[1] B.T. Aagaard, M.G. Knepley, and C.A. Williams. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation. J. Geophys. Res.: Sol. Earth, 118:3059--3079, 2013. [ bib ]
[2] Abaqus. Software product, online at http://www.3ds.com/products-services/simulia/products/abaqus/, accessed 11/2016, 2016. [ bib ]
[3] M. R. Abbassi and N. S. Mancktelow. Single layer buckle folding in nonlinear materials: 1. experimental-study of fold development from an isolated initial perturbation. J. Struc. Geology, 14:85--104, 1992. [ bib ]
[4] E. Abbate. Pre-orogenic tectonics and metamorphism in western Tethys Ophiolites. Ofioliti, 9:245--278, 1984. [ bib ]
[5] S. Abe and K. Mair. Grain fracture in 3D numerical simulations of granular shear. Geophys. Res. Lett., 32(L05305), 2005. [ bib | DOI ]
[6] Rachel E Abercrombie and James R Rice. Can observations of earthquake scaling constrain slip weakening? Geophys. J. Int., 162(2):406--424, 2005. [ bib ]
[7] R. E. Abercrombie. Resolution and uncertainties in estimates of earthquake stress drop and energy release. Phil. Trans. R. Soc. A, 379(20200131), 2021. [ bib | DOI ]
[8] Rachel E Abercrombie, Daniel T Trugman, Peter M Shearer, Xiaowei Chen, Jiewen Zhang, Colin N Pennington, Jeanne L Hardebeck, Thomas HW Goebel, and Christine J Ruhl. Does earthquake stress drop increase with depth in the crust? J. Geophys. Res.: Sol. Earth, 126(10):e2021JB022314, 2021. [ bib ]
[9] Rachel Abercrombie and Peter Leary. Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys. Res. Lett., 20:1511--1514, 1993. [ bib ]
[10] Rachel E Abercrombie. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. J. Geophys. Res.: Sol. Earth, 100:24015--24036, 1995. [ bib ]
[11] R. E. Abercrombie. The magnitude-frequency distribution of earthquakes recorded with deep seismometers at Cajon Pass, southern california. Tectonophys., 261:1--7, 1996. [ bib ]
[12] G. A. Abers. Hydrated subducted crust at 100-250 km depth. Earth Planet. Sci. Lett., 176:323--330, 2000. [ bib ]
[13] G. A. Abers and J. W. Gephart. Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California. J. Geophys. Res.: Sol. Earth, 106:26523--26540, 2001. [ bib ]
[14] G. A. Abers, T. Plank, and B. R. Hacker. The wet Nicaragua slab. Geophys. Res. Lett., 30(L1098), 2003. [ bib | DOI ]
[15] Geoffrey A Abers. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys. Earth Planet. Inter., 149:7--29, 2005. [ bib ]
[16] G.A. Abers, P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik. The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet. Sci. Lett., 241:387--397, 2006. [ bib ]
[17] G. A. Abers, P. E. van Keken, and B. R. Hacker. The cold and relatively dry nature of mantle forearcs in subduction zones. Nature Geosc., 10:333--337, 2017. [ bib ]
[18] Niloufar Abolfathian, Patricia Martínez-Garzón, and Yehuda Ben-Zion. Variations of stress parameters in the Southern California plate boundary around the South Central Transverse Ranges. J. Geophys. Res.: Sol. Earth, 125:e2020JB019482, 2020. [ bib ]
[19] Milton Abramowitz and Irene A Stegun, editors. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of Applied Mathematics Series. National Bureau of Standards, Washington DC, 5 edition, 1964. [ bib ]
[20] M. Abramowitz and I. A. Stegun. Handbook of Mathematical functions. Dover Publications, Inc., 1972. [ bib ]
[21] E. H. Abramson, J. M. Brown, L. J. Slutsky, and J. Zaug. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res.: Sol. Earth, 102:12253--12263, 1997. [ bib ]
[22] D. L. Abt and K. M. Fischer. Resolving three-dimensional anisotropic structure with shear-wave splitting tomography. Geophys. J. Int., 173:859--886, 2008. [ bib ]
[23] D. L. Abt, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. González. Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. Geochem., Geophys., Geosys., 10(Q05S15), 2009. [ bib | DOI ]
[24] D. Abt, K. M. Fischer, S. W. French, H. A. Ford, H. Yuan, and B. A. Romanowicz. North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J. Geophys. Res.: Sol. Earth, 115(B09301), 2010. [ bib | DOI ]
[25] A. Acrivos. Heat transfer at high Péclet number from a small sphere freely rotating in a simple shear field. J. Fluid. Mech., 46:233--240, 1971. [ bib ]
[26] J. M.-C. Adam and S. Lebedev. Azimuthal anisotropy beneath southern Africa from very broad-band surface-wave dispersion measurements. Geophys. J. Int., 191:155--174, 2012. [ bib ]
[27] D. C. Adams and E. D. Humphreys. New constraints on the properties of the Yellowstone mantle plume from P and S wave attenuation tomography. J. Geophys. Res.: Sol. Earth, 115(B12311), 2010. [ bib | DOI ]
[28] T. Affolter and J.-P. Gratier. Map view retrodeformation of an arcuate fold-and-thrust belt: The Jura case. J. Geophys. Res.: Sol. Earth, 109:doi:10.1029/2002JB002270, 2004. [ bib ]
[29] J. C. Afonso, G. Ranalli, M. Fernandez, W. L. Griffin, S. Y. O'Reilly, and U. Faul. On the Vp/Vs–Mg# correlation in mantle peridotites: implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet. Sci. Lett., 289:606--618, 2010. [ bib ]
[30] P. Agard, P. Yamato, L. Jolivet, and E. Burov. Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Sci. Rev., 92:53--79, 2009. [ bib ]
[31] P. Agard, A. Plunder, S. Angiboust, G. Bonnet, and J. Ruh. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos, 320:537--566, 2018. [ bib ]
[32] R. Agata, S. D. Barbot, K. Fujita, M. Hyodo, T. Iinuma, R. Nakata, T. Ichimura, and Takane Hori. Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nature Comm., 10:1--11, 2019. [ bib ]
[33] C. B. Agee. Phase transformations and seismic structure in the upper mantle and transition zone. In R. J. Hemley, editor, Ultrahigh-Pressure Mineralogy. Physics and Chemistry of the Earth's Deep Interior, volume 37 of Reviews in Mineralogy, pages 165--203. Mineralogical Society of America, Washington DC, 1998. [ bib ]
[34] M. R. Agius and S. Lebedev. Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophys. J. Int., 199:1395--1415, 2014. [ bib ]
[35] M. R. Agius and S. Lebedev. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophys. J. Int., 210:1823--1844, 2017. [ bib ]
[36] D. C. Agnew. SPOTL: Some programs for ocean-tide loading. Technical report, Scripps Institution of Oceanography, 2012. [ bib ]
[37] D. C. Agnew. Strainmeters and tiltmeters. Rev. Geophys., 24:579--624, 1986. [ bib ]
[38] Roberto Agrusta, Jeroen Van Hunen, and Saskia Goes. The effect of metastable pyroxene on the slab dynamics. Geophys. Res. Lett., 41:8800--8808, 2014. [ bib ]
[39] R. Agrusta, S. Goes, and J. van Hunen. Subducting-slab transition zone interaction: stagnation, penetration and mode switches. Earth Planet. Sci. Lett., 464:10--23, 2017. [ bib ]
[40] George Biddell Airy. III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil. Trans. Royal Soc. London, 145:101--104, 1855. [ bib ]
[41] Jonathan C Aitchison, Aileen M Davis, Jianbing Liu, Hui Luo, John G Malpas, Isabella RC McDermid, Hiyun Wu, Sergei V Ziabrev, Mei-fu Zhou, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung--Zangbo suture (southern Tibet). Earth Planet. Sci. Lett., 183:231--244, 2000. [ bib ]
[42] J. C. Aitchison, J. R. Ali, and A. M. Davis. When and where did India and Asia collide? J. Geophys. Res.: Sol. Earth, 112(B05423), 2007. [ bib | DOI ]
[43] H. Akaike. On entropy. In P. R. Krishnaiah, editor, Applications of Statistics, pages 27--41. North Holland, Amsterdam, 1977. [ bib ]
[44] M. Akaogi and E. Ito. Calorimetric study on majorite-perovskite transition in the system mg4si4o12-mg3al2si3o_12: transition boundaries with positive pressure-temperature slopes. Phys. Earth Planet. Inter., 114:129--140, 1999. [ bib ]
[45] M. Akaogi, Y. Hamada, T. Suzuki, and M. Kobayashi. High pressure transitions in the system mgal2o4-caal2o4: a new hexagonal aluminous phase with implication for the lower mantle. Phys. Earth Planet. Inter., 115:67--77, 1999. [ bib ]
[46] K. Aki and P. G. Richards. Quantitative Seismology. University Science Books, Sausalito, California, 2 edition, 2002. [ bib ]
[47] Keiiti Aki. Synthesis of earthquake science information and its public transfer: A history of the Southern California Earthquake Center. In International Handbook of Earthquake & Engineering Seismology, volume 81A, pages 39--49. International Association of Phys. Earth's Interior Committee on Education, 2002. [ bib ]
[48] K. Aki and K. Kaminuma. Phase velocity in Japan. Part I. Love waves from the Aleutian shock of March 9, 1957. Bull. Earthq. Res. Inst. Tokyo Univ., 41:243--259, 1963. [ bib ]
[49] K. Aki. Maximum likelihood estimate of b in the formula log n = a-bm and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ., 43:237--239, 1965. [ bib ]
[50] K. Aki. Generation and propagation of G waves from the Niigata earthquake of June 16 1964. 2. Estimation of earthquake movement released energy and stress-strain drop from G wave spectrum. Bull. Earthq. Res. Inst. Tokyo Univ., 44:23--88, 1966. [ bib ]
[51] K. Aki. Scaling law of seismic spectrum. J. Geophys. Res.: Sol. Earth, 72:1217--1231, 1967. [ bib ]
[52] K. Aki and B. Chouet. Origin of coda waves: source, attenuation and scattering effects. J. Geophys. Res.: Sol. Earth, 80:3322--3342, 1975. [ bib ]
[53] K. Aki. Characterization of barriers on an earthquake fault. J. Geophys. Res.: Sol. Earth, 84:6140--6148, 1979. [ bib ]
[54] K. Aki and P. G. Richards. Quantitative Seismology, volume 1. Freeman and Company, New York, 1980. [ bib ]
[55] K. Aki. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res.: Sol. Earth, 89:5867--5872, 1984. [ bib ]
[56] K. Aki and P. G. Richards. Quantitative Seismology, volume 2. Freeman and Company, New York, 1980. [ bib ]
[57] F. Albarede and R. D. van der Hilst. Zoned mantle convection. Phil. Trans. Roy. Soc. Lon. A, 360:2569--2592, 2002. [ bib ]
[58] F. Albarede. Introduction to geochemical modeling. Cambridge University Press, 1995. [ bib ]
[59] F. Albarède. Time-dependent models of the U-Th-He and K-Ar evolution and the layering of mantle convection. Chem. Geol., 145:413--429, 1998. [ bib ]
[60] F. Albarède and R. D. van der Hilst. New mantle convection model may reconcile conflicting evidence. Eos Trans. AGU, 80:533--539, 1999. [ bib ]
[61] Michael Albers and Ulrich R Christensen. Channeling of plume flow beneath mid-ocean ridges. Earth Planet. Sci. Lett., 187(1-2):207--220, 2001. [ bib ]
[62] C. Alder, T. Bodin, Y. Ricard, Y. Capdeville, E. Debayle, and J. P. Montagner. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities. Geophys. J. Int., 211:1585--1600, 2017. [ bib ]
[63] L. R. Alejano and A. Bobet. Drucker–prager criterion. Rock Mech. Rock Eng., 45:995--999, 2012. [ bib ]
[64] S. T. Ali and A. M. Freed. Contemporary deformation and stressing rates in Southern Alaska. Geophys. J. Int., 183:557--571, 2010. [ bib ]
[65] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, L. C. Wilcox, and O. Ghattas. Slab stress and strain rate as constraints on global mantle flow. Geophys. Res. Lett., 37(L22308), 2010. [ bib | DOI ]
[66] L. Alisic, M. Gurnis, G. Stadler, C. Burstedde, and O. Ghattas. Multi-scale dynamics and rheology of mantle flow with plates. J. Geophys. Res.: Sol. Earth, 117(B10402), 2012. [ bib | DOI ]
[67] C. Allégre. The evolution of mantle mixing. Phil. Trans. R. Soc. Lond. A, 360:2411--2431, 2002. [ bib ]
[68] C. J. Allègre and D. L. Turcotte. Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys. Res. Lett., 12:207--210, 1985. [ bib ]
[69] C. J. Allègre and D. L. Turcotte. Implications of a two-component marble-cake mantle. Nature, 323:123--127, 1986. [ bib ]
[70] C. Allègre. The behavior of the Earth. Harvard University Press, Cambridge MA, 1988. [ bib ]
[71] C. J. Allègre, J. L. Mouöl, H. D. Chau, and C. Narteau. Scaling organization of fracture tectonics (soft) and earthquake mechanism. Earth Planet. Sci. Lett., 92:215--233, 1995. [ bib ]
[72] Claude J Allegre, Gerard Manhes, and Christa Göpel. The age of the Earth. Geochim. Cosmochim. Acta, 59:1445--1456, 1995. [ bib ]
[73] C. J. Allègre, A. Hofmann, and K. O'Nions. The Argon constraints on mantle structure. Geophys. Res. Lett., 23:3555--3557, 1996. [ bib ]
[74] C. J. Allègre, J.L. Birck, F. Capmas, and V. Courtillot. Age of the deccan traps using 187re–187os systematics. Earth Planet. Sci. Lett., 170:197--204, 1999. [ bib ]
[75] C. R Allen. Active faulting in Northern Turkey. Technical Report 1577, Div. Sci. Calif. Inst. Tech., 1969. [ bib ]
[76] Richard M Allen, Guust Nolet, W Jason Morgan, Kristín Vogfjörd, Bergur H Bergsson, Pálmi Erlendsson, GR Foulger, Steinunn Jakobsdóttir, Bruce R Julian, Matt Pritchard, et al. Imaging the mantle beneath Iceland using integrated seismological techniques. J. Geophys. Res.: Sol. Earth, 107(B12):ESE--3, 2002. [ bib ]
[77] M. B. Allen and H. A. Armstrong. Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr., Palaeoclim., Palaeoeco., 265:3152--3158, 2008. [ bib ]
[78] Philip A Allen and John R Allen. Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons, 2013. [ bib ]
[79] K. L. Allison and E. M. Dunham. Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophys., 733:232--258, 2018. [ bib ]
[80] Kali L Allison and Eric M Dunham. Influence of shear heating and thermomechanical coupling on earthquake sequences and the brittle-ductile transition. J. Geophys. Res.: Sol. Earth, 126(6):e2020JB021394, 2021. [ bib ]
[81] Vaneeda Allken, Ritske S Huismans, and Cedric Thieulot. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study. G3, 13(5), 2012. [ bib ]
[82] Bettina P Allmann and Peter M Shearer. Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res.: Sol. Earth, 114(B1), 2009. [ bib ]
[83] Rafael Almeida, Eric O. Lindsey, Kyle Bradley, Judith Hubbard, Rishav Mallick, and Emma M. Hill. Can the updip limit of frictional locking on megathrusts be detected geodetically? Quantifying the effect of stress shadows on near-trench coupling. Geophys. Res. Lett., 45:4754--4763, 2018. [ bib ]
[84] Bjarne S.G. Almqvist and David Mainprice. Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Rev. Geophys., 55(2):367--433, 2017. [ bib ]
[85] L. A. Alpert, A. Ghosh, T. W. Becker, I. W. Bailey, and M. S. Miller. Coseismic subduction zone strain-release as a constraint for slab dynamics. Eos Trans. AGU, 89(53):DI53A--1674, 2008. [ bib ]
[86] L. A. Alpert, T. W. Becker, and I. Bailey. Coseismic sbuduction zone strain-release as a constraint for slab dynamics. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 26, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[87] L. A. Alpert, T. W. Becker, and I. W. Bailey. Global slab deformation and centroid moment constraints on viscosity. Geochem., Geophys., Geosys., 11(Q12006), 2010. [ bib | DOI ]
[88] L. A. Alpert, I. W. Bailey, and T. W. Becker. Deformation and geometry of subducted lithosphere from an analysis of global centroid moment tensor data (abstract). Eos Trans. AGU, pages DI31A--1947, 2010. [ bib ]
[89] L. A. Alpert, M. S. Miller, and T. W. Becker. Slab tearing in 3-D models of subduction and continental collision: Application to the Banda Sea (abstract). XXV IUGG General Assembly, Melbourne, Australia, 2011. [ bib ]
[90] L. A. Alpert, M. S. Miller, T. W. Becker, and A. A. Allam. Structure beneath the Alboran from geodynamic flow models and seismic anisotropy. J. Geophys. Res.: Sol. Earth, 118:1--13, 2013. [ bib | DOI ]
[91] Wolfram Alpha. www.wolframalpha.com/, accessed 01/2021, 2021. [ bib ]
[92] John Alroy. Accurate and precise estimates of origination and extinction rates. Paleobiol., 40:374--397, 2014. [ bib ]
[93] Fahad Alsayyari, Zoltán Perkó, Marco Tiberga, Jan Leen Kloosterman, and Danny Lathouwers. A fully adaptive nonintrusive reduced-order modelling approach for parametrized time-dependent problems. Comp. Meth. Appl. Mech. Eng., 373:113483, 2021. [ bib ]
[94] P. Alvarado, S. Beck, G. Zandt, M. Araujo, and E. Triep. Crustal deformation in the south-central Andes backarc terranes as viewed from regional broad-band seismic waveform modelling. Geophys. J. Int., 163:580--598, 2005. [ bib ]
[95] W. Alvarez. Protracted continental collisions argue for continental plates driven by basal traction. Earth Planet. Sci. Lett., 296:434--442, 2010. [ bib ]
[96] Luis W Alvarez, Walter Alvarez, Frank Asaro, and Helen V Michel. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208:1095--1108, 1980. [ bib ]
[97] W. Alvarez. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. J. Geophys. Res.: Sol. Earth, 87:6697--6710, 1982. [ bib ]
[98] W. Alvarez. Geologic evidence for the plate-driving mechanism: the continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics, 9:1213--1220, 1990. [ bib ]
[99] C. Amante and B. W. Eakins. ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. Technical report, National Geophysical Data Center, NOAA, 2009. NOAA Technical Memorandum NESDIS NGDC-24. Available online at www.ngdc.noaa.gov/mgg/global/global.html, accessed 11/2016. [ bib | DOI ]
[100] N.N. Ambraseys. Some characteristic features of the North Anatolian fault zone. Tectonophys., 9:143--165, 1970. [ bib ]
[101] F. Amelung and G. C. P. King. Large-scale tectonic deformation inferred from small earthquakes. Nature, 386:702--705, 1997. [ bib ]
[102] D. Amitrano and J. Schmittbuhl. Fracture roughness and gouge distribution of a granite shear band. J. Geophys. Res.: Sol. Earth, 107(2375), 2002. [ bib | DOI ]
[103] D. Amitrano. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res.: Sol. Earth, 108(2044), 2003. [ bib | DOI ]
[104] D. Amitrano, J.-R. Grasso, and D. Hantz. From diffuse to localised damage through elastic interaction. Geophys. Res. Lett., 26:2109--2112, 1999. [ bib ]
[105] C. J. Ammon and G. E. Randall. mtinv. Available online at http://eqseis.geosc.psu.edu/~cammon/HTML/MTinvDocs/mtinv01.html, accessed 10/2011, 1994. [ bib ]
[106] C. B. Amos, D. W. Burbank, D. C. Nobes, and S. A. L. Read. Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand. J. Geophys. Res.: Sol. Earth, 112(B03S11), 2007. [ bib | DOI ]
[107] C. B. Amos, P. Audet, W. C. Hammond, R. Bürgmann, I. A. Johanson, and G. Blewitt. Uplift and seismicity driven by groundwater depletion in central California. Nature, 509:483--486, 2014. [ bib ]
[108] O.. Ampferer. Über das Bewegungsbild von Faltengebirgen. Jahrbuch d. k. k. geol. Reichsanst., 56:539--622, 1906. [ bib ]
[109] O. Ampferer and W. Hammer. Geologischer Querschnitt durch die Ostalpen vom Allgäu zum Gardasee. Jahrbuch d. k. k. geol. Reichsanst., 61:531--710, 1911. [ bib ]
[110] Jean-Paul Ampuero and FA Dahlen. Ambiguity of the moment tensor. Bull. Seismol. Soc. Am., 95:390--400, 2005. [ bib ]
[111] J.-P. Ampuero and A. M. Rubin. Earthquake nucleation on rate and state faults: Aging and slip laws. J. Geophys. Res.: Sol. Earth, 113(B01302), 2008. [ bib | DOI ]
[112] A Amstutz. Sur l'évolution des structures alpines (notes pour la légende d'une série de schémas embryotectoniques). Archives des Sciences, 4:323--329, 1951. [ bib ]
[113] D. L. Anderson. The thermal state of the upper mantle: no role for mantle plumes. Geophys. Res. Lett., 27:3623--3626, 2000. [ bib ]
[114] D. L. Anderson. Topside tectonics. Science, 293:2016--2018, 2001. [ bib ]
[115] M. L. Anderson, G. Zandt, E. Triep, M. Fouch, and S. Beck. Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis. Geophys. Res. Lett., 31(L23608), 2004. [ bib | DOI ]
[116] E. M. Anderson. The dynamics of faulting. Trans. Edinburgh Geol. Soc., 8:387--402, 1905. [ bib ]
[117] D. L. Anderson. New theory of the Earth. Cambridge University Press, 2 edition, 2007. [ bib ]
[118] M. Anderson, P. Alvarado, G. Zandt, and S. Beck. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int., 171:419--434, 2007. [ bib ]
[119] K. Anderson and P. Segall. Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J. Geophys. Res.: Sol. Earth, 116(B07204), 2011. [ bib | DOI ]
[120] K. Anderson and P. Segall. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004–2008. J. Geophys. Res.: Sol. Earth, 118:2017--2037, 2013. [ bib | DOI ]
[121] D. L. Anderson. Elastic wave propagation in layered anisotropic media. J. Geophys. Res.: Sol. Earth, 66:2953--2963, 1961. [ bib ]
[122] D. L. Anderson. Recent evidence concerning the structure and composition of the Earth's mantle. In Physics and Chemistry of the Earth, volume 6, pages 1--131. Pergmanon Press, Oxford UK, 1966. [ bib ]
[123] D. L. Anderson. A seismic equation of state. Geophys. J. R. Astr. Soc., 13:9--30, 1967. [ bib ]
[124] D. L. Anderson. Latest information from seismic observations. In T. F. Gaskell, editor, The Earth's Mantle, pages 355--420. Academic Press, New York, 1967. [ bib ]
[125] O. L. Anderson, E. Schreiber, and R. C. Liebermann. Some elastic constant data on minerals relevant to geophysics. Rev. Geophys. Space Phys., 6:491--524, 1968. [ bib ]
[126] D. L. Anderson. Chemical stratification of the mantle. J. Geophys. Res.: Sol. Earth, 84:6297--6298, 1979. [ bib ]
[127] D. L. Anderson and A. M. Dziewoński. Upper mantle anisotropy: evidence from free oscillations. Geophys. J. R. Astr. Soc., 69:383--404, 1982. [ bib ]
[128] D. L. Anderson. Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297:391--393, 1982. [ bib ]
[129] D. L. Anderson. A seismic equation of state. II. Shear properties and thermodynamics of the lower mantle. Phys. Earth Planet. Inter., 45:307--323, 1987. [ bib ]
[130] D. L. Anderson. Theory of the Earth. Blackwell Scientific Publications, Boston, 1989. Available online at http://resolver.caltech.edu/CaltechBOOK:1989.001, accessed 01/2019. [ bib ]
[131] O. Anderson and D. G. Isaak. Elastic constants of mantle minerals at high temperature. In T. Ahrens, editor, A Handbook of Physical Constants: Mineral Physics and Crystallography, volume 2 of AGU Handbook, pages 64--98. AGU, Washington, DC, 1995. [ bib ]
[132] R. Anderson, J. Repka, and G. Dick. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology, 24:47--51, 1996. [ bib ]
[133] Ryosuke Ando and Yoshihiro Kaneko. Dynamic rupture simulation reproduces spontaneous multifault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake. Geophys. Res. Lett., 45:12--875, 2018. [ bib ]
[134] M. Ando. Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophys., 27:119--140, 1975. [ bib ]
[135] M. Ando, Y. Ishikawa, and H. Wada. S-wave anisotropy in the upper mantle under a volcanic area in Japan. Nature, 286:43--46, 1980. [ bib ]
[136] M. Ando, Y. Ishikawa, and F. Yamasaki. Shear-wave polarization anisotropy in the mantle beneath Honshu, Japan. J. Geophys. Res.: Sol. Earth, 88:5850--5864, 1983. [ bib ]
[137] E. Andrews and M. I. Billen. Rheologic controls on slab detachment. Tectonophys., 464:60--69, 2009. [ bib ]
[138] D. J. Andrews and N. H. Sleep. Numerical modeling of tectonic flow behind Island Arc. Geophys. J. R. Astr. Soc., 38:237--251, 1974. [ bib ]
[139] J. Andrieux, S. Över, A. Poisson, and B. Olivier. The North Anatolian Fault Zone: distributed Neogene deformation in its northward convex part. Tectonophys., 243:135--154, 1995. [ bib ]
[140] J. Angelier, A. Tarantola, S. Manoussis, and B. Valette. Inversion of field data in fault tectonics to obtain the regional stress. 1: single phase fault populations: a new method of computing the stress tensor. Geophys. J. R. Astr. Soc., 69:607--621, 1982. [ bib ]
[141] Samuel Angiboust, Sylvie Wolf, Evgenii Burov, Philippe Agard, and Philippe Yamato. Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling. Earth Planet. Sci. Lett., 357:238--248, 2012. [ bib ]
[142] Samuel Angiboust, Josephine Kirsch, Onno Oncken, Johannes Glodny, Patrick Monié, and Erik Rybacki. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface. Geochem., Geophys., Geosys., 16:1905--1922, 2015. [ bib ]
[143] S. Angiboust and J. Glodny. Exhumation of eclogitic ophiolitic nappes in the W. Alps: New age data and implications for crustal wedge dynamics. Lithos, 356, 2020. [ bib | DOI ]
[144] D. K. Anglin and M. Fouch. Seismic anisotropy in the Izu-Bonin subduction system. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[145] F. Anguita and F. Hernán. The Canary Islands origin: a unifying model. J. Volc. Geoth. Res., 103:1--26, 2000. [ bib ]
[146] ANKORP working group. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature, 397:341--344, 1999. [ bib ]
[147] ANSYS, Inc. ANSYS Academic Research, Release 14.0, Help System, Coupled Field Analysis Guide, 2013. [ bib ]
[148] Boulder Real Time Technologies. Antelope, 2011. Available online at http://www.brtt.com/software.html, accessed 11/2011. [ bib ]
[149] Solène L Antoine, Yann Klinger, Arthur Delorme, Kang Wang, Roland Bürgmann, and Ryan D Gold. Diffuse deformation and surface faulting distribution from submetric image correlation along the 2019 Ridgecrest, California, ruptures. BSSA, 111:2275--2302, 2021. [ bib ]
[150] S. Antoine, Y. Klinger, K. Wang, and R. Bürgmann. Diffuse deformation explains the magnitude-dependent coseismic shallow slip deficit (preprint). Research Square, 2023. [ bib | DOI ]
[151] M. Antolik, G. Ekström, A. M. Dziewoński, Y. J. Gu, J.-f. Pan, and L. Boschi. A new joint P and S velocity model of the mantle parameterized in cubic B-splines. In 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT): Proceedings, volume II, 2001. [ bib ]
[152] Hideo Aochi and Eiichi Fukuyama. Three-dimensional nonplanar simulation of the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 107(B2), 2002. [ bib | DOI ]
[153] Hideo Aochi and Raúl Madariaga. The 1999 Izmit, Turkey, earthquake: Nonplanar fault structure, dynamic rupture process, and strong ground motion. Bull. Seismol. Soc. Am., 93:1249--1266, 2003. [ bib ]
[154] T Araki, S Enomoto, K Furuno, Y Gando, K Ichimura, H Ikeda, K Inoue, Y Kishimoto, M Koga, Y Koseki, et al. Experimental investigation of geologically produced antineutrinos with kamland. Nature, 436:499--503, 2005. [ bib ]
[155] Eiichiro Araki, Demian M Saffer, Achim J Kopf, Laura M Wallace, Toshinori Kimura, Yuya Machida, Satoshi Ide, Earl Davis, and IODP Expedition 365 shipboard scientists. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust. Science, 356:1157--1160, 2017. [ bib ]
[156] Diane Arcay. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting. Phys. Earth Planet. Inter., 269:112--132, 2017. [ bib ]
[157] D. Archer, A. Winguth, D. Lea, and N. Mahowald. What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys., 38:159--189, 2000. [ bib ]
[158] C. Arenas, H. Millan, G. Pardo, and A. Pocovi. Ebro basin continental sedimentation associated with late compressional pyrhenean tectonics (north-eastern iberia): controld on basin margin fans and fluvial systems. Basin Research, 13:65--89, 2001. [ bib ]
[159] R. Arevalo, A. Ghosh, V. Lekic, V. C. Tsai, A. M. Dziewoński, L. H. Kellogg, J. Matas, W. R. Panero, and B. A. Romanowicz. Degree-2 in the Transition Zone and Near the CMB: Bottom up Tectonics? EOS Trans AGU, 89(53):DI21A--1744, 2008. [ bib ]
[160] E. Argand. La tectonique de l'asie. In Extrait du Compte-rendu du XIIIe congrès Géologique International 1922, volume 1, pages 171--372, Liège, Belgium, 1924. [ bib ]
[161] D. F. Argus, R. G. Gordon, and C. DeMets. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem., Geophys., Geosys., 12(Q11001), 2011. [ bib | DOI ]
[162] D. F. Argus, Y. Fu, and F. W. Landerer. Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion. Geophys. Res. Lett., 41:1971--1980, 2014. [ bib | DOI ]
[163] D. F. Argus, W. R. Peltier, R. Drummond, and A.W. Moore. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int., 198:537--563, 2014. [ bib ]
[164] D. F. Argus and R. G. Gordon. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett., 18:2039--2042, 1991. [ bib ]
[165] M. Arnould, N. Coltice, N. Flament, and C. Mallard. Plate tectonics and mantle controls on plume dynamics. Earth Planet. Sci. Lett., 547:116439, 2020. [ bib ]
[166] A. Arnulf, D. Bassett, A. J. Harding, S. Kodaira, and A. Nakanishi. Anatomy of the Nankai subduction zone (abstract). In AGU Fall Meeting, number T41C-07, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[167] A. F. Arnulf, J. Biemiller, L. Lavier, L. Wallace, D. Bassett, S. Henrys, I. Pecher, G. Crutchley, and A. Plaza Faverola. Physical conditions and frictional properties in a slow slip event source region. Nature Geosc., submitted, 2021. available for reviewers at https://bit.ly/35Yd2qA, accessed 01/2021. [ bib ]
[168] A. ArRajehi, S. McClusky, R. Reilinger, M. Daoud, A. Alchalbi, S. Ergintav, F. Gomez, J. Sholan, F. Bou-Rabee, G. Ogubazghi, B. Haileab, S. Fisseha, L. Asfaw, S. Mahmoud, A. Rayan, R. Bendik, and L. Kogan. Geodetic constraints on present day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting. Tectonics, 29(TC3011), 2010. [ bib | DOI ]
[169] Katrina M Arredondo and Magali I Billen. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity. Phys. Earth Planet. Inter., 196:1--13, 2012. [ bib ]
[170] Katrina M Arredondo and Magali I Billen. Coupled effects of phase transitions and rheology in 2-D dynamical models of subduction. J. Geophys. Res.: Sol. Earth, 122:5813--5830, 2017. [ bib ]
[171] I. Artemieva. Global 1o ×1o thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophys., 416:245--277, 2006. [ bib ]
[172] E. V. Artyushkov. Stresses in the lithosphere caused by crustal thickness inhomogeneities. J. Geophys. Res.: Sol. Earth, 78:7675--7708, 1973. [ bib ]
[173] M. F. Ashby and R. A. Verrall. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Phil. Trans. Roy. Soc. London A, 288:59--95, 1977. [ bib ]
[174] M. F. Ashby and C. G. Sammis. The damage mechanics of brittle solids in compression. Pure Appl. Geophys., 133:489--521, 1990. [ bib ]
[175] J. Aspden, W. McCourt, and M. Brook. Geometrical control of subduction-related magmatism: The Mesozoic and Cenozoic plutonic history of western Colombia. J. Geol. Soc. London, 144:893--905, 1987. [ bib ]
[176] S. Atkins and N. Coltice. Constraining the range and variation of lithospheric net rotation using geodynamic modeling. J. Geophys. Res.: Sol. Earth, 126:e2021JB022057, 2021. [ bib ]
[177] B. K. Atkinson. Fracture Mechanics of Rock. Academic Press, London, 1987. [ bib ]
[178] B. K. Atkinson. Introduction to fracture mechanics. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 1, pages 1--23. Academic Press, London, 1987. [ bib ]
[179] HV Atkinson. Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metallurgica, 36:469--491, 1988. [ bib ]
[180] V. C. Li. Mechanics of shear rupture applied to earthquake zones. In B. K. Atkinson, editor, Fracture Mechanics of Rock, chapter 9, pages 351--424. Academic Press, London, 1987. [ bib ]
[181] B.F. Atwater, S. Musumi-Rokkaku, K. Satake, Y. Tsuji, K. Ueda, and D. K. Yamaguchi. The orphan tsunami of 1700--Japanese clues to a parent earthquake in North America. Technical Report 1707, United States Geological Survey, 2015. 2nd edition, 135 p. [ bib ]
[182] T. Atwater. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Amer. Bull., 81:3513--3536, 1970. [ bib ]
[183] T. Atwater and J. Stock. Pacific-North America plate tectonics of the Neogene southwestern United States: An update. Int. Geol. Rev., 40:375--402, 1998. [ bib ]
[184] Felipe E Audemard and Franck A Audemard. Structure of the Mérida Andes, Venezuela: relations with the South America--Caribbean geodynamic interaction. Tectonophys., 345:1--26, 2002. [ bib ]
[185] P. Audet, M. G. Bostock, N. I. Christensen, and S. M. Peacock. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457:76--78, 2009. [ bib ]
[186] P. Audet and R. Bürgmann. Dominant role of tectonic inheritance in supercontinent cycles. Nature Geosc., 4:184--187, 2011. [ bib ]
[187] Pascal Audet and Susan Y Schwartz. Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nature Geosc., 6:852--855, 2013. [ bib ]
[188] Pascal Audet. Layered crustal anisotropy around the San Andreas Fault near Parkfield, California. J. Geophys. Res.: Sol. Earth, 120:3527--3543, 2015. [ bib ]
[189] Pascal Audet and YoungHee Kim. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review. Tectonophys., 670:1--15, 2016. [ bib ]
[190] L. Auer, L. Boschi, T. W. Becker, T. Nissen-Meyer, and D. Giardini. Savani: A variable-resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets. J. Geophys. Res.: Sol. Earth, 119:3006--3034, 2014. [ bib | DOI ]
[191] L. Auer, T. W. Becker, L. Boschi, and N. Schmerr. Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers. Geophys. Res. Lett., 42:9740--9742, 2015. [ bib | DOI ]
[192] Jacqueline Austermann, Jerry X Mitrovica, Peter Huybers, and Alessio Rovere. Detection of a dynamic topography signal in last interglacial sea-level records. Science Adv., 3:e1700457, 2017. [ bib ]
[193] N. J. Austin and B. Evans. Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35:343--346, 2007. [ bib ]
[194] Harm JA Van Avendonk, Joshua K Davis, Jennifer L Harding, and Lawrence A Lawver. Decrease in oceanic crustal thickness since the breakup of Pangaea. Nature Geosc., 10:58--61, 2017. [ bib ]
[195] Jean-Philippe Avouac. Mountain Building, Erosion, and the Seismic Cycle in the Nepal Himalaya. Adv. Geophys., 46:1--80, 2003. [ bib ]
[196] J.-P. Avouac. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Ann. Rev. Earth Planet. Sci., 43:233--271, 2015. [ bib ]
[197] Jean-Philippe Avouac and Paul Tapponnier. Kinematic model of active deformation in central asia. Geophys. Res. Lett., 20:895--898, 1993. [ bib ]
[198] Atilla Aydin and Amos Nur. Evolution of pull-apart basins and their scale independence. Tectonics, 1:91--105, 1982. [ bib ]
[199] Atilla Aydin and Amos Nur. The types and role of stepovers in strike slip tectonics. In Kevin T. Biddle and Nicholas Christie-Blick, editors, Strike-Slip Deformation, Basin Formation, and Sedimentation, volume 37. Society for Sedimentary Geology, 1985. [ bib ]
[200] T. Baba, Y. Tanioka, P. R. Cummins, and K. Uhira. The slip distribution of the 1946 Nankai earthquake estimated from tsunami inversion using a new plate model. Phys. Earth Planet. Inter., 132:59--73, 2002. [ bib ]
[201] A. Babeyko and S. V. Sobolev. Quantifying different modes of the late Cenozoic shortening in the central Andes. Geology, 33:621--624, 2005. [ bib ]
[202] A. Y. Babeyko and S. Soboloev. High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs. Lithos, 103:205--216, 2008. [ bib ]
[203] V. Babuška and J. Plomerová. European mantle lithosphere assembled from rigid microplates with inherited seismic anisotropy. Phys. Earth Planet. Inter., 158:264--280, 2006. [ bib ]
[204] V. Babuška, J. Plomerová, and J. Šíleny. Spatial variations of P residuals and deep structure of the European lithospere. Geophys. J. R. Astr. Soc., 79:363--383, 1984. [ bib ]
[205] V. Babuška, J.-P. Montagner, J. Plomerová, and N. Girardin. Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy. Pure Appl. Geophys., 151:257--280, 1998. [ bib ]
[206] V. Babuška and M. Cara. Seismic Anisotropy in the Earth. Kluwer Academic Publishers, Dordrecht, 1991. [ bib ]
[207] P. Baccheschi, L. Margheriti, and M. S. Steckler. Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy). Geophys. Res. Lett., 34(L05302), 2007. [ bib | DOI ]
[208] C. E. Bachmann, S. Wiemer, B. P. Goertz-Allmann, and J. Woessner. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett., 39(L09302), 2012. [ bib | DOI ]
[209] G. E. Backus. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res.: Sol. Earth, 67:4427--4440, 1962. [ bib ]
[210] G. E. Backus. Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res.: Sol. Earth, 70:3429--3439, 1965. [ bib ]
[211] G. Backus, J. Park, and D. Garbasz. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 67:415--435, 1981. [ bib ]
[212] Jeffrey L Bada and Jun Korenaga. Exposed areas above sea level on Earth> 3.5 Gyr ago: implications for prebiotic and primitive biotic chemistry. Life, 8(4):55, 2018. [ bib ]
[213] M. Baes, R. Gover, and R. Wortel. Switching between alternative responses of the lithosphere to continental collision. Geophys. J. Int., 2011. [ bib | DOI ]
[214] Alireza Bahadori and William E Holt. Geodynamic evolution of southwestern North America since the Late Eocene. Nature Comm., 10:1--18, 2019. [ bib ]
[215] Q. Bai, S. J. Mackwell, and D. L. Kohlstedt. High-temperature creep of olivine single crystals, 1. mechanical results for buffered samples. J. Geophys. Res.: Sol. Earth, 96:2441--2463, 1991. [ bib ]
[216] I. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of crustal coseismic strain release associated with different earthquake sizes as imaged by a tensor summation method. In 2005 SCEC Annual Meeting Abstracts, page 9, Los Angeles, CA, 2005. Southern California Earthquake Center. Available online at http://www.scec.org/meetings/2005am/2005abstracts.doc. [ bib ]
[217] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Strain release in southern california based on earthquake catalog data (abstract). Seis. Res. Lett., 76(2), 2005. [ bib ]
[218] I. W. Bailey, T. W. Becker, and Y. Ben-Zion. Patterns of co-seismic strain computed from southern California focal mechanisms. Geophys. J. Int., 177:1015--1036, 2009. [ bib ]
[219] I. W. Bailey, Y. Ben-Zion, T. W. Becker, and M. Holschneider. Quantifying focal mechanism heterogeneity for fault zones in central and southern California. Geophys. J. Int., 183:433--450, 2010. [ bib ]
[220] I. W. Bailey, L. A. Alpert, T. W. Becker, and M. S. Miller. Co-seismic deformation of deep slabs based on summed CMT data. J. Geophys. Res.: Sol. Earth, 177(B04404), 2012. [ bib | DOI ]
[221] I. W. Bailey, M. S. Miller, A. Levander, and K. Liu. VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. J. Geophys. Res.: Sol. Earth, 117, 2012. [ bib | DOI ]
[222] F. Bajolet, J. Galeano-Prieto, F. Funiciello, A. M. Negredo, M. Moroni, and C. Faccenna. Continental delamination: insights from laboratory models. Geochem., Geophys., Geosys., 13, 2011. [ bib | DOI ]
[223] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 59:381, 1987. [ bib ]
[224] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38:364--373, July 1988. [ bib ]
[225] P. Bak and C. Tang. Earthquakes as a self-organized crititcal phenomenon. J. Geophys. Res.: Sol. Earth, 94:15636--15637, 1989. [ bib ]
[226] P. Bak, K. Christensen, and Z. Olami. Self-organized criticality: Consequences for statistics and predictability of earthquakes. In Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 18 of Geophys. Mono., pages 69--74. International Union of Geodesy and Geophysics, 1994. [ bib ]
[227] A. Baker, R. W. Allmendinger, and J. A. Rech. Permanent deformation caused by subduction earthquakes in northern Chile. Nature Geosc., 6:492--496, 2013. [ bib ]
[228] W.H. Bakun et al. Seismic slip, aseismic slip and the mechanics of repeating earthquakes on the Calaveras fault, California. In S. Das et al., editors, Earthquake Source Mechanics, volume 37 of Geophys. Mono., pages 195--207. American Geophysical Union, Washington DC, 1986. [ bib ]
[229] WH Bakun, B Aagaard, B Dost, WL Ellsworth, JL Hardebeck, RA Harris, C Ji, MJS Johnston, J Langbein, JJ Lienkaemper, et al. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437:969--974, 2005. [ bib ]
[230] W.H. Bakun and T.V. McEvilly. Recurrence models and Parkfield, California earthquakes. J. Geophys. Res.: Sol. Earth, 89:3051--3058, 1984. [ bib ]
[231] William H Bakun and Allan G Lindh. The Parkfield, California, earthquake prediction experiment. Science, 229:619--624, 1985. [ bib ]
[232] S Balachandar, DA Yuen, DM Reuteler, and GS Lauer. Viscous dissipation in three-dimensional convection with temperature-dependent viscosity. Science, 267:1150--1153, 1995. [ bib ]
[233] Attila Balázs, Evgueni Burov, Liviu Matenco, Katharina Vogt, Thomas Francois, and Sierd Cloetingh. Symmetry during the syn-and post-rift evolution of extensional back-arc basins: The role of inherited orogenic structures. Earth Planet. Sci. Lett., 462:86--98, 2017. [ bib ]
[234] G. Baldock and T. Stern. Width of mantle deformation across a continental transform: Evidence from upper mantle (Pn) seismic anisotropy measurements. Geology, 33:741--744, 2005. [ bib ]
[235] M. D. Ballmer, C. P. Conrad, E. I. Smith, and N. Harmon. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise. Geology, 41:479--482, 2012. [ bib ]
[236] Maxim D. Ballmer, Clinton P. Conrad, Eugene I. Smith, and Racheal Johnsen. Intraplate volcanism at the edges of the Colorado Plateau sustained by a combination of triggered edge-driven convection and shear-driven upwelling. Geochem., Geophys., Geosys., 2015. [ bib | DOI ]
[237] Maxim D Ballmer, Christine Houser, John W Hernlund, Renata M Wentzcovitch, and Kei Hirose. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geosc., 10:236--240, 2017. [ bib ]
[238] A. Baltay, G. Prieto, and G. C. Beroza. Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J. Geophys. Res.: Sol. Earth, 115(B08314), 2010. [ bib | DOI ]
[239] Annemarie Baltay, Satoshi Ide, German Prieto, and Gregory Beroza. Variability in earthquake stress drop and apparent stress. Geophys. Res. Lett., 38(6), 2011. [ bib ]
[240] Richard K Bambach. Phanerozoic biodiversity mass extinctions. Ann. Rev. Earth Planet. Sci., 34:127--155, 2006. [ bib ]
[241] D. Bamford. Pn velocity anisotropy in a continental upper mantle. Geophys. J. R. Astr. Soc., 49:29--48, 1977. [ bib ]
[242] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II -- a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1--24/27, 2007. [ bib ]
[243] N. Bangs, H. van Avendonk, A. Arnulf, A. Gase, S. Henrys, D. Okaya, D. Barker, K. Jacobs, G. Fujiie, R. Arai, and S. Kodaira. Large underplated structures along the southern hikurangi margin: preliminary results from shire seismic imaging experiment (abstract). In AGU Fall Meeting, number T53C-08, Washington DC, 2018. American Geophysical Union. [ bib ]
[244] Xiyuan Bao, Carolina R Lithgow-Bertelloni, Matthew G Jackson, and Barbara Romanowicz. On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges. Science, 375:57--61, 2022. [ bib ]
[245] Shahar Barak, Simon L. Klemperer, and Jesse F. Lawrence. San Andreas Fault dip, Peninsular Ranges mafic lower crust and partial melt in the Salton Trough, Southern California, from ambient-noise tomography. Geochem., Geophys., Geosys., 16:3946--3972, 2015. [ bib ]
[246] M. Barazangi and B. L. Isacks. Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4:686--692, 1976. [ bib ]
[247] S. Barbot, Y. Fialko, and D. T. Sandwell. Effect of a compliant fault zone on the inferred earthquake slip distribution. J. Geophys. Res.: Sol. Earth, 113(B06404), 2008. [ bib | DOI ]
[248] S. Barbot and Y. Fialko. A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int., 182:1124--1140, 2010. [ bib ]
[249] S. Barbot, N. Lapusta, and J. P. Avouac. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle. Science, 336:707--710, 2012. [ bib ]
[250] S. Barbot. Asthenosphere flow modulated by megathrust earthquake cycles. Geophys. Res. Lett., 45:6018--6031, 2018. [ bib ]
[251] Sylvain Barbot. Slow-slip, slow earthquakes, period-two cycles, full and partial ruptures, and deterministic chaos in a single asperity fault. Tectonophys., 768:228171, 2019. [ bib ]
[252] S. Barbot. Frictional and structural controls of seismic super-cycles at the Japan trench. Earth, Planet. Space, 72(63), 2020. [ bib ]
[253] M. Barchi, G. Minelli, and G. Pialli. The CROP03 profile: a synthesis of result on deep structures of the Northern Apennines. Mem. Soc. Geol. It., 52:383--400, 1998. [ bib ]
[254] Grigory Isaakovich Barenblatt. The mathematical theory of equilibrium cracks in brittle fracture. Adv. appl. mech., 7:55--129, 1962. [ bib ]
[255] AA Barka. The north Anatolian fault zone. In Annales tectonicae, volume 6, pages 164--195, 1992. [ bib ]
[256] D. H. N. Barker, S. Henrys, F. Caratori Tontini, P. M. Barnes, D. Bassett, E. Todd, and L. Wallace. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand. Geophys. Res. Lett., 45:12804--12813, 2018. [ bib ]
[257] Valentina R Barletta, Michael Bevis, Benjamin E Smith, Terry Wilson, Abel Brown, Andrea Bordoni, Michael Willis, Shfaqat Abbas Khan, Marc Rovira-Navarro, Ian Dalziel, Robert Smalley Jr, Eric Kendrick, Stephanie Konfai, Dana J. Caccamise II, Richard C. Aster, Andy Nyblade, and Doug A. Wiens. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science, 360:1335--1339, 2018. [ bib ]
[258] Philip M Barnes, Geoffroy Lamarche, Joerg Bialas, Stuart Henrys, Ingo Pecher, Gesa L Netzeband, Jens Greinert, Joshu J Mountjoy, Katherine Pedley, and Gareth Crutchley. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geol., 272:26--48, 2010. [ bib ]
[259] Jaime D Barnes, Jeffrey Cullen, Shaun Barker, Samuele Agostini, Sarah Penniston-Dorland, John C Lassiter, Andreas Klügel, and Laura Wallace. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere, 15:642--658, 2019. [ bib ]
[260] Philip M Barnes, Scott D Nodder, Susi Woelz, and Alan R Orpin. The structure and seismic potential of the Aotea and Evans Bay faults, Wellington, New Zealand. New Zealand J. Geol. Geophys., 62:46--71, 2019. [ bib ]
[261] Philip M. Barnes, Laura M. Wallace, Demian M. Saffer, Rebecca E. Bell, Michael B. Underwood, Åke Fagereng, Francesca Meneghini, Heather M. Savage, Hannah S. Rabinowitz, Julia K. Morgan, Hiroko Kitajima, Steffen Kutterolf, Yoshitaka Hashimoto, Christie H. Engelmann de Oliveira, Atsushi Noda, Martin P. Crundwel, Claire L. Shepherd, Adam D. Woodhouse, Robert N. Harris, Maomao Wang, Stuart Henrys, Daniel H.N. Barker, Katerina E. Petronotis, Sylvain M. Bourlange, Michael B. Clennell, Ann E. Cook, Brandon E. Dugan, Judith Elger, Patrick M. Fulton, Davide Gamboa, Annika Greve, Shuoshuo Han, Andre Hüpers, Matt J. Ikari, Yoshihiro Ito, Gil Young Kim, Hiroaki Koge, Hikweon Lee, Xuesen Li, Min Luo, Pierre R. Malie, Gregory F. Moore, Joshu J. Mountjoy, David D. McNamara, Matteo Paganoni, Elizabeth J. Screaton, Uma Shankar, Srisharan Shreedharan, Evan A. Solomon, Xiujuan Wang, Hung-Yu Wu, Ingo A. Pecher, Leah J. LeVay, and IODP Expedition 372 Scientists. Slow slip source characterized by lithological and geometric heterogeneity. Science Adv., 6(13):eaay3314, 2020. [ bib ]
[262] A. Barnhoorn, S. F. Cox, D. J. Robinson, and T. Senden. Stress- and fluid-driven failure during fracture array growth: Implications for coupled deformation and fluid flow in the crust. Geology, 38:779--782, 2010. [ bib ]
[263] Anthony D Barnosky, Nicholas Matzke, Susumu Tomiya, Guinevere OU Wogan, Brian Swartz, Tiago B Quental, Charles Marshall, Jenny L McGuire, Emily L Lindsey, Kaitlin C Maguire, et al. Has the Earth’s sixth mass extinction already arrived? Nature, 471:51--57, 2011. [ bib ]
[264] Amy C Barr and Adam P Showman. Heat transfer in Europa's icy shell. In Europa, pages 405--430. Univ. Arizona Press, 2009. [ bib ]
[265] T. D. Barr and G. A. Houseman. Deformation fields around a fault embedded in a non-linear ductile medium. Geophys. J. Int., 125:473--490, 1996. [ bib ]
[266] G. Barruol and F. R. Fontaine. Mantle flow beneath La Réunion hotspot track from SKS splitting. Earth Planet. Sci. Lett., 362:108--121, 2013. [ bib ]
[267] G. Barruol and H. Kern. P and S wave velocities and shear wave splitting in the lower crustal/upper mantle transition (Ivrea zone). Experimental and calculated data. Phys. Earth Planet. Inter., 95:175--194, 1996. [ bib ]
[268] Guilhem Barruol and Hartmut Kern. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the ivrea zone容xperimental and calculated data. Phys. Earth Planet. Inter., 95(3-4):175--194, 1996. [ bib ]
[269] Matthias G Barth, William F McDonough, and Roberta L Rudnick. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165:197--213, 2000. [ bib ]
[270] Noel M Bartlow, Shin'ichi Miyazaki, Andrew M Bradley, and Paul Segall. Space-time correlation of slip and tremor during the 2009 Cascadia slow slip event. Geophys. Res. Lett., 38(L18309), 2011. [ bib | DOI ]
[271] N. M. Bartlow and Y. Fialko. Modeling horizontal GPS seasonal signals caused by ocean loading (abstract). AGU Fall Meeting, (G23B-0486), 2014. Available online at http://adsabs.harvard.edu/abs/2014AGUFM.G23B0486B, accessed 08/2015. [ bib ]
[272] Noel M Bartlow. A long-term view of episodic tremor and slip in Cascadia. Geophys. Res. Lett., 47, 2020. [ bib | DOI ]
[273] R. Bartole. The North Tyrrhenian-Northern Apennines post-collisional system: constraint for a geodynamic model. Terra Nova, 7:7--30, 1995. [ bib ]
[274] Cathy Barton. Marie Tharp, oceanographic cartographer, and her contributions to the revolution in the Earth sciences. Geol. Soc., London, Spec. Pub., 192:215--228, 2002. [ bib ]
[275] Dan Bassett, Rupert Sutherland, and Stuart Henrys. Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. Earth Planet. Sci. Lett., 389:1--13, 2014. [ bib ]
[276] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochem., Geophys., Geosys., 16:1508--1540, 2015. [ bib ]
[277] Dan Bassett and Anthony B. Watts. Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior. Geochem., Geophys., Geosys., 16:1541--1576, 2015. [ bib ]
[278] D. Bassett, D. T. Sandwell, Y. Fialko, and A. B. Watts. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature, 531:92--96, 2016. [ bib ]
[279] D. Bassett, A. F. Arnulf, S. Kodaira, Stuart A Henrys, Harm J Van Avendonk, Daniel H N Barker, Ayako Nakanishi, Alistair J Harding, Ryuta Arai, Nathan L Bangs, David A Okaya, Katie Jacobs, Gou Fujie, Andrew Gase, Yojiro Yamamoto, Thomas Luckie, and Koichiro Obana. Upper-plate controls on megathrust slip behaviour: comparing the Hikurangi and Nankai subduction zones (abstract). In AGU Fall Meeting, number T006-05, Washington DC, 2020. American Geophysical Union. [ bib ]
[280] C. Bassin, G. Laske, and G. Masters. The current limits of resolution for surface wave tomography in North America (abstract). Eos Trans. AGU, 81:F897, 2000. [ bib ]
[281] G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, Cambridge UK, 1967. [ bib ]
[282] M. Båth. Lateral inhomogeneities in the upper mantle. Tectonophys., 2:483--514, 1965. [ bib ]
[283] K.-J. Bathe. Finite Element Procedures. Prentice-Hall, London, 2007. [ bib ]
[284] K.-J. Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, London, 1982. [ bib ]
[285] M. Battaglia, M. H. Murray, E. Serpelloni, and R. Bürgmann. The Adriatic regions: an independent microplate within the Africa-Eurasia collision zone. Geophys. Res. Lett., 31, 2004. [ bib | DOI ]
[286] Alexander Bauer, Fabian Scheipl, Helmut Küchenhoff, and A.-A. Gabriel. Modeling spatio-temporal earthquake dynamics using generalized functional additive regression. In Proceedings of the 32nd International Workshop on Statistical Modelling, volume 2, pages 146--149, 2017. [ bib ]
[287] T. Baumann, B. J. P. Kaus, and A. Popov. Constraining effective rheology through parallel joint geodynamic inversion. Tectonophys., 631:197--211, 2014. [ bib ]
[288] T. Baumann and B. J. P. Kaus. Geodynamic inversion to constrain the nonlinear rheology of the lithosphere. Geophys. J. Int., 202:1299--1316, 2015. [ bib ]
[289] Y. Baumberger, P. Berthoud, and C. Caroli. Physical analysis of the state- and rate-dependent friction law. II. Dynamic friction. Phys. Rev. E, 60:3928--3939, 1999. [ bib ]
[290] G. Bayona, M. Cortes, C. Jaramillo, G. Ojeda, J. Aristizábal, Reyes, and A. Harker. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull., 120:1171--1197, 2008. [ bib ]
[291] AP Beall, Louis Moresi, and Catherine M Cooper. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology, 46:487--490, 2018. [ bib ]
[292] Adam Beall, Åke Fagereng, and Susan Ellis. Strength of strained two-phase mixtures: Application to rapid creep and stress amplification in subduction zone mélange. Geophys. Res. Lett., 46:169--178, 2019. [ bib ]
[293] Adam Beall, Åke Fagereng, J. Huw Davies, Fanny Garel, and D. Rhodri Davies. Influence of subduction zone dynamics on interface shear stress and potential relationship with seismogenic behavior. Geochem., Geophys., Geosys., page e2020GC009267, 2020. [ bib | DOI ]
[294] S. Beanland and M. M. Clark. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake (abstract). In The Geological Society of America, Cordilleran Section, 89th annual meeting. Abstracts with Programs, volume 25, page 7, 1993. [ bib ]
[295] B. C. Beaudoin, J. A. Hole, S. L. Klemperer, and A. M. Trehu. Location of the southern edge of the Gorda slab and evidence for an adjacent asthenospheric window: results from seismic profiling and gravity. J. Geophys. Res.: Sol. Earth, 103:30101--30115, 1998. [ bib ]
[296] C. Beaumont, R. A. Jamieson, M. H. Nguyen, and B. Lee. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414:738--742, 2001. [ bib ]
[297] J. Beavan, P. Denys, M. Denham, B. Hager, T. Herring, and P. Molnar. Distribution of present-day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys. Res. Lett., 37(L16305), 2010. [ bib | DOI ]
[298] Gray E Bebout. Metamorphic chemical geodynamics of subduction zones. Earth Planet. Sci. Lett., 260:373--393, 2007. [ bib ]
[299] L. Beccaluva, P. Brotzu, G. Macciotta, L. Morbidelli, G. Serri, and G. Traversa. Cainozoic tectono-magmatic evolution and inferred mantle sources in the Sardo-Tyrrhenian area. In A. Boriani, M. Bonafede, G. B. Piccardo, and G. B. Vai, editors, The Lithosphere in Italy. Advances in Science Research, pages 15--40. Accademia Nazionale dei Lincei, Rome, 1989. [ bib ]
[300] Susan L Beck and George Zandt. The nature of orogenic crust in the central Andes. J. Geophys. Res.: Sol. Earth, 107(B10), 2002. [ bib ]
[301] Susan L Beck, George Zandt, Stephen C Myers, Terry C Wallace, Paul G Silver, and Lawrence Drake. Crustal-thickness variations in the central Andes. Geology, 24:407--410, 1996. [ bib ]
[302] T. W. Becker. Finite Elemente Modellierung zur Bruchaktivierung in Scherzonen. Master's thesis, Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. [ bib ]
