christensen. Theory of Viscoelasticity. Academic Press, New York, 1982. [ bib ]
[719] U. Christensen. Geodynamic models of deep subduction. Phys. Earth Planet. Inter., 127:25-34, 2001. [ bib ]
[720] UR Christensen. Dynamo scaling laws and applications to the planets. Space Sci. Rev., 152:565-590, 2010. [ bib ]
[721] N. I. Christensen and M. H. Salisbury. Seismic anisotropy in the oceanic upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res., 84:4601-4610, 1979. [ bib ]
[722] U. R. Christensen and D. A. Yuen. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res., 89:4389-4402, 1984. [ bib ]
[723] U. R. Christensen. Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. R. Astr. Soc., 77:343-384, 1984. [ bib ]
[724] U. R. Christensen. Thermal evolution models for the Earth. J. Geophys. Res., 90:2995-3007, 1985. [ bib ]
[725] U. R. Christensen. Some geodynamical effects of anisotropic viscosity. Geophys. J. R. Astr. Soc., 91:711-736, 1987. [ bib ]
[726] U. Christensen and H. Harder. Three-dimensional convection with variable-viscosity. Geophys. J. Int., 104:213-226, 1991. [ bib ]
[727] U. R. Christensen. An Eulerian technique for thermo-mechanical modeling of lithospheric extension. J. Geophys. Res., 97:2015-2036, 1992. [ bib ]
[728] U. R. Christensen and A. W. Hofmann. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res., 99:19867-19884, 1994. [ bib ]
[729] N. I. Christensen and W. D. Mooney. Seismic velocity structure and composition of the continental crust: A global review. J. Geophys. Res., 100:9761-9788, 1995. [ bib ]
[730] U. R. Christensen. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett., 140:27-39, 1996. [ bib ]
[731] U. R. Christensen. Influence of chemical buoyancy on the dynamics of slabs in the transition zone. J. Geophys. Res., 102:22435-22443, 1997. [ bib ]
[732] R. Y. Chuang and K. Johnson. Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep. Geology, 39:627-630, 2011. [ bib ]
[733] S. Cianetti, C. Giunchi, and M. Cocco. Mechanical coupling between the Landers and Hector Mine (California) fault systems. Geophys. Res. Lett., 29:1869, 2002. [ bib ]
[734] S. Cianetti, C. Giunchi, and M. Cocco. Three-dimensional finite element modeling of stress interaction: An application to Landers and Hector Mine fault systems. J. Geophys. Res., 110(B05S17), 2005. [ bib | DOI ]
[735] L. Kellogg, B. A. Romanowicz, S. Hart, and A. Dziewoński. Cider. 2006 summer program: The nature and dynamics of the earth's transition zone: a multidisciplinary approach. Available online at www.deep-earth.org/summer06.html, accessed 06/2006, 2006. [ bib ]
[736] M. Gurnis. Computational Infrastructure for Geodynamics (CIG). California Institute of Technology, Pasadena CA. Online at www.geodynamics.org/, accessed 06/2006, 2006. [ bib ]
[737] H. Čížková, O. Čadek, A. van den Berg, and N. J. Vlaar. Can lower mantle slab-like seimic anomalies be explained by thermal coupling between the upper and lower mantles? Geophys. Res. Lett., 26:1501-1504, 1999. [ bib ]
[738] H. Čížková and C. Bina. Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth Planet. Sci. Lett., 379:95-103, 2013. [ bib ]
[739] H. Čížková and C. Bina. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth Planet. Sci. Lett., 430:408-415, 2015. [ bib ]
[740] H. Čížková, J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett., 199:447-457, 2002. [ bib ]
[741] H. Čížková, O. Čadek, and A. Slancová. Regional correlation analysis between seismic heterogeneity in the lower mantle and subduction in the last 180 Myr: implications for mantle dynamics and rheology. Pure Appl. Geophys., 151:527-537, 1998. [ bib ]
[742] Marin Kristen Clark and Leigh Handy Royden. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8):703-706, 2000. [ bib ]
[743] M. K. Clark, J. W. M. Bush, and L. H. Royden. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int., 162:575-590, 2005. [ bib ]
[744] S. R. Clark, D. Stegman, and R. D. Müller. Episodicity in back-arc tectonic regimes. Phys. Earth Planet. Inter., 171:265-279, 2008. [ bib ]
[745] S. A. Clark, A. Levander, M. B. Magnani, and C. A. Zelt. Negligible convergence and lithospheric tearing along the Caribbean-South American plate boundary at 64W. Tectonics, 27(TC6013), 2008. [ bib | DOI ]
[746] S. A. Clark, M. Sobiesiak, C. A. Zelt, M. B. Magnani, M. S. Miller, M. J. Bezada, and A. Levander. Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles. Geochem., Geophys., Geosys., 9(Q11004), 2008. [ bib | DOI ]
[747] S. A. Clark, C. A. Zelt, M. B. Magnan, and A. Levander. Characterizing the Caribbean-South American plate boundary at 64W using wide-angle seismic data. J. Geophys. Res., 113(B07401), 2008. [ bib | DOI ]
[748] K. Clark, J. Howarth, N. Litchfield, U. Cochran, J. Turnbull, L. Dowling, A. Howell, K. Berryman, and F. Wolfe. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geol., 412:139-172, 2019. [ bib ]
[749] R. Clayton and H. Engquist. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am., 67:1529-1540, 1977. [ bib ]
[750] J. R. Cleary and R. A. Haddon. Seismic wave scattering near the core-mantle boundary: a new interpretation of precursors to PKP. Nature, 240:549-551, 1972. [ bib ]
[751] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat., 6:3-73, 1990. [ bib ]
[752] P. Clift and P. Vannucchi. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys., 42(RG2001):1-31, 2004. [ bib ]
[753] S. Cloetingh, E. Burov, and A. Poliakov. Lithosphere folding: Primary response to compression? (from central asia to paris basin). Tectonics, 18(6):1064-1083, 1999. [ bib ]
[754] S. Cloetingh, E. Burov, F. Beekman, B. Andeweg, P. A. M. Andriessen, D. Garcia-Castellanos, G. de Vicente, and R. Vegas. Lithospheric folding in iberia. Tectonics, 21(5):art. no.-1041, 2002. [ bib ]
[755] S. A. P. L. Cloething, M. J. R. Wortel, and N. J. Vlaar. Evolution of passive continental margins and initiation of subduction zones. Nature, 297:139-142, 1982. [ bib ]
[756] S. Cloething and M. J. R. Wortel. Regional stress field of the Indian plate. Geophys. Res. Lett., 12:77-80, 1983. [ bib ]
[757] S. Cloething, M. J. R. Wortel, and N. J. Vlaar. On the initiation of subduction zones. Pure Appl. Geophys., 129:7-25, 1989. [ bib ]
[758] S. Cloetingh and M. J. R. Wortel. Stress in the Indo-Australian plate. Tectonophys., 132:49-67, 1986. [ bib ]
[759] M. N. Cloos. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geol. Soc. Am. Bull., 105:715-737, 1993. [ bib ]
[760] A. M. Dziewoński and J. H. Woodhouse. Studies of the seismic source using normal-mode theory. In H. Kanamori and E. Boschi, editors, Earthquakes: observation, theory, and interpretation: notes from the International School of Physics “Enrico Fermi” (1982: Varenna, Italy), pages 45-137. North-Holland Publ. Co., Amsterdam, 1983. [ bib ]
[761] CNSS. Composite catalog. Council of the National Seismic System CNSS, quake.geo.berkeley.edu/cnss/catalog-search.html, 1995. [ bib ]
[762] D. Coblentz, C. G. Chase, K. E. Karlstrom, and J. van Wijk. Topography, the geoid, and compensation mechanisms for the southern Rocky Mountains. Geochem., Geophys., Geosys., 12(Q04002), 2011. [ bib | DOI ]
[763] D. D. Coblentz, R. M. Richardson, and M. Sandiford. On the gravitational potential of the Earth's lithosphere. Tectonics, 13:929-945, 1994. [ bib ]
[764] D. D. Coblentz, S. Zhou, R. R. Hillis, R. M. Richardson, and M. Sandiford. Topography, boundary forces, and the Indo-Australian intraplate stress field. J. Geophys. Res., 103:919-931, 1998. [ bib ]
[765] A. Cochard and R. Madariaga. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res., 101:25321-25336, 1996. [ bib ]
[766] E. S. Cochran, J. E. Vidale, and Y. G. Li. Near-fault anisotropy following the Hector Mine earthquake. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[767] UNAVCO. Caribbean GPS network to aid earthquake and hurricane forecasting. Available online at www.unavco.org/community_science/science_highlights/2011/coconet.html, accessed 11/2011, 2011. [ bib ]
[768] J.-P. Cogne and E. Humler. Temporal variation of oceanic spreading and crustal production rates during the last 180 Myr. Earth Planet. Sci. Lett., 227:427-439, 2004. [ bib ]
[769] C. R. Cohen. Model for a passive to active continental margin transition: implications for hydrocarbon exploration. Am. Ass. Petrol. Geol. Bull., 66:708-818, 1982. [ bib ]
[770] R. H. Colburn and W. D. Mooney. Two-dimensional velocity structure along the synclinal axis of the great valley, California. Bull. Seismol. Soc. Am., 76:1305-1322, 1986. [ bib ]
[771] B. Colleta, F. Hebrard, J. Letouzey, P. Werner, and J. L. Rudkiweicz. Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In J. Letouzey, editor, Petroleum and Tectonics in Mobile Belts, pages 81-100. Technip, Paris, 1990. [ bib ]
[772] C. Collettini, A. Niemeijer, C. Viti, S. A.F. Smith, and C. Marone. Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet. Sci. Lett., 311:316-327, 2011. [ bib ]
[773] L. Colli, H.-P. Bunge, and B. Schuberth. On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett., 42:8341-8348, 2015. [ bib ]
[774] M. Collignon, B. J. P. Kaus, D. A. May, and N. Fernandez. Influences of surface processes on fold growth during 3-D detachment folding. Geochem., Geophys., Geosys., 15:3281-3303, 2014. [ bib | DOI ]
[775] F. Collino and C. Tsogka. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:294-307, 2001. [ bib ]
[776] K. B. Colson, T. K. Rockwell, K. M. Thorup, and G. L. Kennedy. Neotectonics of the left-lateral Santa Rosa Island Fault, western Transverse Ranges, Southern California (abstract). In The Geological Society of America, Cordilleran Section, 91st annual meeting. Abstracts with Programs, volume 27, page 11, 1995. [ bib ]
[777] N. Coltice, T. Rolf, P. J. Tackley, and S. Labrosse. Dynamic causes of the relation between area and age of the ocean floor. Science, 336:335-338, 2012. [ bib ]
[778] E. Coltice, M. Gérault, and M. Ulrová. A mantle convection perspective on global tectonics. Earth Sci. Rev., 165:120-150, 2017. [ bib ]
[779] N. Coltice and G. E. Shephard. Tectonic predictions with mantle convection models. Geophys. J. Int., 213:16-29, 2018. [ bib ]
[780] S. Colucci, M. de' Michieli Vitturi, A. Neri, and D. M. Palladino. An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruption. Earth Planet. Sci. Lett., 404:98-110, 2014. [ bib ]
[781] M. Comninou and J. Dundurs. The angular dislocations in a half space. J. Elasticity, 5:203-216, 1975. [ bib ]
[782] K. Condie, S. A. Pisarevsky, J. Korenaga, and S. Gardoll. Is the rate of supercontinent assembly changing with time? Precambrian Res., 259:278-289, 2015. [ bib ]
[783] P. J. Coney and T. A. Harms. Cordilleran metamorphic core complexes: Cenozoic extensional relics of mesozoic compression. Geology, 12:550-554, 1984. [ bib ]
[784] P. J. Coney. The regional tectonic setting and possible causes of Cenozoic extension in the North American Cordillera. In Continental extensional tectonics, Geol. Soc. Lond. Spec Pub., pages 177-186. Geological Society of London, 1987. [ bib ]
[785] S. Connaughton, S. Hall, and S. Lebedev. Seismic anisotopy and deformation beneath California. In Continental deformation: constraints from anisotropy, kinematics, dynamics Workshop, Dublin, November 2008. Dublin Institute for Advanced Studies. [ bib ]
[786] J. Connolly. Perple_X, a collection of Fortran77 programs for calculating and displaying petrological phase diagrams, phase equilibria, and thermodynamic data. Available online at www.perplex.ethz.ch/, 2004. [ bib ]
[787] J. A. D. Connolly. The geodynamic equation of state: what and how. Geochem., Geophys., Geosys., 10(Q10014), 2009. [ bib | DOI ]
[788] C. P. Conrad and B. H. Hager. Mantle convection with strong subduction zones. Geophys. J. Int., 144:271-288, 2001. [ bib ]
[789] C. P. Conrad and C. Lithgow-Bertelloni. How mantle slabs drive plate tectonics. Science, 298:207-209, 2002. [ bib ]
[790] C. P. Conrad and M. Gurnis. Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochem., Geophys., Geosys., 4(2001GC000299), 2003. [ bib ]
[791] C. P. Conrad and C. Lithgow-Bertelloni. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[792] C. P. Conrad, Lithgow-Bertelloni C., and K. Louden. The Farallon slab and dynamic topography of the North Atlantic. Geology, 32:177-180, 2004. [ bib ]
[793] C. P. Conrad, S. Bilek, and C. Lithgow-Bertelloni. Great earthquakes and slab-pull: Interaction between seismic coupling and plate-slab coupling. Earth Planet. Sci. Lett., 218:109-122, 2004. [ bib ]
[794] C. P. Conrad and C. Lithgow-Bertelloni. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett., 33, 2006. [ bib | DOI ]
[795] C. P. Conrad and C. Lithgow-Bertelloni. Faster seafloor spreading and lithosphere production during the mid-Cenozoic. Geology, 35:29-32, 2007. [ bib ]
[796] C. P. Conrad, M. D. Behn, and P. G. Silver. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. J. Geophys. Res., 112(B07317), 2007. [ bib | DOI ]
[797] C. P. Conrad and L. Husson. Influence of dynamic topography on sea level and its rate of change. Lithosphere, 1:110-120, 2009. [ bib ]
[798] C. P. Conrad and M. D. Behn. Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochem., Geophys., Geosys., 11(Q05W05), 2010. [ bib | DOI ]
[799] C. P. Conrad and P. Molnar. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys. J. Int., 129:95-112, 1997. [ bib ]
[800] C. P. Conrad and B. H. Hager. The effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res., 104:17551-17571, 1999. [ bib ]
[801] C. P. Conrad and B. H. Hager. The thermal evolution of an Earth with strong subduction zones. Geophys. Res. Lett., 26:3041-3044, 1999. [ bib ]
[802] FA Cook and DL Turcotte. Parameterized convection and the thermal evolution of the Earth. Tectonophys., 75:1-17, 1981. [ bib ]
[803] M. Cooke and A. Kameda. Mechanical fault interaction within the Los Angeles Basin: a two-dimensional analysis using mechanical efficiency. J. Geophys. Res., 107, 2002. [ bib | DOI ]
[804] F. J. Cooper, J. P. Platt, and R. Anczkiewicz. Constraints on early Franciscan subduction rates from 2-D thermal modeling. Earth Planet. Sci. Lett., 312:69-79, 2011. [ bib ]
[805] M. A. Cooper, F. T. Addison, R. Alvarez, M. Coral, R. H. Graham, A. B. Hayward, S. Howe, J. Martinez, J. Naar, R. Peñas, A. J. Pulham, and A. Taborda. Basin development and tectonic history of the Llanos Basin, Colombia. In A. J. Tankard, R. Suarez-Soruco, and H.J. Welsink, editors, Petroleum Basins of South America, volume 62 of Am. Assoc. Petroleum Geol. Memoir, pages 659-665. American Association of Petroleum Geologists, 1995. [ bib ]
[806] A. Copley, J.-P. Avouac, and J.-Y. Royer. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res., 115(B03410), 2010. [ bib | DOI ]
[807] F. Corbi, F. Funiciello, M. Moroni, Y. van Dinther, P. M. Mai, L. A. Dalguer, and C. Faccenna. The seismic cycle at subduction thrusts: 1. Insights from laboratory models. J. Geophys. Res., 118, 2013. [ bib | DOI ]
[808] F. Corbi, R. Herrendörfer, F. Funiciello, and Y. van Dinther. Controls of seismogenic zone width and subduction velocity on interplate seismicity: Insights from analog and numerical models. Geophys. Res. Lett., 44:6082-6091, 2017. [ bib | DOI ]
[809] V. Cormier. Slab diffraction of S waves. J. Geophys. Res., 94:3006-3024, 1989. [ bib ]
[810] V. Corrieu and C. Ricard, Y. Froidevaux. Radial viscosity of the earth deduced from mantle tomography. Phys. Earth Planet. Inter., 84:3-13, 1994. [ bib ]
[811] M. Cortés and J. Angelier. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophys., 403:29-58, 2005. [ bib ]
[812] G. Corti. Dynamics of periodic instabilities during stretching of the continental lithosphere: View from centrifuge models and comparison with natural examples. Tectonics, 24(TC2008), 2005. [ bib | DOI ]
[813] COST. cost. European Cooperation in Science & Technology. Online at www.cost.eu/, accessed 10/2017, 2017. Part of the EU Framework Programme Horizon 2020. [ bib ]
[814] S. Cottaar, M. Li, A. K. McNamara, B. A. Romanowicz, and H.-R. Wenk. Synthetic seismic anisotropy models within a slab impinging on the core-mantle boundary. Geophys. J. Int., 199:164-177, 2014. [ bib ]
[815] F. Cotton and M. Campillo. Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake. J. Geophys. Res., 100:3961-3975, 1995. [ bib ]
[816] V. Courtillot, A. Davaille, J. Besse, and J. Stock. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett., 205:295-308, 2003. [ bib ]
[817] P. A. Cowie and C. H. Scholz. Growth of faults by accumulation of seismic slip. J. Geophys. Res., 97:11085-11095, 1992. [ bib ]
[818] N. L. Cox. Variable uplift from quaternary folding along the northern coast of east timor, based on u-series age determinations of coral terraces. Master's thesis, Brigham Young University, 2009. Available online at contentdm.lib.byu.edu/cdm4/item_viewer.php?CISOROOT=/ETD&CISOPTR=1687, accessed 06/2011. [ bib ]
[819] A. M. Cox, G. Debiche, and D. C. Engebretson. Terrane trajectories and plate interaction along continental margins in the north Pacific basin. In Z. Ben-Avraham, editor, The evolution of the Pacific Ocean margins, pages 20-35. Oxford University Press, Oxford, 1989. [ bib ]
[820] S. J. D. Cox and C. H. Scholz. On the formation and growth of faults: An experimental study. J. Struct. Geol., 10:413-430, 1988. [ bib ]
[821] T. J. Craig, J. A. Jackson, K. Priestley, and D. McKenzie. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys. J. Int., 185:403-434, 2011. [ bib ]
[822] F. Crameri, P. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus. A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(L03306), 2012. [ bib | DOI ]
[823] F. Crameri and P. Tackley. Parameters controlling dynamically self-consistent plate tectonics and single‐sided subduction in global models of mantle convection. J. Geophys. Res., 120:3680-3706, 2015. [ bib | DOI ]
[824] S. Crampin and S. Chastin. A review of shear wave splitting in the crack-critical crust. Geophys. J. Int., 155:221-240, 2003. [ bib ]
[825] S. Crampin. The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astr. Soc., 21:387-402, 1970. [ bib ]
[826] S. Crampin. Seismic anisotropy, a summary. Z. Geophys., 43:499-501, 1977. [ bib ]
[827] S. Crampin, R. McGonigle, and D. Bamford. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysics, 45:345-360, 1980. [ bib ]
[828] S. Crampin. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. Astr. Soc., 76:135-145, 1984. [ bib ]
[829] S. Crampin. Evaluation of anisotropy by shear-wave splitting. Geophysics, 50:142-152, 1985. [ bib ]
[830] K. C. Creager and T. H. Jordan. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. J. Geophys. Res., 91:3573-3589, 1986. [ bib ]
[831] J.-F. Crétaux, L. Soudarin, A. Cazenave, and Bouillé. Present-day tectonic plate motions and crustal deformations from the DORIS space system. J. Geophys. Res., 103:30167-30181, 1998. [ bib ]
[832] R. Jr Crook, C. R. Allen, B. Kamb, C. M. Payne, and R. J. Proctor. Quaternary geology and seismic hazard of the Sierra Madre and associated faults, western San Gabriel Mountains. In Recent reverse faulting in the Transverse Ranges, California, volume 1339 of U. S. Geol. Surv. Prof. Pap., pages 27-63. United States Geological Survey, 1987. [ bib ]
[833] T. A. Cross and R. C. Pilger. Controls of subduction geometry, location of magmatic arcs, tectonics of arc and back-arc regions. Geol. Soc. Am. Bull., 93:545-562, 1982. [ bib ]
[834] H. P. Crotwell and T. J. Owens. Automated receiver function processing. Seismol. Res. Lett., 76:702-709, 2005. Data available online at www.iris.washington.edu/ears, accessed 01/2013. [ bib ]
[835] S. L. Crouch and A. M. Starfield. Boundary Element Methods in Solid Mechanics. With Applications in Rock Mechanics. Allen and Unwin, London, 1983. [ bib ]
[836] S. T. Crough and G. A. Thompson. Thermal model of continental lithosphere. J. Geophys. Res., 81:4857-4862, 1976. [ bib ]
[837] S. T. Crough and G. A. Thompson. Upper mantle origin of Sierra Nevada uplift. Geology, 5:396-399, 1977. [ bib ]
[838] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite elements methods for solving the stationary Stokes equation. Rev. Franc. d'Automat. Informat. Rech. Opér., 3:33-76, 1973. [ bib ]
[839] R. Crow, K. Karlstrom, Y. Asmerom, B. Schmandt, V. Polyak, and S. A. DuFrane. Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology, 39:27-30, 2010. [ bib ]
[840] J. W. Crowley, M. Gérault, and R. J. O'Connell. On the relative influence of heat and water transport on planetary dynamics. Earth Planet. Sci. Lett., 310:380-388, 2011. [ bib ]
[841] C. Cruciani, E. Carminati, and C. Doglioni. Slab dip vs. lithosphere age: no direct function. Earth Planet. Sci. Lett., 238:298-310, 2005. [ bib ]
[842] L. Cserepes, U. R. Christensen, and N. M. Ribe. Geoid height versus topography for a plume model of the Hawaiian swell. Earth Planet. Sci. Lett., 178:29-38, 2000. [ bib ]
[843] N. Cubas, N. Lapusta, J.-P. Avouac, and H. Perfettni. Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: Comparison with observations and implications for fault friction. Earth Planet. Sci. Lett., 419:187-198, 2015. [ bib ]
[844] Yifeng Cui, Efecan Poyraz, Kim B Olsen, Jun Zhou, Kyle Withers, Scott Callaghan, Jeff Larkin, C Guest, D Choi, Amit Chourasia, et al. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers. In SC'13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1-12. IEEE, 2013. [ bib ]
[845] P. A. Cundall and M. Board. A microcomputer program for modeling large strain plasticity problems. In G. Swoboda, editor, Numerical Methods in Geomechanics, pages 2101-2108. Balkema, 1988. [ bib ]
[846] A. Curtis, H. Nicolson, D. Halliday, J. Trampert, and B. Baptie. Virtual seismometers in the subsurface of the earth from seismic interferometry. Nature Geosc., 2:700-704, 2009. [ bib ]
[847] A. Curtis and D. Halliday. Source-receiver wavefield interferometry. Phys. Rev. E, 81(046601-1–046601-10), 2010. [ bib | DOI ]
[848] P. Cvitanović. Universality in Chaos: A Reprint Selection, chapter 1, pages 3-33. Adam Hilger, Bristol, 1984. [ bib ]
[849] M. Dabrowski, M. Krotkiewski, and D. W. Schmid. MILAMIN: MATLAB-based finite element method solver for large problems. Geochem., Geophys., Geosys., 9(Q04030), 2008. [ bib | DOI ]
[850] Z. Dagan, S. Weinbaum, and R. Pfeffer. An infinite-series solution for the creeping motion through an orifice of finite length. J. Fluid Mech., 115:505-523, 1982. [ bib ]
[851] N. D'Agostino and D. McKenzie. Convective support of long wavelength topography in the Apennines (Italy). Terra Nova, 11:234-238, 1999. [ bib ]
[852] F. A. Dahlen, S.-H. Hungh, and G. Nolet. Fréchet kernels for finite-frequency traveltimes I. Theory. Geophys. J. Int., 141:175-203, 2000. [ bib ]
[853] F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press, Princeton, New Jersey, 1998. [ bib ]
[854] T. Dahm. Boundary-Element-Modellierung von Einzelrissen. Persönliche Notiz, Institut für Meteorologie und Geophysik der Universität Frankfurt am Main, 1996. [ bib ]
[855] T. Dahm. Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int., 124:245-257, 1996. [ bib ]
[856] T. Dahm and T. W. Becker. On the elastic and viscous properties of media containing strongly interacting in-plane cracks. Pure Appl. Geophys., 151:1-15, 1998. [ bib ]
[857] T. Dahm. Theoretische Modelle zum effektiven Schermodul in Medien mit Rissen. Persönliche Notiz, Institut für Meteorologie und Geophysik der Universität Frankfurt am Main, 1996. [ bib ]
[858] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl. Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett., 102:175501, 2009. [ bib ]
[859] H.J. Dalstra, E.J.M. Bloem, J.R. Ridley, and D.I. Groves. Diapirism synchronous with regional deformation and gold mineralisation, a new concept for granitoid emplacement in the southern cross province, western australia. Geologie en Mijnbouw, 76:321-338, 1998. [ bib ]
[860] C. A. Dalton and G. Ekström. Global models of surface wave attenuation. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[861] C. A. Dalton and G. Ekström. What can we learn from images of seismic-wave attenuation? Presentation at the IRIS Workshop, Tuscon, AZ, available online at www.seismology.harvard.edu/~dalton/IRIS/iris06_dalton_short.pdf, accessed 06/2006, 2006. [ bib ]
[862] C. A. Dalton, C. H. Langmuir, and A. Gale. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344:80-83, 2014. [ bib ]
[863] Luca Dal Zilio, Ylona van Dinther, Taras V. Gerya, and Casper C. Pranger. Seismic behaviour of mountain belts controlled by plate convergence rate. Earth Planet. Sci. Lett., 482:81-92, 2018. [ bib ]
[864] L. Dal Zilio, Y. van Dinther, T. Gerya, and J. P. Avouac. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nature Comm., 10(1):1-11, 2019. [ bib ]
[865] K. Daniels and N. W. Hayman. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res., 113(B11411), 2008. [ bib | DOI ]
[866] J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. The importance of grain size to mantle dynamics and seismological observations. Geochem., Geophys., Geosys., 18:3034-3061, 2017. [ bib | DOI ]
[867] A. Daradich, J. X. Mitrovica, R. N. Pysklywec, S. D. Willet, and A. M. Forte. Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology, 31:901-904, 2003. [ bib ]
[868] F. Darbyshire and S. Lebedev. Rayleigh wave phase-velocity heterogeneity and multi-layered azimuthal anisotropy of the Superior Craton, Ontario. Geophys. J. Int., 176:215-234, 2009. [ bib ]
[869] B. D'Argenio and A. Mindszenty. Karst Bauxite at regional unconformity and the geotectonic correlation in the Cretaceous of the Mediterranean. Bull. Soc. Geol. It., 110:85-92, 1991. [ bib ]
[870] S. Das and C. H. Scholz. Off-fault aftershock clusters caused by shear stress increase? Bull. Seismol. Soc. Am., 71:1669-1675, October 1981. [ bib ]
[871] A. Davaille. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402:756-760, 2000. [ bib ]
[872] J. Davidsen, S. Stanchits, and G. Dresen. Scaling and universality in rock fracture. Phys. Rev. Lett., 98:12, 2007. [ bib ]
[873] D. R. Davies, C. R. Wilson, and S. C. Kramer. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics. Geochem., Geophys., Geosys., 12(Q06001), 2011. [ bib | DOI ]
[874] J. H. Davies. Global map of solid Earth surface heat flow. Geochem., Geophys., Geosys., 14:4608-4622, 2013. [ bib | DOI ]
[875] G. F. Davies. Mantle convection under simulated plates: effects of heating modes and ridge and trench migration, and implications for the core-mantle boundary, bathymetry, the geoid and Benioff zones. Geophys. J. R. Astr. Soc., 84:153-183, 1986. [ bib ]
[876] G. F. Davies. Geophysical and isotopic constraints on mantle convection: an interim synthesis. J. Geophys. Res., 89:6017-6040, 1984. [ bib ]
[877] G. F. Davies. Ocean bathymetry and mantle convection, 1. Large-scale flows and hotspots. J. Geophys. Res., 93:10467-10480, 1988. [ bib ]
[878] G. F. Davies. Role of the lithosphere in mantle convection. J. Geophys. Res., 93:10451-10466, 1988. [ bib ]
[879] G. F. Davies. Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett., 99:94-109, 1990. [ bib ]
[880] G. F. Davies and M. A. Richards. Mantle convection. J. Geology, 100:151-206, 1992. [ bib ]
[881] G. F. Davies. On the emergence of plate tectonics. Geology, 20:963-966, 1992. [ bib ]
[882] Geoffrey F Davies. Conjectures on the thermal and tectonic evolution of the Earth. Lithos, 30:281-289, 1993. [ bib ]
[883] G. F. Davies. Penetration of plates and plumes through the mantle transition zone. Earth Planet. Sci. Lett., 133:507-516, 1995. [ bib ]
[884] J. H. Davies and F. von Blanckenburg. Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129:85-102, 1995. [ bib ]
[885] G. F. Davies. Dynamic Earth: Plates, plumes, and mantle convection. Cambridge University Press, 1999. [ bib ]
[886] G. F. Davies. Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett., 166:149-162, 1999. [ bib ]
[887] F. M. Dávila, C. Lithgow-Bertelloni, and M. Gimenez. Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth Planet. Sci. Lett., 295:187-194, 2010. [ bib ]
[888] F. M. Dávila and C. Lithgow-Bertelloni. Dynamic topography in south america. J. South Amer. Earth Sci., 43:127-144, 2013. [ bib ]
[889] P. M. Davis and L. Knopoff. The elastic modulus of media containing strongly interacting antiplane cracks. J. Geophys. Res., 100:18253-18258, September 1995. [ bib ]
[890] P. M. Davis. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle. J. Geophys. Res., 108:2052, 2003. 10.1029/2001JB000637. [ bib ]
[891] J. L. Davis, L. H. Kellogg, J. R. Arrowsmith, B. A. Buffett, C. G. Constable, A. Donnellan, E. R. Ivins, G. S. Mattioli, S. E. Owen, M. E. Pritchard, M. E. Purucker, D. T. Sandwell, and J. Sauber. Challenges and Opportunities for Research in ESI (CORE): Report from the NASA Earth Surface and Interior (ESI) Focus Area Workshop, November 2-3, 2015, Arlington, Virginia, 2016. available online at smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/CORE2016%20Updated%3DTAGGED.pdf, accessed 12/2017. [ bib ]
[892] E. E. Davis and C. R. B. Lister. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett., 21:405-413, 1974. [ bib ]
[893] P. M. Davis and L. Knopoff. Reply. In J. Geophys. Res. [2935], pages 25377-25379. [ bib ]
[894] Ph. Davy and P. R. Cobbold. Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophys., 188:1-25, 1991. [ bib ]
[895] P. R. Dawson and H.-R. Wenk. Texturing of the upper mantle during convection. Phil. Mag. A, 80:573-598, 2000. [ bib ]
[896] A. Day-Lewis, M. D. Zoback, and S. H. Hickman. Spectral analysis of localized stress variations, the spatial distribution of faults, and the scaling of physical properties near the San Andreas fault (abstract). Eos Trans. AGU, 86(52):T21A-0439, 2005. [ bib ]
[897] M. M. Deal, G. Nolet, and R. D. van der Hilst. Slab temperatures and thickness from seismic tomography 1. Method and application to Tonga. J. Geophys. Res., 104:28789-28802, 1999. [ bib ]
[898] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 9.1. J. Num. Math., 2019. accepted. [ bib | DOI ]
[899] E. Debayle and M. Sambridge. Inversion of massive surface wave data sets: Model construction and resolution assessment. J. Geophys. Res., 109(B02316), 2004. [ bib | DOI ]
[900] E. Debayle, B. L. N. Kennett, and K. Priestley. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433:509-512, 2005. [ bib ]
[901] E. Debayle and Y. Ricard. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett., 376:165-177, 2013. [ bib ]
[902] E. Debayle, F. Dubuffet, and S. Durand. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett., 43, 2016. [ bib | DOI ]
[903] R. De Borst, L. J. Sluys, H.-B. Mühlhaus, and J. Pamin. Fundamental issues in finite element analyses of localization of deformation. Eng. Computations, 10:99-121, 1993. [ bib ]
[904] R. De Borst, J. Pamin, and M. G. D. Geers. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech. A/Solids, 18:939-962, 1999. [ bib ]
[905] P. G. DeCelles, M. H. Ducea, P. Kapp, and G. Zandt. Cyclicity in Cordilleran orogenic systems. Nature Geosc., 2:251-257, 2009. [ bib ]
[906] R. Deguen and P. Cardin. Tectonic history of the Earth's inner core preserved in its seismic structure. Nature Geosc., 2:419-422, 2009. [ bib ]
[907] Véronique Dehant, H Lammer, Yu N Kulikov, J-M Grießmeier, D Breuer, O Verhoeven, Ö Karatekin, Tim Van Hoolst, O Korablev, and P Lognonné. Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci. Rev., 129:279-300, 2007. [ bib ]
[908] T. L. De la Torre and A. F. Sheehan. Broadband seismic noise analysis of Himalayan Nepal Tibet Seismic Experiment. Bull. Seismol. Soc. Am., 95:1202-1208, 2005. [ bib ]
[909] T. L. De la Torre, G. Monsalve, A. F. Sheehan, S. Sapkota, and F. Wu. Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys. J. Int., 171:718-738, 2007. [ bib ]
[910] T. L. De la Torre. Upper Lithospheric Seismic Characteristics Beneath the Himalaya and the Southern Tibetan Plateau. PhD thesis, University of Colorado at Boulder, 2007. [ bib ]
[911] C. DeMets, R. G. Gordon, and D. F. Argus. Geologically current plate motions. Geophys. J. Int., 181:1-80, 2010. [ bib ]
[912] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Current plate motions. Geophys. J. Int., 101:425-478, 1990. [ bib ]
[913] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21:2191-2194, 1994. [ bib ]
[914] R. V. Demicco. Modeling seafloor-spreading rates through time. Geology, 32:485-488, 2004. [ bib ]
[915] R. Demirtas and Y. Rüçhan. Seismotectonics of Türkiye. Ministry of Public Works and Settlement, Republic of Türkiye, Ankara, Juni 1996. [ bib ]
[916] J. M. deMoor, A. Aiuppa, G. Avard, H. Wehrmann, N. Dunbar, C. Muller, G. Tamburello, G. Giudice, M. Liuzzo, R. Moretti, et al. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-​frequency gas monitoring. J. Geophys. Res., 121:5761-5775, 2016. [ bib | DOI ]
[917] J. Deng and L. R. Sykes. Triggering of 1812 Santa Barbara earthquake by a great San Andreas shock: Implications for future seismic hazards in southern California. Geophys. Res. Lett., 23:1155-1158, May 1996. [ bib ]
[918] J. Deng and L. R. Sykes. Evolution of the stress field in Southern California and triggering of moderate-size earthquakes: A 200-year perspective. J. Geophys. Res., 102:9859-9886, 1997. [ bib ]
[919] J. Deng, M. Gurnis, H. Kanamori, and E. Hauksson. Viscoelastic Flow in the Lower Crust after the 1992 Landers, California, Earthquake. Science, 282:1689-1692, 1998. [ bib ]
[920] D. J. DePaolo and M. Manga. Deep origin of hotspots-the mantle plume model. Science, 300:920-921, 2003. [ bib ]
[921] V. Deparis, H. Legros, and Y. Ricard. Mass anomalies due to subducted slabs and simulations of plate motion since 200 My. Earth Planet. Sci. Lett., 89:271-280, 1995. [ bib ]
[922] J. Dercourt, L. P. Zonenshain, L. E. Ricou, V. C. Karmin, X. Le Pichon, A. L. Knipper, C. Grandjacquet, I. M. Sburtshickov, J. Geyssant, C. Lepvrier, D. A. Pechersky, J. Boulin, J. C. Sibuet, L. A. Savostin, O. Sorokhtin, M. Westphal, M. L. Bazhenov, J. P. Laver, and B. Biju-Duval. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophys., 123:241-315, 1986. [ bib ]
[923] J. Dercourt, L. E. Ricou, and B. Vrielinck. Atlas Tethys, paleoenvironmental maps. Gauthier-Villars, Paris, 1993. [ bib ]
[924] F. Deschamps, J. Trampert, and R. Snieder. Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Phys. Earth Planet. Inter., 129:245-264, 2002. [ bib ]
[925] F. Deschamps and J. Trampert. Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Inter., 140:227-291, 2003. [ bib ]
[926] F. Deschamps and J. Trampert. Towards a lower mantle reference temperature and composition. Earth Planet. Sci. Lett., 222:161-175, 2004. [ bib ]
[927] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States. Geophys. J. Int., 173:827-843, 2008. [ bib ]
[928] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet. Sci. Lett., 274:489-498, 2008. [ bib ]
[929] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography I. principles and influence of rheological parameters. Phys. Earth Planet. Inter., 171:357-373, 2008. [ bib ]
[930] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography II - Influence of physical and compositional parameters. Phys. Earth Planet. Inter., 176:1-18, 2009. [ bib ]
[931] V. S. Deshpande and A. G. Evans. Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J. Mech. Phys. Solids, 56:3077-3100, 2008. [ bib ]
[932] J.-X. Dessa, S. Operto, S. Kodaira, A. Nakanishi, G. Pascal, J. Virieux, and Y. Kaneda. Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion. Geophys. Res. Lett., 31(18), 2004. [ bib | DOI ]
[933] Y. Deubelbeiss and B. J. P. Kaus. Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Phys. Earth Planet. Inter., 171:92-111, 2008. [ bib ]
[934] P. M. R. DeVries, P. G. Krastev, J. F. Dolan, and B. J. Meade. Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre- and postseismic geodetic observations. Bull. Seismol. Soc. Am., 107, 2017. [ bib | DOI ]
[935] J. F. Dewey. Continental margins: a model for conversion of Atlantic type to Andean type. Earth Planet. Sci. Lett., 6:189-197, 1969. [ bib ]
[936] J. F. Dewey. Episodicity, sequence and style at convergent plate boundaries. In The Continental crust and its mineral deposits, volume 20 of GAC Special Paper, pages 553-573. Geological Association of Canada, 1980. [ bib ]
[937] J. F. Dewey. Extensional collapse of orogens. Tectonics, 7:1123-1139, 1988. [ bib ]
[938] J. F. Dewey, M. L. Helman, E. Turco, D. H. W. Hutton, and S. D. Knot. Kinematics of the western Mediterranean. In M. P. Coward, D. Dietrich, and R. G. Park, editors, Conference on Alpine tectonics, volume 45 of Geol. Soc. Lond. Spec. Pubs., pages 265-283. Geological Society of London, London, 1989. [ bib ]
[939] J. F. Dewey and S. H. Lamb. Active tectonics of the Andes. Tectonophys., 205:79-95, 1992. [ bib ]
[940] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Subduction Dynamics and Energy Dissipation: 3-D Numerical Models (abstract). Eos Trans. AGU, 87(52):T11F-04, 2006. [ bib ]
[941] J. Diaz, J. Gallart, A. Villaseñor, F. Mancilla, A. Pazos, D. Córdoba, J. A. Pulgar, P. Ibarra, and M. Harnafi. Mantle dynamics beneath the Gibraltar Arc (western Mediterranean) from shear-wave splitting measurements on a dense seismic array. Geophys. Res. Lett., 37(L18304), 2010. [ bib | DOI ]
[942] L. DiCaprio, M. Gurnis, and R. D. Müller. Long-wavelength tilting of the Australian continent since the Late Cretaceous. Earth Planet. Sci. Lett., 278:175-185, 2009. [ bib ]
[943] Sara Di Carli, Caroline François-Holden, Sophie Peyrat, and Raul Madariaga. Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. J. Geophys. Res., 115(B12328), 2010. [ bib | DOI ]
[944] J. H. Dieterich and D. E. Smith. Nonplanar faults: Mechanics of slip and off-fault damage. Pure Appl. Geophys., 166:1799-1815, 2009. [ bib ]
[945] J. H. Dieterich. Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys., 116:790-806, 1972. [ bib ]
[946] J. H. Dieterich. Time-dependent friction in rocks. J. Geophys. Res., 77:3690-3697, 1978. [ bib ]
[947] J. H. Dieterich. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res., 84:2161-2168, 1979. [ bib ]
[948] J. H. Dieterich. Modeling of rock friction 2. simulation of preseismic slip. J. Geophys. Res., 84:2168-2175, 1979. [ bib ]
[949] J. H. Dieterich. Mechanical behavior of crustal rocks. In N. L. Carter, M. Friedman, J. M. Logan, and D. W. Stearns, editors, Mechanical behavior of crustal rocks: the Handin volume, volume 24 of Geophys. Monograph, pages 103-120. American Geophysical Union, Washington, DC, 1981. [ bib ]
[950] J. H. Dieterich. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophys., 211:115-134, 1992. [ bib ]
[951] J. H. Dieterich and M. F. Linker. Fault stability under conditions of variable normal stress. Geophys. Res. Lett., 19:1691-1694, 1992. [ bib ]
[952] J. H. Dieterich. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res., 99:2601-2618, 1994. [ bib ]
[953] J. H. Dieterich. Earthquake simulations with time-dependent nucleation and long-range interactions. Nonlinear Processes in Geophysics, 2:109-120, 1995. [ bib ]
[954] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Slab stiffness controls trench motion: insights from numerical models. Geochem., Geophys., Geosys., 9(Q02014), 2008. [ bib | DOI ]
[955] C. Dimate, L. Rivera, A. Taboada, B. Delouis, A. Osorio, E. Jimenez, A. Fuenzalida, A. Cisternas, and I. Gomez. The 19 January 1995 Tauramena (Colombia) earthquake: geometry and stress regime. Tectonophys., 363:159-180, 2003. [ bib ]
[956] T. H. Dixon, E. Norabuena, and L. Hotaling. Paleoseismology and Global Positioning System; earthquake-cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone. Geology, 31:55-58, 2003. [ bib ]
[957] J. E. Dixon, T. H. Dixon, D. R. Bell, and R. Malservisi. Lateral variations in upper mantle viscosity: role of water. Earth Planet. Sci. Lett., 222:451-467, 2004. [ bib ]
[958] T. H. Dixon. An introduction to the global positioning system and some tectonic applications. Rev. Geophys., 29:249-276, 1991. [ bib ]
[959] M. Marlino. Digital library for earth system education (DLESE). University Corporation for Atmospheric Research, Boulder CO. Online at www.dlese.org, accessed 06/2006, 2006. [ bib ]
[960] R. Dmowska, J. R. Rice, L. C. Lovinson, and D. Josell. Stress transfer and seismic phenomena in coupled subduction zones during the earthquake cycle. J. Geophys. Res., 93:7869-7884, 1988. [ bib ]
[961] R. Dmowska and L. C. Lovison. Influence of asperities along subduction interfaces on the stressing and seismicity of adjacent areas. TECTON, 211:23-43, 1992. [ bib ]
[962] R. Dmowska, G. Zheng, and J. R. Rice. Seismicity and deformation at convergent margins due to heterogeneous coupling. J. Geophys. Res., 101:3015-3029, 1996. [ bib ]
[963] D. P. Dobson, P. G. Meredith, and S. A. Boon. Detection and analysis of microseismicity in multi anvil experiments. Phys. Earth Planet. Inter., 143:337-346, 2004. [ bib ]
[964] C. Doglioni, D. Green, and F. Mongelli. On the shallow origin of hotspots and the westward drift of the lithosphere. In G. R. Foulger, J. H. Natland, D. C. Presnall, and D. L. Anderson, editors, Plates, Plumes and Paradigms, volume 388 of GSA Sp. Paper, pages 735-749. Geol. Soc. Am., 2005. [ bib ]
[965] C. Doglioni, E. Carminati, and M. Cuffaro. Simple kinematics of subduction zones. Int. Geol. Rev., 48:479-493, 2006. [ bib ]
[966] C. Doglioni, E. Carminati, M. Cuffaro, and D. Scrocca. Subduction kinematics and dynamic constraints. Earth Sci. Rev., 83:125-175, 2007. [ bib ]
[967] C. Doglioni. The global tectonic pattern. J. Geodynamics, 12:21-38, 1990. [ bib ]
[968] C. Doglioni. Foredeeps versus subduction zones. Geology, 22:271-274, 1994. [ bib ]
[969] C. Doglioni, E. Gueguen, F. Sàbat, and M. Fernandez. The western Mediterranean extensional basins and the Alpine orogen. Terra Nova, 9:109-112, 1997. [ bib ]
[970] R. K. Dokka and C. J. Travis. Role of the eastern California shear zone in accomodating Pacific-North American plate motion. Geophys. Res. Lett., 17:1323-1326, 1990. [ bib ]
[971] J. F. Dolan, K. E. Sieh, and T. K. Rockwell. Late Quaternary activity and seismic potential of the Santa Monica fault system, Los Angeles, California. Geol. Soc. Am. Bull., 112:1559-1581, 2000. [ bib ]
[972] J. F. Dolan, D. D. Bowman, and C. G. Sammis. Long-range and long-term fault interactions in Southern California. Geology, 35:855-858, 2007. [ bib ]
[973] J. F. Dolan, K. E. Sieh, T. K. Rockwell, R. S. Yeats, J. Shaw, J. Suppe, G. J. Huftile, and E. M. Gath. Prospects for larger or more frequent earthquakes in the Los Angeles metropolitan region. Science, 267:199-205, 1995. [ bib ]
[974] M. Domeier and T. H. Torsvik. Plate tectonics in the late Paleozoic. Geosc. Front., 5:303-350, 2014. [ bib ]
[975] S. Dominguez, J. Malavieille, and S. E. Lallemand. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19:182-196, 2000. [ bib ]
[976] Jacob Dorsett, Kaj M Johnson, Simone Puel, and Thorsten W Becker. Postseismic deformation and stress evolution following the 2019 M 7.1 and M 6.4 Ridgecrest earthquakes. In AGU Fall Meeting Abstracts. American Geophysical Unison, 2019. S31G-0500. [ bib ]
[977] R. J. Dorsey. Stratigraphic record of Pleistocene initiation and slip on the Coyote Creek Fault, lower Coyote Creek, southern California. In A. Barth, editor, Contributions to crustal evolution of the Southwestern United States, Special paper, pages 251-269. Geological Society of America, 2002. [ bib ]
[978] R. J. Dorsey. Late pleistocene slip rate on the Coachella Valley segment of the San Andreas fault and implications for regional slip partitioning (abstract). In 99th Annual Meeting, Cordilleran Section, Geological Society of America, Puerto Vallarta, Mexico. Geological Society of America, April 2003. [ bib ]
[979] Rebecca J. Dorsey, Gary J. Axen, Thomas C. Peryam, and Mary E. Kairouz. Initiation of the Southern Elsinore Fault at similar to 1.2 Ma: Evidence from the Fish Creek-Vallecito Basin, southern California. Tectonophys., 31, 2012. [ bib | DOI ]
[980] P. V. Doubrovine, B. Steinberger, and T. H. Torsvik. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res., 117(B09101), 2012. [ bib | DOI ]
[981] H. Dragert, K. Wang, and T. S. James. A silent slip event on the deeper Cascadia subduction interface. Science, 292:1525-1528, 2001. [ bib ]
[982] H. Drewes. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In M. Feissel, editor, Geodynamics, IAG Symposia. Springer, 1998. [ bib ]
[983] P Driscoll and D Bercovici. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter., 236:36-51, 2014. [ bib ]
[984] PE Driscoll and Rory Barnes. Tidal heating of earth-like exoplanets around m stars: thermal, magnetic, and orbital evolutions. Astrobio., 15:739-760, 2015. [ bib ]
[985] K. A. Druken, M. D. Long, and C. Kincaid. Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains. Geophys. Res. Lett., 38(L13310), 2011. [ bib | DOI ]
[986] K. A. Druken, C. Kincaid, and R. W. Griffiths. Directions of seismic anisotropy in laboratory models of mantle plumes. Geophys. Res. Lett., 40(14):3544-3549, 2013. [ bib | DOI ]
[987] Benchun Duan. Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount. J. Geophys. Res., 117(B05311), 2012. [ bib | DOI ]
[988] Pierre Dublanchet, Pascal Bernard, and Pascal Favreau. Interactions and triggering in a 3-D rate-and-state asperity model. J. Geophys. Res., 118:2225-2245, 2013. [ bib ]
[989] Pierre Dublanchet. Scaling and variability of interacting repeating earthquake sequences controlled by asperity density. Geophys. Res. Lett., 46:11950-11958, 2019. [ bib ]
[990] F. Dubuffet, D. A. Yuen, and M. Rabinowicz. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth Planet. Sci. Lett., 171:401-409, 1999. [ bib ]
[991] M. N. Ducea, J. B. Saleeby, and G. Bergantz. The architecture, chemistry, and evolution of continental magmatic arcs. Ann. Rev. Earth Planet. Sci., 43:299-331, 2015. [ bib ]
[992] M. N. Ducea. Understanding continental subduction: A work in progress. Geology, 44:239-240, 2016. [ bib ]
[993] M. Duclos, M. K. Savage, A. Tommasi, and K. R. Gledhill. Mantle tectonics beneath New Zealand inferred from SKS splittingand petrophysics. Geophys. J. Int., 163:760-774, 2005. [ bib ]
[994] T. S. Duffy and T. J. Ahrens. Sound velocities at high pressure and temperature and their geophysical implications. J. Geophys. Res., 97:4503-4520, 1992. [ bib ]
[995] S. Duggen, K.A. Hoernle, F. Hauff, A. Klügel, M. Bouabdellah, and M. F. Thirlwall. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology, 37:283–-286, 2009. [ bib ]
[996] C. Dumoulin, D. Bercovici, and P. Wessel. A continuous plate-tectonic model using geophysical data to estimate plate-margin widths, with a seismicity-based example. Geophys. J. Int., 133:379-389, 1998. [ bib ]
[997] E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults. Bull. Seismol. Soc. Am., 101:2308-2322, 2011. [ bib ]
[998] B. Dupre and C. J. Allègre. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303:142-146, 1983. [ bib ]
[999] H. Duque-Caro. The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci., 3:71-84, 1990. [ bib ]
[1000] Florian Duret, Nikolai M Shapiro, Z Cao, V Levin, P Molnar, and S Roecker. Surface wave dispersion across Tibet: Direct evidence for radial anisotropy in the crust. Geophys. Res. Lett., 37(L16306), 2010. [ bib | DOI ]
[1001] Thibault Duretz, René de Borst, and Laetitia Le Pourhiet. Finite thickness of shear bands in frictional viscoplasticity and implications for lithosphere dynamics. Geochem., Geophys., Geosys., 20:5598-5616, 2019. [ bib ]
[1002] J. Dvorkin, A. Nur, G. Mavko, and Z. Ben-Avraham. Narrow subducting slabs and the origin of backarc basins. Tectonophys., 227:63-79, 1993. [ bib ]
[1003] A. M. Dziewoński. Global seismic tomography: past, present and future. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 289-349, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1004] A. M. Dziewoński, V. Lekic, and B. A. Romanowicz. Mantle anchor structure: An argument for bottom up tectonics. Earth Planet. Sci. Lett., 299:69-79, 2010. [ bib ]
[1005] A. M. Dziewoński, B. H. Hager, and R. J. O'Connell. Large scale heterogeneity in the lower mantle. J. Geophys. Res., 82:239-255, 1977. [ bib ]
[1006] A. M. Dziewoński and D. L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25:297-356, 1981. [ bib ]
[1007] A. M. Dziewoński, T.-A. Chou, and J. H Woodhouse. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86:2825-2852, 1981. [ bib ]
[1008] A. M. Dziewoński. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89:5929-5952, 1984. [ bib ]
[1009] C. M. Eakin, C. A. Rychert, and N. Harmon. The role of oceanic transform faults in seafloor spreading: A global perspective from seismic anisotropy. J. Geophys. Res., 123:1736-1751, 2018. [ bib | DOI ]
[1010] D. Eaton, F. Darbyshire, H. Evans, R. L. Grütter, A. G. Jones, and X. Yuan. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos, 109:1-22, 2009. [ bib ]
[1011] D. Eberhart-Phillips, M. Reyners, and M. Chadwick. Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophys. J. Int., 174:418-434, 2008. [ bib ]
[1012] D. Eberhart-Phillips. Three dimensional velocity structure in the Northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am., 76:1025-1052, 1986. [ bib ]
[1013] C. J. Ebinger and N. H. Sleep. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395:788-791, 1998. [ bib ]
[1014] J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys., 53:643-654, 1981. [ bib ]
[1015] D. C. Edelson and D. Gordin. Visualization for learners: A framework for adapting scientists' tools. Comp. Geosci., 24:607-616, 1998. [ bib ]
[1016] B. Efron and C. Stein. The jackknife estimate of variance. Annals Stat., 9:586-596, 1981. [ bib ]
[1017] O. Egbue and J. Kellogg. Pleistocene to present north Andean “escape”. Tectonophys., 489:248-–257, 2010. [ bib ]
[1018] G. Ekström. Global studies of earthquakes. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 111-123, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1019] G. Ekström. Mapping azimuthal anisotropy of intermediate-period surface waves (abstract). Eos Trans. AGU, 82(47):S51E-06, 2001. [ bib ]
[1020] G. Ekström. A simple method of representing azimuthal anisotropy on a sphere. Geophys. J. Int., 165:668-671, 2006. [ bib ]
[1021] G. Ekström, G. A. Abers, and S. C. Webb. Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation. Geophys. Res. Lett., 36(L18301), 2009. [ bib | DOI ]
[1022] G. Ekström, M. Nettles, and A. M. Dziewonski. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200:1-9, 2012. [ bib ]
[1023] G. Ekström, J. Tromp, and E. Larson. Measurements and global models of surface wave propagation. J. Geophys. Res., 102:8137-8157, 1997. [ bib ]
[1024] G. Ekström and A. M. Dziewoński. The unique anisotropy of the Pacific upper mantle. Nature, 394:168-172, 1998. [ bib ]
[1025] G. Ekström. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s. Geophys. J. Int., 187:1668-1686, 2011. [ bib ]
[1026] Z. H. El-Isa and D. W. Eaton. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophys., 615:1-11, 2014. [ bib ]
[1027] W. L. Ellsworth, A. G. Lindh, W. H. Prescott, and D. J. Herd. The 1906 San Francisco earthquake and the seismic cycle. In D. Simpson and P. Richards, editors, Earthquake Prediction, an International Review, volume 4 of Maurice Ewing, pages 126-140. American Geophysical Union, Washington DC, 1981. [ bib ]
[1028] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, 2005. IFISS Matlab software available online at www.maths.manchester.ac.uk/~djs/ifiss/, accessed 06/2006. [ bib ]
[1029] F.-J. Elmer. Is Self-Organized Criticality possible in dry friction? In B. N. J. Persson and E. Tosatti, editors, Physics of sliding friction, pages 433-447. Kluwer Academic, Dordrecht, The Netherlands, 1996. [ bib ]
[1030] P. Elósegui, J. L. Davis, R. T. K. Jaldehag, J. M. Johansson, A. E. Niell, and I. I Shapiro. Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position. J. Geophys. Res., 100:9921-9934, 1995. [ bib ]
[1031] W. M. Elsasser. Convection and stress propagation in the upper mantle. In S. K. Runcorn, editor, The Application of Modern Physics to the Earth and Planetary Interiors, pages 223-249. Wiley, New York, 1969. [ bib ]
[1032] K. Ely and M. Sandiford. Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia. Tectonophys., 483:112-124, 2010. [ bib ]
[1033] B. Endrun, T. Meier, S. Lebedev, M. Bohnhoff, G. Stavrakakis, and H.-P. Harjes. S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys. J. Int., 174:593-616, 2008. [ bib ]
[1034] B. Endrun, S. Lebedev, T. Meier, C. Tirel, and W. Friederich. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geosci., 4:203-207, 2011. [ bib ]
[1035] M. Eneva and Y. Ben-Zion. Techniques and parameters to analyze seismicity patterns associated with large earthquakes. J. Geophys. Res., 102:17785-17795, 1997. [ bib ]
[1036] M. Eneva and Y. Ben-Zion. Application of pattern recognition techniques to earthquake catalogs generated by models of segmented fault systems in three-dimensional elastic solids. J. Geophys. Res., 102:24513-24528, 1997. [ bib ]
[1037] E. R. Engdahl, R. D. van der Hilst, and R. Buland. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88:722-743, 1998. [ bib ]
[1038] D. C. Engebretson, A. Cox, and R. G Gordon. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am. Spec. Paper, 206, 1985. [ bib ]
[1039] J. T. Engelder. Microscopic wear grooves on slickensides: Indicators of paleosesimicity. J. Geophys. Res., 79:4387-4392, 1974. [ bib ]
[1040] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; i, asperity creep and stick-slip. Int. J. Rock Mech. Min. Sci., 13:149-154, 1976. [ bib ]
[1041] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; ii, influence of relative hardness and normal load. Int. J. Rock Mech. Min. Sci., 13:155-163, 1976. [ bib ]
[1042] P. England and P. Molnar. Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res., 110(B12401), 2005. [ bib | DOI ]
[1043] P. C. England and D. P. McKenzie. A thin viscous sheet model for continental deformation. Geophys. J. R. Astr. Soc., 70:295-321, 1982. [ bib ]
[1044] P. C. England and D. P. McKenzie. Correction to a thin viscous sheet model for the continental deformation. Geophys. J. R. Astr. Soc., 73:523-532, 1983. [ bib ]
[1045] P. England, G. Houseman, and L. Sonder. Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res., 90:3551-3557, 1985. [ bib ]
[1046] P. C. England and G. A. Houseman. Finite strain calculations of continental deformation II. Comparison with the India-Asia collision zone. J. Geophys. Res., 91:3664-3676, 1986. [ bib ]
[1047] P. C. England and J. Jackson. Active deformation of the continents. Ann. Rev. Earth Planet. Sci., 17:197-226, 1989. [ bib ]
[1048] P. C. England and P. Molnar. Active deformation of Asia: from kinematics to dynamics. Science, 278:647-650, 1997. [ bib ]
[1049] J. M. English, S. T. Johston, and K. Wang. Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet. Sci. Lett., 214:619-632, 2003. [ bib ]
[1050] A. Enns, T. W. Becker, and H. Schmeling. The dynamics of subduction and trench migration for viscosity stratification. Geophys. J. Int., 160:761-775, 2005. [ bib ]
[1051] EPOS. The GEO Geohazard Supersites and Natural Laboratory initiative, 2017. Available online at www.epos-ip.org/geo-geohazard-supersites-and-natural-laboratory-initiative, accessed 10/2017. [ bib ]
[1052] EPOS. EPOS, the European Plate Observing System. European Infrastructure on Solid Earth, 2017. Available online at www.epos-ip.org, accessed 10/2017. [ bib ]
[1053] Monica E Erdman, Bradley R Hacker, George Zandt, and Gareth Seward. Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range. Geophys. J. Int., 195(2):1211-1229, 2013. [ bib ]
[1054] B.A. Erickson, J. Jiang, M. Barall, N. Lapusta, E.M. Dunham, R. Harris, L.S. Abrahams, K.L. Allison, J.P. Ampuero, S. Barbot, and C. Cattania. Community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Seismol. Res. Lett., submitted, 2020. Available online at authors.library.caltech.edu/100413/1/Erickson_Jiang_etal2019.pdf, accessed 01/2020. [ bib ]
[1055] NASA-ESI. Earth Surface and Interior Solicication NNH15ZDA001N-ESI. NASA, 2015. A.25 Earth Surface and Interior as amended, Available online at nspires.nasaprs.com/external/viewrepositorydocument?cmdocumentid=448056&solicitationId={AFD18323-7FFD-D19B-AD6C-3A780AD09CEE}&viewSolicitationDocument=1, accessed 08/2015. [ bib ]
[1056] P.E. Eskola. The problem of mantled gneiss domes. Geolog. Soc. London Quarterly J., 104:461-476, 1949. [ bib ]
[1057] P. Espanol. Propagative slipping modes in a spring-block model. Phys. Rev. E., 50:227-235, 1994. [ bib ]
[1058] N. Espurt, F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27(TC3011):10.1029/2007TC002175, 2008. [ bib ]
[1059] L. H. Estey and B. J. Douglas. Upper mantle anisotropy: a preliminary model. J. Geophys. Res., 91:11393-11406, 1986. [ bib ]
[1060] NOAA. 2-minute Gridded Global Relief Data (ETOPO2v2). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado, 2006. www.ngdc.noaa.gov/mgg/fliers/06mgg01.html, accessed 01/2013. [ bib ]
[1061] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. www.ngdc.noaa.gov. [ bib ]
[1062] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. [ bib ]
[1063] J. P. Evans, Z. K. Shipton, M. A. Pachell, S. J. Lim, and K. Robeson. The structure and composition of exhumed faults and their implication for seismic processes. In 3rd Conference on Tectonics Problems of the San Andreas system. Stanford University, 2000. [ bib ]
[1064] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int., 165:931-942, 2006. [ bib ]
[1065] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated splitting project database. Online at www.isc.ac.uk/SKS/, accessed 02/2006, 2006. [ bib ]
[1066] J. R. Evans and U. Achauer. Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies. In Seismic Tomography: Theory and Applications, pages 319-360. Chapman and Hall, London, 1993. [ bib ]
[1067] M. Faccenda, L. Burlini, T. Gerya, and D. Mainprince. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455:1097-1101, 2008. [ bib ]
[1068] M. Faccenda and N. Mancktelow. Fluid flow during unbending: Implications for slab hydration, intermediate-depth earthquakes and deep fluid subduction. Tectonophys., 494:149-154, 2010. [ bib ]
[1069] M. Faccenda and F. A. Capitanio. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem., Geophys., Geosys., 14, 2013. [ bib | DOI ]
[1070] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Why did Sardinia stop rotating? Geophys. Res. Abstr., 2:16, 2000. [ bib ]
[1071] C. Faccenna, T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int., 145:809-820, 2001. [ bib ]
[1072] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett., 187:105-116, 2001. [ bib ]
[1073] C. Faccenna, C. Piromallo, A. Crespo Blanc, L. Jolivet, and F. Rossetti. Lateral slab deformation and the origin of the arcs of the western Mediterranean. Tectonics, 23(TC1012), 2004. [ bib | DOI ]
[1074] C. Faccenna, O. Bellier, J. Martinod, C. Piromallo, and V. Regard. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth Planet. Sci. Lett., 242:85-97, 2006. [ bib ]
[1075] C. Faccenna, A. Heuret, F. Funiciello, S. Lallemand, and T. W. Becker. Predicting trench and plate motion from the dynamics of a strong slab. Earth Planet. Sci. Lett., 257:29-36, 2007. [ bib ]
[1076] C. Faccenna, F. Rossetti, T. W. Becker, S. Danesi, and A Morelli. Recent extension driven by mantle upwelling at craton edge beneath the Admirality Mountains (Ross Sea, East Antarctica). Tectonics, 27, 2008. [ bib | DOI ]
[1077] C. Faccenna, E. Di Giuseppe, F. Funiciello, S. Lallemand, and J. van Hunen. Control of seafloor aging on the migration of the Izu-Bonin-Mariana trench. Earth Planet. Sci. Lett., 288:386-398, 2009. [ bib ]
[1078] C. Faccenna and T. W. Becker. Shaping mobile belts by small-scale convection. Nature, 465:602-605, 2010. [ bib ]
[1079] C. Faccenna, T. W. Becker, S. Lallemand, Y. Lagabrielle, F. Funiciello, and C. Piromallo. Subduction-triggered magmatic pulses. A new class of plumes? Earth Planet. Sci. Lett., 209:54-68, 2010. [ bib ]
[1080] C. Faccenna, T. W. Becker, S. Lallemand, and B. Steinberger. On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett., 39(L03305), 2012. [ bib | DOI ]
[1081] C. Faccenna, T. W. Becker, L. Jolivet, and M. Keskin. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett., 375:254-269, 2013. [ bib ]
[1082] C. Faccenna, T. W. Becker, C. P. Conrad, and L. Husson. Mountain building and mantle dynamics. Tectonics, 32:80-93, 2013. [ bib | DOI ]
[1083] C. Faccenna, T. W. Becker, M. S. Miller, E. Serpelloni, and S. D. Willett. Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth Planet. Sci. Lett., 407:163-174, 2014. [ bib ]
[1084] C. Faccenna, T. W. Becker, L. Auer, A. Billi, L. Boschi, J.-P. Brun, F. A. Capitanio, F. Funiciello, F. Horvath, L. Jolivet, C. Piromallo, L. Royden, F. Rossetti, and E. Serpelloni. Mantle dynamics in the Mediterranean. Rev. Geophys., 52:283-332, 2014. [ bib ]
[1085] C. Faccenna, O. Oncken, A. F. Holt, and T. W. Becker. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett., 463:189-201, 2017. [ bib ]
[1086] C. Faccenna, A. F. Holt, T. W. Becker, S. Lallemand, and L. H. Royden. Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. Tectonophys., 746:229-238, 2018. [ bib ]
[1087] C. Faccenna, P. Davy, J.-P. Brun, R. Funiciello, D. Giardini, M. Mattei, and T. Nalpas. The dynamics of back-arc extension: an experimental approach to the opening of the Tyrrhenian Sea. Geophys. J. Int., 126:781-795, 1996. [ bib ]
[1088] C. Faccenna, M. Mattei, R. Funiciello, and L. Jolivet. Styles of back-arc extension in the Central Mediterranean. Terra Nova, 9:126-130, 1997. [ bib ]
[1089] C. Faccenna and D. Giardini. Initiation of subduction in the Mediterranean (abstract). In EGS meeting, Annalae Geophysicae, volume 16. European Geophyical Society, Nice, 1998. [ bib ]
[1090] C. Faccenna, D. Giardini, P. Davy, and A. Argentieri. Initiation of subduction at Atlantic type margins: Insights from laboratory experiments. J. Geophys. Res., 104:2749-2766, 1999. [ bib ]
[1091] Åke Fagereng and Richard H Sibson. Melange rheology and seismic style. Geology, 38:751-754, 2010. [ bib ]
[1092] Å Fagereng, HM Savage, JK Morgan, M Wang, F Meneghini, PM Barnes, R Bell, H Kitajima, DD McNamara, DM Saffer, et al. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. Geology, 47:872-876, 2019. [ bib ]
[1093] Zijun Fang and Eric M. Dunham. Additional shear resistance from fault roughness and stress levels on geometrically complex faults. J. Geophys. Res., 118:3642-3654, 2013. [ bib ]
[1094] D. L. Farber, G. S. Hancock, R. C. Finkel, and D. T. Rodbell. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. J. Quaternary Sci., 20:759-776, 2005. [ bib ]
[1095] K. A. Farley, J. H. Natland, and H. Craig. Binary mixing of enriched and undegassed (primitive-questionable) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111:183-199, 1992. [ bib ]
[1096] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699-712, 2000. [ bib ]
[1097] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699-712, 2002. [ bib ]
[1098] D. W. Farris, A. Cardona, C. Montes, G. Bayona, and J. C. Restrepo. Linked tectonic and magmatic evolution of the Panama arc during collision with South America. In Neotectonics of Arc-Continent Collision, Penrose Conference Proceedings, Manizales, Colombia, 2011. [ bib ]
[1099] D. W. Farris, C. Jaramillo, G. Bayona, S. A. Restrepo-Moreno, C. Monte, A. Cardona, A. Mora, R. J. Speakman, M. D. Glascock, and V. Valencia. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 2011. [ bib | DOI ]
[1100] U. Faul and I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234:119-134, 2005. [ bib ]
[1101] D.R. Faulkner, C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and M.O. Withjack. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol., 32:1557 - 1575, 2010. [ bib ]
[1102] N. Favier and S. Chevrot. Sensitivity kernels for shear wave splitting in transverse isotropic media. Geophys. J. Int., 153:213-228, 2003. [ bib ]
[1103] N. Fay and E. D. Humphreys. Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[1104] N. Fay and E. D. Humphreys. Dynamics of the Salton block: Absolute fault strength and crust-mantle coupling. Geology, 34:261-264, 2006. [ bib ]
[1105] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2008 SCEC Annual Meeting, pages 1-122, 2008. [ bib ]
[1106] N. P. Fay, R. A. Bennett, J. C. Spinler, and E. D. Humphreys. Small-scale upper mantle convection and crustal dynamics in southern California. Geochem., Geophys., Geosys., 9(Q08006), 2008. [ bib | DOI ]
[1107] N. P. Fay and E. D. Humphreys. The forces acting on the Sierra Nevada block and implications for the strength of the San Andreas fault system and the dynamics of continental deformation in the western United States. J. Geophys. Res., 113(B12), 2008. [ bib | DOI ]
[1108] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2009 SCEC Annual Meeting, volume 19, page 251, 2009. [ bib ]
[1109] M. Fehler, L. House, and H. Kaieda. Determining planes along which earthquakes occur: Method of application to earthquakes accompanying hydraulic fracturing. J. Geophys. Res., 92:9407-9414, August 1987. [ bib ]
[1110] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19:25, 1978. [ bib ]
[1111] M. J. Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Science, 1:4, 1980. (reprinted in [?]). [ bib ]
[1112] K. L. Feigl and E. Dupreé. RNGCHN: a program to calculate displacement componenets from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation. Computers & Geosc., 1996. revised. [ bib ]
[1113] K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekström, and J. R. Rice. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Landers earthquake. J. Geophys. Res., 107(B92190), 2002. [ bib | DOI ]
[1114] S. Ferrachat and Y. Ricard. Regular vs. chaotic mantle mixing. Earth Planet. Sci. Lett., 155:75-86, 1998. [ bib ]
[1115] A. M. G. Ferreira, J. H. Woodhouse, K. Visser, and J. Trampert. On the robustness of global radially anisotropic surface wave tomography. J. Geophys. Res., 115(B04313), 2010. [ bib | DOI ]
[1116] G. Festa and S. Nielsen. PML absorbing boundaries. Bull. Seismol. Soc. Am., 93:891-903, 2003. [ bib ]
[1117] Y. Fialko. Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[1118] Y. Fialko, D. Sandwell, M. Simons, and P. Rosen. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435:295-299, 2005. [ bib ]
[1119] Y. Fialko, L. Rivera, and H. Kanamori. Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophys. J. Int., 160:527-532, 2005. [ bib ]
[1120] A. Fichtner, B. L. N. Kennett, and J. Trampert. Separating intrinsic and apparent anisotropy. Phys. Earth Planet. Inter., 219:11-20, 2013. [ bib ]
[1121] E. H. Field, R. J. Arrowsmith, G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordon, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon II, and Y. Zeng. Uniform california earthquake rupture forecast version 3 (UCERF3): The time-independent model. Bull. Seismol. Soc. Am., 104:1122-1180, 2014. [ bib ]
[1122] N. Fiet, X. Quidelleur, O. Parize, L. G. Bulot, and P. Y. Gillot. Lower Cretaceous stage durations combining radiometric data and orbital chronology: Towards a more stable relative time scale? Earth Planet. Sci. Lett., 246:407-417, 2006. [ bib ]
[1123] I. Finetti and A. del Ben. Geophysical study of the Tyrrhenian opening. Boll. Geofis. Teorica Ed Applicata, 28:75-155, 1986. [ bib ]
[1124] K. M. Fischer, E. M. Parmentier, A. R. Stine, and E. R. Wolf. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res., 105:16181-16191, 2000. [ bib ]
[1125] K. M. Fischer, D. L. Ford, H. A. Abt, and C. A. Rychert. The lithosphere-asthenosphere boundary. Ann. Rev. Earth Planet. Sci., 38:551-575, 2010. [ bib ]
[1126] K. M. Fischer and T. H. Jordan. Seismic strain rate and deep slab deformation in Tonga. J. Geophys. Res., 96:14429-14444, 1991. [ bib ]
[1127] K. M. Fischer and D. A. Wiens. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet. Sci. Lett., 142:253-260, 1996. [ bib ]
[1128] K. M. Fischer, M. J. Fouch, D. A. Wiens, and M. S. Boettcher. Anisotropy and flow in Pacific subduction zone back-arcs. Pure Appl. Geophys., 151:463-475, 1998. [ bib ]
[1129] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data, volume 1. Cambridge University Press, New York, 1987. [ bib ]
[1130] D. D. Fitzenz and S. A. Miller. A forward model for earthquake generation on interacting faults including tectonics, fluids, and stress transfer. J. Geophys. Res., 106:26689-26706, 2001. [ bib ]
[1131] N. Flament, N. Coltice, and P. Rey. A case for late-Archean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett., 275:326-336, 2008. [ bib ]
[1132] N. Flament, M. Gurnis, and R. D. Müller. A review of observations and models of dynamic topography. Lithosphere, 5:189-210, 2013. [ bib ]
[1133] L. Fleitout and C. Froidevaux. Thermal and mechanical evolution of shear zones. J. Struct. Geol., 2:159-164, 1980. [ bib ]
[1134] L. Fleitout and C. Froidevaux. Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics, 1:21-56, 1982. [ bib ]
[1135] L. Fleitout and C. Froidevaux. Tectonic stresses in the lithosphere. Tectonics, 2:315-324, 1983. [ bib ]
[1136] L. M. Flesch, W. E. Holt, A. J. Haines, and B. Shen-Tu. Dynamics of the Pacific-North American plate boundary in the western United States. Science, 287:834-836, 2000. [ bib ]
[1137] L. M. Flesch, A. J. Haines, and W. E. Holt. Dynamics of the India-Eurasia collision zone. J. Geophys. Res., 106:16435-16460, 2001. [ bib ]
[1138] L. M. Flesch, E. E. Holt, P. G. Silver, M. Stephenson, C.-Y. Wang, and W. W. Chan. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet. Sci. Lett., 238:248-268, 2005. [ bib ]
[1139] L. M. Flesch, W. E. Holt, A. J. Haines, L. Wen, and B. Shen-Tu. The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions. Geophys. J. Int., 169:866-896, 2007. [ bib ]
[1140] R. C. Fletcher and J. A. Sherwin. Arc lengths of single layer folds - discussion of comparison between theory and observation. Amer. J. Science, 278:1085-1098, 1978. [ bib ]
[1141] R. C. Fletcher and B. Hallet. Unstable extension of the lithosphere: A mechanical model for Basin-and-Range structure. J. Geophys. Res., 88:7457-7466, 1983. [ bib ]
[1142] R. C. Fletcher. Approximate analytical solutions for a cohesive fold-and-thrust wedge - some results for lateral variation in wedge properties and for finite wedge angle. J. Geophys. Res., 94:10347-10354, 1989. [ bib ]
[1143] R. C. Fletcher. 3-Dimensional folding of an embedded viscous layer in pure shear. J. Struct. Geol., 13:87-96, 1991. [ bib ]
[1144] R. C. Fletcher. 3-Dimensional folding and necking of a power-law layer - are folds cylindrical, and, if so, do we understand why. Tectonophys., 247:65-83, 1995. [ bib ]
[1145] M. M. Fliedner and S. Ruppert. Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling. Geology, 24:367-370, 1996. [ bib ]
[1146] R. M. Flowers. The enigmatic rise of the Colorado Plateau. Geology, 38:671-672, 2010. [ bib ]
[1147] Paul Flück, RD Hyndman, and Kelin Wang. Three-dimensional dislocation model for great earthquakes of the cascadia subduction zone. J. Geophys. Res., 102:20539-20550, 1997. [ bib ]
[1148] B. Foley and T. W. Becker. Generation of plate tectonics and mantle heterogeneity from a spherical, visco-plastic convection model. Geochem., Geophys., Geosys., 10(Q08001), 2009. [ bib | DOI ]
[1149] B. J. Foley, D. Bercovici, and W. Landuyt. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett., 331:281-290, 2014. [ bib ]
[1150] B. J. Foley and P. E. Driscoll. On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones. Geochem., Geophys., Geosys., 17:1885-1914, 2016. [ bib | DOI ]
[1151] B. J. Foley. On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones. Phys. Earth Planet. Inter., 283:7-25, 2018. [ bib ]
[1152] B. Fornberg. A practical guide to pseudospectral methods. Cambridge University Press, Cambridge UK, 1996. [ bib ]
[1153] D. Forsyth and A. Li. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In A. Levander and G. Nolet, editors, Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, Washington, D.C., 2005. [ bib ]
[1154] D. W. Forsyth and S. Uyeda. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43:163-200, 1975. [ bib ]
[1155] D. W. Forsyth. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc., 43:103-162, 1975. [ bib ]
[1156] A. M. Forte and H. K. C. Perry. Geodynamic evidence for a chemically depleted continental tectosphere. Science, 290:1940-1944, 2000. [ bib ]
[1157] A. M. Forte and J. X. Mitrovica. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410:1049-1056, 2001. [ bib ]
[1158] A. M. Forte. Constraints on seismic models from other disciplines - Implications for mantle dynamics and composition. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 805-858. Elsevier, Amsterdam, 2007. [ bib ]
[1159] A. M. Forte, J. X. Mitrovica, R. Moucha, N. A. Simmons, and S. P. Grand. Descent of the ancient Farallon slab drives localized mantle flow below the New Madrid seismic zone. Geophys. Res. Lett., 34(L04308), 2007. [ bib | DOI ]
[1160] A. M. Forte, R. Moucha, N. Simmons, S. Grand, and J. Mitrovica. Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophys., 481:3-15, 2010. [ bib ]
[1161] A. M. Forte, S. Quéreé, R. Moucha, N. A. Simons, S. P. Grand, J. X. Mitrovisa, and D. B. Rowley. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet. Sci. Lett., 295:329-341, 2010. [ bib ]
[1162] A. M. Forte, N. A. Simons, and S. P. Grand. Constraints on seismic models from other disciplines - Constraints on 3-D seismic models from global geodynamic observables: Implications for the global mantle convective flow. In G. Schubert, editor, Treatise on Geophysics, volume 1, pages 853-907. Elsevier, Oxford, 2 edition, 2015. [ bib ]
[1163] A. M. Forte and W. R. Peltier. Plate tectonics and aspherical earth structure: the importance of poloidal-toroidal coupling. J. Geophys. Res., 92:3645-3679, 1987. [ bib ]
[1164] A. M. Forte, W. R. Peltier, and A. M. Dziewoński. Inferences of mantle viscosity from tectonic plate velocities. Geophys. Res. Lett., 18:1747-1750, 1991. [ bib ]
[1165] A. M. Forte, W. R. Peltier, A. M. Dziewonski, and R. L. Woodword. Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett., 20:225-228, 1993. [ bib ]
[1166] A. Forte and W. R. Peltier. The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: the importance of surface plates and lateral viscosity variations. Adv. Geophys., 36:1-119, 1994. [ bib ]
[1167] A. M. Forte, A. M. Dziewoński, and R. J. O'Connell. Continent-ocean chemical heterogeneity in the mantle based on seismic tomography. Science, 268:386-388, 1995. [ bib ]
[1168] J. Fortin, S. Stanchits, G. Dresen, and E. Görgün. Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J. Geophys. Res., 111(B10203), 2006. [ bib | DOI ]
[1169] J. Fortin, S. Stanchits, G. Dresen, and Y. Gueguen. Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation. Pure Appl. Geophys., 166:823-841, 2009. [ bib ]
[1170] M. J. Fouch, K. M. Fischer, E. M. Parmentier, M. E. Wysession, and T. J. Clarke. Shear wave splitting, continental keels, and patterns of mantle flow. J. Geophys. Res., 105:6255-6275, 2000. [ bib ]
[1171] M. J. Fouch, P. G. Silver, D. R. Bell, and J. N Lee. Small-scale variations in seismic anisotropy near Kimberley, South Africa. Geophys. J. Int., 157:764-774, 2004. [ bib ]
[1172] M. Fouch. Upper mantle anisotropy database. Online, 2006. accessed in 06/2006, geophysics.asu.edu/anisotropy/upper/. [ bib ]
[1173] M. J. Fouch and S. Rondenay. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter., 158:292-320, 2006. [ bib ]
[1174] M. J. Fouch, D. A. Okaya, and R. Arrowsmith. Shear wave splitting, crustal anisotropy, and patterns of mantle(?) deformation (abstract). Eos Trans. AGU, (DI13A-1848), Abstract at the American Geophysical Union Fall Meeting 2010. [ bib ]
[1175] M. J. Fouch and K. M. Fischer. Mantle anisotropy beneath Northwest Pacific subduction zones. J. Geophys. Res., 101:15987-16002, 1996. [ bib ]
[1176] M. J. Fouch and K. M. Fischer. Shear wave anisotropy in the Mariana subduction zone. Geophys. Res. Lett., 25:1221-1224, 1998. [ bib ]
[1177] G. R. Foulger and J. H. Natland. Is “hotspot” volcanism a consequence of plate tectonics? Science, 300:921-922, 2003. [ bib ]
[1178] L. Fourel, S. Goes, and G. Morra. The role of elasticity in slab bending. Geochem., Geophys., Geosys., 15:4507-4525, 2014. [ bib | DOI ]
[1179] C. M. R. Fowler. The Solid Earth - an Introduction to Global Geophysics. Cambridge University Press, Cambridge, 1990. [ bib ]
[1180] A. C. Fowler. Boundary layer theory and subduction. J. Geophys. Res., 98:21997-22005, 1993. [ bib ]
[1181] Siegfried Franck and Christine Bounama. Continental growth and volatile exchange during earth's evolution. Phys. Earth Planet. Inter., 100:189-196, 1997. [ bib ]
[1182] A. Frassetto, H. Gilbert, G. Zandt, S. Beck, and M. J. Fouch. Support of high topography in the southern Basin and Range based on composition and architecture of the crust in the Basin and Range and Colorado Plateau. Earth Planet. Sci. Lett., 243:62-73, 2006. [ bib ]
[1183] S. Frederiksen and J. Braun. Numerical modeling of strain localisation during extension of the continental lithosphere. Earth Planet. Sci. Lett., 188:241-251, 2001. [ bib ]
[1184] A. M. Freed and J. Lin. Accelerated stress buildup on the southern San Andreas Fault and surrounding regions caused by Mojave Desert earthquakes. Geology, 30:571-574, 2002. [ bib ]
[1185] A. M. Freed and R. Bürgmann. Evidence for power-law flow in the Mojave desert mantle. Nature, 430:548-551, 2004. [ bib ]
[1186] A. M. Freed. Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann. Rev. Earth Planet. Sci., 33:335-367, 2005. [ bib ]