[303] T. W. Becker. Deterministic chaos in two state-variable friction sliders and the effect of elastic interactions. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the Physics of Earthquakes, volume 120 of Geophys. Mono., pages 5--26. American Geophysical Union, Washington, DC, 2000. [ bib ]
[304] T. W. Becker and L. Boschi. A comparison of tomographic and geodynamic mantle models. Geochem., Geophys., Geosys., 3(1), 2002. [ bib | DOI ]
[305] T. W. Becker and R. J. O'Connell. Predicting plate velocities with geodynamic models. Geochem., Geophys., Geosys., 2(12), 2001. [ bib | DOI ]
[306] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology. In Workshop on numerical modeling of mantle convection and lithospheric dynamics, Aussois, France, 2001. [ bib ]
[307] T. W. Becker and R. J. O'Connell. Lithospheric stresses caused by mantle convection: The role of plate rheology (abstract). Eos Trans. AGU, 82(47):T12C--0921, 2001. [ bib ]
[308] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Global azimuthal anisotropy from Rayleigh waves and circulation-derived finite strain (abstract). In MIT/WHOI/New England Workshop on Anisotropy and Imaging, Massachusetts Institute of Technology, Cambridge MA, 2002. [ bib ]
[309] T. W. Becker. Lithosphere--Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. [ bib ]
[310] T. W. Becker. Lithosphere--Mantle Interactions. PhD thesis, Harvard University, Cambridge MA, 2002. Available at http://www-udc.ig.utexas.edu/external/becker/thesis.tp.times10.pdf. [ bib ]
[311] T. W. Becker and B. Schott. On boundary-element models of elastic fault interaction (abstract). Eos Trans. AGU, 83(47):NG62A--0925, 2002. [ bib ]
[312] T. W. Becker, J. B. Kellogg, G. Ekström, and R. J. O'Connell. Comparison of azimuthal seismic anisotropy from surface waves and finite-strain from global mantle-circulation models. Geophys. J. Int., 155:696--714, 2003. [ bib ]
[313] T. W. Becker, D. K. Blackman, and V. Schulte-Pelkum. Seismic anisotropy in the western US as a testbed for advancing combined models of upper mantle geodynamics and texturing (abstract). Eos Trans. AGU, 85(47):T33A--1338, 2004. [ bib ]
[314] T. W. Becker, J. L. Hardebeck, and G. Anderson. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions. Geophys. J. Int., 160:634--650, 2005. [ bib ]
[315] T. W. Becker. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces. Geophys. J. Int., 167:943--957, 2006. [ bib ]
[316] T. W. Becker and the CIG Global Flow Code Benchmark Group. Global spectral flow code benchmark and development plan. Technical report, University of Southern California, 2006. Available online at http://www-udc.ig.utexas.edu/external/becker/flow_code_project.051706.pdf, accessed 06/2016. [ bib ]
[317] T. W. Becker, G. Ekström, L. Boschi, and J. W. Woodhouse. Length-scales, patterns, and origin of azimuthal seismic anisotropy in the upper mantle as mapped by Rayleigh waves. Geophys. J. Int., 171:451--462, 2007. [ bib ]
[318] T. W. Becker, S. Chevrot, V. Schulte-Pelkum, and D. K. Blackman. Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models. J. Geophys. Res.: Sol. Earth, 111(B08309), 2006. [ bib | DOI ]
[319] T. W. Becker, V. Schulte-Pelkum, D. K. Blackman, J. B. Kellogg, and R. J. O'Connell. Mantle flow under the western United States from shear wave splitting. Earth Planet. Sci. Lett., 247:235--251, 2006. [ bib ]
[320] T. W. Becker. Stress and strain in southern California. Invited presentation at the Southern California Earthquake Center Annual Meeting, 2006. [ bib ]
[321] T. W. Becker, J. T. Browaeys, and T. H. Jordan. Stochastic analysis of shear wave splitting length scales. Earth Planet. Sci. Lett., 259:29--36, 2007. [ bib ]
[322] T. W. Becker. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett., 35(L05303), 2008. correction: doi:10.1029/2008GL033946. [ bib | DOI ]
[323] T. W. Becker, B. Kustowski, and G. Ekström. Radial seismic anisotropy as a constraint for upper mantle rheology. Earth Planet. Sci. Lett., 267:213--237, 2008. [ bib ]
[324] T. W. Becker, C. P. Conrad, B. A. Buffett, and R. D. Müller. Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth Planet. Sci. Lett., 278:233--242, 2009. [ bib ]
[325] T. W. Becker, B. Steinberger, and C. O'Neill. HC - A global mantle circulation solver following [1953] and [4842] [ bib ]
[326] T. W. Becker and C. Faccenna. A review of the role of subduction dynamics for regional and global plate motions. In F. Funiciello and S. Lallemand, editors, Subduction Zone Geodynamics, Int. J. Earth Sci., pages 3--34. Springer, 2009. [ bib ]
[327] T. W. Becker. Fine-scale modeling of global plate tectonics. Science, 329:1020--1021, 2010. [ bib ]
[328] T. W. Becker and B. J. P. Kaus. Numerical Geodynamics. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, 2010. Lecture notes, 162 p., available online at http://www-udc.ig.utexas.edu/external/becker/preprints/Geodynamics540.pdf, accessed 05/2016. [ bib ]
[329] T. W. Becker and M. S. Miller. Caribbean slab-craton interactions constrained by shear wave splitting (abstract). Eos Trans. AGU, 91(26):T43A--06, 2010. [ bib ]
[330] T. W. Becker. Seismic anisotropy. In H. K. Gupta, editor, Encyclopedia of Solid Earth Geophysics. Springer, 2011. [ bib | DOI ]
[331] T. W. Becker and H. Kawakatsu. On the role of anisotropic viscosity for plate-scale flow. Geophys. Res. Lett., 38(L17307), 2011. [ bib | DOI ]
[332] T. W. Becker and C. Faccenna. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett., 310:453--461, 2011. [ bib ]
[333] T. W. Becker. On recent seismic tomography for the western United States. Geochem., Geophys., Geosys., 13(Q01W10), 2012. [ bib | DOI ]
[334] T. W. Becker, S. Lebedev, and M. D. Long. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res.: Sol. Earth, 117(B01306), 2012. Original and updated splitting data base available online from http://www-udc.ig.utexas.edu/external/becker/sksdata.html, accessed 06/2021. [ bib | DOI ]
[335] T. W. Becker, S. Lebedev, and M. D. Long. On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res.: Sol. Earth, 117(B01306), 2012. [ bib | DOI ]
[336] T. W. Becker, C. Faccenna, E. D. Humphreys, A. R. Lowry, and M. S. Miller. Static and dynamic support of western U.S. topography. Earth Planet. Sci. Lett., 402:234--246, 2014. [ bib ]
[337] T. W. Becker, C. P. Conrad, A. J. Schaeffer, and S. Lebedev. Origin of azimuthal seismic anisotropy in oceanic plates and mantle. Earth Planet. Sci. Lett., 401:236--250, 2014. [ bib ]
[338] T. W. Becker, A. R. Lowry, C. Faccenna, B. Schmandt, A. Borsa, and C Yu. Western U.S. intermountain seismicity caused by changes in upper mantle flow. Nature, 524:458--461, 2015. [ bib ]
[339] T. W. Becker, A. J. Schaeffer, S. Lebedev, and C. P. Conrad. Implications of a comprehensive, spreading-aligned plate motion reference frame in light of seismic anisotropy and global trench migration (abstract). Eos Trans. AGU, (DI13C-01), 2015. [ bib ]
[340] T. W. Becker, A. J. Schaeffer, S. Lebedev, and S. P. Conrad. Toward a generalized plate motion reference frame. Geophys. Res. Lett., 42:3188--3196, 2015. [ bib ]
[341] T. W. Becker. Superweak asthenosphere in light of upper-mantle seismic anisotropy. Geochem., Geophys., Geosys., 18:1986--2003, 2017. [ bib | DOI ]
[342] T. W. Becker and W. Wang. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics (abstract). Eos Trans. AGU, 2017. AGU Fall Meeting, New Orleans. [ bib | DOI ]
[343] T. W. Becker, A. Hashima, A. M. Freed, and H. Sato. Stress change before and after the 2011 M9 Tohoku-oki earthquake. Earth Planet. Sci. Lett., 504:174--184, 2018. [ bib ]
[344] T. W. Becker and S. Lebedev. Dynamics of the lithosphere and upper mantle in light of seismic anisotropy. In H. Marquardt, M. Ballmer, S. Cottaar, and J. Konter, editors, Mantle Convection and Surface Expressions. American Geophysical Union, 2020. [ bib | DOI ]
[345] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1996, Freiberg/Sachsen, 1996. Deutsche Geophysikalische Gesellschaft. [ bib ]
[346] T. W. Becker and H. Schmeling. Finite element modeling of fault zone interactions. In EUG9 abstracts, Strassburg, 1997. European Union of Geosciences. [ bib ]
[347] T. W. Becker and H. Schmeling. Finite-Elemente-Modellierung von Faultpopulationen. In DGG Tagung 1997, Potsdam, 1997. Deutsche Geophysikalische Gesellschaft. [ bib ]
[348] T. Dahm and T. W. Becker. The elastic and viscous properties of highly fractured media. In EGS 1997 abstracts, Wien, 1997. European Geophysical Society. [ bib ]
[349] T. W. Becker and H. Schmeling. Earthquake recurrence time variations with and without fault zone interactions. Geophys. J. Int., 135:165--176, 1998. [ bib ]
[350] T. W. Becker, C. Faccenna, and R. J. O'Connell. The development of slabs in the upper mantle: insight from numerical and laboratory experiments (abstract). EOS, Trans. AGU, 79:S349, 1998. [ bib ]
[351] T. W. Becker, C. Faccenna, and R. J. O'Connell. Mantle winds and back-arc spreading: the influence of background flow on subdution in the upper mantle (abstract). Eos Trans. AGU, 79:F849, 1998. [ bib ]
[352] T. W. Becker, S. V. Panasyuk, R. J. O'Connell, and C. Faccenna. The backward-bent Indonesia slab. Eos Trans. AGU, 80:S18, 1999. [ bib ]
[353] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle (abstract). Eos Trans. AGU, 79:F599, 1998. [ bib ]
[354] T. W. Becker and A. Braun. New program maps geoscientific data sets interactively. Eos Trans. AGU, 79:505, 1998. [ bib ]
[355] T. W. Becker, C. Faccenna, R. J. O'Connell, and D. Giardini. The development of slabs in the upper mantle: insight from numerical and laboratory experiments. J. Geophys. Res.: Sol. Earth, 104:15207--15225, 1999. [ bib ]
[356] T. W. Becker, J. B. Kellogg, and R. J. O'Connell. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett., 171:351, 1999. [ bib ]
[357] T. W. Becker. On the spherical harmonic expansion of discontinuities on the Earth's surface. Final project for Harvard University course EPS202 “Inverse Theory” by Prof. A. M. Dziewoński, 1999. [ bib ]
[358] T. W. Becker. Finite Element Modeling of Fault Zone Interactions. Diploma thesis. Institut für Meteorologie und Geophysik der J.W.Goethe-Universität, Frankfurt am Main, 1997. (In German). [ bib ]
[359] T. W. Becker and B. J. P. Kaus. Numerical Modeling of Earth Systems. An introduction to computational methods with focus on solid Earth applications of continuum mechanics. University of Southern California, Los Angeles, 1.1.2 edition, 2015. Updated lecture notes (2020, 222 pages), available online at http://www-udc.ig.utexas.edu/external/becker/Geodynamics557.pdf, accessed 01/2023. [ bib | DOI ]
[360] Nicholas M Beeler, Evelyn Roeloffs, and Wendy McCausland. Re-estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia. Bull. Seismol. Soc. Am., 104:128--144, 2014. [ bib ]
[361] N. M. Beeler, T. E. Tullis, and J. D. Weeks. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett., 21:1987--1990, 1994. [ bib ]
[362] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151--162, 2003. [ bib ]
[363] C. Beghein and J. Trampert. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299:552--555, 2003. [ bib ]
[364] C. Beghein and J. Trampert. Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood algorithm. Geophys. J. Int., 157:163--1174, 2004. [ bib ]
[365] C. Beghein and J. Trampert. Lateral variations in radial anisotropy and consequences for the upper 1200km of the mantle. Geophys. Res. Abstr., 6:1348, 2004. [ bib ]
[366] C. Beghein and J. Trampert. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth Planet. Sci. Lett., 217:151--162, 2004. [ bib ]
[367] C. Beghein, J. Trampert, and H. J. van Heijst. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[368] C. Beghein, J. Resovsky, and R. D. van der Hilst. The signal of mantle anisotropy in the coupling of normal modes. Geophys. J. Int., 175:1209--1234, 2008. [ bib ]
[369] C. Beghein, K. Yuan, N. Schmerr, and Z. Xing. Changes in seismic anisotropy shed light on the nature of the Gutenberg discontinuity. Science, 343:1237--1240, 2014. [ bib ]
[370] N. Beghoul and M. Barazangi. Mapping high Pn velocity beneath the Colorado Plateau constrains uplift models. J. Geophys. Res.: Sol. Earth, 94:7083--7104, 1989. [ bib ]
[371] M. D. Behn, J. Lin, and M. T. Zuber. A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting. Earth Planet. Sci. Lett., 202:725--740, 2002. [ bib ]
[372] Mark D Behn, Jian Lin, and Maria T Zuber. Evidence for weak oceanic transform faults. Geophys. Res. Lett., 29(24), 2002. [ bib | DOI ]
[373] M. D. Behn, C. P. Conrad, and P. G. Silver. Detection of upper mantle flow associated with the African Superplume. Earth Planet. Sci. Lett., 224:259--274, 2004. [ bib ]
[374] M. D. Behn, G. Hirth, and P. Kelemen. Trench-parallel anisotropy produced by foundering of arc lower crust. Science, 317:108--111, 2007. [ bib ]
[375] M. D. Behn, M. S. Boettcher, and G. Hirth. Thermal structure of oceanic transform faults. Geology, 35:307--310, 2007. [ bib ]
[376] M. D. Behn, G. Hirth, and J. R. Elsenbeck II. Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth Planet. Sci. Lett., 282:178--189, 2009. [ bib ]
[377] Mark D Behn and Timothy L Grove. Melting systematics in mid-ocean ridge basalts: Application of a plagioclase-spinel melting model to global variations in major element chemistry and crustal thickness. J. Geophys. Res.: Sol. Earth, 120:4863--4886, 2015. [ bib ]
[378] M. Behn, K. Barnhart, T. W. Becker, J. Brown, E. Choi, C. Cooper, J. Dannberg, N. Gasparini, R. Gassmoeller, L. Hwang, B. Kaus, L. Kellogg, L. Lavier, E. Mittelstaedt, L. Moresi, A. Pusok, G. Tucker, P. Upton, and P. Val. Whitepaper reporting outcomes from NSF-sponsored workshop: CTSP: Coupling of tectonic and surface processes April 25-27, 2018; Boulder CO. Technical report, CSDMS, Boulder CO, 2018. 41 pp., available online at https://csdms.colorado.edu/mediawiki/images/CTSP_WhitePaper_Final.pdf, accessed 01/2021. [ bib ]
[379] M. Běhounková and H. Čížková. Long-wavelength character of subducted slabs in the lower mantle. Earth Planet. Sci. Lett., 275:43--53, 2008. [ bib ]
[380] W. M. Behr and J. P. Platt. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth Planet. Sci. Lett., 303:181--192, 2011. [ bib ]
[381] W. M. Behr and J. P. Platt. Kinematic and thermal evolution during two-stage exhumation of a Mediterranean subduction complex. Earth Planet. Sci. Lett., 31(TC4025), 2012. [ bib | DOI ]
[382] W. M. Behr and J. P. Platt. Brittle faults are weak, yet the ductile middle crust is strong: implications for lithospheric mechanics. Geophys. Res. Lett., 41:8067--–8075, 2015. [ bib | DOI ]
[383] Whitney M. Behr and Douglas Smith. Deformation in the mantle wedge associated with Laramide flat-slab subduction. Geochem., Geophys., Geosys., 17:2643--2660, 2016. [ bib | DOI ]
[384] W. M. Behr and T. W. Becker. Sediment control on subduction plate speeds. Earth Planet. Sci. Lett., 502:166--173, 2018. [ bib ]
[385] Whitney M Behr, Alissa J Kotowski, and Kyle T Ashley. Dehydration-induced rheological heterogeneity and the deep tremor source in warm subduction zones. Geology, 46:475--478, 2018. [ bib ]
[386] W. M. Behr and R. Bürgmann. What's down there? The structures, materials and environment of deep-seated slow slip and tremor. Phil. Trans. R. Soc. A, 379, 2021. [ bib | DOI ]
[387] Whitney M Behr, Adam F Holt, Thorsten W Becker, and Claudio Faccenna. The effects of plate interface rheology on subduction kinematics and dynamics. Geophys. J. Int., 230:796--812, 2022. [ bib ]
[388] M. E. Bellardinelli, M. Cocco, O. Coutant, and F. Cotton. Redistribution of dynamic stress during coseismic ruptures: Evidence for fault interaction and earthquake triggering. J. Geophys. Res.: Sol. Earth, 104:14925--14945, 1999. [ bib ]
[389] N. Bellahsen, C. Faccenna, Funiciello R., Daniel J.M., and L. Jolivet. Why did Arabia separate from Africa? Insight from 3D laboratory experiments. Earth Planet. Sci. Lett., 216:365--381, 2003. [ bib ]
[390] N. Bellahsen, C. Faccenna, and F. Funiciello. Dynamics of subduction and plate motion in laboratory experiments: insights into the plate tectonics behavior of the Earth. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[391] O. Bellier, S. Över, A. Poisson, and A. Anrieux. Recent temporal change in the stress state and modern stress field along the North Anatolian Fault Zone (Turkey). Geophys. J. Int., 131:61--86, 1997. [ bib ]
[392] Léa Bello, Nicolas Coltice, Tobias Rolf, and Paul J Tackley. On the predictability limit of convection models of the Earth's mantle. Geochem., Geophys., Geosys., 15:2319--2328, 2014. [ bib ]
[393] L. Bello, N. Coltice, P. J. Tackley, D. Müller, and J. Cannon. Assessing the role of slab rheology in coupled plate-mantle convection models. Earth Planet. Sci. Lett., 430:191--201, 2015. [ bib ]
[394] Y. Ben-Zion. A note on quantification of the earthquake source. Seism. Res. Lett., 72:151--152, 2001. [ bib ]
[395] Y. Ben-Zion and L. Zhu. Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0. Geophys. J. Int., 148:F1--F5, 2002. [ bib ]
[396] Y. Ben-Zion and V. Lyakhovsky. Accelerated seismic release and related aspects of seismicity patterns on earthquake faults. Pure Appl. Geophys., 159:2385--2412, 2002. [ bib ]
[397] Y. Ben-Zion and C. G. Sammis. Characterization of fault zones. Pure Appl. Geophys., 160:677--715, 2003. [ bib ]
[398] Y. Ben-Zion. Key formulas in earthquake seismology. In International Handbook of Earthquake and Engineering Seismology, pages 1857--1875. Academic Press, 2003. [ bib ]
[399] Y. Ben-Zion, Z. Peng, D. Okaya, L. Seeber, J. G. Armbruster, N. Ozer, A. J. Michael, S. Baris, and M. Aktar. A shallow fault zone structure illuminated by trapped waves in the Karadere-Düuzce branch of the North Anatolian fault, western Turkey. Geophys. J. Int., 152:699--717, 2003. [ bib ]
[400] Y. Ben-Zion and V. Lyakhovsky. Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology. Geophys. J. Int., 165:197--210, 2006. [ bib ]
[401] Y. Ben-Zion. Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes. Rev. Geophys., 46(RG4006), 2008. [ bib | DOI ]
[402] Y. Ben-Zion, Rice, and R. J. R. Dmowska. Interaction of the San Andreas fault creeping segment with adjacent great rupture zones and earthquake recurrence at Parkfield. J. Geophys. Res.: Sol. Earth, 98:2135--2144, 1993. [ bib ]
[403] Y. Ben-Zion and J. R. Rice. Earthquake Failure Sequences Along a Cellular Fault Zone in a Three-Dimensional Elastic Solid Containing Asperity and Nonasperity Region. J. Geophys. Res.: Sol. Earth, 98:14109--14131, 1993. [ bib ]
[404] Y. Ben-Zion and J. R. Rice. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res.: Sol. Earth, 100:12959--12983, 1995. [ bib ]
[405] Y. Ben-Zion and J. R. Rice. Dynamic simulations of slip on a smooth fault in an elastic solid. J. Geophys. Res.: Sol. Earth, 102:17771--17784, 1997. [ bib ]
[406] Y. Ben-Zion, K. Dahmen, V. Lyakhovsky, D. Ertas, and A. Agnon. Self-driven mode switching of earthquake activity on a fault system. Earth Planet. Sci. Lett., 172:11--21, 1999. [ bib ]
[407] H Bénard. Les tourbillons cellulaires dans une nappe liquid. Revue générale des Sciences pures et appliqueés, 11:1261--1271 and 1309--1328, 1900. [ bib ]
[408] H Bénard. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annales de Chimie et de Physique, 23:62--144, 1901. [ bib ]
[409] B. Bender. Maximum likelihood estimation of b values for magnitude grouped data. Bull. Seismol. Soc. Am., 73:831--851, 1983. [ bib ]
[410] G. Benettin, A. Galgani, A. Giorgilli, and J.-M. Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. part 2: Numerical application. Meccanica, 15:21, 1980. [ bib ]
[411] A Beniest, A Koptev, and Evgenii Burov. Numerical models for continental break-up: Implications for the South Atlantic. Earth Planet. Sci. Lett., 461:176--189, 2017. [ bib ]
[412] Hugo Benioff. Seismic evidence for the fault origin of oceanic deeps. Geol. Soc. Amer. Bull., 60:1837--1856, 1949. [ bib ]
[413] Richard A Bennett, Anke M Friedrich, and Kevin P Furlong. Codependent histories of the San Andreas and San Jacinto fault zones from inversion of fault displacement rates. Geology, 32:961--964, 2004. [ bib ]
[414] R. Bennett, W. Rodi, and R. E. Reilinger. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico. J. Geophys. Res.: Sol. Earth, 101:21943--21960, 1996. [ bib ]
[415] H Berckhemer, W Kampfmann, E Aulbach, and H Schmeling. Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments. Phys. Earth Planet. Inter., 29:30--41, 1982. [ bib ]
[416] D. Bercovici, Y. Ricard, and G. Schubert. A two-phase model for compaction and damage. 3. Applications to shear localization and plate boundary formation. J. Geophys. Res.: Sol. Earth, 106:8925--8939, 2001. [ bib ]
[417] David Bercovici and Shun-ichiro Karato. Theoretical analysis of shear localization in the lithosphere. Rev. Mineral. Geochem., 51:387--420, 2002. [ bib ]
[418] D. Bercovici. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205:107--121, 2003. [ bib ]
[419] D. Bercovici and S.-i. Karato. Whole-mantle convection and the transition-zone water filter. Nature, 425:39--44, 2003. [ bib ]
[420] D. Bercovici and Y. Ricard. Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res.: Sol. Earth, 110(B0340), 2005. [ bib | DOI ]
[421] David Bercovici and Yanick Ricard. Generation of plate tectonics with two-phase grain-damage and pinning: Source--sink model and toroidal flow. Earth Planet. Sci. Lett., 365:275--288, 2013. [ bib ]
[422] D. Bercovici and Y. Ricard. Plate tectonics, damage and inheritance. Nature, 508:513--516, 2014. [ bib ]
[423] David Bercovici and Maureen D Long. Slab rollback instability and supercontinent dispersal. Geophys. Res. Lett., 41:6659--6666, 2014. [ bib ]
[424] D. Bercovici, P. T. Tackley, and Y. Ricard. The generation of plate tectonics from mantle convection. In Treatise on Geophysics, pages 271--318. Elsevier, 2 edition, 2015. [ bib ]
[425] D. Bercovici and Y. Ricard. Grain-damage hysteresis and plate tectonic states. Phys. Earth Planet. Inter., 253:31--47, 2016. [ bib ]
[426] D Bercovici, G Schubert, GA Glatzmaier, and A Zebib. Three-dimensional thermal convection in a spherical shell. J. Fluid Mech., 206:75--104, 1989. [ bib ]
[427] David Bercovici, Gerald Schubert, and Gary A Glatzmaier. Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a basally heated spherical shell. J. Fluid Mech., 239:683--719, 1992. [ bib ]
[428] David Bercovici. A simple model of plate generation from mantle flow. Geophys. J. Int., 114:635--650, 1993. [ bib ]
[429] D. Bercovici. A source-sink model of the generation of plate-tectonics from non-Newtonian mantle flow. J. Geophys. Res.: Sol. Earth, 100:2013--2030, 1995. [ bib ]
[430] D. Bercovici. On the purpose of toroidal motion in a convecting mantle. Geophys. Res. Lett., 22:3107--3110, 1995. [ bib ]
[431] D. Bercovici. Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication. Earth Planet. Sci. Lett., 133:41--51, 1996. [ bib ]
[432] H. C. Berg. Bacterial behavior. Nature, 254:389--392, 1975. [ bib ]
[433] P. A. Berge, J. G. Berryman, and B. P. Bonner. Influence of microstructure on rock elastic properties. Geophys. Res. Lett., 20:2619--2622, 1993. [ bib ]
[434] Andre Berger. The milankovitch astronomical theory of paleoclimates: a modern review. Vistas in Astronomy, 24:103--122, 1980. [ bib ]
[435] S. Y. Bergeron, D. A. Yuen, and A. P. Vincent. Capabilities of 3-D wavelet transforms to detect plume-like structures from seismic tomography. Geophys. Res. Lett., 27:3433--3436, 2000. [ bib ]
[436] Rachel E. Bernard and Whitney M. Behr. Fabric heterogeneity in the Mojave lower crust and lithospheric mantle in Southern California. J. Geophys. Res.: Sol. Earth, 122:5000--5025, 2017. [ bib | DOI ]
[437] R. Bernard, W. M. Behr, T. W. Becker, and D. Young. Relationships between olivine CPO and deformation parameters in naturally deformed rocks and implications for mantle seismic anisotropy. Geochem., Geophys., Geosys., 2019. [ bib | DOI ]
[438] Gregory C Beroza and Satoshi Ide. Slow earthquakes and nonvolcanic tremor. Ann. Rev. Earth Planet. Sci., 39:271--296, 2011. [ bib ]
[439] G. C. Beroza and M. D. Zoback. Mechanism diversity of the Loma Prieta aftershocks and the mechanics of mainshock-aftershock interaction. Science, 259:210--212, 1993. [ bib ]
[440] Kelvin R. Berryman, Ursula A. Cochran amd Kate J. Clark, Glenn P. Biasi, Robert M. Langridge, and Pilar Villamor. Major earthquakes occur regularly on an isolated plate boundary fault. Science, 336:1690--1693, 2012. [ bib ]
[441] C Lithgow-Bertelloni and M Gurnis. Cenozoic subsidence and uplift of continents from time-varying dynamic topography. Geology, 25:735--738, 1997. [ bib ]
[442] P. G. Betts, W. G. Mason, and L. M. Moresi. The influence of a mantle plume head on the dynamics of a retreating subduction zone. Geology, 40:739--742, 2012. [ bib ]
[443] É. Beucler, É. Stutzmann, and J.-P. Montagner. Surface wave higher mode phase velocity measurements usig a roller coaster type algorithm. Geophys. J. Int., 155:289--307, 2003. [ bib ]
[444] É. Beucler and J.-P. Montagner. Computation of large anisotropic seismic heterogeneities (CLASH). Geophys. J. Int., 165:447--468, 2006. [ bib ]
[445] M. Bevis and B. L. Isacks. Hypocentral trend surface analysis: Probing the geometry of Benioff zones. J. Geophys. Res.: Sol. Earth, 89:6153--6170, 1984. [ bib ]
[446] M. Bevis. The curvature of Wadati-Benioff zones and the torsional rigidity of subducting plates. Nature, 323:52--53, 1986. [ bib ]
[447] M. Bevis. Seismic slip and down dip strain rate in Wadati-Benioff zones. Science, 240:1317--1319, 1988. [ bib ]
[448] M. Bevis, F. W. Taylor, B. E. Schutz, J. Recy, B. L. Isacks, S. Helu, R. Singh, E. Kendrick, J. Stowell, B. Taylor, and S. Calmant. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature, 374:249--251, 1995. [ bib ]
[449] M. J. Bezada, M. B. Magnani, C. A. Zelt, M. Schmitz, and A. Levander. The Caribbean-South American plate boundary at 65oW: Results from wide-angle seismic data. J. Geophys. Res.: Sol. Earth, 115(B08402), 2010. [ bib | DOI ]
[450] M. J. Bezada, A. Levander, and B. Schmandt. Subduction in the southern Caribbean: Images from finite-frequency P wave tomography. J. Geophys. Res.: Sol. Earth, 115(B12333), 2010. [ bib | DOI ]
[451] M. J. Bezada and E. D. Humphreys. Contrasting rupture processes during the April 11, 2010 deep-focus earthquake beneath Granada, Spain. Earth Planet. Sci. Lett., 353:38--46, 2012. [ bib ]
[452] M. J. Bezada, E. D. Humphreys, D. R. Toomey, M. Harnafi, and J. M. Dávila. Western mediterranean slab rollback revealed by upper mantle tomography. Earth Planet. Sci. Lett., submitted, 2013. [ bib ]
[453] MJ Bezada, M Faccenda, and DR Toomey. Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward. Geochem., Geophys., Geosys., 17(8):3164--3189, 2016. [ bib ]
[454] R. Bhagavatula, K. Chen, and C. Jayaprakash. Earthquakes in a model of seismic zone with embedded pre-existing faults. Geophys. Res. Lett., 22:1301--1304, May 1995. [ bib ]
[455] Pathikrit Bhattacharya, Allan M Rubin, Terry E Tullis, Nicholas M Beeler, and Keishi Okazaki. The evolution of rock friction is more sensitive to slip than elapsed time, even at near-zero slip rates. Proc. Natl. Acad. Sci. USA, 119:e2119462119, 2022. [ bib ]
[456] I. Bianchi, J. Park, N. Piana Agostinetti, and V. Levin. Mapping seismic anisotropy using harmonic decomposition of receiver functions: An application to Northern Apennines, Italy. J. Geophys. Res.: Sol. Earth, 115, 2010. [ bib | DOI ]
[457] T. A. Bianco, G. Ito, J. M. Becker, and M. O. Garcia. Secondary Hawaiian volcanism formed by flexural arch decompression. Geochem., Geophys., Geosys., 8, 2005. [ bib | DOI ]
[458] Glenn P Biasi, Ray J Weldon, Thomas E Fumal, and Gordon G Seitz. Paleoseismic event dating and the conditional probability of large earthquakes on the southern san andreas fault, california. Bull. Seismol. Soc. Am., 92:2761--2781, 2002. [ bib ]
[459] R. Biegel and C. G. Sammis. Relating fault mechanics to fault zone structure. Adv. Geophys., 47:65--276, 2004. [ bib ]
[460] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. nteraction of a dynamic rupture on a fault plane with short frictionless fault branches. Pure Appl. Geophys., 164:1881--1904, 2007. [ bib ]
[461] R. L. Biegel, C. G. Sammis, and A. J. Rosakis. An experimental study of the effect of off-fault damage on the velocity of a slip pulse. J. Geophys. Res.: Sol. Earth, 113(B04302), 2008. [ bib | DOI ]
[462] R. L. Biegel, C. G. Sammis, and J. H. Dieterich. The frictional properties of a simulated gouge having a fractal particle distribution. J. Struct. Geol., 11:827--846, 1989. [ bib ]
[463] J. Biemiller and L. L. Lavier. Earthquake supercycles as part of a spectrum of normal fault slip styles. J. Geophys. Res.: Sol. Earth, 133:3221--3240, 2017. [ bib ]
[464] H. Bijwaard, W. Spakman, and E.R. Engdahl. Closing the gap between regional and global travel time tomography. J. Geophys. Res.: Sol. Earth, 103:30055--30078, 1998. [ bib ]
[465] Harmen Bijwaard and Wim Spakman. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett., 166:121--126, 1999. [ bib ]
[466] Susan L Bilek, Susan Y Schwartz, and Heather R DeShon. Control of seafloor roughness on earthquake rupture behavior. Geology, 31:455--458, 2003. [ bib ]
[467] S. Bilek, C. P. Conrad, and C. Lithgow-Bertelloni. Slab pull, slab weakening and their relation to deep intra-slab seismicity. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[468] Susan L Bilek and Thorne Lay. Subduction zone megathrust earthquakes. Geosphere, 14:1468--1500, 2018. [ bib ]
[469] R. Bilham and G. C. P. King. The morphology of strike-slip-faults: Examples from the San-Andreas fault, California. J. Geophys. Res.: Sol. Earth, 94:10204--10216, August 1989. [ bib ]
[470] R. Bilham. Earthquakes and sea level: space and terrestrial metrology on a changing planet. Rev. Geophys., 29:1--29, 1991. [ bib ]
[471] M. I. Billen and M. Gurnis. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett., 193:227--236, 2001. [ bib ]
[472] M. I. Billen and M. Gurnis. Comparison of dynamic flow models for the Central Aleuitan and Tonga-Kermadec subduction zones. Geochem., Geophys., Geosys., 4, 2003. [ bib | DOI ]
[473] M. I. Billen and M. Gurnis. Multiscale dynamics of the Tonga-Kermadec subduction zone. Geophys. J. Int., 153:359--388, 2003. [ bib ]
[474] M. I. Billen and G. A. Houseman. Lithospheric instability in obliquely convergent margins: San Gabriel Mountains, southern California. J. Geophys. Res.: Sol. Earth, 109(B01404), 2004. [ bib | DOI ]
[475] M. I. Billen and G. Hirth. Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation. Geophys. Res. Lett., 32, 2005. [ bib | DOI ]
[476] M. I. Billen and M. Gurnis. Constraints on subducting plate strength within the Kermadec trench. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[477] M. I. Billen and G. Hirth. Rheologic controls on slab dynamics. Geochem., Geophys., Geosys., 8(Q08012), 2007. [ bib | DOI ]
[478] M. I. Billen. Modeling the dynamics of subducting slabs. Ann. Rev. Earth Planet. Sci., 36:325--356, 2008. [ bib ]
[479] M. I. Billen. Slab dynamics in the transition zone. Phys. Earth Planet. Inter., 183:296–--308, 2010. [ bib ]
[480] M. I. Billen and K. M. Arredondo. Decoupling of plate-asthenosphere motion caused by non-linear viscosity during slab folding in the transition zone. Phys. Earth Planet. Inter., 281:17--30, 2018. [ bib ]
[481] M. I. Billen. Deep slab seismicity limited by rate of deformation in the transition zone. Science Adv., 6(22), 2020. [ bib | DOI ]
[482] B. Bills, K. D. Adams, and S. G. Wesnousky. Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. J. Geophys. Res.: Sol. Earth, 112, 2007. [ bib | DOI ]
[483] C. R. Bina and H. Kawakatsu. Buoyancy, bending, and seismic visibility in deep slab stagnation. Phys. Earth Planet. Inter., 183:330–--340, 2010. [ bib ]
[484] Eugene C Bingham. Rheology. i. the nature of fluid flow. J. Chem. Educ., 6:1113--119, 1929. [ bib ]
[485] F. Birch. Elasticity and constitution of the Earth’s interior. J. Geophys. Res.: Sol. Earth, 57:227--286, 1952. [ bib ]
[486] Francis Birch. Energetics of core formation. J. Geophys. Res.: Sol. Earth, 70:6217--6221, 1965. [ bib ]
[487] P. Bird. Stress direction history of the western United States and Mexico since 85 Ma. Tectonics, 21(3), 2002. [ bib | DOI ]
[488] P. Bird. Neotectonic velocity field of the western United States (abstract). Eos Trans. AGU, 83(47):NG62A--0931, 2002. [ bib ]
[489] P. Bird. An updated digital model of plate boundaries. Geochem., Geophys., Geosys., 4(3):1027, 2003. [ bib | DOI ]
[490] P. Bird and Y. Y. Kagan. Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bull. Seismol. Soc. Am., 94:2380--2399, 2004. [ bib ]
[491] P. Bird, Z. Liu, and W. K. Rucker. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis. J. Geophys. Res.: Sol. Earth, 113(B11406), 2008. [ bib | DOI ]
[492] P. Bird. Fault slip rates in the western U.S. from a joint fit to geologic offsets, GPS velocities, and stress directions (abstract). Eos Trans. AGU, 89(52):T23R--08, 2008. [ bib ]
[493] P. Bird. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets. J. Geophys. Res.: Sol. Earth, 114(B11403), 2009. [ bib | DOI ]
[494] P. Bird. Thin-shell dynamic F-E model SHELLS with faults, 3-D structure, and realistic rheology. Unpublished model derived for the SCEC CSM using the method of [504], available online at http://sceczero.usc.edu/projects/CSM/model_metadata?type=stress&model=SHELLS, accessed 10/2013, 2012. [ bib ]
[495] Peter Bird and Corné Kreemer. Revised tectonic forecast of global shallow seismicity based on version 2.1 of the Global Strain Rate Map. Bull. Seismol. Soc. Am., 105:152--166, 2015. [ bib ]
[496] P. Bird. Continental delamination and the Colorado Plateau. J. Geophys. Res.: Sol. Earth, 84:7561--7571, 1979. [ bib ]
[497] P. Bird and K. Piper. Plane-stress finite-element models of tectonic flow in Southern California. Phys. Earth Planet. Inter., 21:158--175, 1980. [ bib ]
[498] P. Bird and J. Baumgardner. Fault friction, regional stress, and crust-mantle coupling in Southern California from finite element models. J. Geophys. Res.: Sol. Earth, 89:1932--1944, 1984. [ bib ]
[499] P. Bird. Formation of the Rocky Mountains, western United States: a continuum computer model. Science, 239:1501--1507, 1988. [ bib ]
[500] P. Bird. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J. Geophys. Res.: Sol. Earth, 96:10275--10286, 1991. [ bib ]
[501] P. Bird and X. Kong. Computer simulations of California tectonics confirm very low strength of major faults. Bull. Seismol. Soc. Am., 106:159--174, 1994. [ bib ]
[502] P. Bird and Y. Li. Interpolation of principal stress directions by nonparametric statistics: global maps with confidence limits. J. Geophys. Res.: Sol. Earth, 101:5435--5443, 1996. [ bib ]
[503] P. Bird. Testing hypothesis on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res.: Sol. Earth, 103:10115--10129, 1998. [ bib ]
[504] P. Bird. Thin-plate and thin-shell finite element programs for forward dynamic modeling of plate deformation and faulting. Computers & Geosc., 25:383--394, 1999. [ bib ]
[505] Thomas Birren and Jacqueline E Reber. The impact of rheology on the transition from stick-slip to creep in a semibrittle analog. J. Geophys. Res.: Sol. Earth, 124:3144--3154, 2019. [ bib ]
[506] C. B. Biryol, G. Zandt, S. L. Beck, A. A. Ozacar, H. E. Adiyaman, and C. R. Gans. Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone. Geophys. J. Int., 181:1201--1213, 2010. [ bib ]
[507] R. Biswas, A. F. Arnulf, M. K. Sen, D. Datta, and P. Jaysaval. Ray-based tomography and acoustic full waveform inversion with the reversible jump Markov chain Monte Carlo algorithm (abstract). In AGU Fall Meeting, number S31D-0526. American Geophysical Union, 2018. [ bib ]
[508] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DES3D on Bitbucket. Online at bitbucket.org/tan2/dynearthsol3d/src, accessed 11/2016, 2016. [ bib ]
[509] D. Bittner and H. Schmeling. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int., 123(59--70), 1995. [ bib ]
[510] D. K. Blackman, H.-R. Wenk, and J.-M. Kendall. Seismic anisotropy of the upper mantle: 1. Factors that affect mineral texture and effective elastic properties. Geochem., Geophys., Geosys., 3(2001GC000248), 2002. [ bib ]
[511] D. K. Blackman and J.-M. Kendall. Seismic anisotropy of the upper mantle: 2. Predictions for current plate boundary flow models. Geochem., Geophys., Geosys., 3(2001GC000247), 2002. [ bib ]
[512] Donna K Blackman, Jeffrey A Karson, Deborah S Kelley, Johnson R Cann, Gretchen L Früh-Green, Jeffrey S Gee, Stephen D Hurst, Barbara E John, Jennifer Morgan, Scott L Nooner, D Kent Ross, Schroeder Timothy J, and Elizabeth A. Williams. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30oN): Implications for the evolution of an ultramafic oceanic core complex. Marine Geophys. Res., 23:443--469, 2002. [ bib ]
[513] D. Blackman. Use of mineral physics, with geodynamic modelling and seismology, to investigate flow in the Earth's mantle. Rep. Prog. Phys., 70:659--689, 2007. [ bib ]
[514] D.K. Blackman, D.E. Boyce, O. Castelnau, P. R. Dawson, and G Laske. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy. Geophys. J. Int., 210:1481--1493, 2017. [ bib ]
[515] D. K. Blackman, J.-M. Kendall, P. R. Dawson, and H.-R. Wenk. Teleseismic imaging of subaxial flow at mid-ocean ridges: traveltime effects of anisotropic mineral texture in the mantle. Geophys. J. Int., 127:415--426, 1996. [ bib ]
[516] D. K. Blackman and J.-M. Kendall. Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Phil. Trans. Roy. Soc. Lond. A, 235:217--231, 1997. [ bib ]
[517] D. D. Blackwell and M. Richards. Calibration of the AAPG Geothermal Survey of North America BHT data base (abstract). In AAPG Annual Meeting, Dallas, TX, page 87616, 2004. updated data compilation based on [519], available online at http://www.smu.edu/geothermal/2004NAMap/, accessed 05/2005. [ bib ]
[518] Em Blackwell1, Manoochehr Shirzaei, Chandrakanta Ojha, and Susanna Werth. Tracking California’s sinking coast from space: Implications for relative sea-level rise. Science Adv., 6:eaba4551, 2020. [ bib ]
[519] D. D. Blackwell, J. L. Steele, and L. S. Carter. Heat flow patterns of the North American continent: A discussion of the DNAG geothermal map of North America. In D. B. Slemmons, E. R. Engdahl, and D. D. Blackwell, editors, Neotectonics of North America, volume 1 of Geol. Soc. Amer. DNAG Decade Map, pages 423--437. Geol. Soc. Amer., 1991. [ bib ]
[520] M. Blanco and W. Spakman. The P-wave velocity structure of the mantle below the Iberian Peninsula: evidence for subducted lithosphere below southern Spain. Tectonophys., 221:13--34, 1993. [ bib ]
[521] M. L. Blanpied and T. E. Tullis. The stability and behavior of a frictional system with a two state variable constitutive law. Pure Appl. Geophys., 124:415--444, 1986. [ bib ]
[522] ML Blanpied, DA Lockner, and JD Byerlee. Fault stability inferred from granite sliding experiments at hydrothermal conditions. Geophys. Res. Lett., 18:609--612, 1991. [ bib ]
[523] Michael L Blanpied, David A Lockner, and James D Byerlee. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res.: Sol. Earth, 100:13045--13064, 1995. [ bib ]
[524] Lilian Blaser, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull. Seismol. Soc. Am., 100:2914--2926, 2010. [ bib ]
[525] W. Bleeker. The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71:99--134, 2003. [ bib ]
[526] Q. Bletery, A. M. Thomas, A. W. Rempel, L. Karlstrom, A. Sladen, and L. De Barros. Mega-earthquakes rupture flat megathrusts. Science, 354:1027--1031, 2016. [ bib ]
[527] G. Blewitt. NGL/UNR GPS Data Analysis Strategy Summary. Technical report, Nevada Geodetic Laboratory, University of Nevada, 2016. Available online at http://geodesy.unr.edu/gps/ngl.acn.txt, accessed 11/2016. [ bib ]
[528] G. Blewitt, W. C. Hammond, and C. Kreemer. Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, 2018. [ bib | DOI ]
[529] M Block. Surface tension as the cause for bénard and surface deformation in a liquid film. Nature, 178:650--651, 1956. [ bib ]
[530] H. Blumenauer and G. Pusch. Technische Bruchmechanik. Dtsch. Verlag f"ur Grundstoffindustrie, Leipzig, 3 edition, 1993. [ bib ]
[531] M. Boccaletti, P. Elter, and G. Guazzone. Polaritá strutturali delle alpi e dell' appennino settentrionale in rapporto all'inversione di una zona di subduzione nord-tirrenica. Mem. Soc. Geol. It., 10:371--378, 1971. [ bib ]
[532] Y. Bock, R. M. Nikolaidis, P. J. de Jonge, and M. Bevis. Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res.: Sol. Earth, 105:28223--28253, 2000. [ bib ]
[533] YEHUDA Bock, L Prawirodirdjo, JF Genrich, CW Stevens, R McCaffrey, C Subarya, SSO Puntodewo, and E Calais. Crustal motion in Indonesia from global positioning system measurements. J. Geophys. Res.: Sol. Earth, 108(2367), 2003. [ bib | DOI ]
[534] P. Bodin and J.N. Brune. On the scaling of slip with rupture length for shallow strike-slip earthquakes: Quasi-static models and dynamic rupture propagation. Bull. Seismol. Soc. Am., 86:1292--1299, October 1996. [ bib ]
[535] Thomas Bodin, Malcolm Sambridge, H Tkalčić, Pierre Arroucau, Kerry Gallagher, and Nicholas Rawlinson. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res.: Sol. Earth, 117(B2), 2012. [ bib ]
[536] T. Bodin, J. Leiva, B. A. Romanowicz, V. Maupin, and H. Yuan. Imaging anisotropic layering with Bayesian inversion of multiple data types. Geophys. J. Int., 206:605--629, 2016. [ bib ]
[537] JH Bodine, MS Steckler, and AB Watts. Observations of flexure and the rheology of the oceanic lithosphere. Journal of Geophysical Research: Solid Earth, 86:3695--3707, 1981. [ bib ]
[538] M. Bodmer, D. R. Toomey, E. E. Hooft, and J. Braunmiller. Seismic anisotropy beneath the Juan de Fuca plate system: Evidence for heterogeneous mantle flow. Geology, 43, 2015. [ bib | DOI ]
[539] L. Bodri and B. Bodri. Numerical investigation of tectonic flow in island-arc areas. Tectonophys., 50:163--175, 1978. [ bib ]
[540] O. F. Bodur and P. F. Rey. The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10:2167--2178, 2019. [ bib ]
[541] M. S. Boettcher and T. H. Jordan. Earthquake scaling relations for mid-ocean ridge transform faults. J. Geophys. Res.: Sol. Earth, 109(B12302), 2004. [ bib | DOI ]
[542] Margaret S. Boettcher, Greg Hirth, and Brian Evans. Olivine friction at the base of oceanic seismogenic zones. J. Geophys. Res.: Sol. Earth, 112(B91295), 2007. [ bib | DOI ]
[543] M. S. Boettcher, A. McGarr, and M. Johnston. Extension of Gutenberg–Richter distribution to Mw -1.3, no lower limit in sight. Geophys. Res. Lett., 36(L10307), 2009. [ bib | DOI ]
[544] G. Bokelmann and E. D. Humphreys. Plate-mantle interaction and forces that move plates. Eos Trans. AGU, 81(48), 2000. Special session at AGU Fall Meeting. [ bib ]
[545] G. H. R. Bokelmann and G. C. Beroza. Depth-dependent earthquake focal mechanism orientation: evidence for a weak zone in the lower crust. J. Geophys. Res.: Sol. Earth, 105:21683--21696, 2000. [ bib ]
[546] G. H. R. Bokelmann. Convection-driven motion of the north American craton: evidence from P-wave anisotropy. Geophys. J. Int., 148:278--287, 2002. [ bib ]
[547] G. Bokelmann. Which forces drive North America? Geology, 30:1027, 2002. [ bib ]
[548] G. Bokelmann and E. Maufroy. Mantle structure under Gibraltar constrained by dispersion of body waves. Geophys. Res. Lett., 34(L22305), 2007. [ bib | DOI ]
[549] A. N. B. Boliakov and H. J. Herrmann. Self-organized criticality of plastic shear bands in rocks. Geophys. Res. Lett., 21:2143--2146, 1994. [ bib ]
[550] Bert Bolin. Requirements for a satisfactory model of the global carbon cycle and current status of modeling efforts. In The changing carbon cycle, pages 403--424. Springer, 1986. [ bib ]
[551] M. Bonafede and A. Neri. Effects induced by an earthquake on its fault plane: a boundary element study. Geophys. J. Int., 141:43--56, 2000. [ bib ]
[552] M. Bonafede, M. Dragoni, and E. Boschi. Quasi-static crack models and the frictional stress threshold criterion for slip arrest. J. Geophys. Res.: Sol. Earth, 83:615--637, 1985. [ bib ]
[553] M. Bonafede, M. Dragoni, and A. Morelli. On the existence of a periodic dislocation cycle in horizontally layered viscoelastic model. J. Geophys. Res.: Sol. Earth, 91:6396--6404, May 1986. [ bib ]
[554] David PG Bond and Stephen E Grasby. On the causes of mass extinctions. Palaeogeog., Palaeoclim., Palaeoecol., 478:3--29, 2017. [ bib ]
[555] Y. Boneh and Y. Skemer. The effect of deformation history on the evolution of olivine CPO. Earth Planet. Sci. Lett., 406:213--222, 2014. [ bib ]
[556] Y. Boneh, L. F. Morales, É. Kaminski, and P. Skemer. Modeling olivine CPO evolution with complex deformation histories: Implications for the interpretation of seismic anisotropy in the mantle. Geochem., Geophys., Geosys., 16:3436--3455, 2015. [ bib ]
[557] Y. Boneh, D. Wallis, L. N. Hansen, M. Krawczynski, and P. Skemer. Oriented grain growth and modification of “frozen anisotropy” in the lithospheric mantle. Earth Planet. Sci. Lett., 474:368--374, 2017. [ bib ]
[558] N. L. Boness and M. D. Zoback. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology, 34:825--828, 2006. [ bib ]
[559] M. G. Bonilla and J. M. Buchanan. Interim report on worldwide historic surface faulting. U.S. Geol. Surv., Open-File Rept., Washington, D.C., 1970. [ bib ]
[560] M. Bonini. Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics, 22, 2003. [ bib | DOI ]
[561] Mickael Bonnin, Guilhem Barruol, and Götz HR Bokelmann. Upper mantle deformation beneath the North American--Pacific plate boundary in California from SKS splitting. J. Geophys. Res.: Sol. Earth, 115(B4), 2010. [ bib ]
[562] M. Bonnin, A. Tommasi, R. Hassani, S. Chevrot, J. Wookey, and G. Barruol. Numerical modelling of the upper-mantle anisotropy beneath a migrating strike-slip plate boundary: the San Andreas Fault system. Geophys. J. Int., 191:436--458, 2012. [ bib ]
[563] Cameron Book, Matthew J Hoffman, Samuel B Kachuck, Trevor R Hillebrand, Stephen F Price, Mauro Perego, and Jeremy N Bassis. Stabilizing effect of bedrock uplift on retreat of Thwaites Glacier, Antarctica, at centennial timescales. Earth Planet. Sci. Lett., 597:117798, 2022. [ bib ]
[564] D. C. Booth and S. Crampin. The anisotropic reflectivity technique: theory. Geophys. J. R. Astr. Soc., 72:31--45, 1985. [ bib ]
[565] C. Borrero and H. Castillo. Vulcanitas del S-SE de Colombia: retro-arco alcalino y su posible relación con una ventana astenosférica. Boletín de Geología UIS, 28:23--34, 2006. [ bib ]
[566] C. Borrero, L. M. Toro, M. Alvarán, and H. Castillo. Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruíz volcano, Colombia. Geofís. Inter., 48:149--169, 2009. [ bib ]
[567] A. A. Borsa, D. C. Agnew, and D. R. Cayan. Ongoing drought-induced uplift in the western United States. Science, 345:1587--1590, 2014. [ bib ]
[568] A. A. Borsa and D. C. Agnew. Drought-induced stress changes on faults associated with the 2014 South Napa earthquake. AGU Fall Meeting Abtract Volume, (S44D-05), 2014. Available online at http://http://adsabs.harvard.edu/abs/2014AGUFM.S44D..05B, accessed 08/2015. [ bib ]
[569] S. Borsi and R. Dubois. Donnes geochronologiques sue l'histoire hercynienne et alpine de la Calabre centrale. C. R. Acad. Sci. Paris, 266:72--75, 1968. [ bib ]
[570] V. Bortolotti, G. Principi, and B. Treves. Mesozoic evolution of western Tethys and the Europe/Iberia/Adria plate junction. Mem. Soc. Geol. It., 45:393--407, 1990. [ bib ]
[571] L. Boschi and A. M Dziewoński. Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res.: Sol. Earth, 105:25567--25594, 2000. [ bib ]
[572] L. Boschi and G. Ekström. New images of the Earth's upper mantle from measurements of surface-wave phase velocity anomalies. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[573] L. Boschi. Measures of resolution in global body wave tomography. Geophys. Res. Lett., 30, 2003. [ bib | DOI ]
[574] L. Boschi, G. Ekström, and B. Kustowski. Multiple resolution surface wave tomography: the Mediterranean basin. Geophys. J. Int., 157:293--304, 2004. [ bib ]
[575] L. Boschi and J. H. Woodhouse. Surface wave ray tracing and azimuthal anisotropy: generalized spherical harmonic approach. Geophys. J. Int., 164:569--578, 2006. [ bib ]
[576] L. Boschi, T. W. Becker, G. Soldati, and A. M. Dziewoński. On the relevance of Born theory in global seismic tomography. Geophys. Res. Lett., 33(L06302), 2006. [ bib | DOI ]
[577] L. Boschi, T. W. Becker, and B. Steinberger. Mantle plumes: dynamic models and seismic images. Geochem., Geophys., Geosys., 8(Q10006), 2007. [ bib | DOI ]
[578] L. Boschi, T. W. Becker, and B. Steinberger. On the statistical significance of correlations between synthetic mantle plumes and tomographic models. Phys. Earth Planet. Inter., 167:230--238, 2008. [ bib ]
[579] L. Boschi, T. W. Becker, G. Ekström, H. J. van Heijst, N. A. Simmons, and J. Trampert. Vertical coherency of heterogeneity in the Earth's mantle constrained from a comprehensive set of global seismic data (abstract). Eos Trans. AGU, 90(52):U23D--0064, 2009. [ bib ]
[580] L. Boschi, B. Fry, G. Ekström, and D. Giardini. The European upper mantle as seen by surface waves. Surv. Geophys., 30:463--501, 2009. [ bib ]
[581] L. Boschi, C. Faccenna, and T. W. Becker. Mantle structure and dynamic topography in the Mediterranean Basin. Geophys. Res. Lett., 37(L20303), 2010. [ bib | DOI ]
[582] L. Boschi, T. W. Becker, F. Cammarano, and S. Speziale. Mapping mineralogical phase transformations from global seismic data. Abstract U51A-0020 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec., 2010. [ bib ]
[583] L. Boschi and T. W. Becker. Vertical coherence in mantle heterogeneity from global seismic data. Geophys. Res. Lett., 38(L20306), 2011. [ bib | DOI ]
[584] L. Boschi and A. M. Dziewoński. `High' and `low' resolution images of the Earth's mantle -- Implications of different approaches to tomographic modeling. J. Geophys. Res.: Sol. Earth, 104:25567--25594, 1999. [ bib ]
[585] M. G. Bostock, S. Rondenay, and J. Shragge. Multi-parameter 2-D inversion of scattered teleseismic body waves I. Theory for oblique incidence. J. Geophys. Res.: Sol. Earth, 107:30771--30782, 2001. [ bib ]
[586] M. G. Bostock. Kirchhoff-approximate inversion of teleseismic wavefields. Geophys. J. Int., 149:787--795, 2002. [ bib ]
[587] M. G. Bostock, R. D. Hyndman, S. Rondenay, and S. M. Peacock. An inverted continental Moho and serpentinization of the forearc mantle. Nature, 417:536--538, 2002. [ bib ]
[588] M. g. Bostock and N. I. Christensen. Split from slip and schist: Crustal anisotropy beneath northern cascadia from non-volcanic tremor. J. Geophys. Res.: Sol. Earth, 117(B08303), 2012. [ bib | DOI ]
[589] MG Bostock. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res.: Sol. Earth, 103(B9):21183--21200, 1998. [ bib ]
[590] M. G. Bostock. Seismic imaging of lithospheric discontinuities and continental evolution. Lithos, 48:1--16, 1999. [ bib ]
[591] W. Bosworth, R. Guirath, and L. G. Kessler II. Late Cretaceous (ca. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): far-field stress effects of the “Santonian event” and origin of the Syrian arc deformation belt. Geology, 27:633--636, 1999. [ bib ]
[592] M. Bouchon, D. Marsan, V. Durand, M. Campillo, H. Perfettini, R. Madariaga, and B. Gardonio. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nature Geosc., 9, 2016. [ bib | DOI ]
[593] A. M. Bouillier and A. Nicolas. Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys. Chem. Earth, 9:467--475, 1975. [ bib ]
[594] S. J. Bourne, P. C. England, and B. Parsons. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature, 391:655--659, 1998. [ bib ]
[595] F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids, Part 2. Oxford University Press, New York, 1964. [ bib ]
[596] D. J. Bower, M. Gurnis, J. M. Jackson, and W. Sturhahn. Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase. Geophys. Res. Lett., 36(L10306), 2009. [ bib | DOI ]
[597] Dan J Bower, Michael Gurnis, and Maria Seton. Lower mantle structure from paleogeographically constrained dynamic earth models. Geochem., Geophys., Geosys., 14:44--63, 2013. [ bib ]
[598] D. J. Bower, M. Gurnis, and N. Flament. Assimilating lithosphere and slab history in 4-D dynamic Earth models. Phys. Earth Planet. Inter., 238:8--22, 2015. [ bib ]
[599] J. R. Bowman and M. A. Ando. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys. J. R. Astr. Soc., 88:24--41, 1987. [ bib ]
[600] D. D. Bowman, G. Ouillon, C. G. Sammis, D. Sornette, and A. Sornette. An observational test of the critical earthquake concept. Eos Trans. AGU, 78:F463, 1997. [ bib ]
[601] D. D. Bowman, G. Ouillon, C. G. Samnis, A. Sornette, and D. Sornette. An observational test of the critical earthquake concept. J. Geophys. Res.: Sol. Earth, 103:24359--24372, 1998. [ bib ]
[602] O. S. Boyd, C. H. Jones, and A. F. Sheehan. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California. Science, 305:660--662, 2004. [ bib ]
[603] O. S. Boyd and A. F. Sheehan. Attenuation tomography beneath the Rocky Mountain Front: Implications for the physical state of the upper mantle. In The Rocky Mountain Region: An Evolving Lithosphere, volume 154 of Geophys. Mono., pages 361--377. American Geophysical Union, 2005. [ bib ]
[604] FR Boyd, JJ Gurney, and SH Richardson. Evidence for a 150--200-km thick Archaean lithosphere from diamond inclusion thermobarometry. Nature, 315:387--389, 1985. [ bib ]
[605] Maud Boyet and Richard W Carlson. 142Nd evidence for early (> 4.53 Ga) global differentiation of the silicate Earth. Science, 309:576--581, 2005. [ bib ]