[1187] A. M. Freed, R. Bürgmann, E. Calais, J. Freymueller, and S. Hreinsdóttir. Implications of deformation following the 2002 Denali, Alaska earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res., 111(B01401), 2006. [ bib | DOI ]
[1188] A. M. Freed, S. T. Ali, and R. Bürgmann. Evolution of stress in southern california for the past 200 years from coseismic, postseismic & interseismic stress changes. Geophys. J. Int., 169:1164-1179, 2007. [ bib ]
[1189] A. M. Freed, R. Bürgmann, and T. Herring. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys. Res. Lett., 34, 2008. [ bib | DOI ]
[1190] A. M. Freed, G. Hirth, and M. D. Behn. Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle. J. Geophys. Res., 117(B01409), 2012. [ bib | DOI ]
[1191] A. Freed, A. Hashima, T. W. Becker, D. A. Okaya, H. Sato, and Y. Hatanaka. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet. Sci. Lett., 459:279-290, 2017. [ bib ]
[1192] S. W. French, L. M. Warren, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. Gonzalez. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis. Geochem., Geophys., Geosys., 11(Q03220), 2010. [ bib | DOI ]
[1193] S. French, V. Lekić, and B. A. Romanowicz. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 342:227-230, 2013. [ bib ]
[1194] S. W. French and B. A. Romanowicz. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int., 199:1303-1327, 2014. [ bib ]
[1195] A. Frepoli, G. Selvaggi, C. Chiarabba, and A. Amato. State of stress of the Southern Tyrrhenian subduction zone from fault-plane solutions. Geophys. J. Int., 126:555-578, 1996. [ bib ]
[1196] V. Frette et al. Avalanche dynamics in a pile of rice. Nature, 379:49-52, January 1996. [ bib ]
[1197] M. Freybourger, J. Gaherty, T. H. Jordan, and the Kaapvaal Seismic Group. Structure of the Kaapvaal craton from surface waves. Geophys. Res. Lett., 28:2489-2492, 2001. [ bib ]
[1198] F. T. Freymueller, J. N. Kellogg, and V. Vega. Plate motions in the north Andean region. J. Geophys. Res., 98:21853-21863, 1993. [ bib ]
[1199] A. M. Friedrich, B. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[1200] C. Frohlich and Y. Nakamura. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? Phys. Earth Planet. Inter., 173:365-374, 2009. [ bib ]
[1201] R.-S. Fu and P.-H. Huang. The global stress field in the lithosphere obtained from the satellite gravitational harmonics. Phys. Earth Planet. Inter., 31:269-276, 1983. [ bib ]
[1202] R.-S. Fu and P.-H. Huang. Global stress pattern constrained on deep mantle flow and tectonic features. Phys. Earth Planet. Inter., 60:314-323, 1990. [ bib ]
[1203] L. Fuchs and T. W. Becker. Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability. EarthArXiv Preprint, 2018. [ bib | DOI ]
[1204] G. S. Fuis, T. Ryberg, N. J. Godfrey, D. A. Okaya, and J. M. Murphy. Crustal Structure and tectonics from the Los Angeles Basin to the Mojave Desert, southern California. Bull. Seismol. Soc. Am., 29:15-18, 2001. [ bib ]
[1205] Yukitoshi Fukahata and Mitsuhiro Matsu'ura. Deformation of island-arc lithosphere due to steady plate subduction. Geophys. J. Int., 204:825-840, 2016. [ bib ]
[1206] Y. Fukao, S. Widiyantoro, and M. Obayashi. Stagnant slabs in the upper and lower mantle transition region. Rev. of Geophys., 39:291-323, 2001. [ bib ]
[1207] Y. Fukao, M. Obayashi, T. Nakakuki, and the Deep Slab Project Group. Stagnant slab: A review. Ann. Rev. Earth Planet. Sci., 37:19-46, 2009. [ bib ]
[1208] Y. Fukao and M. Obayashi. Subducted slabs stagnant above, penetrating through and trapped below the 660-km discontinuity. J. Geophys. Res., 118:5920-5938, 2013. [ bib | DOI ]
[1209] Y. Fukao. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 371:149-151, 1984. [ bib ]
[1210] E. Fukuyama and R. Madariaga. Rupture dynamics of a planar fault in a 3d elastic medium: Rate- and slip-weakening friction. Bull. Seismol. Soc. Am., 88:1-17, 1998. [ bib ]
[1211] C. W. Fuller, S. D. Willett, and M. T. Brandon. Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34:65-68, 2006. [ bib ]
[1212] PM Fulton, Emily E Brodsky, Y Kano, J Mori, F Chester, T Ishikawa, RN Harris, W Lin, Nobuhisa Eguchi, S Toczko, et al. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science, 342:1214-1217, 2013. [ bib ]
[1213] T. E. Fumal, M. J. Rymer, and G. G. Seitz. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California. Bull. Seismol. Soc. Am., 92:2841-2860, 2002. [ bib ]
[1214] F. Funiciello, C. Faccenna, D. Giardini, and K. Regenauer-Lieb. Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[1215] F. Funiciello, G. Morra, K. Regenauer-Lieb, and D. Giardini. Dynamics of retreating slabs (part 1): insights from numerical experiments. J. Geophys. Res., 2003. [ bib ]
[1216] F. Funiciello, C. Faccenna, and D. Giardini. Flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys. J. Int., 157:1393-1407, 2004. [ bib ]
[1217] F. Funiciello, C. Piromallo, M. Moroni, T. W. Becker, C. Faccenna, H. A. Bui, and A. Cenedese. 3-D laboratory and numerical models of mantle flow in subduction zones (abstract). Eos Trans. AGU, 85(47):T21b-0527, 2004. [ bib ]
[1218] F. Funiciello, M. Moroni, C. Piromallo, C. Faccenna, A. Cenedese, and H. A. Bui. Mapping flow during retreating subduction: laboratory models analyzed by Feature Tracking. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[1219] F. Funiciello, C. Faccenna, A. Heuret, E. Di Giuseppe, S. Lallemand, and T. W. Becker. Trench migration, net rotation and slab-mantle coupling. Earth Planet. Sci. Lett., 271:233-240, 2008. [ bib ]
[1220] F. Funiciello, C. Faccenna, and D. Giardini. Laboratory experiments of subduction. Geophys. Res. Abstr., 1:62, 1999. [ bib ]
[1221] K. P. Furlong, D. S. Chapman, and P. W. Alfeld. Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. J. Geophys. Res., 87:1786-1802, 1982. [ bib ]
[1222] M. Furuichi, M. Kameyama, and A. Kageyama. Three-dimensional eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation. J. Comput. Phys., 227:4977, 2008. [ bib ]
[1223] T. Furumura and B.L.N. Kennett. Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J. Geophys. Res., 110:B10302, 2005. [ bib | DOI ]
[1224] C. W. Gable. Numerical Models of Plate Tectonics and Mantle Convection in Three Dimensions. PhD thesis, Harvard University, Cambridge MA, 1989. [ bib ]
[1225] C. W. Gable, R. J. O'Connell, and B. J. Travis. Convection in three dimensions with surface plates: generation of toroidal flow. J. Geophys. Res., 96:8391-8405, 1991. [ bib ]
[1226] C. W. Gable, H. A. Stone, and R. J. O'Connell. Chaotic mantle mixing: Time dependence is unnecessary. Eos Trans. AGU, 72:269, 1991. [ bib ]
[1227] C. Gaboret, A. M. Forte, and J.-P. Montagner. The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth Planet. Sci. Lett., 208:219-233, 2003. [ bib ]
[1228] A.-A. Gabriel, J.-P. Ampuero, L.A. Dalguer, and Paul Martin Mai. Source properties of dynamic rupture pulses with off-fault plasticity. J. Geophys. Res., 118:4117-4126, 2013. [ bib ]
[1229] A.-A. Gabriel and Christian Pelties. Simulating large-scale earthquake dynamic rupture scenarios on natural fault zones using the ADER-DG method. In EGU General Assembly Conference Abstracts, volume 16, 2014. [ bib ]
[1230] A.-A. Gabriel, T. Ulrich, E. H. Madden, and S. Wollherr. The great 2004 Sumatra-Andaman earthquake: Insights from dynamic rupture modeling. In Geophys. Res. Abstr., volume 21, 2019. [ bib ]
[1231] A. M. Gabrielov, T. A. Levshina, and I. M. Rotwain. Block model of earthquake sequence. Phys. Earth Planet. Inter., 61:18-28, 1990. [ bib ]
[1232] A. Gabrielov and W. I. Newman. Seismicity modeling and earthquake prediction: A review. In Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 83 of Geophys. Monograph, pages 7-13. International Union of Geodesy and Geophysics, 1994. [ bib ]
[1233] S. Gaffin. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci., 287:596-611, 1987. [ bib ]
[1234] J. B. Gaherty, D. Lizarralde, J. A. Collins, G. Hirth, and S. Kim. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett., 228:225-265, 2004. [ bib ]
[1235] J. B. Gaherty and B. H. Hager. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett., 21:141-144, 1994. [ bib ]
[1236] J. B. Gaherty and T. H. Jordan. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science, 268:1468-1471, 1995. [ bib ]
[1237] J. B. Gaherty, T. H. Jordan, and L. S. Gee. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res., 101:22291-22310, 1996. [ bib ]
[1238] J. Gaherty, M. Kato, and T. H. Jordan. Seismological structure of the upper mantle: a regional comparison of seismic layering. Phys. Earth Planet. Inter., 110:21-41, 1999. [ bib ]
[1239] Eric Gaidos, Clinton P Conrad, Michael Manga, and John Hernlund. Thermodynamic limits on magnetodynamos in rocky exoplanets. Astrophys. J., 718:596, 2010. [ bib ]
[1240] C. Gaina, R.D. Müller, B. Brown, T. Ishihara, and S. Ivanov. Breakup and early seafloor spreading between India and Antarctica. Geophys. J. Int., 170:151-170, 2007. [ bib ]
[1241] W. Landry, L. Hodkinson, and S. Kienz. GALE: User manual version 0.9. Online at www.geodynamics.org:8080/cig/software/packages/gale/gale_book.pdf, accessed 10/2006, 2006. [ bib ]
[1242] John Galetzka, Diego Melgar, Joachim F Genrich, Jianghui Geng, Susan Owen, Eric O Lindsey, Xiaohua Xu, Yehuda Bock, J-P Avouac, Lok Bijaya Adhikari, et al. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 349:1091-1095, 2015. [ bib ]
[1243] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 1. Method and synthetic test. J. Geophys. Res., 124:6949-6969, 2019. [ bib ]
[1244] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, earthquake. J. Geophys. Res., 124:6970-6988, 2019. [ bib ]
[1245] Percy Galvez, J-P Ampuero, Luis A Dalguer, Surendra N Somala, and Tarje Nissen-Meyer. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M 9 Tohoku earthquake. Geophys. J. Int., 198:1222-1240, 2014. [ bib ]
[1246] Percy Galvez, Daniel B Peter, and Paul Martin Mai. Earthquake cycle modeling of curvilinear non-planar faults: 1992, Landers earthquake sequence. In AGU Fall Meeting Abstracts, 2018. [ bib ]
[1247] Kusali Gamage, Elizabeth Screaton, Barbara Bekins, and Ivano Aiello. Permeability-porosity relationships of subduction zone sediments. Marine Geol., 279:19-36, 2011. [ bib ]
[1248] W. Gan, P. Zhang, Z.‐K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng. Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 113(B08416), 2007. [ bib | DOI ]
[1249] S. Gao, R. L. Rudnick, R. W. Carlson, W. F. McDonough, and Y.-S. Liu. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett., 198:307-322, 2002. [ bib ]
[1250] Haiying Gao, David A Schmidt, and Ray J Weldon. Scaling relationships of source parameters for slow slip events. Bull. Seismol. Soc. Am., 102:352-360, 2012. [ bib ]
[1251] Xiang Gao and Kelin Wang. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature, 543:416-419, 2017. [ bib ]
[1252] Haiying Gao. Three-dimensional variations of the slab geometry correlate with earthquake distributions at the cascadia subduction system. Nature comm., 9:1-8, 2018. [ bib ]
[1253] Denis Gapais, Alain Potrel, Nuno Machado, and Erwan Hallot. Kinematics of long-lasting Paleoproterozoic transpression within the Thompson Nickel Belt, Manitoba, Canada. Tectonics, 24(3), 2005. [ bib ]
[1254] F. Garel, S. Goes, D. R. Davies, J. H. Davies, S. C. Kramer, and C. R. Wilson. Interaction of subducted slabs with the mantle transition zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem., Geophys., Geosys., 15, 2014. [ bib | DOI ]
[1255] Z. Garfunkel, C. A. Anderson, and G. Schubert. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res., 91:7205-7223, 1986. [ bib ]
[1256] E. J. Garnero and T. Lay. D” shear velocity heterogeneity, anisotropy, and discontinuity structure beneath the Caribbean and Central America. Phys. Earth Planet. Inter., 140:219-242, 2003. [ bib ]
[1257] E. J. Garnero. A new paradigm for Earth's core-mantle boundary. Science, 304:835-836, 2004. [ bib ]
[1258] E. J. Garnero, V. Maupin, T. Lay, and M. J. Fouch. Variable azimuthal anisotropy in Earth's lowermost mantle. Science, 306:5694, 2004. [ bib ]
[1259] E. J. Garnero and A. K. McNamara. Structure and dynamics of the Earth's lower mantle. Science, 320:626-628, 2008. [ bib ]
[1260] E. J. Garnero, A. K. McNamara, and S.-H. Shim. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nature Geosc., 9:481-489, 2016. [ bib ]
[1261] E. J. Garnero, J. S. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg. Ultralow velocity zone at the core-mantle boundary. In M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, editors, The Core-mantle Boundary Region, pages 319-334. American Geophysical Union, Washington DC, 1998. [ bib ]
[1262] E. Gazel, M. J. Carr, K. Hoernle, M. D. Feigenson, D. Szymanski, F. Hauff, and P. van den Bogaard. The Galapagos-OIB signature in southern Central America: Mantle re-fertilization by arc-hotspot interaction. Geochem., Geophys., Geosys., 10(Q02S11), 2009. [ bib | DOI ]
[1263] E. Gazel, K. Hoernle, M. J. Carr, C. Herzberg, I. Saginor, P. van den Bogaard, F. Hauff, M. Feigenson, and C. Swisher III. Plume-subduction interaction in southern Central America: mantle upwelling and slab melting. Lithos, 121:117-134, 2011. [ bib ]
[1264] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 05/2018, 2018. [ bib ]
[1265] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 12/2014, 2014. [ bib ]
[1266] G. E. Gehrels, M. Rushmore, G. Woodsworth, M. Crawford, C. Andronicos, et al. U-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. Geol. Soc. Am. Bull., 121:1341-1361, 2009. [ bib ]
[1267] R. J. Geller. Shake-up time for Japanese seismology. Nature, 472:407-409, 2011. [ bib ]
[1268] R. J. Geller. Earthquake prediction: a critical review. Geophys. J. Int., 131:425-450, 1997. [ bib ]
[1269] Gen Li, A. Joshua West, and Hongrui Qiu. Competing effects of mountain uplift and landslide erosion over earthquake cycles. J. Geophys. Res., 124:5101-5133, 2019. [ bib ]
[1270] GeoFORCE Texas. About us. Available online at www.jsg.utexas.edu/geoforce/about-us, accessed 09/2018, 2018. [ bib ]
[1271] NSF Geosciences. Beyond 2000: Understanding and predicting Earth's environment and habitability. National Science Foundation, Washington DC. Online at www.nsf.gov/pubs/2000/nsf0028/nsf0028.htm, accessed 06/2006, 2000. [ bib ]
[1272] J. W. Gephart and D. W. Forsyth. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res., 89:9305-9320, 1984. [ bib ]
[1273] J. W. Gephart. Stress and the direction of slip on fault planes. Tectonics, 9:845-858, 1990. [ bib ]
[1274] M. Gérault, T. W. Becker, B. J. P. Kaus, C. Faccenna, L. N. Moresi, and L. Husson. The role of slabs and oceanic plate geometry for the net rotation of the lithosphere, trench motions, and slab return flow. Geochem., Geophys., Geosys., 13(Q04001), 2012. [ bib | DOI ]
[1275] M. Gerbault, E. B. Burov, A. N. B. Poliakov, and M. Daignieres. Do faults trigger folding in the lithosphere? Geophys. Res. Lett., 26:271-274, 1999. [ bib ]
[1276] M. Gerbault. At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet. Sci. Lett., 178:165-181, 2000. [ bib ]
[1277] M. C. Gerstenberger, S. Wiemer, and D. Giardini. A systematic test of the hypothesis the the b value varies with depth in California. Geophys. Res. Lett., 28:57-60, 2001. [ bib ]
[1278] T. V. Gerya, R. Uken, J. Reinhardt, M.K. Watkeys, W.V. Maresch, and C. Brendan. Cold fingers in hot magma: numerical modeling of country-rock diaprs in the Bushveld Complex, South Africa. Geology, 31:753-756, 2003. [ bib ]
[1279] T. V. Gerya and D. Yuen. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter., 140:293-318, 2003. [ bib ]
[1280] T. V. Gerya, D. A. Yuen, and W. V. Maresch. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett., 226:101-116, 2004. [ bib ]
[1281] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2009. [ bib ]
[1282] Taras Gerya. Dynamical instability produces transform faults at mid-ocean ridges. Science, 329:1047-1050, 2010. [ bib ]
[1283] T. V. Gerya and F. I. Meilick. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol., 29:7-31, 2010. [ bib ]
[1284] T. Gerya. Future directions in subduction modeling. J. Geodyn, 52:344-378, 2011. [ bib ]
[1285] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2 edition, 2019. [ bib ]
[1286] A. Ghods, F. Sobouti, and J. Arkani-Hamed. An improved second moment method for solution of pure advection problems. Eos Trans. AGU, 1998. spring meeting. [ bib ]
[1287] A. Ghosh, W. E. Holt, L. M. Flesch, and A. J. Haines. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34:321-324, 2006. [ bib ]
[1288] A. Ghosh, T. W. Becker, and E. D. Humphreys. Effects of lateral viscosity variations on the dynamics of western North America. In 2008 SCEC Annual Meeting, pages 1-124, 2008. [ bib ]
[1289] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. Eos Trans. AGU, 89(53):DI53A-1687, 2008. [ bib ]
[1290] A. Ghosh, W. E. Holt, L. Wen, L. M. Flesch, and A. J. Haines. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling. Geophys. Res. Lett., 35(L16309), 2008. [ bib | DOI ]
[1291] A. Ghosh, A. V. Newman, A. M. Thomas, and G. T. Farmer. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett., 35(L01301), 2008. [ bib | DOI ]
[1292] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 57, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[1293] A. Ghosh, W. E. Holt, and L. M. Flesch. Contribution of gravitational potential energy differences to the global stress field. Geophys. J. Int., 179:787-812, 2009. [ bib ]
[1294] A. Ghosh, T. W. Becker, and S. Zhong. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett., 37(L01301), 2010. [ bib | DOI ]
[1295] A. Ghosh, T. W. Becker, and E. D. Humphreys. Understanding the deformation of the North American continent (abstract). EarthScope National Meeting Abstract Volume, page 70, 2011. Available online at www.earthscope.org/es_doc/meetings/2011_national/, accessed 06/2011. [ bib ]
[1296] A. Ghosh and W. E. Holt. Plate motions and stresses from global dynamic models. Science, 335:839-843, 2012. [ bib ]
[1297] A. Ghosh, T. W. Becker, and E. D. Humphreys. Dynamics of the North American continent. Geophys. J. Int., 194:651-669, 2013. [ bib ]
[1298] A Ghosh, WE Holt, and L Wen. Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res., 118:346-368, 2013. [ bib ]
[1299] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Technical report, ETH Zürich, http://seismo.ethz.ch/gshap/global/global.html, 2000. [ bib ]
[1300] D. Giardini and J. H. Woodhouse. Deep seismicity and modes of deformation in Tonga subduction zone. Nature, 307:505-509, 1984. [ bib ]
[1301] D. Giardini and J. H. Woodhouse. Horizontal shear flow in the mantle beneath the Tonga arc. Nature, 319:551-555, 1986. [ bib ]
[1302] D. Giardini and M. Velonà. La sismicita profonda del Mar Tirreno. Deep seismicity of the Tyrrhenian Sea. Mem. Soc. Geol. It., 41:1079-1087, 1988. [ bib ]
[1303] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Annali di Geof., 42:1225-1230, 1999. [ bib ]
[1304] S. J. Gibowicz. Physics of fracturing and seismic energy release: A review. Pure Appl. Geophys., 124:611-658, 1986. [ bib ]
[1305] J. Gil-Rodríguez. Igneous petrology of the La Colosa gold-rich porphyry system (Tolima, Colombia). Master's thesis, University of Arizona, 2010. [ bib ]
[1306] H. Gilbert, A. F. Sheehan, K. G. Dueker, and P. Molnar. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res., 108(2229), 2003. [ bib | DOI ]
[1307] H. Gilbert, Y. Yang, D. W. Forsyth, C. H. Jones, T. J. Owens, G. Zandt, and J.C. Stachnik. Imaging lithospheric foundering in the structure of the Sierra Nevada. Geosphere, 8:1310-1300, 2012. [ bib ]
[1308] Lewis E. Gilbert, Christopher H. Scholz, and John Beavan. Strain localization along the san andreas fault: Consequences for loading mechanisms. J. Geophys. Res., 99:23975-23984, 1994. [ bib ]
[1309] D. Gilly. UNIX in a Nutshell. O'Reilly & Associates, Inc., Cambridge, 1994. [ bib ]
[1310] C. Giunchi, R. Sabadini, E. Boschi, and P. Gasperini. Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian sea. Geophys. J. Int., 126:555-578, 1996. [ bib ]
[1311] G. Glatzmaier. Geodynamo simulations-how realistic are they? Ann. Rev. Earth Planet. Sci., 30:237-257, 2002. [ bib ]
[1312] Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction. Solid Earth, 9:267-294, 2018. [ bib ]
[1313] P. Wessel and W. H. F. Smith. Free software helps map and display data. Eos Trans. AGU, 72:445-446, 1991. [ bib ]
[1314] Gnuplot. Gnuplot homepage, 2017. Available online at www.gnuplot.info/, accessed 09/2017. [ bib ]
[1315] J. Gobert and J. Clement. Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynmaic knowledge in plate tectonics. J. Res. Sci. Teaching, 36:39-53, 1999. [ bib ]
[1316] S. Godey, R. Snieder, A. Villasenor, and H. M. Benz. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: phase velocity maps and limitations of ray theory. Geophys. J. Int., 152:620-632, 2003. [ bib ]
[1317] S. Godey, F. Deschamps, J. Trampert, and R. Snieder. Thermal and compositional anomalies beneath the North American continent. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[1318] N. J. Godfrey, N. I. Christensen, and D. A. Okaya. Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res., 105:27991-28007, 2000. [ bib ]
[1319] N. J. Godfrey, B. C. Beaudoin, and S. L. Klemperer. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin. Geol. Soc. Am. Bull., 108:1536-1562, 1997. [ bib ]
[1320] T. Goebel, S. Stanchits, T. W. Becker, G. Dresen, and D. Schorlemmer. Acoustic emissions during fracture and sliding of rock surfaces: Preliminary results. 2009 SCEC Annual Meeting Abstracts, 19:317, 2009. [ bib ]
[1321] T. H. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 2009 SCEC Annual Meeting Abstracts, 19:230, 2009. [ bib ]
[1322] T. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 6th International Workshop on Statistical Seismology Abstracts, 2009. [ bib ]
[1323] T. H. Goebel, S. Stanchits, T. W. Becker, D. Schorlemmer, and G. Dresen. Temporal and spatial analysis of acoustic emission clusters during sliding of rough granite surfaces. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 20:216, 2010. Available online at www.scec.org/meetings/2010am/2010SCECProceedings.pdf, accessed 05/2011. [ bib ]
[1324] T. H. Goebel, T. W. Becker, C. Sammis, G. Dresen, and D. Schorlemmer. Variations in b-values, size and rate of micro-seismicity before dynamic slip instabilities in laboratory experiments. 7th International Workshop on Statistical Seismology. Abstracts, page 17, 2011. Available online at www.gein.noa.gr/statsei7/forms/StatSei7_Abstracts.pdf, accessed 05/2011. [ bib ]
[1325] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, E. Rybacki, and G. Dresen. Connecting acoustic emission event locations, aftershock density and b-values before and after stick-slips to changes in topography of rough fracture surfaces during frictional sliding experiments. Seismological Society of America 2011 Annual Meeting Abstracts, 2011. Available online at www.seismosoc.org/meetings/2011/program.php, accessed 05/2011. [ bib ]
[1326] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1327] T. H. Goebel, C. Sammis, and T. W. Becker. Connecting the spatial distribution of acoustic emissions to fault roughness during stick-slip experiments. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1328] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J. Geophys. Res., 117(B03310), 2012. [ bib | DOI ]
[1329] T. H. W. Goebel, D. Schorlemmer, T. W. Becker, G. Dresen, and C. G. Sammis. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett., 40:2049-2054, 2013. [ bib | DOI ]
[1330] T. H. W. Goebel, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. A comparison of seismicity characteristics and fault structure between stick-slip experiments and nature. Pure Appl. Geophys., 2014. [ bib | DOI ]
[1331] T. H. W. Goebel, T. Candela, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. Seismic event distributions and off-fault damage during frictional sliding of saw-cut surfaces with predefined roughness. Geophys. J. Int., 196:612-625, 2014. [ bib ]
[1332] T. H. W. Goebel, T. W. Becker, C. G. Sammis, G. Dresen, and D. Schorlemmer. Off-fault damage and acoustic emission distributions during the evolution of structurally-complex faults over series of stick-slip events. Geophys. J. Int., 197:1705-1718, 2014. [ bib ]
[1333] Thomas HW Goebel, Grzegorz Kwiatek, Thorsten W Becker, Emily E Brodsky, and Georg Dresen. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45:815-818, 2017. [ bib ]
[1334] S. Goes and S. van der Lee. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res., 107(2050), 2002. [ bib | DOI ]
[1335] S. Goes, F. Cammarano, and U. Hansen. Synthetic seismic signature for thermal mantle plumes. Earth Planet. Sci. Lett., 218:401-417, 2004. [ bib ]
[1336] S. Goes, F. A. Capitanio, and G. Morra. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451:981-984, 2008. [ bib ]
[1337] S. D. B. Goes. Irregular recurrence of large earthquakes: An analysis of historic and paleoseismic catalogs. J. Geophys. Res., 101:5739-5749, 1996. [ bib ]
[1338] C. Goetze and D. L. Kohlstedt. Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res., 78:5961-5971, 1973. [ bib ]
[1339] C. Goetze and B. Evans. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astr. Soc., 59:463-478, 1979. [ bib ]
[1340] J. A. Goff and T. H. Jordan. Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93:13589-13608, 1988. [ bib ]
[1341] D. Goff and D.V. Wiltschko. Stresses beneath a ramping thrust sheet. J. Struct. Geol., 14:437-449, 1992. [ bib ]
[1342] D. Goff, D.V. Wiltschko, and R.C. Fletcher. Decollement folding as a mechanism for thrust-ramp spacing. J. Geophys. Res., 101:11341-11352, 1996. [ bib ]
[1343] O. Gogus and R. Pysklywec. Near surface diagnostics of dripping and delaminating lithosphere. J. Geophys. Res., 113(B11404), 2008. [ bib | DOI ]
[1344] R. D. Gold, E. Cowgill, X.-F. Wang, and X.-H. Chen. Application of trishear fault-propagation folding to active reverse faults: examples from the Dalong Fault, Gansu Province, NW China. J. Struct. Geol., 28:200-219, 2006. [ bib ]
[1345] C. Goldfinger, Y. Ikeda, R. S. Yeats, and J. Ren. Superquakes and supercycles. Seismol. Res. Lett., 84:24-32, 2013. [ bib ]
[1346] P. Goldreich and A. Toomre. Some remarks on polar wandering. J. Geophys. Res., 74:2555-2565, 1969. [ bib ]
[1347] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, 3 edition, 1996. [ bib ]
[1348] J. Gomberg et al. Slow slip phenomena in Cascadia from 2007 and beyond: A review. Geol. Soc. Amer. Bull., 122:963-978, 2010. [ bib ]
[1349] J. S. Gomberg, K. A. Ludwig, B. A. Bekins, T. M. Brocher, J. C. Brock, D. Brothers, J. D. Chaytor, A. D. Frankel, E. L. Geist, M. Haney, S. H. Hickman, W. S. Leith, E. A. Roeloffs, W. H. Schulz, T. W. Sisson, J. T. Watt K. Wallace, and A. Wein. Reducing risk where tectonic plates collide-A plan to advance subduction zone science, volume 1428 of Circular. U.S. Geological Survey, 2017. [ bib | DOI ]
[1350] J. Gomberg, M. L. Blanpied, and N. M. Beeler. Transient triggering of near and distant earthquakes. Bull. Seismol. Soc. Am., 87:294-309, 1997. [ bib ]
[1351] J. Gomberg, N. M. Beeler, M. L. Blanpied, and P. Bodin. Earthquake triggering by transient and static deformations. J. Geophys. Res., 103:24411-24426, 1998. [ bib ]
[1352] J. Gómez, A. Nivia, N. Montes, D. Jiménez, M. Sepúlveda, T. Gaona, J. Osorio, H. Diederix, M. Mora, and M. M. Velásquez. Atlas geológico de Colombia, Sheet 5-09, scale 1:500.000. INGEOMINAS, 2007. [ bib ]
[1353] H. M. Gonnermann and M. Manga. Nonequilibrium magma degassing: results from modeling of the ca. 1340 AD eruption of Mono Craters, California. Earth Planet. Sci. Lett., 238:1-16, 2005. [ bib ]
[1354] H. Gonnermann and S. Mukhopadhyay. Preserving noble gases in a convecting mantle. Nature, 458:560-564, 2009. [ bib ]
[1355] H. M. Gonnermann and M. Manga. Dynamics of magma ascent in the volcanic conduit. In S. A. Fagents, T. K. P. Gregg, and R. M. C. Lopes, editors, Modeling volcanic processes, The Physics and Mathematics of Volcanism. Cambridge University Press, 2013. [ bib ]
[1356] A. Gorbatov and B. L. N. Kennett. Joint bulk-sound and shear tomography for western pacific subduction zones. Earth Planet. Sci. Lett., 210:527-543, 2003. [ bib ]
[1357] R. G. Gordon. Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geophys. Monograph, pages 143-159. American Geophysical Union, Washington DC, 2000. [ bib ]
[1358] R. G. Gordon, A. Cox, and C. E. Harter. Absolute motion of an individual plate estimated from its ridge and trench boundaries. Nature, 274:752-755, 1978. [ bib ]
[1359] R. G. Gordon and D. M. Jurdy. Cenozoic global plate motions. J. Geophys. Res., 91:12389-12406, 1986. [ bib ]
[1360] C. Gorini, A. Mauffret, P. Guennoc, and A. Le Marrec. Structure of the gulf of Lions (Northwestern Mediterranean Sea): a review. In A. Mascle, editor, Hydrocarbon and Petroleum Geology of France, volume 4 of Europ. Assoc. Petrol. Geol., pages 223-243. Springer, New York, 1994. [ bib ]
[1361] D. Gorney, A. Escalona, P. Mann, M. B. Magnani, and BOLIVAR Study Group. Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on-land geology. AAPG Bull., 91:653-684, 2007. [ bib ]
[1362] M. L. Gorring and S. M. Kay. Mantle processes and sources of Neogene slab-window magmas in southern Patagonia. J. Petrol., 42:1067-1094, 2001. [ bib ]
[1363] A. Gorszczyk, S. Operto, L. Schenini, and Y. Yamada. Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough. Solid Earth, 10:765-784, 2019. [ bib ]
[1364] A. Goss and S. M. Kay. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem., Geophys., Geosys., 7(Q05016), 2006. [ bib | DOI ]
[1365] A. Goss and S. M. Kay. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~27o S, ~68o W). Earth Planet. Sci. Lett., 270:97-109, 2009. [ bib ]
[1366] A. Goss, S. M. Kay, C. Mpodozis, and B. Singer. The Incapillo Caldera and dome complex (~28oS): A stranded magma chamber over a dying Andean arc, California. J. Volc. Geother Res., 184:384-404, 2009. [ bib ]
[1367] A. Goss, S. M. Kay, and C. Mpodozis. Geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28oS). Contrib. Mineral. Petrol., 161:101-128, 2011. [ bib ]
[1368] J. Gosse and F. Phillips. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sci. Rev., 20:1475-1560, 2001. [ bib ]
[1369] N. J. Goulding, N. M. Ribe, O. Castelnau, A. M. Walker, and J. Wookey. Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy. Geophys. J. Int., 203:334-350, 2015. [ bib ]
[1370] Free Software Foundation. GNU General Public License, GPLv3. Free Software Foundation, Boston, MA, 2007. Available online at www.gnu.org/licenses/gpl-3.0.en.html, accessed 01/2020. [ bib ]
[1371] C. C. Graham, S. Stanchits, I. G. Main, and G. Dresen. Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data. Int. J. Rock Mech. Min. Sci., 47:161-169, 2010. [ bib ]
[1372] E. Granato and S. C. Ying. Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model. Phys. Rev. B, 59:5154-5161, 1999. [ bib ]
[1373] S. P. Grand. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A, 360:2475-2491, 2002. [ bib ]
[1374] S. P. Grand. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res., 99:11591-11621, 1994. [ bib ]
[1375] S. P. Grand, R. D. van der Hilst, and S. Widiyantoro. Global seismic tomography; a snapshot of convection in the Earth. GSA Today, 7:1-7, 1997. [ bib ]
[1376] S. P. Grand. Updated tomographic model based on [?], accessed 02/2001, 2001. ftp://amazon.geo.utexas.edu/outgoing/steveg/. [ bib ]
[1377] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9:189, 1983. [ bib ]
[1378] R. W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am., 86:1091-1106, 1996. [ bib ]
[1379] H. W. Green and H. Houston. The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci., 23:169-213, 1995. [ bib ]
[1380] W. L. Griffin, S. Y. O'Reilly, J. C. Afonso, and G. C. Begg. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol., 50:1185-1204, 2009. [ bib ]
[1381] W. A. Griffith and M. L. Cooke. Mechanical validation of the three-dimensional intersection geometry between the Puente Hills blind-thrust system and the Whittier fault Los Angeles, California. Bull. Seismol. Soc. Am., 94:493-505, 2004. [ bib ]
[1382] A. A. Griffith. The theory of rupture. In J. M. Bienzano, C. B. und Burgers, editor, Proc. 1st. Int. Congr. Appl. Mech., pages 54-63. Tech. Boekhandel en Drukkerij, Delft, 1924. [ bib ]
[1383] R. W. Griffiths. Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech., 166:115-138, 1986. [ bib ]
[1384] R. W. Griffiths. Particle motions induced by spherical convective elements in Stokes flow. J. Fluid Mech., 166:139-159, 1986. [ bib ]
[1385] R. W. Griffiths, M. Gurnis, and G. Eitelberg. Holographic measurements of surface topography in laboratory models of mantle hotspots. Geophys. J. Int., 96:477-495, 1989. [ bib ]
[1386] R. W. Griffiths, R. I. Hackney, and R. D. van der Hilst. A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet. Sci. Lett., 133:1-17, 1995. [ bib ]
[1387] C. Grigné, S. Labrosse, and P. J. Tackley. Convective heat transfer as a function of wavelength. Implications for the cooling of the Earth. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[1388] D.-A. Griot, J.-P. Montagner, and P. Tapponnier. Heterogeneous versus homogeneous strain in central Asia. Geophys. Res. Lett., 25:1447-1450, 1998. [ bib ]
[1389] A. E. Gripp and R. G. Gordon. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150:321-361, 2002. [ bib ]
[1390] A. E. Gripp and R. G. Gordon. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys. Res. Lett., 17:1109-1112, 1990. [ bib ]
[1391] S. Gross and C. Kisslinger. Estimating tectonic stress rate and state with Landers aftershocks. J. Geophys. Res., 102:7603-7612, 1997. [ bib ]
[1392] S. Gross and R. Bürgmann. The rate and state of background stress estimated from the aftershocks of the 1989 Loma Prieta, California, earthquake. J. Geophys. Res., 102:4915-4927, 1998. [ bib ]
[1393] T. L. Grove, C. B. Till, and M. J. Krawczynski. The role of H2O in subduction zone magmatism. Ann. Rev. Earth Planet. Sci., 40:413-439, 2012. [ bib ]
[1394] M. A. Growdon, G. L. Pavlis, F. Niu, F. L. Vernon, and H. Rendon. Constraints on mantle flow at the Caribbean-South American plate boundary inferred from shear wave splitting. J. Geophys. Res., 114(B02303), 2009. [ bib | DOI ]
[1395] EDC. Global 30 Arc Second Elevation Data Set. EROS Data Center, Sioux Falls, South Dakota, 1996. [ bib ]
[1396] Y. J. Gu, A. M. Dziewoński, W.-j. Su, and G. Ekström. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Res., 106:11169-11199, 2001. [ bib ]
[1397] Y. Gu, A. Dziewoński, and G. Ekström. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys. J. Int., 154:559-583, 2003. [ bib ]
[1398] Y. H. Gu, A. L. Lerner-Lam, A. M. Dziewonski, and G. Ekström. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth Planet. Sci. Lett., 232:259-272, 2005. [ bib ]
[1399] J.-C. Gu, J. R. Rice, A. L. Ruina, and S. T. Tse. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids, 32:167-196, 1984. [ bib ]
[1400] Y. Gu and T.-F. Wong. Nonlinear dynamics of the transition from stable sliding to cyclic stick-slip in rock. In W. I. Newman, A. Gabrielov, and D. L. Turcotte, editors, Nonlinear dynamics and predictability of geophysical phenomena, volume 83 of Geophys. Monograph, pages 15-35. American Geophysical Union, Washington, DC, 1994. [ bib ]
[1401] Y. Gu, A. M. Dziewoński, and C. B. Agee. Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157:57-67, 1998. [ bib ]
[1402] A. P. Gubanov and W. D. Mooney. New global maps of crustal basement age. Eos Trans. AGU, 90, 2009. Fall Meet. Suppl., Abstract T53B-1583. [ bib ]
[1403] O. Gudmundsson, J. H. Davies, and R. W. Clayton. Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data. Geophys. J. Int., 102:25-43, 1990. [ bib ]
[1404] O. Gudmundsson and M. Sambridge. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res., 103:7121-7136, 1998. [ bib ]
[1405] M. C. Guédez. Crustal structure across the Caribbean-South American Plate boundary at 70W - Results from seismic refraction and reflection data. Master's thesis, Rice University, Houston, 2007. [ bib ]
[1406] E. Gueguen, C. Doglioni, and M. Fernandez. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophys., 298:259-269, 1998. [ bib ]
[1407] F. Gueydan and J. Précigout. Modes of continental rifting as a function of ductile strain localization in the lithospheric mantle. Tectonophys., 612:18-25, 2014. [ bib ]
[1408] F. Gueydan, J. Précigout, and L. G. J. Montési. Strain weakening enables continental plate tectonics. Tectonophys., 631:189-196, 2016. [ bib ]
[1409] G. Guieu and J. Roussel. Arguments for the pre-rift uplift and rift propagation in the Ligurian-Provençal basin (northwestern Mediterranean) in the light of Pyrenean Provençal orogeny. Tectonics, 9:1113-1142, 1990. [ bib ]
[1410] B. Guillaume, M. Moroni, F. Funiciello, C. Faccenna, and J. Martinod. Mantle flow and dynamic topography associated with slab window opening : Insights from laboratory models. Tectonophys., 496:83-98, 2010. [ bib ]
[1411] S. Guillot, E. Garzanti, D. Baratoux, D. Marquer, G. Mahéo, and J. de Sigoyer. Reconstructing the total shortening history of the NW Himalaya. Geochem., Geophys., Geosys., 4(7), 2003. [ bib | DOI ]
[1412] L. Gouillou-Frottier, J. Buttles, and P. Olson. Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett., 133:19-34, 1995. [ bib ]
[1413] Y. Gung, M. Panning, and B. A. Romanowicz. Global anisotropy and the thickness of continents. Nature, 422:707-711, 2003. [ bib ]
[1414] Y. Gung and B. A. Romanowicz. Q tomography of the upper mantle using three-component long-period waveforms. Geophys. J. Int., 157:813-830, 2004. [ bib ]
[1415] M. Gupta and T. H Kwon. 3-D Flow analysis of non-Newtonian viscous fluids using “enriched” finite elements. Polymer Eng. Sci., 30:1420-1430, 1990. [ bib ]
[1416] M. Gurnis, S. Zhong, and J. Toth. On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motions, volume 121 of Geophysical Monograph, pages 73-94. AGU, Washington DC, 2000. [ bib ]
[1417] M. Gurnis, J. X. Mitrovica, J. Ritsema, and H.-J. van Heijst. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochem., Geophys., Geosys., 1(1020), 2000. [ bib | DOI ]
[1418] M. Gurnis, J. Ritsema, H.-J. van Heijst, and S. Zhong. Tonga slab deformation: The influence of a lower mantle upwelling on a slab in a young subduction zone. Geophys. Res. Lett., 27:2373-2376, 2000. [ bib ]
[1419] M. Gurnis. Sculpting the earth from inside out. Scientific American, 284:40-47, 2001. [ bib ]
[1420] M. Gurnis. Stirring and mixing in the mantle by plate-scale flow: large persistent blobs and long tendrils coexist. Geophys. Res. Lett., 13:1474-1477, 1986. [ bib ]
[1421] M. Gurnis. Quantitative bounds on the size spectrum of isotopic heterogeneity within the mantle. Nature, 323:317-320, 1986. [ bib ]
[1422] M. Gurnis and G. F. Davies. The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett., 13:541-544, 1986. [ bib ]
[1423] M. Gurnis and B. H. Hager. Controls of the structure of subducted slabs. Nature, 335:317-321, 1988. [ bib ]
[1424] M. Gurnis. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332:695-699, 1988. [ bib ]
[1425] M. Gurnis. Ridge spreading, subduction, and sea level fluctuations. Science, 250:970-972, 1990. [ bib ]
[1426] M. Gurnis. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344:754-756, 1990. [ bib ]
[1427] M. Gurnis. Rapid continental subsidence following the initiation and evolution of subduction. Science, 255:1556-1558, 1992. [ bib ]
[1428] M. Gurnis. Depressed continental hypsometry behind oceanic trenches: a clue to subduction controls on sea-level change. Geology, 21:29-32, 1993. [ bib ]
[1429] M. Gurnis. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature, 364:589-593, 1993. [ bib ]
[1430] M. Gurnis and T. Torsvik. Rapid drift of large continents during the Late Precambrian and Paleozoic: Paleomagnetic constraints and dynamics models. Geology, 22:1023-1026, 1994. [ bib ]
[1431] M. Gurnis, C. Eloy, and S. Zhong. Free-surface formulation of mantle convection -ii. Implication for subduction-zone observables. J. Geophys. Res., 127:719-727, 1996. [ bib ]
[1432] A. R. Gusman, Y. Tanioka, H. Matsumoto, and S.-I. Iwasaki. Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bull. Seismol. Soc. Am., 99:2169-2179, 2009. [ bib ]
[1433] B. Gutenberg and C. F. Richter. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34:185-188, 1944. [ bib ]
[1434] B. Gutenberg and C.F. Richter. Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton, 1949. [ bib ]
[1435] B. Gutenberg. The asthenosphere low-velocity layer. Annal. Geophys., 12:439-460, 1959. [ bib ]
[1436] M.-A. Gutscher, W. Spakman, H. Bijwaard, and E. R. Engdahl. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19:814-833, 2000. [ bib ]
[1437] M.-A. Gutscher, J. Malod, J.-P. Rehault, I. Contrucci, F. Klingelhoefer, L. Mendes-Victor, and W. Spakman. Evidence for active subduction beneath Gibraltar. Geology, 30:1071-1074, 2002. [ bib ]
[1438] M.-A. Gutscher and S. M. Peacock. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. J. Geophys. Res., 108(2009), 2003. [ bib | DOI ]
[1439] M.-A. Gutscher, J. Malavieille, S. Lallemand, and J.-Y. Collot. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett., 168:255-270, 1999. [ bib ]
[1440] J. H. Guynn and C. R. Lithgow-Bertelloni. Modeling mantle contributions to the global lithospheric stress field (abstract). Eos Trans. AGU, 82(47):T12C-0922, 2001. [ bib ]
[1441] Z. Gvirtzman, C. Faccenna, and T. W. Becker. Isostasy, flexure, and dynamic topography. Tectonophys., 683:255-271, 2016. [ bib ]
[1442] Z. Gvirtzman and A. Nur. The formation of Mount Etna as the consequence of slab rollback. Nature, 401:782-785, 1999. [ bib ]
[1443] B. R. Hacker, S. M. Peacock, G. A. Abers, and S. D. Holloway. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108:24627-24637, 2003. [ bib ]
[1444] B. R. Hacker and G. A. Abers. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem., Geophys., Geosys., 5(Q01005), 2004. [ bib | DOI ]
[1445] R. A. Haddon and J. R. Cleary. Evidence for scattering of seismic PKP waves near the core-mantle boundary. Phys. Earth Planet. Inter., 8:211-234, 1974. [ bib ]
[1446] D. Hadley and H. Kanamori. Seismic structure of the Transverse Ranges. Geol. Soc. Am. Bull., 88:1469-1478, 1977. [ bib ]
[1447] M. Härri. Folding versus faulting of pressure sensitive elastoplastic rocks: application to the Jura Mountains. Phd-thesis, ETH Zürich, 1998. [ bib ]
[1448] E. Hafkenscheid, M. J. R. Wortel, and W. Spakman. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res., 111(B08401), 2006. [ bib | DOI ]
[1449] B. H. Hager and R. J. O'Connell. Subduction zone dip angles and flow derived by plate motion. Tectonophys., 50:111-133, 1978. [ bib ]
[1450] B. H. Hager. Oceanic plate motions driven by lithospheric thickening and subducted slabs. Nature, 276:156-159, 1978. [ bib ]
[1451] B. H. Hager and R. J. O'Connell. Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res., 84:1031-1048, 1979. [ bib ]
[1452] B. H. Hager and R. J. O'Connell. A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 86:4843-4867, 1981. [ bib ]
[1453] B. H. Hager, R. J. O'Connell, and A. Raefsky. Subduction, back-arc spreading and global mantle flow. Tectonophys., 99:165-189, 1983. [ bib ]
[1454] B. H. Hager. Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res., 89:6003-6015, 1984. [ bib ]
[1455] B. H. Hager, R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewoński. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313:541-545, 1985. [ bib ]
[1456] B. H. Hager and R. W. Clayton. Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In W. R. Peltier, editor, Mantle convection: Plate tectonics and global dynamics, volume 4 of The Fluid Mechanics of Astrophysics and Geophysics, pages 657-763. Gordon and Breach Science Publishers, New York, NY, 1989. [ bib ]
[1457] H.G. Hahn. Bruchmechanik. B. G. Teubner, Stuttgart, 1976. [ bib ]
[1458] S. Haines. PP and PS interferometric images of near-seafloor sediments. In 81st Ann. Internat. Mtg. Soc. Expl. Geophys. (Expanded Abstracts), pages 1288-1292, 2011. [ bib ]
[1459] A. J. Haines and W. E. Holt. A procedure to obtain the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res., 98:12057-12082, 1993. [ bib ]
[1460] A. J. Hale, K.-D. Gottschaldt, G. Rosenbaum, L. Bourgouin, M. Bauchy, and H. Mühlhaus. Dynamics of slab tear faults: Insights from numerical modelling. Tectonophys., 483:58-70, 2010. [ bib ]
[1461] T. C. Hales, D. Abt, E. D. Humphreys, and J. Roering. Columbia River basalt eruptions and uplift of the Wallowa mountains. Nature, 438:842-845, 2005. [ bib ]
[1462] A. L. Hales. Gravitational sliding and continental drift. Earth Planet. Sci. Lett., 6:31-34, 1969. [ bib ]
[1463] C. E. Hall, K. M. Fischer, E. M. Parmentier, and D. K. Blackman. The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. J. Geophys. Res., 105:28009-28033, 2000. [ bib ]
[1464] R. Hall. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer based reconstructions, model and animations. J. Asian Earth Sci., 20:353-434, 2002. [ bib ]
[1465] C. E. Hall, M. Gurnis, M. Sdrolias, L. L. Lavier, and R. D. Muller. Catastrophic initiation of subduction following forced convergence at transform boundaries. Earth Planet. Sci. Lett., 212:15-30, 2003. [ bib ]
[1466] C. E. Hall and E. M. Parmentier. Influence of grain size evolution on convective instability. Geochem., Geophys., Geosys., 4(1029), 2003. [ bib | DOI ]
[1467] C. E. Hall and M. Gurnis. Strength of fracture zones from their barymetric and gravitational evolution. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[1468] Kara L Hall, Amanda L Vogel, and Kevin Crowston. Comprehensive collaboration plans: practical considerations spanning across individual collaborators to institutional supports. In Strategies for Team Science Success, pages 587-611. Springer, 2019. [ bib ]
[1469] H. Hamamoto, M. Yamano, S. Goto, M. Kinoshita, K. Fujino, and K. Wang. Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula. Geochem., Geophys., Geosys., 12(Q2011), 2011. [ bib | DOI ]
[1470] W. B. Hamilton. An alternative Earth. GSA Today, 13:4-12, 2003. [ bib ]
[1471] R. B. Hamilton. Aftershocks of the Borrego mountain earthquake from April 12 to June 12, 1968. In The Borrego Mountain Earthquake of April 9, 1968, volume 787 of Geol. Surv. Profess. Paper, pages 31-54. U.S. Government Printing Center, 1972. [ bib ]
[1472] W. C. Hammond and E. D. Humphreys. Upper mantle seismic wave attenuation: The effect of realistic partial melt distribution. J. Geophys. Res., 105:10975-10986, 2000. [ bib ]
[1473] W. C. Hammond and W. Thatcher. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[1474] W. C. Hammond, G. Blewitt, Z. Li, H.-P. Plag, and C. Kreemer. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology, 40:667-670, 2012. [ bib ]
[1475] Shuoshuo Han, Nathan L. Bangs, Suzanne M. Carbotte, Demian. M Saffer, and James C. Gibson. Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geosc., 10:954-959, 2017. [ bib ]
[1476] Libo Han, Jia Cheng, Yanru An, Lihua Fang, Changsheng Jiang, Bo Chen, Zhongliang Wu, Jie Liu, Xiwei Xu, Ruifeng Liu, et al. Preliminary report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, earthquake. Seismol. Res. Lett., 89:557-569, 2018. [ bib ]
[1477] D. Han and J. Wahr. An analysis of anisotropic mantle viscosity, and its possible effects on post-glacial rebound. Phys. Earth Planet. Inter., 102:33-50, 1997. [ bib ]
[1478] L. Han and M. Gurnis. How valid are dynamical models of subduction and convection when plate motions are prescribed? Phys. Earth Planet. Inter., 110:235-246, 1999. [ bib ]
[1479] G. Hancock, R. Anderson, O. Chadwick, and R. Finkel. Dating fluvial terraces with 10Be and 26Al profiles: Application to the Wind River, Wyoming. Geomorph., 27:1-2, 1999. [ bib ]
[1480] L. N. Hansen, M. E. Zimmerman, and D. L. Kohlstedt. Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature, 492:415-418, 2012. [ bib ]
[1481] L. N. Hansen, Y.-H. Zhao, M. E. Zimmerman, and D. L. Kohlstedt. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet. Sci. Lett., 387:157-158, 2014. [ bib ]
[1482] L. N. Hansen, C. Qib, and J. M. Warren. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere. Proc. Natl. Acad. Sci. USA, 113:10503-10506, 2016. [ bib ]
[1483] L. N. Hansen, J. M. Warren, M. E. Zimmerman, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth Planet. Sci. Lett., 445:92-103, 2016. [ bib ]
[1484] L. N. Hansen, C. P. Conrad, Y. Boneh, P. Skemer, J. M. Warren, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model. J. Geophys. Res., 121:7137-7160, 2016. [ bib | DOI ]
[1485] J. L. Hardebeck and E. Hauksson. Crustal stress field in southern California and its implications for fault mechanics. J. Geophys. Res., 106:21859-21882, 2001. [ bib ]
[1486] J. L. Hardebeck and E. Hauksson. Stress orientations obtained from earthquake focal mechanisms; what are appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91:250-262, 2001. [ bib ]
[1487] J. L. Hardebeck and P. M. Shearer. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am., 92:2264-2276, 2002. [ bib ]
[1488] J. L. Hardebeck and P. M. Shearer. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seismol. Soc. Am., 93:2434-2444, 2003. [ bib ]
[1489] J. L. Hardebeck and A. J. Michael. Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[1490] J. L. Hardebeck, P. M. Shearer, and E. Hauksson. A new earthquake focal mechanism catalog for southern California. In 2005 SCEC Annual Meeting Abstracts, page 130, Los Angeles, CA, 2005. Southern California Earthquake Center. [ bib ]
[1491] J. L. Hardebeck. Homogeneity of small-scale earthquake faulting, stress and fault strength. Bull. Seismol. Soc. Am., 96:1675-1688, 2006. [ bib ]
[1492] J. L. Hardebeck and A. J. Michael. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. J. Geophys. Res., 111(B11310), 2006. [ bib | DOI ]
[1493] J. L. Hardebeck. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett., 39(L21313), 2012. [ bib | DOI ]
[1494] J. Hardebeck, B. Aagaard, T. W. Becker, B. Shaw, and J. Shaw. Workshop Report for Community Stress Model (CSM) 2012 Workshop, SCEC Award 12114. Available online at sceczero.usc.edu/dashboard/darel/search/product?pid=32, accessed 10/2013, 2013. [ bib ]
[1495] Jeanne L Hardebeck. Stress orientations in subduction zones and the strength of subduction megathrust faults. Science, 349:1213-1216, 2015. [ bib ]
[1496] J. L. Hardebeck and T. Okada. Temporal stress changes caused by earthquakes: A review. J. Geophys. Res., 123:1350-1365, 2018. [ bib | DOI ]
[1497] J. L. Hardebeck, J. J. Nazareth, and E. Hauksson. The static stress change triggering model: Constraints from two southern California aftershock sequences. J. Geophys. Res., 103:24427-24437, 1998. [ bib ]
[1498] J. W. Harden and J. C. Matti. Holocene and late Pleistocene slip rates on the San Andreas Fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology. Geol. Soc. Am. Bull., 101:1107-1117, 1989. [ bib ]
[1499] L. A. Hardie. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24:279-283, 1996. [ bib ]
[1500] J. F. Harper. On the driving forces of plate tectonics. Geophys. J. R. Astr. Soc., 40:465-474, 1975. [ bib ]
[1501] J. F. Harper. Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55:87-110, 1978. [ bib ]
[1502] J. F. Harper. Mantle flow and plate motions. Geophys. J. R. Astr. Soc., 87:155-171, 1986. [ bib ]
[1503] R. A. Harris, M. W. Vorkink, C. Prasetyadi, N. Roosmawati, E. Zobell, and M. Apthorpe. Transition from subduction to arc-continent collision: Geological and neotectonic evolution of Savu, Indonesia. Geosphere, 5:152-171, 2009. [ bib ]
[1504] Ruth A Harris, Michael Barall, Dudley J Andrews, Benchun Duan, Shuo Ma, Eric M Dunham, A-A Gabriel, Yoshihiro Kaneko, Yuko Kase, Brad T Aagaard, et al. Verifying a computational method for predicting extreme ground motion. Seismol. Res. Lett., 82:638-644, 2011. [ bib ]
[1505] Ruth A Harris, Michael Barall, Brad Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, et al. A suite of exercises for verifying dynamic earthquake rupture codes. Seismol. Res. Lett., 89:1146-1162, 2018. [ bib ]
[1506] R. A. Harris. Temporal distribution of strain in the active Banda orogen: a reconciliation of rival hypotheses. J. Southeast Asian Earth Sci., 6:373-386, 1991. [ bib ]
[1507] R. A. Harris and R. W. Simpson. Changes in static stress on Southern California faults after the 1992 Landers earthquake. Nature, 360:251-254, 1992. [ bib ]
[1508] R. A. Harris, R. W. Simpson, and P. A. Reasenberg. Influence of static stress changes on earthquake locations in Southern California. Nature, 375:221-224, May 1995. [ bib ]
[1509] R. A. Harris and R. W. Simpson. In the shadow of 1857 - the effect of the great Ft. Tejon earthquake on subsequent earthquakes in Southern California. Geophys. Res. Lett., 23:229-232, February 1996. [ bib ]
[1510] R. A. Harris. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res., 103:24347-24358, 1998. [ bib ]
[1511] R. A. Harris, R. K. Sawyer, and M. G. Audley-Charles. Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, 17:458-480, 1998. [ bib ]
[1512] C. G. A. Harrison. Spreading rates and heat flow. Geophys. Res. Lett., 7:1041-1044, 1980. [ bib ]
[1513] D.L. Harry, D. S. Sawyer, and W.P. Leeman. The mechanics of continental extension in western North America: implications for the magmatic and structural evolution of the Great Basin. Earth Planet. Sci. Lett., 117:59-71, 1993. [ bib ]
[1514] S. R. Hart and A. Zindler. Constraints on the nature and development of chemical heterogeneities in the mantle. In W. R. Peltier, editor, Mantle Convection: Plate Tectonics and Global Dynamics, pages 261-387. Gordon and Breach Science Publishers, New York, 1989. [ bib ]
[1515] S. R. Hart, E. H. Hauri, L. A. Oschmann, and J. A. Whitehead. Mantle plumes and entrainment: isotopic evidence. Science, 256:517-520, 1992. [ bib ]
[1516] R. Hartog and S. Y. Schwartz. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res., 105:7909-7930, 2000. [ bib ]
[1517] R. Hartog and S. Y. Schwartz. Depth-dependent mantle anisotropy below the San Andreas fault system: Apparent splitting parameters and waveforms. J. Geophys. Res., 106:4155-4168, 2001. [ bib ]
[1518] A. Hasegawa, K. Yoshida, and T. Okada. Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planet. Space, 63:703-707, 2011. [ bib ]
[1519] A. Hasegawa, K. Yoshida, Y. Asano, T. Okada, T. Iinuma, and Y. Ito. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 355:231-243, 2012. [ bib ]
[1520] A. Hashima, T. W. Becker, A. M. Freed, H. Sato, and D. A. Okaya. Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan. Earth, Planet., Space, 68(159), 2016. [ bib | DOI ]
[1521] Akinori Hashima and Toshinori Sato. A megathrust earthquake cycle model for Northeast Japan: bridging the mismatch between geological uplift and geodetic subsidence. Earth, Planets and Space, 69(1):23, 2017. [ bib ]
[1522] C. Hashimoto, A. Noda, T. Sagiya, and M. Matsuúra. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geosc., 2:141-144, 2009. [ bib ]
[1523] N. A. Haskell. The motion of a fluid under a surface load. Physics, 6:265-269, 1935. [ bib ]
[1524] R. Hassani, D. Jongmans, and J. Chéry. Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J. Geophys. Res., 102:17951-17965, 1997. [ bib ]
[1525] D. Hasterok. A heat flow based cooling model for tectonic plates. Earth Planet. Sci. Lett., 361:34-43, 2013. [ bib ]
[1526] D. Hatzfeld, E. Karagianni, I. Kassaras, A. Kiratzi, E. Louvari, H. Lyon-Caen, K. Makropoulos, P. Papadimitriou, G. Bock, and K. Priestley. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res., 106:30737-30753, 2001. [ bib ]
[1527] D. Hatzfeld and P. Molnar. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys., 48(RG2005), 2010. [ bib | DOI ]
[1528] S. A. Hauck, R. J. Phillips, and A. M. Hofmeister. Variable conductivity: effects on the thermal structure of subducting slabs. Geophys. Res. Lett., 26:3257-3260, 1999. [ bib ]
[1529] E. Hauksson et al. The 1992 Landers earthquake sequence: Seismological observations. J. Geophys. Res., 98:19835-19858, 1993. [ bib ]
[1530] E. Hauksson. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. J. Geophys. Res., 105:13875-13903, 2000. [ bib ]
[1531] E. Hauksson, W.-C Chi, and P. Shearer. Comprehensive waveform cross-correlation of southern california seismograms: Part 1. refined hypocenters obtained using the double-difference method and tectonic implications (abstract). Eos Trans. AGU, 84(46):S21D-0325, 2003. [ bib ]
[1532] E. Hauksson. Large earthquakes, aftershocks, and background seismicity: analysis of interseismic and coseismic spatial seismicity patterns in southern California. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 18:145, 2008. Available online at www.scec.org/meetings/2008am/2008SCECAnnualMeetingVolume.pdf, accessed 01/2009. [ bib ]
[1533] E. Hauksson. Spatial separation of large earthquakes, aftershocks, and background seismicity: Analysis of interseismic and coseismic seismicity patterns in Southern California. Pure Appl. Geophys., 167:979-997, 2010. [ bib ]
[1534] E. Hauksson and J. S. Haase. Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central Transverse Ranges, California. J. Geophys. Res., 102:5423-5452, 1997. [ bib ]
[1535] Chris J Hawkesworth, B Dhuime, AB Pietranik, PA Cawood, AIS Kemp, and CD Storey. The generation and evolution of the continental crust. J. Geol. Soc., 167(2):229-248, 2010. [ bib ]
[1536] W. B. Hawley, R. Allen, and M. A. Richards. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science, 353:1406-1408, 2016. [ bib ]
[1537] JC Hawthorne and NM Bartlow. Observing and modeling the spectrum of a slow slip event. J. Geophys. Res., 123:4243-4265, 2018. [ bib ]
[1538] G. Hayes. Slab2 - A Comprehensive Subduction Zone Geometry Model. Technical report, United States Geological Survey, 2018. U.S. Geological Survey data release. [ bib | DOI ]
[1539] N. Hayman and L. L. Lavier. The geologic record of deep episodic tremor and slip. Geology, 42:195-198, 2014. [ bib ]
[1540] J. D. Hays and W. C. Pitman III. Lithospheric plate motion, sea level changes, and climatic and ecological consequences. Nature, 246:18-22, 1973. [ bib ]
[1541] D. Healy, S. M. Reddy, N. E. Timms, E. M. Gray, and A. V. Brovarone. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs. Earth Planet. Sci. Lett., 283:75-86, 2009. [ bib ]
[1542] R. F. S. Hearmon. An introduction to applied anisotropic elasticity. Oxford University Press, London, 1961. [ bib ]
[1543] E. H. Hearn. What can GPS tell us about the dynamics of postseismic deformation? Geophys. J. Int., 155:753-777, 2003. [ bib ]
[1544] E. H. Hearn, F. F. Pollitz, W. R. Thatcher, and C. T. Onishi. How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? Geochem., Geophys., Geosys., 14(4):828-838, 2013. [ bib | DOI ]
[1545] L. Hearn. 2018 crm workshop report. Technical Report Available online at files.scec.org/s3fs-public/reports/2018/18202_report.pdf, accessed 02/2019, Southern California Earthquake center, University of Southern California, Los Angeles, 2018. [ bib ]
[1546] T. M. Hearn. Anisotropic Pn tomography in the western United States. J. Geophys. Res., 101:8403-8414, 1996. [ bib ]
[1547] E. H. Hearn, E. D. Humphreys, M. Chai, and J. M. Brown. Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics. J. Geophys. Res., 102:11943-11956, 1997. [ bib ]
[1548] E. H. Hearn, E. D. Humphreys, M. Chai, and J. M. Brown. Correction to “Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics” by Elizabeth Harding Hearn, Eugene D. Humphreys, Mu Chai, and J. Michael Brown. J. Geophys. Res., 104:1193-1195, 1999. [ bib ]
[1549] T. M. Hearn. Uppermost mantle velocities and anisotropy beneath Europe. J. Geophys. Res., 104:15123-15139, 1999. [ bib ]
[1550] T. H. Heaton. Tidal triggering of earthquakes. Geophys. J. R. Astr. Soc., 43:307-326, 1972. [ bib ]
[1551] T. H. Heaton. Tidal triggering of earthquakes. Bull. Seismol. Soc. Am., 72:2181-2200, 1982. [ bib ]
[1552] T. H. Heaton. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter., 64:1-20, 1990. [ bib ]
[1553] H. van Heck and P. J. Tackley. Planforms of self-consistently generated plate tectonics in 3-D spherical geometry. Geophys. Res. Lett., 35(L19312), 2008. [ bib | DOI ]
[1554] M. A. H. Hedlin, P. M. Shearer, and P. S. Earle. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature, 387:145-150, 1997. [ bib ]
[1555] O. Heidbach. Der Mittelmeerraum: numerische Modellierung der Lithosphärendynamik im Vergleich mit Ergebnissen aus der Satellitengeodäsie, volume 525 of Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften: Reihe C, Dissertationen. Beck, München, 2000. [ bib ]
[1556] O. Heidbach, M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller. The World Stress Map database release 2008, 2008. [ bib | DOI ]
[1557] H. J. van Heijst and J. H. Woodhouse. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping. Geophys. J. Int., 137:601-620, 1999. [ bib ]
[1558] M. Heimpel and P. Olson. A seismodynamical model of lithosphere deformation: Development of continental and oceanic rift networks. J. Geophys. Res., 101:16155-16176, 1996. [ bib ]
[1559] M. Heimpel. Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388:865-868, 1997. [ bib ]
[1560] M. Heimpel. Aseismic slip in earthquake nucleation and self-similarity: evidence from Parkfield, California. Earth Planet. Sci. Lett., 157:249-254, 1998. [ bib ]
[1561] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader, Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke Liao, Karthikeyan Vaidyanathan, et al. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 3-14. IEEE, 2014. [ bib ]
[1562] M. Heintz, E. Debayle, and A. Vauchez. Upper mantle structure of the South American continent and neighboring oceans from surface wave tomography. Tectonophys., 406:115-139, 2005. [ bib ]
[1563] M. Heintz and B. L. N. Kennett. The apparently isotropic Australian upper mantle. Geophys. Res. Lett., 33(L15319), 2006. [ bib | DOI ]
[1564] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems. Geophys. J. Int., 210:833-851, 2017. [ bib ]
[1565] G. Helffrich. Topography of the transition zone seismic discontinuities. Rev. Geophys., 38:141-158, 2000. [ bib ]
[1566] G. Helffrich, D. A. Wiens, E. Vera, S. Barrientos, P. Shore, S. Robertson, and R. Adaros. A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces. Geophys. J. Int., 149:F1-F7, 2002. [ bib ]
[1567] P. L. Heller, D. L. Anderson, and C. L. Angevine. Cretaceous pulse of rapid seafloor spreading: real or necessary? Geology, 24:491-494, 1996. [ bib ]
[1568] A. Helmstetter and B. E. Shaw. Relation between stress heterogeneity and aftershock rate in the rate-and-state model. J. Geophys. Res., 111(B07304), 2006. [ bib | DOI ]
[1569] T. J. Henstock, A. Levander, and J. A. Hole. Deformation in the lower crust of the San Andreas Fault system in Northern California. Science, 278:650-653, 1997. [ bib ]
[1570] F.S. Henyey and N. Pomphrey. Self-consistent elastic moduli of a cracked solid. Geophys. Res. Lett., 9:903-906, August 1982. [ bib ]
[1571] J. W. Herbert, M. L. Cooke, M. Oskin, and O. Difo. How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology, 42:71-75, 2013. [ bib ]
[1572] J. W. Hernlund, C. Thomas, and P. J. Tackley. Phase boundary double crossing and the structure of Earth's deep mantle. Nature, 434:882-886, 2005. [ bib ]
[1573] J. W. Hernlund and C. Houser. On the statistical distribution of seismic velocities in the Earth's deep mantle. Earth Planet. Sci. Lett., 265:423-437, 2008. [ bib ]
[1574] J. W. Hernlund and P. J. Tackley. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter., 171:48-54, 2008. [ bib ]
[1575] Robert Herrendörfer, Taras Gerya, and Ylona Van Dinther. An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. J. Geophys. Res., 123:5018-5051, 2018. [ bib ]
[1576] R. Herrendörfer, Y. van Dinther, T. Gerya, and L. A. Dalguer. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nature Geosc., 8:471-474, 2015. [ bib ]
[1577] R. B. Herrmann, H. Benz, and C. J. Ammon. Monitoring the earthquake process in North America. Bull. Seismol. Soc. Am., 101:2609-2625, 2011. Catalog available online at www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/mech.html, accessed 12/2014. [ bib ]
[1578] C. Herzberg, P. D. Asimow, N. Arndt, Y. Niu, C. M. Lesher, J. G. Fitton, M. J. Cheadle, and A. D. Saunders. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem., Geophys., Geosys., 8(Q02006), 2007. [ bib | DOI ]
[1579] C. Herzberg and J. Zhang. Melting experiments on anhydrous peridotite KLB-1: Composition of magmas in the upper mantle and transition zone. J. Geophys. Res., 101:8271-8295, 1996. [ bib ]
[1580] H. H. Hess. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203:629-631, 1964. [ bib ]
[1581] E. Hetland and B. H. Hager. Postseismic and interseismic displacements near a strike-slip fault: A two-dimensional theory for general linear viscoelastic rheologies. J. Geophys. Res., 110(B10401), 2005. [ bib | DOI ]
[1582] R. Hetzel, S. Niedermann, M. X. Tao, P. W. Kubik, and M. R. Strecker. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. J. Geophys. Res., 111(F03012), 2006. [ bib | DOI ]
[1583] A. Heuret and S. Lallemand. Slab dynamics and back-arc deformation. Phys. Earth Planet. Inter., 149:31-51, 2005. [ bib ]
[1584] A. Heuret, F. Funiciello, C. Faccenna, and S. Lallemand. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth Planet. Sci. Lett., 256:473-483, 2007. [ bib ]
[1585] A. Heuret, S. Lallemand, F. Funiciello, C. Piromallo, and C. Faccenna. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem., Geophys., Geosys., 12(Q01004), 2011. [ bib | DOI ]
[1586] Arnauld Heuret, CP Conrad, F Funiciello, Serge Lallemand, and L Sandri. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys. Res. Lett., 39(L05304), 2012. [ bib | DOI ]
[1587] R. N. Hey. Speculative propagating rift-subduction zone interactions with possible consequences for continental margin evolution. Geology, 26:247-250, 1998. [ bib ]
[1588] S. P. Hicks, S. E.J. Nippress, and A. Rietbrock. Sub-slab mantle anisotropy beneath south-central Chile. Earth Planet. Sci. Lett., 357:203-213, 2012. [ bib ]
[1589] S. P. Hicks, A. Rietbrock, I. M. A. Ryder, C.-S. Lee, and M. Miller. Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth Planet. Sci. Lett., 405:142-155, 2014. [ bib ]
[1590] C. F. Hieronymus. Control on seafloor spreading geometries by stress- and strain-induced lithospheric weakening. Earth Planet. Sci. Lett., 177-189, 2004. [ bib ]
[1591] H. H. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London Sec. A, 65:349-354, 1952. [ bib ]
[1592] G. Hillers, P. M. Mai, Y. Ben-Zion, and J.-P. Ampuero. Statistical properties of seismicity of fault zones at different evolutionary stages. Geophys. J. Int., 169:515-533, 2007. [ bib ]
[1593] R. D. van der Hilst. Changing views on Earth's deep mantle. Science, 306:817-818, 2004. [ bib ]
[1594] R. D. van der Hilst, E. R. Engdahl, W. Spakman, and T. Nolet. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 353:47-53, 1991. [ bib ]
[1595] R. D. van der Hilst and T. Seno. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett., 120:395-407, 1993. [ bib ]
[1596] R. D. van der Hilst and P. Mann. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22:451-454, 1994. [ bib ]
[1597] R. D. van der Hilst. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374:154-157, 1995. [ bib ]
[1598] R. D. van der Hilst, S. Widiyantoro, and E. R. Engdahl. Evidence of deep mantle circulation from global tomography. Nature, 386:578-584, 1997. [ bib ]
[1599] R. D. van der Hilst and H. Kárason. Aspherical structure of the bottom half of Earth's mantle. Eos Trans. AGU, 79:213, 1998. [ bib ]
[1600] R. D. van der Hilst and H. Kárason. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science, 283:1885-1887, 1999. [ bib ]
[1601] D. Hindle and M. Burkhard. Strain, displacement and rotation associated with the formation of curvature in fold belts; the example of the jura arc. J. Struct. Geol., 21:1089-1101, 1999. [ bib ]
[1602] D. Hindle, O. Besson, and M. Burkhard. A model of displacement and strain for arc-shaped mountain belts applied to the jura arc. J. Struct. Geol., 22:1285-1296, 2000. [ bib ]
[1603] D. J. J. van Hinsbergen, P. Kapp, G. Dupont-Nivet, P Lippert, P. DeCelles, and T. Torsvik. Restoration of Cenozoic deformation in Asia, and the size of Greater India. Tectonics, 30(TC5003), 2011. [ bib | DOI ]
[1604] K.-G. Hinzen. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophys., 377:325-356, 2003. [ bib ]
[1605] A. Hirn. Anisotropy in the continental upper mantle: possible evidence from explosion seismology. Geophys. J. Int., 49:49-58, 1977. [ bib ]
[1606] K. Hirose, Y. W. Fei, Y. Z. Ma, and H. K. Mao. The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397:53-56, 1999. [ bib ]
[1607] M. M. Hirschmann. Water, melting, and the deep Earth H2O cycle. Ann. Rev. Earth Planet. Sci., 34:629-653, 2006. [ bib ]
[1608] M. M. Hirschmann. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter., 179:60-71, 2010. [ bib ]
[1609] C. Hirt and M. Rexer. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Observ. Geoinf., 39:103-112, 2015. [ bib ]
[1610] G. Hirth and D. L. Kohlstedt. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geophys. Monograph, pages 83-105. American Geophysical Union, Washington DC, 2004. [ bib ]
[1611] D. Hoang, T. W. Becker, S. Kenner, and Y. Fialko. Finite element and boundary element benchmarks for the post-seismic deformation. Proceedings of the 2003 Annual SCEC Meeting, 2003. [ bib ]
[1612] K. M. Hodgkinson, R. S. Stein, and G. C. P. King. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence. J. Geophys. Res., 101:25459-25471, 1996. [ bib ]
[1613] P. Hoffmann. Continental transform tectonics, Great Slave Lake shear zone (ca 1.9 Ga), northwest Canada. Geology, 15:785-788, 1987. [ bib ]
[1614] P. Hoffmann. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Ann. Rev. Earth Planet. Sci., 16:543-603, 1988. [ bib ]
[1615] P. Hoffmann. Speculations on Laurentia's first gigayear (2.0-1.0 Ga). Geology, 17:135-138, 1989. [ bib ]
[1616] P. Hoffmann. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252:1409-1412, 1991. [ bib ]
[1617] P. Hoffmann. Orographic precipitation, erosional unloading, and tectonic style. Geology, 25:195-198, 1993. [ bib ]
[1618] A. W. Hofmann. Mantle geochemistry: the message from oceanic volcanism. Nature, 385:219-229, 1997. [ bib ]
[1619] A. M. Hofmeister. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283:1699-1706, 1999. [ bib ]
[1620] T. Hoink and A. Lenardic. Three-dimensional mantle convection simulations with a low viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett., 35(L10304):10.1029/2008GL033854, 2008. [ bib ]
[1621] T. Hoink and A. Lenardic. Long wavelength convection, Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int., 180:23-33, 2010. [ bib ]
[1622] W. S. Holbrook and W. D. Mooney. The crustal structure of the axis of the Great Valley California. Tectonophys., 140:49-63, 1987. [ bib ]
[1623] W. S. Holbrook, T. M. Brocher, U. S. ten Brink, and J. A. Hole. Crustal Structure of a transform plate boundary: San Francisco Bay and the central California continental margin. J. Geophys. Res., 101:22311-22334, 1996. [ bib ]
[1624] T. Holland and R. Powell. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J. Petrol., 42(4):673-683, 2001. [ bib ]
[1625] K. Holliger and A. R. Levander. A stochastic view of lower crustal fabric based on evidence from the Ivrea Zone. Geophys. Res. Lett., 19:1153-1156, 1992. [ bib ]
[1626] A. Holmes. Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, 18:559-606, 1931. [ bib ]
[1627] M. Holschneider and Y. Ben-Zion. Bayesian estimation of faults geometry based on seismic catalog data. Eos Trans. Amer. Geophys. Union, Fall Meet. Suppl., 87, 2006. [ bib ]
[1628] W. E. Holt. Correlated crust and mantle strain fields in Tibet. Geology, 28:67-70, 2000. [ bib ]
[1629] W. E. Holt and P. G. Silver. Using surface observations to constrain the direction and magnitude of mantle flow beneath western North America (abstract). Eos Trans. AGU, 82(47):F, 2001. [ bib ]
[1630] A. F. Holt, T. W. Becker, and B. A. Buffett. Trench migration and overriding plate stress in dynamic subduction models. Geophys. J. Int., 201:172-192, 2015. [ bib ]
[1631] A. F. Holt, B. A. Buffett, and T. W. Becker. Overriding plate thickness control on subducting plate curvature. Geophys. Res. Lett., 42:3802-3810, 2015. [ bib | DOI ]
[1632] A. F. Holt and T. W. Becker. The effect of a power-law mantle viscosity on trench retreat rate. Geophys. J. Int., 208:491-507, 2016. [ bib ]
[1633] A. F. Holt, L. H. Royden, and T. W. Becker. The dynamics of double slab subduction. Geophys. J. Int., 209:250-265, 2017. [ bib ]
[1634] A. H. Holt, L. H. Royden, T. W. Becker, and F. Faccenna. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth Planet. Sci. Lett., 489:72-83, 2018. [ bib ]
[1635] W. E. Holt. Flow fields within the Tonga slab determined from the moment tensors of deep earthquakes. Geophys. Res. Lett., 22:989-992, 1995. [ bib ]
[1636] B. K. Holtzman, D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga, and J. Hustoft. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301:1227-1230, 2003. [ bib ]
[1637] B. K. Holtzman and J.‐M. Kendall. Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem., Geophys., Geosys., 11(Q0AB06), 2010. [ bib | DOI ]
[1638] B. Holtzman. Questions on the existence, persistence, and mechanical effecs of a very small melt fraction in the asthenosphere. Geochem., Geophys., Geosys., 17:470-484, 2016. [ bib | DOI ]
[1639] C. Homberg, F. Bergerat, Y. Philippe, O. Lacombe, and J. Angelier. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics, 357:137-158, 2002. [ bib ]
[1640] S. Honda. Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13:1454-1457, 1986. [ bib ]
[1641] S. Hongsresawat, M. P. Panning, R. M. Russo, D. A. Foster, V. Monteiller, and S. Chevrot. USArray shear wave splitting shows seismic anisotropy from both lithosphere and asthenosphere. Geology, 43:667-670, 2015. [ bib ]
[1642] D Höning and T Spohn. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of earth. Phys. Earth Planet. Inter., 255:27-49, 2016. [ bib ]
[1643] C. Hoorn, J. Guerrero, G. A. Sarmiento, and M. A. Lorente. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23:237-240, 1995. [ bib ]
[1644] E. Hopper and K. M. Fischer. The meaning of midlithospheric discontinuities: A case study in the northern u.s. craton. Geochem., Geophys., Geosys., 16:4057-4083, 2015. [ bib | DOI ]
[1645] T. Hori, N. Kato, K. Hirahara, T. Baba, and Y. Kaneda. A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan: lateral variation in frictional property due to the slab geometry controls the nucleation position. Earth Planet. Sci. Lett., 228:215-226, 2004. [ bib ]
[1646] A. van Horne, H. Sato, and T. Ishiyama. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophys., 710:6-20, 2017. [ bib ]
[1647] F. G. Horowitz and A. L. Ruina. Slip patterns in a spatially homogeneous fault model. J. Geophys. Res., 94:10279-10298, 1989. [ bib ]
[1648] B. K. Horton, M. Parra, J. E. Saylor, J. Nie, A. Mora, V. Torres, D. F. Stockli, and M. R. Strecker. Resolving uplift of the Northern Andes using detrital zircon age signatures. GSA Today, 20:4-10, 2010. [ bib ]
[1649] B. K. Horton, J. E. Saylor, J. Nie, A. Mora, M. Parra, A. Reyes-Harker, and D. F. Stockli. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geol. Soc. Am. Bull, 122:1423-1442, 2010. [ bib ]
[1650] G. A. Houseman and Gemmer L. Intra-orogenic extension driven by gravitational instability: Carpathian-Pannonian orogeny. Geology, 35:1135-1138, 2007. [ bib ]
[1651] G. A. Houseman, D. P. McKenzie, and P. Molnar. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res., 86:6115-6132, 1981. [ bib ]
[1652] G. A. Houseman and P. C. England. A dynamical model for lithospheric extension and sedimentary basin formation. J. Geophys. Res., 91:719-729, 1986. [ bib ]
[1653] G. A. Houseman and P. C. England. A dynamical model of lithosphere extension and sedimentary basin formation. J. Geophys. Res., 91:719-729, 1986. [ bib ]
[1654] G. A. Houseman and P. C. England. Finite strain calculations of continental deformation I. Method and general results for convergent zone. J. Geophys. Res., 91:3651-3663, 1986. [ bib ]
[1655] G. A. Houseman and P. Molnar. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int., 128:125-150, 1997. [ bib ]
[1656] G. A. Houseman and D. Gubbins. Deformation of subducted oceanic lithosphere. Geophys. J. Int., 131:535-551, 1997. [ bib ]
[1657] C. Houser and Q. Williams. The wavelengths of fast and slow shear velocity anomalies in the lower mantle: Contrary to the expectations of dynamics? Phys. Earth Planet. Inter., 176:187-197, 2009. [ bib ]
[1658] C. Houser and Q. Williams. Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet. Sci. Lett., 296:255-266, 2010. [ bib ]
[1659] H. Houston. Deep earthquakes. In G. Schubert, editor, Treatise on Geophysics, Vol. 4: Deep Earthquakes, volume 11, pages 321-350. Elsevier, 2007. [ bib ]
[1660] H. Houston. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress. Nature Geosc., 8:409-415, 2015. [ bib ]
[1661] S. Howell, B. Smith-Konter, N. Frazer, X. Tong, and D. Sandwell. The vertical fingerprint of earthquake cycle loading in Southern California. Nature Geosc., 2015. in revision, B. Smith-Konter, pers. comm., 09/2015, should be published at time of proposal review. [ bib ]
[1662] J. M. Howie, K. C. Miller, and W. U. Savage. Integrated crustal structure across the South Central California Margin: Santa Lucia Escarpment to the San Andreas Fault. J. Geophys. Res., 98:8473-8196, 1993. [ bib ]