[606] E. Bozdag and J. Trampert. Assessment of tomographic mantle models using spectral element seismograms. Geophys. J. Int., 180:1187--1199, 2010. [ bib ]
[607] W. F. Brace and J. D. Beyerlee. Stick-slip as a mechanism for earthquakes. Science, 153:990--992, 1966. [ bib ]
[608] W. F. Brace and D. L. Kohlstedt. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res.: Sol. Earth, 85:6248--6252, 1980. [ bib ]
[609] Y. Brainman, F. Family, and H. G. E. Hentschel. Nonlinear friction in the periodic stick-slip motion of coupled oscillators. Phys. Rev. B., 55:5491--5504, 1997. [ bib ]
[610] J. L. Branchaw, A. R. Butz, and A. R. Smith. Entering Research: A curriculum to support undergraduate and graduate research trainees. Macmillan, New York, 2 edition, 2020. [ bib ]
[611] J.L. Branchaw, A.R. Butz, and A.R. Smith. Evaluation of the second edition of entering research: A customizable curriculum for apprentice-style undergraduate and graduate research training programs and courses. Life Sci. Edu., 19:1--19, 2020. [ bib ]
[612] J. P. Brandenburg and P. E. van Keken. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res.: Sol. Earth, 112:B06403, 2007. [ bib | DOI ]
[613] J. P. Brandenburg, E. H. Hauri, P. E. van Keken, and C. J. Ballentine. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett., 276:1--13, 2008. [ bib ]
[614] N. Brantut, P. Baud, M. J. Heap, and P. G. Meredith. Micromechanics of brittle creep in rocks. J. Geophys. Res.: Sol. Earth, 117(B8), 2012. [ bib | DOI ]
[615] J. Braun. The many surface expressions of mantle dynamics. Nature Geosc., 3:825--833, 2010. [ bib ]
[616] J Braun, Xavier Robert, and T Simon-Labric. Eroding dynamic topography. Geophys. Res. Lett., 40:1494--1499, 2013. [ bib ]
[617] J. Braun and S. D. Willett. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorph., 180:170--179, 2013. [ bib ]
[618] J. Braun, X. Robert, and T. Simon-Labric. Eroding dynamic topography. Geophys. Res. Lett., 40:1494--1499, 2013. [ bib | DOI ]
[619] Jean Braun and Christopher Beaumont. A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17:760--764, 1989. [ bib ]
[620] J. Braun and M. Sambridge. Dynamical lagrangian remeshing (dlr): A new algorithm for solving large strain deformation problems and its application to fault-propagation folding. Earth Planet. Sci. Lett., 124:211--220, 1994. [ bib ]
[621] J. Braun and M. Sambridge. A numerical methode for solving partial differential equations on highly irregular evolving grids. Nature, 376:655--660, 1995. [ bib ]
[622] J. Braun and C. Beaumont. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand. J. Geophys. Res.: Sol. Earth, 100:18059--18074, 1995. [ bib ]
[623] O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard. Nonlinear mobility of the generalized Frenkel-Kontorova model. Phys. Rev. E, 55:3598--3612, 1997. [ bib ]
[624] J. Braun, A. Poliakov, D. Mainprice, A. Vauchez, A. Tomassi, and M. Daigniéres. A simple parameterization of strain localization in the ductile regime due to grain size reduction: A case study for olivine. J. Geophys. Res.: Sol. Earth, 104:25167--25181, 1999. [ bib ]
[625] Y. Brechet and Y. Estrin. The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater., 30:1449--1454, 1994. [ bib ]
[626] N. A. Breen and E. A. Silver. The Wetar back arc thrust belt, eastern Indonesia: The effect of accretion against an irregularly shaped arc. Tectonics, 8:85--8, 1989. [ bib ]
[627] Efim A Brener and Eran Bouchbinder. Unconventional singularities and energy balance in frictional rupture. Nature comm., 12:2585, 2021. [ bib ]
[628] Alec R Brenner, Roger R Fu, David AD Evans, Aleksey V Smirnov, Raisa Trubko, and Ian R Rose. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Adv., 6(17):eaaz8670, 2020. [ bib ]
[629] A. R. Brenner, R. R. Fu, A. R. C. Kylander-Clark, and B. J. Foley. Plate motion and a dipolar geomagnetic field at 3.25 Ga. Proc. Natl. Acad. Sci. USA, 119:e2210258119, 2022. [ bib ]
[630] J. H. P. de Bresser, J. H. ter Heege, and C. H. Spiers. Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int. J. Earth Sci., 90:28--45, 2001. [ bib ]
[631] Arthur Briaud, Roberto Agrusta, Claudio Faccenna, Francesca Funiciello, and Jeroen van Hunen. Topographic fingerprint of deep mantle subduction. J. Geophys. Res.: Sol. Earth, 125:e2019JB017962, 2020. [ bib ]
[632] David L Bridges, Kevin Mickus, Stephen S Gao, Mohamed G Abdelsalam, and Abera Alemu. Magnetic stripes of a transitional continental rift in Afar. Geology, 40:203--206, 2012. [ bib ]
[633] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. The Society for Industrial and Applied Mathematics, 2 edition, 2000. [ bib ]
[634] Silvia Brizzi, Iris van Zelst, Francesca Funiciello, Fabio Corbi, and Ylona van Dinther. How sediment thickness influences subduction dynamics and seismicity. J. Geophys. Res.: Sol. Earth, 125:e2019JB018964, 2020. [ bib ]
[635] Emily E Brodsky, Jacquelyn J Gilchrist, Amir Sagy, and Cristiano Collettini. Faults smooth gradually as a function of slip. Earth Planet. Sci. Lett., 302:185--193, 2011. [ bib ]
[636] E. E. Brodsky and T. Lay. Recognizing foreshocks from the 1 April 2014 Chile earthquake. Science, 344:700--702, 2014. [ bib ]
[637] Emily E. Brodsky, James J. Mori, Louise Anderson, Frederick M. Chester, Marianne Conin, Eric M. Dunham, Nobu Eguchi, Patrick M. Fulton, Ryota Hino, Takehiro Hirose, Matt J. Ikari, Tsuyoshi Ishikawa, Tamara Jeppson, Yasuyuki Kano, James Kirkpatrick, Shuichi Kodaira, Weiren Lin, Yasuyuki Nakamura, Hannah S. Rabinowitz, Christine Regalla, Francesca Remitti, Christie Rowe, Demian M. Saffer, Saneatsu Saito, James Sample, Yoshinori Sanada, Heather M. Savage, Tianhaozhe Sun, Sean Toczko, Kohtaro Ujiie, Monica Wolfson-Schwehr, and Tao Yang. The state of stress on the fault before, during, and after a major earthquake. Ann. Rev. Earth Planet. Sci., 48, 2020. [ bib | DOI ]
[638] J. Browaeys and S. Chevrot. Decomposition of the elastic tensor and geophysical applications. Geophys. J. Int., 159:667--678, 2004. [ bib ]
[639] J. T. Browaeys, T. W. Becker, and T. H. Jordan. Stochastic description of seismic anisotropy in the lithosphere and upper mantle (abstract). Eos Trans. AGU, 86(52):S43C--08, 2005. [ bib ]
[640] E. T. Brown, R. Bendick, D. L. Bourles, V. Gaur, P. Molnar, G. M. Raisbeck, , and F. Yiou. Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. J. Geophys. Res.: Sol. Earth, 107(B92192), 2002. [ bib | DOI ]
[641] Michael Brown. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology, 34:961--964, 2006. [ bib ]
[642] Michael Brown. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout earth history: when did earth first adopt a plate tectonics mode of behavior? Geol. Soc. Am. Special Pap., 440:97--128, 2008. [ bib ]
[643] Michael Brown. Paired metamorphic belts revisited. Gondwana Res., 18:46--59, 2010. [ bib ]
[644] Michael Brown and Tim Johnson. Metamorphism and the evolution of subduction on earth. Amer. Mineral., 104:1065--1082, 2019. [ bib ]
[645] Michael Brown, Tim Johnson, and Nicholas J Gardiner. Plate tectonics and the Archean Earth. Ann. Rev. Earth Planet. Sci., 48:291--320, 2020. [ bib ]
[646] S. Brown Krein, Z.J. Molitor, and T.L. Grove. Reversepetrogen: A multiphase dry reverse fractional crystallization-mantle melting thermobarometer applied to 13,589 mid-ocean ridge basalt glasses. J. Geophys. Res.: Sol. Earth, 126(8):e2020JB021292, 2021. [ bib ]
[647] JM Brown and TJ Shankland. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. Int., 66:579--596, 1981. [ bib ]
[648] R. D. Brown. Quaternary deformation. In The San Andreas Fault System, California, volume 1515 of U. S. Geol. Surv. Prof. Pap., pages 83--113. United States Geological Survey, 1990. [ bib ]
[649] E. T. Brown, D. L. Bourles, B. C. Burchfiel, D. Qidong, L. Jun, P. Molnar, G. M. Raisbeck, and F. Yiou. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans. GSA Bull., 110:377--386, 1998. [ bib ]
[650] S. J. Brownlee, V. Schulte-Pelkum, A. Raju, K. Mahan, C. Condit, and O. F. Orlandini. Characteristics of deep crustal seismic anisotropy from a compilation of rock elasticity tensors and their expression in receiver functions. Tectonics, 36:1835--1857, 2017. [ bib | DOI ]
[651] Michael R Brudzinski, Clifford H Thurber, Bradley R Hacker, and E Robert Engdahl. Global prevalence of double benioff zones. Science, 316:1472--1474, 2007. [ bib ]
[652] Lucile Bruhat and Paul Segall. Coupling on the northern Cascadia subduction zone from geodetic measurements and physics-based models. J. Geophys. Res.: Sol. Earth, 121:8297--8314, 2016. [ bib ]
[653] Jean-Pierre Brun and Claudio Faccenna. Exhumation of high-pressure rocks driven by slab rollback. Earth Planet. Sci. Lett., 272:1--7, 2008. [ bib ]
[654] Jean-Pierre Brun, Dimitrios Sokoutis, Céline Tirel, Frédéric Gueydan, Jean Van Den Driessche, and Marie-Odile Beslier. Crustal versus mantle core complexes. Tectonophys., 746:22--45, 2018. [ bib ]
[655] J.P. Brun, M.-A. Gutscher, et al. Deep crustal structure of the Rhine Graben from DEKORP-ECORS seismic reflection data: a summary. Tectonophys., 208:139--147, 1992. [ bib ]
[656] J.-P. Brun. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Phil. Trans. Royal Soc. London A, 357:695--712, 1999. [ bib ]
[657] Sascha Brune, Christian Heine, Marta1 Pérez-Gussinyé, and Stephan V Sobolev. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Comm., 5:1--9, 2014. [ bib ]
[658] Sascha Brune, Christian Heine, Peter D Clift, and Marta Pérez-Gussinyé. Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine Petrol. Geol., 79:257--281, 2017. [ bib ]
[659] Sascha Brune, Folarin Kolawole, Jean-Arthur Olive, D Sarah Stamps, W Roger Buck, and Susanne JH Buiter. Geodynamics of continental rift initiation and evolution. EarthArXiv, 2022. [ bib | DOI ]
[660] J. N. Brune. Seismic moment seismicity and rate of slip along major fault zones. J. Geophys. Res.: Sol. Earth, 73:777--784, 1968. [ bib ]
[661] James N Brune, Thomas L Henyey, and Robert F Roy. Heat flow, stress, and rate of slip along the San Andreas fault, California. J. Geophys. Res.: Sol. Earth, 74:3821--3827, 1969. [ bib ]
[662] James N Brune. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res.: Sol. Earth, 75:4997--5009, 1970. [ bib ]
[663] David Brunei and Philippe Machetel. Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity. J. Geophys. Res.: Sol. Earth, 103(B3):4929--4945, 1998. [ bib ]
[664] W.M. Bruner. Comment on `Seismic velocities in dry and saturated cracked solids' by Richard J. O'Connell and Bernard Budiansky. J. Geophys. Res.: Sol. Earth, 81:2573--2576, Mai 1976. [ bib ]
[665] C. Brunet, P. Monié, L. Jolivet, and J. P. Cadet. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics, 321:127--155, 2000. [ bib ]
[666] B. Brunhes. Recherches sur la direction d'aimantation des roches volcaniques. J. Phys. Theor. Appl., 5:705--724, 1906. [ bib ]
[667] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 113:3932--3937, 2016. [ bib ]
[668] S. G. Brush. Discovery of the Earth's core. Amer. J. Phys., 48:705--723, 1980. [ bib ]
[669] S. C. Bryan and R. E. Ernst. Revised definiton of Large Igneous Provinces (LIPs). Earth Sci. Rev., 175--202, 2008. [ bib ]
[670] J. A. Bryant, G. M. Yogodzinski, M. L. Hall, J. L. Lewicki, and D. G. Bailey. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J. Petrol., 47:1147--1175, 2006. [ bib ]
[671] C. A. Langston, editor. The 1992, Landers, California, Earthquake Sequence, volume 84 of Bull. Seismol. Soc. Am., El Cerrito, Kalifornien, June 1994. Seismological Society of America. [ bib ]
[672] W. R. Buck, L. L. Lavier, and Babeyko A. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. Int. Geol. Rev., 45:712--723, 2003. [ bib ]
[673] W Roger Buck. Consequences of asthenospheric variability on continental rifting. In Rheology and deformation of the lithosphere at continental margins, pages 1--30. Columbia University Press, 2004. [ bib ]
[674] W Roger Buck, Luc L Lavier, and Alexei NB Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434:719--723, 2005. [ bib ]
[675] W Roger Buck. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins. Earth Planet. Sci. Lett., 466:62--69, 2017. [ bib ]
[676] W. R. Buck and A. Poliakov. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392:272--275, 1998. [ bib ]
[677] W. R. Buck, L.L. Lavier, and A. Babeyko. A numerical model of lithospheric extension producing fault-bounded Basins and Ranges. International Geology Review, 45:712--723, 2003. [ bib ]
[678] W Roger Buck. Consequences of asthenospheric variability on continental rifting. In G. Karner, B. Taylor, N. Driscoll, and D. Kohlstedt, editors, Rheology and deformation of the lithosphere at continental margins, pages 1--30. 2004. [ bib ]
[679] W. R. Buck, L L Lavier, and A. Poliakov. Modes of faulting at mid-ocean ridges. Nature, 434:719--723, 2005. [ bib ]
[680] W Roger Buck. Modes of continental lithospheric extension. J. Geophys. Res.: Sol. Earth, 96(B12):20161--20178, 1991. [ bib ]
[681] B. Budiansky. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13:223--227, 1965. [ bib ]
[682] R. Budiansky and G. F. Carrier. The pointless wedge. SIAM J. Appl. Mech., 25:378--387, 1973. [ bib ]
[683] Bernard Budiansky and Richard J O'Connell. Elastic moduli of a cracked solid. Int. J. Solids Struct., 12:81--97, 1976. [ bib ]
[684] R. Budiansky and R. J. O'Connell. Measures of dissipation in viscoelastic media. Geophys. Res. Lett., 5:5--7, 1978. [ bib ]
[685] M. I. Budyko. The effect of solar radiation variations on the climate of the Earth. Tellus, 21:611--619, 1969. [ bib ]
[686] J. S. Buehler and P. M. Shearer. Pn tomography of the western United States using US Array. J. Geophys. Res.: Sol. Earth, 115(B09315), 2010. [ bib | DOI ]
[687] J. S. Buehler and P.M. Shearer. Anisotropy and Vp/Vs in the uppermost mantle beneath the western United States from joint analysis of Pn and Sn phases. J. Geophys. Res.: Sol. Earth, 119:1200--1219, 2014. [ bib ]
[688] Janine S. Buehler and Peter M. Shearer. Localized imaging of the uppermost mantle with USArray Pn data. J. Geophys. Res.: Sol. Earth, 117, 2012. [ bib | DOI ]
[689] Janine S. Buehler and Peter M. Shearer. Uppermost mantle seismic velocity structure beneath USArray. J. Geophys. Res.: Sol. Earth, 122:436--448, 2017. [ bib | DOI ]
[690] C. G. Bufe and D. J. Varnes. Predictive modeling of the seismic cycle of the greater San Francisco Bay region. J. Geophys. Res.: Sol. Earth, 98:9871--9883, 1993. [ bib ]
[691] B. A. Buffett. Earth's core and the geodynamo. Science, 288:2007--2012, 2000. [ bib ]
[692] Bruce A Buffett. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett., 29, 2002. [ bib | DOI ]
[693] B. A. Buffett. Thermal state of Earth's core. Science, 299:1675--1677, 2003. [ bib ]
[694] B. A. Buffett and D. B. Rowley. Plate bending at subduction zones: Consequences for the direction of plate motions. Earth Planet. Sci. Lett., 245:359--364, 2006. [ bib ]
[695] B. A. Buffett. Plate force due to bending at subduction zones. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[696] B. A. Buffett. Onset and orientation of convection in the inner core. Geophys. J. Int., 179:711--719, 2009. [ bib ]
[697] B. A. Buffett and T. W. Becker. Bending stress and dissipation in subducted lithosphere. J. Geophys. Res.: Sol. Earth, 117(B05413), 2012. [ bib | DOI ]
[698] B. A. Buffett, C. W. Gable, and R. J. O'Connell. Linear stability of a layered fluid with mobile surface plates. J. Geophys. Res.: Sol. Earth, 99:1985--1990, 1994. [ bib ]
[699] Tan Bui-Thanh, Murali Damodaran, and Karen Willcox. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J., 42:1505--1516, 2004. [ bib ]
[700] S. J. H. Buiter, R. Govers, and M. J. R. Wortel. Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophys., 354:195--210, 2002. [ bib ]
[701] S. J. H. Buiter, A. Y. Babeyko, S. Ellis, T. V. Gerya, B. J. P. Kaus, A. Kellner, G. Schreurs, and Y. Yamada. The numerical sandbox: Comparison of model results for a shortening and an extension experiment. In S. J. H. Buiter and G. Schreurs, editors, Analogue and Numerical Modelling of Crustal-Scale Processes, volume 253 of Geol. Soc. London Spec. Pub., pages 29--64, London, 2006. [ bib ]
[702] Susanne JH Buiter and Trond H Torsvik. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res., 26:627--653, 2014. [ bib ]
[703] Susanne JH Buiter, Guido Schreurs, Markus Albertz, Taras V Gerya, Boris Kaus, Walter Landry, Laetitia Le Pourhiet, Yury Mishin, David L Egholm, Michele Cooke, B. Maillot, C. Thieulot, T. Crook, D. May, P. Souloumiac, and C. Beaumont. Benchmarking numerical models of brittle thrust wedges. J. Struct. Geol., 92:140--177, 2016. [ bib ]
[704] A. L. Bull, A. K. McNamara, T. W. Becker, and J. Ritsema. Global scale models of the mantle flow field predicted by synthetic tomography models. Phys. Earth Planet. Inter., 182:129--138, 2010. [ bib ]
[705] Abigail L Bull, Mathew Domeier, and Trond H Torsvik. The effect of plate motion history on the longevity of deep mantle heterogeneities. Earth Planet. Sci. Lett., 401:172--182, 2014. [ bib ]
[706] AJ Bull. Further aspects of the mountain building problem. Proc. Geol. Assoc., 40:105--114, IN1--IN6, 1929. [ bib ]
[707] E. C. Bullard, C. Freedman, H. Gellman, and J. Nixon. The westward drift of the Eearth's magnetic field. Phil. Trans. Roy. Soc. Lond., 243:67--92, 1950. [ bib ]
[708] Edward Bullard, James E Everett, and A Gilbert Smith. The fit of the continents around the Atlantic. Phil. Trans. Royal Soc. London. Ser. A, Math. Phys. Sci., 258:41--51, 1965. [ bib ]
[709] K. E. Bullen, editor. Introduction to the theory of seismology. Cambridge University Press, London, 1947. [ bib ]
[710] H.-P. Bunge and S. P. Grand. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405:337--340, 2000. [ bib ]
[711] H.-P. Bunge and J. H. Davies. Tomographic images of a mantle circulation model. Geophys. Res. Lett., 28:77--80, 2001. [ bib ]
[712] H.-P. Bunge and J. H. Davies. Seismically “fast” geodynamic models. Geophys. Res. Lett., 28:73--76, 2001. [ bib ]
[713] H.-P. Bunge, C. Hagelberg, and B. Travis. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography (abstract). Eos Trans. AGU, 82(47):NG51C--07, 2001. [ bib ]
[714] H.-P. Bunge, L. Stixrude, J. Tromp, and R. Hollerbach. Virtual Earth laboratories. Eos Trans. AGU, 82(47), 2001. Special session at AGU Fall Meeting. [ bib ]
[715] H.-P. Bunge, C. R. Hagelberg, and B. J. Travis. Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int., 152:280--301, 2003. [ bib ]
[716] H.-P. Bunge and J. Tromp. Supercomputing moves to universities and makes possible new ways to organize computational research. Eos Trans. AGU, 84(4):30--33, 2003. [ bib ]
[717] Hans-Peter Bunge. Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models. Phys. Earth Planet. Inter., 153:3--10, 2005. [ bib ]
[718] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379:436--438, 1996. [ bib ]
[719] Hans-Peter Bunge and Mark A Richards. The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification. Geophys. Res. Lett., 23:2987--2990, 1996. [ bib ]
[720] H.-P. Bunge, M. A. Richards, and J. R. Baumgardner. A sensitivity study of 3-D spherical mantle convection at 108 Rayleigh number: Effects of depth dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res.: Sol. Earth, 102:11991--12007, 1997. [ bib ]
[721] H.-P. Bunge, M. A. Richards, C. Lithgow-Bertelloni, J. R. Baumgardner, S. P. Grand, and B. A. Romanowicz. Time scales and heterogeneous structure in geodynamic earth models. Science, 280:91--95, 1998. [ bib ]
[722] L. Buontempo, G. H. R. Bokelmann, G. Barruol, and J. Morales. Seismic anisotropy beneath southern Iberia from SKS splitting. Earth Planet. Sci. Lett., 273:237--250, 2008. [ bib ]
[723] Mark J Burchell. W (h) ither the drake equation? Int. J. Astrobio., 5:243--250, 2006. [ bib ]
[724] Burrell C Burchfiel, Chen Zhiliang, Kip V Hodges, Liu Yuping, Leigh H Royden, Deng Changrong, and Xu Jiene. The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. GSA Spec. Papers, 269:1--41, 1992. [ bib ]
[725] Joe D Burchfield. Kelvin and the physics of time. In Lord Kelvin and the Age of the Earth, pages 21--56. 1975. [ bib ]
[726] BC Burchfiel and GA Davis. Nature and controls of Cordilleran orogenesis, western United-States - extensions of an earlier synthesis. Am. J. Sci., A275:363--396, 1975. [ bib ]
[727] S. Burdick, C. Li, V. Martynov, T. Cox, J. Eakins, T. Mulder, L. Astiz, F. L. Vernon, G. L. Pavlis, and R. D. van der Hilst. Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seis. Res. Lett., 79:384--392, 2008. [ bib ]
[728] S. Burdick, R. D. van der Hilst, F. L. Vernon, V. Martynov, T. Cox, J. Eakins, L. Astiz, and G. L. Pavlis. Model Update January 2010: Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray Transportable Array data. Seism. Res. Lett., 81:689--693, 2010. [ bib ]
[729] J. P. Burg and Y. Podladchikov. Lithospheric scale folding: numerical modeling and application to the himalayan syntaxes. Int. J. Earth Sci., 88(2):190--200, 1999. [ bib ]
[730] J. P. Burg, B. J. P. Kaus, and Y. Podladchikov. Dome structures in collision orogens. mechanical investigation of the gravity/compression interplay. In D.L. Whitney, C. Teyssier, and C.S. Siddoway, editors, Gneiss domes in orogeny, volume 380, pages 47--66. Geological Society of America, Boulder, 2004. [ bib ]
[731] JP Burg and GM Chen. Tectonics and structural zonation of southern Tibet, China. Nature, 311:219--223, 1984. [ bib ]
[732] Reed J Burgette, Ray J Weldon, and David A Schmidt. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res.: Sol. Earth, 114(B1), 2009. [ bib ]
[733] R. Bürgmann, P. A. Rosen, and E. J. Fielding. Synthetic aperature radar interferometry to measure Earth's surface topography and its deformation. Ann. Rev. Earth Planet. Sci., 28:169--209, 2000. [ bib ]
[734] Roland Bürgmann, Mikhail G Kogan, Grigory M Steblov, George Hilley, Vasily E Levin, and Edwin Apel. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. Geophys. Res.: Sol. Earth, 110(B07405), 2005. [ bib | DOI ]
[735] R. Bürgmann, G. Hilley, A. Ferretti, and F. Novali. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 34:221--224, 2006. [ bib ]
[736] R. Bürgmann and G. Dresen. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Ann. Rev. Earth Planet. Sci., 36:531--567, 2008. [ bib ]
[737] R. Bürgmann. The geophysics, geology, and mechanics of slow fault slip. Earth Planet. Sci. Lett., 495:112--134, 2018. [ bib ]
[738] Roland Bürgmann, David D Pollard, and Stephen J Martel. Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol., 16:1675--1690, 1994. [ bib ]
[739] G. Burgos, J.-P. Montagner, E. Beucler, Y. Capdeville, A. Mocquet, and M. Drilleau. Oceanic lithosphere/asthenosphere boundary from surface wave dispersion data. J. Geophys. Res.: Sol. Earth, 119:1079--1093, 2014. [ bib | DOI ]
[740] K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett., 265:49--60, 2008. [ bib ]
[741] Kevin Burke and John Frederick Dewey. Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J. Geol., 81:406--433, 1973. [ bib ]
[742] K. Burke, J. F. Dewey, and W. S. F. Kidd. World distribution of sutures -- the sites of former oceans. Tectonophys., 40:69--99, 1977. [ bib ]
[743] Kevin Burke and WSF Kidd. Were Archean continental geothermal gradients much steeper than those of today? Nature, 272:240--241, 1978. [ bib ]
[744] Kevin Burke. The African plate. South African J. Geol., 99:341--409, 1996. [ bib ]
[745] E.R. Burkett and M.I. Billen. Dynamics and implications of slab detachment due to ridge-trench collision. J. Geophys. Res.: Sol. Earth, 114(B12402), 2009. [ bib | DOI ]
[746] E. Burkett and M. I. Billen. Three-dimensionality of slab detachment due to ridge-trench collision: Laterally simultaneous boudinage versus tear propagation. Geochem., Geophys., Geosys., 11(Q11012), 2010. [ bib | DOI ]
[747] E. Burkett and M. Gurnis. Stalled slab dynamics. Lithosphere, 5:92--97, 2013. [ bib ]
[748] M. Burkhard and A. Sommaruga. Evolution of the western swiss molasse basin: structural relations with the alps and the jura belt. In A. Mascle, editor, Foreland Basins of the Western Alpine Thrust Belts, pages 279--298. Geological Society Special Publication, London, 1998. [ bib ]
[749] E Burov, L Jolivet, L Le Pourhiet, and A Poliakov. A thermomechanical model of exhumation of high pressure (hp) and ultra-high pressure (uhp) metamorphic rocks in alpine-type collision belts. Tectonophys., 342:113--136, 2001. [ bib ]
[750] E. B. Burov. The upper crust is softer than dry quartzite. Tectonophys., 361:321--326, 2003. [ bib ]
[751] E. Burov and L. Guillou-Frottier. The plume-head continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophys. J. Int., 58:469--490, 2005. [ bib ]
[752] E. B. Burov and A. B. Watts. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”. GSA Today, 16:4--10, 2006. [ bib ]
[753] E. B. Burov and P. Molnar. Small and large-amplitude gravitational instability of an elastically compressible viscoelastic Maxwell solid overlying an inviscid incompressible fluid: dependence of growth rates on wave number and elastic constants at low Deborah numbers. Earth Planet. Sci. Lett., 275:370--381, 2008. [ bib ]
[754] Evgueni Burov and Sierd Cloetingh. Controls of mantle plumes and lithospheric folding on modes of intraplate continental tectonics: differences and similarities. Geophys. J. Int., 178:1691--1722, 2009. [ bib ]
[755] Evgene B Burov. Rheology and strength of the lithosphere. Marine Petrol. Geol., 28:1402--1443, 2011. [ bib ]
[756] E. Burov and T. Gerya. Asymmetric three-dimensional topography over mantle plumes. Nature, 513:85--89, 2014. [ bib ]
[757] E. Burov, T. Francois, P. Agard, L. Le Pourhiet, B. Meyer, C. Tirel, S. Lebedev, P. Yamato, and J.-P. Brun. Rheological and geodynamic controls on the mechanisms of subduction and HP/UHP exhumation of crustal rocks during continental collision: Insights from numerical models. Tectonophys., 631:212--250, 2014. [ bib ]
[758] E. Burov and S. Cloetingh. Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins. Earth Planet. Sci. Lett., 150:7--26, 1997. [ bib ]
[759] E. B. Burov and M. Diament. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res.: Sol. Earth, 100:3905--3927, 1995. [ bib ]
[760] E. Burov, Y. Y. Podladchikov, G. Grandjean, and J. P. Burg. Thermo-mechanical approach to validation of deep crustal and lithospheric structures inferred from multidisciplinary data: application to the Western and Northern Alps. Terra Nova, 11:124--131, 1999. [ bib ]
[761] R. Burridge and L. Knopoff. Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am., 54:1875--1888, 1964. [ bib ]
[762] R. Burridge and L. Knopoff. Model and theoretical seismicity. Bull. Seismol. Soc. Am., 57:341--371, 1967. [ bib ]
[763] R. Burridge and G.S. Halliday. Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. R. Astr. Soc., 25:261--283, 1971. [ bib ]
[764] J. Burrus. Contribution to a geodynamic synthesis of the Provençal basin (north-western Mediterranean). Mar. Geol., 55:247--269, 1984. [ bib ]
[765] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox. Parallel scalable adjoint-based adaptive solution for variable-viscosity Stokes flows. Comp. Meth. Appl. Mech. Eng., 198:1691--1700, 2009. [ bib ]
[766] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Scient. Comp., 33:1103--1133, 2011. Available online at p4rest.org, accessed 02/2020. [ bib ]
[767] Carsten Burstedde, Georg Stadler, Laura Alisic, Lucas C. Wilcox, Eh Tan, Michael Gurnis, and Omar Ghattas. Large-scale adaptive mantle convection simulation. Geophys. J. Int., 192:889--906, 2013. [ bib ]
[768] F. H. Busse, M. A. Richards, and A. Lenardic. A simple model of high Prandtl and high Rayleigh number convection bounded by thin low-viscosity layers. Geophys. J. Int., 164:160--167, 2006. [ bib ]
[769] Friedrich H Busse. A model of the geodynamo. Geophys. J. Int., 42:437--459, 1975. [ bib ]
[770] Friedrich H Busse. Patterns of convection in spherical shells. J. Fluid Mech., 72:67--85, 1975. [ bib ]
[771] J. Buttles and P. Olson. A laboratory model of subduction zone anisotropy. Earth Planet. Sci. Lett., 164:245--262, 1998. [ bib ]
[772] J.D. Byerlee. Friction of rock. Pure Appl. Geophys., 116:615--626, 1978. [ bib ]
[773] J Byerlee. Friction, overpressure and fault normal compression. Geophys. Res. Lett., 17:2109--2112, 1990. [ bib ]
[774] M. Bystricky, K. Kunze, L. Burlini, and J.-P. Burg. High shear strain of olivine aggregrates: rheological and seismic consequences. Science, 290:1564--1567, 2000. [ bib ]
[775] G. Allen, R. Benger, R. Dramlitsch, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke, and E. Seidel. Cactus grid computing: Review of current development. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors, Euro-Par 2001: Parallel Processing, Proceedings of 7th International Euro-Par Conference Manchester. Springer Verlag, New York, 2001. [ bib ]
[776] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid, dynamic topography and lithospheric stresses. In European Geophysical Society, 25th general assembly, volume 2 of Geophys. Res. Abstr. European Geophysical Society, 2000. [ bib ]
[777] O. Čadek and L. Fleitout. Effect of lateral viscosity variations in the top 300 km of the mantle on the geoid and dynamic topography. Geophys. J. Int., 152:566--580, 2003. [ bib ]
[778] O. Čadek. Constraints on global mantle-flow models from geophysical data (abstract). In E. Boschi, editor, 9th International Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics, volume 25 of International School of Geophysics, pages 15--16, Erice, Sicily, 2005. Ettore Majorana Foundation and Centre for Scienftific Culture. [ bib ]
[779] Ondřej Čadek and Yanick Ricard. Toroidal/poloidal energy partitioning and global lithospheric rotation during Cenozoic time. Earth Planet. Sci. Lett., 109:621--632, 1992. [ bib ]
[780] O. Čadek, Y. Ricard, Z. Martinec, and C. Matyska. Comparison between Newtonian and non-Newtonian flow driven by internal loads. Geophys. J. Int., 112:103--114, 1993. [ bib ]
[781] O. Čadek, H. Kyvalova, and D. A. Yuen. Geodynamical implications from the correlation of surface geology and seismic tomographic structure. Earth Planet. Sci. Lett., 136:615--627, 1995. [ bib ]
[782] O. Čadek, H. Čížková, and D. A. Yuen. Can long-wavelength dynamical signatures be compatible with layered mantle convection? Geophys. Res. Lett., 16:2091--2094, 1997. [ bib ]
[783] Florence Cagnard, Jean-Pierre Brun, and Denis Gapais. Modes of thickening of analogue weak lithospheres. Tectonophys., 421:145--160, 2006. [ bib ]
[784] Florence Cagnard, Nicolas Durrieu, Denis Gapais, Jean-Pierre Brun, and Carl Ehlers. Crustal thickening and lateral flow during compression of hot lithospheres, with particular reference to Precambrian times. Terra Nova, 18:72--78, 2006. [ bib ]
[785] F. Cai, L. Ding, and Y. Yue. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision. Earth Planet. Sci. Lett., 305:195--206, 2011. [ bib ]
[786] Zhengyu Cai and David Bercovici. Two-dimensional magmons with damage and the transition to magma-fracturing. Phys. Earth Planet. Inter., 256:13--25, 2016. [ bib ]
[787] E Calais, C DeMets, and J-M Nocquet. Evidence for a post-3.16-Ma change in Nubia--Eurasia--North America plate motions? Earth Planet. Sci. Lett., 216:81--92, 2003. [ bib ]
[788] E. Calais, L. Dong, M. Wang, Z. Shen, and M. Vergnolle. Continental deformation in Asia from a combined GPS solution. Geophys. Res. Lett., 33(L24319), 2006. [ bib | DOI ]
[789] E. Calais, J. Y. Han, C. DeMets, and J. M. Nocquet. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res.: Sol. Earth, 111(B06402), 2006. [ bib | DOI ]
[790] P. Calcagno and A. Cazenave. Subsidence of the seafloor in the Atlantic and Pacific ocean: Rregional and large-scale variations. Earth Planet. Sci. Lett., 126:473--492, 1994. [ bib ]
[791] JG Caldwell, WF Haxby, D Eo Karig, and DL Turcotte. On the applicability of a universal elastic trench profile. Earth Planet. Sci. Lett., 31:239--246, 1976. [ bib ]
[792] JG Caldwell and DL Turcotte. Dependence of the thickness of the elastic oceanic lithosphere on age. J. Geophys. Res.: Sol. Earth, 84:7572--7576, 1979. [ bib ]
[793] F. J. Calixto, D. Robinson, E. Sandvol, S. Kay, D. Abt, K. Fischer, B. Heit, X. Yuan, D. Comte, and P. Alvarado. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau. Geophys. J. Int., 199:688--699, 2014. [ bib ]
[794] J. P. Calpin. Paleoseismology. Academic Press, London, 1996. [ bib ]
[795] M. L. Calvache and S. N. Williams. Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J. Volcanol. Geothermal Res., 77:21--38, 1997. [ bib ]
[796] M. Calvet, S. Chevrot, and A. Souriau. P-wave propagation in transversely isotropic media. II. Application to inner core anisotropy: Effects of data averaging, parameterization and a priori information. Phys. Earth Planet. Inter., 156:21--40, 2006. [ bib ]
[797] F. Cammarano, S. Goes, P. Vacher, and D. Giardini. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter., 138:197--222, 2003. [ bib ]
[798] F. Cammarano, A. Deuss, S. Goes, and D. Giardini. One-dimensional physical reference models for the upper mantle and transition zone: combining seismic and mineral physics constraints. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[799] Fabio Cammarano, Saskia Goes, Arwen Deuss, and Domenico Giardini. Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet. Sci. Lett., 232:227--243, 2005. [ bib ]
[800] F. Cammarano, P. Tackley, and L. Boschi. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermo-chemical models. Geophys. J. Int., 187:1301--1318, 2011. [ bib ]
[801] Ian H Campbell and Ross W Griffiths. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett., 99:79--93, 1990. [ bib ]
[802] M. Campillo, I. R. Ionescu, J. C. Paumier, and Y. Renard. On the dynamic sliding with friction of a rigid block and of an infinite elastic slab. Phys. Earth Planet. Inter., 96:15--23, 1996. [ bib ]
[803] S. C. Cande, P. Patriat, and J. Dyment. Motion between the Indian, Antarctic and African plates in the early Cenozoic. Geophys. J. Int., 183:127--149, 2010. [ bib ]
[804] S. C. Cande and D. R. Stegman. Indian and African plate motions driven by the push force of the Réunion plume head. Nature, 475:47--52, 2011. [ bib ]
[805] S. C. Cande and D. V. Kent. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res.: Sol. Earth, 100:6083--6095, 1995. [ bib ]
[806] Thibault Candela, François Renard, Yann Klinger, Karen Mair, Jean Schmittbuhl, and Emily E Brodsky. Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res.: Sol. Earth, 117(B08409), 2012. [ bib | DOI ]
[807] Dante Canil. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos, 77:375--393, 2004. [ bib ]
[808] Y. Caniven, S. Dominguez, R. Soliva, R. Cattin, M. Peyret, M. Marchandon, C. Romano, and V. Strak. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle. Tectonics, 34:232--264, 2015. [ bib | DOI ]
[809] Mathilde Cannat, Daniel Sauter, Javier Escartín, Luc L Lavier, and Suzanne Picazo. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth Planet. Sci. Lett., 288:174--183, 2009. [ bib ]
[810] Mathilde Cannat. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res.: Sol. Earth, 101:2847--2857, 1996. [ bib ]
[811] Mathilde Cannat, Yves Lagabrielle, Henri Bougault, Jack Casey, Nathalie de Coutures, Leonid Dmitriev, and Yves Fouquet. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15N region. Tectonophys., 279:193--213, 1997. [ bib ]
[812] Robin M Canup. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys., 42:441--475, 2004. [ bib ]
[813] A. Cao and B. A. Romanowicz. Locating scatterers in the mantle using array analysis of PKIKP precursors from an earthquake doublet. Earth Planet. Sci. Lett., 255:22--31, 2007. [ bib ]
[814] F. A. Capitanio, G. Morra, and S. Goes. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet. Sci. Lett., 262:284--297, 2007. [ bib ]
[815] F. A. Capitanio, S. Goes, G. Morra, and D. Giardini. Signatures of downgoing plate-buoyancy driven subduction in motions and seismic coupling at major subduction zones. Earth Planet. Sci. Lett., 262:298--306, 2007. [ bib ]
[816] F. A. Capitanio, G. Morra, S. Goes, R. F. Weinberg, and L. Moresi. India-Asia convergence driven by the subduction of the Greater Indian continent. Nature Geosc., 3:136--139, 2010. [ bib ]
[817] F. A. Capitanio, D. R. Stegman, L. Moresi, and W. Sharples. Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophys., 483:80--92, 2010. [ bib ]
[818] F. A. Capitanio, C. Faccenna, S. Zlotnik, and D. R. Stegman. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature, 480:83--86, 2011. [ bib ]
[819] F. A. Capitanio and G. Morra. The bending mechanics in a dynamic subduction system: Constraints from numerical modelling and global compilation analysis. Tectonophys., 2012. [ bib | DOI ]
[820] Fabio A Capitanio and Anne Replumaz. Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western syntaxis formation. Geochem., Geophys., Geosys., 14:3515--3531, 2013. [ bib ]
[821] F. A. Capitanio, A. Replumaz, and N. Riel. Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochem., Geophys., Geosys., 16:962--982, 2015. [ bib | DOI ]
[822] Fabio A Capitanio. The role of the Miocene-to-Pliocene transition in the Eastern Mediterranean extrusion tectonics: Constraints from numerical modelling. Earth Planet. Sci. Lett., 448:122--132, 2016. [ bib ]
[823] S. Crampin. A review of wave motion in anisotropic and cracked elastic-media. Wave motion, 3:343--391, 1981. [ bib ]
[824] S. Carannante and L. Boschi. Databases of surface wave dispersion. Annal. Geophys., 48:945--955, 2005. [ bib ]
[825] Suzanne Carbotte, Carolyn Mutter, John Mutter, and Gustavo Ponce-Correa. Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer: Insights from the East Pacific Rise at lat 16N. Geology, 26:455--458, 1998. [ bib ]
[826] A. Cardona, V. A. Valencia, G. Bayona, J. Duque, M. Ducea, G. Gehrels, C. Jaramillo, C. Montes, G. Ojeda, and J. Ruiz. Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23:26--34, 2011. [ bib ]
[827] S Warren Carey. The expanding earth-an essay review. Earth-Sci. Rev., 11:105--143, 1975. [ bib ]
[828] R. L. Carlson, T. W. C. Hilde, and S. Uyeda. The driving mechanism of plate tectonics: relation to age of the lithosphere at trenches. Geophys. Res. Lett., 10:297--300, 1983. [ bib ]
[829] R. L. Carlson and P. J. Melia. Subduction hinge migration. Tectonophys., 102:1--16, 1984. [ bib ]
[830] R. L. Carlson and C. A. Mortera-Gutiérrez. Subduction hinge migration along The Izu-Bonin-Mariana arc. Tectonophys., 181:331--344, 1990. [ bib ]
[831] R. W. Carlson. Mechanisms of earth differentiation: consequences for the chemical structure of the mantle. Rev. Geophys., 32:337--361, 1994. [ bib ]
[832] J. M. Carlson and J. S. Langer. Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett., 62:2632--2635, 1989. [ bib ]
[833] J. M. Carlson, J. S. Langer, and B. E. Shaw. Dynamics of earthquake faults. Rev. Mod. Physics, 66:657--670, 1994. [ bib ]
[834] R. L. Carlson and H. P. Johnson. On modeling the thermal evolution of the oceanic upper-mantle -- an assessment of the cooling plate model. J. Geophys. Res.: Sol. Earth, 99:3201--3214, 1994. [ bib ]
[835] L. Carmignani and R. Kligfield. Crustal extension in the Northern Apennines: the transition from compression to extension in the Alpi Apuane core complex. Tectonics, 9:1275--1305, 1990. [ bib ]
[836] E. Carminati and P. Petricca. State of stress in slabs as a function of large-scale plate kinematics. Geochem., Geophys., Geosys., 11(Q04006), 2010. [ bib | DOI ]
[837] BM Carpenter, DM Saffer, and C Marone. Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. J. Geophys. Res.: Sol. Earth, 120:5273--5289, 2015. [ bib ]
[838] B. M. Carpenter, M. J. Ikari, and C. Marone. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. J. Geophys. Res.: Sol. Earth, 121:1183--1201, 2016. [ bib ]
[839] H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, London, 2nd edition, 1959. [ bib ]
[840] N. L. Carter. Steady state flow of rock. Rev. Geophys. Space Phys., 14:301--360, 1976. [ bib ]
[841] D. J. Carter, Audley-Charles, M. G., and A. J. Barber. Stratigraphic analysis of island arc– continental margin collision in eastern Indonesia. J. Geol. Soc. London, 132:197–--198, 1976. [ bib ]
[842] J. H. E. Cartwright, E. Hernández-Garcia, and O. Piro. Burridge-knopoff models as elastic excitable media. Phys. Rev. Lett., 79:527--530, 1997. [ bib ]
[843] E. Casarotti, A. Piersanti, F. P. Lucente, and E. Boschi. Global postseismic stress diffusion and fault interaction at long distances. Earth Planet. Sci. Lett., 191:75--84, 2001. [ bib ]
[844] P Casero. Structural setting of petroleum exploration plays in italy. Spec. Vol. Italian Geol. Soc. for the IGC, 32:189--199, 2004. [ bib ]
[845] K. V. Cashman, R. S. J. Sparks, and J. D. Blundy. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355, 2017. [ bib | DOI ]
[846] S. J. Caskey and S. G. Wesnousky. Static stress change and earthquake triggering during the 1954 Fairview Peak and Dixie Valley earthquakes, Central Nevada. Bull. Seismol. Soc. Am., 87:521--527, June 1997. [ bib ]
[847] O. Castelnau, D. K. Blackman, R. A. Lebensohn, and P. Ponte Castaneda. Micromechanical modeling of the viscoplastic behavior of olivine. J. Geophys. Res.: Sol. Earth, 113(B09202), 2008. [ bib | DOI ]
[848] O. Castelnau, D. K. Blackman, and T. W. Becker. Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow. Geophys. Res. Lett., 36(L12304), 2009. [ bib | DOI ]
[849] P. Castillo. The Dupal anomaly as a trace of the upwelling lower mantle. Nature, 336:667--670, 1988. [ bib ]
[850] J. C. Castle and R. D. van der Hilst. Searching for seismic observations of deep mantle structure (abstract). Eos Trans. AGU, 81:F832, 2000. [ bib ]
[851] J. C. Castle and R. D. van der Hilst. Searching for seismic scattering off mantle interfaces between 800 and 2000 km depth. J. Geophys. Res.: Sol. Earth, 108:10.1029/2001JB000286, 2003. [ bib ]
[852] J. C. Castle and K. C. Craeger. Seismic evidence against a mantle chemical discontinutity near 660km depth beneath Izu-Bonin. Geophys. Res. Lett., 24:241--244, 1997. [ bib ]
[853] J. C. Castle and K. C. Creager. NW Pacific slab rheology, the seismicity cutoff, and the olicvine to spinel phase change. Earth Planets Space, 50:977--985, 1998. [ bib ]
[854] J. C. Castle and K. C. Creager. A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. J. Geophys. Res.: Sol. Earth, 104:7279--7292, 1999. [ bib ]
[855] R. D. Catchings and W. M. Kohler. Reflected seismic waves and their effect on strong shaking during the 1989 Loma Prieta, California Earthquake CA. Bull. Seismol. Soc. Am., 86:1401--1416, 1996. [ bib ]
[856] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin. Jamming, force chains, and fragile matter. Phys. Rev. Lett., 81:1841--1844, 1998. [ bib ]
[857] L. M. III Cathles. Viscosity of the Earth's mantle. PhD thesis, Princeton University, Princeton NJ, 1975. [ bib ]
[858] Camilla Cattania and Paul Segall. Crack models of repeating earthquakes predict observed moment-recurrence scaling. J. Geophys. Res.: Sol. Earth, 124:476--503, 2019. [ bib ]
[859] C Cattania. Complex earthquake sequences on simple faults. Geophys. Res. Lett., 46:10384--10393, 2019. [ bib ]
[860] C. Cattania and P. Segall. Foreschoks on rough rate-state faults (abstract). In AGU Fall Meeting, number S24B-07, San Francisco CA, 2019. American Geophysical Union. [ bib ]
[861] Peter A Cawood, A Kroner, and Sergei Pisarevsky. Precambrian plate tectonics: criteria and evidence. GSA Today, 16:4--11, 2006. [ bib ]
[862] Peter A Cawood and Craig Buchan. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci. Rev., 82:217--256, 2007. [ bib ]
[863] Peter A Cawood, Robin A Strachan, Sergei A Pisarevsky, Dmitry P Gladkochub, and J Brendan Murphy. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet. Sci. Lett., 449:118--126, 2016. [ bib ]
[864] Peter A Cawood, Chris J Hawkesworth, Sergei A Pisarevsky, Bruno Dhuime, Fabio A Capitanio, and Oliver Nebel. Geological archive of the onset of plate tectonics. Phil. Trans. Royal Soc. A, 376:20170405, 2018. [ bib ]
[865] Peter A. Cawood, Priyadarshi Chowdhury, Jacob A. Mulder, Chris J. Hawkesworth, Fabio A. Capitanio, Prasanna M. Gunawardana, and Oliver Nebel. Secular evolution of continents and the earth system. Rev. Geophys., 60:e2022RG000789, 2022. [ bib ]
[866] F. Cediel, R.P. Shaw, and C. Cáceres. Tectonic assembly of the Northern Andean Block. In C. Bartolini, R.T. Buffler, and J. Blickwede, editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, volume 79 of AAPG Memoir, pages 815--848. AAPG, 2003. [ bib ]
[867] Nicolas Luca Celli, Sergei Lebedev, Andrew J Schaeffer, and Carmen Gaina. The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism. Earth Planet. Sci. Lett., 569:117048, 2021. [ bib ]
[868] N. G. Cerpa, R. Araya, M. Gerbault, and R. Hassani. Relationship between slab dip and topography segmentation in an oblique subduction zone: Insights from numerical modeling. Geophys. Res. Lett., 42:5786--5795, 2015. [ bib ]
[869] N. G. Cerpa, I. Wada, and C. Wilson. Fluid migration in the mantle wedge: Influence of mineral grain size and mantle compaction. J. Geophys. Res.: Sol. Earth, 2017. [ bib | DOI ]
[870] M. Chai, J. M. Brown, and L. J. Slutsky. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J. Geophys. Res.: Sol. Earth, 102:14779--14785, 1997. [ bib ]
[871] D. Chalot-Prat, J. Ganne, and A. Lombar. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69:69--103, 2003. [ bib ]
[872] F. Chambat, Y. Ricard, and B. Valette. Flattening of the earth: further from hydrostaticity than previously estimated. Geophys. J. Int., 183:727--732, 2010. [ bib ]
[873] Kevin R Chamberlain, Carol D Frost, and B Ronald Frost. Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canad. J. Earth Sci., 40:1357--1374, 2003. [ bib ]
[874] CJ Chamberlain, Nicolas Houlié, HLM Bentham, and TA Stern. Lithosphere--asthenosphere interactions near the san andreas fault. Earth Planet. Sci. Lett., 399:14--20, 2014. [ bib ]
[875] N. Chamot-Rooke, J.-M. Gaulier, and F. Jestin. Constraints on Moho depth and crustal thickness in the Liguro-Provençal Basin from a 3D gravity inversion; geodynamic implications. In B. Durand, A. Mascle, L. Jolivet, F. Horvàth, and M. Séranne, editors, The Mediterranean basins: Tertiary extension within the Alpine Orogen, volume 156 of Geol. Soc. Lond. Spec. Pubs, pages 37--61. Geological Society of London, London, 1999. [ bib ]
[876] J. D. Champagnac, P. Molnar, R. S. Anderson, C. Sue, and B. Delacou. Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35:195--198, 2007. [ bib ]
[877] T. R. Chandrupatla and A. D. Belegundu. Introduction to finite elements in engineering. Prentice-Hall, London, 1991. [ bib ]
[878] Chandong Chang, Jun Bok Lee, and Tae-Seob Kang. Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophys., 485:164--177, 2010. [ bib ]
[879] S.-J. Chang, A. M. G. Ferreira, J. Ritsema, H. J. van Heijst, and J. H. Woodhouse. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res.: Sol. Earth, 120:4278--4300, 2015. [ bib | DOI ]
[880] J. E. T. Channell. Paleomagnetism and continental collision in the Alpine belt and the formation of late-tectonic extensional basins. In M. P. Coward and A. C. Reis, editors, Collision Tectonics, volume 19 of Geol. Soc. Lond. Spec. Pubs., pages 261--284. Geological Society of London, London, 1986. [ bib ]
[881] Alan D Chapman. The Pelona--Orocopia--Rand and related schists of southern California: a review of the best-known archive of shallow subduction on the planet. Int. Geol. Rev., 59:664--701, 2017. [ bib ]
[882] C. H. Chapman and P. M. Shearer. Ray tracing in azimuthally anisotropic media -- II. Quasi-shear wave coupling. Geophys. J., 96:65--83, 1989. [ bib ]
[883] W. M. Chapple and T. E. Tullis. Evaluation of the forces that drive the plates. J. Geophys. Res.: Sol. Earth, 82:1967--1984, 1977. [ bib ]
[884] William M Chapple and Donald W Forsyth. Earthquakes and bending of plates at trenches. J. Geophys. Res.: Sol. Earth, 84:6729--6749, 1979. [ bib ]
[885] E.-M. Charalampidou, S. A. Hall, S. Stanchits, L. Helen, and G. Viggiani. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression. Tectonophys., 2010. [ bib | DOI ]
[886] Dominique Chardon, Pierre Choukroune, and Mudlappa Jayananda. Sinking of the Dharwar basin (South India): implications for Archaean tectonics. Precambrian Research, 91(1-2):15--39, 1998. [ bib ]
[887] T. R. Charlton. Postcollisional extension in arc-continent collision zones, eastern Indonesia. Geology, 19:28--31, 1991. [ bib ]
[888] T. R. Charlton. Backthrusting on the birps deep seismic reflection profiles, banda arc, indonesia, a repsonse to changing slab inclination? J. Geol. Soc., 154:169--172, 1997. [ bib ]
[889] C. G. Chase, J. A. Libarkin, and A. J. Sussman. Colorado Plateau: Geoid and means of isostatic support. Int. Geol. Rev., 44:575--587, 2002. [ bib ]
[890] A. Chase and P. Wessel. Analysis of Pacific hotspot chains. Geochem., Geophys., Geosys., 23:e2021GC010225, 2022. [ bib ]
[891] C. G. Chase. Extension behind island arcs and motion relative to hot spots. J. Geophys. Res.: Sol. Earth, 83:5385--5387, 1978. [ bib ]
[892] C. G. Chase. Subduction, the geoid, and lower mantle convection. Nature, 282:464--468, 1979. [ bib ]
[893] Y. B. Chastel, P. R. Dawson, H.-R. Wenk, and K. Bennett. Anisotropic convection with implications for the upper mantle. J. Geophys. Res.: Sol. Earth, 98:17757--17771, 1993. [ bib ]
[894] Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current Sci, 78:808--817, 2000. [ bib ]
[895] EJ Chaves, SY Schwartz, and RE Abercrombie. Repeating earthquakes record fault weakening and healing in areas of megathrust postseismic slip. Science adv., 6:eaaz9317, 2020. [ bib ]
[896] ChEESE Project, 2021. Available online at cheese-coe.eu/about/objectives, accessed 01/2021. [ bib ]
[897] A. I. Chemenda, J. P. Burg, and M. Mattauer. Evolutionary model of the Himalaya-Tibet system: geopoem based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett., 174:397--409, 2000. [ bib ]
[898] N. Chemingui. Modeling 3-D anisotropic fractal media. Technical report, Stanford University, 2001. Stanford Exploration Project, Report 80. [ bib ]
[899] P.-F. Chen, C. R. Bina, and E. A. Okal. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophys. J. Int., 159:721--733, 2004. [ bib ]
[900] P. Chen, L. Zhao, and T. H. Jordan. Full 3D tomography for the crustal structure of the Los Angeles region. Bull. Seismol. Soc. Am., 97:1094--1120, 2007. [ bib ]
[901] M. Chen, J. Tromp, D. Helmberger, and H. Kanamori. Waveform modeling of the slab beneath Japan. J. Geophys. Res.: Sol. Earth, 112(B02305), 2007. [ bib | DOI ]
[902] Ting Chen and Nadia Lapusta. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. J. Geophys. Res.: Sol. Earth, 114(B01311), 2009. [ bib | DOI ]
[903] L. Chen and Y. Ai. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J. Geophys. Res.: Sol. Earth, 114(B06307), 2009. [ bib | DOI ]
[904] L. Chen, T. V. Gerya, Z.-J. Zhang, A. Aitken, Z.-H. Li, and X.-F. Liang. Formation mechanism of steep convergent intracontinental margins: Insights from numerical modeling. Geophys. Res. Lett., 40:2000--2005, 2013. [ bib | DOI ]
[905] J. Chen, A. R. Niemeijer, and C. J. Spiers. Microphysically derived expressions for rate-and-state friction parameters, a, b, and Dc. J. Geophys. Res.: Sol. Earth, 122:9627--9657, 2017. [ bib ]
[906] Peng Chen, Umberto Villa, and Omar Ghattas. Taylor approximation and variance reduction for PDE-constrained optimal control under uncertainty. J. Comp. Phys., 385:163--186, 2019. [ bib ]
[907] Peng Chen and Omar Ghattas. Hessian-based sampling for high-dimensional model reduction. Int. J. Uncert. Quant., 9:103--121, 2019. [ bib ]
[908] G. Chen, Q. Cheng, S. E. Peters, C. J. Spencer, and M. Zhao. Feedback between surface and deep processes: Insight from time series analysis of sedimentary record. Earth Planet. Sci. Lett., 579:117352, 2022. [ bib ]
[909] W.-P. Chen and P. Molnar. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res.: Sol. Earth, 88:4183--4214, 1983. [ bib ]
[910] K. Chen, P. Bak, and S. P. Obukhov. Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A, 43:625--629, January 1991. [ bib ]
[911] P. Chen and S. J. Duda. Fracture mechanics rupture model of earthquakes and an estimate of ambient shear stress. Phys. Earth Planet. Inter., 93:299--308, 1996. [ bib ]
[912] J. Chen and S. D. King. The influence of temperature and depth dependent viscosity on geoid and topography profiles from models of mantle convection. Phys. Earth Planet. Inter., 106:75--91, 1998. [ bib ]
[913] Yifang Cheng, Egill Hauksson, and Yehuda Ben-Zion. Refined earthquake focal mechanism catalog for Southern California derived with Deep Learning algorithms. J. Geophys. Res.: Sol. Earth, 128:e2022JB025975, 2023. [ bib ]
[914] A. Cherchi and L. Montandert. Oligo-Miocene rift of Sardinia and the early history of the Western Mediterranean basin. Nature, 298:736--739, 1982. [ bib ]
[915] L. A. Chernov. Wave propagation in a random medium. McGraw-Hill, New York, 1960. [ bib ]
[916] M. V. Chertova, W. Spakman, T. Geenen, A. P. Berg, and D. J. J. Hinsbergen. Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling. J. Geophys. Res.: Sol. Earth, 119:5876--5902, 2014. [ bib | DOI ]
[917] J. Chéry, M. D. Zoback, and R. Hassani. An integrated mechanical model of the San Andreas fault in central and northern California. J. Geophys. Res.: Sol. Earth, 106:22051--22066, 2001. [ bib ]