[1663] A. T. Hsui. Application of fluid mechanic principles to the study of trench back-arc systems. Pure Appl. Geophys., 128:661-681, 1988. [ bib ]
[1664] Y. Hu, R. Bürgmann, J.T. Freymueller, P. Banerjee, and K. Wang. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth Planets Space, 66, 2014. [ bib | DOI ]
[1665] Y. Hu, R. Bürgmann, N. Uchide, P. Banerjee, and J. T. Freymueller. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J. Geophys. Res., 120, 2016. [ bib | DOI ]
[1666] Y. Hu, R. Bürgmann, P. Banerjee, L. Feng, E. M. Hill, T. Ito, T. Tabei, and K. Wang. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake. Nature, 538:368-372, 2016. [ bib ]
[1667] J. Hu, M. Faccenda, and L. Liu. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett., 470:13-24, 2017. [ bib ]
[1668] C. Hua. An inverse transformation for quadrilateral isoparametric elements: Analysis and application. Finite Elem. Anal. Design, 7:159-166, 1990. [ bib ]
[1669] W.C. Huang, J. F. Ni, F. Tilmann, D. Nelson, J. Guo, W. Zhao, J. Mechie, R. Kind, J. Saul, R. Rapine, and T. M. Hearn. Seismic polarization anisotropy beneath the central Tibetan plateau. J. Geophys. Res., 105:27979-27989, 2000. [ bib ]
[1670] J. Huang and D. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B09305), 2006. [ bib | DOI ]
[1671] G. C. Huang, F. T. Wu, S. W. Roecker, and A. F. Sheehan. Lithospheric structure of the central Himalaya from 3-D tomographic imaging. Tectonophys., 475:524-543, 2009. [ bib ]
[1672] J. Huang, E. Vanacore, F. Niu, and A. Levander. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications. Earth Planet. Sci. Lett., 289:105-111, 2010. [ bib ]
[1673] Hui Huang, Huajian Yao, and Robert D van der Hilst. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophys. Res. Lett., 37(21), 2010. [ bib ]
[1674] G.-C. Huang, S. W. Roecker, and V. Levin. Lower‐crustal earthquakes in the West Kunlun range. Geophys. Res. Lett., 38(L01314), 2011. [ bib | DOI ]
[1675] J. Huang and D. L. Turcotte. Are earthquakes an example of deterministic chaos? Geophys. Res. Lett., 17:223-226, 1990. [ bib ]
[1676] K. W. Hudnut, L. Seeber, and J. Pacheco. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophys. Res. Lett., 16:199-202, February 1989. [ bib ]
[1677] R. von Huene and C. R. Ranero. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res., 108(2079), 2003. [ bib | DOI ]
[1678] T. J. R Hughes. The finite element method. Dover Publications, 2000. [ bib ]
[1679] R. S. Huismans and C. Beaumont. Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. J. Geophys. Res., 108(B10):2496, 2003. [ bib | DOI ]
[1680] R. S. Huismans, Y. Y. Podladchikov, and S. Cloetingh. Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics, 20:1021-1039, 2001. [ bib ]
[1681] E. D. Humphreys, K. Dueker, D. Schutt, and R. B. Smith. Beneath Yellowstone: Evaluating plume and nonplume models using teleseismic images of the upper mantle. GSA Today, 10, 2000. [ bib ]
[1682] E. D. Humphreys, E. Hessler, K. Dueker, E. Erslev, G. L. Farmer, and T. Atwater. How Laramide-age hydration of North America by the Farallon slab controlled subsequent activity in the western U.S. In J. Eiler, editor, The George Thompson volume, volume 7 of GSA International Book, pages 524-544. Geological Society of America, 2003. [ bib ]
[1683] E. D. Humphreys and D. Coblentz. North American dynamics and western U.S. tectonics. Rev. Geophys., 45(RG3001), 2007. [ bib | DOI ]
[1684] E. D. Humphreys. Cenozoic slab windows beneath the western United States. In J. E. Spencer and S. Titley, editors, Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits (Dickinson volume), page in press. Arizona Geological Society, 2008. [ bib ]
[1685] E. D. Humphreys. Relation of flat subduction to magmatism and deformation in the Western USA. In S. Kay and V. Ramos, editors, Backbone of the Americas, Special Publication, page in press. Geological Society of America, 2008. [ bib ]
[1686] E. D. Humphreys and B. H. Hager. A kinematic model for the Late Cenozoic development of southern California crust and upper mantle. J. Geophys. Res., 95:19747-19762, 1990. [ bib ]
[1687] E. D. Humphreys and K. G. Dueker. Western U.S. upper mantle structure. J. Geophys. Res., 99:9615-9634, 1994. [ bib ]
[1688] E. D. Humphreys and R. J. Weldon. Deformation across the western United States: A local estimate of Pacific-North American transform deformation. J. Geophys. Res., 99:19975-20010, 1994. [ bib ]
[1689] E. D. Humphreys. Post-Laramide removal of the Farallon slab, western United States. Geology, 23:987-990, 1995. [ bib ]
[1690] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. A thermomechanical model of horizontal subduction below an overriding plate. Earth Planet. Sci. Lett., 182:157-169, 2000. [ bib ]
[1691] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophys., 352:317-333, 2002. [ bib ]
[1692] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys. Res. Lett., 29(1690), 2002. [ bib | DOI ]
[1693] J. van Hunen, S. Zhong, N. Shapiro, and M. H. Ritzwoller. Oceanic upper mantle rheology as constrained by combined geodynamic and seismic modeling of plate-mantle interaction (abstract). Eos Trans. AGU, 85(47):T11B-1258, 2004. [ bib ]
[1694] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys. Earth Planet. Inter., 146:179-194, 2004. [ bib ]
[1695] J. van Hunen, S. Zhong, N. M. Shapiro, and M. H. Ritzwoller. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett., 238:146-155, 2005. [ bib ]
[1696] J. van Hunen and A. P. van den Berg. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103:217-235, 2008. [ bib ]
[1697] S.-H. Hung and D. W. Forsyth. Can a narrow, melt-rich, low-velocity zone of mantle upwelling be hidden beneath the East Pacific Rise? Limits from waveform modeling and the MELT experiment. J. Geophys. Res., 105:7945-7960, 2000. [ bib ]
[1698] S.-H. Hung, Y. Shen, and L.-Y. Chiao. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach. J. Geophys. Res., 109(B08305), 2004. [ bib | DOI ]
[1699] S.-H. Hung, E. J. Garnero, L.-Y. Chiao, B.-Y. Kuo, and T. Lay. Finite frequency tomography of D" shear velocity heterogeneity beneath the Caribbean. J. Geophys. Res., 110(B07305), 2005. [ bib | DOI ]
[1700] S.-H. Hung and D. W. Forsyth. Modeling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multi-domain pseudospectral method. Geophys. J. Int., 133:720-740, 1998. [ bib ]
[1701] W. Hunt. Unraveling the mysteries under our very feet. Discover Magazine, 2011. Available online at discovermagazine.com/photos/18-unraveling-mysteries-under-our-feet, accessed 11/2011. [ bib ]
[1702] G. Huot and S. C. Singh. Seismic evidence for fluid/gas beneath the Mentawai fore-arc basin, Central Sumatra. J. Geophys. Res., pages 957-976, 2018. [ bib ]
[1703] E. S. Husebye, D. W. King, and R. A. Haddon. Precursors to PKIKP and seismic wave scattering near the mantle-core boundary. J. Geophys. Res., 81:170-182, 1976. [ bib ]
[1704] L. Husson and Y. Ricard. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett., 222:1037-1050, 2004. [ bib ]
[1705] L. Husson. Dynamic topography above retreating subduction zones. Geology, 34:741-744, 2006. [ bib ]
[1706] L. Husson, C. P. Conrad, and C. Faccenna. Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin. Earth Planet. Sci. Lett., 271:303-310, 2008. [ bib ]
[1707] L. Husson, P. C. Conrad, and C. Faccenna. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett., 317:126-135, 2012. [ bib ]
[1708] L. Husson, B. Guillaume, F. Funiciello, C. Faccenna, and L. H. Royden. Unraveling topography around subduction zones from laboratory models. Tectonophys., 526:5-15, 2012. [ bib ]
[1709] L. Husson, P. Yamato, and A. Bézos. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics. Earth Planet. Sci. Lett., 429:205-215, 2015. [ bib ]
[1710] Laurent Husson, Thomas Bodin, Giorgio Spada, Gaël Choblet, and Corné Kreemer. Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of glacial isostatic adjustment. J. Geodyn., 122:25-40, 2018. [ bib ]
[1711] A. R. Hutko, T. Lay, E. J. Garnero, and J. Revenaugh. Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature, 441:333-336, 2006. [ bib ]
[1712] R. D. Hyndman and S. M. Peacock. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett., 212:417-432, 2003. [ bib ]
[1713] R. D. Hyndman and C. A. Currie. Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology, 39:783-786, 2011. [ bib ]
[1714] USGS. Global Hypocenter Database CD, volume 3.0. United States Geological Survey / National Earthquake Information Center, Denver, Colorado, 1992. [ bib ]
[1715] G. Iaffaldano, H.-P. Bunge, and T. H. Dixon. Feedback between mountain belt growth and plate convergence. Geology, 34:893-896, 2006. [ bib ]
[1716] G. Iaffaldano and H.-P. Bunge. Relating rapid plate motion variations to plate boundary forces in global coupled models of the mantle/lithosphere system: effects of topography and friction. Tectonophys., 474:393-404, 2009. [ bib ]
[1717] T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and H. Kobayashi. Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF× 30 K time-step unstructured FE non-linear seismic wave simulation. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 15-26. IEEE, 2014. [ bib ]
[1718] Tsuyoshi Ichimura, Kohei Fujita, Pher Errol Balde Quinay, Lalith Maddegedara, Muneo Hori, Seizo Tanaka, Yoshihisa Shizawa, Hiroshi Kobayashi, and Kazuo Minami. Implicit nonlinear wave simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive earthquake simulation. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1-12. IEEE, 2015. [ bib ]
[1719] T Ichimura, K Fujita, T Yamaguchi, A Naruse, J C Wells, C J Zimmer, T P Straatsma, T Hori, S Puel, T W Becker, and M Hori. 416-PFLOPS fast scalable implicit solver on low-ordered unstructured finite elements accelerated by 1.10-ExaFLOPS kernel with reformulated AI-like algorithm: For equation-based earthquake modeling. In SC'19: The International Conference for High Performance Computing, Networking, Storage, and Analysis, 2019. [ bib ]
[1720] S. Ide, G. C. Beroza, D. R. Shelly, and T. A. Uchide. Scaling law for slow earthquakes. Nature, 447:76-79, 2007. [ bib ]
[1721] S. Ide and H. Aochi. Historical seismicity and dynamic rupture process of the 2011 Tohoku-oki earthquake. Tectonophys., 600:1-13, 2013. [ bib ]
[1722] H. Igel, T. Nissen-Meyer, and G. Jahnke. Wave propagation in 3D spherical sections: Effects of subduction zones. Phys. Earth Planet. Inter., 132:219-234, 2003. [ bib ]
[1723] H. Igel, N. Takeuchi, R. J. Geller, C. Megnin, H.-P. Bunge, E. Clevede, J. Dalkolmo, and B. A. Romanowicz. The COSY project: verification of global seismic modeling algorithms. Phys. Earth Planet. Inter., 119:3-23, 1999. [ bib ]
[1724] T. W. Becker. iGMT: Interactive Mapping of Geographic Datasets. Update of [306], online at www-udc.ig.utexas.edu/external/becker/igmt/, accessed 05/2016, 2006. [ bib ]
[1725] Takeshi Iinuma, Mako Ohzono, Yusaku Ohta, and Satoshi Miura. Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data-Was the asperity in Miyagi-oki ruptured? Earth, Planets and Space, 63(7):24, 2011. [ bib ]
[1726] T. Iinuma. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field. Geophys. J. Int., 213:30-47, 2018. [ bib ]
[1727] Matt J Ikari, Demian M Saffer, and Chris Marone. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res., 114(B05409), 2009. [ bib | DOI ]
[1728] Matt J Ikari, Chris Marone, and Demian M Saffer. On the relation between fault strength and frictional stability. Geology, 39:83-86, 2011. [ bib ]
[1729] Matt J Ikari and Demian M Saffer. Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. Geochem., Geophys., Geosys., 12(Q0AD11), 2011. [ bib | DOI ]
[1730] Matt J Ikari and Demian M Saffer. Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Marine Geol., 295:1-13, 2012. [ bib ]
[1731] Matt J Ikari, André R Niemeijer, Christopher J Spiers, Achim J Kopf, and Demian M Saffer. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology, 41:891-894, 2013. [ bib ]
[1732] Matt J Ikari, Jun Kameda, Demian M Saffer, and Achim J Kopf. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 412:35-41, 2015. [ bib ]
[1733] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Island Arc, 17:342-357, 2008. [ bib ]
[1734] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Tectonics and sedimentation around Kashinosaki Knoll: A subducting basement high in the eastern Nankai Trough. Island Arc, 17:358-375, 2008. [ bib ]
[1735] INGEOMINAS. National seismic catalog of Colombia. Technical report, Red Sismológica Nacional de Colombia, 2010. Available online at seisan.ingeominas.gov.co/RSNC/, accessed 01/2010. [ bib ]
[1736] H. Y. Inoue, Y. Fukao, K. Tanabe, and Y. Ogata. Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter., 59:294-328, 1990. [ bib ]
[1737] T. Inoue. Effect of water on melting phase relations and melt composition in the system mg2sio4-mgsio3-h2o up to 15 gpa. Phys. Earth Planet. Inter., 85:237-263, 1994. [ bib ]
[1738] T. R. Ireland, T. Flöttman, C. M. Fanning, G. M. Gibson, and W. V. Preiss. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology, 26:243-246, 1998. [ bib ]
[1739] M. F. W. Ireton, C. A. Manduca, and D. W. Mogk. Shaping the future of undergraduate earth science education: Innovation and change using an Earth System approach. American Geophysical Union, Washington DC. Online at www.agu.org/sci_soc/spheres/, accessed 06/2006, 1997. [ bib ]
[1740] G. R. Irwin and R. de Wit. Fracture mechanics. J. Testing and Evaluation, 11:56-65, 1983. [ bib ]
[1741] D. G. Isaak. High-temperature elasticity of iron-bearing olivines. J. Geophys. Res., 97:1871-1885, 1992. [ bib ]
[1742] E. H. Isaaks and R. M. Srivastava. An Introduction to Applied Geostatistics. Oxford University Press, New York, 1989. [ bib ]
[1743] B. L. Isacks, J. Oliver, and L. R. Sykes. Seismology and the new global tectonics. J. Geophys. Res., 73:5855-5899, 1968. [ bib ]
[1744] B. Isacks and P. Molnar. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223:1121-1124, 1969. [ bib ]
[1745] B. Isacks and P. Molnar. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev. Geophys. Space Phys., 9:103-175, 1971. [ bib ]
[1746] B. Isacks and M. Barazangi. Geometry of Benioff zones: lateral segmentations and downward bending of subducted lithosphere. In M. Talwani and W. C. Pitman III, editors, Island arcs, Deep Sea Trenches, and Back-Arc Basins, volume 1 of Maurice Ewing, pages 99-114. AGU, Washington DC, 1977. [ bib ]
[1747] K. Ishibashi. Specification of a soon-to-occur seismic faulting in the Tokai district, central Japan. Maurice Ewing, 4:297-332, 1981. [ bib ]
[1748] M. Ishii and J. Tromp. Even-degree lateral variations in the Earth's mantle constrained by free oscillations and the free-air gravity anomaly. Geophys. J. Int., 145:77-96, 2001. [ bib ]
[1749] M. Ishii and A. M. Dziewoński. Distinct seismic anisotropy at the centre of the earth. Phys. Earth Planet. Inter., 140:203-217, 2003. [ bib ]
[1750] M. Ishii and J. Tromp. Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 146:113-124, 2004. [ bib ]
[1751] M. Ishii and J. Tromp. Three-dimensional models of mantle heterogeneity and their implications for petrology. EOS, Trans. AGU, 79:F656, 1998. [ bib ]
[1752] M. Ishii and J. Tromp. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285:1231, 1999. [ bib ]
[1753] M. Ishise and H. Oda. Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan. J. Geophys. Res., 110(B07304), 2005. [ bib | DOI ]
[1754] A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii. Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. PEPI, 145:99-114, 2004. [ bib ]
[1755] A. Ismail-Zadeh and P. Tackley. Computational Methods for Geodynamics. Cambridge University Press, 2010. [ bib ]
[1756] T. Isse, H. Kawakatsu, K. Yoshizawa, A. Takeo, H. Shiobara, H. Sugioka, A. Ito, D. Suetsugu, and D. Reymond. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution. Earth Planet. Sci. Lett., 510:116-130, 2019. [ bib ]
[1757] J. Ita and S. D. King. The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett., 25:1463-1466, 1998. [ bib ]
[1758] J. Ita and R. E. Cohen. Diffusion in MgO at high pressure: Implications for lower mantle rheology. Geophys. Res. Lett., 25:1095-1098, 1998. [ bib ]
[1759] G. Ito, J. Lin, and D. Graham. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Rev. Geophys., 41, 2003. [ bib | DOI ]
[1760] G. Ito and P. E. van Keken. Hotspots and melting anomalies. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, Amsterdam, 2007. [ bib ]
[1761] Y. Ito, K. Obara, K. Shiomi, S. Sekine, and H. Hirose. Slow earthquakes coincident with episodic tremors and slow slip events. Science, 315:503-506, 2007. [ bib ]
[1762] G. Ito, R. Dunn, A. Li, C. J. Wolfe, A. Gallego, and Y. Fu. Seismic anisotropy andshear wave splitting associated with mantle plume-plate interaction. J. Geophys. Res., 119:4923-4937, 2014. [ bib | DOI ]
[1763] G. Ito, Y. Shen, G. Hirth, and C. J. Wolfe. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett., 165:81-96, 1999. [ bib ]
[1764] I. Jackson, J. D. Fitz Gerald, U. Faul, and B. H. Tan. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res., 107, 2002. [ bib | DOI ]
[1765] J. A. Jackson, H. Austrheim, D. McKenzie, and K. Priestley. Metastability, mechanical strength, and the support of mountain belts. Geology, 32:625-628, 2004. [ bib ]
[1766] M. G. Jackson, J. G. Konter, and T. W. Becker. Primordial helium entrained by the hottest mantle plumes. Nature, 542:340-343, 2017. [ bib ]
[1767] I. Jackson. Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophys. J. Int., 134:291-311, 1998. [ bib ]
[1768] K. H. Jacob, K. Nakamura, and J. N. Davies. Trench-volcano gap along the Alaska-Aleutian trench: facts and speculations on the role of terrigenous sediments for subduction. In M. Talwani and W. C. Pitman III, editors, Island arcs, deep sea trenches and back-arc basins, pages 243-259. American Geophysical Union, Washington DC, 1976. [ bib ]
[1769] S. B. Jacobsen and G. J. Wasserburg. The mean age of mantle and crustal reservoirs. J. Geophys. Res., 84:7411-7427, 1979. [ bib ]
[1770] Carl E Jacobson, Andrew P Barth, and Marty Grove. Late Cretaceous protolith age and provenance of the Pelona and Orocopia Schists, southern California: Implications for evolution of the Cordilleran margin. Geology, 28(3):219-222, 2000. [ bib ]
[1771] W. R. Jacoby. One-dimensional modeling of mantle flow. Pure Appl. Geophys., 116:1231-1249, 1978. [ bib ]
[1772] W. R. Jacoby and H. Schmeling. Convection experiments and driving mechanism. Geol. Rundschau, 24:217-284, 1981. [ bib ]
[1773] A. B. Jacquey and M. Cacace. Multiphysics modeling of a brittle-ductile lithosphere: 1. Explicit visco-elasto-plastic formulation and its numerical implementation. J. Geophys. Res., 125, 2020. [ bib | DOI ]
[1774] M. A. Jadamec and M. I. Billen. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465:338-341, 2010. [ bib ]
[1775] M. A. Jadamec and M. I. Billen. The role of rheology and slab shape on rapid mantle flow: 3D numerical models of the Alaska slab edge. J. Geophys. Res., 117(B02304), 2012. [ bib | DOI ]
[1776] M. A. Jadamec, M. I. Billen, and S. M. Roseke. Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. Earth Planet. Sci. Lett., 376:29-42, 2013. [ bib ]
[1777] J.C. Jaeger and N.G.W. Cook. Fundamentals of Rock Mechanics. Menthuen, London, 1969. [ bib ]
[1778] O. Jagoutz, L. Royden, A. F. Holt, and T. W. Becker. Anomalously fast convergence between India and Eurasia caused by double subduction. Nature Geosc., 8:475-478, 2015. [ bib ]
[1779] D. E. James, M. J. Fouch, R. W. Carlson, and J. B. Roth. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett., 311:124-135, 2011. [ bib ]
[1780] A.I. James and A.J. Watkinson. Initiation of folding and boudinage in wrench shear and transpression. J. Struct. Geol., 16:883-893, 1994. [ bib ]
[1781] D. E. James and L. A. Murcia. Crustal contamination in northern Andean volcanic. J. Geol. Soc. London, 141:823-830, 1984. [ bib ]
[1782] R. A. Jamieson and C. Beaumont. On the origin of orogens. Geol. Soc. Amer. Bull., 125:1671-1702, 2013. [ bib ]
[1783] S. Jammes, L. L. Lavier, and G. Manatschal. Extreme crustal thinning of the Bay of Biscay and Western Pyrenees: From observations to modeling. Geochem., Geophys., Geosys., 11(Q10016), 2010. [ bib | DOI ]
[1784] J. Jaramillo, P. R. Linero, and J. I. Garver. Neogene volcanism in the Cordillera Oriental of the Andes, Colombnia. Earth Sci. Res., 9:19-29, 2005. [ bib ]
[1785] R. D. Jarrard. Relations among subduction parameters. Rev. Geophys., 24:217-284, 1986. [ bib ]
[1786] G. T. Jarvis and W. R. Peltier. Mantle convection as a boundary layer phenomenon. Geophys. J. R. Astr. Soc., 68:389-427, 1982. [ bib ]
[1787] G. T. Jarvis. Time-dependent convection in the earth's mantle. Phys. Earth Planet. Inter., 36:305-327, 1984. [ bib ]
[1788] G. T. Jarvis and W. R. Peltier. Convection models and geophysical observations. In W. R. Peltier, editor, Mantle convection: Plate Tectonics and Global Dynamics, volume 4 of The Fluid Mechanics of Astrophysics and Geophysics, pages 479-593. Gordon and Breach Science Publishers, New York, NY, 1989. [ bib ]
[1789] J. Jasbinsek and K. Dueker. Ubiquitous low-velocity layer atop the 410-km discontinuity in the northern Rocky Mountains. Geochem., Geophys., Geosys., 8(Q10004), 2007. [ bib | DOI ]
[1790] S. C. Jaumé and L. R. Sykes. Change in the state of stress on the southern San Andreas fault resulting from the California earthquake sequence of April to June 1992. Science, 258:1325-1328, 1992. [ bib ]
[1791] S. C. Jaumé and L. R. Sykes. Evolution of moderate seismicity in the San Francisco Bay region, 1850 to 1993: Seismicity changes related to the occurrence of large and great earthquakes. J. Geophys. Res., 101:765-789, 1996. [ bib ]
[1792] C. Jaupart, S. Labrosse, and J.-C. Marechal. Temperatures, heat and energy in the mantle of the Earth. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 253-303. Elsevier, 2007. [ bib ]
[1793] M. Javoy. The integral enstatite chondrite model of the earth. Geophys. Res. Lett., 22:2219-2222, 1995. [ bib ]
[1794] R. Jeanloz and S. Morris. Is the mantle geotherm sub-adiabatic? Geophys. Res. Lett., 14:335-338, 1987. [ bib ]
[1795] R. Jeanloz and H. R. Wenk. Convection and anisotropy of the inner core. Geophys. Res. Lett., 15:72-75, 1988. [ bib ]
[1796] A. M. Jellinek and M. Manga. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418:760-763, 2002. [ bib ]
[1797] AM Jellinek, A Lenardic, and RT Pierrehumbert. Ice, fire, or fizzle: The climate footprint of Earth's supercontinental cycles. Geochem., Geophys., Geosys., 21:e2019GC008464, 2020. [ bib ]
[1798] C. W. Jennings. Fault map of California with locations of volcanoes, thermal springs, and thermal wells. Number 1 in Geologic Data Map. California Division of Mines and Geology, Sacramento CA, 1975. [ bib ]
[1799] Tamara N Jeppson, Harold J Tobin, and Yoshitaka Hashimoto. Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14:1411-1424, 2018. [ bib ]
[1800] M. Jeyakumaran and J. W. Rudnicki. The sliding wing crack - Again! Geophys. Res. Lett., pages 2901-2904, 1995. [ bib ]
[1801] J. H. Davies, O. Gudmundsson, and R. W. Clayton. Spectra of mantle shear wave velocity structure. Geophys. J. Int., 108:565-582, 1992. [ bib ]
[1802] Shaocheng Ji, Tongbin Shao, Katsuyoshi Michibayashi, Shoma Oya, Takako Satsukawa, Qian Wang, Weihua Zhao, and Matthew H Salisbury. Magnitude and symmetry of seismic anisotropy in mica-and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res., 120:6404-6430, 2015. [ bib ]
[1803] Yingfeng Ji and Shoichi Yoshioka. Slab dehydration and earthquake distribution beneath southwestern and central Japan based on three-dimensional thermal modeling. Geophys. Res. Lett., 44:2679-2686, 2017. [ bib ]
[1804] S. Ji, X. Zhao, and D. Francis. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophys., 239:1-27, 1994. [ bib ]
[1805] I. Jiménez-Munt, M. Fernàndez, J. Vergés abd D. Garcia-Castellanos, J. Fullea, M. Pérez-Gussinyé, and J. C. Afonso. Decoupled crust‐mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin. J. Geophys. Res., 116(B08403), 2011. [ bib | DOI ]
[1806] K. P. Jochum, A. W. Hofmann, E. Ito, H. M. Seufert, and W. M. White. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 306:431-436, 1983. [ bib ]
[1807] T. John, S. Medvedev, L. H. Rüpke, T. B. Andersen, Y. Y. Podladchikov, and H. Austrheim. Generation of intermediate-depth earthquakes by self localizing themal runaway. Nature Geosc., 2:137-140, 2009. [ bib ]
[1808] M. R. W. Johnson. Shortening budgets and the role of continental subduction during the India-Asia collision. Earth Sci. Rev., 59:101-123, 2002. [ bib ]
[1809] KM Johnson and P Segall. Viscoelastic earthquake cycle models with deep stress-driven creep along the san andreas fault system. J. Geophys. Res., 109(B10), 2004. [ bib ]
[1810] Kaj M Johnson, Jun'ichi Fukuda, and Paul Segall. Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake. Geophys. Res. Lett., 39(L20302), 2012. [ bib | DOI ]
[1811] Kaj M Johnson, Andreas Mavrommatis, and Paul Segall. Small interseismic asperities and widespread aseismic creep on the northern Japan subduction interface. Geophys. Res. Lett., 43:135-143, 2016. [ bib ]
[1812] Kaj M. Johnson and Douglas Tebo. Capturing 50 years of postseismic mantle flow at Nankai subduction zone. J. Geophys. Res., 123:10,091-10,106, 2018. [ bib ]
[1813] K. T. M. Johnson, H. J. B. Dick, and N. Shimizu. Melting in the oceanic upper mantle: an ion microprobe study of Diopsides in abyssal peridotites. J. Geophys. Res., 95:2661-2678, 1990. [ bib ]
[1814] H. O. Johnson. Techniques and studies in crustal deformation. PhD thesis, University of California, San Diego, 1993. [ bib ]
[1815] J. M. Johnson, Y. Tanioka, J. Ruff, K. Satake, H. Kanamori, and L. R. Sykes. The 1957 great Aleutian earthquake. Pure Appl. Geophys., 142:3-28, 1994. [ bib ]
[1816] J. M. Johnson, K. Satake, S. R. Holdahl, and J. Sauber. The 1964 Prince Wiliam Sound earthquake: Joint inversion of tsunami and geodetic data. J. Geophys. Res., 101:523-532, January 1996. [ bib ]
[1817] H. O. Johnson, D. C. Agnew, and F. K. Wyatt. Present-day crustal deformation in southern California. J. Geophys. Res., 99:23951-23974, 1994. [ bib ]
[1818] M. J. Johnston, S. A. T. Linde, and M. T. Gladwin. Near-field high resolution strain measurements prior to the October 18 1989, Loma Prieta Ms 7.1 earthquake. Geophys. Res. Lett., 17:1777-1780, 1990. [ bib ]
[1819] M. Johri, E. M. Dunham, M. D. Zoback, and Z. Fang. Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations. J. Geophys. Res., 119:1251-1272, 2014. [ bib ]
[1820] L. Jolivet and C. Faccenna. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 6:1095-1107, 2000. [ bib ]
[1821] Laurent Jolivet, Claudio Faccenna, and Claudia Piromallo. From mantle to crust: Stretching the Mediterranean. Earth Planet. Sci. Lett., 285(1-2):198-209, 2009. [ bib ]
[1822] L. Jolivet, C. Faccenna, B. Goffè, M. Mattei, F. Rossetti, C. Brunet, F. Storti, R. Funiciello, J. P. Cadet, N. d'Agostino, and T. Parra. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian sea. J. Geophys. Res., 103:12123-12161, 1998. [ bib ]
[1823] L. Jolivet, C. Faccenna, N. d'Agostino, M. Fournier, and D. Worrall. The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. In C. Mac Niocaill and P. D. Ryan, editors, The Mediterranean Basins: Tertiary extension within the Alpine orogen, volume 164 of Geol. Soc. London Spec. Publ., pages 21-53. Geological Society of London, London, 1999. [ bib ]
[1824] A. G. Jones, L. Sonder, and J. R. Unruh. Lithospheric gravitational potential energy and past orogenesis: Implications for conditions of initial Basin and Range and Laramide deformation. Geology, 26:639-642, 1998. [ bib ]
[1825] C. H. Jones, B. P. Wernicke, G. L. Farmer, J. D. Walker, D. S. Coleman, L. W. McKenna, and F. V. Perry. Variations across and along a major continental rift: an interdisciplinary study of the Basin and Range Province, western USA. Tectonophys., 213:57-96, 1992. [ bib ]
[1826] L. E. Jones and S. E. Hough. Analysis of broadband records from the 28 June 1992 Big Bear earthquake; evidence of a multiple-event source. Bull. Seismol. Soc. Am., 85:688-704, 1995. [ bib ]
[1827] C. H. Jones, J. R. Unruh, and L.J. Sonder. The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 381:37-41, 1996. [ bib ]
[1828] T. H. Jordan and E. G. Paulson. Convergence depths of tectonic regions from an ensemble of global tomographic models. J. Geophys. Res., 118:4196-4225, 2013. [ bib | DOI ]
[1829] T. H. Jordan. Some comments on tidal drag as a mechanism for driving plate motions. J. Geophys. Res., 79:2141-2142, 1974. [ bib ]
[1830] T. H. Jordan. Composition and development of the continental tectosphere. Nature, 274:544-548, 1978. [ bib ]
[1831] T. H. Jordan. Global tectonic regionalization for seismological data analysis. Bull. Seismol. Soc. Am., 71:1131-1141, 1981. [ bib ]
[1832] F. Jouanne, F. A. Audemard, C. Beck, A. van Welden, R. Ollarves, and C. Reinoz. Present-day deformation along the El Pilar Fault in eastern Venezuela: Evidence of creep along a major transform boundary. J. Geodyn., 51:398-410, 2011. [ bib ]
[1833] J. Julia, C. J. Ammon, R. B. Herrmann, and A. M. Correig. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int., 143:99-112, 2000. [ bib ]
[1834] H. Jung and S.-i. Karato. Water-induced fabric transitions in olivine. Science, 293:1460-1463, 2001. [ bib ]
[1835] H. Jung, W. Mo, and H. W. Green. Upper mantle seismic anisotropy resulting from pressure-induced slip transitions in olivine. Nature Geosc., 2:73-77, 2009. [ bib ]
[1836] M. Kachanov. Elastic solids with many cracks and related problems. Advan. Appl. Mech., 30:259-445, 1994. [ bib ]
[1837] K. Kadinsky-Cade and R. J. Wilemann. Towards understanding aftershock patterns: The basic pattern for strike slip earthquakes. In Eos Trans. AGU, volume 63, page 384. American Geophysical Union, 1982. (abstract). [ bib ]
[1838] M. Käser, C. Castro, V. Hermann, and C. Pelties. SeisSol: a software for seismic wave propagation simulations. In High Performance Computing in Science and Engineering Garching/Munich 2009, pages 281-292. Springer, Berlin, Heidelberg, 2010. Package available online at www.seissol.org, accessed 02/2020. [ bib ]
[1839] Y. Y. Kagan. On the geometric complexity of earthquake focal zone and fault systems: A statistical study. Phys. Earth Planet. Inter., 173:254-268, 2009. [ bib ]
[1840] Y. Y. Kagan and L. Knopoff. Spatial distribution of earthquakes: the two-point correlation function. Geophys. J. Int., 62(2):303-320, 1980. [ bib ]
[1841] Y. Y. Kagan. Stochastic model of earthquake fault geometry. Geophys. J. R. astr. Soc., 71:659-691, 1982. [ bib ]
[1842] Y. Y. Kagan. Random stress and earthquake statistics: Spatial dependence. Geophys. J. Int., 102:573-583, 1990. [ bib ]
[1843] Y. Y. Kagan. Incremental stress and earthquakes. Geophys. J. Int., 117:345-364, 1994. [ bib ]
[1844] Y. Y. Kagan and D. D. Jackson. Long-term probabilistic forecasting of earthquakes. J. Geophys. Res., 99:13685-13700, 1994. [ bib ]
[1845] Y. Y. Kagan. Are earthquakes predictable? Geophys. J. Int., 131:505-525, 1997. [ bib ]
[1846] Y. Y. Kagan and D. D. Jackson. Spatial aftershock distribution: Effect of normal stress. J. Geophys. Res., 103:24453-24467, 1998. [ bib ]
[1847] Y. Y. Kagan. Universality of the seismic moment-frequency relation. Pure Appl. Geophys., 155:537-573, 1999. [ bib ]
[1848] M. Kameyama, D. A. Yuen, and H. Hiromi. The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones. Geophys. Res. Lett., 24:2523-2526, 1997. [ bib ]
[1849] É. Kaminski and N. M. Ribe. A kinematic model for for recrystallization and texture development in olivine polycrystals. Earth Planet. Sci. Lett., 189:253-267, 2001. [ bib ]
[1850] É. Kaminski and N. M. Ribe. Time scales for the evolution of seismic anisotropy in mantle flow. Geochem., Geophys., Geosys., 3(2001GC000222), 2002. [ bib ]
[1851] É. Kaminski. The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys. Res. Lett., 29:10.1029/2002GL014710, 2002. [ bib ]
[1852] É. Kaminski, N. M.. Ribe, and J. T. Browaeys. D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophys. J. Int., 157:1-9, 2004. [ bib ]
[1853] H. Kanamori and D. L. Anderson. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65:1073-1095, 1975. [ bib ]
[1854] H. Kanamori. The energy release in great earthquakes. J. Geophys. Res., 82:2981-2987, 1977. [ bib ]
[1855] R. V. S. Kanda and M. Simons. An elastic plate model for interseismic deformation in subduction zones. J. Geophys. Res., 115(B03405), 2010. [ bib | DOI ]
[1856] D. L. Kane, G. A. Prieto, F. L. Vernon, and P. M. Shearer. Quantifying seismic source parameter uncertainties. Bull. Seismol. Soc. Am., 101:535-543, 2011. [ bib ]
[1857] S. Kaneshima and G. R. Helffrich. Subparallel dipping heterogeneities in the mid-lower mantle. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[1858] S. Kaneshima and G. Helffrich. Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science, 283:1888-1891, 1999. [ bib ]
[1859] J. L. Kaplan and J. A. Yorke. Chaotic behavior of multidimensional difference equations. In H.-O. Peitgen and H.-O. Walter, editors, Functional Differential Equations and Approximations of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204-227. Springer, Berlin, 1979. [ bib ]
[1860] P. Kapp, M. Taylor, D. Stockli, and D. Lin. Active development of low-angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 36:7-10, 2008. [ bib ]
[1861] P. Karabinos, S. D. Samson, J. C. Hepburn, and H. M. Stoll. Taconian orogeny in the New England Appalachians: Collision between Laurentia and the Shelburne Falls arc. Geology, 26:215-218, 1998. [ bib ]
[1862] H. Kárason and R. D. van der Hilst. Constraints on mantle convection from seismic tomography. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geophys. Monograph, pages 277-288. American Geophysical Union, Washington DC, 2000. [ bib ]
[1863] H. Kárason and R. D. van der Hilst. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res., 106:6569-6588, 2001. [ bib ]
[1864] H. Kárason. Constraints on mantle convection from seismic tomography and flow modeling. PhD thesis, Massachusetts Institute of Technology, Cambridge MA, June 2002. [ bib ]
[1865] S.-i. Karato and B. B. Karki. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res., 106:21771-21783, 2001. [ bib ]
[1866] S.-i. Karato, M. R. Riedel, and D. A. Yuen. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 127:83-108, 2001. [ bib ]
[1867] S.-i. Karato. Mapping water content in the upper mantle. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geophys. Monograph. American Geophysical Union, Washington, DC, 2004. [ bib ]
[1868] S.-i. Karato, H. Jung, I. Katayama, and P. Skemer. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann Rev. Earth Planet. Sci., 36:59-95, 2008. [ bib ]
[1869] S.-i. Karato. On the origin of the asthenosphere. Earth Planet. Sci. Lett., 321-322:95-103, 2012. [ bib ]
[1870] S.-i. Karato. Rheology of the lower mantle. Phys. Earth Planet. Inter., 24:1-14, 1981. [ bib ]
[1871] S.-i. Karato. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior: a preliminary result. Phys. Earth Planet. Inter., 55:234-240, 1989. [ bib ]
[1872] S.-i. Karato and P. Li. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science, 255:1238-1240, 1992. [ bib ]
[1873] S.-i. Karato. On the Lehmann discontinuity. Geophys. Res. Lett., 51:2255-2258, 1992. [ bib ]
[1874] S.-i. Karato and P. Wu. Rheology of the upper mantle: a synthesis. Science, 260:771-778, 1993. [ bib ]
[1875] S.-i. Karato. Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science, 262:1708-1711, 1993. [ bib ]
[1876] S.-i. Karato. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20:1623-1626, 1993. [ bib ]
[1877] S.-i. Karato and D. C. Rubie. Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures. J. Geophys. Res., 102:20111-20122, 1997. [ bib ]
[1878] S.-i. Karato. Seismic anisotropy in the deep mantle, boundary layers and the geometry of convection. Pure Appl. Geophys., 151:565-587, 1998. [ bib ]
[1879] S.-i. Karato and H. Jung. Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett., 157:193-207, 1998. [ bib ]
[1880] K. E. Karlstrom, D. Coblentz, K. Dueker, W. Ouimet, E. Kirby, J. Van Wijk, B. Schmandt, S. Kelley, G. Lazear, L.J. Crossey, R. Crow, A. Aslan, A. Darling, R. Aster, J. MacCarthy, S.M. Hansen, J. Stachnik, D.F. Stockli, R.V. Garcia, M. Hoffman, R. McKeon, J. Feldman, M. Heizler, M.S. Donahue, and the CREST Working Group. Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis. Lithosphere, 4:3-22, 2012. [ bib ]
[1881] T. von Karmàn. Progress in the statistical theory of turbulence. J. Mar. Res., 7:252-264, 1948. [ bib ]
[1882] S. L. Karner and C. Marone. Healing and time-dependent weakening in simulated fault gouge (abstract). EOS, Trans. AGU, 79:F629, 1998. [ bib ]
[1883] M. Karpychev and L. Fleitout. Long-wavelength geoid: the effect of continental roots and lithosphere thickness variations. Geophys. J. Int., 143:945-963, 2000. [ bib ]
[1884] M. Karpychev and L. Fleitout. Simple considerations on forces driving plate motion and on the plate-tectonic contribution to the long-wavelength geoid. Geophys. J. Int., 127:268-282, 1996. [ bib ]
[1885] K. A. Kastens and J. Mascle. The geological evolution of the Tyrrhenian sea: an introduction to the scientific results of ODP Leg 107. In K. A. Kastens and J. Mascle, editors, Proc. ODP, Scientific Results, volume 107, pages 3-26. ODP Program, 1990. [ bib ]
[1886] I. Katayama, H. Jung, and S.-i. Karato. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32:1045-1048, 2004. [ bib ]
[1887] I. Katayama, K.-i. Hirauchi, K. Michibayahi, and J.-i. Ando. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461:1114-1117, 2009. [ bib ]
[1888] A. Kato, K. Obara, T. Igarashi, H. Tsuruoka, S. Nakagawa, and N. Hirata. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-oki earthquake. Science, 335:705-708, 2012. [ bib ]
[1889] A. Kato, J. Fukuda, T. Kumazawa, and S. Nakagawa. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Scientific Rep., 6:24792, 2016. [ bib ]
[1890] T. Katsura, H. Yamada, O. Nishikawa, M. Song, A. Kubo, T. Shinmei, S. Yokoshi, Y. Aizawa, T. Yoshino, M. J. Walter, E. Ito, and K.-i. Funakoshi. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys. Res., 109(B02209), 2004. [ bib | DOI ]
[1891] R. L. Katzman, L. Zhao, and T. H. Jordan. High-resolution, 2D vertical tomography of the central Pacific using ScS reverberations and frequency-dependent travel times. J. Geophys. Res., 103:17933-17971, 1998. [ bib ]
[1892] P. S. Kaufman and L. H. Royden. Lower crustal flow in an extensional setting; constraints from the Halloran Hills region, eastern Mojave Desert, California. J. Geophys. Res., 99:15723-15739, 1994. [ bib ]
[1893] W. M. Kaula. Absolute plate motions by boundary velocity minimization. J. Geophys. Res., 80:244-248, 1975. [ bib ]