[918] J. Chéry. Geodetic strain across the San Andreas fault reflects elastic plate thickness variations (rather than fault slip rate). Earth Planet. Sci. Lett., 269:352--365, 2008. [ bib ]
[919] Christine J Chesley, Samer Naif, and Kerry Key. Subducting topography generates upper plate porosity that promotes slow slip at the Hikurangi Margin, New Zealand (abstract). In AGU Fall Meeting, number T055-06. American Geophysical Union, 2020. [ bib ]
[920] Judith S Chester, Frederick M Chester, and Andreas K Kronenberg. Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437:133--136, 2005. [ bib ]
[921] F. M. Chester, C. Rowe, K. Ujiie, J. Kirkpatrick, C. Regalla, F. Remitti, J. C. Moore, V. Toy, M. Wolfson-Schwehr, S. Bose, J. Kameda, J. J. Mori, E. E. Brodsky, N. Eguchi, S. Toczko, and Expedition 343 and 343T Scientists. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki earthquake. Science, 342:1208--1211, 2013. [ bib ]
[922] Frederick M Chester and NG Higgs. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res.: Sol. Earth, 97:1859--1870, 1992. [ bib ]
[923] Frederick M Chester, James P Evans, and Ronald L Biegel. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res.: Sol. Earth, 98:771--786, 1993. [ bib ]
[924] F. M. Chester and J. S. Chester. Ultracataclasite structure and friction processes of the Punchbowl fault San Andreas system, California. Tectonophys., 295:199--221, 1998. [ bib ]
[925] S. Chevrot. Multichannel analysis of shear wave splitting. J. Geophys. Res.: Sol. Earth, 105:21579--21590, 2000. [ bib ]
[926] S. Chevrot and R. D. van der Hilst. On the effects of a dipping axis of symmetry on shear wave splitting measurements. Geophys. J. Int., 152:497--505, 2003. [ bib ]
[927] S. Chevrot, N. Favier, and D. Komatitsch. Shear wave splitting in three-dimensional anisotropic media. Geophys. J. Int., 159:711--720, 2004. [ bib ]
[928] S. Chevrot. Finite-frequency vectorial tomography: a new method for high-resolution imaging of upper mantle anisotropy. Geophys. J. Int., 165:641--657, 2006. [ bib ]
[929] S. Chevrot and V. Monteiller. Principles of vectorial tomography -- the effects of model parametrization and regularization in tomographic imaging of seismic anisotropy. Geophys. J. Int., 179:1726--1736, 2009. [ bib ]
[930] S. Chevrot, L. Vinnik, and J.-P. Montagner. Global-scale analysis of the mantle PdS phases. J. Geophys. Res.: Sol. Earth, 104:20203--20219, 1999. [ bib ]
[931] M. Chiaradia, O. Muntener, and B. Beate. Enriched basaltic andesites from mid-crustal fractional crystal lization, recharge and assimilation (Pilavo Volcano, Western Cordillera of Ecuador). J. Petrol., 52:1107--1141, 2011. [ bib ]
[932] M. A. Chinnery. The stress changes that accompany strike-slip faulting. Bull. Seismol. Soc. Am., 53:921--932, 1963. [ bib ]
[933] E. Choi, P. Thoutireddy, L. L. Lavier, S. Quenette, Tan. E., M. Gurnis, M. Aivazis, and B. Appelbee. Coupling models of crustal deformation and mantle convection: An application of GeoFramework (abstract). Eos Trans. AGU, 85(47):T31A--1261, 2004. [ bib ]
[934] E. Choi, L. Lavier, and M. Gurnis. Thermomechanics of mid-ocean ridge segmentation. Phys. Earth Planet. Inter., 171:374--386, 2008. [ bib ]
[935] E. Choi, E. Tan, L. L. Lavier, and V. M. Calo. DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation. J. Geophys. Res.: Sol. Earth, 118:2429--2444, 2013. [ bib ]
[936] A. Chopelas and R. Boehler. Thermal expansion measurements at very high pressure, systematics, and a case for a chemically homogeneous mantle. Geophys. Res. Lett., 16:1347--1350, 1989. [ bib ]
[937] P Choukroune, D Gapais, and O Merle. Shear criteria and structural symmetry. J. Struct. Geol., 9:525--530, 1987. [ bib ]
[938] George L Choy and John L Boatwright. Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res.: Sol. Earth, 100:18205--18228, 1995. [ bib ]
[939] R. Christensen. Theory of Viscoelasticity. Academic Press, New York, 1982. [ bib ]
[940] U. Christensen. Geodynamic models of deep subduction. Phys. Earth Planet. Inter., 127:25--34, 2001. [ bib ]
[941] Ulrich R Christensen and Julien Aubert. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int., 166:97--114, 2006. [ bib ]
[942] UR Christensen. Dynamo scaling laws and applications to the planets. Space Sci. Rev., 152:565--590, 2010. [ bib ]
[943] Ulrich R Christensen. Geodynamo models: Tools for understanding properties of Earth's magnetic field. Phys. Earth Planet. Inter., 187:157--169, 2011. [ bib ]
[944] N. I. Christensen and M. H. Salisbury. Seismic anisotropy in the oceanic upper mantle: Evidence from the Bay of Islands ophiolite complex. J. Geophys. Res.: Sol. Earth, 84:4601--4610, 1979. [ bib ]
[945] Douglas H Christensen and Larry J Ruff. Outer-rise earthquakes and seismic coupling. Geophys. Res. Lett., 10:697--700, 1983. [ bib ]
[946] U. R. Christensen and D. A. Yuen. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res.: Sol. Earth, 89:4389--4402, 1984. [ bib ]
[947] U. R. Christensen. Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. R. Astr. Soc., 77:343--384, 1984. [ bib ]
[948] U. R. Christensen. Thermal evolution models for the Earth. J. Geophys. Res.: Sol. Earth, 90:2995--3007, 1985. [ bib ]
[949] U. R. Christensen and D. A. Yuen. Layered convection induced by phase transitions. J. Geophys. Res.: Sol. Earth, 90:10291--10300, 1985. [ bib ]
[950] U. R. Christensen. Some geodynamical effects of anisotropic viscosity. Geophys. J. R. Astr. Soc., 91:711--736, 1987. [ bib ]
[951] Ulrich R Christensen and David A Yuen. Time-dependent convection with non-newtonian viscosity. J. Geophys. Res.: Sol. Earth, 94:814--820, 1989. [ bib ]
[952] Ulrich R. Christensen. Mixing by time-dependent convection. Earth Planet. Sci. Lett., 95:382--394, 1989. [ bib ]
[953] U. Christensen and H. Harder. Three-dimensional convection with variable-viscosity. Geophys. J. Int., 104:213--226, 1991. [ bib ]
[954] U. R. Christensen. An Eulerian technique for thermo-mechanical modeling of lithospheric extension. J. Geophys. Res.: Sol. Earth, 97:2015--2036, 1992. [ bib ]
[955] U. R. Christensen and A. W. Hofmann. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res.: Sol. Earth, 99:19867--19884, 1994. [ bib ]
[956] N. I. Christensen and W. D. Mooney. Seismic velocity structure and composition of the continental crust: A global review. J. Geophys. Res.: Sol. Earth, 100:9761--9788, 1995. [ bib ]
[957] U. R. Christensen. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett., 140:27--39, 1996. [ bib ]
[958] U. R. Christensen. Influence of chemical buoyancy on the dynamics of slabs in the transition zone. J. Geophys. Res.: Sol. Earth, 102:22435--22443, 1997. [ bib ]
[959] R. Y. Chuang and K. Johnson. Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: Consideration of nonsteady mantle flow and lower crustal fault creep. Geology, 39:627--630, 2011. [ bib ]
[960] P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R.B. Myneni, S. Piao, and P. Thornton. Carbon and other biogeochemical cycles. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, editors, Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 465--570. Cambridge University Press, Cambridge UK, 2013. [ bib ]
[961] S. Cianetti, C. Giunchi, and M. Cocco. Mechanical coupling between the Landers and Hector Mine (California) fault systems. Geophys. Res. Lett., 29:1869, 2002. [ bib ]
[962] S. Cianetti, C. Giunchi, and M. Cocco. Three-dimensional finite element modeling of stress interaction: An application to Landers and Hector Mine fault systems. J. Geophys. Res.: Sol. Earth, 110(B05S17), 2005. [ bib | DOI ]
[963] L. Kellogg, B. A. Romanowicz, S. Hart, and A. Dziewoński. Cider. 2006 summer program: The nature and dynamics of the earth's transition zone: a multidisciplinary approach. Available online at www.deep-earth.org/summer06.html, accessed 06/2006, 2006. [ bib ]
[964] M. Gurnis. Computational Infrastructure for Geodynamics (CIG). California Institute of Technology, Pasadena CA. Online at www.geodynamics.org/, accessed 06/2006, 2006. [ bib ]
[965] Hana Čížková, Ondřej Čadek, Ctirad Matyska, and David A Yuen. Implications of post-perovskite transport properties for core--mantle dynamics. Phys. Earth Planet. Inter., 180:235--243, 2010. [ bib ]
[966] H. Čížková, J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett., 199:447--457, 2002. [ bib ]
[967] H. Čížková, A. van den Berg, W. Spakman, and C. Matyska. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet. Inter., 200:56--62, 2012. [ bib ]
[968] H. Čížková and C. Bina. Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth Planet. Sci. Lett., 379:95--103, 2013. [ bib ]
[969] H. Čížková and C. Bina. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry. Earth Planet. Sci. Lett., 430:408--415, 2015. [ bib ]
[970] H. Čížková, O. Čadek, and A. Slancová. Regional correlation analysis between seismic heterogeneity in the lower mantle and subduction in the last 180 Myr: implications for mantle dynamics and rheology. Pure Appl. Geophys., 151:527--537, 1998. [ bib ]
[971] H. Čížková, O. Čadek, A. van den Berg, and N. J. Vlaar. Can lower mantle slab-like seimic anomalies be explained by thermal coupling between the upper and lower mantles? Geophys. Res. Lett., 26:1501--1504, 1999. [ bib ]
[972] David A Clague and Richard D Jarrard. Tertiary Pacific plate motion deduced from the Hawaiian-Emperor chain. Geol. Soc. Amer. Bull., 84:1135--1154, 1973. [ bib ]
[973] John J Clague. Evidence for large earthquakes at the Cascadia subduction zone. Rev. Geophys., 35:439--460, 1997. [ bib ]
[974] Matthew E Clapham and Paul R Renne. Flood basalts and mass extinctions. Ann. Rev. Earth Planet. Sci., 47:275--303, 2019. [ bib ]
[975] Marin Kristen Clark and Leigh Handy Royden. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28:703--706, 2000. [ bib ]
[976] M. K. Clark, J. W. M. Bush, and L. H. Royden. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int., 162:575--590, 2005. [ bib ]
[977] S. R. Clark, D. Stegman, and R. D. Müller. Episodicity in back-arc tectonic regimes. Phys. Earth Planet. Inter., 171:265--279, 2008. [ bib ]
[978] S. A. Clark, A. Levander, M. B. Magnani, and C. A. Zelt. Negligible convergence and lithospheric tearing along the Caribbean-South American plate boundary at 64W. Tectonics, 27(TC6013), 2008. [ bib | DOI ]
[979] S. A. Clark, M. Sobiesiak, C. A. Zelt, M. B. Magnani, M. S. Miller, M. J. Bezada, and A. Levander. Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles. Geochem., Geophys., Geosys., 9(Q11004), 2008. [ bib | DOI ]
[980] S. A. Clark, C. A. Zelt, M. B. Magnan, and A. Levander. Characterizing the Caribbean-South American plate boundary at 64W using wide-angle seismic data. J. Geophys. Res.: Sol. Earth, 113(B07401), 2008. [ bib | DOI ]
[981] K. Clark, J. Howarth, N. Litchfield, U. Cochran, J. Turnbull, L. Dowling, A. Howell, K. Berryman, and F. Wolfe. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geol., 412:139--172, 2019. [ bib ]
[982] James A Clark, William E Farrell, and W Richard Peltier. Global changes in postglacial sea level: A numerical calculation1. Quatern. res., 9(3):265--287, 1978. [ bib ]
[983] W.B. Clarke, M.A. Beg, and H. Craig. Excess 3He in the sea: Evidence for terrestrial primordial helium. Earth Planet. Sci. Lett., 6:213--220, 1969. [ bib ]
[984] R. Clayton and H. Engquist. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am., 67:1529--1540, 1977. [ bib ]
[985] National Student Clearinghouse. Web page and database, 2021. Available online at https://www.studentclearinghouse.org/, accessed 01/2021. [ bib ]
[986] J. R. Cleary and R. A. Haddon. Seismic wave scattering near the core-mantle boundary: a new interpretation of precursors to PKP. Nature, 240:549--551, 1972. [ bib ]
[987] B. M. Clement. Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature, 428:637--640, 2004. [ bib ]
[988] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat., 6:3--73, 1990. [ bib ]
[989] P. Clift and P. Vannucchi. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys., 42:1--31, 2004. [ bib ]
[990] S. Cloetingh, E. Burov, and A. Poliakov. Lithosphere folding: Primary response to compression? (from central asia to paris basin). Tectonics, 18(6):1064--1083, 1999. [ bib ]
[991] S. Cloetingh, E. Burov, F. Beekman, B. Andeweg, P. A. M. Andriessen, D. Garcia-Castellanos, G. de Vicente, and R. Vegas. Lithospheric folding in iberia. Tectonics, 21(5):art. no.--1041, 2002. [ bib ]
[992] S. A. P. L. Cloething, M. J. R. Wortel, and N. J. Vlaar. Evolution of passive continental margins and initiation of subduction zones. Nature, 297:139--142, 1982. [ bib ]
[993] S. Cloething and M. J. R. Wortel. Regional stress field of the Indian plate. Geophys. Res. Lett., 12:77--80, 1983. [ bib ]
[994] S. Cloething, M. J. R. Wortel, and N. J. Vlaar. On the initiation of subduction zones. Pure Appl. Geophys., 129:7--25, 1989. [ bib ]
[995] Sierd Cloetingh, Alexander Koptev, István Kovács, Taras Gerya, Anouk Beniest, Ernst Willingshofer, Todd A Ehlers, Nevena Andrić-Tomašević, Svetlana Botsyun, Paul R Eizenhöfer, et al. Plume-induced sinking of intracontinental lithospheric mantle: An overlooked mechanism of subduction initiation? Geochem., Geophys., Geosys., 22(2):e2020GC009482, 2021. [ bib ]
[996] S. Cloetingh and M. J. R. Wortel. Stress in the Indo-Australian plate. Tectonophys., 132:49--67, 1986. [ bib ]
[997] M. Cloos. Flow melanges: Numerical modelling and geologic constraints on their origin in the fransiscan subduction complex, california. Geol. Soc. Am. Bull., 93:330--345, 1982. [ bib ]
[998] M. Cloos. Blueschists in the Franciscan Complex of California: Petrotectonic constraints on uplift mechanisms. In Blueschists and eclogites, volume 164 of Geol. Soc. Amer. Mem., pages 77--93. Geological Society of America, 1986. [ bib ]
[999] M. Cloos and R. L. Shreve. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins, 2, Implications and discussion. Pure Appl. Geophys., 128:501--545, 1988. [ bib ]
[1000] M. N. Cloos. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geol. Soc. Am. Bull., 105:715--737, 1993. [ bib ]
[1001] A. M. Dziewoński and J. H. Woodhouse. Studies of the seismic source using normal-mode theory. In H. Kanamori and E. Boschi, editors, Earthquakes: observation, theory, and interpretation: notes from the International School of Physics “Enrico Fermi” (1982: Varenna, Italy), volume 85, pages 45--137. North-Holland Pub., Amsterdam, 1983. [ bib ]
[1002] CNSS. Composite catalog. Council of the National Seismic System CNSS, quake.geo.berkeley.edu/cnss/catalog-search.html, 1995. [ bib ]
[1003] RL Coble. A model for boundary diffusion controlled creep in polycrystalline materials. J Appl. Phys., 34:1679--1682, 1963. [ bib ]
[1004] D. Coblentz, C. G. Chase, K. E. Karlstrom, and J. van Wijk. Topography, the geoid, and compensation mechanisms for the southern Rocky Mountains. Geochem., Geophys., Geosys., 12(Q04002), 2011. [ bib | DOI ]
[1005] D. D. Coblentz, R. M. Richardson, and M. Sandiford. On the gravitational potential of the Earth's lithosphere. Tectonics, 13:929--945, 1994. [ bib ]
[1006] D. D. Coblentz, S. Zhou, R. R. Hillis, R. M. Richardson, and M. Sandiford. Topography, boundary forces, and the Indo-Australian intraplate stress field. J. Geophys. Res.: Sol. Earth, 103:919--931, 1998. [ bib ]
[1007] Massimo Cocco, Elisa Tinti, and Antonella Cirella. On the scale dependence of earthquake stress drop. J Seismol., 20:1151--1170, 2016. [ bib ]
[1008] Massimo Cocco, Stefano Aretusini, Chiara Cornelio, Stefan B Nielsen, Elena Spagnuolo, Elisa Tinti, and Giulio Di Toro. Fracture energy and breakdown work during earthquakes. Ann. Rev. Earth Planet. Sci., 51:217--252, 2023. [ bib ]
[1009] A. Cochard and R. Madariaga. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res.: Sol. Earth, 101:25321--25336, 1996. [ bib ]
[1010] E. S. Cochran, J. E. Vidale, and Y. G. Li. Near-fault anisotropy following the Hector Mine earthquake. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1011] Elizabeth S Cochran, Morgan T Page, Nicholas J van der Elst, Zachary E Ross, and Daniel T Trugman. Fault roughness at seismogenic depths and links to earthquake behavior. The Seism. Rec., 3:37--47, 2023. [ bib ]
[1012] UNAVCO. Caribbean GPS network to aid earthquake and hurricane forecasting. Available online at www.unavco.org/community_science/science_highlights/2011/coconet.html, accessed 11/2011, 2011. [ bib ]
[1013] MILLARD F Coffin, ROBERT A Duncan, OLAV Eldholm, J GODFREY Fitton, FRED A Frey, HANS CHRISTIAN Larsen, JOHN J Mahoney, ANDREW D Saunders, ROLAND Schlich, and PAUL J Wallace. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead. Oceanography, 19:150--160, 2006. [ bib ]
[1014] M. F. Coffin and O. Eldholm. Large igneous provinces: Crustal structure, dimensions, and external consequences. 32:1--36, 1994. [ bib ]
[1015] J.-P. Cogne and E. Humler. Temporal variation of oceanic spreading and crustal production rates during the last 180 Myr. Earth Planet. Sci. Lett., 227:427--439, 2004. [ bib ]
[1016] C. R. Cohen. Model for a passive to active continental margin transition: implications for hydrocarbon exploration. Am. Ass. Petrol. Geol. Bull., 66:708--818, 1982. [ bib ]
[1017] R. H. Colburn and W. D. Mooney. Two-dimensional velocity structure along the synclinal axis of the great valley, California. Bull. Seismol. Soc. Am., 76:1305--1322, 1986. [ bib ]
[1018] B. Colleta, F. Hebrard, J. Letouzey, P. Werner, and J. L. Rudkiweicz. Tectonic style and crustal structure of the Eastern Cordillera, Colombia from a balanced cross section. In J. Letouzey, editor, Petroleum and Tectonics in Mobile Belts, pages 81--100. Technip, Paris, 1990. [ bib ]
[1019] Bernard Colletta, François Roure, Bruno de Toni, Daniel Loureiro, Herminio Passalacqua, and Yves Gou. Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuela Andes. Tectonics, 16:777--794, 1997. [ bib ]
[1020] Cristiano Collettini and Richard H Sibson. Normal faults, normal friction? Geology, 29:927--930, 2001. [ bib ]
[1021] C. Collettini, A. Niemeijer, C. Viti, S. A.F. Smith, and C. Marone. Fault structure, frictional properties and mixed-mode fault slip behavior. Earth Planet. Sci. Lett., 311:316--327, 2011. [ bib ]
[1022] Cristiano Collettini. The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophys., 510:253--268, 2011. [ bib ]
[1023] L. Colli, H.-P. Bunge, and B. Schuberth. On retrodictions of global mantle flow with assimilated surface velocities. Geophys. Res. Lett., 42:8341--8348, 2015. [ bib ]
[1024] L. Colli, S. Ghelichkhan, and H.-P. Bunge. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth. Geophys. Res. Lett., 43:2510--2516, 2016. [ bib ]
[1025] M. Collignon, B. J. P. Kaus, D. A. May, and N. Fernandez. Influences of surface processes on fold growth during 3-D detachment folding. Geochem., Geophys., Geosys., 15:3281--3303, 2014. [ bib | DOI ]
[1026] F. Collino and C. Tsogka. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 66:294--307, 2001. [ bib ]
[1027] K. B. Colson, T. K. Rockwell, K. M. Thorup, and G. L. Kennedy. Neotectonics of the left-lateral Santa Rosa Island Fault, western Transverse Ranges, Southern California (abstract). In The Geological Society of America, Cordilleran Section, 91st annual meeting. Abstracts with Programs, volume 27, page 11, 1995. [ bib ]
[1028] Nicolas Coltice, Francis Albarède, and Philippe Gillet. 40K-40Ar constraints on recycling continental crust into the mantle. Science, 288:845--847, 2000. [ bib ]
[1029] N. Coltice, T. Rolf, P. J. Tackley, and S. Labrosse. Dynamic causes of the relation between area and age of the ocean floor. Science, 336:335--338, 2012. [ bib ]
[1030] N. Coltice, M. Seton, T. Rolf, R. Müller, and P. Tackley. Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth Planet. Sci. Lett., 383:92--100, 2013. [ bib ]
[1031] E. Coltice, M. Gérault, and M. Ulrová. A mantle convection perspective on global tectonics. Earth Sci. Rev., 165:120--150, 2017. [ bib ]
[1032] N. Coltice and G. E. Shephard. Tectonic predictions with mantle convection models. Geophys. J. Int., 213:16--29, 2018. [ bib ]
[1033] Nicolas Coltice, Laurent Husson, Claudio Faccenna, and Maëlis Arnould. What drives tectonic plates? Science Adv., 5(10):eaax4295, 2019. [ bib ]
[1034] Nicolas Coltice. Tectonics is a Hologram. In João C. Duarte, editor, Dynamics of Plate Tectonics and Mantle Convection, pages 105--125. Elsevier, 2023. [ bib ]
[1035] S. Colucci, M. de' Michieli Vitturi, A. Neri, and D. M. Palladino. An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruption. Earth Planet. Sci. Lett., 404:98--110, 2014. [ bib ]
[1036] M. Comninou and J. Dundurs. The angular dislocations in a half space. J. Elasticity, 5:203--216, 1975. [ bib ]
[1037] Kent C Condie and Alfred Kröner. When did plate tectonics begin? Evidence from the geologic record. In When did plate tectonics begin on planet Earth, volume 440 of GSA Spec. Papers, pages 281--294. Geological Society of America, 2008. [ bib ]
[1038] Kent C Condie, Elena Belousova, WL Griffin, and Keith N Sircombe. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Res., 15:228--242, 2009. [ bib ]
[1039] K. Condie, S. A. Pisarevsky, J. Korenaga, and S. Gardoll. Is the rate of supercontinent assembly changing with time? Precambrian Res., 259:278--289, 2015. [ bib ]
[1040] Kent C Condie. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett., 163:97--108, 1998. [ bib ]
[1041] P. J. Coney and T. A. Harms. Cordilleran metamorphic core complexes: Cenozoic extensional relics of mesozoic compression. Geology, 12:550--554, 1984. [ bib ]
[1042] P. J. Coney. The regional tectonic setting and possible causes of Cenozoic extension in the North American Cordillera. In Continental extensional tectonics, Geol. Soc. Lond. Spec Pub., pages 177--186. Geological Society of London, 1987. [ bib ]
[1043] S. Connaughton, S. Hall, and S. Lebedev. Seismic anisotopy and deformation beneath California. In Continental deformation: constraints from anisotropy, kinematics, dynamics Workshop, Dublin, November 2008. Dublin Institute for Advanced Studies. [ bib ]
[1044] J. Connolly. Perple_X, a collection of Fortran77 programs for calculating and displaying petrological phase diagrams, phase equilibria, and thermodynamic data. Available online at www.perplex.ethz.ch/, 2004. [ bib ]
[1045] J. A. D. Connolly. The geodynamic equation of state: what and how. Geochem., Geophys., Geosys., 10(Q10014), 2009. [ bib | DOI ]
[1046] C. P. Conrad and B. H. Hager. Mantle convection with strong subduction zones. Geophys. J. Int., 144:271--288, 2001. [ bib ]
[1047] C. P. Conrad and C. Lithgow-Bertelloni. How mantle slabs drive plate tectonics. Science, 298:207--209, 2002. [ bib ]
[1048] C. P. Conrad and M. Gurnis. Seismic tomography, surface uplift, and the breakup of Gondwanaland: Integrating mantle convection backwards in time. Geochem., Geophys., Geosys., 4(2001GC000299), 2003. [ bib ]
[1049] C. P. Conrad and C. Lithgow-Bertelloni. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1050] C. P. Conrad, Lithgow-Bertelloni C., and K. Louden. The Farallon slab and dynamic topography of the North Atlantic. Geology, 32:177--180, 2004. [ bib ]
[1051] C. P. Conrad, S. Bilek, and C. Lithgow-Bertelloni. Great earthquakes and slab-pull: Interaction between seismic coupling and plate-slab coupling. Earth Planet. Sci. Lett., 218:109--122, 2004. [ bib ]
[1052] C. P. Conrad and C. Lithgow-Bertelloni. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett., 33, 2006. [ bib | DOI ]
[1053] C. P. Conrad and C. Lithgow-Bertelloni. Faster seafloor spreading and lithosphere production during the mid-Cenozoic. Geology, 35:29--32, 2007. [ bib ]
[1054] C. P. Conrad, M. D. Behn, and P. G. Silver. Global mantle flow and the development of seismic anisotropy: Differences between the oceanic and continental upper mantle. J. Geophys. Res.: Sol. Earth, 112(B07317), 2007. [ bib | DOI ]
[1055] C. P. Conrad and L. Husson. Influence of dynamic topography on sea level and its rate of change. Lithosphere, 1:110--120, 2009. [ bib ]
[1056] C. P. Conrad and M. D. Behn. Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochem., Geophys., Geosys., 11(Q05W05), 2010. [ bib | DOI ]
[1057] C. P. Conrad and P. Molnar. The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys. J. Int., 129:95--112, 1997. [ bib ]
[1058] Clinton P Conrad and Bradford H Hager. Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys. Res. Lett., 24:1503--1506, 1997. [ bib ]
[1059] C. P. Conrad and B. H. Hager. The effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res.: Sol. Earth, 104:17551--17571, 1999. [ bib ]
[1060] C. P. Conrad and B. H. Hager. The thermal evolution of an Earth with strong subduction zones. Geophys. Res. Lett., 26:3041--3044, 1999. [ bib ]
[1061] E. Contreras-Reyes and J. Garay. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions. Geophys. J. Int., 113:1--12, 2018. [ bib ]
[1062] FA Cook and DL Turcotte. Parameterized convection and the thermal evolution of the Earth. Tectonophys., 75:1--17, 1981. [ bib ]
[1063] Frederick A Cook and John L Varsek. Orogen-scale decollements. Rev. Geophys., 32:37--60, 1994. [ bib ]
[1064] M. Cooke and A. Kameda. Mechanical fault interaction within the Los Angeles Basin: a two-dimensional analysis using mechanical efficiency. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[1065] Michele L Cooke and Laura C Dair. Simulating the recent evolution of the southern big bend of the San Andreas fault, Southern California. J. Geophys. Res.: Sol. Earth, 116(B04405), 2011. [ bib | DOI ]
[1066] F. J. Cooper, J. P. Platt, and R. Anczkiewicz. Constraints on early Franciscan subduction rates from 2-D thermal modeling. Earth Planet. Sci. Lett., 312:69--79, 2011. [ bib ]
[1067] L. B. Cooper, D. M. Ruscitto, T. Plank, P. J. Wallace, E. M. Syracuse, and C. E. Manning. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem., Geophys., Geosys., 13(Q03024), 2012. [ bib | DOI ]
[1068] M. A. Cooper, F. T. Addison, R. Alvarez, M. Coral, R. H. Graham, A. B. Hayward, S. Howe, J. Martinez, J. Naar, R. Peñas, A. J. Pulham, and A. Taborda. Basin development and tectonic history of the Llanos Basin, Colombia. In A. J. Tankard, R. Suarez-Soruco, and H.J. Welsink, editors, Petroleum Basins of South America, volume 62 of Am. Assoc. Petroleum Geol. Memoir, pages 659--665. American Association of Petroleum Geologists, 1995. [ bib ]
[1069] A. Copley, J.-P. Avouac, and J.-Y. Royer. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions. J. Geophys. Res.: Sol. Earth, 115(B03410), 2010. [ bib | DOI ]
[1070] F. Corbi, F. Funiciello, M. Moroni, Y. van Dinther, P. M. Mai, L. A. Dalguer, and C. Faccenna. The seismic cycle at subduction thrusts: 1. Insights from laboratory models. J. Geophys. Res.: Sol. Earth, 118, 2013. [ bib | DOI ]
[1071] F. Corbi, R. Herrendörfer, F. Funiciello, and Y. van Dinther. Controls of seismogenic zone width and subduction velocity on interplate seismicity: Insights from analog and numerical models. Geophys. Res. Lett., 44:6082--6091, 2017. [ bib | DOI ]
[1072] V. Cormier. Slab diffraction of S waves. J. Geophys. Res.: Sol. Earth, 94:3006--3024, 1989. [ bib ]
[1073] V. Corrieu, Y. Ricard, and C. Froidevaux. Radial viscosity of the earth deduced from mantle tomography. Phys. Earth Planet. Inter., 84:3--13, 1994. [ bib ]
[1074] M. Cortés and J. Angelier. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophys., 403:29--58, 2005. [ bib ]
[1075] G. Corti. Dynamics of periodic instabilities during stretching of the continental lithosphere: View from centrifuge models and comparison with natural examples. Tectonics, 24(TC2008), 2005. [ bib | DOI ]
[1076] COST. cost. European Cooperation in Science & Technology. Online at www.cost.eu/, accessed 10/2017, 2017. Part of the EU Framework Programme Horizon 2020. [ bib ]
[1077] Thuany Costa de Lima, Hrvoje Tkalčić, and Lauren Waszek. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield. J. Geophys. Res.: Sol. Earth, 127(4):e2021JB023540, 2022. [ bib ]
[1078] S. Cottaar, M. Li, A. K. McNamara, B. A. Romanowicz, and H.-R. Wenk. Synthetic seismic anisotropy models within a slab impinging on the core-mantle boundary. Geophys. J. Int., 199:164--177, 2014. [ bib ]
[1079] F. Cotton and M. Campillo. Frequency domain inversion of strong motions: Application to the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 100:3961--3975, 1995. [ bib ]
[1080] S. Coulson, S. Dangendorf, J. X. Mitrovica, M E. Tamisiea, L. Pan, and D. T. Sandwell. A detection of the sea level fingerprint ofGreenland Ice Sheet melt. Science, 377:1550--1554, 2022. [ bib ]
[1081] Anna M Courtier, Matthew G Jackson, Jesse F Lawrence, Zhengrong Wang, Cin-Ty Aeolus Lee, Ralf Halama, Jessica M Warren, Rhea Workman, Wenbo Xu, Marc M Hirschmann, et al. Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots. Earth Planet. Sci. Lett., 264:308--316, 2007. [ bib ]
[1082] V. Courtillot, A. Davaille, J. Besse, and J. Stock. Three distinct types of hotspots in the Earth's mantle. Earth Planet. Sci. Lett., 205:295--308, 2003. [ bib ]
[1083] V Courtillot, G Feraud, Henri Maluski, D Vandamme, MG Moreau, and J Besse. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333:843--846, 1988. [ bib ]
[1084] P. A. Cowie and C. H. Scholz. Growth of faults by accumulation of seismic slip. J. Geophys. Res.: Sol. Earth, 97:11085--11095, 1992. [ bib ]
[1085] Patience A Cowie and Christopher H Scholz. Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J. Struct. Geol., 14:1133--1148, 1992. [ bib ]
[1086] N. L. Cox. Variable uplift from quaternary folding along the northern coast of east timor, based on u-series age determinations of coral terraces. Master's thesis, Brigham Young University, 2009. Available online at contentdm.lib.byu.edu/cdm4/item_viewer.php?CISOROOT=/ETD&CISOPTR=1687, accessed 06/2011. [ bib ]
[1087] S. Cox, A. Fagereng, and C. J. MacLeod. Shear zone development in serpentinized mantle: Implications for the strength of oceanic transform faults. J. Geophys. Res.: Sol. Earth, 126:e2020JB020763, 2021. [ bib ]
[1088] A. M. Cox, G. Debiche, and D. C. Engebretson. Terrane trajectories and plate interaction along continental margins in the north Pacific basin. In Z. Ben-Avraham, editor, The evolution of the Pacific Ocean margins, pages 20--35. Oxford University Press, Oxford, 1989. [ bib ]
[1089] S. J. D. Cox and C. H. Scholz. On the formation and growth of faults: An experimental study. J. Struct. Geol., 10:413--430, 1988. [ bib ]
[1090] T. J. Craig, J. A. Jackson, K. Priestley, and D. McKenzie. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys. J. Int., 185:403--434, 2011. [ bib ]
[1091] TJ Craig, A Copley, and J Jackson. A reassessment of outer-rise seismicity and its implications for the mechanics of oceanic lithosphere. Geophys. J. Int., 197:63--89, 2014. [ bib ]
[1092] F. Crameri, P. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus. A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., 39(L03306), 2012. [ bib | DOI ]
[1093] F Crameri, H Schmeling, GJ Golabek, T Duretz, R Orendt, SJH Buiter, DA May, BJP Kaus, TV Gerya, and PJ Tackley. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the “sticky air” method. Geophys. J. Int., 189:38--54, 2012. [ bib ]
[1094] F. Crameri and P. Tackley. Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection. J. Geophys. Res.: Sol. Earth, 120:3680--3706, 2015. [ bib | DOI ]
[1095] Fabio Crameri, CR Lithgow-Bertelloni, and Paul J Tackley. The dynamical control of subduction parameters on surface topography. Geochem., Geophys., Geosys., 18:1661--1687, 2017. [ bib ]
[1096] F. Crameri. Scientific colour maps. Zenodo, 2018. [ bib | DOI ]
[1097] S. Crampin and S. Chastin. A review of shear wave splitting in the crack-critical crust. Geophys. J. Int., 155:221--240, 2003. [ bib ]
[1098] S. Crampin. The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astr. Soc., 21:387--402, 1970. [ bib ]
[1099] S. Crampin. Seismic anisotropy, a summary. Z. Geophys., 43:499--501, 1977. [ bib ]
[1100] S. Crampin, R. McGonigle, and D. Bamford. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysics, 45:345--360, 1980. [ bib ]
[1101] S. Crampin. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. R. Astr. Soc., 76:135--145, 1984. [ bib ]
[1102] S. Crampin. Evaluation of anisotropy by shear-wave splitting. Geophysics, 50:142--152, 1985. [ bib ]
[1103] Kenneth C Creager and Thomas H Jordan. Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. J. Geophys. Res.: Sol. Earth, 91:3573--3589, 1986. [ bib ]
[1104] Neala Creasy, Lowell Miyagi, and Maureen D Long. A library of elastic tensors for lowermost mantle seismic anisotropy studies and comparison with seismic observations. Geochem., Geophys., Geosys., 21:e2019GC008883, 2020. [ bib ]
[1105] J.-F. Crétaux, L. Soudarin, A. Cazenave, and Bouillé. Present-day tectonic plate motions and crustal deformations from the DORIS space system. J. Geophys. Res.: Sol. Earth, 103:30167--30181, 1998. [ bib ]
[1106] J. Croll. Climate and time in their geological relations: A theory of secular changes of the Earth's climate,. Daldy, Isbister, & Co., London, 1875. [ bib ]
[1107] R. Jr Crook, C. R. Allen, B. Kamb, C. M. Payne, and R. J. Proctor. Quaternary geology and seismic hazard of the Sierra Madre and associated faults, western San Gabriel Mountains. In Recent reverse faulting in the Transverse Ranges, California, volume 1339 of U. S. Geol. Surv. Prof. Pap., pages 27--63. United States Geological Survey, 1987. [ bib ]
[1108] AG Crosby and D McKenzie. An analysis of young ocean depth, gravity and global residual topography. Geophys. J. Int., 178:1198--1219, 2009. [ bib ]
[1109] T. A. Cross and R. C. Pilger. Controls of subduction geometry, location of magmatic arcs, tectonics of arc and back-arc regions. Geol. Soc. Am. Bull., 93:545--562, 1982. [ bib ]
[1110] H. P. Crotwell and T. J. Owens. Automated receiver function processing. Seismol. Res. Lett., 76:702--709, 2005. Data available online at www.iris.washington.edu/ears, accessed 01/2013. [ bib ]
[1111] S. L. Crouch and A. M. Starfield. Boundary Element Methods in Solid Mechanics. With Applications in Rock Mechanics. Allen and Unwin, London, 1983. [ bib ]
[1112] S Thomas Crough. Thermal model of oceanic lithosphere. Nature, 256:388--390, 1975. [ bib ]
[1113] S. T. Crough and G. A. Thompson. Thermal model of continental lithosphere. J. Geophys. Res.: Sol. Earth, 81:4857--4862, 1976. [ bib ]
[1114] S. T. Crough and G. A. Thompson. Upper mantle origin of Sierra Nevada uplift. Geology, 5:396--399, 1977. [ bib ]
[1115] S. T. Crough. Thermal origin of mid-plate hotspot swells. Geophys. J. R. Astr. Soc., 55:451--469, 1978. [ bib ]
[1116] S Thomas Crough. Hotspot swells. Ann. Rev. Earth Planet. Sci., 11:165--193, 1983. [ bib ]
[1117] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite elements methods for solving the stationary Stokes equation. Rev. Franc. d'Automat. Informat. Rech. Opér., 3:33--76, 1973. [ bib ]
[1118] R. Crow, K. Karlstrom, Y. Asmerom, B. Schmandt, V. Polyak, and S. A. DuFrane. Shrinking of the Colorado Plateau via lithospheric mantle erosion: Evidence from Nd and Sr isotopes and geochronology of Neogene basalts. Geology, 39:27--30, 2010. [ bib ]
[1119] J. W. Crowley, M. Gérault, and R. J. O'Connell. On the relative influence of heat and water transport on planetary dynamics. Earth Planet. Sci. Lett., 310:380--388, 2011. [ bib ]
[1120] John W Crowley and Richard J O’Connell. An analytic model of convection in a system with layered viscosity and plates. Geophys. J. Int., 188:61--78, 2012. [ bib ]
[1121] C. Cruciani, E. Carminati, and C. Doglioni. Slab dip vs. lithosphere age: no direct function. Earth Planet. Sci. Lett., 238:298--310, 2005. [ bib ]
[1122] AM Celal Şengör. Eduard Suess' relations to the pre-1950 schools of thought in global tectonics. Geolog. Rundsch., 71:381--420, 1982. [ bib ]
[1123] L. Cserepes, U. R. Christensen, and N. M. Ribe. Geoid height versus topography for a plume model of the Hawaiian swell. Earth Planet. Sci. Lett., 178:29--38, 2000. [ bib ]
[1124] N. Cubas, N. Lapusta, J.-P. Avouac, and H. Perfettni. Numerical modeling of long-term earthquake sequences on the NE Japan megathrust: Comparison with observations and implications for fault friction. Earth Planet. Sci. Lett., 419:187--198, 2015. [ bib ]
[1125] Yifeng Cui, Efecan Poyraz, Kim B Olsen, Jun Zhou, Kyle Withers, Scott Callaghan, Jeff Larkin, C Guest, D Choi, Amit Chourasia, Z. Shi, S. M. Day, P. J. Maechling, and T. H. Jordan. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers. In SC'13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2013. [ bib ]
[1126] P. A. Cundall and M. Board. A microcomputer program for modeling large strain plasticity problems. In G. Swoboda, editor, Numerical Methods in Geomechanics, pages 2101--2108. Balkema, 1988. [ bib ]
[1127] CA Currie, K Wang, Roy D Hyndman, and Jiangheng He. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc. Earth Planet. Sci. Lett., 223:35--48, 2004. [ bib ]
[1128] Claire A Currie and Roy D Hyndman. The thermal structure of subduction zone back arcs. J. Geophys. Res.: Sol. Earth, 111(B08404), 2006. [ bib | DOI ]
[1129] Claire A Currie, Ritske S Huismans, and Christopher Beaumont. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet. Sci. Lett., 269:436--447, 2008. [ bib ]
[1130] A. Curtis, H. Nicolson, D. Halliday, J. Trampert, and B. Baptie. Virtual seismometers in the subsurface of the earth from seismic interferometry. Nature Geosc., 2:700--704, 2009. [ bib ]
[1131] A. Curtis and D. Halliday. Source-receiver wavefield interferometry. Phys. Rev. E, 81(046601-1–046601-10), 2010. [ bib | DOI ]
[1132] P. Cvitanović. Universality in Chaos: A Reprint Selection, chapter 1, pages 3--33. Adam Hilger, Bristol, 1984. [ bib ]
[1133] M. Dabrowski, M. Krotkiewski, and D. W. Schmid. MILAMIN: MATLAB-based finite element method solver for large problems. Geochem., Geophys., Geosys., 9(Q04030), 2008. [ bib | DOI ]
[1134] Z. Dagan, S. Weinbaum, and R. Pfeffer. An infinite-series solution for the creeping motion through an orifice of finite length. J. Fluid Mech., 115:505--523, 1982. [ bib ]
[1135] N. D'Agostino and D. McKenzie. Convective support of long wavelength topography in the Apennines (Italy). Terra Nova, 11:234--238, 1999. [ bib ]
[1136] F. A. Dahlen, S.-H. Hungh, and G. Nolet. Fréchet kernels for finite-frequency traveltimes I. Theory. Geophys. J. Int., 141:175--203, 2000. [ bib ]
[1137] F. A. Dahlen. Critical taper model of fold-and-thrust belts and accretionary wedges. Ann. Rev. Earth Planet. Sci., 18:55--99, 1990. [ bib ]
[1138] F. A. Dahlen and J. Tromp. Theoretical Global Seismology. Princeton University Press, Princeton, NJ, 1998. [ bib ]
[1139] T. Dahm. Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int., 124:245--257, 1996. [ bib ]
[1140] T. Dahm and T. W. Becker. On the elastic and viscous properties of media containing strongly interacting in-plane cracks. Pure Appl. Geophys., 151:1--15, 1998. [ bib ]
[1141] K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl. Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett., 102:175501, 2009. [ bib ]
[1142] H.J. Dalstra, E.J.M. Bloem, J.R. Ridley, and D.I. Groves. Diapirism synchronous with regional deformation and gold mineralisation, a new concept for granitoid emplacement in the southern cross province, western australia. Geologie en Mijnbouw, 76:321--338, 1998. [ bib ]
[1143] C. A. Dalton and G. Ekström. Global models of surface wave attenuation. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[1144] C. A. Dalton and G. Ekström. What can we learn from images of seismic-wave attenuation? Presentation at the IRIS Workshop, Tuscon, AZ, available online at www.seismology.harvard.edu/~dalton/IRIS/iris06_dalton_short.pdf, accessed 06/2006, 2006. [ bib ]
[1145] C. A. Dalton, C. H. Langmuir, and A. Gale. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344:80--83, 2014. [ bib ]
[1146] Colleen A Dalton, Xueyang Bao, and Zhitu Ma. The thermal structure of cratonic lithosphere from global rayleigh wave attenuation. Earth Planet. Sci. Lett., 457:250--262, 2017. [ bib ]
[1147] R. A. Daly. A general sinking of sea-level in recent time. Proc. Natl. Acad. Sci. USA, 6:246--250, 1920. [ bib ]
[1148] Luca Dal Zilio, Ylona van Dinther, Taras V. Gerya, and Casper C. Pranger. Seismic behaviour of mountain belts controlled by plate convergence rate. Earth Planet. Sci. Lett., 482:81--92, 2018. [ bib ]
[1149] Luca Dal Zilio, Manuele Faccenda, and Fabio Capitanio. The role of deep subduction in supercontinent breakup. Tectonophys., 746:312--324, 2018. [ bib ]
[1150] L. Dal Zilio, Y. van Dinther, T. Gerya, and J. P. Avouac. Bimodal seismicity in the Himalaya controlled by fault friction and geometry. Nature Comm., 10:1--11, 2019. [ bib ]
[1151] J. D. Dana. On some results of the Earth's contraction from cooling, including a discussion of the origins of mountains, and the nature of the Earth's Interior. Amer. J. Sci., 5:423--443, 1873. [ bib ]
[1152] K. Daniels and N. W. Hayman. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res.: Sol. Earth, 113(B11411), 2008. [ bib | DOI ]
[1153] J. Dannberg and T. Heister. Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT. Geophys. J. Int., 207:1343--1366, 2016. [ bib ]
[1154] J. Dannberg, Z. Eilon, U. Faul, R. Gassmöller, P. Moulik, and R. Myhill. The importance of grain size to mantle dynamics and seismological observations. Geochem., Geophys., Geosys., 18:3034--3061, 2017. [ bib ]
[1155] A. Daradich, J. X. Mitrovica, R. N. Pysklywec, S. D. Willet, and A. M. Forte. Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology, 31:901--904, 2003. [ bib ]
[1156] F. Darbyshire and S. Lebedev. Rayleigh wave phase-velocity heterogeneity and multi-layered azimuthal anisotropy of the Superior Craton, Ontario. Geophys. J. Int., 176:215--234, 2009. [ bib ]
[1157] B. D'Argenio and A. Mindszenty. Karst Bauxite at regional unconformity and the geotectonic correlation in the Cretaceous of the Mediterranean. Bull. Soc. Geol. It., 110:85--92, 1991. [ bib ]
[1158] George Howard Darwin. VIII. On the influence of geological changes on the Earth's axis of rotation. Phil. Trans. Royal Soc. London, 167:271--312, 1877. [ bib ]
[1159] S. Das and C. H. Scholz. Off-fault aftershock clusters caused by shear stress increase? Bull. Seismol. Soc. Am., 71:1669--1675, October 1981. [ bib ]
[1160] Kelian Dascher-Cousineau, Emily E Brodsky, Thorne Lay, and Thomas HW Goebel. What controls variations in aftershock productivity? J. Geophys. Res.: Sol. Earth, 125(2):e2019JB018111, 2020. [ bib ]
[1161] Anne Davaille, Fabien Girard, and Michael Le Bars. How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203:621--634, 2002. [ bib ]
[1162] Anne Davaille, Eléonore Stutzmann, Graça Silveira, Jean Besse, and Vincent Courtillot. Convective patterns under the indo-atlantic “box”. Earth Planet. Sci. Lett., 239:233--252, 2005. [ bib ]
[1163] Anne Davaille and Barbara Romanowicz. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics, 39:e2020TC006265, 2020. [ bib ]
[1164] Anne Davaille and Claude Jaupart. Transient high-Rayleigh-number thermal convection with large viscosity variations. J Fluid Mech., 253:141--166, 1993. [ bib ]
[1165] A. Davaille. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756--760 1999. [ bib ]
[1166] J. Davidsen, S. Stanchits, and G. Dresen. Scaling and universality in rock fracture. Phys. Rev. Lett., 98:12, 2007. [ bib ]
[1167] D. R. Davies, C. R. Wilson, and S. C. Kramer. Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics. Geochem., Geophys., Geosys., 12(Q06001), 2011. [ bib | DOI ]
[1168] J. H. Davies. Global map of solid Earth surface heat flow. Geochem., Geophys., Geosys., 14:4608--4622, 2013. [ bib ]
[1169] Geoffrey F Davies. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J. Geophys. Res.: Sol. Earth, 85:2517--2530, 1980. [ bib ]
[1170] G. F. Davies. Geophysical and isotopic constraints on mantle convection: an interim synthesis. J. Geophys. Res.: Sol. Earth, 89:6017--6040, 1984. [ bib ]
[1171] G. F. Davies. Mantle convection under simulated plates: effects of heating modes and ridge and trench migration, and implications for the core-mantle boundary, bathymetry, the geoid and Benioff zones. Geophys. J. R. Astr. Soc., 84:153--183, 1986. [ bib ]
[1172] G. F. Davies. Ocean bathymetry and mantle convection, 1. Large-scale flows and hotspots. J. Geophys. Res.: Sol. Earth, 93:10467--10480, 1988. [ bib ]
[1173] G. F. Davies. Role of the lithosphere inw mantle convection. J. Geophys. Res.: Sol. Earth, 93:10451--10466, 1988. [ bib ]
[1174] G. F. Davies. Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett., 99:94--109, 1990. [ bib ]
[1175] G. F. Davies and M. A. Richards. Mantle convection. J. Geology, 100:151--206, 1992. [ bib ]
[1176] G. F. Davies. On the emergence of plate tectonics. Geology, 20:963--966, 1992. [ bib ]
[1177] J.H. Davies and D.J. Stevenson. Physical model of source region of subduction zone volcanics. J. Geophys. Res.: Sol. Earth, 97:2037--2070, 1992. [ bib ]
[1178] Geoffrey F Davies. Conjectures on the thermal and tectonic evolution of the Earth. Lithos, 30:281--289, 1993. [ bib ]
[1179] G. F. Davies. Penetration of plates and plumes through the mantle transition zone. Earth Planet. Sci. Lett., 133:507--516, 1995. [ bib ]
[1180] J. H. Davies and F. von Blanckenburg. Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129:85--102, 1995. [ bib ]
[1181] G. F. Davies. Dynamic Earth: Plates, plumes, and mantle convection. Cambridge University Press, 1999. [ bib ]
[1182] G. F. Davies. Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle? Earth Planet. Sci. Lett., 166:149--162, 1999. [ bib ]
[1183] F. M. Dávila, C. Lithgow-Bertelloni, and M. Gimenez. Tectonic and dynamic controls on the topography and subsidence of the Argentine Pampas: The role of the flat slab. Earth Planet. Sci. Lett., 295:187--194, 2010. [ bib ]
[1184] F. M. Dávila and C. Lithgow-Bertelloni. Dynamic topography in south america. J. South Amer. Earth Sci., 43:127--144, 2013. [ bib ]
[1185] Federico M Dávila and Carolina Lithgow-Bertelloni. Dynamic uplift during slab flattening. Earth Planet. Sci. Lett., 425:34--43, 2015. [ bib ]
[1186] P. M. Davis and L. Knopoff. The elastic modulus of media containing strongly interacting antiplane cracks. J. Geophys. Res.: Sol. Earth, 100:18253--18258, September 1995. [ bib ]
[1187] P. M. Davis. Azimuthal variation in seismic anisotropy of the southern California uppermost mantle. J. Geophys. Res.: Sol. Earth, 108:2052, 2003. 10.1029/2001JB000637. [ bib ]
[1188] J. L. Davis, L. H. Kellogg, J. R. Arrowsmith, B. A. Buffett, C. G. Constable, A. Donnellan, E. R. Ivins, G. S. Mattioli, S. E. Owen, M. E. Pritchard, M. E. Purucker, D. T. Sandwell, and J. Sauber. Challenges and Opportunities for Research in ESI (CORE): Report from the NASA Earth Surface and Interior (ESI) Focus Area Workshop, November 2--3, 2015, Arlington, Virginia, 2016. available online at smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/CORE2016%20Updated%3DTAGGED.pdf, accessed 12/2017. [ bib ]
[1189] E. E. Davis and C. R. B. Lister. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett., 21:405--413, 1974. [ bib ]
[1190] Dan Davis, John Suppe, and FA Dahlen. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res.: Sol. Earth, 88:1153--1172, 1983. [ bib ]
[1191] P. M. Davis and L. Knopoff. Reply. In J. Geophys. Res.: Sol. Earth [4078], pages 25377--25379. [ bib ]
[1192] Ph. Davy and P. R. Cobbold. Experiments on shortening of a 4-layer model of the continental lithosphere. Tectonophys., 188:1--25, 1991. [ bib ]
[1193] P. R. Dawson and H.-R. Wenk. Texturing of the upper mantle during convection. Phil. Mag. A, 80:573--598, 2000. [ bib ]
[1194] A. Day-Lewis, M. D. Zoback, and S. H. Hickman. Spectral analysis of localized stress variations, the spatial distribution of faults, and the scaling of physical properties near the San Andreas fault (abstract). Eos Trans. AGU, 86(52):T21A--0439, 2005. [ bib ]
[1195] Steven M Day. Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity. Bull. Seismol. Soc. Am., 72:705--727, 1982. [ bib ]
[1196] M. M. Deal, G. Nolet, and R. D. van der Hilst. Slab temperatures and thickness from seismic tomography 1. Method and application to Tonga. J. Geophys. Res.: Sol. Earth, 104:28789--28802, 1999. [ bib ]
[1197] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling, D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler, R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II library, version 9.1. J. Num. Math., 27, 2019. [ bib | DOI ]
[1198] Daniel Arndt, Wolfgang Bangerth, Bruno Blais, Thomas C. Clevenger, Marc Fehling, Alexander V. Grayver, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Reza Rastak, Ignacio Thomas, Bruno Turcksin, Zhuoran Wang, and David Wells. The deal.II library, version 9.2. J. Num. Math., 28:131--146, 2020. [ bib ]
[1199] E. Debayle and M. Sambridge. Inversion of massive surface wave data sets: Model construction and resolution assessment. J. Geophys. Res.: Sol. Earth, 109(B02316), 2004. [ bib | DOI ]
[1200] E. Debayle, B. L. N. Kennett, and K. Priestley. Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature, 433:509--512, 2005. [ bib ]
[1201] E. Debayle and Y. Ricard. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett., 376:165--177, 2013. [ bib ]
[1202] E. Debayle, F. Dubuffet, and S. Durand. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett., 43, 2016. [ bib | DOI ]
[1203] Bas de Boer, Paolo Stocchi, Pippa L Whitehouse, and Roderik SW van de Wal. Current state and future perspectives on coupled ice-sheet--sea-level modelling. Quat. Sci. Rev., 169:13--28, 2017. [ bib ]
[1204] René de Borst and Thibault Duretz. On viscoplastic regularisation of strain-softening rocks and soils. Int. J. Numer. Analyt. Meth. Geomech., 44:890--903, 2020. [ bib ]
[1205] R. De Borst, L. J. Sluys, H.-B. Mühlhaus, and J. Pamin. Fundamental issues in finite element analyses of localization of deformation. Eng. Computations, 10:99--121, 1993. [ bib ]
[1206] R. De Borst, J. Pamin, and M. G. D. Geers. On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur. J. Mech. A/Solids, 18:939--962, 1999. [ bib ]
[1207] J De Bresser, J Ter Heege, and C Spiers. Grain size reduction by dynamic recrystallization: can it result in major rheological weakening? Int. J. Earth Sci., 90:28--45, 2001. [ bib ]
[1208] P. G. DeCelles, M. H. Ducea, P. Kapp, and G. Zandt. Cyclicity in Cordilleran orogenic systems. Nature Geosc., 2:251--257, 2009. [ bib ]
[1209] Peter G DeCelles and Katherine A Giles. Foreland basin systems. Basin res., 8:105--123, 1996. [ bib ]
[1210] R. Deguen and P. Cardin. Tectonic history of the Earth's inner core preserved in its seismic structure. Nature Geosc., 2:419--422, 2009. [ bib ]
[1211] Véronique Dehant, H Lammer, Yu N Kulikov, J-M Grießmeier, D Breuer, O Verhoeven, Ö Karatekin, Tim Van Hoolst, O Korablev, and P Lognonné. Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci. Rev., 129:279--300, 2007. [ bib ]
[1212] T. L. De la Torre and A. F. Sheehan. Broadband seismic noise analysis of Himalayan Nepal Tibet Seismic Experiment. Bull. Seismol. Soc. Am., 95:1202--1208, 2005. [ bib ]
[1213] T. L. De la Torre, G. Monsalve, A. F. Sheehan, S. Sapkota, and F. Wu. Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys. J. Int., 171:718--738, 2007. [ bib ]
[1214] T. L. De la Torre. Upper Lithospheric Seismic Characteristics Beneath the Himalaya and the Southern Tibetan Plateau. PhD thesis, University of Colorado at Boulder, 2007. [ bib ]
[1215] J. R. Delph, A. M. Thomas, and A. Levander. Subcretionary tectonics: Linking variability in the expression of subduction along the Cascadia forearc. Earth Planet. Sci. Lett., 556:116724, 2021. [ bib ]
[1216] C. DeMets, R. G. Gordon, and D. F. Argus. Geologically current plate motions. Geophys. J. Int., 181:1--80, 2010. [ bib ]
[1217] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Current plate motions. Geophys. J. Int., 101:425--478, 1990. [ bib ]
[1218] C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21:2191--2194, 1994. [ bib ]
[1219] R. V. Demicco. Modeling seafloor-spreading rates through time. Geology, 32:485--488, 2004. [ bib ]
[1220] R. Demirtaş and Y. Rüçhan. Seismotectonics of Türkiye. Ministry of Public Works and Settlement, Republic of Türkiye, Ankara, Juni 1996. [ bib ]
[1221] J. M. deMoor, A. Aiuppa, G. Avard, H. Wehrmann, N. Dunbar, C. Muller, G. Tamburello, G. Giudice, M. Liuzzo, R. Moretti, et al. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-​frequency gas monitoring. J. Geophys. Res.: Sol. Earth, 121:5761--5775, 2016. [ bib | DOI ]
[1222] Sylvie Demouchy, Andréa Tommasi, Tiziana Boffa Ballaran, and Patrick Cordier. Low strength of Earth's uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys. Earth Planet. Inter., 220:37--49, 2013. [ bib ]
[1223] J. Deng and L. R. Sykes. Triggering of 1812 Santa Barbara earthquake by a great San Andreas shock: Implications for future seismic hazards in southern California. Geophys. Res. Lett., 23:1155--1158, May 1996. [ bib ]
[1224] J. Deng and L. R. Sykes. Evolution of the stress field in Southern California and triggering of moderate-size earthquakes: A 200-year perspective. J. Geophys. Res.: Sol. Earth, 102:9859--9886, 1997. [ bib ]
[1225] J. Deng, M. Gurnis, H. Kanamori, and E. Hauksson. Viscoelastic Flow in the Lower Crust after the 1992 Landers, California, Earthquake. Science, 282:1689--1692, 1998. [ bib ]
[1226] Sabine AM Den Hartog, Demian M Saffer, and Christopher J Spiers. The roles of quartz and water in controlling unstable slip in phyllosilicate-rich megathrust fault gouges. Earth, Planet. Space, 66:1--9, 2014. [ bib ]
[1227] D. J. DePaolo and M. Manga. Deep origin of hotspots--the mantle plume model. Science, 300:920--921, 2003. [ bib ]
[1228] D. J. DePaolo and G. J. Wasserburg. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 3:743--746, 1976. [ bib ]
[1229] V. Deparis, H. Legros, and Y. Ricard. Mass anomalies due to subducted slabs and simulations of plate motion since 200 My. Earth Planet. Sci. Lett., 89:271--280, 1995. [ bib ]
[1230] J. Dercourt, L. P. Zonenshain, L. E. Ricou, V. C. Karmin, X. Le Pichon, A. L. Knipper, C. Grandjacquet, I. M. Sburtshickov, J. Geyssant, C. Lepvrier, D. A. Pechersky, J. Boulin, J. C. Sibuet, L. A. Savostin, O. Sorokhtin, M. Westphal, M. L. Bazhenov, J. P. Laver, and B. Biju-Duval. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophys., 123:241--315, 1986. [ bib ]
[1231] J. Dercourt, L. E. Ricou, and B. Vrielinck. Atlas Tethys, paleoenvironmental maps. Gauthier-Villars, Paris, 1993. [ bib ]
[1232] F. Deschamps, J. Trampert, and R. Snieder. Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Phys. Earth Planet. Inter., 129:245--264, 2002. [ bib ]
[1233] F. Deschamps and J. Trampert. Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Inter., 140:227--291, 2003. [ bib ]
[1234] F. Deschamps and J. Trampert. Towards a lower mantle reference temperature and composition. Earth Planet. Sci. Lett., 222:161--175, 2004. [ bib ]
[1235] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central United States. Geophys. J. Int., 173:827--843, 2008. [ bib ]
[1236] F. Deschamps, S. Lebedev, T. Meier, and J. Trampert. Stratified seismic anisotropy reveals past and present deformation beneath the East-central United States. Earth Planet. Sci. Lett., 274:489--498, 2008. [ bib ]
[1237] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography I. principles and influence of rheological parameters. Phys. Earth Planet. Inter., 171:357--373, 2008. [ bib ]
[1238] F. Deschamps and P. J. Tackley. Searching for models of thermo-chemical convection that explain probabilistic tomography II - Influence of physical and compositional parameters. Phys. Earth Planet. Inter., 176:1--18, 2009. [ bib ]
[1239] Frédéric Deschamps, Paul J Tackley, and Takashi Nakagawa. Temperature and heat flux scalings for isoviscous thermal convection in spherical geometry. Geophys. J. Int., 182:137--154, 2010. [ bib ]
[1240] Frédéric Deschamps and Yang Li. Core-mantle boundary dynamic topography: Influence of postperovskite viscosity. J. Geophys. Res.: Sol. Earth, 124:9247--9264, 2019. [ bib ]
[1241] V. S. Deshpande and A. G. Evans. Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J. Mech. Phys. Solids, 56:3077--3100, 2008. [ bib ]
[1242] Julia de Sigoyer, Valérie Chavagnac, Janne Blichert-Toft, Igor M Villa, Béatrice Luais, Stéphane Guillot, Michael Cosca, and Georges Mascle. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology, 28:487--490, 2000. [ bib ]
[1243] Julia De Sigoyer, Stéphane Guillot, and Pierre Dick. Exhumation of the ultrahigh-pressure tso morari unit in eastern ladakh (nw himalaya): A case study. Tectonics, 23(TC3003), 2004. [ bib | DOI ]
[1244] J.-X. Dessa, S. Operto, S. Kodaira, A. Nakanishi, G. Pascal, J. Virieux, and Y. Kaneda. Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion. Geophys. Res. Lett., 31(18), 2004. [ bib | DOI ]
[1245] R. S. Detrick and S. T. Crough. Island subsidence, hot spots, and lithospheric thinning. J. Geophys. Res.: Sol. Earth, 83:1236--1244, 1978. [ bib ]
[1246] Y. Deubelbeiss and B. J. P. Kaus. Comparison of Eulerian and Lagrangian numerical techniques for the Stokes equations in the presence of strongly varying viscosity. Phys. Earth Planet. Inter., 171:92--111, 2008. [ bib ]
[1247] P. M. R. DeVries, P. G. Krastev, J. F. Dolan, and B. J. Meade. Viscoelastic block models of the North Anatolian fault: A unified earthquake cycle representation of pre- and postseismic geodetic observations. Bull. Seismol. Soc. Am., 107, 2017. [ bib | DOI ]
[1248] J. F. Dewey. Continental margins: a model for conversion of Atlantic type to Andean type. Earth Planet. Sci. Lett., 6:189--197, 1969. [ bib ]
[1249] John F Dewey and John M Bird. Mountain belts and the new global tectonics. J. Geophys. Res.: Sol. Earth, 75:2625--2647, 1970. [ bib ]
[1250] John F Dewey and Kevin Burke. Hot spots and continental break-up: implications for collisional orogeny. Geology, 2:57--60, 1974. [ bib ]
[1251] J. F. Dewey. Episodicity, sequence and style at convergent plate boundaries. In The Continental crust and its mineral deposits, volume 20 of GAC Special Paper, pages 553--573. Geological Association of Canada, 1980. [ bib ]
[1252] J. F. Dewey. Extensional collapse of orogens. Tectonics, 7:1123--1139, 1988. [ bib ]
[1253] J. F. Dewey, M. L. Helman, E. Turco, D. H. W. Hutton, and S. D. Knot. Kinematics of the western Mediterranean. In M. P. Coward, D. Dietrich, and R. G. Park, editors, Conference on Alpine tectonics, volume 45 of Geol. Soc. Lond. Spec. Pubs., pages 265--283. Geological Society of London, London, 1989. [ bib ]
[1254] J. F. Dewey and S. H. Lamb. Active tectonics of the Andes. Tectonophys., 205:79--95, 1992. [ bib ]
[1255] Gilles A de Wijs, Georg Kresse, Lidunka Vočadlo, David Dobson, Dario Alfe, Michael J Gillan, and Geoffrey D Price. The viscosity of liquid iron at the physical conditions of the Earth's core. Nature, 392:805--807, 1998. [ bib ]
[1256] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Subduction Dynamics and Energy Dissipation: 3-D Numerical Models (abstract). Eos Trans. AGU, 87(52):T11F--04, 2006. [ bib ]
[1257] J. Diaz, J. Gallart, A. Villaseñor, F. Mancilla, A. Pazos, D. Córdoba, J. A. Pulgar, P. Ibarra, and M. Harnafi. Mantle dynamics beneath the Gibraltar Arc (western Mediterranean) from shear-wave splitting measurements on a dense seismic array. Geophys. Res. Lett., 37(L18304), 2010. [ bib | DOI ]
[1258] Lydia DiCaprio, Michael Gurnis, and R Dietmar Müller. Long-wavelength tilting of the Australian continent since the Late Cretaceous. Earth Planet. Sci. Lett., 278:175--185, 2009. [ bib ]
[1259] Sara Di Carli, Caroline François-Holden, Sophie Peyrat, and Raul Madariaga. Dynamic inversion of the 2000 Tottori earthquake based on elliptical subfault approximations. J. Geophys. Res.: Sol. Earth, 115(B12328), 2010. [ bib | DOI ]
[1260] Armin Dielforder, Ralf Hetzel, and Onno Oncken. Megathrust shear force controls mountain height at convergent plate margins. Nature, 582:225--229, 2020. [ bib ]
[1261] J. H. Dieterich and D. E. Smith. Nonplanar faults: Mechanics of slip and off-fault damage. Pure Appl. Geophys., 166:1799--1815, 2009. [ bib ]
[1262] J. H. Dieterich. Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys., 116:790--806, 1972. [ bib ]
[1263] J. H. Dieterich. Time-dependent friction in rocks. J. Geophys. Res.: Sol. Earth, 77:3690--3697, 1978. [ bib ]
[1264] J. H. Dieterich. Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res.: Sol. Earth, 84:2161--2168, 1979. [ bib ]
[1265] J. H. Dieterich. Modeling of rock friction 2. simulation of preseismic slip. J. Geophys. Res.: Sol. Earth, 84:2168--2175, 1979. [ bib ]
[1266] J. H. Dieterich. Constitutive properties of faults with simulated gouge. In N. L. Carter, M. Friedman, J. M. Logan, and D. W. Stearns, editors, Mechanical behavior of crustal rocks: the Handin volume, volume 24 of Geophys. Mono., pages 103--120. American Geophysical Union, Washington, DC, 1981. [ bib ]
[1267] J. H. Dieterich. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophys., 211:115--134, 1992. [ bib ]
[1268] J. H. Dieterich and M. F. Linker. Fault stability under conditions of variable normal stress. Geophys. Res. Lett., 19:1691--1694, 1992. [ bib ]
[1269] J. H. Dieterich. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res.: Sol. Earth, 99:2601--2618, 1994. [ bib ]
[1270] J. H. Dieterich. Earthquake simulations with time-dependent nucleation and long-range interactions. Nonlinear Processes in Geophysics, 2:109--120, 1995. [ bib ]
[1271] J. H. Dieterich and B. D. Kilgore. Imaging surface contacts: Power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophys., 256:219--239, 1996. [ bib ]
[1272] Robert S Dietz. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190:854--857, 1961. [ bib ]
[1273] E. Di Giuseppe, J. van Hunen, F. Funiciello, C. Faccenna, and D. Giardini. Slab stiffness controls trench motion: insights from numerical models. Geochem., Geophys., Geosys., 9(Q02014), 2008. [ bib | DOI ]
[1274] Yildirim Dilek, Eldridge M Moores, and Harald Furnes. Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers. In Faulting and Magmatism at Mid-Ocean Ridges, volume 106 of Geophys. Mono., pages 219--266. American Geophysical Union, Washington DC, 1998. [ bib ]
[1275] C. Dimate, L. Rivera, A. Taboada, B. Delouis, A. Osorio, E. Jimenez, A. Fuenzalida, A. Cisternas, and I. Gomez. The 19 January 1995 Tauramena (Colombia) earthquake: geometry and stress regime. Tectonophys., 363:159--180, 2003. [ bib ]
[1276] G. Di Toro, D. L. Goldsby, and T. E. Tullis. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427:436--439, 2004. [ bib ]
[1277] Giulio Di Toro, Raehee Han, Takehiro Hirose, Nicola De Paola, Stefan Nielsen, Kazuo Mizoguchi, Fabio Ferri, Massimo Cocco, and Tosihiko Shimamoto. Fault lubrication during earthquakes. Nature, 471(7339):494--498, 2011. [ bib ]
[1278] T. H. Dixon, E. Norabuena, and L. Hotaling. Paleoseismology and Global Positioning System; earthquake-cycle effects and geodetic versus geologic fault slip rates in the Eastern California shear zone. Geology, 31:55--58, 2003. [ bib ]
[1279] J. E. Dixon, T. H. Dixon, D. R. Bell, and R. Malservisi. Lateral variations in upper mantle viscosity: role of water. Earth Planet. Sci. Lett., 222:451--467, 2004. [ bib ]
[1280] T. H. Dixon. An introduction to the global positioning system and some tectonic applications. Rev. Geophys., 29:249--276, 1991. [ bib ]
[1281] Timothy H Dixon, Stefano Robaudo, Jeffrey Lee, and Marith C Reheis. Constraints on present-day basin and range deformation from space geodesy. Tectonics, 14:755--772, 1995. [ bib ]
[1282] M. Marlino. Digital library for earth system education (DLESE). University Corporation for Atmospheric Research, Boulder CO. Online at www.dlese.org, accessed 06/2006, 2006. [ bib ]
[1283] R. Dmowska, J. R. Rice, L. C. Lovinson, and D. Josell. Stress transfer and seismic phenomena in coupled subduction zones during the earthquake cycle. J. Geophys. Res.: Sol. Earth, 93:7869--7884, 1988. [ bib ]
[1284] R. Dmowska and L. C. Lovison. Influence of asperities along subduction interfaces on the stressing and seismicity of adjacent areas. TECTON, 211:23--43, 1992. [ bib ]
[1285] R. Dmowska, G. Zheng, and J. R. Rice. Seismicity and deformation at convergent margins due to heterogeneous coupling. J. Geophys. Res.: Sol. Earth, 101:3015--3029, 1996. [ bib ]
[1286] D. P. Dobson, P. G. Meredith, and S. A. Boon. Detection and analysis of microseismicity in multi anvil experiments. Phys. Earth Planet. Inter., 143:337--346, 2004. [ bib ]
[1287] C. Doglioni, D. Green, and F. Mongelli. On the shallow origin of hotspots and the westward drift of the lithosphere. In G. R. Foulger, J. H. Natland, D. C. Presnall, and D. L. Anderson, editors, Plates, Plumes and Paradigms, volume 388 of GSA Sp. Paper, pages 735--749. Geol. Soc. Am., 2005. [ bib ]
[1288] C. Doglioni, E. Carminati, and M. Cuffaro. Simple kinematics of subduction zones. Int. Geol. Rev., 48:479--493, 2006. [ bib ]
[1289] C. Doglioni, E. Carminati, M. Cuffaro, and D. Scrocca. Subduction kinematics and dynamic constraints. Earth Sci. Rev., 83:125--175, 2007. [ bib ]
[1290] C. Doglioni. The global tectonic pattern. J. Geodynamics, 12:21--38, 1990. [ bib ]
[1291] Carlo Doglioni. Some remarks on the origin of foredeeps. Tectonophys., 228:1--20, 1993. [ bib ]
[1292] C. Doglioni. Foredeeps versus subduction zones. Geology, 22:271--274, 1994. [ bib ]
[1293] C. Doglioni, E. Gueguen, F. Sàbat, and M. Fernandez. The western Mediterranean extensional basins and the Alpine orogen. Terra Nova, 9:109--112, 1997. [ bib ]
[1294] M-P Doin and L Fleitout. Thermal evolution of the oceanic lithosphere: an alternative view. Earth Planet. Sci. Lett., 142:121--136, 1996. [ bib ]
[1295] M.-P. Doin, L. Fleitout, and D. McKenzie. Geoid anomalies and the structure of continental and oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 101:16119--16135, 1996. [ bib ]
[1296] R. K. Dokka and C. J. Travis. Role of the eastern California shear zone in accomodating Pacific-North American plate motion. Geophys. Res. Lett., 17:1323--1326, 1990. [ bib ]
[1297] J. F. Dolan, K. E. Sieh, and T. K. Rockwell. Late Quaternary activity and seismic potential of the Santa Monica fault system, Los Angeles, California. Geol. Soc. Am. Bull., 112:1559--1581, 2000. [ bib ]
[1298] J. F. Dolan, D. D. Bowman, and C. G. Sammis. Long-range and long-term fault interactions in Southern California. Geology, 35:855--858, 2007. [ bib ]
[1299] J. F. Dolan, K. E. Sieh, T. K. Rockwell, R. S. Yeats, J. Shaw, J. Suppe, G. J. Huftile, and E. M. Gath. Prospects for larger or more frequent earthquakes in the Los Angeles metropolitan region. Science, 267:199--205, 1995. [ bib ]
[1300] Valentina Dolci and Renzo Arina. Proper orthogonal decomposition as surrogate model for aerodynamic optimization. Int. J. Aerospace Eng., 3:1--15, 2016. [ bib ]
[1301] M. Domeier and T. H. Torsvik. Plate tectonics in the late Paleozoic. Geosc. Front., 5:303--350, 2014. [ bib ]
[1302] M. Domeier, G.E. Shephard, J. Jakob, C. Gaina, P.V. Doubrovine, and T.H. Torsvik. Intraoceanic subduction spanned the Pacific in the Late Cretaceous-Paleocene. Sci. Adv., 3:1--6, 2017. [ bib ]
[1303] S. Dominguez, J. Malavieille, and S. E. Lallemand. Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics, 19:182--196, 2000. [ bib ]
[1304] Tim P Dooley and Guido Schreurs. Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results. Tectonophys., 574:1--71, 2012. [ bib ]
[1305] Jacob Dorsett, Kaj M Johnson, Simone Puel, and Thorsten W Becker. Postseismic deformation and stress evolution following the 2019 M 7.1 and M 6.4 Ridgecrest earthquakes (abstract). In AGU Fall Meeting, number S31G-0500. American Geophysical Unison, 2019. [ bib ]
[1306] R. J. Dorsey. Stratigraphic record of Pleistocene initiation and slip on the Coyote Creek Fault, lower Coyote Creek, southern California. In A. Barth, editor, Contributions to crustal evolution of the Southwestern United States, Special paper, pages 251--269. Geological Society of America, 2002. [ bib ]
[1307] R. J. Dorsey. Late pleistocene slip rate on the Coachella Valley segment of the San Andreas fault and implications for regional slip partitioning (abstract). In 99th Annual Meeting, Cordilleran Section, Geological Society of America, Puerto Vallarta, Mexico. Geological Society of America, April 2003. [ bib ]
[1308] Rebecca J. Dorsey, Gary J. Axen, Thomas C. Peryam, and Mary E. Kairouz. Initiation of the Southern Elsinore Fault at similar to 1.2 Ma: Evidence from the Fish Creek-Vallecito Basin, southern California. Tectonophys., 31, 2012. [ bib | DOI ]
[1309] P. V. Doubrovine, B. Steinberger, and T. H. Torsvik. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res.: Sol. Earth, 117(B09101), 2012. [ bib | DOI ]
[1310] Nadja Drabon, Benjamin L. Byerly, Gary R. Byerly, Joseph L. Wooden, Michael Wiedenbeck, John W. Valley, Kouki Kitajima, Ann M. Bauer, and Donald R. Lowe. Destabilization of long-lived hadean protocrust and the onset of pervasive hydrous melting at 3.8 ga. Advances, 3:e2021AV000520, 2022. [ bib ]
[1311] H. Dragert, K. Wang, and T. S. James. A silent slip event on the deeper Cascadia subduction interface. Science, 292:1525--1528, 2001. [ bib ]
[1312] Herb Dragert and Kelin Wang. Temporal evolution of an episodic tremor and slip event along the northern Cascadia margin. J. Geophys. Res.: Sol. Earth, 116(B12), 2011. [ bib ]
[1313] F. D. Drake. Life on other planets, chapter Intelligent life in space. Macmillan, New York, 1962. [ bib ]
[1314] H. Drewes. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In M. Feissel, editor, Geodynamics, IAG Symposia. Springer, 1998. [ bib ]
[1315] P Driscoll and D Bercovici. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter., 236:36--51, 2014. [ bib ]
[1316] PE Driscoll and Rory Barnes. Tidal heating of earth-like exoplanets around m stars: thermal, magnetic, and orbital evolutions. Astrobio., 15:739--760, 2015. [ bib ]
[1317] D. C. Drucker and W. Prager. Soil mechanics and plastic analysis or limit design. Q. Appl. Math., 10:157--165, 1952. [ bib ]
[1318] K. A. Druken, M. D. Long, and C. Kincaid. Patterns in seismic anisotropy driven by rollback subduction beneath the High Lava Plains. Geophys. Res. Lett., 38(L13310), 2011. [ bib | DOI ]
[1319] K. A. Druken, C. Kincaid, and R. W. Griffiths. Directions of seismic anisotropy in laboratory models of mantle plumes. Geophys. Res. Lett., 40(14):3544--3549, 2013. [ bib | DOI ]
[1320] KA Druken, Christopher Kincaid, RW Griffiths, DR Stegman, and SR Hart. Plume--slab interaction: the Samoa--Tonga system. Phys. Earth Planet. Inter., 232:1--14, 2014. [ bib ]
[1321] Yijun Du and Atilla Aydin. Shear fracture patterns and connectivity at geometric complexities along strike-slip faults. J. Geophys. Res.: Sol. Earth, 100:18093--18102, 1995. [ bib ]
[1322] Benchun Duan. Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible subducting seamount. J. Geophys. Res.: Sol. Earth, 117(B05311), 2012. [ bib | DOI ]
[1323] Pierre Dublanchet, Pascal Bernard, and Pascal Favreau. Interactions and triggering in a 3-D rate-and-state asperity model. J. Geophys. Res.: Sol. Earth, 118:2225--2245, 2013. [ bib ]
[1324] Pierre Dublanchet. Scaling and variability of interacting repeating earthquake sequences controlled by asperity density. Geophys. Res. Lett., 46:11950--11958, 2019. [ bib ]
[1325] F. Dubuffet, D. A. Yuen, and M. Rabinowicz. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth Planet. Sci. Lett., 171:401--409, 1999. [ bib ]
[1326] M. N. Ducea, J. B. Saleeby, and G. Bergantz. The architecture, chemistry, and evolution of continental magmatic arcs. Ann. Rev. Earth Planet. Sci., 43:299--331, 2015. [ bib ]
[1327] M. N. Ducea. Understanding continental subduction: A work in progress. Geology, 44:239--240, 2016. [ bib ]
[1328] M. Duclos, M. K. Savage, A. Tommasi, and K. R. Gledhill. Mantle tectonics beneath New Zealand inferred from SKS splittingand petrophysics. Geophys. J. Int., 163:760--774, 2005. [ bib ]
[1329] T. S. Duffy and T. J. Ahrens. Sound velocities at high pressure and temperature and their geophysical implications. J. Geophys. Res.: Sol. Earth, 97:4503--4520, 1992. [ bib ]
[1330] Donald S Dugdale. Yielding of steel sheets containing slits. J. Mech. Phys. Solids, 8:100--104, 1960. [ bib ]
[1331] S. Duggen, K.A. Hoernle, F. Hauff, A. Klügel, M. Bouabdellah, and M. F. Thirlwall. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology, 37:283–--286, 2009. [ bib ]
[1332] C. Dumoulin, M.-P. Doin, and L. Fleitout. Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Phys. Earth Planet. Inter., 125:45--64, 2001. [ bib ]
[1333] C. Dumoulin, D. Bercovici, and P. Wessel. A continuous plate-tectonic model using geophysical data to estimate plate-margin widths, with a seismicity-based example. Geophys. J. Int., 133:379--389, 1998. [ bib ]
[1334] R. A. Duncan and D. A. Clague. The Pacific Ocean. In A. E. M. Nairn, F. L. Stehli, and S. Uyeda, editors, The Ocean Basins and Margins, volume 7A, pages 89–--121. Plenum Press, 1985. [ bib ]
[1335] Robert A Duncan and MA Richards. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29:31--50, 1991. [ bib ]
[1336] E. M. Dunham, D. Belanger, L. Cong, and J. E. Kozdon. Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults. Bull. Seismol. Soc. Am., 101:2308--2322, 2011. [ bib ]
[1337] E. M. Dunham, A. Thomas, T. W. Becker, C. Cattania, J. Hawthorne, J. Hubbard, G. C. Lotto, J.-A. Olive, and J. Platt. Modeling Collaboratory for Subduction RCN Megathrust Modeling Workshop report. EarthArXiv, 2020. [ bib | DOI ]
[1338] B. Dupre and C. J. Allègre. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303:142--146, 1983. [ bib ]
[1339] H. Duque-Caro. The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic, and paleogeographic implications. J. South Am. Earth Sci., 3:71--84, 1990. [ bib ]
[1340] Florian Duret, Nikolai M Shapiro, Z Cao, V Levin, P Molnar, and S Roecker. Surface wave dispersion across Tibet: Direct evidence for radial anisotropy in the crust. Geophys. Res. Lett., 37(L16306), 2010. [ bib | DOI ]
[1341] Thibault Duretz, Taras V Gerya, and Dave A May. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophys., 502:244--256, 2011. [ bib ]
[1342] T Duretz, SM Schmalholz, and TV Gerya. Dynamics of slab detachment. Geochem., Geophys., Geosys., 13(3), 2012. [ bib ]
[1343] Thibault Duretz, René de Borst, and Laetitia Le Pourhiet. Finite thickness of shear bands in frictional viscoplasticity and implications for lithosphere dynamics. Geochem., Geophys., Geosys., 20:5598--5616, 2019. [ bib ]
[1344] Thibault Duretz, René de Borst, and Philippe Yamato. Modeling lithospheric deformation using a compressible visco-elasto-viscoplastic rheology and the effective viscosity approach. Geochem., Geophys., Geosys., 22(8):e2021GC009675, 2021. [ bib ]
[1345] A. L. du Toit. Our Wandering Continents. An Hypothesis of Continental Drifting. Oliver & Boyd, London, 1937. [ bib ]
[1346] J. Dvorkin, A. Nur, G. Mavko, and Z. Ben-Avraham. Narrow subducting slabs and the origin of backarc basins. Tectonophys., 227:63--79, 1993. [ bib ]
[1347] D Dymkova and Taras Gerya. Porous fluid flow enables oceanic subduction initiation on earth. Geophys. Res. Lett., 40:5671--5676, 2013. [ bib ]
[1348] A. M. Dziewoński. Global seismic tomography: past, present and future. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 289--349, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1349] A. M. Dziewoński, V. Lekic, and B. A. Romanowicz. Mantle anchor structure: An argument for bottom up tectonics. Earth Planet. Sci. Lett., 299:69--79, 2010. [ bib ]
[1350] A. M. Dziewoński, B. H. Hager, and R. J. O'Connell. Large scale heterogeneity in the lower mantle. J. Geophys. Res.: Sol. Earth, 82:239--255, 1977. [ bib ]
[1351] A. M. Dziewoński and D. L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25:297--356, 1981. [ bib ]
[1352] A. M. Dziewoński, T.-A. Chou, and J. H Woodhouse. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res.: Sol. Earth, 86:2825--2852, 1981. [ bib ]
[1353] A. M. Dziewoński. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res.: Sol. Earth, 89:5929--5952, 1984. [ bib ]
[1354] C. M. Eakin, C. A. Rychert, and N. Harmon. The role of oceanic transform faults in seafloor spreading: A global perspective from seismic anisotropy. J. Geophys. Res.: Sol. Earth, 123:1736--1751, 2018. [ bib | DOI ]
[1355] D. Eaton, F. Darbyshire, R. L. Evans, H. Grütter, A. G. Jones, and X. Yuan. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos, 109:1--22, 2009. [ bib ]
[1356] D. Eberhart-Phillips, M. Reyners, and M. Chadwick. Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophys. J. Int., 174:418--434, 2008. [ bib ]
[1357] Donna Eberhart-Phillips, Stephen Bannister, and Martin Reyners. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P-and S-wave attenuation. Geophys. J. Int., 211:1032--1045, 2017. [ bib ]
[1358] D. Eberhart-Phillips. Three dimensional velocity structure in the Northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am., 76:1025--1052, 1986. [ bib ]
[1359] CJ Ebinger, D Keir, ID Bastow, K Whaler, JOS Hammond, A Ayele, MS Miller, Christel Tiberi, and S Hautot. Crustal structure of active deformation zones in Africa: Implications for global crustal processes. Tectonics, 36:3298--3332, 2017. [ bib ]
[1360] Cynthia J Ebinger. Recipe for rifting: Flavors of East Africa. In Encyclopedia of Geology, pages 271--283. Elsevier, 2 edition, 2021. [ bib | DOI ]
[1361] C. J. Ebinger and N. H. Sleep. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395:788--791, 1998. [ bib ]
[1362] J.-P. Eckmann. Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys., 53:643--654, 1981. [ bib ]
[1363] D. C. Edelson and D. Gordin. Visualization for learners: A framework for adapting scientists' tools. Comp. Geosci., 24:607--616, 1998. [ bib ]
[1364] B. Efron and C. Stein. The jackknife estimate of variance. Annals Stat., 9:586--596, 1981. [ bib ]
[1365] Bradley Efron. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1982. [ bib ]
[1366] O. Egbue and J. Kellogg. Pleistocene to present north Andean “escape”. Tectonophys., 489:248--–257, 2010. [ bib ]
[1367] Todd A Ehlers. Crustal thermal processes and the interpretation of thermochronometer data. Rev. Mineral. Geochem., 58:315--350, 2005. [ bib ]
[1368] Martin Ekman. A consistent map of the postglacial uplift of Fennoscandia. Terra Nova, 8:158--165, 1996. [ bib ]
[1369] G. Ekström. Global studies of earthquakes. In E. Boschi, G. Ekström, and A. Morelli, editors, Problems in Geophysics for the New Millenium, pages 111--123, Bologna, Italy, 2000. Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori. [ bib ]
[1370] G. Ekström. Mapping azimuthal anisotropy of intermediate-period surface waves (abstract). Eos Trans. AGU, 82(47):S51E--06, 2001. [ bib ]
[1371] G. Ekström. A simple method of representing azimuthal anisotropy on a sphere. Geophys. J. Int., 165:668--671, 2006. [ bib ]
[1372] G. Ekström, G. A. Abers, and S. C. Webb. Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation. Geophys. Res. Lett., 36(L18301), 2009. [ bib | DOI ]
[1373] G. Ekström, M. Nettles, and A. M. Dziewonski. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200:1--9, 2012. [ bib ]
[1374] G. Ekström. Anomalous earthquakes on volcano ring-fault structures. Earth Planet. Sci. Lett., 128:707--712, 1994. [ bib ]
[1375] G. Ekström, J. Tromp, and E. Larson. Measurements and global models of surface wave propagation. J. Geophys. Res.: Sol. Earth, 102:8137--8157, 1997. [ bib ]
[1376] G. Ekström and A. M. Dziewoński. The unique anisotropy of the Pacific upper mantle. Nature, 394:168--172, 1998. [ bib ]
[1377] G. Ekström. A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25--250 s. Geophys. J. Int., 187:1668--1686, 2011. [ bib ]
[1378] Z. H. El-Isa and D. W. Eaton. Spatiotemporal variations in the b-value of earthquake magnitude-frequency distributions: Classification and causes. Tectonophys., 615:1--11, 2014. [ bib ]
[1379] T. Elliott. Tracers of the slab. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono., pages 23--46. American Geophysical Union, Washington DC, 2003. [ bib ]
[1380] W. L. Ellsworth, A. G. Lindh, W. H. Prescott, and D. J. Herd. The 1906 San Francisco earthquake and the seismic cycle. In D. Simpson and P. Richards, editors, Earthquake Prediction, an International Review, volume 4 of Maurice Ewing, pages 126--140. American Geophysical Union, Washington DC, 1981. [ bib ]
[1381] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, 2005. IFISS Matlab software available online at www.maths.manchester.ac.uk/~djs/ifiss/, accessed 06/2006. [ bib ]
[1382] F.-J. Elmer. Is Self-Organized Criticality possible in dry friction? In B. N. J. Persson and E. Tosatti, editors, Physics of sliding friction, pages 433--447. Kluwer Academic, Dordrecht, The Netherlands, 1996. [ bib ]
[1383] P. Elósegui, J. L. Davis, R. T. K. Jaldehag, J. M. Johansson, A. E. Niell, and I. I Shapiro. Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position. J. Geophys. Res.: Sol. Earth, 100:9921--9934, 1995. [ bib ]
[1384] W. M. Elsasser. Convection and stress propagation in the upper mantle. In S. K. Runcorn, editor, The Application of Modern Physics to the Earth and Planetary Interiors, pages 223--249. Wiley, New York, 1969. [ bib ]
[1385] K. Ely and M. Sandiford. Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia. Tectonophys., 483:112--124, 2010. [ bib ]
[1386] B. Endrun, T. Meier, S. Lebedev, M. Bohnhoff, G. Stavrakakis, and H.-P. Harjes. S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys. J. Int., 174:593--616, 2008. [ bib ]
[1387] B. Endrun, S. Lebedev, T. Meier, C. Tirel, and W. Friederich. Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geosc., 4:203--207, 2011. [ bib ]
[1388] M. Eneva and Y. Ben-Zion. Techniques and parameters to analyze seismicity patterns associated with large earthquakes. J. Geophys. Res.: Sol. Earth, 102:17785--17795, 1997. [ bib ]
[1389] M. Eneva and Y. Ben-Zion. Application of pattern recognition techniques to earthquake catalogs generated by models of segmented fault systems in three-dimensional elastic solids. J. Geophys. Res.: Sol. Earth, 102:24513--24528, 1997. [ bib ]
[1390] E. R. Engdahl, R. D. van der Hilst, and R. Buland. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88:722--743, 1998. [ bib ]
[1391] D. C. Engebretson, A. Cox, and R. G Gordon. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am. Spec. Paper, 206, 1985. [ bib ]
[1392] J. T. Engelder. Microscopic wear grooves on slickensides: Indicators of paleosesimicity. J. Geophys. Res.: Sol. Earth, 79:4387--4392, 1974. [ bib ]
[1393] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; i, asperity creep and stick-slip. Int. J. Rock Mech. Min. Sci., 13:149--154, 1976. [ bib ]
[1394] J. T. Engelder and C. H. Scholz. The role of asperity indentation and ploughing in rock friction; ii, influence of relative hardness and normal load. Int. J. Rock Mech. Min. Sci., 13:155--163, 1976. [ bib ]
[1395] P. England, R. Engdahl, and W. Thatcher. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys. J. Int., 156:377--408, 2004. [ bib ]
[1396] P. England and C. Wilkins. A simple analytical approximation to the temperature structure in subduction zones. Geophys. J. Int., 159:1138--1154, 2004. [ bib ]
[1397] P. England and P. Molnar. Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res.: Sol. Earth, 110(B12401), 2005. [ bib | DOI ]
[1398] Philip C England, Peter Molnar, and Frank M Richter. Kelvin, perry and the age of the earth: Had scientists better appreciated one of kelvin's contemporary critics, the theory of continental drift might have been accepted decades earlier. American scientist, 95:342--349, 2007. [ bib ]
[1399] P. C. England and R. F. Katz. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature, 467:700--703, 2010. [ bib ]
[1400] P. C. England and D. A. May. The global range of temperatures on convergent plate interfaces. Geochem., Geophys., Geosys., 2021. [ bib | DOI ]
[1401] P. C. England and D. P. McKenzie. A thin viscous sheet model for continental deformation. Geophys. J. R. Astr. Soc., 70:295--321, 1982. [ bib ]
[1402] P. C. England and D. P. McKenzie. Correction to a thin viscous sheet model for the continental deformation. Geophys. J. R. Astr. Soc., 73:523--532, 1983. [ bib ]
[1403] Philip C England and Alan Bruce Thompson. Pressure-temperature-time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol., 25:894--928, 1984. [ bib ]
[1404] P. England, G. Houseman, and L. Sonder. Length scales for continental deformation in convergent, divergent, and strike-slip environments: analytical and approximate solutions for a thin viscous sheet model. J. Geophys. Res.: Sol. Earth, 90:3551--3557, 1985. [ bib ]
[1405] P. C. England and G. A. Houseman. Finite strain calculations of continental deformation II. Comparison with the India-Asia collision zone. J. Geophys. Res.: Sol. Earth, 91:3664--3676, 1986. [ bib ]
[1406] P. C. England and J. Jackson. Active deformation of the continents. Ann. Rev. Earth Planet. Sci., 17:197--226, 1989. [ bib ]
[1407] Philip England and Peter Molnar. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18:1173--1177, 1990. [ bib ]
[1408] P. C. England and P. Molnar. Active deformation of Asia: from kinematics to dynamics. Science, 278:647--650, 1997. [ bib ]
[1409] J. M. English, S. T. Johston, and K. Wang. Thermal modelling of the Laramide orogeny: testing the flat-slab subduction hypothesis. Earth Planet. Sci. Lett., 214:619--632, 2003. [ bib ]
[1410] A. Enns, T. W. Becker, and H. Schmeling. The dynamics of subduction and trench migration for viscosity stratification. Geophys. J. Int., 160:761--775, 2005. [ bib ]
[1411] EPOS. The GEO Geohazard Supersites and Natural Laboratory initiative, 2017. Available online at www.epos-ip.org/geo-geohazard-supersites-and-natural-laboratory-initiative, accessed 10/2017. [ bib ]
[1412] EPOS. EPOS, the European Plate Observing System. European Infrastructure on Solid Earth, 2017. Available online at www.epos-ip.org, accessed 10/2017. [ bib ]
[1413] Zoltán Erdős, Ritske S Huismans, Claudio Faccenna, and Sebastian G Wolf. The role of subduction interface and upper plate strength on back-arc extension: Application to Mediterranean back-arc basins. Tectonics, 40:e2021TC006795, 2021. [ bib ]
[1414] Zoltán Erdős, Ritske S Huismans, and Claudio Faccenna. Wide versus narrow back-arc rifting: Control of subduction velocity and convective back-arc thinning. Tectonics, 41(6):e2021TC007086, 2022. [ bib ]
[1415] Monica E Erdman, Bradley R Hacker, George Zandt, and Gareth Seward. Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range. Geophys. J. Int., 195(2):1211--1229, 2013. [ bib ]
[1416] Brittany A. Erickson, Junle Jiang, Michael Barall, Nadia Lapusta, Eric M. Dunham, Ruth Harris, Lauren S. Abrahams, Kali L. Allison, Jean-Paul Ampuero, Sylvain Barbot, Camilla Cattania, Ahmed Elbanna, Yuri Fialko, Benjamin Idini, Jeremy E. Kozdon, Valére Lambert, Yajing Liu, Yingdi Luo, Xiao Ma, Maricela Best McKay, Paul Segall, Pengcheng Shi, Martijn van den Ende, and Meng Wei. Community code verification exercise for simulating sequences of earthquakes and aseismic slip (SEAS). Seismol. Res. Lett., 91:874--890, 2020. [ bib ]
[1417] R. E. Ernst. Large Igneous Provinces. Cambridge University Press, 2014. [ bib ]
[1418] John Douglas Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London. A. Math. Phys. Sci., 241:376--396, 1957. [ bib ]
[1419] NASA-ESI. Earth Surface and Interior Solicication NNH15ZDA001N-ESI. NASA, 2015. A.25 Earth Surface and Interior as amended, Available online at nspires.nasaprs.com/external/viewrepositorydocument?cmdocumentid=448056&solicitationId={AFD18323-7FFD-D19B-AD6C-3A780AD09CEE}&viewSolicitationDocument=1, accessed 08/2015. [ bib ]
[1420] Pentti Eskola. On the relations between the chemical and mineralogical composition in the metamorphic rocks of Orijarvi region. Bull. comm. géol. Finlande, 44, 1915. [ bib ]
[1421] P.E. Eskola. The problem of mantled gneiss domes. Geolog. Soc. London Quarterly J., 104:461--476, 1949. [ bib ]
[1422] P. Espanol. Propagative slipping modes in a spring-block model. Phys. Rev. E., 50:227--235, 1994. [ bib ]
[1423] N. Espurt, F. Funiciello, J. Martinod, B. Guillaume, V. Regard, C. Faccenna, and S. Brusset. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27(TC3011):10.1029/2007TC002175, 2008. [ bib ]
[1424] L. H. Estey and B. J. Douglas. Upper mantle anisotropy: a preliminary model. J. Geophys. Res.: Sol. Earth, 91:11393--11406, 1986. [ bib ]
[1425] NOAA. 2-minute Gridded Global Relief Data (ETOPO2v2). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado, 2006. www.ngdc.noaa.gov/mgg/fliers/06mgg01.html, accessed 01/2013. [ bib ]
[1426] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. www.ngdc.noaa.gov. [ bib ]
[1427] NOAA. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Geophysical Data Center, Boulder, Colorado, 1988. [ bib ]
[1428] J. P. Evans, Z. K. Shipton, M. A. Pachell, S. J. Lim, and K. Robeson. The structure and composition of exhumed faults and their implication for seismic processes. In 3rd Conference on Tectonics Problems of the San Andreas system. Stanford University, 2000. [ bib ]
[1429] B Evans, J Renner, and G Hirth. A few remarks on the kinetics of static grain growth in rocks. Int. J. Earth Sci., 90:88--103, 2001. [ bib ]
[1430] David AD Evans. True polar wander and supercontinents. Tectonophys., 362:303--320, 2003. [ bib ]
[1431] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int., 165:931--942, 2006. [ bib ]
[1432] M. S. Evans, J.-M. Kendall, and R. J. Willemann. Automated splitting project database. Online at www.isc.ac.uk/SKS/, accessed 02/2006, 2006. [ bib ]
[1433] David AD Evans and Sergei A Pisarevsky. Plate tectonics on early Earth? Weighing the paleomagnetic evidence. In K. C. Condie and V. Pease, editors, When Did Plate Tectonics Begin on Planet Earth?, volume 440, pages 249--263. Geological Society of America, 2008. [ bib ]
[1434] Eileen L Evans, John P Loveless, and Brendan J Meade. Total variation regularization of geodetically and geologically constrained block models for the western united states. Geophys. J. Int., 202:713--727, 2015. [ bib ]
[1435] J. R. Evans and U. Achauer. Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies. In Seismic Tomography: Theory and Applications, pages 319--360. Chapman and Hall, London, 1993. [ bib ]
[1436] A. Ewart. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With a Special Reference to the Andesitic-Basaltic Compositional Range. In R.S. Thorpe, editor, Andesites: Orogenic Andesites and Related Rocks, pages 25--95. Wiley, Chichester, 1982. [ bib ]
[1437] NASA Exoplanet Archive, 2022. Available online at exoplanetarchive.ipac.caltech.edu/, accessed 12/2022. [ bib | DOI ]
[1438] M. Faccenda, L. Burlini, T. Gerya, and D. Mainprince. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature, 455:1097--1101, 2008. [ bib ]
[1439] M. Faccenda and N. Mancktelow. Fluid flow during unbending: Implications for slab hydration, intermediate-depth earthquakes and deep fluid subduction. Tectonophys., 494:149--154, 2010. [ bib ]
[1440] M. Faccenda and F. A. Capitanio. Seismic anisotropy around subduction zones: Insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochem., Geophys., Geosys., 14, 2013. [ bib | DOI ]
[1441] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Why did Sardinia stop rotating? Geophys. Res. Abstr., 2:16, 2000. [ bib ]
[1442] C. Faccenna, T. W. Becker, F. P. Lucente, L. Jolivet, and F. Rossetti. History of subduction and back-arc extension in the central Mediterranean. Geophys. J. Int., 145:809--820, 2001. [ bib ]
[1443] C. Faccenna, F. Funiciello, D. Giardini, and P. Lucente. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett., 187:105--116, 2001. [ bib ]
[1444] Claudio Faccenna, Laurent Jolivet, Claudia Piromallo, and Andrea Morelli. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res.: Sol. Earth, 108(B2), 2003. [ bib | DOI ]
[1445] C. Faccenna, C. Piromallo, A. Crespo Blanc, L. Jolivet, and F. Rossetti. Lateral slab deformation and the origin of the arcs of the western Mediterranean. Tectonics, 23(TC1012), 2004. [ bib | DOI ]
[1446] Claudio Faccenna, Lucia Civetta, Massimo D'Antonio, Francesca Funiciello, Lucia Margheriti, and Claudia Piromallo. Constraints on mantle circulation around the deforming calabrian slab. Geophys. Res. Lett., 32(L06311), 2005. [ bib | DOI ]
[1447] C. Faccenna, O. Bellier, J. Martinod, C. Piromallo, and V. Regard. Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth Planet. Sci. Lett., 242:85--97, 2006. [ bib ]
[1448] C. Faccenna, A. Heuret, F. Funiciello, S. Lallemand, and T. W. Becker. Predicting trench and plate motion from the dynamics of a strong slab. Earth Planet. Sci. Lett., 257:29--36, 2007. [ bib ]
[1449] C. Faccenna, F. Rossetti, T. W. Becker, S. Danesi, and A Morelli. Recent extension driven by mantle upwelling at craton edge beneath the Admirality Mountains (Ross Sea, East Antarctica). Tectonics, 27, 2008. [ bib | DOI ]
[1450] C. Faccenna, E. Di Giuseppe, F. Funiciello, S. Lallemand, and J. van Hunen. Control of seafloor aging on the migration of the Izu-Bonin-Mariana trench. Earth Planet. Sci. Lett., 288:386--398, 2009. [ bib ]
[1451] C. Faccenna and T. W. Becker. Shaping mobile belts by small-scale convection. Nature, 465:602--605, 2010. [ bib ]
[1452] C. Faccenna, T. W. Becker, S. Lallemand, Y. Lagabrielle, F. Funiciello, and C. Piromallo. Subduction-triggered magmatic pulses. A new class of plumes? Earth Planet. Sci. Lett., 209:54--68, 2010. [ bib ]
[1453] C. Faccenna, T. W. Becker, S. Lallemand, and B. Steinberger. On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophys. Res. Lett., 39(L03305), 2012. [ bib | DOI ]
[1454] C. Faccenna, T. W. Becker, L. Jolivet, and M. Keskin. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett., 375:254--269, 2013. [ bib ]
[1455] C. Faccenna, T. W. Becker, C. P. Conrad, and L. Husson. Mountain building and mantle dynamics. Tectonics, 32:80--93, 2013. [ bib ]
[1456] C. Faccenna, T. W. Becker, M. S. Miller, E. Serpelloni, and S. D. Willett. Isostasy, dynamic topography, and the elevation of the Apennines of Italy. Earth Planet. Sci. Lett., 407:163--174, 2014. [ bib ]
[1457] C. Faccenna, T. W. Becker, L. Auer, A. Billi, L. Boschi, J.-P. Brun, F. A. Capitanio, F. Funiciello, F. Horvath, L. Jolivet, C. Piromallo, L. Royden, F. Rossetti, and E. Serpelloni. Mantle dynamics in the Mediterranean. Rev. Geophys., 52:283--332, 2014. [ bib ]
[1458] C. Faccenna, O. Oncken, A. F. Holt, and T. W. Becker. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett., 463:189--201, 2017. [ bib ]
[1459] C. Faccenna, A. F. Holt, T. W. Becker, S. Lallemand, and L. H. Royden. Dynamics of the Ryukyu/Izu-Bonin-Marianas double subduction system. Tectonophys., 746:229--238, 2018. [ bib ]
[1460] Claudio Faccenna and Thorsten W Becker. Topographic expressions of mantle dynamics in the Mediterranean. Earth-Sci. Rev., 209, 2020. [ bib | DOI ]
[1461] Claudio Faccenna, Thorsten W. Becker, Adam F. Holt, and Jean Pierre Brun. Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited. Earth Planet. Sci. Lett., 564:116905, 2021. [ bib ]
[1462] C. Faccenna, P. Davy, J.-P. Brun, R. Funiciello, D. Giardini, M. Mattei, and T. Nalpas. The dynamics of back-arc extension: an experimental approach to the opening of the Tyrrhenian Sea. Geophys. J. Int., 126:781--795, 1996. [ bib ]
[1463] C. Faccenna, M. Mattei, R. Funiciello, and L. Jolivet. Styles of back-arc extension in the Central Mediterranean. Terra Nova, 9:126--130, 1997. [ bib ]
[1464] C. Faccenna and D. Giardini. Initiation of subduction in the Mediterranean (abstract). In EGS meeting, Annalae Geophysicae, volume 16. European Geophyical Society, Nice, 1998. [ bib ]
[1465] C. Faccenna, D. Giardini, P. Davy, and A. Argentieri. Initiation of subduction at Atlantic type margins: Insights from laboratory experiments. J. Geophys. Res.: Sol. Earth, 104:2749--2766, 1999. [ bib ]
[1466] Åke Fagereng and Richard H Sibson. Melange rheology and seismic style. Geology, 38:751--754, 2010. [ bib ]
[1467] Åke Fagereng, Graeme WB Hillary, and Johann FA Diener. Brittle-viscous deformation, slow slip, and tremor. Geophys. Res. Lett., 41:4159--4167, 2014. [ bib ]
[1468] Å. Fagereng, H.M. Savage, J.K. Morgan, M. Wang, F. Meneghini, P.M. Barnes, R. Bell, H. Kitajima, D.D. McNamara, D.M. Saffer, L.M. Wallace, K. Petronotis, L. LeVay, and the IODP Expedition 372/375 Scientists. Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand. Geology, 47:872--876, 2019. [ bib ]
[1469] Zijun Fang and Eric M. Dunham. Additional shear resistance from fault roughness and stress levels on geometrically complex faults. J. Geophys. Res.: Sol. Earth, 118:3642--3654, 2013. [ bib ]
[1470] G. Fantozzi, J. Chevalier, C. Olagnon, and J. L. Chermant. Creep of ceramic matrix composites. In Comprehensive Composite Materials, volume 4, pages 115--162. Elsevier, 2000. [ bib ]
[1471] D. L. Farber, G. S. Hancock, R. C. Finkel, and D. T. Rodbell. The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. J. Quaternary Sci., 20:759--776, 2005. [ bib ]
[1472] K. A. Farley, J. H. Natland, and H. Craig. Binary mixing of enriched and undegassed (primitive-questionable) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111:183--199, 1992. [ bib ]
[1473] CG Farnetani and H Samuel. Beyond the thermal plume paradigm. Geophys. Res. Lett., 32(L07311), 2005. [ bib | DOI ]
[1474] C. G. Farnetani. Excess temperature of mantle plumes: The role of chemical stratification across D”. Geophys. Res. Lett., 24:1583--1586, 1997. [ bib ]
[1475] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699--712, 2000. [ bib ]
[1476] V. Farra and L. Vinnik. Upper mantle stratification by P and S receiver functions. Geophys. J. Int., 141:699--712, 2002. [ bib ]
[1477] W. Farrell and J. A. Clark. On postglacial sea level. Geophys. J. R. Astr. Soc., 46:647--667, 1976. [ bib ]
[1478] D. W. Farris, A. Cardona, C. Montes, G. Bayona, and J. C. Restrepo. Linked tectonic and magmatic evolution of the Panama arc during collision with South America. In Neotectonics of Arc-Continent Collision, Penrose Conference Proceedings, Manizales, Colombia, 2011. [ bib ]
[1479] D. W. Farris, C. Jaramillo, G. Bayona, S. A. Restrepo-Moreno, C. Monte, A. Cardona, A. Mora, R. J. Speakman, M. D. Glascock, and V. Valencia. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 2011. [ bib | DOI ]
[1480] U. Faul and I. Jackson. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett., 234:119--134, 2005. [ bib ]
[1481] D.R. Faulkner, C.A.L. Jackson, R.J. Lunn, R.W. Schlische, Z.K. Shipton, C.A.J. Wibberley, and M.O. Withjack. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol., 32:1557 -- 1575, 2010. [ bib ]
[1482] N. Favier and S. Chevrot. Sensitivity kernels for shear wave splitting in transverse isotropic media. Geophys. J. Int., 153:213--228, 2003. [ bib ]
[1483] N. Fay and E. D. Humphreys. Fault slip rates, effects of elastic heterogeneity on geodetic data, and the strength of the lower crust in the Salton Trough region, southern California. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[1484] N. Fay and E. D. Humphreys. Dynamics of the Salton block: Absolute fault strength and crust-mantle coupling. Geology, 34:261--264, 2006. [ bib ]
[1485] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2008 SCEC Annual Meeting, pages 1--122, 2008. [ bib ]
[1486] N. P. Fay, R. A. Bennett, J. C. Spinler, and E. D. Humphreys. Small-scale upper mantle convection and crustal dynamics in southern California. Geochem., Geophys., Geosys., 9(Q08006), 2008. [ bib | DOI ]
[1487] N. P. Fay and E. D. Humphreys. Forces acting on the Sierra Nevada block and implications for the strength of the San Andreas fault system and the dynamics of continental deformation in the western United States. J. Geophys. Res.: Sol. Earth, 113(B12), 2008. [ bib | DOI ]
[1488] N. P. Fay, T. W. Becker, and E. D. Humphreys. Southern California Modeling of Geodynamics in 3D (SMOG3D): Toward quantifying the state of tectonic stress in the southern California crust. In 2009 SCEC Annual Meeting, volume 19, page 251, 2009. [ bib ]
[1489] M. Fehler, L. House, and H. Kaieda. Determining planes along which earthquakes occur: Method of application to earthquakes accompanying hydraulic fracturing. J. Geophys. Res.: Sol. Earth, 92:9407--9414, August 1987. [ bib ]
[1490] Y Fei, J Van Orman, J Li, W Van Westrenen, C Sanloup, W Minarik, K Hirose, T Komabayashi, M Walter, and K-i Funakoshi. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res.: Sol. Earth, 109(B02305), 2004. [ bib | DOI ]
[1491] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys., 19:25, 1978. [ bib ]
[1492] M. J. Feigenbaum. Universal behavior in nonlinear systems. Los Alamos Science, 1:4, 1980. (reprinted in [?]). [ bib ]
[1493] Mark A Feighner and Mark A Richards. The fluid dynamics of plume-ridge and plume-plate interactions: An experimental investigation. Earth Planet. Sci. Lett., 129:171--182, 1995. [ bib ]
[1494] K. L. Feigl and E. Dupreé. RNGCHN: a program to calculate displacement componenets from dislocations in an elastic half-space with applications for modeling geodetic measurements of crustal deformation. Computers & Geosc., 1996. revised. [ bib ]
[1495] K. R. Felzer, T. W. Becker, R. E. Abercrombie, G. Ekström, and J. R. Rice. Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Landers earthquake. J. Geophys. Res.: Sol. Earth, 107(B92190), 2002. [ bib | DOI ]
[1496] Karen R Felzer and Emily E Brodsky. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature, 441:735--738, 2006. [ bib ]
[1497] S. Ferrachat and Y. Ricard. Regular vs. chaotic mantle mixing. Earth Planet. Sci. Lett., 155:75--86, 1998. [ bib ]
[1498] A. M. G. Ferreira, J. H. Woodhouse, K. Visser, and J. Trampert. On the robustness of global radially anisotropic surface wave tomography. J. Geophys. Res.: Sol. Earth, 115(B04313), 2010. [ bib | DOI ]
[1499] Amy L. Ferrick and Jun Korenaga. Generalizing scaling laws for mantle convection with mixed heating (preprint). arXiv, 2023. [ bib | DOI ]
[1500] Matthieu Ferry, Mustapha Meghraoui, Najib Abou Karaki, Masdouq Al-Taj, and Lutfi Khalil. Episodic Behavior of the Jordan Valley Section of the Dead Sea Fault Inferred from a 14-ka-Long Integrated Catalog of Large EarthquakesEpisodic Behavior of the Jordan Valley Section of the Dead Sea Fault. Bull. Seismol. Soc. Am., 101:39--67, 2011. [ bib ]
[1501] G. Festa and S. Nielsen. PML absorbing boundaries. Bull. Seismol. Soc. Am., 93:891--903, 2003. [ bib ]
[1502] G. Feulner. The faint young sun problem. Rev. Geophys., 50(RG2006), 2012. [ bib | DOI ]
[1503] Y. Fialko. Probing the mechanical properties of seismically active crust with space geodesy: Study of the co-seismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1504] Y. Fialko, D. T. Sandwell, M. Simons, and P. Rosen. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435:295--299, 2005. [ bib ]
[1505] Y. Fialko, L. Rivera, and H. Kanamori. Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophys. J. Int., 160:527--532, 2005. [ bib ]
[1506] A. Fichtner, B. L. N. Kennett, and J. Trampert. Separating intrinsic and apparent anisotropy. Phys. Earth Planet. Inter., 219:11--20, 2013. [ bib ]
[1507] A. Fick. Über diffusion. Annalen der Physik, 170:59--86, 1855. [ bib ]
[1508] E. H. Field, R. J. Arrowsmith, G. P. Biasi, P. Bird, T. E. Dawson, K. R. Felzer, D. D. Jackson, K. M. Johnson, T. H. Jordon, C. Madden, A. J. Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, W. R. Thatcher, R. J. Weldon II, and Y. Zeng. Uniform california earthquake rupture forecast version 3 (UCERF3): The time-independent model. Bull. Seismol. Soc. Am., 104:1122--1180, 2014. [ bib ]
[1509] Edward H Field, Glenn P Biasi, Peter Bird, Timothy E Dawson, Karen R Felzer, David D Jackson, Kaj M Johnson, Thomas H Jordan, Christopher Madden, Andrew J Michael, K. R. Milner, M. T. Page, T. Parsons, P. M. Powers, B. E. Shaw, R. R. Thatcher, R. J. Weldon, II, and Y. Zeng. Long-term time-dependent probabilities for the third uniform california earthquake rupture forecast (ucerf3). Bull. Seismol. Soc. Am., 105:511--543, 2015. [ bib ]
[1510] Edward H Field, Thomas H Jordan, Morgan T Page, Kevin R Milner, Bruce E Shaw, Timothy E Dawson, Glenn P Biasi, Tom Parsons, Jeanne L Hardebeck, Andrew J Michael, et al. A synoptic view of the third Uniform California Earthquake Rupture Forecast (UCERF3). Seismol. Res. Lett., 88:1259--1267, 2017. [ bib ]
[1511] Edward H Field, Kevin R Milner, Jeanne L Hardebeck, Morgan T Page, Nicholas van der Elst, Thomas H Jordan, Andrew J Michael, Bruce E Shaw, and Maximilian J Werner. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an operational earthquake forecast. Bull. Seismol. Soc. Am., 107:1049--1081, 2017. [ bib ]
[1512] N. Fiet, X. Quidelleur, O. Parize, L. G. Bulot, and P. Y. Gillot. Lower Cretaceous stage durations combining radiometric data and orbital chronology: Towards a more stable relative time scale? Earth Planet. Sci. Lett., 246:407--417, 2006. [ bib ]
[1513] I. Finetti and A. del Ben. Geophysical study of the Tyrrhenian opening. Boll. Geofis. Teorica Ed Applicata, 28:75--155, 1986. [ bib ]
[1514] K. M. Fischer, E. M. Parmentier, A. R. Stine, and E. R. Wolf. Modeling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res.: Sol. Earth, 105:16181--16191, 2000. [ bib ]
[1515] K. M. Fischer, H. A. Ford, D. L. Abt, and C. A. Rychert. The lithosphere-asthenosphere boundary. Ann. Rev. Earth Planet. Sci., 38:551--575, 2010. [ bib ]
[1516] Karen M Fischer, Catherine A Rychert, Colleen A Dalton, Meghan S Miller, Caroline Beghein, and Derek L Schutt. A comparison of oceanic and continental mantle lithosphere. Phys. Earth Planet. Inter., 309:106600, 2020. [ bib ]
[1517] K. M. Fischer and T. H. Jordan. Seismic strain rate and deep slab deformation in Tonga. J. Geophys. Res.: Sol. Earth, 96:14429--14444, 1991. [ bib ]
[1518] K. M. Fischer and D. A. Wiens. The depth distribution of mantle anisotropy beneath the Tonga subduction zone. Earth Planet. Sci. Lett., 142:253--260, 1996. [ bib ]
[1519] K. M. Fischer, M. J. Fouch, D. A. Wiens, and M. S. Boettcher. Anisotropy and flow in Pacific subduction zone back-arcs. Pure Appl. Geophys., 151:463--475, 1998. [ bib ]
[1520] N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data, volume 1. Cambridge University Press, New York, 1987. [ bib ]
[1521] D. D. Fitzenz and S. A. Miller. A forward model for earthquake generation on interacting faults including tectonics, fluids, and stress transfer. J. Geophys. Res.: Sol. Earth, 106:26689--26706, 2001. [ bib ]
[1522] N. Flament, N. Coltice, and P. Rey. A case for late-Archean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett., 275:326--336, 2008. [ bib ]
[1523] N. Flament, M. Gurnis, and R. D. Müller. A review of observations and models of dynamic topography. Lithosphere, 5:189--210, 2013. [ bib ]
[1524] Nicolas Flament, Ömer F Bodur, Simon E Williams, and Andrew S Merdith. Assembly of the basal mantle structure beneath Africa. Nature, 603:846--851, 2022. [ bib ]