[1894] B. J. P. Kaus and Y. Y. Podladchikov. Forward and reverse modeling of the three-dimensional Rayleigh-Taylor instability. Geophys. Res. Lett., 28:1095-1098, 2001. [ bib ]
[1895] B. J. P. Kaus, J. A. D. Connolly, and Y. Y. Podladchikov. The effect of mineral phase transitions on sedimentary basin subsidence and uplift. Earth Planet. Sci. Lett., 223:213-228, 2005. [ bib ]
[1896] B. J. P. Kaus and Y. Y. Podladchikov. Initiation of localized shear in visco-elasto-plastic rocks. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[1897] B. J. P. Kaus and S. M. Schmalholz. 3D finite amplitude folding: implications for stress evolution during crustal and lithospheric deformation. Geophys. Res. Lett., 33(L14309), 2006. [ bib | DOI ]
[1898] B. J. P. Kaus and T. W. Becker. Effects of elasticity on the Rayleigh-Taylor instability: implications for large-scale geodynamics. Geophys. J. Int., 168:843-862, 2007. [ bib ]
[1899] B. J. P. Kaus, C. Steedman, and T. W. Becker. From passive continental margin to mountain belt: insights from analytical and numerical models and application to Taiwan. Phys. Earth Planet. Inter., 171:235-251, 2008. [ bib ]
[1900] B. J. P. Kaus and T. W. Becker. A numerical study of the effects of surface bonudary conditions and rheology on slab dynamics. Boll. di Geof., 49(2):177-182, 2008. [ bib ]
[1901] B. J. P. Kaus, Y. Liu, T. W. Becker, D. Yuen, and Y. Shi. Lithospheric stress-states predicted from long-term tectonic models: influence of rheology and possible application to Taiwan. J. Asian Earth Sci., 36:119-134, 2009. [ bib ]
[1902] B. J. P. Kaus. Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophys., 484:36-47, 2010. [ bib ]
[1903] B. J. P. Kaus, A. A. Popov, T. S. Baumann, A. E. Püsök, A. Bauville, N. Fernandez, and M. Collignon. Forward and inverse modelling of lithospheric deformation on geological timescales. In K. Binder, M. Müller, and A. Schnurpfeil, editors, NIC Symposium 2016 - Proceedings, volume 48 of NIC Series, pages 299-307, 2016. [ bib ]
[1904] B. J. P. Kaus, Y. Y. Podladchikov, and D. W. Schmid. Eulerian spectral/finite difference method for large deformation modelling of visco-elasto-plastic geomaterials. Boll. Geof., 45:346-349, 2004. [ bib ]
[1905] B. J. P. Kaus. Modeling approaches to geodynamic processes. Phd-thesis, Swiss Federal Institute of Technology, Zurich, 2005. [ bib ]
[1906] H. Kawakatsu, P. Kumar, Y. Takei, M. Shinohara, T. Kanazawa, E. Araki, and K. Suyehiro. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324:499-502, 2009. [ bib ]
[1907] H. Kawakatsu and S. Yoshioka. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet. Sci. Lett., 303:1-10, 2011. [ bib ]
[1908] H. Kawakatsu. A new fifth parameter for transverse isotropy. Geophys. J. Int., 204:682-685, 2016. [ bib ]
[1909] H. Kawakatsu and H. Utada. Seismic and electrical signatures of the lithosphere–asthenosphere system of the normal oceanic mantle. Ann. Rev. Earth Planet. Sci., 45:139-167, 2017. [ bib ]
[1910] H. Kawakatsu and F. Niu. Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371:301-305, 1994. [ bib ]
[1911] S. M. Kay and C. Mpodozis. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flatslab. J. South Amer. Earth Sci., 15:39-50, 2002. [ bib ]
[1912] R. Kay and S. M. Kay. Andean adakites: Three ways to make them. Acta Petrol. Sin., 18:303-311, 2002. [ bib ]
[1913] S. M. Kay., E. Godoy, and A. Kurtz. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull., 117:67-88, 2005. [ bib ]
[1914] S. M. Kay, W. M. Burns, P. Copeland, and O. Mancilla. Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén basin. In S. M. Kay and V. A. Ramos, editors, Evolution of an Andean Margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35o-39oS lat.), volume 407 of Geolog. Soc. Amer. Spec. Pap., pages 19-60. Geological Society of America, 2006. [ bib ]
[1915] S. M. Kay, B. L. Coira, and C. Mpodozis. Neogene to Recent evolution of the Puna plateau and the southern Central Volcanic Zone. In S. M. Kay and V. A. Ramos, editors, Field trip guides to the backbone of the America in the southern and central Andes, volume 13 of Field Guide, pages 117-181. Geol. Soc. Am., 2008. [ bib ]
[1916] S. M. Kay and B. Coira. Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the Central Andean Altiplano-Puna Plateau. In S. M. Kay, V. A. Ramos, and W. M. Dickinson, editors, Backbone of the Americas: Shallow Subduction, Plateau and Ridge and Terrane Collisions, volume 204 of Geolog. Soc. Amer. Mem., pages 229-260. Geological Society of America, 2009. [ bib ]
[1917] S. M. Kay., B. L. Coira, and P. J. Caffe. Regional chemical diversity, crustal and mantle sources and evolution of the Neogene Puna plateau ignimbrites of the Central Andes. J. Vol. Geotherm., 198:81-111, 2010. [ bib ]
[1918] S. M. Kay, B. L. Coira, G. Wörner, R. Kay, and B. S. Singer. Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. Bull. Volc., 2011. [ bib | DOI ]
[1919] I. Keisuke. Towards a new view of earthquake phenomena. Pure Appl. Geophys., 138:531-548, 1992. [ bib ]
[1920] S. B. Keith. Paleosubduction geometries inferred from Cretaceous and Tertiary magmatic patterns in southwestern North America. Geology, 6:516-521, 1978. [ bib ]
[1921] P. E. van Keken, S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin. A comparison of methods for the modeling of thermochemical convection. J. Geophys. Res., 102:22477-22495, 1997. [ bib ]
[1922] P. E. van Keken and S. Zhong. Mixing in a 3D spherical model of present-day mantle convection. Earth Planet. Sci. Lett., 171:533-547, 1999. [ bib ]
[1923] T. Keller, D. A. May, and B. J. P. Kaus. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int., 195:1406-1442, 2013. [ bib ]
[1924] E. A. Keller, M. S. Bonkowski, R. J. Korsh, and R. J. Shlemon. Tectonic geomorphology of the San Andreas fault zone in the southern Indio Hills, Coachella Valley, California. Geol. Soc. Am. Bull., 93:46-56, 1982. [ bib ]
[1925] J. B. Kellogg, R. J. O'Connell, and S. B. Jacobsen. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204:183-202, 2002. [ bib ]
[1926] J. B. Kellogg and R. J. O'Connell. Toroidal motion and mixing in three dimensions (abstract). Eos Trans. AGU, 79:S334, 1998. [ bib ]
[1927] L. H. Kellogg, B. H. Hager, and R. D. van der Hilst. Compositional stratification in the deep mantle. Science, 283:1881-1884, 1999. [ bib ]
[1928] D. V. Kemp and D. J. Stevenson. A tensile, flexural model for the initiation of subduction. Geophys. J. Int., 125:73-94, 1996. [ bib ]
[1929] J.-M. Kendall. Teleseismic arrivals at a mid-ocean ridge: effects of mantle melt and anisotropy. Geophys. Res. Lett., 21:301-304, 1994. [ bib ]
[1930] K. J. Kendrick, D. M. Morton, S. G. Wells, and R. W. Simpson. Spatial and temporal deformation along the northern San Jacinto Fault, Southern California; implications for slip rates. Bull. Seismol. Soc. Am., 92:2782-2802, 2002. [ bib ]
[1931] K. Kendrick, L. McFadden, and D. Morton. Soils and slip rates along the northern San Jacinto Fault. In S. F. McGill and T. M. Ross, editors, Geological investigations of an active margin, Geological Society of America, Cordilleran Section, Annual Meeting, Guidebook, volume 27, pages 146-151. Geological Society of America, Tulsa OK, 1994. [ bib ]
[1932] L. Kennan and J. L. Pindell. Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate. In K. James, M. A. Lorente, and J. Pindell, editors, The geology and evolution of the region between North and South America, volume 328 of Geol. Soc. Long. Spec. Pub., pages 487-533. Geol. Soc. Lond., 2009. [ bib ]
[1933] B. L. N. Kennett and T. Furumura. Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. Geophys. J. Int., 172:363-382, 2008. [ bib ]
[1934] B. L. N. Kennett and H.-P. Bunge. Geophysical Continua. Cambridge University Press, 2008. [ bib ]
[1935] B. L. N. Kennett and T. Furumura. Tears or thinning? Subduction structures in the Pacific plate beneath the Japanese Islands. Phys. Earth Planet. Inter., 180:52-58, 2010. [ bib ]
[1936] B. L. Kennett, , and T. Furumura. High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation. Geophys. J. Int., 195:1862-1877, 2013. [ bib ]
[1937] B. L. N. Kennett. Lithosphere-asthenosphere P-wave reflectivity across Australia. Earth Planet. Sci. Lett., 431:225-235, 2015. [ bib ]
[1938] B. L. N. Kennett, E. R. Engdahl, and R. Buland. Constraints on seismic velocities in the earth from travel times. Geophys. J. Int., 122:108-124, 1995. [ bib ]
[1939] B. L. N. Kennett, S. Widiyantoro, and R. D. van der Hilst. Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle. J. Geophys. Res., 103:12469-12493, 1998. [ bib ]
[1940] B. L. N. Kennett. Seismic Wave Propagation in Stratified Media. Cambridge Univ. Press, New York, 1983. [ bib ]
[1941] M. Keskin. Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in eastern Anatolia, Turkey. Geophys. Res. Lett., 30(8046), 2003. [ bib | DOI ]
[1942] S. E. Kesson, J. D. Fitz Gerald, and J. M. Shelley. Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393:252-254, 1998. [ bib ]
[1943] A. Khan, L. Boschi, and J. A. D. Connolly. Mapping the Earth's thermochemical and anisotropic structure using global surface wave data. J. Geophys. Res., 116(B01301), 2011. [ bib | DOI ]
[1944] K. Khattri. Earthquake focal mechanism studies - a review. Earth. Sci. Rev., 9:19-63, 1973. [ bib ]
[1945] M. Kido and T. Seno. Dynamic topography compared with residual depth anomalies in oceans and implications for age-depth curves. Geophys. Res. Lett., 21:717-720, 1994. [ bib ]
[1946] D. Kilb and J. L. Hardebeck. Fault parameter constraints using relocated earthquakes: A validation of first motion focal mechanism data. Bull. Seismol. Soc. Am., 96:1140-1158, 2006. [ bib ]
[1947] Y. Kim, R. W. Clayton, and J. M. Jackson. Geometry and seismic properties of the subducting Cocos plate in central Mexico. J. Geophys. Res., 115(B06310), 2010. [ bib | DOI ]
[1948] J.-I. Kimura, R. J. Stern, and T. Yoshida. Re-initiation of subduction and magmatic responses in SW Japan during Neogene time. Bull. Geol. Soc. Amer., 117:969-986, 2005. [ bib ]
[1949] H. Kimura, T. Takeda, K. Obara, and K. Kasahara. Seismic evidence for active underplating below the megathrust earthquake zone in Japan. Science, 329:210-212, 2010. [ bib ]
[1950] C. Kincaid and R. W. Griffiths. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature, 425:58-62, 2003. [ bib ]
[1951] C. Kincaid, K. Druken, R. W. Griffiths, and D. R. Stegman. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nature Geosc., 6:395-399, 2013. [ bib ]
[1952] C. Kincaid and P. Olson. An experimental study of subduction and slab migration. J. Geophys. Res., 92:13832-13840, 1987. [ bib ]
[1953] S. D. King. Subduction: Observations and geodynamic models. Phys. Earth Planet. Inter., 127:9-24, 2001. [ bib ]
[1954] G. C. P. King and M. Cocco. Fault interaction by elastic stress changes: new clues from earthquake sequences. Adv. in Geophys., 44:1-38, 2001. [ bib ]
[1955] S. D. King. Mantle downwellings and the fate of subducting slabs: constraints from seismology, geoid, topography, geochemistry, and pretrology. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, 2007. [ bib ]
[1956] N. E. King, D. Argus, J. Langbein, D. C. Agnew, G. Bawden, R. S. Dollar, Z. Liu, D. Galloway, E. Reichard, A. Yong, F. H. Webb, Y. Bock, K. Stark, and D. Barseghian. Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J. Geophys. Res., 112(B03409), 2007. [ bib | DOI ]
[1957] M. A. King and C. S. Watson. Long GPS coordinate time series: multipath and geometry effects. J. Geophys. Res., 115(B04403), 2010. [ bib | DOI ]
[1958] S. King and C. Adam. Hotspot swells revisited. Phys. Earth Planet. Inter., 235:66-83, 2014. [ bib ]
[1959] S. D. King, D. J. Front, and D. C. Rubie. Why cold slabs stagnate in the transition zone. Geology, 43:231-234, 2015. [ bib ]
[1960] S. D. King. Reconciling laboratory and observational models of mantle rheology in geodynamic modeling. J. Geodyn., 100:33-50, 2016. [ bib ]
[1961] G. C. P. King. The accomodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometric origin of b-value. Pure Appl. Geophys., 121:761-815, 1983. [ bib ]
[1962] G. C. P. King, R. S. Stein, and J. B. Rundle. The growth of geological structures by repeated earthquakes 1. Conceptual framework. J. Geophys. Res., 93:13307-13318, 1988. [ bib ]
[1963] S. D. King, D. A. Raefsky, and B. H. Hager. ConMan: vectorizing a finite element code for incompressible two-dimensional convection in the Earth's mantle. Phys. Earth Planet. Inter., 59:195-207, 1990. [ bib ]
[1964] S. D. King and B. H. Hager. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations. Geophys. Res. Lett., 17:2409-2412, 1990. [ bib ]
[1965] S. D. King, C. W. Gable, and S. A. Weinstein. Models of convection-driven tectonic plates: a comparison of methods and results. Geophys. J. Int., 109:481-487, 1992. [ bib ]
[1966] S. D. King and G. Masters. An inversion for radial viscosity structure using seismic tomography. Geophys. Res. Lett., 19:1551-1554, 1992. [ bib ]
[1967] G. C. P. King, R. C. Stein, and J. Lin. Static stress change and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84:935-953, 1994. [ bib ]
[1968] S. D. King and J. Ita. Effect of slab rheology on mass transport across a phase transition boundary. J. Geophys. Res., 100:20211-2022, 1995. [ bib ]
[1969] S. D. King. Radial models of mantle viscosity: Results from a genetic algorithm. Geophys. J. Int., 122:725-734, 1995. [ bib ]
[1970] N. E. King and J. C. Savage. Strain-rate profile across the Elsinore, San Jacinto, and San Andreas faults near Palm Springs, California, 1973-81. Geophys. Res. Lett., 10:55-57, 1983. [ bib ]
[1971] S. D. King and B. H. Hager. Subducted slabs and the geoid 1. Numerical experiments with temperature-dependent viscosity. J. Geophys. Res., 99:19843-19852, 1994. [ bib ]
[1972] R. J. Kinzler and T. L. Grove. Primary magmas of mid-ocean ridge basalts. Part 2: Applications. J. Geophys. Res., 97:6907-6926, 1992. [ bib ]
[1973] A. Kiraly, C. Faccenna, F. Funiciello, and A. Sembroni. Coupling surface and mantle dynamics: A novel experimental approach. Geophys. Res. Lett., 42:3863-3869, 2015. [ bib | DOI ]
[1974] Á. Király, F. A. Capitanio, F. Funiciello, and C. Faccenna. Subduction zone interaction: Controls on arcuate belts. Geology, 44:715-718, 2016. [ bib ]
[1975] A. A. Kiratzi and C. B. Papazachos. Active crustal deformation from the Azores triple junction to the Middle East. Tectonophys., 243:1-24, 1995. [ bib ]
[1976] E. Kirby, D. W. Burbank, M. Reheis, and F. Phillips. Temporal variations in slip rate of the White Mountain Fault Zone, Eastern California. Earth Planet. Sci. Lett., 248:168-185, 2006. [ bib ]
[1977] S. H. Kirby and A. K. Kronenberg. Rheology of the lithosphere: Selected topics. Rev. Geophys., 25:1219-1244, 1987. [ bib ]
[1978] S. H. Kirby, S. Stein, E. A. Okal, and D. C. Rubie. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys., 34:261-306, 1996. [ bib ]
[1979] J. P. Kirschvink, R. L. Ripperdan, and D. A. Evans. Evidence for a large-scale reorganization of early Cambrian continental masses by inertial interchange true polar wander. Science, 277:541-545, 1997. [ bib ]
[1980] E. Kiser, M. Ishii, C. H. Langmuir, P. M. Shearer, and H. Hirose. Insights into the mechanism of intermediate depth earthquakes from source properties as imaged by back projection of multiple seismic phases. J. Geophys. Res., 116(B06310), 2011. [ bib | DOI ]
[1981] E. Kissling, W. L. Ellsworth, D. Eberhart-Phillips, and U. Kradofler. Initial reference models in local earthquake tomography. J. Geophys. Res., 99:19635-19646, 1994. [ bib ]
[1982] C. Kisslinger. Aftershocks and fault zone properties. Adv. in Geophys., 38:1-36, 1996. [ bib ]
[1983] Hiroko Kitajima and Demian M. Saffer. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett., 39(23), 2012. [ bib | DOI ]
[1984] F. W. Klein. User's guide to HYPOINVERSE-2000, a FORTRAN program to solve for earthquake locations and magnitudes. U. S. Geological Survey Open File Report, 02-171:1-123, 2002. [ bib ]
[1985] E. Klein, L. Fleitout, C. Vigny, and J. D. Garaud. Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation following the 2010 Mw 8.8 Maule earthquake (Chile). Geophys. J. Int., 205:1455-1472, 2016. [ bib ]
[1986] F. W. Klein. User's guide to HYPOINVERSE, a program for VAX computers to solve for earthquake locations and magnitudes. U. S. Geological Survey Open File Report, 89-314:61 pp., 1989. [ bib ]
[1987] J. Kley. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. South Amer. Earth Sci., 12:221-235, 1999. [ bib ]
[1988] F. Klingelhoefer, M.-A. Gutscher, S. Ladage, J.-X. Dessa, D. Graindorge, D. Franke, C. André, H. Permana, T. Yudistira, and A. Chauhan. Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling. J. Geophys. Res., 115(B01304), 2010. [ bib | DOI ]
[1989] E. R. Klosko, R. M. Russo, E. A. Okal, and W. P. Richardson. Evidence for a rheologically strong chemical mantle root beneath the Ontong-Java Plateau. Earth Planet. Sci. Lett., 186:347-361, 2001. [ bib ]
[1990] J. Klotz, G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, and O. Cifuentes. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet. Sci. Lett., 193:437-446, 2001. [ bib ]
[1991] E. A. Kneller, P. E. van Keken, S.-i. Karato, and J. Park. B-type olivine fabric in the mantle wedge: insights from high-resolution non-newtonian subduction zone models. Earth Planet. Sci. Lett., 237:781-797, 2005. [ bib ]
[1992] E. A. Kneller and P. E. van Keken. Trench-parallel flow and seismic anisotropy in the Marianas and Andean subduction systems. Nature, 450:1222-1225, 2007. [ bib ]
[1993] E. A. Kneller and P. E. van Keken. The effect of three-dimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy. Geochem., Geophys., Geosys., 9(Q01003), 2008. [ bib | DOI ]
[1994] M. Knoll, A. Tommasi, R. Logé, and J. Signorelli. A multiscale approach to model the anisotropic deformation of lithospheric plates. Geochem., Geophys., Geosys., 10(Q08009), 2009. [ bib | DOI ]
[1995] R. E. Knop. Random vectors uniform in solid angle. Comm. ACM, 13:326, 1970. [ bib ]
[1996] L. Knopoff and M. J. Randall. The compensated linear vector dipole: A possible mechanism for 768 deep earthquakes. J. Geophys. Res., 75:4957-4063, 1970. [ bib ]
[1997] L. Knopoff, R. Mitchel, and D. D. Jackson. A stochastic analysis of a model earthquake sequence. Geophys. J. R. Astr. Soc., 29:255-261, 1972. [ bib ]
[1998] L. Knopoff, T. Levshina, V. I. Keilis-Borok, and C. Mattoni. Increased long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California. J. Geophys. Res., 101:5779-5796, 1996. [ bib ]
[1999] S. D. Knott. The Liguride Complex of southern Italy - A Cretaceous to Paleogene accretionary wedge. Tectonophys., 142:217-226, 1987. [ bib ]
[2000] B. Ko and H. Jung. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Comm., 6(6586), 2015. [ bib | DOI ]
[2001] S. Kodaira, T. Iidaka, A. Kato, J.-O. Park, T. Iwasaki, and Y. Kaneda. High pore fluid pressure may cause silent slip in the Nankai trough. Science, 304:1295-1298, 2004. [ bib ]
[2002] Shuichi Kodaira, Takane Hori, Aki Ito, Seiichi Miura, Gou Fujie, Jin-Oh Park, Toshitaka Baba, Hide Sakaguchi, and Yoshiyuki Kaneda. A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation. J. Geophys. Res., 111(B09301), 2006. [ bib | DOI ]
[2003] M. D. Kohler. Lithospheric deformation beneath the San Gabriel mountains in the southern California Transverse ranges. J. Geophys. Res., 104:15025-15041, 1999. [ bib ]
[2004] D. L. Kohlstedt. Constitutive equations, rheological behavior, and viscosity of rocks. In G. D. Price, editor, Treatise on Geophysics. Elsevier, Amsterdam, 2007. [ bib ]
[2005] D. L. Kohlstedt, B. Evans, and S. J. Mackwell. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res., 100:17587-17602, 1995. [ bib ]
[2006] D. Komatitsch and J. Tromp. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int., 139:806-822, 2003. [ bib ]
[2007] D. Komatitsch, L. P. Vinnik, and S. Chevrot. SHdiff/SVdiff splitting in an isotropic Earth. J. Geophys. Res., 115(B08312), 2010. [ bib | DOI ]
[2008] D. Komatitsch and J. P. Vilotte. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 88:368-392, 1998. [ bib ]
[2009] X. Kong and P. Bird. SHELLS: A thin-shell program for modeling neotectonics of regional or global extent. J. Geophys. Res., 100:22129-22131, 1995. [ bib ]
[2010] J. G. Konter and T. W. Becker. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem., Geophys., Geosys., 13(Q02004), 2012. [ bib | DOI ]
[2011] K. D. Koper, D. A. Wiens, L. M. Dorman, J. A. Hildebrand, and S. C. Webb. Modeling the Tonga slab: Can travel time data resolve a metastable olivine wedge? J. Geophys. Res., 103:30079-30100, 1998. [ bib ]
[2012] J. Korenaga. Energetics of mantle convection and the fate of fossile heat. Geophys. Res. Lett., 30(8), 2003. [ bib | DOI ]
[2013] J. Korenaga. Archean geodynamics and the thermal evolution of the Earth. In K. Benn, J.-C. Marechal, and K. Condie, editors, Archean Geodynamics and Environments, volume 164 of AGU Geophys. Monograph, pages 7-31. American Geophysical Union, 2006. [ bib ]
[2014] J. Korenaga. Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett., 257:350-358, 2007. [ bib ]
[2015] J. Korenaga. Urey ratio and the structure and evolution of Earth's mantle. Rev. Geophys., 46, 2008. [ bib | DOI ]
[2016] T. Korenaga and J. Korenaga. Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening. Earth Planet. Sci. Lett., 268:41-51, 2008. [ bib ]
[2017] J. Korenaga. Scaling of plate tectonic convection with pseudoplastic rheology. J. Geophys. Res., 115(B11405), 2010. [ bib | DOI ]
[2018] T. Korenaga and J. Korenaga. Evolution of young oceanic lithosphere and the meaning of seafloor subsidence rate. J. Geophys. Res., 121:6315-6332, 2016. [ bib | DOI ]
[2019] J. Korenaga. Pitfalls in modeling mantle convection with internal heat production. J. Geophys. Res., 122:4064-4085, 2017. [ bib | DOI ]
[2020] J. Korenaga, N. J. Planavsky, and D. A. D. Evans. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A, 375:10.1098/rsta.2015.0393, 2017. [ bib ]
[2021] G. L. Kosarev, L. I. Makeyeva, and L. P. Vinnik. Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys. J. R. Astr. Soc., 76:209-220, 1984. [ bib ]
[2022] G. Kosarev, R. Kind, S. V. Sobolev, X. Yuan, W. Hanka, and S. Oreshin. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283:1306-1309, 1999. [ bib ]
[2023] B. V. Kostrov. Seismic moment and energy of earthquakes and seismic flow of rock. Phys. Solid Earth, 1:23-40, 1974. [ bib ]
[2024] B. V. Kostrov and S. Das. Principles of Earthquake Source Mechanics. University Press, Cambridge, 1988. [ bib ]
[2025] A. Koulali, D. Ouazara, A. Tahayt, R. W. King, P. Vernant, R.E. Reilinger, S. McClusky, T. Mourabit, J. M. Davila, and N. Amraouih. New GPS constraints on active deformation along the Africa–Iberia plate boundary. Earth Planet. Sci. Lett., 308:211-217, 2011. [ bib ]
[2026] A. Koulali, S. McClusky, L. Wallace, S. Allgeyer, P. Tregoning, E. D'Anastasio, and R. Benavente. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand. Geophys. Res. Lett., 44, 2017. [ bib | DOI ]
[2027] J. E. Kozdon and E. M. Dunham. Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seismol. Soc. Am., 103:1275-1289, 2013. [ bib ]
[2028] Jeremy E Kozdon, Eric M Dunham, and Jan Nordström. Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comp., 55:92-124, 2013. [ bib ]
[2029] Jeremy E Kozdon and Eric M Dunham. Rupture to the trench: Dynamic rupture simulations of the 11 March 2011 Tohoku earthquake. Bull. Seismol. Soc. Am., 103:1275-1289, 2013. [ bib ]
[2030] J. E. Kozdon and E. M. Dunham. Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth Planet. Sci. Lett., 396:56-65, 2014. [ bib ]
[2031] C. Kreemer, J. Haines, W. E. Holt, G. Blewitt, and D. Lavallée. On the determination of a global strain rate model. Earth Planets Space, 52:765-770, 2000. [ bib ]
[2032] C. Kreemer, W. E. Holt, S. Goes, and R. Govers. Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. J. Geophys. Res., 105:663-680, 2000. [ bib ]
[2033] C. Kreemer, W. E. Holt, and A. J. Haines. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154:5-34, 2003. [ bib ]
[2034] C. Kreemer, N. Chamot-Rooke, and X. Le Pichon. Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett., 225:329-346, 2004. [ bib ]
[2035] C. Kreemer and W. C. Hammond. Geodetic constraints on areal changes in the Pacific-North America plate boundary zone: What controls Basin and Range extension? Geology, 10:943-947, 2007. [ bib ]
[2036] C. Kreemer. Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. J. Geophys. Res., 114(B10405), 2009. [ bib | DOI ]
[2037] C. Kreemer, G. Blewitt, and E. C. Klein. A geodetic plate motion and Global Strain Rate Model. Geochem., Geophys., Geosys., 15, 2014. [ bib | DOI ]
[2038] Y. Krien and L. Fleitout. Gravity above subduction zones and forces controlling plate motions. J. Geophys. Res., 113(B09407), 2008. [ bib | DOI ]
[2039] M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int., 191:12-29, 2012. [ bib ]
[2040] K. Kuge and H. Kawakatsu. Significance of non-double couple components of deep and intermediate-depth earthquakes: Implications from moment tensor inversions of long-period seismic waves. Phys. Earth Planet. Inter., 75:243-266, 1993. [ bib ]
[2041] P. Kumar and H. Kawakatsu. Imaging the seismic lithosphere-asthenosphere boundary of the oceanic plate. Geochem., Geophys., Geosys., 12(Q01006), 2011. [ bib | DOI ]
[2042] P. Kumar, R. Kind, X. Yuan, and J. Mechie. USArray Receiver Function Images of the Lithosphere-Asthenosphere Boundary. Seism. Res. Lett., 83:486-491, 2012. [ bib ]
[2043] M. Kumazawa and O. L. Anderson. Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J. Geophys. Res., 74:5961-5972, 1969. [ bib ]
[2044] M. D. Kurz, W. J. Jenkins, S. R. Hart, and D. Clague. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett., 66:388-406, 1983. [ bib ]
[2045] T. Kurz and W. Lauterborn. Bifurcation structure of the Toda osciallator. Phys. Rev. A, 37:1029-1031, 1988. [ bib ]
[2046] B. Kustowski, G. Ekström, and A. M. Dziewoński. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. J. Geophys. Res., 113, 2008. [ bib | DOI ]
[2047] K. Kusonose. Fracture mechanics of rocks. J. Phys. Earth, 43:479-504, 1995. [ bib ]
[2048] N. J. Kuznir. The distribution of stress with depth in the lithosphere: thermorheological and geodynamic constraints. Phil. Trans. R. Soc. London Ser. A, 337:95-110, 1991. [ bib ]
[2049] G. Kwiatek, K. Plenkers, M. Nakatani, Y. Yabe, G. Dresen, and JAGUARS group. Frequency-magnitude characteristics down to magnitude -4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa. Bull. Seismol. Soc. Am., 100:1165-1173, 2010. [ bib ]
[2050] Y. W. Kwon and H. Bang. The Finite Element Method Using Matlab. CRC Press, 1996. [ bib ]
[2051] H. Kyvalova, Čadek. O., and D. A. Yuen. Correlation analysis between subduction in the last 180 Myr and lateral seismic structure of the lower mantle: Geodynamical implications. Geophys. Res. Lett., 22:1281-1284, 1995. [ bib ]
[2052] S. Labrosse. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett., 1999:147-156, 2002. [ bib ]
[2053] S. Labrosse and C. Jaupart. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett., 260:465-481, 2007. [ bib ]
[2054] S. Labrosse, J. W. Hernlund, and N. Coltice. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450:866-869, 2007. [ bib ]
[2055] Stéphane Labrosse. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter., 247:36-55, 2015. [ bib ]
[2056] A. H. Lachenbruch. Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res., 73:6977-6989, 1968. [ bib ]
[2057] A. H. Lachenbruch and J. H. Sass. Heat flow and energetics of the San Andreas fault zone. J. Geophys. Res., 85:6185-6222, 1980. [ bib ]
[2058] A. H. Lachenbruch and J. H. Sass. Heat flow from Cajon pass, fault strength, and tectonic implications. J. Geophys. Res., 97:4995-5015, 1982. [ bib ]
[2059] A. H. Lachenbruch and P. Morgan. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophys., 174:39-62, 1990. [ bib ]
[2060] D. Lahondère and C. Guerrot. Datation Sm-Nd du métamorphisme éclogitique en Corse Alpine: un argument pour l'existence au Crétacé supériuer d'une zone de subduction active localisée sous le bloc Corse-Sarde. Geol. France, 3:3-11, 1997. [ bib ]
[2061] S. Lallemand, Y. Font, H. Bijwaard, and H. Kao. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications. Tectonophys., 335:229-253, 2001. [ bib ]
[2062] S. Lallemand, A. Heuret, and D. Boutelier. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem., Geophys., Geosys., 6, 2005. [ bib | DOI ]
[2063] S. Lallemand. High rates of arc consumption by subduction processes: some consequences. Geology, 23:551-554, 1995. [ bib ]
[2064] H. G. Aveé Lallamant. Displacement partitioning and arc-parallel extension: example from the southeastern Caribbean plate margin. In R. E. Bebout, D. W. Scholl, S. H. Kirby, and J. P. Platt, editors, Subduction: Top to Bottom, volume 96 of Geophys. Monograph, pages 113-118. American Geophysical Union, washington, dc edition, 1996. [ bib ]
[2065] P. Lancaster and K. Šalkauskas. Curve and surface fitting - An introduction. Academic Press, San Diego, 1986. [ bib ]
[2066] F. W. Landerer and S. C. Swenson. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resource Res., 48(W04531), 2012. [ bib | DOI ]
[2067] W. Landuyt and D. Bercovici. Formation and structure of lithospheric shear zones with damage. Phys. Earth Planet. Inter., 175(115-126), 2009. [ bib ]
[2068] G. Lang. Relaxationsverhalten der erde nach einem dip-slip-beben ind einer subduktionszone in abhängigkeit vom winkel der abtauchenden platte und der asthenosphärenrheologie. Master's thesis, Institut für Geophysik der Technischen Universität Clausthal, Clausthal, 1983. [ bib ]
[2069] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 3 edition, 1999. [ bib ]
[2070] N. Lapusta, J. R. Rice, Y. Ben-Zion, and G. Zheng. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res., 105:23765-23789, 2000. [ bib ]
[2071] N. Lapusta and Y. Liu. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. J. Geophys. Res., 114(B09303), 2009. [ bib | DOI ]
[2072] N. Lapusta et al. Modeling earthquake source processes: from tectonics to dynamic rupture, report to the National Science Foundation. Technical report, Caltech, Pasadena CA, 2019. Available online at www.seismolab.caltech.edu/pdf/MESP_White_Paper_Main_Text_8_March_2019.pdf, accesed 01/2020. [ bib ]
[2073] M.E. Lara Ocampo, A. Cardona, V. Valencia, M. Weber, J. Ceron, F. de la Parra, D. Espitia, and M. Martinez. Middle Miocene volcanism within the south Caribbean deformed belt in northern Colombia: petrotectonic implications. In XIV Congreso Latinoamericano de Geologia Memorias,, page 221, 2011. [ bib ]
[2074] S. Larsen, R. Reilinger, H. Neugebauer, and W. Strange. Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting. J. Geophys. Res., 97:4885-4902, April 1992. [ bib ]
[2075] T. Larsen, D. A. Yuen, and A. V. Malevsky. Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection. Geophys. Res. Lett., 22:1277-1280, 1995. [ bib ]
[2076] T. Larsen, D. A. Yuen, J. L. Smedsmo, and A. V. Malevsky. Thermomechanical modeling of pulsation tectonics and consequences on lithospheric dynamics. Geophys. Res. Lett., 23:217-220, 1996. [ bib ]
[2077] E. W. F. Larsen, J. Tromp, and G. Ekström. Effects of slight anisotropy on surface waves. Geophys. J. Int., 132:654-666, 1998. [ bib ]
[2078] R. L. Larson and W. C. Pitman III. World-wide correlation of Mesosoic magnetic anomalies and its implications. GSA Bull., 83:3645-3662, 1972. [ bib ]
[2079] E. Larson, J. Tromp, and G. Ekström. Effects of slight anisotropy on surface waves. Geophys. J. Int., 132:654-666, 1998. [ bib ]
[2080] G. Laske. Reference Earth Model website. University of California, San Diego, La Jolla CA. Online at mahi.ucsd.edu/Gabi/rem.html, accessed 06/2006, 2006. [ bib ]
[2081] G. Laske, G. Masters., Z. Ma, and M. Pasyanos. A 1-degree global model of Earth's crust. Geophys. Res. Abstr., 15, 2013. Abstract EGU2013-2658. [ bib ]
[2082] G. Laske and G. Masters. A global digital map of sediment thickness. EOS, Trans. AGU, 78:F483, 1997. [ bib ]
[2083] G. Laske and G. Masters. Surface-wave polarization data and global anisotropic structure. Geophys. J. Int., 132:508-520, 1998. [ bib ]
[2084] T. M. Lassak, M. J. Fouch, C. E. Hall, and É Kaminski. Seismic characterization of mantle flow in subduction systems: Can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett., 243:632-649, 2006. [ bib ]
[2085] K. Latifi, A. Kaviani, G. Rümpker, M. Mahmoodabadi, M. R. Ghassemi, and A. Sadidkhouy. The effect of crustal anisotropy on SKS splitting analysis-synthetic models and real-data observations. Geophys. J. Int., 213:1426-1447, 2018. [ bib ]
[2086] Nicholas Lau, Adrian A Borsa, Christopher W Johnson, and Thorsten W Becker. Geodetic imaging of spatial variations in vertical land motion and its implication for relative sea level change along the US West Coast. In AGU Fall Meeting Abstracts, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[2087] L. L. Lavier, W. R. Buck, and A. N. B. Poliakov. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res., 105:23431–-23442, 2000. [ bib ]
[2088] L. Lavier and W.R. Buck. Half graben versus large-offset low-angle normal fault: importance of keeping cool during normal faulting. J. Geophys. Res., 107:10.1029/2001JB000513, 2002. [ bib ]
[2089] L. L. Lavier and G. A. Manatschal. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440:324-328, 2006. [ bib ]
[2090] L. L. Lavier, R. Bennett, and R. Duddu. Creep events at the brittle ductile transition. Geochem., Geophys., Geosys., 14:3334-3351, 2013. [ bib | DOI ]
[2091] L. Lavier, W.R. Buck, and A.N.B. Poliakov. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res., 105:23431-23442, 2000. [ bib ]
[2092] J. F. Lawrence and M. E. Wysession. Seismic evidence for subduction-transported water in the lower mantle. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geophys. Monograph. American Geophysical Union, Washington, DC, 2004. [ bib ]
[2093] J. F. Lawrence and M. E. Wysession. QLM9: A new radial quality factor (Qμ) model for the lower mantle. Earth Planet. Sci. Lett., 241:962-971, 2006. [ bib ]
[2094] J. Lawrence and P. Shearer. A global study of transition zone thickness using receiver functions. J. Geophys. Res., 111, 2006. [ bib | DOI ]
[2095] N. Laws and R. McLaughlin. Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proc. R. Soc. Lond. A., 359:251-273, 1978. [ bib ]
[2096] T. Lay and E. J. Garnero. Core-mantle boundary structures and processes. In R. S. J. Sparks and C. J. Hawkesworth, editors, The State of the Planet: Frontiers and Challenges in Geophysics, volume 150 of Geophys. Monograph, pages 25-41. American Geophysical Union, 2004. [ bib ]
[2097] T. Lay, J. Hernlund, and B. Buffett. Core-mantle boundary heat flow. Nature Geosc., 1:25-32, 2008. [ bib ]
[2098] T. Lay, H. Kanamori, C. J. Ammon, K. D. Koper, A. R. Hutko, L. Ye, H. Yue, and T. M. Rushing. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res., 117(B04311), 2012. [ bib | DOI ]
[2099] T. Lay. The surge of great earthquakes from 2004 to 2014. Earth Planet. Sci. Lett., 409:133-146, 2015. [ bib ]
[2100] Thorne Lay and Hiroo Kanamori. Earthquake doublets in the Solomon islands. Phys. Earth Planet. Inter., 21:283-304, 1980. [ bib ]
[2101] T. Lay. The fate of descending slabs. Ann. Rev. Earth Planet. Sci., 22:33, 1994. [ bib ]
[2102] T. Lay and T.C. Wallace. Modern Global Seismology, chapter 8. Academic Press, San Diego, 1995. [ bib ]
[2103] S. Lebedev, S. Chevrot, and R. van der Hilst. Correlation between the shear-speed structure and thickness of the mantle transition zone. Phys. Earth Planet. Inter., 136:25-40, 2003. [ bib ]
[2104] S. Lebedev and G. Nolet. Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res., 108(2048), 2003. [ bib | DOI ]
[2105] S. Lebedev, G. Nolet, T. Meier, and R. D. van der Hilst. Automated multimode inversion of surface and S waveforms. Geophys. J. Int., 162:951-964, 2005. [ bib ]
[2106] S. Lebedev, T. Meier, and R. D. van der Hilst. Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth Planet. Sci. Lett., 249:415-424, 2006. [ bib ]
[2107] S. Lebedev and R. D. van der Hilst. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int., 173:505-518, 2008. [ bib ]
[2108] S. Lebedev, J. Boonen, and J. Trampert. Seismic structure of Precambrian lithosphere: New constraints from broad-band surface-wave dispersion. Lithos, 109:96-111, 2009. [ bib ]
[2109] S Lebedev, B Endrun, TM Meier, J Adam, and C Tirel. 3D deformation and evolution of Mediterranean basins: insights from crustal and mantle anisotropy. In AGU Fall Meeting Abstracts, 2010. [ bib ]
[2110] S. M. Lechmann, S. M. Schmalholz, G. Hetenyi, D. A. May, and B.J.P. Kaus. Quantifying the impact of mechanical layering and underthrusting on the dynamics of the modern India-Asia collisional system with 3-D numerical models. J. Geophys. Res., 119, 2014. [ bib | DOI ]
[2111] J. Lee, C. Rubin, M. Miller, J. Spencer, O. Lewis, and T. Dixon. Kinematics of the Eastern California shear zone north of the Garlock Fault (abstract). In The Geological Society of America, 2000 Annual meeting. Abstracts with Programs, volume 32, page 105, 2000. [ bib ]
[2112] C.-T. A. Lee, A. Lenardic, C. M. Cooper, F. Niu, and A. Levander. The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth Planet. Sci. Lett., 230:379-395, 2005. [ bib ]
[2113] C. T. A. Lee. Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth's mantle. Earth Planet. Sci. Lett., 255:357-366, 2007. [ bib ]
[2114] C.-K. Lee, S.-C. Han, and B. Steinberger. Influence of variable uncertainties in seismic tomography models on constraining mantle viscosity from geoid observations. Phys. Earth Planet. Inter., 184:51-62, 2011. [ bib ]
[2115] C.-T. A. Lee, P. Luffi, and E. J. Chin. Building and destroying continental mantle. Ann. Rev. Earth Planet. Sci., 39:59-90, 2011. [ bib ]
[2116] T.-C. Lee. Pore-pressure rise, frictional strength, and fault slip: one-dimesional interaction models. Geophys. J. Int., 125:371-384, 1996. [ bib ]
[2117] J. R. Leeman, D. M. Saffer, M. M. Scuderi, and C. Marone. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Comm., 7, 2016. [ bib | DOI ]
[2118] X. Lei, K. Kusunose, M. Rao, O. Nishizawa, and T. Satoh. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J. Geophys. Res., 105:6127-6139, 2000. [ bib ]
[2119] X. Lei. How do asperities fracture? An experimental study of unbroken asperities. Earth Planet. Sci. Lett., 26:247-258, 2003. [ bib ]
[2120] J. Lei, D. Zhao, B. Steinberger, B. Wu, F. Shen, and Z. Li. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter., 33-50, 2009. [ bib ]
[2121] B. Leitner, A. M. Trehu, and N. J. Godfrey. Crustal structure of the northwestern Vizcaino block and Gorda Escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. J. Geophys. Res., 103:23795-23812, 1998. [ bib ]