[1525] Gregory Flato, Jochem Marotzke, Babatunde Abiodun, Pascale Braconnot, Sin Chan Chou, William Collins, Peter Cox, Fatima Driouech, Seita Emori, Veronika Eyring, et al. Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pages 741--866. Cambridge University Press, 2014. [ bib ]
[1526] L. Fleitout and C. Froidevaux. Thermal and mechanical evolution of shear zones. J. Struct. Geol., 2:159--164, 1980. [ bib ]
[1527] L. Fleitout and C. Froidevaux. Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics, 1:21--56, 1982. [ bib ]
[1528] L. Fleitout and C. Froidevaux. Tectonic stresses in the lithosphere. Tectonics, 2:315--324, 1983. [ bib ]
[1529] L. M. Flesch, W. E. Holt, A. J. Haines, and B. Shen-Tu. Dynamics of the Pacific-North American plate boundary in the western United States. Science, 287:834--836, 2000. [ bib ]
[1530] L. M. Flesch, A. J. Haines, and W. E. Holt. Dynamics of the India-Eurasia collision zone. J. Geophys. Res.: Sol. Earth, 106:16435--16460, 2001. [ bib ]
[1531] L. M. Flesch, E. E. Holt, P. G. Silver, M. Stephenson, C.-Y. Wang, and W. W. Chan. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth Planet. Sci. Lett., 238:248--268, 2005. [ bib ]
[1532] L. M. Flesch, W. E. Holt, A. J. Haines, L. Wen, and B. Shen-Tu. The dynamics of western North America: Stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions. Geophys. J. Int., 169:866--896, 2007. [ bib ]
[1533] Michael Fletcher and Derek A Wyman. Mantle plume--subduction zone interactions over the past 60 Ma. Lithos, 233:162--173, 2015. [ bib ]
[1534] R. C. Fletcher and J. A. Sherwin. Arc lengths of single layer folds - discussion of comparison between theory and observation. Amer. J. Science, 278:1085--1098, 1978. [ bib ]
[1535] R. C. Fletcher and B. Hallet. Unstable extension of the lithosphere: A mechanical model for Basin-and-Range structure. J. Geophys. Res.: Sol. Earth, 88:7457--7466, 1983. [ bib ]
[1536] R. C. Fletcher. Approximate analytical solutions for a cohesive fold-and-thrust wedge - some results for lateral variation in wedge properties and for finite wedge angle. J. Geophys. Res.: Sol. Earth, 94:10347--10354, 1989. [ bib ]
[1537] R. C. Fletcher. 3-Dimensional folding of an embedded viscous layer in pure shear. J. Struct. Geol., 13:87--96, 1991. [ bib ]
[1538] R. C. Fletcher. 3-Dimensional folding and necking of a power-law layer - are folds cylindrical, and, if so, do we understand why. Tectonophys., 247:65--83, 1995. [ bib ]
[1539] M. M. Fliedner and S. Ruppert. Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling. Geology, 24:367--370, 1996. [ bib ]
[1540] D. Flinn. On folding during three-dimensional progressive deformation. Quart. J. Geol. Soc., 118:385--428, 1962. [ bib ]
[1541] MA Florez and GA Prieto. Controlling factors of seismicity and geometry in double seismic zones. Geophys. Res. Lett., 46:4174--4181, 2019. [ bib ]
[1542] R. M. Flowers. The enigmatic rise of the Colorado Plateau. Geology, 38:671--672, 2010. [ bib ]
[1543] Paul Flück, RD Hyndman, and Kelin Wang. Three-dimensional dislocation model for great earthquakes of the cascadia subduction zone. J. Geophys. Res.: Sol. Earth, 102:20539--20550, 1997. [ bib ]
[1544] B. Foley and T. W. Becker. Generation of plate tectonics and mantle heterogeneity from a spherical, visco-plastic convection model. Geochem., Geophys., Geosys., 10(Q08001), 2009. [ bib | DOI ]
[1545] Bradford J Foley, David Bercovici, and William Landuyt. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett., 331:281--290, 2012. [ bib ]
[1546] B. J. Foley, D. Bercovici, and W. Landuyt. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett., 331:281--290, 2014. [ bib ]
[1547] B. J. Foley and D. Bercovici. Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophys. J. Int., 199:580--603, 2014. [ bib ]
[1548] Bradford J Foley and Peter E Driscoll. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution. Geochem., Geophys., Geosys., 17:1885--1914, 2016. [ bib ]
[1549] B. J. Foley. On the dynamics of coupled grain size evolution and shear heating in lithospheric shear zones. Phys. Earth Planet. Inter., 283:7--25, 2018. [ bib ]
[1550] Bradford J Foley. Timescale of short-term subduction episodicity in convection models with grain damage: Applications to Archean tectonics. J. Geophys. Res.: Sol. Earth, 125:e2020JB020478, 2020. [ bib ]
[1551] Heather A Ford, Karen M Fischer, and Vedran Lekic. Localized shear in the deep lithosphere beneath the san andreas fault system. Geology, 42:295--298, 2014. [ bib ]
[1552] B. Fornberg. A practical guide to pseudospectral methods. Cambridge University Press, Cambridge UK, 1996. [ bib ]
[1553] D. Forsyth and A. Li. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference. In A. Levander and G. Nolet, editors, Seismic Earth: Array Analysis of Broadband Seismograms. American Geophysical Union, Washington, D.C., 2005. [ bib ]
[1554] D. W. Forsyth and S. Uyeda. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., 43:163--200, 1975. [ bib ]
[1555] D. W. Forsyth. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc., 43:103--162, 1975. [ bib ]
[1556] Donald W Forsyth. The evolution of the upper mantle beneath mid-ocean ridges. Tectonophys., 38:89--118, 1977. [ bib ]
[1557] Donald W Forsyth. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res.: Sol. Earth, 90:12623--12632, 1985. [ bib ]
[1558] A. M. Forte and H. K. C. Perry. Geodynamic evidence for a chemically depleted continental tectosphere. Science, 290:1940--1944, 2000. [ bib ]
[1559] A. M. Forte and J. X. Mitrovica. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410:1049--1056, 2001. [ bib ]
[1560] A. M. Forte. Constraints on seismic models from other disciplines -- Implications for mantle dynamics and composition. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 805--858. Elsevier, Amsterdam, 2007. [ bib ]
[1561] A. M. Forte, J. X. Mitrovica, R. Moucha, N. A. Simmons, and S. P. Grand. Descent of the ancient Farallon slab drives localized mantle flow below the New Madrid seismic zone. Geophys. Res. Lett., 34(L04308), 2007. [ bib | DOI ]
[1562] A. M. Forte, R. Moucha, N. Simmons, S. Grand, and J. Mitrovica. Deep-mantle contributions to the surface dynamics of the North American continent. Tectonophys., 481:3--15, 2010. [ bib ]
[1563] A. M. Forte, S. Quéreé, R. Moucha, N. A. Simons, S. P. Grand, J. X. Mitrovisa, and D. B. Rowley. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet. Sci. Lett., 295:329--341, 2010. [ bib ]
[1564] A. M. Forte, N. A. Simons, and S. P. Grand. Constraints on seismic models from other disciplines - Constraints on 3-D seismic models from global geodynamic observables: Implications for the global mantle convective flow. In G. Schubert, editor, Treatise on Geophysics, volume 1, pages 853--907. Elsevier, Oxford, 2 edition, 2015. [ bib ]
[1565] A. M. Forte and W. R. Peltier. Plate tectonics and aspherical earth structure: the importance of poloidal-toroidal coupling. J. Geophys. Res.: Sol. Earth, 92:3645--3679, 1987. [ bib ]
[1566] A. M. Forte, W. R. Peltier, and A. M. Dziewoński. Inferences of mantle viscosity from tectonic plate velocities. Geophys. Res. Lett., 18:1747--1750, 1991. [ bib ]
[1567] Alessandro M Forte and W Richard Peltier. Mantle convection and core-mantle boundary topography: explanations and implications. Tectonophys., 187:91--116, 1991. [ bib ]
[1568] A. M. Forte, W. R. Peltier, A. M. Dziewonski, and R. L. Woodword. Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography. Geophys. Res. Lett., 20:225--228, 1993. [ bib ]
[1569] A. Forte and W. R. Peltier. The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: the importance of surface plates and lateral viscosity variations. Adv. Geophys., 36:1--119, 1994. [ bib ]
[1570] A. M. Forte, A. M. Dziewoński, and R. J. O'Connell. Continent--ocean chemical heterogeneity in the mantle based on seismic tomography. Science, 268:386--388, 1995. [ bib ]
[1571] J. Fortin, S. Stanchits, G. Dresen, and E. Görgün. Acoustic emission and velocities associated with the formation of compaction bands in sandstone. J. Geophys. Res.: Sol. Earth, 111(B10203), 2006. [ bib | DOI ]
[1572] J. Fortin, S. Stanchits, G. Dresen, and Y. Gueguen. Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation. Pure Appl. Geophys., 166:823--841, 2009. [ bib ]
[1573] Haakon Fossen. Structural geology. Cambridge University Press, Cambridge, 2016. [ bib ]
[1574] Haakon Fossen and Basil Tikoff. Extended models of transpression and transtension, and application to tectonic settings. Geol. Soc., London, Spe. Pub., 135:15--33, 1998. [ bib ]
[1575] M. J. Fouch, K. M. Fischer, E. M. Parmentier, M. E. Wysession, and T. J. Clarke. Shear wave splitting, continental keels, and patterns of mantle flow. J. Geophys. Res.: Sol. Earth, 105:6255--6275, 2000. [ bib ]
[1576] M. J. Fouch, P. G. Silver, D. R. Bell, and J. N Lee. Small-scale variations in seismic anisotropy near Kimberley, South Africa. Geophys. J. Int., 157:764--774, 2004. [ bib ]
[1577] M. Fouch. Upper mantle anisotropy database. Online, 2006. accessed in 06/2006, geophysics.asu.edu/anisotropy/upper/. [ bib ]
[1578] M. J. Fouch and S. Rondenay. Seismic anisotropy beneath stable continental interiors. Phys. Earth Planet. Inter., 158:292--320, 2006. [ bib ]
[1579] M. J. Fouch, D. A. Okaya, and R. Arrowsmith. Shear wave splitting, crustal anisotropy, and patterns of mantle(?) deformation (abstract). Eos Trans. AGU, (DI13A-1848), Abstract at the American Geophysical Union Fall Meeting 2010. [ bib ]
[1580] M. J. Fouch and K. M. Fischer. Mantle anisotropy beneath Northwest Pacific subduction zones. J. Geophys. Res.: Sol. Earth, 101:15987--16002, 1996. [ bib ]
[1581] M. J. Fouch and K. M. Fischer. Shear wave anisotropy in the Mariana subduction zone. Geophys. Res. Lett., 25:1221--1224, 1998. [ bib ]
[1582] GR Foulger, MJ Pritchard, BR Julian, JR Evans, RM Allen, G Nolet, WJ Morgan, BH Bergsson, P Erlendsson, S Jakobsdottir, et al. Seismic tomography shows that upwelling beneath iceland is confined to the upper mantle. Geophys. J. Int., 146:504--530, 2001. [ bib ]
[1583] G. R. Foulger and J. H. Natland. Is “hotspot” volcanism a consequence of plate tectonics? Science, 300:921--922, 2003. [ bib ]
[1584] L. Fourel, S. Goes, and G. Morra. The role of elasticity in slab bending. Geochem., Geophys., Geosys., 15:4507--4525, 2014. [ bib | DOI ]
[1585] Marc Fournier, Laurent Jolivet, Philippe Davy, and Jean-Charles Thomas. Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophys. J. Int., 157:871--889, 2004. [ bib ]
[1586] C. M. R. Fowler. The Solid Earth -- an Introduction to Global Geophysics. Cambridge University Press, Cambridge, 1990. [ bib ]
[1587] A. C. Fowler. Boundary layer theory and subduction. J. Geophys. Res.: Sol. Earth, 98:21997--22005, 1993. [ bib ]
[1588] Siegfried Franck and Christine Bounama. Continental growth and volatile exchange during earth's evolution. Phys. Earth Planet. Inter., 100:189--196, 1997. [ bib ]
[1589] D. Frank-Kamenetskii. Diffusion and Heat Transfer in Chemical Kinetics. Plenum, New York, 1969. [ bib ]
[1590] William B Frank, Nikolai M Shapiro, Allen L Husker, Vladimir Kostoglodov, Harsha S Bhat, and Michel Campillo. Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico. Earth Planet. Sci. Lett., 413:135--143, 2015. [ bib ]
[1591] William B Frank, Baptiste Rousset, Cécile Lasserre, and Michel Campillo. Revealing the cluster of slow transients behind a large slow slip event. Science adv., 4(5):eaat0661, 2018. [ bib ]
[1592] William B Frank and Emily E Brodsky. Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. Science adv., 5(10):eaaw9386, 2019. [ bib ]
[1593] F. C. Frank. Plate tectonics, The analogy with glacier flow, and isostasy. In Flow and Fracture of Rocks, The Griggs Volume, volume 16 of Geophys. Mono., pages 285--292. American Geophhysical Union, Washington DC, 1972. [ bib ]
[1594] Leander Franz, Rolf L Romer, Reiner Klemd, Robert Schmid, Roland Oberhansli, Thomas Wagner, and Dong Shuwen. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol., 141:322--346, 2001. [ bib ]
[1595] A. Frassetto, H. Gilbert, G. Zandt, S. Beck, and M. J. Fouch. Support of high topography in the southern Basin and Range based on composition and architecture of the crust in the Basin and Range and Colorado Plateau. Earth Planet. Sci. Lett., 243:62--73, 2006. [ bib ]
[1596] S. Frederiksen and J. Braun. Numerical modeling of strain localisation during extension of the continental lithosphere. Earth Planet. Sci. Lett., 188:241--251, 2001. [ bib ]
[1597] A. M. Freed and J. Lin. Accelerated stress buildup on the southern San Andreas Fault and surrounding regions caused by Mojave Desert earthquakes. Geology, 30:571--574, 2002. [ bib ]
[1598] A. M. Freed and R. Bürgmann. Evidence for power-law flow in the Mojave desert mantle. Nature, 430:548--551, 2004. [ bib ]
[1599] A. M. Freed. Earthquake triggering by static, dynamic, and postseismic stress transfer. Ann. Rev. Earth Planet. Sci., 33:335--367, 2005. [ bib ]
[1600] A. M. Freed, R. Bürgmann, E. Calais, J. Freymueller, and S. Hreinsdóttir. Implications of deformation following the 2002 Denali, Alaska earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res.: Sol. Earth, 111(B01401), 2006. [ bib | DOI ]
[1601] A. M. Freed, S. T. Ali, and R. Bürgmann. Evolution of stress in southern california for the past 200 years from coseismic, postseismic & interseismic stress changes. Geophys. J. Int., 169:1164--1179, 2007. [ bib ]
[1602] A. M. Freed, R. Bürgmann, and T. Herring. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys. Res. Lett., 34, 2008. [ bib | DOI ]
[1603] A. M. Freed, G. Hirth, and M. D. Behn. Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle. J. Geophys. Res.: Sol. Earth, 117(B01409), 2012. [ bib | DOI ]
[1604] A. Freed, A. Hashima, T. W. Becker, D. A. Okaya, H. Sato, and Y. Hatanaka. Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth Planet. Sci. Lett., 459:279--290, 2017. [ bib ]
[1605] S. W. French, L. M. Warren, K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. Gonzalez. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis. Geochem., Geophys., Geosys., 11(Q03220), 2010. [ bib | DOI ]
[1606] S. French, V. Lekić, and B. A. Romanowicz. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science, 342:227--230, 2013. [ bib ]
[1607] S. W. French and B. A. Romanowicz. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int., 199:1303--1327, 2014. [ bib ]
[1608] Scott W French and Barbara Romanowicz. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525:95--99, 2015. [ bib ]
[1609] Melodie E French and Cailey B Condit. Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions. Earth Planet. Sci. Lett., 528:115828, 2019. [ bib ]
[1610] A. Frepoli, G. Selvaggi, C. Chiarabba, and A. Amato. State of stress of the Southern Tyrrhenian subduction zone from fault-plane solutions. Geophys. J. Int., 126:555--578, 1996. [ bib ]
[1611] V. Frette et al. Avalanche dynamics in a pile of rice. Nature, 379:49--52, January 1996. [ bib ]
[1612] M. Freybourger, J. Gaherty, T. H. Jordan, and the Kaapvaal Seismic Group. Structure of the Kaapvaal craton from surface waves. Geophys. Res. Lett., 28:2489--2492, 2001. [ bib ]
[1613] F. T. Freymueller, J. N. Kellogg, and V. Vega. Plate motions in the north Andean region. J. Geophys. Res.: Sol. Earth, 98:21853--21863, 1993. [ bib ]
[1614] Jeffrey T Freymueller, Mark H Murray, Paul Segall, and David Castillo. Kinematics of the Pacific-North America plate boundary zone, northern California. J. Geophys. Res.: Sol. Earth, 104:7419--7441, 1999. [ bib ]
[1615] A. M. Friedrich, B. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1616] Cliff Frohlich and Laura Reiser Wetzel. Comparison of seismic moment release rates along different types of plate boundaries. Geophys. J. Int., 171:909--920, 2007. [ bib ]
[1617] C. Frohlich and Y. Nakamura. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? Phys. Earth Planet. Inter., 173:365--374, 2009. [ bib ]
[1618] Cliff Frohlich. The nature of deep-focus earthquakes. Ann. Rev. Earth Planet. Sci., 17:227--254, 1989. [ bib ]
[1619] C. Frohlich. Characteristics of well-determined non-double-couple earthquakes in the Harvard CMT catalog. Phys. Earth Planet. Inter., 91:213--228, 1995. [ bib ]
[1620] Paul Frossard, Claudine Israel, Audrey Bouvier, and Maud Boyet. Earth’s composition was modified by collisional erosion. Science, 377:1529--1532, 2022. [ bib ]
[1621] R.-S. Fu and P.-H. Huang. The global stress field in the lithosphere obtained from the satellite gravitational harmonics. Phys. Earth Planet. Inter., 31:269--276, 1983. [ bib ]
[1622] R.-S. Fu and P.-H. Huang. Global stress pattern constrained on deep mantle flow and tectonic features. Phys. Earth Planet. Inter., 60:314--323, 1990. [ bib ]
[1623] L. Fuchs and T. W. Becker. Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability. EarthArXiv Preprint, 2018. [ bib | DOI ]
[1624] Lukas Fuchs and Thorsten W Becker. Role of strain-dependent weakening memory on the style of mantle convection and plate boundary stability. Geophys. J. Int., 218:601--618, 2019. [ bib ]
[1625] Lukas Fuchs and Thorsten W Becker. Deformation memory in the lithosphere: A comparison of damage-dependent weakening and grain-size sensitive rheologies. J. Geophys. Res.: Sol. Earth, 126:e2020JB020335, 2021. [ bib | DOI ]
[1626] Lukas Fuchs and Thorsten W Becker. On the role of rheological memory for convection-driven plate reorganizations. Geophys. Res. Lett., 49(e2022GL099574), 2022. [ bib ]
[1627] G. S. Fuis, T. Ryberg, N. J. Godfrey, D. A. Okaya, and J. M. Murphy. Crustal Structure and tectonics from the Los Angeles Basin to the Mojave Desert, southern California. Bull. Seismol. Soc. Am., 29:15--18, 2001. [ bib ]
[1628] Gary S. Fuis, K. Bauer, M. R. Goldman, T. Ryberg, V. E. Langenheim, D. S. Scheirer, M. J. Rymer, J. M. Stock, J. A. Hole, R. D. Catchings, R. D. Graves, and B. Aagaard. Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations. Bull. Seismol. Soc. Am., 107:1642--1662, 2017. [ bib ]
[1629] Toshiya Fujiwara, Shuichi Kodaira, Tetsuo No, Yuka Kaiho, Narumi Takahashi, and Yoshiyuki Kaneda. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis. Science, 334:1240--1240, 2011. [ bib ]
[1630] Satoshi Fujiwara, Mikio Tobita, and Shinzaburo Ozawa. Spatiotemporal functional modeling of postseismic deformations after the 2011 Tohoku-Oki earthquake. Earth, Planet. Space, 74:1--27, 2022. [ bib ]
[1631] Yukitoshi Fukahata and Mitsuhiro Matsu'ura. Deformation of island-arc lithosphere due to steady plate subduction. Geophys. J. Int., 204:825--840, 2016. [ bib ]
[1632] Y. Fukao, S. Widiyantoro, and M. Obayashi. Stagnant slabs in the upper and lower mantle transition region. Rev. of Geophys., 39:291--323, 2001. [ bib ]
[1633] Y. Fukao, M. Obayashi, T. Nakakuki, and the Deep Slab Project Group. Stagnant slab: A review. Ann. Rev. Earth Planet. Sci., 37:19--46, 2009. [ bib ]
[1634] Y. Fukao and M. Obayashi. Subducted slabs stagnant above, penetrating through and trapped below the 660-km discontinuity. J. Geophys. Res.: Sol. Earth, 118:5920--5938, 2013. [ bib | DOI ]
[1635] Yoshio Fukao, Tatsuya Kubota, Hiroko Sugioka, Aki Ito, Takashi Tonegawa, Hajime Shiobara, Mikiya Yamashita, and Tatsuhiko Saito. Detection of “rapid” aseismic slip at the Izu-Bonin Trench. J. Geophys. Res.: Sol. Earth, 126:e2021JB022132, 2021. [ bib ]
[1636] Yoshio Fukao, Sadaki Hori, and Motoo Ukawa. A seismological constraint on the depth of basalt--eclogite transition in a subducting oceanic crust. Nature, 303:413--415, 1983. [ bib ]
[1637] Y. Fukao. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature, 371:149--151, 1984. [ bib ]
[1638] E. Fukuyama and R. Madariaga. Rupture dynamics of a planar fault in a 3d elastic medium: Rate- and slip-weakening friction. Bull. Seismol. Soc. Am., 88:1--17, 1998. [ bib ]
[1639] C. W. Fuller, S. D. Willett, and M. T. Brandon. Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34:65--68, 2006. [ bib ]
[1640] PM Fulton, Emily E Brodsky, Y Kano, J Mori, F Chester, T Ishikawa, RN Harris, W Lin, Nobuhisa Eguchi, S Toczko, and Expedition 343, 343T, and KR13-08 Scientists. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science, 342:1214--1217, 2013. [ bib ]
[1641] T. E. Fumal, M. J. Rymer, and G. G. Seitz. Timing of large earthquakes since A.D. 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California. Bull. Seismol. Soc. Am., 92:2841--2860, 2002. [ bib ]
[1642] F. Funiciello, C. Faccenna, D. Giardini, and K. Regenauer-Lieb. Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[1643] F. Funiciello, G. Morra, K. Regenauer-Lieb, and D. Giardini. Dynamics of retreating slabs (part 1): insights from numerical experiments. J. Geophys. Res.: Sol. Earth, 2003. [ bib ]
[1644] F. Funiciello, C. Faccenna, and D. Giardini. Flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys. J. Int., 157:1393--1407, 2004. [ bib ]
[1645] F. Funiciello, C. Piromallo, M. Moroni, T. W. Becker, C. Faccenna, H. A. Bui, and A. Cenedese. 3-D laboratory and numerical models of mantle flow in subduction zones (abstract). Eos Trans. AGU, 85(47):T21b--0527, 2004. [ bib ]
[1646] F. Funiciello, C. Faccenna, and D. Giardini. Role of lateral mantle flow in the evolution of subduction system: Insights from 3-D laboratory experiments. Geophys. J. Int., 157:1393--1406, 2004. [ bib ]
[1647] F. Funiciello, M. Moroni, C. Piromallo, C. Faccenna, A. Cenedese, and H. A. Bui. Mapping flow during retreating subduction: laboratory models analyzed by Feature Tracking. J. Geophys. Res.: Sol. Earth, 111, 2006. [ bib | DOI ]
[1648] F. Funiciello, C. Faccenna, A. Heuret, E. Di Giuseppe, S. Lallemand, and T. W. Becker. Trench migration, net rotation and slab-mantle coupling. Earth Planet. Sci. Lett., 271:233--240, 2008. [ bib ]
[1649] F. Funiciello, C. Faccenna, and D. Giardini. Laboratory experiments of subduction. Geophys. Res. Abstr., 1:62, 1999. [ bib ]
[1650] K. P. Furlong, D. S. Chapman, and P. W. Alfeld. Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. J. Geophys. Res.: Sol. Earth, 87:1786--1802, 1982. [ bib ]
[1651] M. Furuichi, M. Kameyama, and A. Kageyama. Three-dimensional eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation. J. Comput. Phys., 227:4977, 2008. [ bib ]
[1652] Yoshitsugu Furukawa. Depth of the decoupling plate interface and thermal structure under arcs. J. Geophys. Res.: Sol. Earth, 98:20005--20013, 1993. [ bib ]
[1653] T. Furumura and B.L.N. Kennett. Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J. Geophys. Res.: Sol. Earth, 110:B10302, 2005. [ bib | DOI ]
[1654] C. W. Gable. Numerical Models of Plate Tectonics and Mantle Convection in Three Dimensions. PhD thesis, Harvard University, Cambridge MA, 1989. [ bib ]
[1655] C. W. Gable, R. J. O'Connell, and B. J. Travis. Convection in three dimensions with surface plates: generation of toroidal flow. J. Geophys. Res.: Sol. Earth, 96:8391--8405, 1991. [ bib ]
[1656] C. W. Gable, H. A. Stone, and R. J. O'Connell. Chaotic mantle mixing: Time dependence is unnecessary. Eos Trans. AGU, 72:269, 1991. [ bib ]
[1657] C. Gaboret, A. M. Forte, and J.-P. Montagner. The unique dynamics of the Pacific Hemisphere mantle and its signature on seismic anisotropy. Earth Planet. Sci. Lett., 208:219--233, 2003. [ bib ]
[1658] A-A Gabriel, J-P Ampuero, LA Dalguer, and Paul Martin Mai. Source properties of dynamic rupture pulses with off-fault plasticity. J. Geophys. Res.: Sol. Earth, 118:4117--4126, 2013. [ bib ]
[1659] Alice-Agnes Gabriel, Duo Li, Simone Chiocchetti, Maurizio Tavelli, Ilya Peshkov, Romenski Evgeniy, and Michael Dumbser. A unified first order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones. Phil. Trans. Royal Soc. A, 2021. [ bib | DOI ]
[1660] A. M. Gabrielov, T. A. Levshina, and I. M. Rotwain. Block model of earthquake sequence. Phys. Earth Planet. Inter., 61:18--28, 1990. [ bib ]
[1661] A. Gabrielov and W. I. Newman. Seismicity modeling and earthquake prediction: A review. In Nonlinear Dynamics and Predictability of Geophysical Phenomena, volume 83 of Geoophys. Mono., pages 7--13. International Union of Geodesy and Geophysics, 1994. [ bib ]
[1662] S. Gaffin. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci., 287:596--611, 1987. [ bib ]
[1663] J. B. Gaherty, D. Lizarralde, J. A. Collins, G. Hirth, and S. Kim. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett., 228:225--265, 2004. [ bib ]
[1664] J. B. Gaherty and B. H. Hager. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett., 21:141--144, 1994. [ bib ]
[1665] J. B. Gaherty and T. H. Jordan. Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science, 268:1468--1471, 1995. [ bib ]
[1666] J. B. Gaherty, T. H. Jordan, and L. S. Gee. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res.: Sol. Earth, 101:22291--22310, 1996. [ bib ]
[1667] J. Gaherty, M. Kato, and T. H. Jordan. Seismological structure of the upper mantle: a regional comparison of seismic layering. Phys. Earth Planet. Inter., 110:21--41, 1999. [ bib ]
[1668] Eric Gaidos, Clinton P Conrad, Michael Manga, and John Hernlund. Thermodynamic limits on magnetodynamos in rocky exoplanets. Astrophys. J., 718:596, 2010. [ bib ]
[1669] C. Gaina, R.D. Müller, B. Brown, T. Ishihara, and S. Ivanov. Breakup and early seafloor spreading between India and Antarctica. Geophys. J. Int., 170:151--170, 2007. [ bib ]
[1670] W. Landry, L. Hodkinson, and S. Kienz. GALE: User manual version 0.9. Online at www.geodynamics.org:8080/cig/software/packages/gale/gale_book.pdf, accessed 10/2006, 2006. [ bib ]
[1671] A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J.-G. Schilling. The mean composition of ocean ridge basalts. Geochem., Geophys., Geosys., 14:489--518, 2013. [ bib ]
[1672] J. Galetzka, D. Melgar, J. F. Genrich, J. Geng, S. Owen, E. O. Lindsey, X. Xu, Y. Bock, J.-P. Avouac, L. B. Adhikari, B. N. Upreti, B. Pratt-Sitaula, T. N. Bhattarai, B. P. Sitaula, A. Moore, K. W. Hudnut, W. Szeliga, J. Normandeau, M. Fend, M. Flouzat, L. Bollinger, P. Shrestha, B. Koirala, U. Gautam, M. Bhatterai, R. Gupta, T. Kandel, C. Timsina, S. N. Sapkota, S. Rajaure, and N. Maharjan. Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science, 349:1091--1095, 2015. [ bib ]
[1673] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 1. Method and synthetic test. J. Geophys. Res.: Sol. Earth, 124:6949--6969, 2019. [ bib ]
[1674] F. Gallovič, L. Valentová, J.-P. Ampuero, and A.-A. Gabriel. Bayesian dynamic finite-fault inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, earthquake. J. Geophys. Res.: Sol. Earth, 124:6970--6988, 2019. [ bib ]
[1675] Percy Galvez, J-P Ampuero, Luis A Dalguer, Surendra N Somala, and Tarje Nissen-Meyer. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M 9 Tohoku earthquake. Geophys. J. Int., 198:1222--1240, 2014. [ bib ]
[1676] Percy Galvez, Luis A Dalguer, Jean-Paul Ampuero, and Domenico Giardini. Rupture reactivation during the 2011 Mw 9.0 Tohoku earthquake: Dynamic rupture and ground-motion simulations. Bull. Seismol. Soc. Am., 106:819--831, 2016. [ bib ]
[1677] Percy Galvez, Daniel B Peter, and Paul Martin Mai. Earthquake cycle modeling of curvilinear non-planar faults: 1992, Landers earthquake sequence. In AGU Fall Meeting Abstracts, 2018. [ bib ]
[1678] Percy Galvez, Anatoly Petukhin, Kojiro Irikura, and Paul Somerville. Dynamic source model for the 2011 Tohoku earthquake in a wide period range combining slip reactivation with the short-period ground motion generation process. Pure Appl. Geophys., 177:2143--2161, 2020. [ bib ]
[1679] Kusali Gamage, Elizabeth Screaton, Barbara Bekins, and Ivano Aiello. Permeability--porosity relationships of subduction zone sediments. Marine Geol., 279:19--36, 2011. [ bib ]
[1680] W. Gan, P. Zhang, Z.‐K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, and J. Cheng. Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res.: Sol. Earth, 113(B08416), 2007. [ bib | DOI ]
[1681] Phillip B Gans. An open-system, two-layer crustal stretching model for the eastern Great Basin. Tectonics, 6:1--12, 1987. [ bib ]
[1682] S. Gao, R. L. Rudnick, R. W. Carlson, W. F. McDonough, and Y.-S. Liu. Re--Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett., 198:307--322, 2002. [ bib ]
[1683] Haiying Gao, David A Schmidt, and Ray J Weldon. Scaling relationships of source parameters for slow slip events. Bull. Seismol. Soc. Am., 102:352--360, 2012. [ bib ]
[1684] Xiang Gao and Kelin Wang. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345:1038--1041, 2014. [ bib ]
[1685] Xiang Gao and Kelin Wang. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature, 543:416--419, 2017. [ bib ]
[1686] Haiying Gao. Three-dimensional variations of the slab geometry correlate with earthquake distributions at the cascadia subduction system. Nature Comm., 9:1--8, 2018. [ bib ]
[1687] Denis Gapais, Alain Potrel, Nuno Machado, and Erwan Hallot. Kinematics of long-lasting Paleoproterozoic transpression within the Thompson Nickel Belt, Manitoba, Canada. Tectonics, 24(3), 2005. [ bib ]
[1688] G Garapić, MG Jackson, EH Hauri, SR Hart, KA Farley, JS Blusztajn, and JD Woodhead. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos, 228:1--11, 2015. [ bib ]
[1689] F. Garel, S. Goes, D. R. Davies, J. H. Davies, S. C. Kramer, and C. R. Wilson. Interaction of subducted slabs with the mantle transition zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem., Geophys., Geosys., 15, 2014. [ bib | DOI ]
[1690] Z. Garfunkel, C. A. Anderson, and G. Schubert. Mantle circulation and the lateral migration of subducted slabs. J. Geophys. Res.: Sol. Earth, 91:7205--7223, 1986. [ bib ]
[1691] E. J. Garnero and T. Lay. D” shear velocity heterogeneity, anisotropy, and discontinuity structure beneath the Caribbean and Central America. Phys. Earth Planet. Inter., 140:219--242, 2003. [ bib ]
[1692] E. J. Garnero. A new paradigm for Earth's core-mantle boundary. Science, 304:835--836, 2004. [ bib ]
[1693] E. J. Garnero, V. Maupin, T. Lay, and M. J. Fouch. Variable azimuthal anisotropy in Earth's lowermost mantle. Science, 306:5694, 2004. [ bib ]
[1694] E. J. Garnero and A. K. McNamara. Structure and dynamics of the Earth's lower mantle. Science, 320:626--628, 2008. [ bib ]
[1695] E. J. Garnero, A. K. McNamara, and S.-H. Shim. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle. Nature Geosc., 9:481--489, 2016. [ bib ]
[1696] E. J. Garnero, J. S. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg. Ultralow velocity zone at the core-mantle boundary. In M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, editors, The Core-mantle Boundary Region, pages 319--334. American Geophysical Union, Washington DC, 1998. [ bib ]
[1697] Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Timo Heister, and Robert Myhill. On formulations of compressible mantle convection. Geophys. J. Int., 221:1264--1280, 2020. [ bib ]
[1698] E. Gazel, M. J. Carr, K. Hoernle, M. D. Feigenson, D. Szymanski, F. Hauff, and P. van den Bogaard. The Galapagos-OIB signature in southern Central America: Mantle re-fertilization by arc-hotspot interaction. Geochem., Geophys., Geosys., 10(Q02S11), 2009. [ bib | DOI ]
[1699] E. Gazel, K. Hoernle, M. J. Carr, C. Herzberg, I. Saginor, P. van den Bogaard, F. Hauff, M. Feigenson, and C. Swisher III. Plume-subduction interaction in southern Central America: mantle upwelling and slab melting. Lithos, 121:117--134, 2011. [ bib ]
[1700] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 05/2018, 2018. [ bib ]
[1701] G. Ekström, M. Nettles, and A. M. Dziewoński. Global CMT web page. Available online at www.globalcmt.org, accessed 12/2014, 2014. [ bib ]
[1702] GM Geffers and IG Main. Accuracy and precision of frequency--size distribution scaling parameters as a function of dynamic range of observations: example of the Gutenberg--Richter law b-value for earthquakes. Geophys. J. Int., 232:2080--2086, 2023. [ bib ]
[1703] G. E. Gehrels, M. Rushmore, G. Woodsworth, M. Crawford, C. Andronicos, et al. U-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. Geol. Soc. Am. Bull., 121:1341--1361, 2009. [ bib ]
[1704] R. J. Geller. Shake-up time for Japanese seismology. Nature, 472:407--409, 2011. [ bib ]
[1705] R. J. Geller. Earthquake prediction: a critical review. Geophys. J. Int., 131:425--450, 1997. [ bib ]
[1706] Robert J Geller, David D Jackson, Yan Y Kagan, and Francesco Mulargia. Earthquakes cannot be predicted. Science, 275:1616--1616, 1997. [ bib ]
[1707] Gen Li, A. Joshua West, and Hongrui Qiu. Competing effects of mountain uplift and landslide erosion over earthquake cycles. J. Geophys. Res.: Sol. Earth, 124:5101--5133, 2019. [ bib ]
[1708] Laurent Geoffroy. The structure of volcanic margins: some problematics from the North-Atlantic/Labrador--Baffin system. Mar. Petrol. Geol., 18:463--469, 2001. [ bib ]
[1709] GeoFORCE Texas. About us. Available online at www.jsg.utexas.edu/geoforce/about-us, accessed 09/2018, 2018. [ bib ]
[1710] NSF Geosciences. Beyond 2000: Understanding and predicting Earth's environment and habitability. National Science Foundation, Washington DC. Online at www.nsf.gov/pubs/2000/nsf0028/nsf0028.htm, accessed 06/2006, 2000. [ bib ]
[1711] J. W. Gephart and D. W. Forsyth. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. J. Geophys. Res.: Sol. Earth, 89:9305--9320, 1984. [ bib ]
[1712] J. W. Gephart. Stress and the direction of slip on fault planes. Tectonics, 9:845--858, 1990. [ bib ]
[1713] G. Gerardi and N. M. Ribe. Boundary element modeling of two-plate interaction at subduction zones: Scaling laws and application to the Aleutian subduction zone. J. Geophys. Res.: Sol. Earth, 123:5227--5248, 2018. [ bib ]
[1714] G. Gerardi, N. M. Ribe, and P. J. Tackley. Plate bending, energetics of subduction and modeling of mantle convection: A boundary element approach. Earth Planet. Sci. Lett., 515:47--57, 2019. [ bib ]
[1715] M. Gérault, T. W. Becker, B. J. P. Kaus, C. Faccenna, L. N. Moresi, and L. Husson. The role of slabs and oceanic plate geometry for the net rotation of the lithosphere, trench motions, and slab return flow. Geochem., Geophys., Geosys., 13(Q04001), 2012. [ bib | DOI ]
[1716] Mélanie Gérault, Laurent Husson, Meghan S Miller, and Eugene D Humphreys. Flat-slab subduction, topography, and mantle dynamics in southwestern Mexico. Tectonics, 34:1892--1909, 2015. [ bib ]
[1717] M. Gerbault, E. B. Burov, A. N. B. Poliakov, and M. Daignieres. Do faults trigger folding in the lithosphere? Geophys. Res. Lett., 26:271--274, 1999. [ bib ]
[1718] M. Gerbault. At what stress level is the central Indian Ocean lithosphere buckling? Earth Planet. Sci. Lett., 178:165--181, 2000. [ bib ]
[1719] M. C. Gerstenberger, S. Wiemer, and D. Giardini. A systematic test of the hypothesis the the b value varies with depth in California. Geophys. Res. Lett., 28:57--60, 2001. [ bib ]
[1720] M. C. Gerstenberger, Y. Kaneko, B. Fry, L. Wallace, D. Rhoades, A. Christophersen, and C. Williams. Probabilities of earthquakes in central New Zealand. In GNS Science misc. ser., volume 114, page 23. GNS Science, Lower Hutt, New Zealand, 2017. [ bib | DOI ]
[1721] Taras V Gerya, Bernhard Stöckhert, and Alexey L Perchuk. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 2002. [ bib | DOI ]
[1722] T. V. Gerya, R. Uken, J. Reinhardt, M.K. Watkeys, W.V. Maresch, and C. Brendan. Cold fingers in hot magma: numerical modeling of country-rock diaprs in the Bushveld Complex, South Africa. Geology, 31:753--756, 2003. [ bib ]
[1723] T. V. Gerya and D. Yuen. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter., 140:293--318, 2003. [ bib ]
[1724] T. V. Gerya, D. A. Yuen, and W. V. Maresch. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett., 226:101--116, 2004. [ bib ]
[1725] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2009. [ bib ]
[1726] Taras Gerya. Dynamical instability produces transform faults at mid-ocean ridges. Science, 329:1047--1050, 2010. [ bib ]
[1727] T. V. Gerya and F. I. Meilick. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol., 29:7--31, 2010. [ bib ]
[1728] T. Gerya. Future directions in subduction modeling. J. Geodyn, 52:344--378, 2011. [ bib ]
[1729] Taras V Gerya. Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution. Phys. Earth Planet. Inter., 214:35--52, 2013. [ bib ]
[1730] Taras V Gerya, Robert J Stern, Marzieh Baes, Stephan V Sobolev, and Scott A Whattam. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527:221--225, 2015. [ bib ]
[1731] T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge UK, 2 edition, 2019. [ bib ]
[1732] T. V. Gerya, D. Bercovici, and T. W. Becker. Dynamic slab segmentation due to brittle-ductile damage in the outer rise. Nature, 599:245--250, 2021. [ bib ]
[1733] S Ghelichkhan, HP Bunge, and J Oeser. Global mantle flow retrodictions for the early Cenozoic using an adjoint method: evolving dynamic topographies, deep mantle structures, flow trajectories and sublithospheric stresses. Geophys. J. Int., 226:1432--1460, 2021. [ bib ]
[1734] A. Ghods, F. Sobouti, and J. Arkani-Hamed. An improved second moment method for solution of pure advection problems. Eos Trans. AGU, 1998. spring meeting. [ bib ]
[1735] A. Ghosh, W. E. Holt, L. M. Flesch, and A. J. Haines. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34:321--324, 2006. [ bib ]
[1736] A. Ghosh, T. W. Becker, and E. D. Humphreys. Effects of lateral viscosity variations on the dynamics of western North America. In 2008 SCEC Annual Meeting, pages 1--124, 2008. [ bib ]
[1737] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. Eos Trans. AGU, 89(53):DI53A--1687, 2008. [ bib ]
[1738] A. Ghosh, W. E. Holt, L. Wen, L. M. Flesch, and A. J. Haines. Joint modeling of lithosphere and mantle dynamics elucidating lithosphere-mantle coupling. Geophys. Res. Lett., 35(L16309), 2008. [ bib | DOI ]
[1739] A. Ghosh, A. V. Newman, A. M. Thomas, and G. T. Farmer. Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett., 35(L01301), 2008. [ bib | DOI ]
[1740] A. Ghosh, T. W. Becker, and S. Zhong. Effect of lateral viscosity variations on mantle flow and the geoid. In 11th International Workshop on Modelling of Mantle Convection and Lithospheric Dynamics, page 57, Braunwald, Switzerland, 2009. ETH Zürich. [ bib ]
[1741] A. Ghosh, W. E. Holt, and L. M. Flesch. Contribution of gravitational potential energy differences to the global stress field. Geophys. J. Int., 179:787--812, 2009. [ bib ]
[1742] A. Ghosh, T. W. Becker, and S. Zhong. Effects of lateral viscosity variations on the geoid. Geophys. Res. Lett., 37(L01301), 2010. [ bib | DOI ]
[1743] A. Ghosh, T. W. Becker, and E. D. Humphreys. Understanding the deformation of the North American continent (abstract). EarthScope National Meeting Abstract Volume, page 70, 2011. Available online at www.earthscope.org/es_doc/meetings/2011_national/, accessed 06/2011. [ bib ]
[1744] A. Ghosh and W. E. Holt. Plate motions and stresses from global dynamic models. Science, 335:839--843, 2012. [ bib ]
[1745] A. Ghosh, T. W. Becker, and E. D. Humphreys. Dynamics of the North American continent. Geophys. J. Int., 194:651--669, 2013. [ bib ]
[1746] A Ghosh, WE Holt, and L Wen. Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics. J. Geophys. Res.: Sol. Earth, 118:346--368, 2013. [ bib ]
[1747] Attreyee Ghosh, William E Holt, and Alireza Bahadori. Role of large-scale tectonic forces in intraplate earthquakes of Central and Eastern North America. Geochem., Geophys., Geosys., 20:2134--2156, 2019. [ bib ]
[1748] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Technical report, ETH Zürich, http://seismo.ethz.ch/gshap/global/global.html, 2000. [ bib ]
[1749] D. Giardini. Regional deviation of earthquake source mechanisms from the “double-couple” model. In H. Kanamori and E. Boschi, editors, Earthquakes: observation, theory, and interpretation: notes from the International School of Physics “Enrico Fermi” (1982: Varenna, Italy), volume 85, pages 345--353. North-Holland Pub.., Amsterdam, 1983. [ bib ]
[1750] D. Giardini and J. H. Woodhouse. Deep seismicity and modes of deformation in Tonga subduction zone. Nature, 307:505--509, 1984. [ bib ]
[1751] D. Giardini and J. H. Woodhouse. Horizontal shear flow in the mantle beneath the Tonga arc. Nature, 319:551--555, 1986. [ bib ]
[1752] D. Giardini and M. Velonà. La sismicita profonda del Mar Tirreno. Deep seismicity of the Tyrrhenian Sea. Mem. Soc. Geol. It., 41:1079--1087, 1988. [ bib ]
[1753] D. Giardini, G. Grünthal, K. Shedlock, and P. Zhang. The GSHAP Global Seismic Hazard Map. Annali di Geof., 42:1225--1230, 1999. [ bib ]
[1754] G Gibert, Muriel Gerbault, R Hassani, and Emmanuel Tric. Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling. Geophys. J. Int., 189:747--760, 2012. [ bib ]
[1755] S. J. Gibowicz. Physics of fracturing and seismic energy release: A review. Pure Appl. Geophys., 124:611--658, 1986. [ bib ]
[1756] J. Gil-Rodríguez. Igneous petrology of the La Colosa gold-rich porphyry system (Tolima, Colombia). Master's thesis, University of Arizona, 2010. [ bib ]
[1757] W. Gilbert. On the magnet (De Magnete). Peter Short, London, (Translated in 1900 from Latin by Silvanus Thompson and reproduced by Basic Books, N. Y., 1956.) 1600. [ bib ]
[1758] H. Gilbert, A. F. Sheehan, K. G. Dueker, and P. Molnar. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J. Geophys. Res.: Sol. Earth, 108(2229), 2003. [ bib | DOI ]
[1759] H. Gilbert, Y. Yang, D. W. Forsyth, C. H. Jones, T. J. Owens, G. Zandt, and J.C. Stachnik. Imaging lithospheric foundering in the structure of the Sierra Nevada. Geosphere, 8:1310--1300, 2012. [ bib ]
[1760] G. K. Gilbert. A theory of the earthquakes of the Great Basin, with a practical application. Am. J. Sci. Ser., 3:49--54, 1884. [ bib ]
[1761] Lewis E. Gilbert, Christopher H. Scholz, and John Beavan. Strain localization along the san andreas fault: Consequences for loading mechanisms. J. Geophys. Res.: Sol. Earth, 99:23975--23984, 1994. [ bib ]
[1762] J. Gill. Orogenic Andesites and Plate Tectonics. Springer Verlag, New York NY, 1981. [ bib ]
[1763] D. Gilly. UNIX in a Nutshell. O'Reilly & Associates, Inc., Cambridge, 1994. [ bib ]
[1764] C. Giunchi, R. Sabadini, E. Boschi, and P. Gasperini. Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian sea. Geophys. J. Int., 126:555--578, 1996. [ bib ]
[1765] G. Glatzmaier. Geodynamo simulations-how realistic are they? Ann. Rev. Earth Planet. Sci., 30:237--257, 2002. [ bib ]
[1766] Gary A Glatzmaiers and Paul H Roberts. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature, 377:203--209, 1995. [ bib ]
[1767] Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman. Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction. Solid Earth, 9:267--294, 2018. [ bib ]
[1768] Petar Glišović and Alessandro M Forte. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates. Earth Planet. Sci. Lett., 390:146--156, 2014. [ bib ]
[1769] Petar Glišović and Alessandro M Forte. On the deep-mantle origin of the Deccan Traps. Science, 355:613--616, 2017. [ bib ]
[1770] Petar Glišović and Alessandro M Forte. Two deep-mantle sources for Paleocene doming and volcanism in the North Atlantic. Proc. Natl. Acad. Sci. USA, 116:13227--13232, 2019. [ bib ]
[1771] P. Wessel and W. H. F. Smith. Free software helps map and display data. Eos Trans. AGU, 72:445--446, 1991. [ bib ]
[1772] Gnuplot. Gnuplot homepage, 2023. Available online at www.gnuplot.info/, accessed 05/2023. [ bib ]
[1773] J. Gobert and J. Clement. Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynmaic knowledge in plate tectonics. J. Res. Sci. Teaching, 36:39--53, 1999. [ bib ]
[1774] S. Godey, R. Snieder, A. Villasenor, and H. M. Benz. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: phase velocity maps and limitations of ray theory. Geophys. J. Int., 152:620--632, 2003. [ bib ]
[1775] S. Godey, F. Deschamps, J. Trampert, and R. Snieder. Thermal and compositional anomalies beneath the North American continent. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1776] N. J. Godfrey, N. I. Christensen, and D. A. Okaya. Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J. Geophys. Res.: Sol. Earth, 105:27991--28007, 2000. [ bib ]
[1777] N. J. Godfrey, B. C. Beaudoin, and S. L. Klemperer. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin. Geol. Soc. Am. Bull., 108:1536--1562, 1997. [ bib ]
[1778] T. Goebel, S. Stanchits, T. W. Becker, G. Dresen, and D. Schorlemmer. Acoustic emissions during fracture and sliding of rock surfaces: Preliminary results. 2009 SCEC Annual Meeting Abstracts, 19:317, 2009. [ bib ]
[1779] T. H. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 2009 SCEC Annual Meeting Abstracts, 19:230, 2009. [ bib ]
[1780] T. Goebel, D. Schorlemmer, T. W. Becker, M. Gerstenberger, and J. Zechar. A suite of reference models for the evaluation of earthquake forecasts. 6th International Workshop on Statistical Seismology Abstracts, 2009. [ bib ]
[1781] T. H. Goebel, S. Stanchits, T. W. Becker, D. Schorlemmer, and G. Dresen. Temporal and spatial analysis of acoustic emission clusters during sliding of rough granite surfaces. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 20:216, 2010. Available online at www.scec.org/meetings/2010am/2010SCECProceedings.pdf, accessed 05/2011. [ bib ]
[1782] T. H. Goebel, T. W. Becker, C. Sammis, G. Dresen, and D. Schorlemmer. Variations in b-values, size and rate of micro-seismicity before dynamic slip instabilities in laboratory experiments. 7th International Workshop on Statistical Seismology. Abstracts, page 17, 2011. Available online at www.gein.noa.gr/statsei7/forms/StatSei7_Abstracts.pdf, accessed 05/2011. [ bib ]
[1783] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, E. Rybacki, and G. Dresen. Connecting acoustic emission event locations, aftershock density and b-values before and after stick-slips to changes in topography of rough fracture surfaces during frictional sliding experiments. Seismological Society of America 2011 Annual Meeting Abstracts, 2011. Available online at www.seismosoc.org/meetings/2011/program.php, accessed 05/2011. [ bib ]
[1784] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1785] T. H. Goebel, C. Sammis, and T. W. Becker. Connecting the spatial distribution of acoustic emissions to fault roughness during stick-slip experiments. In 2011 SCEC Annual Meeting, volume 21, page 160, 2011. Available online at www.scec.org/meetings/2011am/SCECProceedingsXXI-FullVolume.pdf, accessed 02/2012. [ bib ]
[1786] T. H. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J. Geophys. Res.: Sol. Earth, 117(B03310), 2012. [ bib | DOI ]
[1787] T. H. W. Goebel, D. Schorlemmer, T. W. Becker, G. Dresen, and C. G. Sammis. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophys. Res. Lett., 40:2049--2054, 2013. [ bib ]
[1788] T. H. W. Goebel, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. A comparison of seismicity characteristics and fault structure between stick-slip experiments and nature. Pure Appl. Geophys., 2014. [ bib | DOI ]
[1789] T. H. W. Goebel, T. Candela, C. G. Sammis, T. W. Becker, G. Dresen, and D. Schorlemmer. Seismic event distributions and off-fault damage during frictional sliding of saw-cut surfaces with predefined roughness. Geophys. J. Int., 196:612--625, 2014. [ bib ]
[1790] T. H. W. Goebel, T. W. Becker, C. G. Sammis, G. Dresen, and D. Schorlemmer. Off-fault damage and acoustic emission distributions during the evolution of structurally-complex faults over series of stick-slip events. Geophys. J. Int., 197:1705--1718, 2014. [ bib ]
[1791] Thomas HW Goebel, Grzegorz Kwiatek, Thorsten W Becker, Emily E Brodsky, and Georg Dresen. What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology, 45:815--818, 2017. [ bib ]
[1792] S. Goes and S. van der Lee. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res.: Sol. Earth, 107(2050), 2002. [ bib | DOI ]
[1793] S. Goes, F. Cammarano, and U. Hansen. Synthetic seismic signature for thermal mantle plumes. Earth Planet. Sci. Lett., 218:401--417, 2004. [ bib ]
[1794] S. Goes, F. A. Capitanio, and G. Morra. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451:981--984, 2008. [ bib ]
[1795] Saskia Goes, Roberto Agrusta, Jeroen van Hunen, and Fanny Garel. Subduction-transition zone interaction: A review. Geosphere, 13:644--664, 2017. [ bib ]
[1796] S. D. B. Goes. Irregular recurrence of large earthquakes: An analysis of historic and paleoseismic catalogs. J. Geophys. Res.: Sol. Earth, 101:5739--5749, 1996. [ bib ]
[1797] C. Goetze and D. L. Kohlstedt. Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res.: Sol. Earth, 78:5961--5971, 1973. [ bib ]
[1798] C. Goetze and B. Evans. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astr. Soc., 59:463--478, 1979. [ bib ]
[1799] J. A. Goff and T. H. Jordan. Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res.: Sol. Earth, 93:13589--13608, 1988. [ bib ]
[1800] D. Goff and D.V. Wiltschko. Stresses beneath a ramping thrust sheet. J. Struct. Geol., 14:437--449, 1992. [ bib ]
[1801] D. Goff, D.V. Wiltschko, and R.C. Fletcher. Decollement folding as a mechanism for thrust-ramp spacing. J. Geophys. Res.: Sol. Earth, 101:11341--11352, 1996. [ bib ]
[1802] O. Gogus and R. Pysklywec. Near surface diagnostics of dripping and delaminating lithosphere. J. Geophys. Res.: Sol. Earth, 113(B11404), 2008. [ bib | DOI ]
[1803] Oğuz H Göğüş. Rifting and subsidence following lithospheric removal in continental back arcs. Geology, 43:3--6, 2015. [ bib ]
[1804] Oğuz H Göğüş, Russell N Pysklywec, A M C Şengör, and E Gün. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nature Comm., 8:1--9, 2017. [ bib ]
[1805] R. D. Gold, E. Cowgill, X.-F. Wang, and X.-H. Chen. Application of trishear fault-propagation folding to active reverse faults: examples from the Dalong Fault, Gansu Province, NW China. J. Struct. Geol., 28:200--219, 2006. [ bib ]
[1806] Chris Goldfinger, C Hans Nelson, Joel E Johnson, and Shipboard Scientific Party. Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites. Ann. Rev. Earth Planet. Sci., 31:555--577, 2003. [ bib ]
[1807] C. Goldfinger, C.H. Nelson, A.E. Morey, J.E. Johnson, J.R. Patton, E. Karabanov, J. Gutiérrez-Pastor, A.T. Eriksson, E. Grácia, G. Dunhill, R.J. Enkin, A. Dallimore, and T. Vallier. Turbidite event history: Methods and implications for holocene paleoseismicity of the cascadia subduction zone. U.S. Geological Survey Professional Paper 1661--F, United States Geological Survey, 2012. 170 p. [ bib ]
[1808] C. Goldfinger, Y. Ikeda, R. S. Yeats, and J. Ren. Superquakes and supercycles. Seismol. Res. Lett., 84:24--32, 2013. [ bib ]
[1809] P. Goldreich and A. Toomre. Some remarks on polar wandering. J. Geophys. Res.: Sol. Earth, 74:2555--2565, 1969. [ bib ]
[1810] EM Golos, H Fang, H Yao, H Zhang, S Burdick, F Vernon, A Schaeffer, S Lebedev, and RD Van der Hilst. Shear wave tomography beneath the United States using a joint inversion of surface and body waves. J. Geophys. Res.: Sol. Earth, 123:5169--5189, 2018. [ bib ]
[1811] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, 3 edition, 1996. [ bib ]
[1812] J. Gomberg et al. Slow slip phenomena in Cascadia from 2007 and beyond: A review. Geol. Soc. Amer. Bull., 122:963--978, 2010. [ bib ]
[1813] Joan Gomberg, Aaron Wech, Kenneth Creager, Kazushige Obara, and Duncan Agnew. Reconsidering earthquake scaling. Geophys. Res. Lett., 43:6243--6251, 2016. [ bib ]
[1814] J. S. Gomberg, K. A. Ludwig, B. A. Bekins, T. M. Brocher, J. C. Brock, D. Brothers, J. D. Chaytor, A. D. Frankel, E. L. Geist, M. Haney, S. H. Hickman, W. S. Leith, E. A. Roeloffs, W. H. Schulz, T. W. Sisson, J. T. Watt K. Wallace, and A. Wein. Reducing risk where tectonic plates collide--A plan to advance subduction zone science, volume 1428 of Circular. U.S. Geological Survey, 2017. [ bib | DOI ]
[1815] J. Gomberg, M. L. Blanpied, and N. M. Beeler. Transient triggering of near and distant earthquakes. Bull. Seismol. Soc. Am., 87:294--309, 1997. [ bib ]
[1816] J. Gomberg, N. M. Beeler, M. L. Blanpied, and P. Bodin. Earthquake triggering by transient and static deformations. J. Geophys. Res.: Sol. Earth, 103:24411--24426, 1998. [ bib ]
[1817] J. Gómez, A. Nivia, N. Montes, D. Jiménez, M. Sepúlveda, T. Gaona, J. Osorio, H. Diederix, M. Mora, and M. M. Velásquez. Atlas geológico de Colombia, Sheet 5-09, scale 1:500.000. INGEOMINAS, 2007. [ bib ]
[1818] N. Gomez, J. X. Mitrovica, P. Huybers, and P. U. Clark. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geosc., 3:850--853, 2010. [ bib ]
[1819] Natalya Gomez, David Pollard, and Jerry X Mitrovica. A 3-D coupled ice sheet--sea level model applied to Antarctica through the last 40 ky. Earth Planet. Sci. Lett., 384:88--99, 2013. [ bib ]
[1820] Natalya Gomez, Konstantin Latychev, and David Pollard. A coupled ice sheet--sea level model incorporating 3D earth structure: Variations in Antarctica during the last deglacial retreat. J. Climate, 31:4041--4054, 2018. [ bib ]
[1821] H. M. Gonnermann and M. Manga. Nonequilibrium magma degassing: results from modeling of the ca. 1340 AD eruption of Mono Craters, California. Earth Planet. Sci. Lett., 238:1--16, 2005. [ bib ]
[1822] H. Gonnermann and S. Mukhopadhyay. Preserving noble gases in a convecting mantle. Nature, 458:560--564, 2009. [ bib ]
[1823] H. M. Gonnermann and M. Manga. Dynamics of magma ascent in the volcanic conduit. In S. A. Fagents, T. K. P. Gregg, and R. M. C. Lopes, editors, Modeling volcanic processes, The Physics and Mathematics of Volcanism. Cambridge University Press, 2013. [ bib ]
[1824] Helge Gonnermann, Kyle Anderson, Tom Sisson, George Bergantz, Matthew Pritchard, Matthew Jackson, Philipp Ruprecht, Mark Ghiorso, Emilie Hooft, Christian Huber, Eleonora Rivalta, Diana Roman, Mattia de’ Michieli Vitturi, Madison Myers, Joe Dufek, Antonio Costa, Costanza Bonadonna, Larry Mastin, Hélène Le Mével, Mary Grace Bato, Michael Poland, Paul Segall, Leif Karlstrom, Erin Fitch, and Einat Lev. Modeling volcano-magmatic systems: Crustal magma transport, storage and eruption (draft). Technical report, Modeling Collaboratory for Subduction, Austin TX, 2021. Available online at https://bit.ly/3nYhI9W, accessed 10/2021. [ bib ]
[1825] L.B. Goodwin and H.R. Wenk. Development of phyllonite from granodiorite - mechanisms of grain-size reduction in the Santa-Rosa mylonite zone, California. J. Struct. Geol., 17:689, 1995. [ bib ]
[1826] A. Gorbatov and B. L. N. Kennett. Joint bulk-sound and shear tomography for western pacific subduction zones. Earth Planet. Sci. Lett., 210:527--543, 2003. [ bib ]
[1827] A Gorbatov and V Kostoglodov. Maximum depth of seismicity and thermal parameter of the subducting slab: general empirical relation and its application. Tectonophys., 277:165--187, 1997. [ bib ]
[1828] R. G. Gordon. Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geoophys. Mono., pages 143--159. American Geophysical Union, Washington DC, 2000. [ bib ]
[1829] R. G. Gordon, A. Cox, and C. E. Harter. Absolute motion of an individual plate estimated from its ridge and trench boundaries. Nature, 274:752--755, 1978. [ bib ]
[1830] R. G. Gordon and D. M. Jurdy. Cenozoic global plate motions. J. Geophys. Res.: Sol. Earth, 91:12389--12406, 1986. [ bib ]
[1831] Richard G Gordon. Plate motions, crustal and lithospheric mobility, and paleomagnetism: Prospective viewpoint. J. Geophys. Res.: Sol. Earth, 100:24367--24392, 1995. [ bib ]
[1832] Liran Goren, Matthew Fox, and Sean D Willett. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. J. Geophys. Res.: Earth Surf., 119:1651--1681, 2014. [ bib ]
[1833] C. Gorini, A. Mauffret, P. Guennoc, and A. Le Marrec. Structure of the gulf of Lions (Northwestern Mediterranean Sea): a review. In A. Mascle, editor, Hydrocarbon and Petroleum Geology of France, volume 4 of Europ. Assoc. Petrol. Geol., pages 223--243. Springer, New York, 1994. [ bib ]
[1834] D. Gorney, A. Escalona, P. Mann, M. B. Magnani, and BOLIVAR Study Group. Chronology of Cenozoic tectonic events in western Venezuela and the Leeward Antilles based on integration of offshore seismic reflection data and on-land geology. AAPG Bull., 91:653--684, 2007. [ bib ]
[1835] M. L. Gorring and S. M. Kay. Mantle processes and sources of Neogene slab-window magmas in southern Patagonia. J. Petrol., 42:1067--1094, 2001. [ bib ]
[1836] A. Gorszczyk, S. Operto, L. Schenini, and Y. Yamada. Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough. Solid Earth, 10:765--784, 2019. [ bib ]
[1837] A. Goss and S. M. Kay. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem., Geophys., Geosys., 7(Q05016), 2006. [ bib | DOI ]
[1838] A. Goss and S. M. Kay. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~27o S, ~68o W). Earth Planet. Sci. Lett., 270:97--109, 2009. [ bib ]
[1839] A. Goss, S. M. Kay, C. Mpodozis, and B. Singer. The Incapillo Caldera and dome complex (~28oS): A stranded magma chamber over a dying Andean arc, California. J. Volc. Geother Res., 184:384--404, 2009. [ bib ]
[1840] A. Goss, S. M. Kay, and C. Mpodozis. Geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28oS). Contrib. Mineral. Petrol., 161:101--128, 2011. [ bib ]
[1841] J. Gosse and F. Phillips. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Sci. Rev., 20:1475--1560, 2001. [ bib ]
[1842] M. Gouiza and J. Naliboff. Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere. Nature comm., 12:4653, 2021. [ bib ]
[1843] N. J. Goulding, N. M. Ribe, O. Castelnau, A. M. Walker, and J. Wookey. Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy. Geophys. J. Int., 203:334--350, 2015. [ bib ]
[1844] Bruno Goutorbe and John K Hillier. An integration to optimally constrain the thermal structure of oceanic lithosphere. J. Geophys. Res.: Sol. Earth, 118:432--446, 2013. [ bib ]
[1845] R Govers and MJR Wortel. Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth Planet. Sci. Lett., 236:505--523, 2005. [ bib ]
[1846] Free Software Foundation. GNU General Public License, GPLv3. Free Software Foundation, Boston, MA, 2007. Available online at www.gnu.org/licenses/gpl-3.0.en.html, accessed 01/2020. [ bib ]
[1847] C. C. Graham, S. Stanchits, I. G. Main, and G. Dresen. Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data. Int. J. Rock Mech. Min. Sci., 47:161--169, 2010. [ bib ]
[1848] Shannon E Graham, John P Loveless, and Brendan J Meade. Global plate motions and earthquake cycle effects. Geochem., Geophys., Geosys., 19:2032--2048, 2018. [ bib ]
[1849] E. Granato and S. C. Ying. Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model. Phys. Rev. B, 59:5154--5161, 1999. [ bib ]
[1850] S. P. Grand. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A, 360:2475--2491, 2002. [ bib ]
[1851] S. P. Grand. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res.: Sol. Earth, 99:11591--11621, 1994. [ bib ]
[1852] S. P. Grand, R. D. van der Hilst, and S. Widiyantoro. Global seismic tomography; a snapshot of convection in the Earth. GSA Today, 7:1--7, 1997. [ bib ]
[1853] S. P. Grand. Updated tomographic model based on [?], accessed 02/2001, 2001. ftp://amazon.geo.utexas.edu/outgoing/steveg/. [ bib ]
[1854] P. Grassberger and I. Procaccia. Measuring the strangeness of strange attractors. Physica D, 9:189, 1983. [ bib ]
[1855] Fabien Graveleau, Jacques Malavieille, and Stéphane Dominguez. Experimental modelling of orogenic wedges: A review. Tectonophys., 538:1--66, 2012. [ bib ]
[1856] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward Field, Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta, Kevin Milner, et al. Cybershake: A physics-based seismic hazard model for southern California. Pure Appl. Geophys., 168:367--381, 2011. [ bib ]
[1857] R. W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am., 86:1091--1106, 1996. [ bib ]
[1858] D.H. Green and A.E. Ringwood. The genesis of basaltic magmas. Contrib Mineral. Petrol., 15:103--190, 1967. [ bib ]
[1859] H. W. Green and H. Houston. The mechanics of deep earthquakes. Ann. Rev. Earth Planet. Sci., 23:169--213, 1995. [ bib ]
[1860] Richard Greenberg, Paul Geissler, Gregory Hoppa, and B. R. Tufts. Tidal-tectonic processes and their implications for the character of Europa's icy crust. Rev. Geophys., 40(2):1004, 2002. [ bib | DOI ]
[1861] L. L. Greischar and C. R. Bentley. Isostatic Equilibrium Grounding Line between the West Antarctic Inland Ice-Sheet and the Ross Ice Shelf. Nature, 283:651--654, 1980. [ bib ]
[1862] WL Griffin, SY O’Reilly, N Abe, S Aulbach, RM Davies, NJ Pearson, BJ Doyle, and K Kivi. The origin and evolution of Archean lithospheric mantle. Precamb. Res., 127:19--41, 2003. [ bib ]
[1863] W. L. Griffin, S. Y. O'Reilly, J. C. Afonso, and G. C. Begg. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol., 50:1185--1204, 2009. [ bib ]
[1864] W. A. Griffith and M. L. Cooke. Mechanical validation of the three-dimensional intersection geometry between the Puente Hills blind-thrust system and the Whittier fault Los Angeles, California. Bull. Seismol. Soc. Am., 94:493--505, 2004. [ bib ]
[1865] A. A. Griffith. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond. A, 221:582--593, 1921. [ bib ]
[1866] A. A. Griffith. The theory of rupture. In J. M. Bienzano, C. B. und Burgers, editor, Proc. 1st. Int. Congr. Appl. Mech., pages 54--63. Tech. Boekhandel en Drukkerij, Delft, 1924. [ bib ]
[1867] PT Griffiths. Non-newtonian channel flow-exact solutions. IMA J. Appl. Math., 85:263--279, 2020. [ bib ]
[1868] R. W. Griffiths. Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech., 166:115--138, 1986. [ bib ]
[1869] R. W. Griffiths. Particle motions induced by spherical convective elements in Stokes flow. J. Fluid Mech., 166:139--159, 1986. [ bib ]
[1870] R. W. Griffiths, M. Gurnis, and G. Eitelberg. Holographic measurements of surface topography in laboratory models of mantle hotspots. Geophys. J. Int., 96:477--495, 1989. [ bib ]
[1871] Ross W Griffiths and Ian H Campbell. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett., 99:66--78, 1990. [ bib ]
[1872] R. W. Griffiths, R. I. Hackney, and R. D. van der Hilst. A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth Planet. Sci. Lett., 133:1--17, 1995. [ bib ]
[1873] C. Grigné, S. Labrosse, and P. J. Tackley. Convective heat transfer as a function of wavelength. Implications for the cooling of the Earth. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[1874] C Grigné and M Combes. Thermal history of the Earth: On the importance of surface processes and the size of tectonic plates. Geochem., Geophys., Geosys., 21:e2020GC009123, 2020. [ bib ]
[1875] D.-A. Griot, J.-P. Montagner, and P. Tapponnier. Heterogeneous versus homogeneous strain in central Asia. Geophys. Res. Lett., 25:1447--1450, 1998. [ bib ]
[1876] A. E. Gripp and R. G. Gordon. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150:321--361, 2002. [ bib ]
[1877] A. E. Gripp and R. G. Gordon. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys. Res. Lett., 17:1109--1112, 1990. [ bib ]
[1878] Christopher J. Grose and Juan Carlos Afonso. Comprehensive plate models for the thermal evolution of oceanic lithosphere. Geochem., Geophys., Geosys., 14:3751--3778, 2013. [ bib ]
[1879] CJ Grose and JC Afonso. The hydrothermal power of oceanic lithosphere. Sol. Earth, 6:1131--1155, 2015. [ bib ]
[1880] S. Gross and C. Kisslinger. Estimating tectonic stress rate and state with Landers aftershocks. J. Geophys. Res.: Sol. Earth, 102:7603--7612, 1997. [ bib ]
[1881] S. Gross and R. Bürgmann. The rate and state of background stress estimated from the aftershocks of the 1989 Loma Prieta, California, earthquake. J. Geophys. Res.: Sol. Earth, 102:4915--4927, 1998. [ bib ]
[1882] Siegfried Grossmann and Detlef Lohse. Scaling in thermal convection: a unifying theory. J. Fluid Mech., 407:27--56, 2000. [ bib ]
[1883] T Grove, S Parman, S Bowring, R Price, and M Baker. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol., 142:375--396, 2002. [ bib ]
[1884] T. Grove. In J. Eiler, editor, Inside the Subduction Factory, volume 138. American Geophysical Union, Washington DC, 2003. [ bib ]
[1885] T. L. Grove, C. B. Till, and M. J. Krawczynski. The role of H2O in subduction zone magmatism. Ann. Rev. Earth Planet. Sci., 40:413--439, 2012. [ bib ]
[1886] M. A. Growdon, G. L. Pavlis, F. Niu, F. L. Vernon, and H. Rendon. Constraints on mantle flow at the Caribbean-South American plate boundary inferred from shear wave splitting. J. Geophys. Res.: Sol. Earth, 114(B02303), 2009. [ bib | DOI ]
[1887] EDC. Global 30 Arc Second Elevation Data Set. EROS Data Center, Sioux Falls, South Dakota, 1996. [ bib ]
[1888] Y. J. Gu, A. M. Dziewoński, W.-j. Su, and G. Ekström. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Res.: Sol. Earth, 106:11169--11199, 2001. [ bib ]
[1889] Y. Gu, A. Dziewoński, and G. Ekström. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys. J. Int., 154:559--583, 2003. [ bib ]
[1890] Y. H. Gu, A. L. Lerner-Lam, A. M. Dziewonski, and G. Ekström. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth Planet. Sci. Lett., 232:259--272, 2005. [ bib ]
[1891] J.-C. Gu, J. R. Rice, A. L. Ruina, and S. T. Tse. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids, 32:167--196, 1984. [ bib ]
[1892] Y. Gu and T.-F. Wong. Nonlinear dynamics of the transition from stable sliding to cyclic stick-slip in rock. In W. I. Newman, A. Gabrielov, and D. L. Turcotte, editors, Nonlinear dynamics and predictability of geophysical phenomena, volume 83 of Geoophys. Mono., pages 15--35. American Geophysical Union, Washington, DC, 1994. [ bib ]
[1893] Y. Gu, A. M. Dziewoński, and C. B. Agee. Global de-correlation of the topography of transition zone discontinuities. Earth Planet. Sci. Lett., 157:57--67, 1998. [ bib ]
[1894] Adriano Gualandi, J-P Avouac, Sylvain Michel, and Davide Faranda. The predictable chaos of slow earthquakes. Science adv., 6(27):eaaz5548, 2020. [ bib ]
[1895] A. P. Gubanov and W. D. Mooney. New global maps of crustal basement age. Eos Trans. AGU, 90, 2009. Fall Meet. Suppl., Abstract T53B-1583. [ bib ]
[1896] David Gubbins, Dario Alfe, Guy Masters, G David Price, and Michael Gillan. Gross thermodynamics of two-component core convection. Geophys. J. Int., 157:1407--1414, 2004. [ bib ]
[1897] O. Gudmundsson, J. H. Davies, and R. W. Clayton. Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data. Geophys. J. Int., 102:25--43, 1990. [ bib ]
[1898] O. Gudmundsson and M. Sambridge. A regionalized upper mantle (RUM) seismic model. J. Geophys. Res.: Sol. Earth, 103:7121--7136, 1998. [ bib ]
[1899] M. C. Guédez. Crustal structure across the Caribbean-South American Plate boundary at 70W -- Results from seismic refraction and reflection data. Master's thesis, Rice University, Houston, 2007. [ bib ]
[1900] E. Gueguen, C. Doglioni, and M. Fernandez. On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophys., 298:259--269, 1998. [ bib ]
[1901] F. Gueydan and J. Précigout. Modes of continental rifting as a function of ductile strain localization in the lithospheric mantle. Tectonophys., 612:18--25, 2014. [ bib ]
[1902] F. Gueydan, J. Précigout, and L. G. J. Montési. Strain weakening enables continental plate tectonics. Tectonophys., 631:189--196, 2016. [ bib ]
[1903] G. Guieu and J. Roussel. Arguments for the pre-rift uplift and rift propagation in the Ligurian-Provençal basin (northwestern Mediterranean) in the light of Pyrenean Provençal orogeny. Tectonics, 9:1113--1142, 1990. [ bib ]
[1904] B. Guillaume, M. Moroni, F. Funiciello, C. Faccenna, and J. Martinod. Mantle flow and dynamic topography associated with slab window opening : Insights from laboratory models. Tectonophys., 496:83--98, 2010. [ bib ]
[1905] S. Guillot, E. Garzanti, D. Baratoux, D. Marquer, G. Mahéo, and J. de Sigoyer. Reconstructing the total shortening history of the NW Himalaya. Geochem., Geophys., Geosys., 4(7), 2003. [ bib | DOI ]
[1906] L. Gouillou-Frottier, J. Buttles, and P. Olson. Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett., 133:19--34, 1995. [ bib ]
[1907] Anna JP Gülcher, David J Gebhardt, Maxim D Ballmer, and Paul J Tackley. Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle. Earth Planet. Sci. Lett., 536:116160, 2020. [ bib ]
[1908] A. J. P. Gülcher, M. D. Ballmer, and P. J. Tackley. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle. Solid Earth, 12:2087--2107, 2021. [ bib ]
[1909] Y. Gung, M. Panning, and B. A. Romanowicz. Global anisotropy and the thickness of continents. Nature, 422:707--711, 2003. [ bib ]
[1910] Y. Gung and B. A. Romanowicz. Q tomography of the upper mantle using three-component long-period waveforms. Geophys. J. Int., 157:813--830, 2004. [ bib ]
[1911] M. Gupta and T. H Kwon. 3-D Flow analysis of non-Newtonian viscous fluids using “enriched” finite elements. Polymer Eng. Sci., 30:1420--1430, 1990. [ bib ]
[1912] M. Gurnis, S. Zhong, and J. Toth. On the competing roles of fault reactivation and brittle failure in generating plate tectonics from mantle convection. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motions, volume 121 of Geophysical Monograph, pages 73--94. AGU, Washington DC, 2000. [ bib ]
[1913] M. Gurnis, J. X. Mitrovica, J. Ritsema, and H.-J. van Heijst. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochem., Geophys., Geosys., 1(1020), 2000. [ bib | DOI ]
[1914] M. Gurnis, J. Ritsema, H.-J. van Heijst, and S. Zhong. Tonga slab deformation: The influence of a lower mantle upwelling on a slab in a young subduction zone. Geophys. Res. Lett., 27:2373--2376, 2000. [ bib ]
[1915] M. Gurnis. Sculpting the earth from inside out. Scientific American, 284:40--47, 2001. [ bib ]
[1916] M. Gurnis. Stirring and mixing in the mantle by plate-scale flow: large persistent blobs and long tendrils coexist. Geophys. Res. Lett., 13:1474--1477, 1986. [ bib ]
[1917] M. Gurnis. Quantitative bounds on the size spectrum of isotopic heterogeneity within the mantle. Nature, 323:317--320, 1986. [ bib ]
[1918] M. Gurnis and G. F. Davies. The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophys. Res. Lett., 13:541--544, 1986. [ bib ]
[1919] M. Gurnis and G. F. Davies. Numerical models of high Rayleigh number convection in a medium with depth-dependent viscosity. Geophys. J. R. Astr. Soc., 85:523--541, 1986. [ bib ]
[1920] M. Gurnis and B. H. Hager. Controls of the structure of subducted slabs. Nature, 335:317--321, 1988. [ bib ]
[1921] M. Gurnis. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332:695--699, 1988. [ bib ]
[1922] M. Gurnis. Ridge spreading, subduction, and sea level fluctuations. Science, 250:970--972, 1990. [ bib ]
[1923] M. Gurnis. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. Nature, 344:754--756, 1990. [ bib ]
[1924] M. Gurnis. Rapid continental subsidence following the initiation and evolution of subduction. Science, 255:1556--1558, 1992. [ bib ]
[1925] M. Gurnis. Depressed continental hypsometry behind oceanic trenches: a clue to subduction controls on sea-level change. Geology, 21:29--32, 1993. [ bib ]
[1926] M. Gurnis. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature, 364:589--593, 1993. [ bib ]
[1927] M. Gurnis and T. Torsvik. Rapid drift of large continents during the Late Precambrian and Paleozoic: Paleomagnetic constraints and dynamics models. Geology, 22:1023--1026, 1994. [ bib ]
[1928] M. Gurnis, C. Eloy, and S. Zhong. Free-surface formulation of mantle convection --ii. Implication for subduction-zone observables. J. Geophys. Res.: Sol. Earth, 127:719--727, 1996. [ bib ]
[1929] A. R. Gusman, Y. Tanioka, H. Matsumoto, and S.-I. Iwasaki. Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bull. Seismol. Soc. Am., 99:2169--2179, 2009. [ bib ]
[1930] B. Gutenberg. Über die Konstitution des Erdinnern, erschlossen aus Erdbebenbeobachtungen. Phys. Z, 14:1217--1218, 1913. [ bib ]
[1931] B. Gutenberg and C. F. Richter. Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34:185--188, 1944. [ bib ]
[1932] B. Gutenberg and C.F. Richter. Seismicity of the Earth and Associated Phenomena. Princeton University Press, Princeton, 1949. [ bib ]
[1933] B. Gutenberg. The asthenosphere low-velocity layer. Annal. Geophys., 12:439--460, 1959. [ bib ]
[1934] M.-A. Gutscher, W. Spakman, H. Bijwaard, and E. R. Engdahl. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19:814--833, 2000. [ bib ]
[1935] M.-A. Gutscher, J. Malod, J.-P. Rehault, I. Contrucci, F. Klingelhoefer, L. Mendes-Victor, and W. Spakman. Evidence for active subduction beneath Gibraltar. Geology, 30:1071--1074, 2002. [ bib ]
[1936] M.-A. Gutscher and S. M. Peacock. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. J. Geophys. Res.: Sol. Earth, 108(2009), 2003. [ bib | DOI ]
[1937] M.-A. Gutscher, J. Malavieille, S. Lallemand, and J.-Y. Collot. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett., 168:255--270, 1999. [ bib ]
[1938] J. H. Guynn and C. R. Lithgow-Bertelloni. Modeling mantle contributions to the global lithospheric stress field (abstract). Eos Trans. AGU, 82(47):T12C--0922, 2001. [ bib ]
[1939] Z. Gvirtzman, C. Faccenna, and T. W. Becker. Isostasy, flexure, and dynamic topography. Tectonophys., 683:255--271, 2016. [ bib ]
[1940] S. Gvirtzman and J. Fineberg. The initiation of frictional motion—the nucleation dynamics of frictional rupture. J. Geophys. Res.: Sol. Earth, 128(e2022JB025483), 2023. [ bib | DOI ]
[1941] Z. Gvirtzman and A. Nur. The formation of Mount Etna as the consequence of slab rollback. Nature, 401:782--785, 1999. [ bib ]
[1942] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. US Geol. Surv. Prof. Pap., 294-B(97), 1957. [ bib ]
[1943] B. R. Hacker, S. M. Peacock, G. A. Abers, and S. D. Holloway. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res.: Sol. Earth, 108:24627--24637, 2003. [ bib ]
[1944] B. R. Hacker and G. A. Abers. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem., Geophys., Geosys., 5(Q01005), 2004. [ bib | DOI ]
[1945] Bradley R Hacker. H2o subduction beyond arcs. Geochem., Geophys., Geosys., 9(Q03001), 2008. [ bib | DOI ]
[1946] R. A. Haddon and J. R. Cleary. Evidence for scattering of seismic PKP waves near the core-mantle boundary. Phys. Earth Planet. Inter., 8:211--234, 1974. [ bib ]
[1947] D. Hadley and H. Kanamori. Seismic structure of the Transverse Ranges. Geol. Soc. Am. Bull., 88:1469--1478, 1977. [ bib ]
[1948] M. Härri. Folding versus faulting of pressure sensitive elastoplastic rocks: application to the Jura Mountains. Phd-thesis, ETH Zürich, 1998. [ bib ]
[1949] E. Hafkenscheid, M. J. R. Wortel, and W. Spakman. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J. Geophys. Res.: Sol. Earth, 111(B08401), 2006. [ bib | DOI ]
[1950] B. H. Hager and R. J. O'Connell. Subduction zone dip angles and flow derived by plate motion. Tectonophys., 50:111--133, 1978. [ bib ]
[1951] B. H. Hager. Oceanic plate motions driven by lithospheric thickening and subducted slabs. Nature, 276:156--159, 1978. [ bib ]
[1952] B. H. Hager and R. J. O'Connell. Kinematic models of large-scale flow in the Earth's mantle. J. Geophys. Res.: Sol. Earth, 84:1031--1048, 1979. [ bib ]
[1953] B. H. Hager and R. J. O'Connell. A simple global model of plate dynamics and mantle convection. J. Geophys. Res.: Sol. Earth, 86:4843--4867, 1981. [ bib ]
[1954] B. H. Hager, R. J. O'Connell, and A. Raefsky. Subduction, back-arc spreading and global mantle flow. Tectonophys., 99:165--189, 1983. [ bib ]
[1955] B. H. Hager. Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res.: Sol. Earth, 89:6003--6015, 1984. [ bib ]
[1956] B. H. Hager, R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewoński. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313:541--545, 1985. [ bib ]
[1957] B. H. Hager and R. W. Clayton. Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In W. R. Peltier, editor, Mantle convection: Plate tectonics and global dynamics, volume 4 of Fluid Mech. Astrophys. Geophys., pages 657--763. Gordon and Breach Science Pub., New York, NY, 1989. [ bib ]
[1958] BH Hager and MA Richards. Long-wavelength variations in earth's geoid: physical models and dynamical implications. Phil. Trans. Royal Soc. London. Ser. A, 328:309--327, 1989. [ bib ]
[1959] H.G. Hahn. Bruchmechanik. B. G. Teubner, Stuttgart, 1976. [ bib ]
[1960] S. Haines. PP and PS interferometric images of near-seafloor sediments. In 81st Ann. Internat. Mtg. Soc. Expl. Geophys. (Expanded Abstracts), pages 1288--1292, 2011. [ bib ]
[1961] A John Haines, Lada L Dimitrova, Laura M Wallace, and Charles A Williams. Enhanced surface imaging of crustal deformation: Obtaining tectonic force fields using GPS data. Springer, 2015. [ bib ]
[1962] John Haines, Laura M Wallace, and Lada Dimitrova. Slow slip event detection in Cascadia using vertical derivatives of horizontal stress rates. J. Geophys. Res.: Sol. Earth, 124:5153--5173, 2019. [ bib ]
[1963] A. J. Haines and W. E. Holt. A procedure to obtain the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res.: Sol. Earth, 98:12057--12082, 1993. [ bib ]
[1964] Sebastian Hainzl and David Marsan. Dependence of the Omori-Utsu law parameters on main shock magnitude: Observations and modeling. J. Geophys. Res.: Sol. Earth, 113, 2008. [ bib | DOI ]
[1965] A. J. Hale, K.-D. Gottschaldt, G. Rosenbaum, L. Bourgouin, M. Bauchy, and H. Mühlhaus. Dynamics of slab tear faults: Insights from numerical modelling. Tectonophys., 483:58--70, 2010. [ bib ]
[1966] T. C. Hales, D. Abt, E. D. Humphreys, and J. Roering. Columbia River basalt eruptions and uplift of the Wallowa mountains. Nature, 438:842--845, 2005. [ bib ]
[1967] A. L. Hales. Convection currents in the earth. Roy. Astron. Soc., Geophys. Supp., 3:372--379, 1936. [ bib ]
[1968] A. L. Hales. Gravitational sliding and continental drift. Earth Planet. Sci. Lett., 6:31--34, 1969. [ bib ]
[1969] C. E. Hall, K. M. Fischer, E. M. Parmentier, and D. K. Blackman. The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. J. Geophys. Res.: Sol. Earth, 105:28009--28033, 2000. [ bib ]
[1970] R. Hall. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer based reconstructions, model and animations. J. Asian Earth Sci., 20:353--434, 2002. [ bib ]
[1971] C. E. Hall, M. Gurnis, M. Sdrolias, L. L. Lavier, and R. D. Muller. Catastrophic initiation of subduction following forced convergence at transform boundaries. Earth Planet. Sci. Lett., 212:15--30, 2003. [ bib ]
[1972] C. E. Hall and E. M. Parmentier. Influence of grain size evolution on convective instability. Geochem., Geophys., Geosys., 4(1029), 2003. [ bib | DOI ]
[1973] C. E. Hall and M. Gurnis. Strength of fracture zones from their barymetric and gravitational evolution. J. Geophys. Res.: Sol. Earth, 110, 2005. [ bib | DOI ]
[1974] Paul S Hall. On the thermal evolution of the mantle wedge at subduction zones. Phys. Earth Planet. Inter., 198:9--27, 2012. [ bib ]
[1975] Kara L Hall, Amanda L Vogel, and Kevin Crowston. Comprehensive collaboration plans: practical considerations spanning across individual collaborators to institutional supports. In Strategies for Team Science Success, pages 587--611. Springer, 2019. [ bib ]
[1976] H. Hamamoto, M. Yamano, S. Goto, M. Kinoshita, K. Fujino, and K. Wang. Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula. Geochem., Geophys., Geosys., 12(Q2011), 2011. [ bib | DOI ]
[1977] S. Hamdi, W. E. Schiesser, and G. W Griffiths. Method of lines. Scholarpedia, 2(7):2859, 2007. revision #124335. [ bib | DOI ]
[1978] W. B. Hamilton. An alternative Earth. GSA Today, 13:4--12, 2003. [ bib ]
[1979] R. B. Hamilton. Aftershocks of the Borrego mountain earthquake from April 12 to June 12, 1968. In The Borrego Mountain Earthquake of April 9, 1968, volume 787 of Geol. Surv. Profess. Paper, pages 31--54. U.S. Government Printing Center, 1972. [ bib ]
[1980] W. C. Hammond and E. D. Humphreys. Upper mantle seismic wave attenuation: The effect of realistic partial melt distribution. J. Geophys. Res.: Sol. Earth, 105:10975--10986, 2000. [ bib ]
[1981] W. C. Hammond and W. Thatcher. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[1982] W. C. Hammond, G. Blewitt, Z. Li, H.-P. Plag, and C. Kreemer. Contemporary uplift of the Sierra Nevada, western United States, from GPS and InSAR measurements. Geology, 40:667--670, 2012. [ bib ]
[1983] William C Hammond, Geoffrey Blewitt, and Corne Kreemer. Steady contemporary deformation of the central Basin and Range Province, western United States. J. Geophys. Res.: Sol. Earth, 119:5235--5253, 2014. [ bib ]
[1984] R. Han, T. Shimamoto, T. Hirose, J.-H. Ree, and J. Ando. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316:878--881, 2007. [ bib ]
[1985] Shuoshuo Han, Nathan L. Bangs, Suzanne M. Carbotte, Demian. M Saffer, and James C. Gibson. Links between sediment consolidation and Cascadia megathrust slip behaviour. Nature Geosc., 10:954--959, 2017. [ bib ]
[1986] Libo Han, Jia Cheng, Yanru An, Lihua Fang, Changsheng Jiang, Bo Chen, Zhongliang Wu, Jie Liu, Xiwei Xu, Ruifeng Liu, Zhixiang Yao, Changzai Wang, and Yushi Wany. Preliminary report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, earthquake. Seismol. Res. Lett., 89:557--569, 2018. [ bib ]
[1987] D. Han and J. Wahr. An analysis of anisotropic mantle viscosity, and its possible effects on post-glacial rebound. Phys. Earth Planet. Inter., 102:33--50, 1997. [ bib ]
[1988] L. Han and M. Gurnis. How valid are dynamical models of subduction and convection when plate motions are prescribed? Phys. Earth Planet. Inter., 110:235--246, 1999. [ bib ]
[1989] B. Hanan and D. Graham. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272:991--995, 1996. [ bib ]
[1990] G. Hancock, R. Anderson, O. Chadwick, and R. Finkel. Dating fluvial terraces with 10Be and 26Al profiles: Application to the Wind River, Wyoming. Geomorph., 27:1--2, 1999. [ bib ]
[1991] Thomas C. Hanks and Hiroo Kanamori. A moment magnitude scale. J. Geophys. Res.: Sol. Earth, 84:2348--2350, 1979. [ bib ]
[1992] L. N. Hansen, M. E. Zimmerman, and D. L. Kohlstedt. Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature, 492:415--418, 2012. [ bib ]
[1993] L. N. Hansen, Y.-H. Zhao, M. E. Zimmerman, and D. L. Kohlstedt. Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy. Earth Planet. Sci. Lett., 387:157--158, 2014. [ bib ]
[1994] Steven M Hansen, Ken Dueker, and Brandon Schmandt. Thermal classification of lithospheric discontinuities beneath USArray. Earth Planet. Sci. Lett., 431:36--47, 2015. [ bib ]
[1995] L. N. Hansen, C. Qib, and J. M. Warren. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere. Proc. Natl. Acad. Sci. USA, 113:10503--10506, 2016. [ bib ]
[1996] L. N. Hansen, J. M. Warren, M. E. Zimmerman, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth Planet. Sci. Lett., 445:92--103, 2016. [ bib ]
[1997] L. N. Hansen, C. P. Conrad, Y. Boneh, P. Skemer, J. M. Warren, and D. L. Kohlstedt. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model. J. Geophys. Res.: Sol. Earth, 121:7137--7160, 2016. [ bib | DOI ]
[1998] Lars N Hansen, Kathryn M Kumamoto, Christopher A Thom, David Wallis, William B Durham, David L Goldsby, Thomas Breithaupt, Cameron D Meyers, and David L Kohlstedt. Low-temperature plasticity in olivine: Grain size, strain hardening, and the strength of the lithosphere. J. Geophys. Res.: Sol. Earth, 124:5427--5449, 2019. [ bib ]
[1999] J. L. Hardebeck and E. Hauksson. Crustal stress field in southern California and its implications for fault mechanics. J. Geophys. Res.: Sol. Earth, 106:21859--21882, 2001. [ bib ]
[2000] J. L. Hardebeck and E. Hauksson. Stress orientations obtained from earthquake focal mechanisms; what are appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91:250--262, 2001. [ bib ]
[2001] J. L. Hardebeck and P. M. Shearer. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am., 92:2264--2276, 2002. [ bib ]
[2002] J. L. Hardebeck and P. M. Shearer. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seismol. Soc. Am., 93:2434--2444, 2003. [ bib ]
[2003] J. L. Hardebeck and A. J. Michael. Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res.: Sol. Earth, 109, 2004. [ bib | DOI ]
[2004] J. L. Hardebeck. Stress triggering and earthquake probability estimates. J. Geophys. Res.: Sol. Earth, 109(B04310), 2004. [ bib | DOI ]
[2005] J. L. Hardebeck, P. M. Shearer, and E. Hauksson. A new earthquake focal mechanism catalog for southern California. In 2005 SCEC Annual Meeting Abstracts, page 130, Los Angeles, CA, 2005. Southern California Earthquake Center. [ bib ]
[2006] J. L. Hardebeck. Homogeneity of small-scale earthquake faulting, stress and fault strength. Bull. Seismol. Soc. Am., 96:1675--1688, 2006. [ bib ]
[2007] J. L. Hardebeck and A. J. Michael. Damped regional-scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. J. Geophys. Res.: Sol. Earth, 111(B11310), 2006. [ bib | DOI ]
[2008] J. L. Hardebeck. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett., 39(L21313), 2012. [ bib | DOI ]
[2009] J. Hardebeck, B. Aagaard, T. W. Becker, B. Shaw, and J. Shaw. Workshop Report for Community Stress Model (CSM) 2012 Workshop, SCEC Award 12114. Available online at sceczero.usc.edu/dashboard/darel/search/product?pid=32, accessed 10/2013, 2013. [ bib ]
[2010] Jeanne L Hardebeck. Stress orientations in subduction zones and the strength of subduction megathrust faults. Science, 349:1213--1216, 2015. [ bib ]
[2011] J. L. Hardebeck and T. Okada. Temporal stress changes caused by earthquakes: A review. J. Geophys. Res.: Sol. Earth, 123:1350--1365, 2018. [ bib ]
[2012] Jeanne L Hardebeck. Physical properties of the crust influence aftershock locations. J. Geophys. Res.: Sol. Earth, 127:e2022JB024727, 2022. [ bib ]
[2013] J. L. Hardebeck, J. J. Nazareth, and E. Hauksson. The static stress change triggering model: Constraints from two southern California aftershock sequences. J. Geophys. Res.: Sol. Earth, 103:24427--24437, 1998. [ bib ]
[2014] J. W. Harden and J. C. Matti. Holocene and late Pleistocene slip rates on the San Andreas Fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology. Geol. Soc. Am. Bull., 101:1107--1117, 1989. [ bib ]
[2015] L. A. Hardie. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24:279--283, 1996. [ bib ]
[2016] J. F. Harper. On the driving forces of plate tectonics. Geophys. J. R. Astr. Soc., 40:465--474, 1975. [ bib ]
[2017] J. F. Harper. Asthenosphere flow and plate motions. Geophys. J. R. Astr. Soc., 55:87--110, 1978. [ bib ]
[2018] J. F. Harper. Mantle flow and plate motions. Geophys. J. R. Astr. Soc., 87:155--171, 1986. [ bib ]
[2019] R. A. Harris, M. W. Vorkink, C. Prasetyadi, N. Roosmawati, E. Zobell, and M. Apthorpe. Transition from subduction to arc-continent collision: Geological and neotectonic evolution of Savu, Indonesia. Geosphere, 5:152--171, 2009. [ bib ]
[2020] Ruth A Harris, Michael Barall, Dudley J Andrews, Benchun Duan, Shuo Ma, Eric M Dunham, A-A Gabriel, Yoshihiro Kaneko, Yuko Kase, Brad T Aagaard, et al. Verifying a computational method for predicting extreme ground motion. Seismol. Res. Lett., 82:638--644, 2011. [ bib ]
[2021] Ruth A. Harris, Michael Barall, Brad Aagaard, Shuo Ma, Daniel Roten, Kim Olsen, Benchun Duan, Dunyu Liu, Bin Luo, Kangchen Bai, Jean-Paul Ampuero, Yoshihiro Kaneko, Alice-Agnes Gabriel, Kenneth Duru, Thomas Ulrich, Stephanie Wollherr, Zheqiang Shi, Eric Dunham, Sam Bydlon, Zhenguo Zhang, Xiaofei Chen, Surendra Nadh Somala, Christian Pelties, Josué Tago, Victor Manuel Cruz-Atienza, Jeremy Kozdon, Eric Daub, Khurram Aslam, Yuko Kase, Kyle Withers, and Luis Dalguer. A suite of exercises for verifying dynamic earthquake rupture codes. Seismol. Res. Lett., 89:1146--1162, 2018. [ bib ]
[2022] Charles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R'io, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585:357--362, 2020. [ bib ]
[2023] R. A. Harris. Temporal distribution of strain in the active Banda orogen: a reconciliation of rival hypotheses. J. Southeast Asian Earth Sci., 6:373--386, 1991. [ bib ]
[2024] R. A. Harris and R. W. Simpson. Changes in static stress on Southern California faults after the 1992 Landers earthquake. Nature, 360:251--254, 1992. [ bib ]
[2025] R. A. Harris, R. W. Simpson, and P. A. Reasenberg. Influence of static stress changes on earthquake locations in Southern California. Nature, 375:221--224, May 1995. [ bib ]
[2026] R. A. Harris and R. W. Simpson. In the shadow of 1857 -- the effect of the great Ft. Tejon earthquake on subsequent earthquakes in Southern California. Geophys. Res. Lett., 23:229--232, February 1996. [ bib ]
[2027] R. A. Harris. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res.: Sol. Earth, 103:24347--24358, 1998. [ bib ]
[2028] R. A. Harris, R. K. Sawyer, and M. G. Audley-Charles. Collisional melange development: geologic associations of active melange-forming processes with exhumed melange facies in the western Banda orogen, Indonesia. Tectonics, 17:458--480, 1998. [ bib ]
[2029] T. M. Harrison, J. Blichert-Toft, W. Muller, F. Albarede, P. Holden, and S. J. Mojzsis. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science, 310:1947--1950, 2005. [ bib ]
[2030] C. G. A. Harrison. Spreading rates and heat flow. Geophys. Res. Lett., 7:1041--1044, 1980. [ bib ]
[2031] D.L. Harry, D. S. Sawyer, and W.P. Leeman. The mechanics of continental extension in western North America: implications for the magmatic and structural evolution of the Great Basin. Earth Planet. Sci. Lett., 117:59--71, 1993. [ bib ]
[2032] Stanley R Hart. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309:753--757, 1984. [ bib ]
[2033] S. R. Hart and A. Zindler. Constraints on the nature and development of chemical heterogeneities in the mantle. In W. R. Peltier, editor, Mantle Convection: Plate Tectonics and Global Dynamics, pages 261--387. Gordon and Breach Science Pub., New York, 1989. [ bib ]
[2034] S. R. Hart, E. H. Hauri, L. A. Oschmann, and J. A. Whitehead. Mantle plumes and entrainment: isotopic evidence. Science, 256:517--520, 1992. [ bib ]
[2035] W. K. Hartmann and D. R. Davis. Satellite-sized planetesimals and lunar origing. Icarus, 504--515, 1975. [ bib ]
[2036] Chris JH Hartnady. About turn for supercontinents. Nature, 352:476--478, 1991. [ bib ]
[2037] R. Hartog and S. Y. Schwartz. Subduction-induced strain in the upper mantle east of the Mendocino triple junction, California. J. Geophys. Res.: Sol. Earth, 105:7909--7930, 2000. [ bib ]
[2038] R. Hartog and S. Y. Schwartz. Depth-dependent mantle anisotropy below the San Andreas fault system: Apparent splitting parameters and waveforms. J. Geophys. Res.: Sol. Earth, 106:4155--4168, 2001. [ bib ]
[2039] A. Hasegawa, K. Yoshida, and T. Okada. Nearly complete stress drop in the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth Planet. Space, 63:703--707, 2011. [ bib ]
[2040] A. Hasegawa, K. Yoshida, Y. Asano, T. Okada, T. Iinuma, and Y. Ito. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 355:231--243, 2012. [ bib ]
[2041] Akira Hasegawa, Norihito Umino, and Akio Takagi. Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophys., 47:43--58, 1978. [ bib ]
[2042] A. Hashima, T. W. Becker, A. M. Freed, H. Sato, and D. A. Okaya. Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence of 3-D elastic structure around Japan. Earth, Planet. Space, 68(159), 2016. [ bib ]
[2043] Akinori Hashima and Toshinori Sato. A megathrust earthquake cycle model for Northeast Japan: bridging the mismatch between geological uplift and geodetic subsidence. Earth, Planet. Space, 69(23), 2017. [ bib ]
[2044] C. Hashimoto, A. Noda, T. Sagiya, and M. Matsuúra. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nature Geosc., 2:141--144, 2009. [ bib ]
[2045] Zvi Hashin and Shmuel Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech. Phys. Solids, 11:127--140, 1963. [ bib ]
[2046] N. A. Haskell. The motion of a fluid under a surface load. Physics, 6:265--269, 1935. [ bib ]
[2047] Rakib Hassan, R Dietmar Müller, Michael Gurnis, Simon E Williams, and Nicolas Flament. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 533:239--242, 2016. [ bib ]
[2048] R. Hassani, D. Jongmans, and J. Chéry. Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J. Geophys. Res.: Sol. Earth, 102:17951--17965, 1997. [ bib ]
[2049] D. Hasterok. A heat flow based cooling model for tectonic plates. Earth Planet. Sci. Lett., 361:34--43, 2013. [ bib ]
[2050] Derrick Hasterok, Jacqueline A Halpin, Alan S Collins, Martin Hand, Corné Kreemer, Matthew G Gard, and Stijn Glorie. New maps of global geological provinces and tectonic plates. Earth Sci. Rev., 231:104069, 2022. [ bib ]
[2051] D. Hatzfeld, E. Karagianni, I. Kassaras, A. Kiratzi, E. Louvari, H. Lyon-Caen, K. Makropoulos, P. Papadimitriou, G. Bock, and K. Priestley. Shear wave anisotropy in the upper mantle beneath the Aegean related to internal deformation. J. Geophys. Res.: Sol. Earth, 106:30737--30753, 2001. [ bib ]
[2052] D. Hatzfeld and P. Molnar. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys., 48(RG2005), 2010. [ bib | DOI ]
[2053] S. A. Hauck, R. J. Phillips, and A. M. Hofmeister. Variable conductivity: effects on the thermal structure of subducting slabs. Geophys. Res. Lett., 26:3257--3260, 1999. [ bib ]
[2054] E. Hauksson et al. The 1992 Landers earthquake sequence: Seismological observations. J. Geophys. Res.: Sol. Earth, 98:19835--19858, 1993. [ bib ]
[2055] E. Hauksson. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. J. Geophys. Res.: Sol. Earth, 105:13875--13903, 2000. [ bib ]
[2056] E. Hauksson, W.-C Chi, and P. Shearer. Comprehensive waveform cross-correlation of southern california seismograms: Part 1. refined hypocenters obtained using the double-difference method and tectonic implications (abstract). Eos Trans. AGU, 84(46):S21D--0325, 2003. [ bib ]
[2057] E. Hauksson. Large earthquakes, aftershocks, and background seismicity: analysis of interseismic and coseismic spatial seismicity patterns in southern California. Southern California Earthquake Center Annual Meeting, Proceedings and Abstracts, 18:145, 2008. Available online at www.scec.org/meetings/2008am/2008SCECAnnualMeetingVolume.pdf, accessed 01/2009. [ bib ]
[2058] E. Hauksson. Spatial separation of large earthquakes, aftershocks, and background seismicity: Analysis of interseismic and coseismic seismicity patterns in Southern California. Pure Appl. Geophys., 167:979--997, 2010. [ bib ]
[2059] E. Hauksson and J. S. Haase. Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central Transverse Ranges, California. J. Geophys. Res.: Sol. Earth, 102:5423--5452, 1997. [ bib ]
[2060] Erik H Hauri and Stanley R Hart. Rhenium abundances and systematics in oceanic basalts. Chem. Geol., 139:185--205, 1997. [ bib ]
[2061] Chris J Hawkesworth, B Dhuime, AB Pietranik, PA Cawood, AIS Kemp, and CD Storey. The generation and evolution of the continental crust. J. Geol. Soc., 167(2):229--248, 2010. [ bib ]
[2062] W. B. Hawley, R. Allen, and M. A. Richards. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate. Science, 353:1406--1408, 2016. [ bib ]
[2063] William B Hawley and Richard M Allen. The fragmented death of the Farallon plate. Geophys. Res. Lett., 46:7386--7394, 2019. [ bib ]
[2064] JC Hawthorne and AM Rubin. Laterally propagating slow slip events in a rate and state friction model with a velocity-weakening to velocity-strengthening transition. J. Geophys. Res.: Sol. Earth, 118:3785--3808, 2013. [ bib ]
[2065] JC Hawthorne and NM Bartlow. Observing and modeling the spectrum of a slow slip event. J. Geophys. Res.: Sol. Earth, 123:4243--4265, 2018. [ bib ]
[2066] G. Hayes. Slab2 - A Comprehensive Subduction Zone Geometry Model. Technical report, United States Geological Survey, 2018. U.S. Geological Survey data release. [ bib | DOI ]
[2067] N. Hayman and L. L. Lavier. The geologic record of deep episodic tremor and slip. Geology, 42:195--198, 2014. [ bib ]
[2068] J. D. Hays and W. C. Pitman III. Lithospheric plate motion, sea level changes, and climatic and ecological consequences. Nature, 246:18--22, 1973. [ bib ]
[2069] James D Hays, John Imbrie, and Nicholas J Shackleton. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194:1121--1132, 1976. [ bib ]
[2070] Bruce W Hayward, Hugh R Grenfell, Ashwaq T Sabaa, Kate J Clark, Ursula A Cochran, and Alan S Palmer. Subsidence-driven environmental change in three Holocene embayments of Ahuriri Inlet, Hikurangi subduction margin, New Zealand. New Zealand J. Geol. Geophys., 58:344--363, 2015. [ bib ]
[2071] Changrong He, Zeli Wang, and Wenming Yao. Frictional sliding of gabbro gouge under hydrothermal conditions. Tectonophys., 445:353--362, 2007. [ bib ]
[2072] D. Healy, S. M. Reddy, N. E. Timms, E. M. Gray, and A. V. Brovarone. Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs. Earth Planet. Sci. Lett., 283:75--86, 2009. [ bib ]
[2073] R. F. S. Hearmon. An introduction to applied anisotropic elasticity. Oxford University Press, London, 1961. [ bib ]
[2074] E. H. Hearn. What can GPS tell us about the dynamics of postseismic deformation? Geophys. J. Int., 155:753--777, 2003. [ bib ]
[2075] E. H. Hearn, F. F. Pollitz, W. R. Thatcher, and C. T. Onishi. How do “ghost transients” from past earthquakes affect GPS slip rate estimates on southern California faults? Geochem., Geophys., Geosys., 14:828--838, 2013. [ bib ]
[2076] E. H. Hearn. 2018 crm workshop report. Technical Report Available online at files.scec.org/s3fs-public/reports/2018/18202_report.pdf, accessed 02/2019, Southern California Earthquake center, University of Southern California, Los Angeles, 2018. [ bib ]
[2077] E. H. Hearn. Kinematics of southern California crustal deformation: Insights from finite-element models. Tectonophys., 758:12--28, 2019. [ bib ]
[2078] T. M. Hearn. Anisotropic Pn tomography in the western United States. J. Geophys. Res.: Sol. Earth, 101:8403--8414, 1996. [ bib ]
[2079] E. H. Hearn, E. D. Humphreys, M. Chai, and J. M. Brown. Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics. J. Geophys. Res.: Sol. Earth, 102:11943--11956, 1997. [ bib ]
[2080] E. H. Hearn, E. D. Humphreys, M. Chai, and J. M. Brown. Correction to “Effect of anisotropy on oceanic upper mantle temperatures, structure, and dynamics” by Elizabeth Harding Hearn, Eugene D. Humphreys, Mu Chai, and J. Michael Brown. J. Geophys. Res.: Sol. Earth, 104:1193--1195, 1999. [ bib ]
[2081] T. M. Hearn. Uppermost mantle velocities and anisotropy beneath Europe. J. Geophys. Res.: Sol. Earth, 104:15123--15139, 1999. [ bib ]
[2082] T. H. Heaton. Tidal triggering of earthquakes. Geophys. J. R. Astr. Soc., 43:307--326, 1972. [ bib ]
[2083] T. H. Heaton. Tidal triggering of earthquakes. Bull. Seismol. Soc. Am., 72:2181--2200, 1982. [ bib ]
[2084] T. H. Heaton. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter., 64:1--20, 1990. [ bib ]
[2085] H. J. van Heck and P. J. Tackley. Planforms of self-consistently generated plate tectonics in 3-D spherical geometry. Geophys. Res. Lett., 35(L19312), 2008. [ bib | DOI ]
[2086] H. J. van Heck and P. J. Tackley. Plate tectonics on super-Earths: equally or more likely than on Earth. Earth Planet. Sci. Lett., 310:252--261, 2011. [ bib ]
[2087] M. A. H. Hedlin, P. M. Shearer, and P. S. Earle. Seismic evidence for small-scale heterogeneity throughout the Earth's mantle. Nature, 387:145--150, 1997. [ bib ]
[2088] Bruce C Heezen, Marie Tharp, and Maurice Ewing. The floors of the oceans, volume 65. Geological Society of America, 1959. [ bib ]
[2089] Bruce C Heezen, Marie Tharp, Heinrich C Berann, Heinz Vielkind, and Suzanne B MacDonald. World ocean floor. US Navy, 1977. Available online at lccn.loc.gov/2010586277, accessed 01/2023. [ bib ]
[2090] O. Heidbach. Der Mittelmeerraum: numerische Modellierung der Lithosphärendynamik im Vergleich mit Ergebnissen aus der Satellitengeodäsie, volume 525 of Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften: Reihe C, Dissertationen. Beck, München, 2000. [ bib ]
[2091] O. Heidbach, M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller. The World Stress Map database release 2008, 2008. [ bib | DOI ]
[2092] Oliver Heidbach, Mojtaba Rajabi, Xiaofeng Cui, Karl Fuchs, Birgit Müller, John Reinecker, Karsten Reiter, Mark Tingay, Friedemann Wenzel, Furen Xie, et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophys., 744:484--498, 2018. [ bib ]
[2093] H. J. van Heijst and J. H. Woodhouse. Global high-resolution phase velocity distributions of overtone and fundamental-mode surface waves determined by mode branch stripping. Geophys. J. Int., 137:601--620, 1999. [ bib ]
[2094] M. Heimpel and P. Olson. A seismodynamical model of lithosphere deformation: Development of continental and oceanic rift networks. J. Geophys. Res.: Sol. Earth, 101:16155--16176, 1996. [ bib ]
[2095] M. Heimpel. Critical behaviour and the evolution of fault strength during earthquake cycles. Nature, 388:865--868, 1997. [ bib ]
[2096] M. Heimpel. Aseismic slip in earthquake nucleation and self-similarity: evidence from Parkfield, California. Earth Planet. Sci. Lett., 157:249--254, 1998. [ bib ]
[2097] Alexander Heinecke, Alexander Breuer, Sebastian Rettenberger, Michael Bader, Alice-Agnes Gabriel, Christian Pelties, Arndt Bode, William Barth, Xiang-Ke Liao, Karthikeyan Vaidyanathan, Mikhail Smelyanskiy, and Pradeep Dubey. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 3--14. IEEE, 2014. [ bib ]
[2098] M. Heintz, E. Debayle, and A. Vauchez. Upper mantle structure of the South American continent and neighboring oceans from surface wave tomography. Tectonophys., 406:115--139, 2005. [ bib ]
[2099] M. Heintz and B. L. N. Kennett. The apparently isotropic Australian upper mantle. Geophys. Res. Lett., 33(L15319), 2006. [ bib | DOI ]
[2100] Wiebke Heise, T Grant Caldwell, Edward A Bertrand, Graham J Hill, Stewart L Bennie, and Yasuo Ogawa. Changes in electrical resistivity track changes in tectonic plate coupling. Geophys. Res. Lett., 40:5029--5033, 2013. [ bib ]
[2101] W. Heiskanen. Isostatic tables for the reduction of gravimetric observations calculated on the basis of Airy's hypothesis. Bulletin Géodésique, 30:110--129, 1931. [ bib ]
[2102] T. Heister, J. Dannberg, R. Gassmöller, and W. Bangerth. High accuracy mantle convection simulation through modern numerical methods – II: Realistic models and problems. Geophys. J. Int., 210:833--851, 2017. [ bib ]
[2103] G. Helffrich. Topography of the transition zone seismic discontinuities. Rev. Geophys., 38:141--158, 2000. [ bib ]
[2104] G. Helffrich, D. A. Wiens, E. Vera, S. Barrientos, P. Shore, S. Robertson, and R. Adaros. A teleseismic shear-wave splitting study to investigate mantle flow around South America and implications for plate-driving forces. Geophys. J. Int., 149:F1--F7, 2002. [ bib ]
[2105] P. L. Heller, D. L. Anderson, and C. L. Angevine. Cretaceous pulse of rapid seafloor spreading: real or necessary? Geology, 24:491--494, 1996. [ bib ]
[2106] DV Helmberger, L Wen, and X Ding. Seismic evidence that the source of the iceland hotspot lies at the core--mantle boundary. Nature, 396:251--255, 1998. [ bib ]
[2107] Agnes Helmstetter and Didier Sornette. Båth's law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett., 30(2069), 2003. [ bib | DOI ]
[2108] Agnès Helmstetter and Didier Sornette. Foreshocks explained by cascades of triggered seismicity. J. Geophys. Res.: Sol. Earth, 108(2457), 2003. [ bib | DOI ]
[2109] A. Helmstetter and B. E. Shaw. Relation between stress heterogeneity and aftershock rate in the rate-and-state model. J. Geophys. Res.: Sol. Earth, 111(B07304), 2006. [ bib | DOI ]
[2110] T. J. Henstock, A. Levander, and J. A. Hole. Deformation in the lower crust of the San Andreas Fault system in Northern California. Science, 278:650--653, 1997. [ bib ]
[2111] F.S. Henyey and N. Pomphrey. Self-consistent elastic moduli of a cracked solid. Geophys. Res. Lett., 9:903--906, August 1982. [ bib ]
[2112] J. W. Herbert, M. L. Cooke, M. Oskin, and O. Difo. How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology, 42:71--75, 2013. [ bib ]
[2113] Frédéric Herman, Diane Seward, Pierre G Valla, Andrew Carter, Barry Kohn, Sean D Willett, and Todd A Ehlers. Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504:423--426, 2013. [ bib ]
[2114] Frédéric Herman, Fien De Doncker, Ian Delaney, Günther Prasicek, and Michèle Koppes. The impact of glaciers on mountain erosion. Nature Rev. Earth & Environ., 2:422--435, 2021. [ bib ]
[2115] C Hernandez and F Speranza. Understanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone. Tectonics, 33:1964--1988, 2014. [ bib ]
[2116] J. W. Hernlund, C. Thomas, and P. J. Tackley. Phase boundary double crossing and the structure of Earth's deep mantle. Nature, 434:882--886, 2005. [ bib ]
[2117] J. W. Hernlund and C. Houser. On the statistical distribution of seismic velocities in the Earth's deep mantle. Earth Planet. Sci. Lett., 265:423--437, 2008. [ bib ]
[2118] J. W. Hernlund and P. J. Tackley. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter., 171:48--54, 2008. [ bib ]
[2119] Robert Herrendörfer, Taras Gerya, and Ylona Van Dinther. An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. J. Geophys. Res.: Sol. Earth, 123:5018--5051, 2018. [ bib ]
[2120] R. Herrendörfer, Y. van Dinther, T. Gerya, and L. A. Dalguer. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone. Nature Geosc., 8:471--474, 2015. [ bib ]
[2121] C. Herring. Diffusional viscosity of a polycrystalline solid. J. Appl. Phys., 21:437--445, 1950. [ bib ]
[2122] R. B. Herrmann, H. Benz, and C. J. Ammon. Monitoring the earthquake process in North America. Bull. Seismol. Soc. Am., 101:2609--2625, 2011. Catalog available online at www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/mech.html, accessed 12/2014. [ bib ]
[2123] C. Herzberg, P. D. Asimow, N. Arndt, Y. Niu, C. M. Lesher, J. G. Fitton, M. J. Cheadle, and A. D. Saunders. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem., Geophys., Geosys., 8(Q02006), 2007. [ bib | DOI ]
[2124] Claude Herzberg, Kent Condie, and Jun Korenaga. Thermal history of the earth and its petrological expression. Earth Planet. Sci. Lett., 292:79--88, 2010. [ bib ]
[2125] Claude Herzberg, Tibor Gasparik, and Hiroshi Sawamoto. Origin of mantle peridotite: constraints from melting experiments to 16.5 gpa. J. Geophys. Res.: Sol. Earth, 95:15779--15803, 1990. [ bib ]
[2126] C. T. Herzberg. Lithosphere peridotites of the Kaapvaal craton. Earth Planet. Sci. Lett., 120:13--29, 1993. [ bib ]
[2127] C. Herzberg and J. Zhang. Melting experiments on anhydrous peridotite KLB-1: Composition of magmas in the upper mantle and transition zone. J. Geophys. Res.: Sol. Earth, 101:8271--8295, 1996. [ bib ]
[2128] H. Hess. History of ocean basins. In A. Engeln, H. James, and B. Leonard, editors, Petrologic Studies - A Volume in Honor of A. F. Buddington, pages 599--620. Geol. Soc. Am., New York, 1962. [ bib ]
[2129] H. H. Hess. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203:629--631, 1964. [ bib ]
[2130] Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comp. Phys., 363:55--78, 2018. [ bib ]
[2131] E. Hetland and B. H. Hager. Postseismic and interseismic displacements near a strike-slip fault: A two-dimensional theory for general linear viscoelastic rheologies. J. Geophys. Res.: Sol. Earth, 110(B10401), 2005. [ bib | DOI ]
[2132] E. A. Hetland and B. H. Hager. Interseismic strain accumulation: Spin-up, cycle invariance, and irregular rupture sequences. Geochem., Geophys., Geosys., 7(5), 2006. [ bib ]
[2133] E. A. Hetland and B. H. Hager. The effects of rheological layering on post-seismic deformation. Geophys. J. Int., 166:277--292, 2006. [ bib ]