[2122] V. Lekić and B. A. Romanowicz. Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys. J. Int., 2011. [ bib | DOI ]
[2123] V. Lekic, K. M. Fischer, and S. French. Lithospheric thinning beneath rifted regions of Southern California. Science, 334:783-787, 2011. [ bib ]
[2124] V. Lekic and B. A. Romanowicz. Tectonic regionalization without a priori information: A cluster analysis of upper mantle tomography. Earth Planet. Sci. Lett., 308:151-160, 2011. [ bib ]
[2125] A. Lenardic, L. N. Moresi, and H. Mühlhaus. Longevity and stability of cratonic lithosphere: Insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[2126] A. Lenardic, L. N. Moresi, A. M. Jellinek, and M. Manga. Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett., 234:317-333, 2005. [ bib ]
[2127] A. Lenardic, M. A. Richards, and F. H. Busse. Depth-dependent rheology and the horizontal length-scale of mantle convection. J. Geophys. Res., 111(B07404), 2006. [ bib | DOI ]
[2128] A. Lenardic, L. N. Moresi, A. M. Jellinek, C. J. O’Neill, C. M. Cooper, and C. T. Lee. Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments. Geochem., Geophys., Geosys., 12(Q10016), 2011. [ bib | DOI ]
[2129] A. Lenardic and J. W. Crowley. On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Atrophys. J., 755:132-143, 2012. [ bib ]
[2130] A. Lenardic and W. M. Kaula. A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces. J. Geophys. Res., 98:8243-8260, 1993. [ bib ]
[2131] A. Lenardic and L. N. Moresi. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. J. Geophys. Res., 104:12747-12758, 1999. [ bib ]
[2132] W. Leng and Gurnis. M. Dynamics of subduction initiation with different evolutionary pathways. Geochem., Geophys., Geosys., 12(Q12018), 2011. [ bib | DOI ]
[2133] W. Leng and M. Gurnis. Dynamics of subduction initiation with different evolutionary pathways. Geochem., Geophys., Geosys., 12(Q12018), 2012. [ bib | DOI ]
[2134] X. Le Pichon. Sea floor spreading and continental drift. J. Geophys. Res., 73:3661-3697, 1968. [ bib ]
[2135] L. Le Pourhiet, M. Gurnis, and J. Saleeby. Mantle instability beneath the Sierra Nevada mountains in California and Death Valley extension. Earth Planet. Sci. Lett., 251:104-119, 2006. [ bib ]
[2136] L. Le Pourhiet, B. Huet, and N. Traoré. Links between long-term and short-term rheology of the lithosphere: Insights from strike-slip fault modelling. Tectonophys., 631:146-159, 2014. [ bib ]
[2137] Y. Le Stunff and Y. Ricard. Topography and geoid due to lithospheric mass anomalies. Geophys. J. Int., 133:982-990, 1995. [ bib ]
[2138] E. Lev and B. H. Hager. Rayleigh-Taylor instabilities with anisotropic lithospheric viscosity. Geophys. J. Int., 173:806-814, 2008. [ bib ]
[2139] E. Lev and B. H. Hager. Prediction of anisotropy from flow models: A comparison of three methods. Geochem., Geophys., Geosys., 9(Q07014):10.1029/2008GC002032, 2008. [ bib ]
[2140] E. Lev and B. H. Hager. Anisotropic viscosity changes subduction zone thermal structure. Geochem., Geophys., Geosys., 12(Q04009), 2011. [ bib | DOI ]
[2141] A. Levander. USArray design implications for wavefield imaging in the lithosphere and upper mantle. The Leading Edge, 22:250-255, 2003. [ bib ]
[2142] A. Levander, F. Niu, and W. W. Symes. Imaging teleseismic P to S scattered waves using the Kirchhoff integral. In A. Levander and G. Nolet, editors, Seismic Earth: Array Analysis of Broadband Seismograms, volume 157 of Geophys. Monograph, pages 149-169. American Geophysical Union, Washington, D.C., 2005. [ bib ]
[2143] A. Levander, M. Schmitz, H. G. Aveé Lallemant, C. A. Zelt, D. S. Sawyer, M. B. Magnani, P. Mann, G. Christeson, J. E. Wright, G. L. Pavlis, and J. Pindell. Evolution of the southern Caribbean plate boundary. Eos Trans. AGU, 87(9), 2006. [ bib | DOI ]
[2144] A. Levander, F. Niu, C.-T. A. Lee, and X. Cheng. Imag(in)ing the continental lithosphere. Tectonophys., 416:167-185, 2006. [ bib ]
[2145] A. Levander, D. Niu, and M. S. Miller. The Moho and the Lithosphere-Asthenosphere Boundary under the western U.S. from USArray PdS Receiver Functions. Eos Trans. AGU, 89(53):S31D-05, 2008. [ bib ]
[2146] A. Levander, B. Schmandt, M. S. Miller, K. Liu, K. E. Karlstrom, R. S. Crow, C.-T. Lee, and E. D. Humphreys. Regional Colorado Plateau uplift by delamination and thermo-chemical downwelling of North American lithosphere. Nature, 472:461-465, 2011. [ bib ]
[2147] A. Levander and M. S. Miller. Evolutionary aspects of the lithosphere discontinuity structure in the western U.S. Geochem., Geophys., Geosys., 13(Q0AK07), 2012. [ bib | DOI ]
[2148] A. R. Levander. Fourth-order finite-difference P-SV seismograms. Geophysics, 53:1425-1436, 1988. [ bib ]
[2149] W. Levandowski, C. H. Jones, W. Shen, M. H. Ritzwoller, and V. Schulte-Pelkum. Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. J. Geophys. Res., 119:2375-2396, 2014. [ bib | DOI ]
[2150] V. Levin, D. Okaya, and J. Park. Cause and effect: Shear wave birefringence in wedge-shaped anisotropic regions. Geophys. J. Int., 168:275-286, 2007. [ bib ]
[2151] Vadim Levin and Jeffrey Park. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions. Geophys. Res. Lett., 24(11):1283-1286, 1997. [ bib ]
[2152] V. Levin and J. Park. P-SH conversions in layered media with hexagonally symmetric anisotropy: A cookbook. Pure Appl. Geophys., 151:669-697, 1998. [ bib ]
[2153] V. Levin, W. Menke, and J. Park. Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy. J. Geophys. Res., 104:17975-17993, 1999. [ bib ]
[2154] F. Lévy and C. Jaupart. The initiation of subduction by crustal extension at a continental margin. Geophys. J. Int., 188:779-797, 2012. [ bib ]
[2155] J. L. Lewicki, T. Fischer, and S. N. Williams. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution. Bull. Volcanol., 62:347-361, 2000. [ bib ]
[2156] X. Li, S. V. Sobolev, R. Kind, X. Yuan, and C. Estabrook. A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone. Earth Planet. Sci. Lett., 183:527-541, 2000. [ bib ]
[2157] A. Li, D. W. Forsyth, and K. M. Fischer. Shear wave structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave tomography. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[2158] Q. Li and M. Liu. Geometrical impact of the San Andreas fault on stress and seismicity in California. Geophys. Res. Lett., 33, 2006. [ bib | DOI ]
[2159] Q. Li and M. Liu. Initiation of the San Jacinto fault and its interaction with the San Andreas fault: Insights from geodynamic modeling. Pure Appl. Geophys., 164:1937-1945, 2007. [ bib ]
[2160] X. Li, X. Yuan, and R. Kind. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int., 170:700-710, 2007. [ bib ]
[2161] Z.-X. L. Li, C.-T. A. Lee, A. H. Peslier, A. Lenardic, and S. J. Mackwell. Water contents in mantle xenoliths from the Colorado Plateau and vicinity: Implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J. Geophys. Res., 113, 2008. [ bib | DOI ]
[2162] C. Li, R. D. van der Hilst, E. R. Engdahl, and S. Burdick. A new global model for P wave speed variations in Earth's mantle. Geochem., Geophys., Geosys., 9(Q05018), 2008. [ bib | DOI ]
[2163] C. Li, R. D. van der Hilst, A. S. Meltzer, and E. R. Engdahl. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274:157-168, 2008. [ bib ]
[2164] Z. Li, Z. Peng, Z. Ross, F. Vernon, and Y. Ben-Zion. Variations of seismic anisotropy along the San Jacinto fault zone, southern California. In Annual Meeting 2014, Proceedings Volume XXIV, page 157, Los Angeles, CA, 2014. Southern California Earthquake Center. Available online at www.scec.org/meetings/2014am/SCEC2014Proceedings.pdf, accessed 10/2014. [ bib ]
[2165] Z. Li, H. Zhang, and Z. Peng. Structure-controlled seismic anisotropy along the Karadere-Düzce branch of the North Anatolian Fault revealed by shear-wave splitting tomography. Earth Planet. Sci. Lett., 391:319-326, 2014. [ bib ]
[2166] S. Li, M. Moreno, J. Bedford, M. Rosenau, and O. Oncken. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J. Geophys. Res., 120:4522-4538, 2015. [ bib ]
[2167] Zefeng Li and Zhigang Peng. Stress- and structure-induced anisotropy in Southern California from two decades of shear wave splitting measurements. Geophys. Res. Lett., 44:9607-09614, 2017. [ bib | DOI ]
[2168] D. Li, M. Gurnis, and G. Stadler. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity. Geophys. J. Int., 209:86-105, 2017. [ bib ]
[2169] Shaoyang Li, Kelin Wang, Yanzhao Wang, Yan Jiang, and Stan E. Dosso. Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic earth model. J. Geophys. Res., 123:8056-8072, 2018. [ bib ]
[2170] Shaoyang Li, Jonathan Bedford, Marcos Moreno, William D. Barnhart, Matthias Rosenau, and Onno Oncken. Spatiotemporal variation of mantle viscosity and the presence of cratonic mantle inferred from 8 years of postseismic deformation following the 2010 Maule, Chile, earthquake. Geochem., Geophys., Geosys., 19:3272-3285, 2018. [ bib ]
[2171] V. C. Li and J.R. Rice. Crustal deformation in great California earthquake cycles. J. Geophys. Res., 92:11533-11551, October 1987. [ bib ]
[2172] V. C. Li, S. H. Seale, and T. Cao. Postseismic stress and pore pressure readjustment and aftershock distributions. Tectonophys., 144:37-54, 1987. [ bib ]
[2173] V. C. Li and H. S. Lim. Modeling surface deformations at complex strike-slip plate boundaries. J. Geophys. Res., 93:7943-7954, July 1988. [ bib ]
[2174] X.-D. Li and B. A. Romanowicz. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophys. J. Int., 121:695-709, 1995. [ bib ]
[2175] F. Liakopoulou-Morris, I. G. Main, B. R. Crawford, and B. G. D. Smart. Microseismic properties of a homogeneous sandstone during fault nucleation and frictional sliding. Geophys. J. Int., 119:219-230, 1994. [ bib ]
[2176] K. Liao. mpacts of lithospheric rheology on surface topography. Master's thesis, The University of Texas at Austin, 2018. Available online at hdl.handle.net/2152/68456, accessed 02/2019. [ bib ]
[2177] A. Libchaber, C. Laroche, and S. Fauve. Period doubling cascade in mercury, a quantitative measurement. J. Physique. Lett., 43:L211-L216, 1982. [ bib ]
[2178] E. Libicki and Y. Ben-Zion. Stochastic branching models of fault surfaces and estimated fractal dimensions. Pure Appl. Geophys., 162(6-7), 2005. [ bib ]
[2179] J. J. Lienkaemper, B. Baker, and F. S. McFarland. Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays. Bull. Seismol. Soc. Am., 96:239-249, 2006. [ bib ]
[2180] X. Li, X. Yuan, and R. Kind. The lithosphere-asthenosphere boundary beneath the western United States. Geophys. J. Int., 170:700-710, 2007. [ bib ]
[2181] G. Lin and P. Shearer. Tests of relative earthquake relocation techniques using synthetic data. J. Geophys. Res., 110(B04304), 2005. [ bib | DOI ]
[2182] G. Lin, P. M. Shearer, and E. Hauksson. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res., 112(B12309), 2007. [ bib | DOI ]
[2183] G. Lin and P. Shearer. Estimating local Vp/Vs ratios within similar earthquake clusters. Bull. Seismol. Soc. Am., 97:379-388, 2007. [ bib ]
[2184] F.-C. Lin, M. H. Ritzwoller, and R. Snieder. Eikonal tomography: surface wave tomography by phase-front tracking across a regional broad-band seismic array. Geophys. J. Int., 177:1091-1110, 2008. [ bib ]
[2185] F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller. Crustal and uppermost mantle shear wave azimuthal anisotropy in the western United States based on ambient noise cross correlation and Eikonal tomography. Eos Trans. AGU, 89(53):S24A-02, 2008. [ bib ]
[2186] F. Lin, M. P. Moschetti, and M. H. Ritzwoller. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173:281-298, 2008. [ bib ]
[2187] G. Lin and P. M. Shearer. Evidence for water-filled cracks in earthquake source regions. Geophys. Res. Lett., 36(L17315), 2009. [ bib | DOI ]
[2188] F.-C. Lin, M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geosc., 2010. [ bib | DOI ]
[2189] F. C. Lin, M. H. Ritzwoller, Y. Yang, M. P. Moschetti, and M. J. Fouch. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geosci., 4:55-61, 2011. [ bib ]
[2190] Yu-Pin Lin, Li Zhao, and Shu-Huei Hung. Full-wave multiscale anisotropy tomography in Southern California. Geophys. Res. Lett., 41:8809-8817, 2014. [ bib | DOI ]
[2191] P.-Y. P. Lin, J. B. Gaherty, Jin. G., J. A. Collins, D. Lizarralde, R. L. Evans, and G. Hirth. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere. Nature, 535:538-541, 2016. [ bib ]
[2192] A. T. Linde and I. S. Sachs. Slow earthquakes and great earthquakes along the Nankai trough. Earth Planet. Sci. Lett., 203:265-275, 2002. [ bib ]
[2193] E. O. Lindsey, Y. Fialko, Y. Bock, D. T. Sandwell, and R. Bilham. Localized and distributed creep along the southern San Andreas Fault. J. Geophys. Res., 2014. [ bib | DOI ]
[2194] M. F. Linker and M. F. Dieterich. Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res., 97:4923-4940, 1992. [ bib ]
[2195] C. R. B. Lister. Gravitational drive on oceanic plates caused by thermal contraction. Nature, 257:663-665, 1975. [ bib ]
[2196] C. Lithgow-Bertelloni and J. H. Guynn. Origin of the lithospheric stress field. J. Geophys. Res., 109, 2004. [ bib | DOI ]
[2197] C. Lithgow-Bertelloni, M. A. Richards, Y. Ricard, R. J. O'Connell, and D. C. Engebretson. Toroidal-poloidal partitioning of plate motions since 120 Ma. Geophys. Res. Lett., 20:375-378, 1993. [ bib ]
[2198] C. Lithgow-Bertelloni and M. A. Richards. Cenozoic plate driving forces. Geophys. Res. Lett., 22:1317-1320, 1995. [ bib ]
[2199] C. Lithgow-Bertelloni and M. Gurnis. Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geophys. Res. Lett., 25:735-738, 1997. [ bib ]
[2200] C. Lithgow-Bertelloni and M. A. Richards. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys., 36:27-78, 1998. [ bib ]
[2201] C. Lithgow-Bertelloni and P. G. Silver. Dynamic topography, plate driving forces and the African superswell. Nature, 395:269-272, 1998. [ bib ]
[2202] T. A. Little, M. K. Savage, and B. Tikoff. Relationship between crustal finite strain and seismic anisotropy in the mantle, Pacific-Australia plate boundary zone, South Island, New Zealand. Geophys. J. Int., 151:106-116, 2002. [ bib ]
[2203] T. A. Little, B. R. Hacker, S. J. Brownlee, and G. Seward. Microstructures and quartz lattice-preferred orientations in the eclogite-bearing migmatitic gneisses of the D'Entrecasteaux Islands, Papua New Guinea. Geochem., Geophys., Geosys., 14:2030-2062, 2013. [ bib | DOI ]
[2204] V. Litvak, E. Poma, and S. M. Kay. Paleogene and Neogene magmatism in the Valle del Cura region: New perspective on the evolution of the Pampean flat slab, San Juan province, Argentina. J. South Am. Earth Sci., 24:117-137, 2007. [ bib ]
[2205] Z. Liu and P. Bird. North America plate is driven westward by lower mantle flow. Geophys. Res. Lett., 29(2164), 2002. [ bib | DOI ]
[2206] M. Liu and Y. Yang. Extensional collapse of the Tibetan plateau: Results from three-dimensional finite element modeling. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[2207] Y. Liu and J. R. Rice. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. J. Geophys. Res., 110(B08307), 2005. [ bib | DOI ]
[2208] M. Liu, Y. Yang, Q. Li, and H. Zhang. Parallel computing of multi-scale continental deformation in the Western United States: preliminary results. Phys. Earth Planet. Inter., 163:35-51, 2007. [ bib ]
[2209] Y. Liu and J. R. Rice. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res., 112(B09404), 2007. [ bib | DOI ]
[2210] L. Liu and M. Gurnis. Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res., 113(B08405), 2008. [ bib | DOI ]
[2211] L. Liu, S. Spasojević, and M. Gurnis. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science, 322:934-938, 2008. [ bib ]
[2212] L. Liu and M. Gurnis. Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38:663-666, 2010. [ bib ]
[2213] K. Liu, A. Levander, F. Niu, and M. S. Miller. Imaging crustal and upper mantle structure beneath the Colorado Plateau using finite frequency Rayleigh wave tomography. Geochem., Geophys., Geosys., 12(7), 2011. [ bib | DOI ]
[2214] L. Liu and D. R. Stegman. Segmentation of the Farallon slab. Earth Planet. Sci. Lett., 311:1-10, 2011. [ bib ]
[2215] L. Liu and D. R. Stegman. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482:386-389, 2012. [ bib ]
[2216] Xin Liu, Dapeng Zhao, and Sanzhong Li. Seismic imaging of the Southwest Japan arc from the Nankai trough to the Japan Sea. Phys. Earth Planet. Inter., 216:59-73, 2013. [ bib ]
[2217] L. Liu. Rejuvenation of Appalachian topography caused by subsidence-induced differential erosion. Nature Geosc., 2014. [ bib | DOI ]
[2218] K. H. Liu, A. Elsheikh, A. Lemnifi, U. Purevsurenand M. Ray, H. Refayee, B. Yang, Y. Yu, and S.S. Gao. A uniform database of teleseismic shear wave splitting measurements for the western and central United States. Geochem., Geophys., Geosys., 15, 2014. 10.1002/2014GC005267. [ bib ]
[2219] L. Liu and Q. Zhou. Deep recycling of oceanic asthenosphere material during subduction. Geophys. Res. Lett., 42:2204-2211, 10.1002/2015GL063633 2015. [ bib ]
[2220] S. Liu and J. M. Dixon. Centrifuge modeling of thrust faulting: Strain partitioning and sequence of thrusting in duplex structures. In R. J. Knipe and E. H. Rutter, editors, Rheology and Tectonics, volume 54, pages 431-444. Geol. Soc. Spec. Pub., London, 1990. [ bib ]
[2221] S. Liu and J. M. Dixon. Localization of duplex thrust-ramps by buckling: analog and numerical modeling. J. Struct. Geol., 17:875-886, 1995. [ bib ]
[2222] L. Liu, A. T. Linde, I. S. Sacks, and S. He. Aseismic fault slip and block deformation in North China. Pure Appl. Geophys., 146, 1996. [ bib ]
[2223] Z. Liu and P. Bird. Kinematic modelling of neotectonics in the persia-tibet-burma orogen. Geophys. J. Int., 172:779-797, 2008. [ bib ]
[2224] L. A. Lliboutry. Sea floor spreading, continental drift and lithosphere sinking with an asthenosphere at melting point. J. Geophys. Res., 74:6525-6540, 1969. [ bib ]
[2225] Geoffrey E Lloyd, Robert WH Butler, Martin Casey, and David Mainprice. Mica, deformation fabrics and the seismic properties of the continental crust. Earth Planet. Sci. Lett., 288(1-2):320-328, 2009. [ bib ]
[2226] D. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidrin. Quasi-static fault growth and shear fracture energy in granite. Nature, 350:39-42, 1991. [ bib ]
[2227] D. A. Lockner, J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidrin. Observations of quasi-static fault growth from acoustic emissions. In B. Evans and T.-f. Wong, editors, Fault mechanics and transport properties of rocks, pages 3-31. Academic, San Diego, 1992. [ bib ]
[2228] D. Lockner. The role of acoustic emission in the study of rock fracture. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 30(7):883-899, 1993. [ bib ]
[2229] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book, volume 84. Springer Science & Business Media, 2012. [ bib ]
[2230] C. Loiselet, J. Braun, L. Husson, C. Le Carlier de Veslud, C. Thieulot, P. Yamato, and D. Grujic. Subducting slabs: Jellyfishes in the Earth's mantle. Geochem., Geophys., Geosys., 11(Q08016), 2010. [ bib | DOI ]
[2231] A. Lomax, J. Virieux, P. Volant, and C. Berge. Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations. In C. H. Thurber and N. Rabinowitz, editors, Advances in Seismic Event Location, pages 101-134. Kluwer, Amsterdam, 2000. [ bib ]
[2232] A. Lomax, A. Zollo, P. Capuano, and J. Virieux. Precise, absoute earthquake location under Somma-Vesuvius volcano using a new 3D velocity model. Geophys. J. Int., 146:313-331, 2001. [ bib ]
[2233] A. Lomax, A. Michelini, and A. Curtis. Encyclopedia of Complexity and System Science, chapter Earthquake Location, Direct, Global-Search Methods, pages 2449-2473. Springer, New York, 2009. [ bib ]
[2234] C. Lomnitz. Search of a worldwide catalog for earthquakes triggered at intermediate distances. Bull. Seismol. Soc. Am., 86:293-298, 1996. [ bib ]
[2235] J. Londoño. Activity and Vp/Vs ratio of volcano-tectonic seismic swarm zones at Nevado del Ruiz volcano, Colombia. Earth Sci. Res., 14:111-124, 2010. [ bib ]
[2236] L. Lonergan and N. White. Origin of the Betic-Rif mountain belt. Tectonics, 16:504-522, 1997. [ bib ]
[2237] M. D. Long and R. D. van der Hilst. Estimating shear-wave splitting parameters from broadband recordings in Japan: a comparison of three methods. Bull. Seismol. Soc. Am., 95:1346-1358, 2005. [ bib ]
[2238] M. D. Long and R. D. van der Hilst. Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Phys. Earth Planet. Inter., 155:300-312, 2006. [ bib ]
[2239] M. D. Long, M. V. de Hoop, and R. D. van der Hilst. Wave equation shear wave splitting tomography. Geophys. J. Int., 172:311-330, 2008. [ bib ]
[2240] M. D. Long and P. G. Silver. Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surv. Geophys., 30:407-461, 2009. [ bib ]
[2241] M. D. Long. Complex anisotropy in D” beneath the eastern Pacific from SKS-SKKS splitting discrepancies. Earth Planet. Sci. Lett., 283:181-189, 2009. [ bib ]
[2242] M. D. Long and P. G. Silver. Mantle flow in subduction systems: The sub-slab flow field and implications for mantle dynamics. J. Geophys. Res., 114(B10312), 2009. [ bib | DOI ]
[2243] M. D. Long and T. W. Becker. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297:341-354, 2010. [ bib ]
[2244] M. D. Long. Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys., 51:76-112, 2013. [ bib ]
[2245] P. Lonsdale. Creation of the Cocos and Nazca plates by fission of the Farallón plate. Tectonophys., 404:237-264, 2005. [ bib ]
[2246] A. López, G. M. Sierra, and D. Ramírez. Vulcanismo neógeno en el suroccidente antioqueno y sus implicaciones tectónicas. Bol. Ciencias de la Tierra, 19:27-42, 2006. [ bib ]
[2247] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963. [ bib ]
[2248] X. Lou and S. van der Lee. Observed and predicted North American teleseismic delay times. Earth Planet. Sci. Lett., 402:6-15, 2014. [ bib ]
[2249] D. L. Lourenço, A. Rozel, and P. J. Tackley. Melting-induced crustal production helps plate tectonics on Earth-like planets. Earth Planet. Sci. Lett., 439:18-28, 2016. [ bib ]
[2250] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge, 1927. Reprinted in 1944 by Dover Publications, New York. [ bib ]
[2251] J. P. Loveless and B. J. Meade. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res., 115(B02410), 2010. [ bib | DOI ]
[2252] J. P. Loveless and B. J. Meade. Stress modulation on the San Andreas fault due to interseismic fault system interactions. Geology, 39:1035-1038, 2011. [ bib ]
[2253] J. P. Loveless and B. J. Meade. Two decades of spatiotemporal variations in subduction zone coupling offshore Japan. Earth Planet. Sci. Lett., 436:19-30, 2016. [ bib ]
[2254] J. P. Lowman and G. T. Jarvis. Effects of mantle heat source distribution on supercontinent stability. J. Geophys. Res., 104:12733-12746, 1999. [ bib ]
[2255] A. R. Lowry, N. M. Ribe, and R. B. Smith. Dynamic elevation of the Cordillera, western United States. J. Geophys. Res., 105:23371-23390, 2000. [ bib ]
[2256] A. R. Lowry and M. Pérez-Gussinyé. The role of crustal quartz in controlling Cordilleran deformation. Nature, 471:353-357, 2011. [ bib ]
[2257] A. R. Lowry and R. B. Smith. Strength and rheology of the western U.S. Cordillera. J. Geophys. Res., 100:17947-17963, 1995. [ bib ]
[2258] S. J. Loyd, T. W. Becker, C. P. Conrad, C. Lithgow-Bertelloni, and F. A. Corsetti. Time-variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution. Proc. Nat. Acad. Sci., 104:14266-14271, 2007. [ bib ]
[2259] F. P. Lucente, C. Ciarabba, G. B. Cimini, and D. Giardini. Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res., 104:20307-20327, 1999. [ bib ]
[2260] P. Lundren et al. Alaska crustal deformation: Finite element modeling constrained by geologic and very long baseline interferometry data. J. Geophys. Res., 100:22033 - 22045, November 1995. [ bib ]
[2261] K. Luttrell, B. Smith-Konter, and D. Sandwell. Investigating absolute stress in southern California: How well do stress models of compensated topography and fault loading match earthquake focal mechanisms? In Southern California Earthquake Center Annual Meeting 2012 Program, pages 121-122, 2012. Available online at www.scec.org/meetings/2012am/SCECProceedingsXXII_2012.pdf, accessed 10/2013. [ bib ]
[2262] B. P. Luyendyk. A model for neogene crustal rotations, transtension, and transpression in southern California. Geol. Soc. Am. Bull., 103:1528-1536, 1991. [ bib ]
[2263] B. P. Luyendyk. Dip of downgoing lithospheric plates beneath island arcs. Geol. Soc. Am. Bull., 81:3411-3416, 1970. [ bib ]
[2264] V. Lyakhovsky, Y. Ben-Zion, and A. Agnon. Earthquake cycle, fault zones, and seismicity patterns in a rheologically layered lithosphere. J. Geophys. Res., 106:4103-4120, 2001. [ bib ]
[2265] V. Y. Lyakhovsky, Ben-Zion, and A. Agnon. Distributed damage, faulting, and friction. J. Geophys. Res., 102:27635-27649, 1997. [ bib ]
[2266] G. A. Lyzenga, A. Raefsky, and S. G. Mulligan. Models of recurrent strike-slip earthquake cycles and the state of crustal stress. J. Geophys. Res., 96:21623-21640, 1991. [ bib ]
[2267] Z. T. Ma and G. Masters. Effect of earthquake locations on Rayleigh wave azimuthal anisotropy models. Geophys. J. Int., 203:1319-1333, 2015. [ bib ]
[2268] X. Q. Ma and N. J. Kuznir. Coseismic and postseismic subsurface displacements and strains for a vertical strike-slip fault in a three-layer elastic medium. Pure Appl. Geophys., 142:705ff., 1994. [ bib ]
[2269] J. G. MacDougall, K. M. Fischer, and M. L. Anderson. Seismic anisotropy above and below the subducting Nazca lithosphere in southern South America. J. Geophys. Res., 117(B12306), 2012. [ bib | DOI ]
[2270] J. G. MacDougall, C. Kincaid, S. Szwaja, and K. M. Fischer. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments. Geophys. J. Int., 197:705-730, 2014. [ bib ]
[2271] P. Machetel, C. Thoraval, and D. Brunet. Spectral and geophysical consequences of 3-D spherical mantle convection with an endothermic phase change at the 670 km discontinuity. Phys. Earth Planet. Inter., 88:43-51, 1995. [ bib ]
[2272] L. S. MacKenzie, G. A. Abers, S. Rondenay, and K. M. Fischer. Imaging a steeply dipping subducting slab in Southern Central America. Earth Planet. Sci. Lett., 296:459-468, 2010. [ bib ]
[2273] R. Madariaga. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am., 66:636-666, 1976. [ bib ]
[2274] R. Madariaga, K. Olsen, and R. Archuleta. Modeling dynamic rupture in a 3D earthquake fault model. Bull. Seismol. Soc. Am., 88:1182-1197, 1998. [ bib ]
[2275] Elizabeth H Madden, Thomas Ulrich, Alice-Agnes Gabriel, Iris van Zelst, and Ylona van Dinther. The role of splay faults in seafloor deformation and tsunami generation during the Mw 9.1-9.3 Sumatra-Andaman earthquake. In 19th EGU General Assembly, page 16862, Vienna, Austria, 2017. [ bib ]
[2276] Elizabeth Madden, Michael Bader, Jörn Behrens, Ylona van Dinther, Alice-Agnes Gabriel, Leonhard Rannabauer, Thomas Ulrich, Carsten Uphoff, Stefan Vater, Stephanie Wollherr, and Iris van Zelst. Methods and test cases for linking physics-based earthquake and tsunami models. EarthArXiv, 2019. [ bib | DOI ]
[2277] P. Maechlin. SCEC/CME CyberShake Project. University of Southern California, Los Angeles CA. Online at epicenter.usc.edu/cmeportal/CyberShake.html, accessed 06/2006, 2006. [ bib ]
[2278] A. Maggi, E. Debayle, K. Priestley, and G. Barruol. Azimuthal anisotropy of the Pacific region. Earth Planet. Sci. Lett., 250:53-71, 2006. [ bib ]
[2279] A. Maggi, E. Debayle, K. Priestley, and G. Barruol. Multimode surface waveform tomography of the pacific ocean: a closer look at the lithospheric cooling signature. Geophys. J. Int., 166:1384-1397, 2006. [ bib ]
[2280] H. Magistrale, S. Day, R. Clayton, and R. Graves. The SCEC southern California reference three-dimensional seismic velocity model version 2. Bull. Seismol. Soc. Am., 90:65-76, 2000. [ bib ]
[2281] H. Magistrale and T. K. Rockwell. The central and southern Elsinore fault zone, southern California. Bull. Seismol. Soc. Am., 86:1793-1803, 1996. [ bib ]
[2282] M. B. Magnani, C. A. Zelt, A. Levander, and M. Schmitz. Crustal structure of the South American–Caribbean plate boundary at 67oW from controlled source seismic data. J. Geophys. Res., 114(B02312), 2009. [ bib | DOI ]
[2283] I. G. Main, P. G. Meredith, and C. A. Jones. A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics. Geophys. J. Int., 96:131-138, 1989. [ bib ]
[2284] I. G. Main, P. G. Meredith, P. R. Sammonds, and C. Jones. Influence of fractal flaw distributions on rock deformation in the brittle field. Geol. Soc. London, Spec. Pub., 54:81-96, 1990. [ bib ]
[2285] I. G. Main, P. G. Meredith, and P. R. Sammonds. Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophys., 211:233-246, 1992. [ bib ]
[2286] I. G. Main. Statistical physics, seismogenesis, and seismic hazard. Rev. Geophys., 34:433-462, 1996. [ bib ]
[2287] D. Mainprice, G. Barruol, and W. Ben Ismail. The seimic anisotropy of the Earth's mantle: From single crystal to polycrystal. In S.-i. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, editors, Earth's deep interior. Mineral physics and tomography from the atomic to the global scale, volume 117 of Geophys. Monograph, pages 237-264. American Geophysical Union, Washington DC, 2000. [ bib ]
[2288] D. Mainprice, A. Tommasi, H. Couvy, P. Cordier, and N. J J. Frost. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. Nature, 433:731-733, 2005. [ bib ]
[2289] D. Mainprice. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, volume 2, pages 437-492. Elsevier, 2007. [ bib ]
[2290] D. Mainprice and A. Nicholas. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. J. Struct. Geol., 11:175-189, 1989. [ bib ]
[2291] D. Mainprice and P. G. Silver. Interpretation of SKS-waves using samples from the subcontinental mantle. Phys. Earth Planet. Inter., 78:257-280, 1993. [ bib ]
[2292] D. Mainprice. Modelling the anisotropic seismic properties of partially molten rocks found at Mide-ocean Ridges. Adolphe Nicolas Special Volume, Tectonophys., accepted, 1996. [ bib ]
[2293] D. Mainprice. Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges. Tectonophys., 279:161-179, 1997. [ bib ]
[2294] K. Mair, K. M. Frye, and C. Marone. Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res., 107(2219), 2002. [ bib | DOI ]
[2295] K. Mair, C. Marone, and R. P. Young. Rate dependence of acoustic emissions generated during shear of simulated fault gouge. Bull. Seismol. Soc. Am., 97:1841-1849, 2007. [ bib ]
[2296] P. E. Malin, S. N. Blakeslee, M. G. Alvarez, and A. J. Martin. Microearthquake imaging of the Parkfield asperity. Science, 244:557-559, 1989. [ bib ]
[2297] A. Malinverno and W. Ryan. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics, 5:227-245, 1986. [ bib ]
[2298] C. Mallard, N. Coltice, M. Seton, R. D. Müller, and P. J. Tackley. Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 535:140-143, 2016. [ bib ]
[2299] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, 1977. [ bib ]
[2300] A. Mambole and L. Fleitout. Petrological layering induced by an endothermic phase transition in the Earth's mantle. Geophys. Res. Lett., 29(22), 2002. [ bib | DOI ]
[2301] N. J. Mancinelli, K. M. Fischer, and C. A. Dalton. A global search for the cratonic lithosphere-asthenosphere boundary. Nature Geosc., submitted, 2017. [ bib ]
[2302] K. Manduca, D. Mogk, and N. Stillings. Bringing Research On Learning to the Geosciences. Carleton College, Northfiled MN, 2004. Available online at serc.carleton.edu/files/research_on_learning/ROL0304_2004.pdf, accessed 06/2006. [ bib ]
[2303] V. Manea and M. Gurnis. Subduction zone evolution and low viscosity wedges and channels. Earth Planet. Sci. Lett., 264:22-45, 2007. [ bib ]
[2304] V. C. Manea and M. Manea. Flat-slab thermal structure and evolution beneath Central Mexico. Pure Appl. Geophys., 168:1475-1487, 2010. [ bib ]
[2305] V. C. Manea, M. Pérez-Gussinyé, and M. Manea. Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 40:35-38, 2012. [ bib ]
[2306] W. P. Manea, V. C. Leeman, T. Gerya, M. Manea, and G. Zhu. Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nature Comm., 5(5095), 2014. [ bib | DOI ]
[2307] M. Manga and R. J. O'Connell. The tectosphere and postglacial rebound. Geophys. Res. Lett., 22:1949-1952, 1995. [ bib ]
[2308] M. Manga. Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophys. Res. Lett., 23:403-406, 1996. [ bib ]
[2309] M. Manga. Interactions between mantle diapirs. Geophys. Res. Lett., 24:1871-1874, 1997. [ bib ]
[2310] A. Mangeney, F. Califano, and O. Castelnau. Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. J. Geophys. Res., 101:28189-28204, 1996. [ bib ]
[2311] Utsav Mannu, Kosuke Ueda, Sean D Willett, Taras V Gerya, and Michael Strasser. Stratigraphic signatures of forearc basin formation mechanisms. Geochem., Geophys., Geosys., 18:2388-2410, 2017. [ bib ]
[2312] X. Mao, M. Gurnis, and D. A. May. Subduction initiation with vertical lithospheric heterogeneities and new fault formation. Geophys. Res. Lett., 44:11349-11356, 2017. [ bib | DOI ]
[2313] M. Marder. Energetic developments in fracture. Nature, 381, 1996. [ bib ]
[2314] K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley & Sons, Ltd., Chichester, West Sussex, 2 edition, 1999. [ bib ]
[2315] M. Marín-Cerón. Major, trace element and multi-isotopic systematics of SW Colombian volcanic arc, northern Andes, implication for the stability of carbonate-rich sediment at subduction zone and the genesis of andesite magma. PhD thesis, Okayama University, 2007. [ bib ]
[2316] F. Marone and B. A. Romanowicz. The depth distribution of azimuthal anisotropy in the continental upper mantle. Nature, 447:198-201, 2007. [ bib ]
[2317] F. Marone, Y. Gung, and B. A. Romanowicz. Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data. Geophys. J. Int., 171:206-222, 2007. [ bib ]
[2318] C. Marone, B. M. Carpenter, and D. Schiffer. Transition from rolling to jamming in thin granular layers. Phys. Rev. Lett., 101(248001), 2008. [ bib | DOI ]
[2319] C. Marone, J. E. Vidale, and W. Ellsworth. Fault healing inferred from the time dependent variations in source properties of repeating earthquakes. Geophys. Res. Lett., 22:3095-3098, 1995. [ bib ]
[2320] C. Marone. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci., 26:643-696, 1998. [ bib ]
[2321] C. Marone. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature, 391:69-72, 1998. [ bib ]
[2322] A. M. Marotta and R. Sabadini. The style of Tyrrhenian subduction. Geophys. Res. Lett., 22:747-750, 1995. [ bib ]
[2323] A. M. Marotta and F. Mongelli. Flexure of subducted slabs. Geophys. J. Int., 132:701-711, 1998. [ bib ]
[2324] G. Marquart and H. Schmeling. Interaction of small mantle plumes with the spinel-perovskite phase boundary: implications for chemical mixing. Earth Planet. Sci. Lett., 177:241-254, 2000. [ bib ]
[2325] G. Marquart, H. Schmeling, G. Ito, and B. Schott. Conditions for plumes to penetrate the mantle phase boundaries. J. Geophys. Res., 105:5679-5693, 2000. [ bib ]
[2326] G. Marquart. On the geometry of mantle flow beneath drifting lithospheric plates. Geophys. J. Int., 144:356-372, 2001. [ bib ]
[2327] G. Marquart, H. Schmeling, and O. Čadek. Dynamic models for mantle flow and seismic anisotropy in the North Atlantic region and comparison with observations. Geochem., Geophys., Geosys., 8, 2007. [ bib | DOI ]
[2328] G. Marquart, H. Schmeling, and A. Braun. Small-scale instabilities below the cooling oceanic lithosphere. Geophys. J. Int., 138:655-666, 1999. [ bib ]
[2329] G. Marquart. FINEL: Modifizierter Finite Elemente Code von [?]. Institut für Meteorologie und Geophysik der Universität Frankfurt am Main, 1995. [ bib ]
[2330] M. Marroni, S. Monechi, N. Perilli, G. Principi, and B. Treves. Late Cretaceous flysch deposits of the Northern Apennines Italy: age of inception of orogenesis-controlled sedimentation. Cretaceous Res., 13:487-504, 1992. [ bib ]
[2331] D. Marsan. The role of small earthquakes in redistributing crustal elastic stress. Geophys. J. Int., 163:141-151, 2005. [ bib ]
[2332] S. T. Marshall, M. L. Cooke, and S. E. Owen. Interseismic deformation associated with three-dimensional faults in the Greater Los Angeles region, California. J. Geophys. Res., 114(B12403), 2009. [ bib | DOI ]
[2333] R. Martin-Short, R. M. Allen, I. D. Bastow, E. Totten, and M. A. Richards. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system. Nature Geosc., 8:965-968, 2015. [ bib ]
[2334] Z. Martinec, O. Čadek, and L. Fleitout. Can the 1D viscosity profiles inferred from postglacial rebound data be affected by lateral viscosity variations in the tectosphere? Geophys. Res. Lett., 28:4403-4406, 2001. [ bib ]
[2335] Z. Martinec, C. Matyska, O. Čadek, and P. Hrdina. The Stokes problem with 3-D Newtonian rheology in a sphericall shell. Comp. Phys. Comm., 76:63-79, 1993. [ bib ]
[2336] J. Martinod, L. Husson, P. Roperch, B. Guillaume, and N. Espurt. Horizontal subduction zones, convergence velocity and the building of the Andes. Earth Planet. Sci. Lett., 299:299-309, 2010. [ bib ]
[2337] J. Martinod and P. Davy. Periodic instabilities during compression or extension of the lithosphere. 1. Deformation modes from an analytical perturbation method. J. Geophys. Res., 97:1999-2014, 1992. [ bib ]
[2338] J. Martinod and P. Davy. Periodic instabilities during compression or extension of the lithosphere. 2. Analogue experiments. J. Geophys. Res., 99:12057-12069, 1994. [ bib ]
[2339] J. C. Marty and A. Cazenave. Regional variations in subsidence rate of oceanic plates: a global analysis. Earth Planet. Sci. Lett., 94:301-315, 1989. [ bib ]
[2340] G. Maruyama and T. Hiraga. Grain- to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate: 2. Grain boundary sliding-induced grain rotation and its role in crystallographic preferred orientation in rocks. J. Geophys. Res., 122:5916-5934, 2017. [ bib | DOI ]
[2341] W. Marzocchi and L. Sandri. A review and new insights on the estimation of the b-value and its uncertainty. Ann. Geophys., 46:1271-1282, 2009. [ bib ]
[2342] W. Marzocchi, L. Sandri, A. Heuret, and F. Funiciello. Where giant earthquakes may come. J. Geophys. Res., 121:7322-7336, 2016. [ bib | DOI ]
[2343] Cody C. Mason, James A. Spotila, Gary Axen, Rebecca J. Dorsey, Amy Luther, and Daniel F. Stockli. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System. Tectonophys., 36:2863-2881, 2017. [ bib | DOI ]
[2344] D. Massonnet, C. Rossi, M. Carmona, and F. Adragna. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364:138-142, 1993. [ bib ]
[2345] G. Masters, G. Laske, H. Bolton, and A. M. Dziewoński. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In S.-i. Karato, A. M. Forte, R. C. Liebermann, G. Masters, and L. Stixrude, editors, Earth's deep interior. Mineral physics and tomography from the atomic to the global scale, volume 117 of Geophys. Monograph, pages 63-87. American Geophysical Union, Washington DC, 2000. [ bib ]
[2346] G. Masters, T. H. Jordan, P. G. Silver, and F. Gilbert. Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 298:609-613, 1982. [ bib ]
[2347] G. Masters, S. Johnson, G. Laske, and H. Bolton. A shear-velocity model of the mantle. Phil. Trans. R. Soc. London A, 354:1385-1411, 1996. [ bib ]
[2348] G. Masters, H. Bolton, and G. Laske. Joint seismic tomography for P and S velocities: How pervasive are chemical anomalies in the mantle? (abstract). Eos Trans. AGU, 80:S14, 1999. [ bib ]
[2349] J. Masy, F. Niu, A. Levander, and M. Schmitz. Mantle flow beneath northwestern Venezuela: Seismic evidence for a deep origin of the Mérida Andes. Earth Planet. Sci. Lett., 305:396-404, 2011. [ bib ]
[2350] B. Matérn. Spatial variation, volume 36 of Lecture notes in Statistics. Springer Verlag, New York, 1986. [ bib ]
[2351] Kathryn Materna, Noel Bartlow, Aaron Wech, Charles Williams, and Roland Bürgmann. Dynamically triggered changes of plate interface coupling in Southern Cascadia. Geophys. Res. Lett., 46:12890-12899, 2019. [ bib ]
[2352] Mathworks. MATLAB product documentation. The Mathworks Inc. Online at www.mathworks.com/access/helpdesk/help/techdoc/matlab.html, accessed 06/2006, 2006. [ bib ]
[2353] M. Matsubara and K. Obada, K. Kasahara. Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography. Tectonophys., 454:86-103, 2008. [ bib ]
[2354] M. Matsu'ura and T. Sato. Loading mechanism and scaling relations of large interplate earthquakes. Tectonophys., 277:189-198, 1997. [ bib ]
[2355] M. Matsu'ura and T. Sato. A dislocation model for the earthquake cycle at convergent plate boundaries. Geophys. J. Int., 96:23-32, 1988. [ bib ]
[2356] E. Mattern, J. Matas, Y. Ricard, and J. Bass. Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys. J. Int., 160:973-990, 2005. [ bib ]
[2357] K. J. Matthews, A. J. Hale, M. Gurnis, R. D. Müller, and L. DiCaprio. Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Res., 19:372-383, 2011. [ bib ]
[2358] K. Matthews, K.T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, and R.D. Müller. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change, 146:226-250, 2016. [ bib ]
[2359] A. Mauffret, G. Pascal, A. Maillard, and C. Gorini. Tectonics and deep structure of the north-western Mediterranean basin. Mar. Preto. Geol., 12:645-666, 1995. [ bib ]
[2360] A. Mauffret and I. Contrucci. Crustal structure of the North Tyrrhenian Sea: First result of the multichannel seismic LISA cruise. In B. Durand, A. Mascle, L. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 169-193. Geological Society of London, London, 1999. [ bib ]
[2361] A. P. Mavrommatis, P. Segall, and K. M. Johnson. A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake. Geophys. Res. Lett., 41:4486-4494, 2014. [ bib ]
[2362] A. P. Mavrommatis, P. Segall, N. Uchida, and K. M. Johnson. Long-term acceleration of aseismic slip preceding the Mw 9 Tohoku-oki earthquake: Constraints from repeating earthquakes. Geophys. Res. Lett., 42:9717-9725, 2015. [ bib ]
[2363] A. P. Mavrommatis, P. Segall, and K. M. Johnson. A physical model for interseismic erosion of locked fault asperities. J. Geophys. Res., 122:8326-8346, 2017. [ bib ]
[2364] D. A. May and L. N. Moresi. Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys. Earth Planet. Inter., 171:33-47, 2008. [ bib ]
[2365] R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:459, 1976. [ bib ]
[2366] M. Maya. Catalogo de dataciones isotópicas en Colombia. Boletín Geológico Ingeominas, 32:127-188, 1992. [ bib ]
[2367] K. Mayeda, L. Malagnini, W. S. Phillips, W. R. Walter, and D. Dreger. 2-D or not 2-D, that is the question: A northern California test. Geophys. Res. Lett., 32(L12301), 2005. [ bib | DOI ]
[2368] T. Mayer-Guerr. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. PhD thesis, Universität Bonn, Bonn, Germany, 2006. [ bib ]
[2369] S. Mazzotti, A. Lambert, J. Henton, T. S. James, and N. Courtier. Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophys. Res. Lett., 38(L24311), 2011. [ bib | DOI ]
[2370] D. C. McAdoo, C. F. Martin, and P. Polouse. Seasat observations of flexure: Evidence for a strong lithosphere. Tectonophys., 116:209-222, 1985. [ bib ]
[2371] R. McCaffrey. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. J. Geophys. Res., 110(B07401), 2005. [ bib | DOI ]
[2372] S. McClusky, S. Bassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Preilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M. N. Toksoz, and G. Veis. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res., 105:5695-5719, 2000. [ bib ]
[2373] S. C. McClusky, S. C. Bjornstad, B. H. Hager, R. W. King, B. J. Meade, M. M. Miller, F. C. Monastero, and B. J. Souter. Present day kinematics of the Eastern California shear zone from a geodetically constrained block model. Geophys. Res. Lett., 28:3369-3372, 2001. [ bib ]
[2374] S. McClusky, R. Reilinger, S. Mahmoud, D. Ben Sari, and A. Tealeb. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int., 155:126-138, 2003. [ bib ]
[2375] K. A. McCormack and M. A. Hesse. Hydrologic Response to Megathrust Earthquake: A look at the 2012 Mw 7.6 Costa Rican Event (abstract). In Subduction Zone Dynamics, CIDER Summer Program, Berkeley CA, 2017. [ bib ]
[2376] W. F. McDonough and S.-s. Sun. The composition of the earth. Chemical Geology, 120:223-253, 1995. [ bib ]
[2377] T. V. McEvilly. Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion. Bull. Seismol. Soc. Am., 54:1997-2015, 1964. [ bib ]
[2378] A. McGarr. On relating apparent stress to the stress causing earthquake fault slip. J. Geophys. Res., 104:3003-3011, 1999. [ bib ]
[2379] S. McGill, S. Dergham, K. Barton, T. Berney-Ficklin, D. Grant, C. Hartling, K. Hobart, R. Minnich, M. Rodriguez, and E. Runnerstrom. Paleoseismology of the San Andreas fault at Plunge Creek, near San Bernardino, Southern California. Bull. Seismol. Soc. Am., 92:2803-2840, 2002. [ bib ]
[2380] J. T. McGill. Geologic maps of the Pacific Palisades area, Los Angeles, California. In Map I-1828, Miscellaneous Investigations Series, volume 1:4, page 800. U.S. Geological Survey, 1989. [ bib ]
[2381] S. F. McGill. Surficial offsets on the eastern Garlock fault associated with prehistoric earthquakes. J. Geophys. Res., 96:21597-21621, 1991. [ bib ]
[2382] S. F. McGill and K. E. Sieh. Holocene Slip Rate of the Central Garlock Fault in Southeastern Searles Valley. J. Geophys. Res., 98:14217-14231, 1993. [ bib ]
[2383] S. F. McGill. Preliminary slip rate and recurrence interval for the western Garlock Fault near Lone Tree Canyon, California (abstract). In The Geological Society of America, Cordilleran Section, 90th annual meeting. Abstracts with Programs, volume 26, page 72, 1994. [ bib ]
[2384] S. F. McGill and T. K. Rockwell. Ages of late holocene earthquakes on the central garlock fault near el paso peaks, california. J. Geophys. Res., 103:7265-7279, 1998. [ bib ]
[2385] N. McGlashan, L. D. Brown, and S. M. Kay. Crustal thicknesses in the Central Andes from teleseismically recorded depth phase precursors. Geophys. J. Int., 175:1013-1022, 2008. [ bib ]
[2386] Patrick J McGovern and Gerald Schubert. Thermal evolution of the earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett., 96:27-37, 1989. [ bib ]
[2387] J. J. McGuire, T. Plank, S. Barrientos, T. W. Becker, E. Brodsky, E. Cottrell, M. French, P. Fulton, J. Gomberg, S. Gulick, M. Haney, D. Melgar, S. Penniston-Dorland, D. Roman, P. Skemer, H. Tobin, I. Wada, and D. Wiens. The SZ4D Initiative: Understanding the processes that underlie subduction zone hazards in 4D. Vision document submitted to the National Science Foundation. The IRIS Consortium, 2017. 63 pp., available online at www.iris.edu/hq/files/workshops/2016/09/szo_16/sz4d.pdf, accessed 01/2020. [ bib ]
[2388] Jeffrey J. McGuire, John A. Collins, Earl Davis, Keir Becker, and Martin Heesemann. A lack of dynamic triggering of slow slip and tremor indicates that the shallow Cascadia megathrust offshore Vancouver Island is likely locked. Geophys. Res. Lett., 45:11,095-11,103, 2018. [ bib ]
[2389] D. McKenzie, J. Jackson, and K. Priestley. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett., 233:337-349, 2005. [ bib ]
[2390] D. McKenzie, M. C. Daly, and K. Priestley. The lithospheric structure of Pangea. Geology, 43:783-786, 2015. [ bib ]
[2391] D. P. McKenzie and R. L. Parker. The North Pacific; an example of tectonics on a sphere. Nature, 216:1276-1280, 1967. [ bib ]
[2392] D. P. McKenzie. The viscosity of the mantle. Geophys. J. R. Astr. Soc., 14:297-327, 1967. [ bib ]
[2393] D. P. McKenzie. Some remarks on heat flow and gravity anomalies. J. Geophys. Res., 72:6261-6273, 1967. [ bib ]
[2394] D. P. McKenzie. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astr. Soc., 18:1-32, 1969. [ bib ]
[2395] D. P. McKenzie. The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bull. Seismol. Soc. Am., 59:591-601, 1969. [ bib ]
[2396] D. P. McKenzie and J. P. Morgan. Evolution of triple junctions. Nature, pages 125-133, 1969. [ bib ]
[2397] D. P. McKenzie. Temperature and potential temperature beneath island arcs. Tectonophys., 10:357-366, 1970. [ bib ]
[2398] D. P. McKenzie and J. Brune. Melting on fault planes during large earthquakes. Geophys. J. R. Astr. Soc., 29:65-78, 1972. [ bib ]
[2399] D. P. McKenzie. The initiation of trenches: a finite amplitude instability. In M. Talwani and W. C. Pitman III, editors, Island Arcs, Deep Sea Trenches and Back-Arc basins, volume 1 of Maurice Ewing, pages 57-61. AGU, Washington DC, 1977. [ bib ]
[2400] D. P. McKenzie. Finite deformation during fluid flow. Geophys. J. R. Astr. Soc., 58:689-715, 1979. [ bib ]
[2401] D. P. McKenzie and J. Jackson. The relationship between strain rates, crustal thickening, paleomagnetism, finite strain and fault movements within a deforming zone. Earth Planet. Sci. Lett., 65:182-202, 1983. [ bib ]
[2402] D. P. McKenzie. The generation and compaction of partially molten rock. J. Petrol., 25:713-765, 1984. [ bib ]
[2403] G. C. McLeaskey and S. D. Glaser. Micromechanics of asperity rupture during laboratory stick slip experiments. Geophys. Res. Lett., 38, 2011. [ bib | DOI ]
[2404] A. K. McNamara and P. E. van Keken. Cooling of the Earth: A parameterized convection study of whole versus layered models. Geochem., Geophys., Geosys., 1, 2000. [ bib | DOI ]
[2405] A. McNamara, S.-i. Karato, and P. E. van Keken. Localization of dislocation creep in the lower mantle: implications for the origin of seismic anisotropy. Earth Planet. Sci. Lett., 191:85-99, 2001. [ bib ]
[2406] A. K. McNamara, P. E. van Keken, and S.-i. Karato. Development of anisotropic structure in the Earth's lower mantle by solid-state convection. Nature, 416:310-314, 2002. [ bib ]
[2407] A. K. McNamara, P. E. van Keken, and S.-i. Karato. Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J. Geophys. Res., 108(2230), 2003. [ bib | DOI ]
[2408] A. K. McNamara and S. Zhong. Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109, 2004. [ bib | DOI ]
[2409] A. K. McNamara and S. Zhong. The influence of thermochemical convection on the fixity of mantle plumes. Earth Planet. Sci. Lett., 222:485-500, 2004. [ bib ]
[2410] A. K. McNamara and S. Zhong. Thermochemical piles under africa and the pacific. Nature, 437:1136-1139, 2005. [ bib ]
[2411] D. E. McNamara and T. J. Owens. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases. J. Geophys. Res., 98:12003-12017, 1993. [ bib ]
[2412] D. E. McNamara, T. J. Owens, P. G. Silver, and F. T. Wu. Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res., 99:13655-13665, 1994. [ bib ]
[2413] M. McNutt and T. H. Heaton. An evaluation of the seismic-window theory for earthquake prediction. California Geology, 34:12-16, 1981. [ bib ]
[2414] M. McNutt. Superswells. Rev. Geophys., 36:211-244, 1998. [ bib ]
[2415] M. McNutt. The mantle's lava lamp. Nature, 402:739-740, 1999. [ bib ]
[2416] N. McQuarrie, J. M. Stock, C. Verdel, and B. P. Wernicke. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett., 30(2036), 2003. [ bib | DOI ]
[2417] Nadine McQuarrie and Brian P Wernicke. An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere, 1:147-172, 2005. [ bib ]
[2418] N. McQuarrie and M. Oskin. Palinspastic restoration of NAVDat and implications for the origin of magmatism in southwestern North America. J. Geophys. Res., 115(B10401), 2010. [ bib | DOI ]
[2419] N. McQuarrie and D. W. Rodgers. Subsidence of a volcanic basin by flexure and lower crustal flow: The eastern Snake River Plain. Tectonics, 17:203-220, 1998. [ bib ]
[2420] B. J. Meade, B. H. Hager, S. C. McClusky, R. E. Reilinger, S. Ergintav, O. Lenk, A. A. Barka, and H. Ozener. Estimates of seismic potential in the Marmara Sea region from block models of secular deformation constrained by Global Positioning System measurements. Bull. Seismol. Soc. Am., 92:208-215, 2002. [ bib ]
[2421] B. J. Meade, B. H. Hager, and R. W. King. Block models of present day deformation in Southern California constrained by geodetic measurements (abstract). 2002 SCEC Annual Meeting, Oxnard CA, page 96, September 2002. [ bib ]
[2422] B. J. Meade and B. H. Hager. Viscoelastic deformation for a clustered earthquake cycle. Geophys. Res. Lett., 31(L10610), 2004. [ bib | DOI ]
[2423] B. J. Meade and B. H. Hager. Block models of crustal motion in southern California constrained by GPS measurements. J. Geophys. Res., 110(B03403), 2005. [ bib | DOI ]
[2424] B. J. Meade and B. H. Hager. Spatial localization of moment deficits in southern California. J. Geophys. Res., 110, 2005. [ bib | DOI ]
[2425] B. J. Meade and C. P. Conrad. Andean growth and the deceleration of South American subduction: Time evolution of a coupled orogen-subduction system. Earth Planet. Sci. Lett., 275:93-101, 2008. [ bib ]
[2426] C. Meade, P. G. Silver, and S. Kaneshima. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett., 22:1293-1296, 1995. [ bib ]
[2427] C. Mégnin and B. A. Romanowicz. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms. Geophys. J. Int., 143:709-728, 2000. [ bib ]
[2428] C. Mégnin, H.-P. Bunge, B. A. Romanowicz, and M. A. Richards. Imaging 3-D spherical convection models: what can seismic tomography tell us about mantle dynamics? Geophys. Res. Lett., 24:1299-1302, 1997. [ bib ]
[2429] C. Mégnin and B. A. Romanowicz. The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography. Geophys. J. Int., 138:366-380, 1999. [ bib ]
[2430] L. Mehl, B. R. Hacker, G. Hirth, and P. B. Kelemen. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res., 108(2375), 2003. [ bib | DOI ]
[2431] A. P. Mehta, A. C. Mills, K. A. Dahmen, and J. P. Sethna. Universal pulse shape scaling function and exponents: Critical test for avalanche models applied to Barkhausen noise. Phys. Rev. E, 65:046139, 2002. [ bib ]
[2432] A. P. Mehta, K. A. Dahmen, and Y. Ben-Zion. Universal mean moment rate profiles of earthquake ruptures. Phys. Rev. E, 73:056104, 2006. [ bib ]
[2433] S. Mei, A. M. Suzuki, D. L. Kohlstedt, N. A. Dixon, and W. B. Durham. Experimental constraints on the strength of lithospheric mantle. J. Geophys. Res., 115(B08204), 2010. [ bib | DOI ]
[2434] T. Meier, K. Dietrich, B. Stöckhert, and H.-P. Harjes. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int., 156:45-58, 2004. [ bib ]
[2435] U. Meier, J. Trampert, and A. Curtis. Global variations of temperature and water content in the mantle transition zone from higher mode surface waves. Earth Planet. Sci. Lett., 282:91-101, 2009. [ bib ]
[2436] T Meier, RA Soomro, L Viereck, S Lebedev, JH Behrmann, C Weidle, L Cristiano, and R Hanemann. Mesozoic and Cenozoic evolution of the Central European lithosphere. Tectonophys., 692:58-73, 2016. [ bib ]
[2437] M. van der Meijde, S. van der Lee, and D. Giardini. Seismic discontinuities in the Mediterranean mantle. Phys. Earth Planet. Inter., 148:233-250, 2005. [ bib ]
[2438] P. T. Meijer and M. J. R. Wortel. The dynamics of motion of the South American plate. J. Geophys. Res., 97:11915-11931, 1992. [ bib ]
[2439] P. T. Meijer and M. J. R. Wortel. Cenozoic dynamics of the African plate with emphasis on the Africa-Eurasia collision. J. Geophys. Res., 104:7405-7418, 1999. [ bib ]
[2440] R. Meissner, W. D. Mooney, and I. Artemieva. Seismic anisotropy and mantle creep in young orogens. Geophys. J. Int., 149:1-14, 2002. [ bib ]
[2441] R. Meissner, W. Rabbel, and H. Kern. Seismic lamination and anisotropy of the lower continental crust. Tectonophys., 416:81-99, 2006. [ bib ]
[2442] R. Meissner. The Continental Crust, volume 34 of International Geophysics Series. Academic Press, 1986. [ bib ]
[2443] T. Melbourne and D. Helmberger. Mantle control of plate boundary deformation. Geophys. Res. Lett., 28:4003-4006, 2001. [ bib ]
[2444] Diego Melgar, Wenyuan Fan, Sebastian Riquelme, Jianghui Geng, Cunren Liang, Mauricio Fuentes, Gabriel Vargas, Richard M Allen, Peter M Shearer, and Eric J Fielding. Slip segmentation and slow rupture to the trench during the 2015, Mw8. 3 Illapel, Chile earthquake. Geophys. Res. Lett., 43:961-966, 2016. [ bib ]
[2445] Diego Melgar and Gavin P Hayes. Systematic observations of the slip pulse properties of large earthquake ruptures. Geophys. Res. Lett., 44:9691-9698, 2017. [ bib ]
[2446] Diego Melgar, Xyoli Pérez-Campos, Leonardo Ramirez-Guzman, Zack Spica, Victor Hugo Espíndola, William C Hammond, and Enrique Cabral-Cano. Bend faulting at the edge of a flat slab: The 2017 Mw7. 1 Puebla-Morelos, Mexico earthquake. Geophys. Res. Lett., 45:2633-2641, 2018. [ bib ]
[2447] Daniel Melnick, Marcos Moreno, Javier Quinteros, Juan Carlos Baez, Zhiguo Deng, Shaoyang Li, and Onno Oncken. The super-interseismic phase of the megathrust earthquake cycle in Chile. Geophys. Res. Lett., 44:784-791, 2017. [ bib ]
[2448] H. J. Melosh and A. Raefsky. The dynamical origin of subduction zone topography. Geophys. J. R. Astr. Soc., 60:333-354, 1980. [ bib ]
[2449] H. J. Melosh and A. Raefsky. A simple and efficient method for introducing faults into finite element computations. Bull. Seismol. Soc. Am., 71:1391-1400, 1981. [ bib ]
[2450] H. J. Melosh and C. A. Williams. Mechanics of graben formation in crustal rocks: A finite element analysis. J. Geophys. Res., 94:13961-13973, Oktober 1989. [ bib ]
[2451] W. Melson, J. Allan, D. Jerez, J. Nellen, M. L. Calvache, S. Williams, J. Fournelle, and M. Perfit. Water content, temperatures and diversity of the magmas of the catastrophic eruption of Nevado del Ruiz, Colombia,. J. Volcanol. Geotherm. Res., 41:97-126, 1985. [ bib ]
[2452] MELT team. Imaging the deep seismic structure beneath a Mid-Ocean ridge: The MELT experiment. Science, 280:215-1217, 1998. [ bib ]
[2453] A. Meltzer and N. Christensen. Nanga parbat crustal anisotropy: Implications for interpretation of crustal velocity structure and shear-wave splitting. Geophys. Res. Lett., 28(10):2129-2132, 2001. [ bib ]
[2454] W. Menke and V. Levin. The cross-convolution method for interpreting SKS splitting observations, with application to one and two layer anisotropic Earth models. Geophys. J. Int., 154:379-392, 2003. [ bib ]
[2455] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Matlab Edition. Academic Press, 2012. [ bib ]
[2456] W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Revised Edition. Academic Press, 1989. [ bib ]
[2457] M. J. Menne, I. Durre, R. S. Vose, R. E. Gleason, and T. G. Houston. An overview of the global historical climatology network-daily database. J. Atmosph. Ocean. Tech., 29:897-910, 2012. [ bib ]
[2458] P. G. Meredith, I. G. Main, and C. Jones. Temporal variations in seismicity during quasi-static and dynamic rock failure. Tectonophys., 175:249-268, 1990. [ bib ]
[2459] A. S. Meriaux, F. J. Ryerson, P. Tapponnier, J. van der Woerd, R. C. Finkel, X. W. Xu, Z. Q. Xu, and M. W. Caffee. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. J. Geophys. Res., 109(B06401), 2004. [ bib | DOI ]
[2460] A. S. Meriaux, K. Sieh, R. Finkel, C. Rubin, M. Taylor, A. S. Meltzer, , and F. Ryerson. Kinematic behavior of southern Alaska constrained by westward-decreasing post-glacial slip-rates on the Denali fault, Alaska. J. Geophys. Res., 114(B03404), 2009. [ bib | DOI ]
[2461] C.A. Mériaux, J. C. Duarte, W. P. Schellart, and A.-S. Mériaux. A two-way interaction between the Hainan plume and the Manila subduction zone. Geophys. Res. Lett., 42:5796-5802, 2015. [ bib | DOI ]
[2462] P. Merifield and T. R. Rockwell. A sliprate... Eng. Geol. Geotech. Eng., 27:1-21, 1991. [ bib ]
[2463] S. Merkel, A. K. McNamara, A. Kubo, S. Speziale, L. Miyagi, Y. Meng, T. S. Duffy, and H.-R. Wenk. Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy. Science, 316(5832):1729-32, 2007. [ bib ]
[2464] J. E. Meulenkamp, M. Kovac, and I. Cicha. On late Oligocene to Pliocene depocentre migrations and the evolution of the Carpathian-Pannonian system. Tectonophys., 266:301-317, 1995. [ bib ]
[2465] A. A. Meyerhoff. Arthur Holmes: originator of spreading ocean floor hypothesis. J. Geophys. Res., 73:6563-6565, 1969. [ bib ]
[2466] A. J. Michael. Determination of stress from slip data; faults and folds. J. Geophys. Res., 89:11517-11526, 1984. [ bib ]
[2467] A. J. Michael. Use of focal mechanisms to determine stress; a control study. J. Geophys. Res., 92:357-368, 1987. [ bib ]
[2468] P. Mihálffy, B. Steinberger, and H. Schmeling. Plume-ridge interaction in the North Atlantic influenced by large-scale mantle flow. DGG Tagung Berlin, Abstracts, 2004. [ bib ]
[2469] P. Mihálffy, B. Steinberger, and H. Schmeling. The effect of the large-scale mantle flow field on the Iceland hotspot track. Tectonophys., 447:5-18, 2008. [ bib ]
[2470] K. G. Miller, M. A Kominz, J. V. Browning, J. D. Wright, G. S. Mountain, M. E. Katz, P. J. Sugarman, B. S. Cramer, N. Christie-Blick, and S. F. Pekar. The Phanerozoic record of global sea-level change. Science, 310:1293-1298, 2005. [ bib ]
[2471] M. S. Miller, A. Gorbatov, and B. L. N. Kennett. Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: Evidence from tomography using 3D ray tracing inversion techniques. Earth Planet. Sci. Lett., 235:331-342, 2005. [ bib ]
[2472] M. S. Miller, A. Gorbatov, and B. L. N. Kennett. Three-dimensional visualization of a near-vertical slab tear beneath the southern mariana arc. Geochem., Geophys., Geosys., 7:Q06012, 2006. [ bib | DOI ]
[2473] M. S. Miller, B. L. N. Kennett, and V. G. Toy. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. J. Geophys. Res., 111(B02401), 2006. [ bib | DOI ]
[2474] M. S. Miller, A. Levander, Y. Xu, M. Jiang, and M. Collier. SdP receiver function images of the lithosphere-asthenosphere boundary beneath the Western U.S using USArray data. Eos Trans. AGU, 89(53):U43B-0061, 2008. [ bib ]
[2475] M. S. Miller and F. Niu. Bulldozing the core-mantle boundary: localized seismic scatterers beneath the Caribbean Sea. Phys. Earth Planet. Inter., 170:89-94, 2008. [ bib ]
[2476] M. S. Miller, A. Levander, F. Niu, and A. Li. Upper mantle structure beneath the Caribbean-South American plate boundary from surface wave tomography. J. Geophys. Res., 114(B01312), 2009. [ bib | DOI ]
[2477] M. S. Miller and A. Levander. Receiver function images of the Western US Lithosphere. EarthScope OnSite, pages 2-3, 2009. [ bib ]
[2478] R. B. Miller, S. R. Paterson, and J. P. Matzel. Plutonism at different crustal levels: insights from the ~5-40 km (paleodepth) North Cascades crustal section, Washington. Geol. Soc. Am. Spec. Pap., 456:125-149, 2009. [ bib ]
[2479] M. S. Miller, A. Allam, L. A. Alpert, and T. W. Becker. Mantle structure and dynamics beneath the Western Mediterranean constrained by seismic anisotropy and global flow models (abstract). EGU General Assembly, Vienna Austria, EGU2011-8902, 2011. [ bib ]
[2480] M. S. Miller and T. W. Becker. Mantle flow deflected by interactions between subducted slabs and cratonic keels. Nat. Geosc., 5:726-730, 2012. [ bib ]
[2481] M. S. Miller, A. A. Allam, T. W. Becker, J. Di Leo, and J. Wookey. Constraints on the geodynamic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis. Earth Planet. Sci. Lett., 375:234-243, 2013. [ bib ]
[2482] M. S. Miller and T. W. Becker. Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains. Geology, 42:35-38, 2014. [ bib ]
[2483] M. S. Miller, P. Zhang, and J.F. Dolan. Moho structure across the San Jacinto fault zone: insights into strain localization at depth. Lithosph., 6:43-47, 2014. [ bib ]
[2484] E.L. Miller, P.B. Gans, and J. Garing. The snake range décollement: an exhumed mid-tertiary ductile-brittle transition. Tectonics, 2:239-263, 1983. [ bib ]
[2485] B. Miller, C. O'Hern, and R. P. Behringer. stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett., 77:3110-3113, 1996. [ bib ]
[2486] G. A. Milne, J. L. Davis, J. X. Mitrovica, H.-G. Scherneck, J. M. Johansson, M. Vermeer, and H. Koivula. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science, 291:2381-2385, 2001. [ bib ]
[2487] K. Milner, T. W. Becker, L. Boschi, J. Sain, D. Schorlemmer, and H. Waterhouse. The Solid Earth Research and Teaching Environment: a new software framework to share research tools in the classroom and across disciplines. Eos Trans. AGU, 90(12):104, 2009. [ bib ]
[2488] Shohei Minato, Takeshi Tsuji, Shiro Ohmi, and Toshifumi Matsuoka. Monitoring seismic velocity change caused by the 2011 Tohoku-oki earthquake using ambient noise records. Geophys. Res. Lett., 39(9), 2012. [ bib ]
[2489] J. B. Minster and T. H. Jordan. Present-day plate motions. J. Geophys. Res., 83:5331-5354, 1978. [ bib ]
[2490] J. B. Minster and T. H. Jordan. Vector constraints on western U.S. deformation from space geodesy, neotectonics and plate motions. J. Geophys. Res., 92:4798-4804, 1987. [ bib ]
[2491] J. X. Mitrovica and A. M. Forte. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225:177-189, 2004. [ bib ]
[2492] J. X. Mitrovica and G. T. Jarvis. Surface deflections due to transient subduction in a convecting mantle. Tectonophys., 120:211-237, 1985. [ bib ]
[2493] J. X. Mitrovica, C. Beaumont, and G. T. Jarvis. Tilting of continental interiors by the dynamical effects of subduction. Tectonophys., 8:1079-1094, 1989. [ bib ]
[2494] J. X. Mitrovica. [1523] revisited. J. Geophys. Res., 101:555-569, 1996. [ bib ]
[2495] J. X. Mitrovica and A. M. Forte. Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables. J. Geophys. Res., 102:2751-2769, 1997. [ bib ]
[2496] S. Miyazaki, P. Segall, J. Fukuda, and T. Kato. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophys. Res. Lett., 31(L06623), 2004. [ bib | DOI ]
[2497] T. Miyazaki, K. Sueyoshi, and T. Hiraga. Olivine crystals align during diffusion creep of Earth's upper mantle. Nature, 502:321-327, 2013. [ bib ]
[2498] T. Mizukami, S. R. Wallis, and J. Yamamoto. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427:432-436, 2004. [ bib ]
[2499] E. Mochizuki. The free oscillations of an anisotropic and heterogeneous earth. Geophys. J. R. Astr. Soc., 86:167-176, 1986. [ bib ]
[2500] P. Mozco, J. Kristek, and L. Halada. The finite-difference method for seismologists. An introduction. Comenius University, Bratislava, 2004. Online at www.spice-rtn.org/events/workshops/venice2004/downloads/spicefdmcourse.tgz. [ bib ]
[2501] K. Mogi. Experimental rock mechanics. Taylor & Francis, 2007. [ bib ]
[2502] K. Mogi. Seismicity in western Japan and long-term earthquake forecasting. In D. W. Simpson and P. G. Richards, editors, Earthquake prediction. American Geophysical Union, 1982. [ bib ]
[2503] R. W. Mogk. Bridges: Connecting research and education in the earth system sciences. Recommendations from the pre-planning committee of the “Geoscience Education in the Next Millennium” meeting at the National Science Foundation. National Science Foundation, Washington DC. Online at serc.carleton.edu/research_education/bridges.html, accessed 06/2006, 2000. [ bib ]
[2504] G. M. Molchan and Y. Y. Kagan. Earthquake prediction and its optimization. J. Geophys. Res., 97:4823-4838, 1992. [ bib ]
[2505] P. Molnar and C. H. Jones. A test of laboratory based rheological parameters of olivine from an analysis of late Cenozoic convective removal of mantle lithosphere beneath the Sierra Nevada, California, USA. Geophys. J. Int., 156:555-564, 2004. [ bib ]
[2506] P. Molnar and G. A. Houseman. The effects of buoyant crust on the gravitational instability of thickened mantle lithosphere at zones of intracontinental convergence. Geophys. J. Int., 158:1134-1150, 2004. [ bib ]
[2507] P. Molnar, P. C. England, and C. H. Jones. Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res., 120:1932-1957, 2015. [ bib | DOI ]
[2508] P. Molnar and C. H. Jones. A test of laboratory based rheological parameters of olivine from an analysis of late cenozoic convective removal of mantle lithosphere beneath the sierra nevada, california, usa. Geophys. J. Int., 156:555-564, 2004. [ bib ]
[2509] P. Molnar and L. Sykes. Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity. Geol. Soc. Am. Bull., 80:1639-1684, 1969. [ bib ]
[2510] P. Molnar and P. Tapponnier. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189:419-426, 1975. [ bib ]
[2511] P. Molnar and T. Atwater. Interarc spreading and cordillera tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci. Lett., 41:330-340, 1978. [ bib ]
[2512] P. Molnar and J. Stock. Relative motions of hotspots in the Pacific, Atlantic, and Indian Oceans since Late Cretaceous time. Nature, 327:587-591, 1987. [ bib ]
[2513] P. Molnar. Continental tectonics in the aftermath of plate tectonics. Nature, 335:131-137, 1988. [ bib ]
[2514] P. Molnar and P. England. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346:29-34, 1990. [ bib ]
[2515] P. Molnar and P. C. England. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet. Sci. Lett., 131:57-70, 1995. [ bib ]
[2516] P. Molnar, G. A. Houseman, and C. P. Conrad. Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys. J. Int., 133:568-584, 1998. [ bib ]
[2517] P. Molnar, H. J. Anderson, E. Audoine, D. Eberhart-Phillips, K. R. Gledhill, E. R. Klosko, T. V. McEvilly, D. Okaya, M. K. Savage, T. Stern, and F. T. Wu. Continuous deformation versus faulting through the continental lithosphere of New Zealand. Science, 286:516-519, 1999. [ bib ]
[2518] C. Monaco and L. Tortorici. Tectonic role of ophiolite-bearing terranes in the development of the Southern Apennines orogenic belt. Terra Nova, 7:153-160, 1995. [ bib ]
[2519] P. Mondal and M. D. Long. A model space search approach to finite-frequency SKS splitting intensity tomography in a reduced parameter space. Geophys. J. Int., 217:238-256, 2019. [ bib ]
[2520] P. Monié, L. Jolivet, C. Brunet, R. L. Torres-Roldan, R. Caby, B. Goffé, and R. Dubois. Cooling paths of metamorphic rocks in the western Mediterranean region and tectonic implications. In The Mediterranean basins: Tertiary extension within the alpine orogen. An international workshop. Abstracts, Cergy-Pentoise, 1996. Université Cergy-Pentoise. [ bib ]
[2521] G. Monsalve, A. Sheehan, V. Schulte-Pelkum, S. Rajaure, M. R. Pandey, and F. Wu. Seismicity and one-dimensional velocity structure of the Himalayan collision zone: Earthquakes in the crust and upper mantle. J. Geophys. Res., 111(B10301), 2006. [ bib | DOI ]
[2522] G. Monsalve. Deformation and seismic structure of the upper lithosphere beneath the Himalayan collision. PhD thesis, University of Colorado at Boulder, 2007. [ bib ]
[2523] G. A. Monsalve, A. Sheehan, C. Rowe, and S. Rajaure. Seismic structure of the crust and upper mantle beneath the Himalayas: Evidence for eclogitizaton of lower crustal rocks in the Indian Plate. J. Geophys. Res., 113(B08315), 2008. [ bib | DOI ]
[2524] M. Monsalve, P. J. McGovern, and A. Sheehan. Mantle fault zones beneath the Himalayan Collision: Flexure of the continental lithosphere. Tectonophys., 477:66-76, 2009. [ bib ]
[2525] M. L. Monsalve, A. M. Correa, and M. Arcila. Firma adakitica en los productos recientes de los volcanoes Nevado del Huila y puracé. in prep., 2011. [ bib ]
[2526] J.-P. Montagner and L. Guillot. Seismic anisotropy in the Earth's mantle. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 217-253, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[2527] J.-P. Montagner, D.-A. Griot-Pommera, and J. Lavé. How to relate body wave and surface wave anisotropy? J. Geophys. Res., 105:19015-19027, 2000. [ bib ]
[2528] J.-P. Montagner. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet. Sci. Lett., 202:263-274, 2002. [ bib ]
[2529] J.-P. Montagner. Upper mantle structure: Global isotropic and anisotropic elastic tomography. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, volume 1, pages 559-589. Elsevier, 2007. [ bib ]
[2530] J.-P. Montagner and D. L. Anderson. The Pacific Megagash: A future plate boundary? In G. R. Foulger, editor, D. L. Anderson Honor Volume, volume 514 of GSA Spec. Papers. Geol. Soc. Amer., 2015. [ bib | DOI ]
[2531] J.-P. Montagner and H.-C. Nataf. A simple method for inverting the azimuthal anisotropy of surface waves. J. Geophys. Res., 91:511-520, 1986. [ bib ]
[2532] J.-P. Montagner and H. C. Nataf. Vectorial tomography-I. Theory. Geophys. J., 94:295-307, 1988. [ bib ]
[2533] J.-P. Montagner and N. Jobert. Vectorial tomography; II. application to the Indian Ocean. Geophys. J. Int., 94:309-344, 1988. [ bib ]
[2534] J.-P. Montagner and D. L. Anderson. Petrological constraints on seismic anisotropy. Phys. Earth Planet. Inter., 54:82-105, 1989. [ bib ]
[2535] J.-P. Montagner and T. Tanimoto. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J. Geophys. Res., 95:4797-4819, 1990. [ bib ]
[2536] J.-P. Montagner and T. Tanimoto. Global upper mantle tomography of seismic velocities and anisotropies. J. Geophys. Res., 96:20337-20351, 1991. [ bib ]
[2537] J.-P. Montagner. What can seismology tell us about mantle convection? Rev. Geophys., 32:115-137, 1994. [ bib ]
[2538] J. P. Montagner and B. L. N. Kennett. How to reconcile body-wave and normal-mode reference Earth models? Geophys. J. Int., 125:229-248, 1995. [ bib ]
[2539] J.-P. Montagner. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers. Pure Appl. Geophys., 151:223-256, 1998. [ bib ]
[2540] V. Monteiller and S. Chevrot. High-resolution imaging of the deep anisotropic structure of the San Andreas Fault system beneath southern California. Geophys. J. Int., 182:418-446, 2011. [ bib ]
[2541] V. Monteiller and S. Chevrot. How to make robust splitting measurements for single-station analysis and three-dimensional imaging of seismic anisotropy. Geophys. J. Int., 182:311-328, 2010. [ bib ]
[2542] R. Montelli, G. Nolet, F. A. Dahlen, G. Masters, R. D. Engdahl, and S.-H. Hung. Finite frequency tomography reveals a variety of plumes in the mantle. Science, 303:338-343, 2004. [ bib ]
[2543] R. Montelli, G. Nolet, G. Masters, F. A. Dahlen, G. Masters, and S.-H. Hung. Global P and PP traveltime tomography: rays versus waves. Geophys. J. Int., 158:637-654, 2004. [ bib ]
[2544] R. Montelli, G. Nolet, F. A. Dahlen, and G. Masters. A catalog of deep mantle plumes: New results from finite-frequency tomography. Geochem., Geophys., Geosys., 7(Q11007), 2006. [ bib ]
[2545] L. G. J. Montési and G. Hirth. Grain size evolution and the rheology of ductile shear zones: from laboratory experiments to postseismic creep. Earth Planet. Sci. Lett., 211:97-110, 2003. [ bib ]
[2546] L. G. J. Montési. Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol., 50:254-266, 2013. [ bib ]
[2547] L.G.J. Montesi and M. T. Zuber. Spacing of faults at the scale of the lithosphere and localization instability: 1. Theory. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[2548] L.G.J. Montesi and M. T. Zuber. Spacing of faults at the scale of the lithosphere and localization instability. 2: Application to the Central Indian Basin. J. Geophys. Res., 108, 2003. [ bib | DOI ]
[2549] E. K. Montgomery-Brown, C. W. Wicks, P. F. Cervelli, J. O. Langbein, J. L. Svarc, D. R. Shelly, D. P. Hill, and M. Lisowski. Renewed inflation of Long Valley Caldera, California (2011 to 2014). Geophys. Res. Lett., 42:5250-5257, 2015. [ bib | DOI ]
[2550] W. D. Mooney, G. Laske, and G. Masters. CRUST 5.1: a global crustal model at 5 degrees × 5 degrees. J. Geophys. Res., 103:727-747, 1998. [ bib ]
[2551] M. M. Moore, E. J. Garnero, T. Lay, and Q. Williams. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. J. Geophys. Res., 103, 2004. [ bib | DOI ]
[2552] J. C. Moore, C. Rowe, and F. Meneghini. How acretionary prisms elucidate seismogenesis in subduction zones. In T. H. Dixon and J. C. Moore, editors, The seismogenic zone of subduction thrust faults, pages 288-315. Columbia University Press, New York, 2007. [ bib ]
[2553] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8), 1965. [ bib ]
[2554] W. B. Moore, G. Schubert, and P. Tackley. Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science, 279:1008-1011, 1998. [ bib ]
[2555] E. Moores. Pre-1 ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. GSA Bull., 114:80-95, 2002. [ bib ]
[2556] A. Mora, M. Parra, M. R. Strecker, A. Kammer, C. Dimaté, and F. Rodriguez. Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 2006. [ bib | DOI ]
[2557] A. Mora, M. Parra, M. R. Strecker, E. R. Sobel, H. Hooghiemstra, C. Torres, and J. V. Jaramillo. Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. GSA Bull., 120:930-949, 2008. [ bib ]
[2558] A. Mora, B. K Horton, A. Mesa, J. Rubiano, R. A. Ketcham, M. Parra, V. Blanco, D. Garcia, and D. F. Stockli. Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: Implications for petroleum systems. Am. Assoc. Petro. Geol. Bull., 94:1543-1580, 2010. [ bib ]
[2559] A. Mora, M. Parra, M. R. Strecker, E. R. Sobel, G. Zeilinger, and C. Jaramillo. The eastern foothills of the Eastern Cordillera of Colombia: An example of multiple factors controlling structural styles and active tectonics. Geol. Soc. Am. Bull., 122:1846-1864, 2010. [ bib ]
[2560] P. Mora and D. Place. Simulation of the frictional stick-slip instability. Pure Appl. Geophys., 143:61-87, 1994. [ bib ]
[2561] P. Mora and D. Place. Numerical simulation of earthquake faults with gouge: toward a comprehensive explanation for the heat flow paradox. J. Geophys. Res., 103:21067-21089, 1998. [ bib ]
[2562] A. Mordret, M. Landès, N.M. Shapiro, S.C. Singh, P. Roux, and O.I. Barkved. Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophys. J. Int., 193:1627-1643, 2013. [ bib ]
[2563] M. G. Moreau, J. Y. Berthou, and J.-A. Malod. New paleomagnetic Mesozoic data from the Algarve (Portugal): fast rotation of Iberia between the Hauterivian and the Aptian. Earth Planet. Sci. Lett., 146:686-701, 1997. [ bib ]
[2564] A. Morelli, A. M. Dziewoński, and J. H. Woodhouse. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett., 13:1545-1548, 1986. [ bib ]
[2565] L. N. Moresi, F. Dufour, and H. B. Mühlhaus. Mantle convection modeling with viscoelastic/brittle lithosphere: numerical modeling and plate tectonic modeling. Pure Appl. Geophys., 159:2335-2356, 2002. [ bib ]
[2566] L. N. Moresi, F. Dufour, and H.-B. Mühlhaus. A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J. Comp.