[2134] R. Hetzel, S. Niedermann, M. X. Tao, P. W. Kubik, and M. R. Strecker. Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan. J. Geophys. Res.: Sol. Earth, 111(F03012), 2006. [ bib | DOI ]
[2135] A. Heuret and S. Lallemand. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter., 149:31--51, 2005. [ bib ]
[2136] A. Heuret, F. Funiciello, C. Faccenna, and S. Lallemand. Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones. Earth Planet. Sci. Lett., 256:473--483, 2007. [ bib ]
[2137] A. Heuret, S. Lallemand, F. Funiciello, C. Piromallo, and C. Faccenna. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem., Geophys., Geosys., 12(Q01004), 2011. [ bib | DOI ]
[2138] Arnauld Heuret, CP Conrad, F Funiciello, Serge Lallemand, and L Sandri. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys. Res. Lett., 39(L05304), 2012. [ bib | DOI ]
[2139] JM Hewitt, DP McKenzie, and NO Weiss. Dissipative heating in convective flows. J. Fluid Mech., 68:721--738, 1975. [ bib ]
[2140] R. N. Hey. Speculative propagating rift-subduction zone interactions with possible consequences for continental margin evolution. Geology, 26:247--250, 1998. [ bib ]
[2141] Björn H Heyn, Clinton P Conrad, and Reidar G Trønnes. How thermochemical piles can (periodically) generate plumes at their edges. J. Geophys. Res.: Sol. Earth, 125(6):e2019JB018726, 2020. [ bib ]
[2142] S. P. Hicks, S. E.J. Nippress, and A. Rietbrock. Sub-slab mantle anisotropy beneath south-central Chile. Earth Planet. Sci. Lett., 357:203--213, 2012. [ bib ]
[2143] S. P. Hicks, A. Rietbrock, I. M. A. Ryder, C.-S. Lee, and M. Miller. Anatomy of a megathrust: The 2010 M8. 8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth Planet. Sci. Lett., 405:142--155, 2014. [ bib ]
[2144] C. F. Hieronymus. Control on seafloor spreading geometries by stress- and strain-induced lithospheric weakening. Earth Planet. Sci. Lett., 222:177--189, 2004. [ bib ]
[2145] Alan R Hildebrand, Glen T Penfield, David A Kring, Mark Pilkington, Antonio Camargo Z, Stein B Jacobsen, and William V Boynton. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19:867--871, 1991. [ bib ]
[2146] H. H. Hill. The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London Sec. A, 65:349--354, 1952. [ bib ]
[2147] G. Hillers, P. M. Mai, Y. Ben-Zion, and J.-P. Ampuero. Statistical properties of seismicity of fault zones at different evolutionary stages. Geophys. J. Int., 169:515--533, 2007. [ bib ]
[2148] R. D. van der Hilst. Changing views on Earth's deep mantle. Science, 306:817--818, 2004. [ bib ]
[2149] R. D. van der Hilst, E. R. Engdahl, W. Spakman, and T. Nolet. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 353:47--53, 1991. [ bib ]
[2150] R. D. van der Hilst and T. Seno. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Planet. Sci. Lett., 120:395--407, 1993. [ bib ]
[2151] R. D. van der Hilst and P. Mann. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America. Geology, 22:451--454, 1994. [ bib ]
[2152] R. D. van der Hilst. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374:154--157, 1995. [ bib ]
[2153] R. D. van der Hilst, S. Widiyantoro, and E. R. Engdahl. Evidence of deep mantle circulation from global tomography. Nature, 386:578--584, 1997. [ bib ]
[2154] R. D. van der Hilst and H. Kárason. Aspherical structure of the bottom half of Earth's mantle. Eos Trans. AGU, 79:213, 1998. [ bib ]
[2155] R. D. van der Hilst and H. Kárason. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science, 283:1885--1887, 1999. [ bib ]
[2156] D. Hindle and M. Burkhard. Strain, displacement and rotation associated with the formation of curvature in fold belts; the example of the jura arc. J. Struct. Geol., 21:1089--1101, 1999. [ bib ]
[2157] D. Hindle, O. Besson, and M. Burkhard. A model of displacement and strain for arc-shaped mountain belts applied to the jura arc. J. Struct. Geol., 22:1285--1296, 2000. [ bib ]
[2158] D. J. J. van Hinsbergen, P. Kapp, G. Dupont-Nivet, P Lippert, P. DeCelles, and T. Torsvik. Restoration of Cenozoic deformation in Asia, and the size of Greater India. Tectonics, 30(TC5003), 2011. [ bib | DOI ]
[2159] K.-G. Hinzen. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophys., 377:325--356, 2003. [ bib ]
[2160] Takayuki Hirata. Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales. Pure Appl. Geophys., 131:157--170, 1989. [ bib ]
[2161] Ken-ichi Hirauchi, Kumi Fukushima, Masanori Kido, Jun Muto, and Atsushi Okamoto. Reaction-induced rheological weakening enables oceanic plate subduction. Nature Comm., 7:1--7, 2016. [ bib ]
[2162] A. Hirn. Anisotropy in the continental upper mantle: possible evidence from explosion seismology. Geophys. J. Int., 49:49--58, 1977. [ bib ]
[2163] Kei Hirose, Stéphane Labrosse, and John Hernlund. Composition and state of the core. Ann. Rev. Earth Planet. Sci., 41:657--691, 2013. [ bib ]
[2164] K. Hirose, Y. W. Fei, Y. Z. Ma, and H. K. Mao. The fate of subducted basaltic crust in the Earth's lower mantle. Nature, 397:53--56, 1999. [ bib ]
[2165] M. Hirschmann. Mantle solidus: Experimental constraints and the effect of periodite composition. Geochem., Geophys., Geosys., (2000GC000070), 2000. [ bib ]
[2166] M. M. Hirschmann. Water, melting, and the deep Earth H2O cycle. Ann. Rev. Earth Planet. Sci., 34:629--653, 2006. [ bib ]
[2167] M. M. Hirschmann. Partial melt in the oceanic low velocity zone. Phys. Earth Planet. Inter., 179:60--71, 2010. [ bib ]
[2168] C. Hirt and M. Rexer. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Observ. Geoinf., 39:103--112, 2015. [ bib ]
[2169] Greg Hirth, Christian Teyssier, and James W Dunlap. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int. J. Earth Sci., 90:77--87, 2001. [ bib ]
[2170] G. Hirth and D. L. Kohlstedt. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono., pages 83--105. American Geophysical Union, Washington DC, 2004. [ bib ]
[2171] Greg Hirth and David L Kohlstedt. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144:93--108, 1996. [ bib ]
[2172] Vala Hjörleifsdóttir and Göran Ekström. Effects of three-dimensional Earth structure on CMT earthquake parameters. Phys. Earth Planet. Inter., 179:178--190, 2010. [ bib ]
[2173] D. Hoang, T. W. Becker, S. Kenner, and Y. Fialko. Finite element and boundary element benchmarks for the post-seismic deformation. Proceedings of the 2003 Annual SCEC Meeting, 2003. [ bib ]
[2174] K. M. Hodgkinson, R. S. Stein, and G. C. P. King. The 1954 Rainbow Mountain--Fairview Peak--Dixie Valley earthquakes: A triggered normal faulting sequence. J. Geophys. Res.: Sol. Earth, 101:25459--25471, 1996. [ bib ]
[2175] PF Hoffman. Rodinia, Gondwanaland, Pangea, and Amasia: Alternating kinematic scenarios of supercontinent fusion. Eos, 73:282, 1992. [ bib ]
[2176] Paul F Hoffman. Tectonic genealogy of north america. In van der Pluijm. B. A. and S. Marshak, editors, Earth structure: An introduction to structural geology and tectonics, pages 459--464. McGraw-Hill, New York, 1997. [ bib ]
[2177] Paul F Hoffman, Alan J Kaufman, Galen P Halverson, and Daniel P Schrag. A Neoproterozoic snowball earth. Science, 281:1342--1346, 1998. [ bib ]
[2178] P. F. Hoffmann and D. P. Schrag. Snowball earth. Scientific American, 282:68--75, 2000. [ bib ]
[2179] P. F. Hoffman, D. S. Abbot, Y. Ashkenazy, D. I. Benn, J. J. Brocks, P. A. Cohen, and I. J. Fairchild. Snowball earth climate dynamics and Cryogenian geology-geobiology. Science Adv., 3:e1600983, 2017. [ bib ]
[2180] P. Hoffmann. Continental transform tectonics, Great Slave Lake shear zone (ca 1.9 Ga), northwest Canada. Geology, 15:785--788, 1987. [ bib ]
[2181] P. Hoffmann. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Ann. Rev. Earth Planet. Sci., 16:543--603, 1988. [ bib ]
[2182] P. Hoffmann. Speculations on Laurentia's first gigayear (2.0--1.0 Ga). Geology, 17:135--138, 1989. [ bib ]
[2183] P. Hoffmann. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252:1409--1412, 1991. [ bib ]
[2184] P. Hoffmann. Orographic precipitation, erosional unloading, and tectonic style. Geology, 25:195--198, 1993. [ bib ]
[2185] P. F. Hoffmann, A. J. Kaufman, G. P. Halverson, and D. P. Schrag. A neoproterozoic snowball earth. Science, 281:1342--1346, 1998. [ bib ]
[2186] AW Hofmann, C Class, and SL Goldstein. Size and composition of the MORB+OIB mantle reservoir. Geochem., Geophys., Geosys., 23:e2022GC010339, 2022. [ bib | DOI ]
[2187] Albrecht W Hofmann and William M White. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57:421--436, 1982. [ bib ]
[2188] A. W. Hofmann. Mantle geochemistry: the message from oceanic volcanism. Nature, 385:219--229, 1997. [ bib ]
[2189] A. M. Hofmeister. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283:1699--1706, 1999. [ bib ]
[2190] MJ Hoggard, Nicholas White, and David Al-Attar. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geosc., 9:456--463, 2016. [ bib ]
[2191] T. Hoink and A. Lenardic. Three-dimensional mantle convection simulations with a low viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett., 35(L10304):10.1029/2008GL033854, 2008. [ bib ]
[2192] T. Hoink and A. Lenardic. Long wavelength convection, Poiseuille-Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int., 180:23--33, 2010. [ bib ]
[2193] T. Hoink, A. M. Jellinek, and A. Lenardic. Viscous coupling at the lithosphere-asthenosphere boundary. Geochem., Geophys., Geosys., 12(Q0AK02), 2011. [ bib | DOI ]
[2194] T. Hoink, A. Lenardic, and M. Richards. Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics. Geophys. J. Int., 191:30--41, 2012. [ bib ]
[2195] W. S. Holbrook and W. D. Mooney. The crustal structure of the axis of the Great Valley California. Tectonophys., 140:49--63, 1987. [ bib ]
[2196] WS Holbrook and PB Kelemen. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature, 364:433--436, 1993. [ bib ]
[2197] W. S. Holbrook, T. M. Brocher, U. S. ten Brink, and J. A. Hole. Crustal Structure of a transform plate boundary: San Francisco Bay and the central California continental margin. J. Geophys. Res.: Sol. Earth, 101:22311--22334, 1996. [ bib ]
[2198] W Steven Holbrook, D Lizarralde, S McGeary, N Bangs, and J Diebold. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology, 27:31--34, 1999. [ bib ]
[2199] T. Holland and R. Powell. Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J. Petrol., 42(4):673--683, 2001. [ bib ]
[2200] K. Holliger and A. R. Levander. A stochastic view of lower crustal fabric based on evidence from the Ivrea Zone. Geophys. Res. Lett., 19:1153--1156, 1992. [ bib ]
[2201] A. Holmes. The Age of the Earth. Harper & Brothers, London & New York, 1913. [ bib ]
[2202] A. Holmes. Radioactivity and earth movements. Trans. Geol. Soc. Glasgow, 18:559--606, 1931. [ bib ]
[2203] A. Holmes. The thermal history of the earth. J. Washington Acad. Sci., 23:169--195, 1933. [ bib ]
[2204] A. Holmes. Principles of Physical Geology. Thomas Nelson, London, 1944. [ bib ]
[2205] Arthur Holmes. An estimate of the age of the earth. Nature, 157:680--684, 1946. [ bib ]
[2206] M. Holschneider and Y. Ben-Zion. Bayesian estimation of faults geometry based on seismic catalog data. Eos Trans. Amer. Geophys. Union, Fall Meet. Suppl., 87, 2006. [ bib ]
[2207] W. E. Holt. Correlated crust and mantle strain fields in Tibet. Geology, 28:67--70, 2000. [ bib ]
[2208] W. E. Holt and P. G. Silver. Using surface observations to constrain the direction and magnitude of mantle flow beneath western North America (abstract). Eos Trans. AGU, 82(47):F, 2001. [ bib ]
[2209] A. F. Holt, T. W. Becker, and B. A. Buffett. Trench migration and overriding plate stress in dynamic subduction models. Geophys. J. Int., 201:172--192, 2015. [ bib ]
[2210] A. F. Holt, B. A. Buffett, and T. W. Becker. Overriding plate thickness control on subducting plate curvature. Geophys. Res. Lett., 42:3802--3810, 2015. [ bib ]
[2211] A. F. Holt and T. W. Becker. The effect of a power-law mantle viscosity on trench retreat rate. Geophys. J. Int., 208:491--507, 2016. [ bib ]
[2212] A. F. Holt, L. H. Royden, and T. W. Becker. The dynamics of double slab subduction. Geophys. J. Int., 209:250--265, 2017. [ bib ]
[2213] A. H. Holt, L. H. Royden, T. W. Becker, and F. Faccenna. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region. Earth Planet. Sci. Lett., 489:72--83, 2018. [ bib ]
[2214] Adam F Holt and Leigh H Royden. Subduction dynamics and mantle pressure: 2. Towards a global understanding of slab dip and upper mantle circulation. Geochem., Geophys., Geosys., 21(7):e2019GC008771, 2020. [ bib ]
[2215] A. F. Holt and C. Condit. Slab temperature evolution over the lifetime of a subduction zone. Geochem., Geophys., Geosys., 22, 2021. [ bib | DOI ]
[2216] W. E. Holt. Flow fields within the Tonga slab determined from the moment tensors of deep earthquakes. Geophys. Res. Lett., 22:989--992, 1995. [ bib ]
[2217] B. K. Holtzman, D. L. Kohlstedt, M. E. Zimmerman, F. Heidelbach, T. Hiraga, and J. Hustoft. Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science, 301:1227--1230, 2003. [ bib ]
[2218] B. K. Holtzman and J.‐M. Kendall. Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem., Geophys., Geosys., 11(Q0AB06), 2010. [ bib | DOI ]
[2219] B. Holtzman. Questions on the existence, persistence, and mechanical effecs of a very small melt fraction in the asthenosphere. Geochem., Geophys., Geosys., 17:470--484, 2016. [ bib | DOI ]
[2220] Caleb W Holyoke III and Andreas K Kronenberg. Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophys., 494:17--31, 2010. [ bib ]
[2221] C. Homberg, F. Bergerat, Y. Philippe, O. Lacombe, and J. Angelier. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics, 357:137--158, 2002. [ bib ]
[2222] Satoru Honda. Thermal structure beneath Tohoku, northeast Japan. Tectonophys., 112:69--102, 1985. [ bib ]
[2223] S. Honda. Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett., 13:1454--1457, 1986. [ bib ]
[2224] Tae-Kyung Hong, Junhyung Lee, and Soung Eil Houng. Long-term evolution of intraplate seismicity in stress shadows after a megathrust. Phys. Earth Planet. Inter., 245:59--70, 2015. [ bib ]
[2225] S. Hongsresawat, M. P. Panning, R. M. Russo, D. A. Foster, V. Monteiller, and S. Chevrot. USArray shear wave splitting shows seismic anisotropy from both lithosphere and asthenosphere. Geology, 43:667--670, 2015. [ bib ]
[2226] D Höning and T Spohn. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of earth. Phys. Earth Planet. Inter., 255:27--49, 2016. [ bib ]
[2227] C. Hoorn, J. Guerrero, G. A. Sarmiento, and M. A. Lorente. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology, 23:237--240, 1995. [ bib ]
[2228] Michelle Hopkins, T Mark Harrison, and Craig E Manning. Low heat flow inferred from > 4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456:493--496, 2008. [ bib ]
[2229] E. Hopper and K. M. Fischer. The meaning of midlithospheric discontinuities: A case study in the northern u.s. craton. Geochem., Geophys., Geosys., 16:4057--4083, 2015. [ bib | DOI ]
[2230] Emily Hopper and Karen M Fischer. The changing face of the lithosphere-asthenosphere boundary: Imaging continental scale patterns in upper mantle structure across the contiguous US with Sp converted waves. Geochem., Geophys., Geosys., 19:2593--2614, 2018. [ bib ]
[2231] T. Hori, N. Kato, K. Hirahara, T. Baba, and Y. Kaneda. A numerical simulation of earthquake cycles along the Nankai Trough in southwest Japan: lateral variation in frictional property due to the slab geometry controls the nucleation position. Earth Planet. Sci. Lett., 228:215--226, 2004. [ bib ]
[2232] A. van Horne, H. Sato, and T. Ishiyama. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophys., 710:6--20, 2017. [ bib ]
[2233] F. G. Horowitz and A. L. Ruina. Slip patterns in a spatially homogeneous fault model. J. Geophys. Res.: Sol. Earth, 94:10279--10298, 1989. [ bib ]
[2234] B. K. Horton, M. Parra, J. E. Saylor, J. Nie, A. Mora, V. Torres, D. F. Stockli, and M. R. Strecker. Resolving uplift of the Northern Andes using detrital zircon age signatures. GSA Today, 20:4--10, 2010. [ bib ]
[2235] B. K. Horton, J. E. Saylor, J. Nie, A. Mora, M. Parra, A. Reyes-Harker, and D. F. Stockli. Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geol. Soc. Am. Bull, 122:1423--1442, 2010. [ bib ]
[2236] J Hospers. Rock magnetism and polar wandering. Nature, 173:1183--1184, 1954. [ bib ]
[2237] Nicolas Houlié and Tim Stern. A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone. Earth Planet. Sci. Lett., 345:117--125, 2012. [ bib ]
[2238] G. A. Houseman and Gemmer L. Intra-orogenic extension driven by gravitational instability: Carpathian-Pannonian orogeny. Geology, 35:1135--1138, 2007. [ bib ]
[2239] G. A. Houseman, D. P. McKenzie, and P. Molnar. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res.: Sol. Earth, 86:6115--6132, 1981. [ bib ]
[2240] G. A. Houseman and P. C. England. A dynamical model for lithospheric extension and sedimentary basin formation. J. Geophys. Res.: Sol. Earth, 91:719--729, 1986. [ bib ]
[2241] G. A. Houseman and P. C. England. A dynamical model of lithosphere extension and sedimentary basin formation. J. Geophys. Res.: Sol. Earth, 91:719--729, 1986. [ bib ]
[2242] G. A. Houseman and P. C. England. Finite strain calculations of continental deformation I. Method and general results for convergent zone. J. Geophys. Res.: Sol. Earth, 91:3651--3663, 1986. [ bib ]
[2243] G. A. Houseman and P. Molnar. Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys. J. Int., 128:125--150, 1997. [ bib ]
[2244] G. A. Houseman and D. Gubbins. Deformation of subducted oceanic lithosphere. Geophys. J. Int., 131:535--551, 1997. [ bib ]
[2245] C Houser, G Masters, P Shearer, and G Laske. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int., 174:195--212, 2008. [ bib ]
[2246] C. Houser and Q. Williams. The wavelengths of fast and slow shear velocity anomalies in the lower mantle: Contrary to the expectations of dynamics? Phys. Earth Planet. Inter., 176:187--197, 2009. [ bib ]
[2247] C. Houser and Q. Williams. Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet. Sci. Lett., 296:255--266, 2010. [ bib ]
[2248] H. Houston. Deep earthquakes. In G. Schubert, editor, Treatise on Geophysics, Vol. 4: Deep Earthquakes, volume 11, pages 321--350. Elsevier, 2007. [ bib ]
[2249] H. Houston. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress. Nature Geosc., 8:409--415, 2015. [ bib ]
[2250] L.N. Howard. Convection at high Rayleigh number. In H. Gortler, editor, Proceedings of the Eleventh International Congress of Applied Mechanics, pages 1109--1115, New York, 1966. Springer. [ bib ]
[2251] Alan D Howard, William E Dietrich, and Michele A Seidl. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res.: Sol. Earth, 99:13971--13986, 1994. [ bib ]
[2252] Jamie D Howarth, Nicolas C Barth, Sean J Fitzsimons, Keith Richards-Dinger, Kate J Clark, Glenn P Biasi, Ursula A Cochran, Robert M Langridge, Kelvin R Berryman, and Rupert Sutherland. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry. Nature Geosc., 14:314--320, 2021. [ bib ]
[2253] S. Howell, B. Smith-Konter, N. Frazer, X. Tong, and D. T. Sandwell. The vertical fingerprint of earthquake cycle loading in Southern California. Nature Geosc., 2015. in revision, B. Smith-Konter, pers. comm., 09/2015, should be published at time of proposal review. [ bib ]
[2254] J. M. Howie, K. C. Miller, and W. U. Savage. Integrated crustal structure across the South Central California Margin: Santa Lucia Escarpment to the San Andreas Fault. J. Geophys. Res.: Sol. Earth, 98:8473--8196, 1993. [ bib ]
[2255] A. T. Hsui. Application of fluid mechanic principles to the study of trench back-arc systems. Pure Appl. Geophys., 128:661--681, 1988. [ bib ]
[2256] Y. Hu, R. Bürgmann, J.T. Freymueller, P. Banerjee, and K. Wang. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planet. Space, 66, 2014. [ bib | DOI ]
[2257] Y. Hu, R. Bürgmann, N. Uchide, P. Banerjee, and J. T. Freymueller. Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake. J. Geophys. Res.: Sol. Earth, 120, 2016. [ bib | DOI ]
[2258] Y. Hu, R. Bürgmann, P. Banerjee, L. Feng, E. M. Hill, T. Ito, T. Tabei, and K. Wang. Asthenosphere rheology inferred from observations of the 2012 Indian Ocean earthquake. Nature, 538:368--372, 2016. [ bib ]
[2259] Jiashun Hu, Lijun Liu, Armando Hermosillo, and Quan Zhou. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth Planet. Sci. Lett., 438:1--13, 2016. [ bib ]
[2260] J. Hu, M. Faccenda, and L. Liu. Subduction-controlled mantle flow and seismic anisotropy in South America. Earth Planet. Sci. Lett., 470:13--24, 2017. [ bib ]
[2261] Jiashun Hu, Michael Gurnis, Johann Rudi, Georg Stadler, and R Dietmar Müller. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nature Geosc., 15:74--78, 2022. [ bib ]
[2262] J. Hua, K. Fischer, T. W. Becker, E. Gazel, and G. Hirth. Asthenospheric low-velocity zone consistent with globally prevalent partial melting. Nature Geosc., 16:175--181, 2023. [ bib ]
[2263] C. Hua. An inverse transformation for quadrilateral isoparametric elements: Analysis and application. Finite Elem. Anal. Design, 7:159--166, 1990. [ bib ]
[2264] W.C. Huang, J. F. Ni, F. Tilmann, D. Nelson, J. Guo, W. Zhao, J. Mechie, R. Kind, J. Saul, R. Rapine, and T. M. Hearn. Seismic polarization anisotropy beneath the central Tibetan plateau. J. Geophys. Res.: Sol. Earth, 105:27979--27989, 2000. [ bib ]
[2265] Jinshui Huang, Shijie Zhong, and Jeroen van Hunen. Controls on sublithospheric small-scale convection. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[2266] Jinshui Huang and Shijie Zhong. Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. J. Geophys. Res.: Sol. Earth, 110(B5), 2005. [ bib ]
[2267] J. Huang and D. Zhao. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res.: Sol. Earth, 111(B09305), 2006. [ bib | DOI ]
[2268] G. C. Huang, F. T. Wu, S. W. Roecker, and A. F. Sheehan. Lithospheric structure of the central Himalaya from 3-D tomographic imaging. Tectonophys., 475:524--543, 2009. [ bib ]
[2269] J. Huang, E. Vanacore, F. Niu, and A. Levander. Mantle transition zone beneath the Caribbean-South American plate boundary and its tectonic implications. Earth Planet. Sci. Lett., 289:105--111, 2010. [ bib ]
[2270] Hui Huang, Huajian Yao, and Robert D van der Hilst. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophys. Res. Lett., 37(21), 2010. [ bib ]
[2271] G.-C. Huang, S. W. Roecker, and V. Levin. Lower‐crustal earthquakes in the West Kunlun range. Geophys. Res. Lett., 38(L01314), 2011. [ bib | DOI ]
[2272] J. Huang and D. L. Turcotte. Are earthquakes an example of deterministic chaos? Geophys. Res. Lett., 17:223--226, 1990. [ bib ]
[2273] K. W. Hudnut, L. Seeber, and J. Pacheco. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophys. Res. Lett., 16:199--202, February 1989. [ bib ]
[2274] Victoria A Hudspith, Susan M Rimmer, and Claire M Belcher. Latest Permian chars may derive from wildfires, not coal combustion. Geology, 42:879--882, 2014. [ bib ]
[2275] R. von Huene and C. R. Ranero. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res.: Sol. Earth, 108(2079), 2003. [ bib | DOI ]
[2276] T. J. R Hughes. The finite element method. Dover Publications, 2000. [ bib ]
[2277] Liu Huiqi, KR McClay, and D Powell. Physical models of thrust wedges. In Thrust tectonics, pages 71--81. Springer, 1992. [ bib ]
[2278] R. S. Huismans and C. Beaumont. Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening. J. Geophys. Res.: Sol. Earth, 108(B10):2496, 2003. [ bib | DOI ]
[2279] R. S. Huismans, Y. Y. Podladchikov, and S. Cloetingh. Dynamic modeling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics, 20:1021--1039, 2001. [ bib ]
[2280] E. D. Humphreys, K. Dueker, D. Schutt, and R. B. Smith. Beneath Yellowstone: Evaluating plume and nonplume models using teleseismic images of the upper mantle. GSA Today, 10, 2000. [ bib ]
[2281] E. D. Humphreys, E. Hessler, K. Dueker, E. Erslev, G. L. Farmer, and T. Atwater. How Laramide-age hydration of North America by the Farallon slab controlled subsequent activity in the western U.S. In J. Eiler, editor, The George Thompson volume, volume 7 of GSA International Book, pages 524--544. Geological Society of America, 2003. [ bib ]
[2282] E. D. Humphreys and D. Coblentz. North American dynamics and western U.S. tectonics. Rev. Geophys., 45(RG3001), 2007. [ bib | DOI ]
[2283] E. D. Humphreys. Cenozoic slab windows beneath the western United States. In J. E. Spencer and S. Titley, editors, Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits (Dickinson volume), page in press. Arizona Geological Society, 2008. [ bib ]
[2284] E. D. Humphreys. Relation of flat subduction to magmatism and deformation in the Western USA. In S. Kay and V. Ramos, editors, Backbone of the Americas, Special Publication, page in press. Geological Society of America, 2008. [ bib ]
[2285] E. D. Humphreys and B. H. Hager. A kinematic model for the Late Cenozoic development of southern California crust and upper mantle. J. Geophys. Res.: Sol. Earth, 95:19747--19762, 1990. [ bib ]
[2286] E. D. Humphreys and K. G. Dueker. Western U.S. upper mantle structure. J. Geophys. Res.: Sol. Earth, 99:9615--9634, 1994. [ bib ]
[2287] E. D. Humphreys and R. J. Weldon. Deformation across the western United States: A local estimate of Pacific-North American transform deformation. J. Geophys. Res.: Sol. Earth, 99:19975--20010, 1994. [ bib ]
[2288] E. D. Humphreys. Post-Laramide removal of the Farallon slab, western United States. Geology, 23:987--990, 1995. [ bib ]
[2289] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. A thermomechanical model of horizontal subduction below an overriding plate. Earth Planet. Sci. Lett., 182:157--169, 2000. [ bib ]
[2290] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophys., 352:317--333, 2002. [ bib ]
[2291] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys. Res. Lett., 29(1690), 2002. [ bib | DOI ]
[2292] J. van Hunen and S. Zhong. New insight in the Hawaiian plume swell dynamics from scaling laws. Geophys. Res. Lett., 30(15):1785, 2003. [ bib | DOI ]
[2293] J. van Hunen, J. Huang, and S. Zhong. The effect of shearing on the onset and vigor of small-scale convection in a Newtonian rheology. Geophys. Res. Lett., 30(19):1991, 2003. [ bib | DOI ]
[2294] J. van Hunen, S. Zhong, N. Shapiro, and M. H. Ritzwoller. Oceanic upper mantle rheology as constrained by combined geodynamic and seismic modeling of plate-mantle interaction (abstract). Eos Trans. AGU, 85(47):T11B--1258, 2004. [ bib ]
[2295] J. van Hunen, A. P. van den Berg, and N. J. Vlaar. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys. Earth Planet. Inter., 146:179--194, 2004. [ bib ]
[2296] J. van Hunen, S. Zhong, N. M. Shapiro, and M. H. Ritzwoller. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett., 238:146--155, 2005. [ bib ]
[2297] J. van Hunen and A. P. van den Berg. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos, 103:217--235, 2008. [ bib ]
[2298] J. van Hunen and J.-F. Moyen. Archean subduction: Fact or fiction? Ann. Rev. Earth Planet. Sci., 40:195--219, 2012. [ bib ]
[2299] S.-H. Hung and D. W. Forsyth. Can a narrow, melt-rich, low-velocity zone of mantle upwelling be hidden beneath the East Pacific Rise? Limits from waveform modeling and the MELT experiment. J. Geophys. Res.: Sol. Earth, 105:7945--7960, 2000. [ bib ]
[2300] S.-H. Hung, Y. Shen, and L.-Y. Chiao. Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach. J. Geophys. Res.: Sol. Earth, 109(B08305), 2004. [ bib | DOI ]
[2301] S.-H. Hung, E. J. Garnero, L.-Y. Chiao, B.-Y. Kuo, and T. Lay. Finite frequency tomography of D" shear velocity heterogeneity beneath the Caribbean. J. Geophys. Res.: Sol. Earth, 110(B07305), 2005. [ bib | DOI ]
[2302] S.-H. Hung and D. W. Forsyth. Modeling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multi-domain pseudospectral method. Geophys. J. Int., 133:720--740, 1998. [ bib ]
[2303] W. Hunt. Unraveling the mysteries under our very feet. Discover Magazine, 2011. Available online at discovermagazine.com/photos/18-unraveling-mysteries-under-our-feet, accessed 11/2011. [ bib ]
[2304] J Hunter and AB Watts. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys. J. Int., 207:288--316, 2016. [ bib ]
[2305] G. Huot and S. C. Singh. Seismic evidence for fluid/gas beneath the Mentawai fore-arc basin, Central Sumatra. J. Geophys. Res.: Sol. Earth, 123:957--976, 2018. [ bib ]
[2306] Kimberly L Huppert, J Taylor Perron, and Leigh H Royden. Hotspot swells and the lifespan of volcanic ocean islands. Science adv., 6:eaaw6906, 2020. [ bib ]
[2307] E. S. Husebye, D. W. King, and R. A. Haddon. Precursors to PKIKP and seismic wave scattering near the mantle-core boundary. J. Geophys. Res.: Sol. Earth, 81:170--182, 1976. [ bib ]
[2308] L. Husson and Y. Ricard. Stress balance above subduction: application to the Andes. Earth Planet. Sci. Lett., 222:1037--1050, 2004. [ bib ]
[2309] L. Husson. Dynamic topography above retreating subduction zones. Geology, 34:741--744, 2006. [ bib ]
[2310] L. Husson, C. P. Conrad, and C. Faccenna. Tethyan closure, Andean orogeny, and westward drift of the Pacific Basin. Earth Planet. Sci. Lett., 271:303--310, 2008. [ bib ]
[2311] L. Husson, P. C. Conrad, and C. Faccenna. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett., 317:126--135, 2012. [ bib ]
[2312] L. Husson, B. Guillaume, F. Funiciello, C. Faccenna, and L. H. Royden. Unraveling topography around subduction zones from laboratory models. Tectonophys., 526:5--15, 2012. [ bib ]
[2313] L. Husson, P. Yamato, and A. Bézos. Ultraslow, slow, or fast spreading ridges: Arm wrestling between mantle convection and far-field tectonics. Earth Planet. Sci. Lett., 429:205--215, 2015. [ bib ]
[2314] Laurent Husson, Thomas Bodin, Giorgio Spada, Gaël Choblet, and Corné Kreemer. Bayesian surface reconstruction of geodetic uplift rates: Mapping the global fingerprint of glacial isostatic adjustment. J. Geodynamics, 122:25--40, 2018. [ bib ]
[2315] A. R. Hutko, T. Lay, E. J. Garnero, and J. Revenaugh. Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature, 441:333--336, 2006. [ bib ]
[2316] R. D. Hyndman and S. M. Peacock. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett., 212:417--432, 2003. [ bib ]
[2317] Roy D Hyndman, Claire A Currie, and Stephane P Mazzotti. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15:4--10, 2005. [ bib ]
[2318] R. D. Hyndman and C. A. Currie. Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology, 39:783--786, 2011. [ bib ]
[2319] USGS. Global Hypocenter Database CD, volume 3.0. United States Geological Survey / National Earthquake Information Center, Denver, Colorado, 1992. [ bib ]
[2320] G. Iaffaldano, H.-P. Bunge, and T. H. Dixon. Feedback between mountain belt growth and plate convergence. Geology, 34:893--896, 2006. [ bib ]
[2321] G. Iaffaldano and H.-P. Bunge. Relating rapid plate motion variations to plate boundary forces in global coupled models of the mantle/lithosphere system: effects of topography and friction. Tectonophys., 474:393--404, 2009. [ bib ]
[2322] Giampiero Iaffaldano and Hans-Peter Bunge. Rapid plate motion variations through geological time: Observations serving geodynamic interpretation. Ann. Rev. Earth Planet. Sci., 43:571--592, 2015. [ bib ]
[2323] T. Ichimura, K. Fujita, S. Tanaka, M. Hori, M. Lalith, Y. Shizawa, and H. Kobayashi. Physics-based urban earthquake simulation enhanced by 10.7 BlnDOF× 30 K time-step unstructured FE non-linear seismic wave simulation. In SC'14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 15--26. IEEE, 2014. [ bib ]
[2324] Tsuyoshi Ichimura, Kohei Fujita, Pher Errol Balde Quinay, Lalith Maddegedara, Muneo Hori, Seizo Tanaka, Yoshihisa Shizawa, Hiroshi Kobayashi, and Kazuo Minami. Implicit nonlinear wave simulation with 1.08 T DOF and 0.270 T unstructured finite elements to enhance comprehensive earthquake simulation. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2015. [ bib ]
[2325] T Ichimura, K Fujita, T Yamaguchi, A Naruse, J C Wells, C J Zimmer, T P Straatsma, T Hori, S Puel, T W Becker, and M Hori. 416-PFLOPS fast scalable implicit solver on low-ordered unstructured finite elements accelerated by 1.10-ExaFLOPS kernel with reformulated AI-like algorithm: For equation-based earthquake modeling. In SC'19: The International Conference for High Performance Computing, Networking, Storage, and Analysis, 2019. [ bib ]
[2326] Yoshiaki Ida. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy. J. Geophys. Res.: Sol. Earth, 77:3796--3805, 1972. [ bib ]
[2327] S. Ide and G. Beroza. Does apparent stress vary with earthquake size? Geophys. Res. Lett., 28:3349--3352, 2001. [ bib ]
[2328] S. Ide, G. C. Beroza, D. R. Shelly, and T. A. Uchide. Scaling law for slow earthquakes. Nature, 447:76--79, 2007. [ bib ]
[2329] Satoshi Ide. Variety and spatial heterogeneity of tectonic tremor worldwide. J. Geophys. Res.: Sol. Earth, 117(B03302), 2012. [ bib | DOI ]
[2330] S. Ide and H. Aochi. Historical seismicity and dynamic rupture process of the 2011 Tohoku-oki earthquake. Tectonophys., 600:1--13, 2013. [ bib ]
[2331] Satoshi Ide and Gregory C Beroza. Slow earthquake scaling reconsidered as a boundary between distinct modes of rupture propagation. Proc. Natl. Acad. Sci. USA, 120(32):e2222102120, 2023. [ bib ]
[2332] H. Igel, T. Nissen-Meyer, and G. Jahnke. Wave propagation in 3D spherical sections: Effects of subduction zones. Phys. Earth Planet. Inter., 132:219--234, 2003. [ bib ]
[2333] H. Igel, N. Takeuchi, R. J. Geller, C. Megnin, H.-P. Bunge, E. Clevede, J. Dalkolmo, and B. A. Romanowicz. The COSY project: verification of global seismic modeling algorithms. Phys. Earth Planet. Inter., 119:3--23, 1999. [ bib ]
[2334] T. W. Becker. iGMT: Interactive Mapping of Geographic Datasets. Update of [354], online at www-udc.ig.utexas.edu/external/becker/igmt/, accessed 05/2016, 2006. [ bib ]
[2335] Takeshi Iinuma, Mako Ohzono, Yusaku Ohta, and Satoshi Miura. Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data---Was the asperity in Miyagi-oki ruptured? Earth, Planet. Space, 63(24), 2011. [ bib ]
[2336] T Iinuma, R Hino, M Kido, D Inazu, Y Osada, Y Ito, M Ohzono, H Tsushima, S Suzuki, H Fujimoto, and S. Miura. Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. J. Geophys. Res.: Sol. Earth, 117(B7409), 2012. [ bib | DOI ]
[2337] T. Iinuma. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field. Geophys. J. Int., 213:30--47, 2018. [ bib ]
[2338] Matt J Ikari, Demian M Saffer, and Chris Marone. Frictional and hydrologic properties of clay-rich fault gouge. J. Geophys. Res.: Sol. Earth, 114(B05409), 2009. [ bib | DOI ]
[2339] Matt J Ikari, Chris Marone, and Demian M Saffer. On the relation between fault strength and frictional stability. Geology, 39:83--86, 2011. [ bib ]
[2340] Matt J Ikari and Demian M Saffer. Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex. Geochem., Geophys., Geosys., 12(Q0AD11), 2011. [ bib | DOI ]
[2341] Matt J Ikari and Demian M Saffer. Permeability contrasts between sheared and normally consolidated sediments in the Nankai accretionary prism. Marine Geol., 295:1--13, 2012. [ bib ]
[2342] Matt J Ikari, André R Niemeijer, Christopher J Spiers, Achim J Kopf, and Demian M Saffer. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin. Geology, 41:891--894, 2013. [ bib ]
[2343] Matt J Ikari, Jun Kameda, Demian M Saffer, and Achim J Kopf. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake. Earth Planet. Sci. Lett., 412:35--41, 2015. [ bib ]
[2344] Matt J. Ikari, Brett M. Carpenter, Marco M. Scuderi, Cristiano Collettini, and Achim J. Kopf. Frictional strengthening explored during non-steady state shearing: Implications for fault stability and slip event recurrence time. J. Geophys. Res.: Sol. Earth, 125:e2020JB020015, 2020. [ bib | DOI ]
[2345] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Island Arc, 17:342--357, 2008. [ bib ]
[2346] Toshihiro Ike, Gregory F Moore, Shin'ichi Kuramoto, Jin-Oh Park, Yoshiyuki Kaneda, and Asahiko Taira. Tectonics and sedimentation around Kashinosaki Knoll: A subducting basement high in the eastern Nankai Trough. Island Arc, 17:358--375, 2008. [ bib ]
[2347] R. Ikegami. On the secular variation of magnitude-frequency relation of earthquakes. Bull. Earthquake Res. Inst., 45:327--338, 1967. [ bib ]
[2348] K. J. Im, D. Saffer, C. Marone, and J. P. Avouac. Slip-rate dependent friction as a universal mechanism for slow slip events. Nature Geosc., 13:705--710, 2020. [ bib ]
[2349] Kazutoshi Imanishi and William L. Ellsworth. Source Scaling Relationships of Microearthquakes at Parkfield, CA, Determined Using the SAFOD Pilot Hole Seismic Array. In Earthquakes: Radiated Energy and the Physics of Faulting, volume 170 of Geophysical Monograph, pages 81--90. American Geophysical Union, 2006. [ bib ]
[2350] M. Ingalls, D. R. Rowley, B. Currie, and A. S. Colman. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nature Geosc., 9:848--853, 2016. [ bib ]
[2351] INGEOMINAS. National seismic catalog of Colombia. Technical report, Red Sismológica Nacional de Colombia, 2010. Available online at seisan.ingeominas.gov.co/RSNC/, accessed 01/2010. [ bib ]
[2352] H. Y. Inoue, Y. Fukao, K. Tanabe, and Y. Ogata. Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter., 59:294--328, 1990. [ bib ]
[2353] T. Inoue. Effect of water on melting phase relations and melt composition in the system mg2sio4--mgsio3--h2o up to 15 gpa. Phys. Earth Planet. Inter., 85:237--263, 1994. [ bib ]
[2354] T. R. Ireland, T. Flöttman, C. M. Fanning, G. M. Gibson, and W. V. Preiss. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology, 26:243--246, 1998. [ bib ]
[2355] M. F. W. Ireton, C. A. Manduca, and D. W. Mogk. Shaping the future of undergraduate earth science education: Innovation and change using an Earth System approach. American Geophysical Union, Washington DC. Online at www.agu.org/sci_soc/spheres/, accessed 06/2006, 1997. [ bib ]
[2356] T. Irifune and A. E. Ringwood. Phase transformations in subducted oceanic crust and buoyanyc relationships at depths of 600--800 km in the mantle. Earth Planet. Sci. Lett., 117:101--110, 1993. [ bib ]
[2357] E. Irving. Paleomagnetic and palaeoclimatological aspects of polar wandering. Geofis. Pura Appl., 33:23--41, 1956. [ bib ]
[2358] G. R. Irwin and R. de Wit. Fracture mechanics. J. Testing and Evaluation, 11:56--65, 1983. [ bib ]
[2359] G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech., 24:361--364, 1957. [ bib ]
[2360] D. G. Isaak. High-temperature elasticity of iron-bearing olivines. J. Geophys. Res.: Sol. Earth, 97:1871--1885, 1992. [ bib ]
[2361] E. H. Isaaks and R. M. Srivastava. An Introduction to Applied Geostatistics. Oxford University Press, New York, 1989. [ bib ]
[2362] B. L. Isacks, J. Oliver, and L. R. Sykes. Seismology and the new global tectonics. J. Geophys. Res.: Sol. Earth, 73:5855--5899, 1968. [ bib ]
[2363] B. Isacks and P. Molnar. Mantle earthquake mechanisms and the sinking of the lithosphere. Nature, 223:1121--1124, 1969. [ bib ]
[2364] B. Isacks and P. Molnar. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev. Geophys. Space Phys., 9:103--175, 1971. [ bib ]
[2365] B. Isacks and M. Barazangi. Geometry of Benioff zones: lateral segmentations and downward bending of subducted lithosphere. In M. Talwani and W. C. Pitman III, editors, Island arcs, Deep Sea Trenches, and Back-Arc Basins, volume 1 of Maurice Ewing, pages 99--114. AGU, Washington DC, 1977. [ bib ]
[2366] K. Ishibashi. Specification of a soon-to-occur seismic faulting in the Tokai district, central Japan. Maurice Ewing, 4:297--332, 1981. [ bib ]
[2367] Takeo Ishibe, Kunihiko Shimazaki, Kenji Satake, and Hiroshi Tsuruoka. Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planet. Space, 63(7):40, 2011. [ bib ]
[2368] M. Ishii and J. Tromp. Even-degree lateral variations in the Earth's mantle constrained by free oscillations and the free-air gravity anomaly. Geophys. J. Int., 145:77--96, 2001. [ bib ]
[2369] Miaki Ishii and Adam M Dziewoński. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl. Acad. Sci. USA, 99:14026--14030, 2002. [ bib ]
[2370] M. Ishii and A. M. Dziewoński. Distinct seismic anisotropy at the centre of the earth. Phys. Earth Planet. Inter., 140:203--217, 2003. [ bib ]
[2371] M. Ishii and J. Tromp. Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Planet. Inter., 146:113--124, 2004. [ bib ]
[2372] M. Ishii and J. Tromp. Three-dimensional models of mantle heterogeneity and their implications for petrology. EOS, Trans. AGU, 79:F656, 1998. [ bib ]
[2373] M. Ishii and J. Tromp. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science, 285:1231, 1999. [ bib ]
[2374] M Ishimoto. Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthq. Res. Inst., 17:443--478, 1939. [ bib ]
[2375] M. Ishise and H. Oda. Three-dimensional structure of P-wave anisotropy beneath the Tohoku district, northeast Japan. J. Geophys. Res.: Sol. Earth, 110(B07304), 2005. [ bib | DOI ]
[2376] A. Ismail-Zadeh, G. Schubert, I. Tsepelev, and A. Korotkii. Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Phys. Earth Planet. Inter., 145:99--114, 2004. [ bib ]
[2377] A. Ismail-Zadeh and P. Tackley. Computational Methods for Geodynamics. Cambridge University Press, 2010. [ bib ]
[2378] W. Ben Ismail and D. Mainprice. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophys., 296:145--157, 1998. [ bib ]
[2379] T. Isse, H. Kawakatsu, K. Yoshizawa, A. Takeo, H. Shiobara, H. Sugioka, A. Ito, D. Suetsugu, and D. Reymond. Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution. Earth Planet. Sci. Lett., 510:116--130, 2019. [ bib ]
[2380] Joel Ita and Scott D King. Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state. J. Geophys. Res.: Sol. Earth, 99:15919--15938, 1994. [ bib ]
[2381] J. Ita and S. D. King. The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett., 25:1463--1466, 1998. [ bib ]
[2382] J. Ita and R. E. Cohen. Diffusion in MgO at high pressure: Implications for lower mantle rheology. Geophys. Res. Lett., 25:1095--1098, 1998. [ bib ]
[2383] Garrett Ito. Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature, 411:681--684, 2001. [ bib ]
[2384] G. Ito, J. Lin, and D. Graham. Observational and theoretical studies of the dynamics of mantle plume-mid-ocean ridge interaction. Rev. Geophys., 41, 2003. [ bib | DOI ]
[2385] Garrett Ito and John J Mahoney. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230:29--46, 2005. [ bib ]
[2386] G. Ito and P. E. van Keken. Hotspots and melting anomalies. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics. Elsevier, Amsterdam, 2007. [ bib ]
[2387] Y. Ito, K. Obara, K. Shiomi, S. Sekine, and H. Hirose. Slow earthquakes coincident with episodic tremors and slow slip events. Science, 315:503--506, 2007. [ bib ]
[2388] Yoshihiro Ito, Ryota Hino, Motoyuki Kido, Hiromi Fujimoto, Yukihito Osada, Daisuke Inazu, Yusaku Ohta, Takeshi Iinuma, Mako Ohzono, Satoshi Miura, Michina Masaaki, Kensuke Suzuki, Takeshi Tusji, and Juichiro Ashi. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophys., 600:14--26, 2013. [ bib ]
[2389] G. Ito, R. Dunn, A. Li, C. J. Wolfe, A. Gallego, and Y. Fu. Seismic anisotropy and shear wave splitting associated with mantle plume-plate interaction. J. Geophys. Res.: Sol. Earth, 119:4923--4937, 2014. [ bib | DOI ]
[2390] E Ito, M Akaogi, L Topor, and A Navrotsky. Negative pressure-temperature slopes for reactions formign mgsio3 perovskite from calorimetry. Science, 249:1275--1278, 1990. [ bib ]
[2391] Garrett Ito and Jian Lin. Oceanic spreading center--hotspot interactions: constraints from along-isochron bathymetric and gravity anomalies. Geology, 23:657--660, 1995. [ bib ]
[2392] G. Ito, Y. Shen, G. Hirth, and C. J. Wolfe. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett., 165:81--96, 1999. [ bib ]
[2393] Hikaru Iwamori and Francis Albarède. Decoupled isotopic record of ridge and subduction zone processes in oceanic basalts by independent component analysis. Geochem., Geophys., Geosys., 9(Q04033), 2008. [ bib | DOI ]
[2394] Ian Jackson. Laboratory measurement of seismic wave dispersion and attenuation: recent progress. In Shun-Ichiro Karato, Alessandro Forte, Robert Liebermann, Guy Masters, and Lars Stixrude, editors, Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, volume 117 of Geophys. Mono., pages 265--289. American Geophysical Union, Washington DC, 2000. [ bib ]
[2395] I. Jackson, J. D. Fitz Gerald, U. Faul, and B. H. Tan. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res.: Sol. Earth, 107, 2002. [ bib | DOI ]
[2396] JA Jackson. Strength of the continental lithosphere: time to abandon the jelly sandwich? GSA Today, 12:4--10, 2002. [ bib ]
[2397] J. A. Jackson, H. Austrheim, D. McKenzie, and K. Priestley. Metastability, mechanical strength, and the support of mountain belts. Geology, 32:625--628, 2004. [ bib ]
[2398] Matthew G Jackson, Stanley R Hart, Anthony AP Koppers, Hubert Staudigel, Jasper Konter, Jerzy Blusztajn, Mark Kurz, and Jamie A Russell. The return of subducted continental crust in Samoan lavas. Nature, 448:684--687, 2007. [ bib ]
[2399] Matthew G Jackson, Richard W Carlson, Mark D Kurz, Pamela D Kempton, Don Francis, and Jerzy Blusztajn. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature, 466:853--856, 2010. [ bib ]
[2400] M. G. Jackson, J. G. Konter, and T. W. Becker. Primordial helium entrained by the hottest mantle plumes. Nature, 542:340--343, 2017. [ bib ]
[2401] M. G. Jackson, T. W. Becker, and J. G. Konter. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: Implications for storage in the Large Low Shear Wave Velocity Provinces. Geochem., Geophys., Geosys., 19:3496--3519, 2018. [ bib ]
[2402] M. G. Jackson, T. W. Becker, and B. Steinberger. Spatial characteristics of recycled and primordial reservoirs in the deep mantle. Geochem., Geophys., Geosys., 22:e2020GC009525, 2021. [ bib ]
[2403] MG Jackson and FA Macdonald. Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction. Advances, 3:e2022AV000664, 2022. [ bib ]
[2404] J. Jackson and D. P. McKenzie. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys. J. Int., 93:45--73, 1988. [ bib ]
[2405] I. Jackson. Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophys. J. Int., 134:291--311, 1998. [ bib ]
[2406] K. H. Jacob, K. Nakamura, and J. N. Davies. Trench-volcano gap along the Alaska-Aleutian trench: facts and speculations on the role of terrigenous sediments for subduction. In M. Talwani and W. C. Pitman III, editors, Island arcs, deep sea trenches and back-arc basins, pages 243--259. American Geophysical Union, Washington DC, 1976. [ bib ]
[2407] S. B. Jacobsen and G. J. Wasserburg. The mean age of mantle and crustal reservoirs. J. Geophys. Res.: Sol. Earth, 84:7411--7427, 1979. [ bib ]
[2408] Stein B Jacobsen. Isotopic constraints on crustal growth and recycling. Earth Planet. Sci. Lett., 90:315--329, 1988. [ bib ]
[2409] Carl E Jacobson, Andrew P Barth, and Marty Grove. Late Cretaceous protolith age and provenance of the Pelona and Orocopia Schists, southern California: Implications for evolution of the Cordilleran margin. Geology, 28(3):219--222, 2000. [ bib ]
[2410] W. R. Jacoby. One-dimensional modeling of mantle flow. Pure Appl. Geophys., 116:1231--1249, 1978. [ bib ]
[2411] W. R. Jacoby and H. Schmeling. Convection experiments and driving mechanism. Geol. Rundschau, 24:217--284, 1981. [ bib ]
[2412] A. B. Jacquey and M. Cacace. Multiphysics modeling of a brittle-ductile lithosphere: 1. Explicit visco-elasto-plastic formulation and its numerical implementation. J. Geophys. Res.: Sol. Earth, 125, 2020. [ bib | DOI ]
[2413] M. A. Jadamec and M. I. Billen. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465:338--341, 2010. [ bib ]
[2414] M. A. Jadamec and M. I. Billen. The role of rheology and slab shape on rapid mantle flow: 3D numerical models of the Alaska slab edge. J. Geophys. Res.: Sol. Earth, 117(B02304), 2012. [ bib | DOI ]
[2415] M. A. Jadamec, M. I. Billen, and S. M. Roseke. Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska. Earth Planet. Sci. Lett., 376:29--42, 2013. [ bib ]
[2416] Margarete A Jadamec. Insights on slab-driven mantle flow from advances in three-dimensional modelling. J. Geodynamics, 100:51--70, 2016. [ bib ]
[2417] J.C. Jaeger and N.G.W. Cook. Fundamentals of Rock Mechanics. Menthuen, London, 1969. [ bib ]
[2418] Oliver Jagoutz, Othmar Müntener, Max W Schmidt, and Jean-Pierre Burg. The roles of flux-and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth Planet. Sci. Lett., 303:25--36, 2011. [ bib ]
[2419] O. Jagoutz, L. Royden, A. F. Holt, and T. W. Becker. Anomalously fast convergence between India and Eurasia caused by double subduction. Nature Geosc., 8:475--478, 2015. [ bib ]
[2420] Oliver Jagoutz and Peter B Kelemen. Role of arc processes in the formation of continental crust. Ann. Rev. Earth Planet. Sci., 43:363--404, 2015. [ bib ]
[2421] Chhavi Jain, Jun Korenaga, and Shun-ichiro Karato. Global analysis of experimental data on the rheology of olivine aggregates. J. Geophys. Res.: Sol. Earth, 124:310--334, 2019. [ bib ]
[2422] D. E. James, M. J. Fouch, R. W. Carlson, and J. B. Roth. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Planet. Sci. Lett., 311:124--135, 2011. [ bib ]
[2423] A.I. James and A.J. Watkinson. Initiation of folding and boudinage in wrench shear and transpression. J. Struct. Geol., 16:883--893, 1994. [ bib ]
[2424] D. E. James and L. A. Murcia. Crustal contamination in northern Andean volcanic. J. Geol. Soc. London, 141:823--830, 1984. [ bib ]
[2425] R. A. Jamieson and C. Beaumont. On the origin of orogens. Geol. Soc. Amer. Bull., 125:1671--1702, 2013. [ bib ]
[2426] T. F. Jamieson. On the history of the last geological changes in Scotland. Quart. J. Geol. Soc. London, 21:161--203, 1865. [ bib ]
[2427] S. Jammes, L. L. Lavier, and G. Manatschal. Extreme crustal thinning of the Bay of Biscay and Western Pyrenees: From observations to modeling. Geochem., Geophys., Geosys., 11(Q10016), 2010. [ bib | DOI ]
[2428] Olivier Jaoul, Jan Tullis, and Andreas Kronenberg. The effect of varying water contents on the creep behavior of Heavitree quartzite. J. Geophys. Res.: Sol. Earth, 89:4298--4312, 1984. [ bib ]
[2429] J. Jaramillo, P. R. Linero, and J. I. Garver. Neogene volcanism in the Cordillera Oriental of the Andes, Colombnia. Earth Sci. Res., 9:19--29, 2005. [ bib ]
[2430] R. D. Jarrard. Relations among subduction parameters. Rev. Geophys., 24:217--284, 1986. [ bib ]
[2431] G.T. Jarvis and D.P. McKenzie. Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech., 96:515--583, 1980. [ bib ]
[2432] G. T. Jarvis and W. R. Peltier. Mantle convection as a boundary layer phenomenon. Geophys. J. R. Astr. Soc., 68:389--427, 1982. [ bib ]
[2433] G. T. Jarvis. Time-dependent convection in the earth's mantle. Phys. Earth Planet. Inter., 36:305--327, 1984. [ bib ]
[2434] G. T. Jarvis and W. R. Peltier. Convection models and geophysical observations. In W. R. Peltier, editor, Mantle convection: Plate Tectonics and Global Dynamics, volume 4 of Fluid Mech. Astrophys. Geophys., pages 479--593. Gordon and Breach Science Pub., New York, NY, 1989. [ bib ]
[2435] J. Jasbinsek and K. Dueker. Ubiquitous low-velocity layer atop the 410-km discontinuity in the northern Rocky Mountains. Geochem., Geophys., Geosys., 8(Q10004), 2007. [ bib | DOI ]
[2436] S. C. Jaumé and L. R. Sykes. Change in the state of stress on the southern San Andreas fault resulting from the California earthquake sequence of April to June 1992. Science, 258:1325--1328, 1992. [ bib ]
[2437] S. C. Jaumé and L. R. Sykes. Evolution of moderate seismicity in the San Francisco Bay region, 1850 to 1993: Seismicity changes related to the occurrence of large and great earthquakes. J. Geophys. Res.: Sol. Earth, 101:765--789, 1996. [ bib ]
[2438] C. Jaupart, S. Labrosse, and J.-C. Marechal. Temperatures, heat and energy in the mantle of the Earth. In G. Schubert and D. Bercovici, editors, Treatise on Geophysics, pages 253--303. Elsevier, 2007. [ bib ]
[2439] C. Jaupart, S. Labrosse, F. Lucazeau, and J.-C. Marechal. Temperatures, heat and energy in the mantle of the Earth. In G. Schubert, editor, Treatise on Geophysics, pages 223--270. Elsevier, 2 edition, 2015. [ bib ]
[2440] C. Jaupart and B. Parsons. Convective instabilities in a variable viscosity fluid cooled from above. Phys. Earth Planet. Inter., 39:14--32, 1985. [ bib ]
[2441] M. Javoy. The integral enstatite chondrite model of the earth. Geophys. Res. Lett., 22:2219--2222, 1995. [ bib ]
[2442] R. Jeanloz and S. Morris. Is the mantle geotherm sub-adiabatic? Geophys. Res. Lett., 14:335--338, 1987. [ bib ]
[2443] R. Jeanloz and H. R. Wenk. Convection and anisotropy of the inner core. Geophys. Res. Lett., 15:72--75, 1988. [ bib ]
[2444] H. Jeffreys. The Earth: Its Origin, History and Physical Constitution. Cambridge University Press, 1924. [ bib ]
[2445] Harold Jeffreys. The rigidity of the Earth's central core. Geophys. Supp. Mon. Not. Royal Astron. Soc., 1:371--383, 1926. [ bib ]
[2446] A. M. Jellinek and M. Manga. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418:760--763, 2002. [ bib ]
[2447] A. M. Jellinek and M. Manga. Links between long-lived hot spots, mantle plumes, D”, and plate tectonics. Rev. Geophys., 42(RG3002), 2004. [ bib | DOI ]
[2448] AM Jellinek, A Lenardic, and RT Pierrehumbert. Ice, fire, or fizzle: The climate footprint of Earth's supercontinental cycles. Geochem., Geophys., Geosys., 21:e2019GC008464, 2020. [ bib ]
[2449] C. W. Jennings. Fault map of California with locations of volcanoes, thermal springs, and thermal wells. Number 1 in Geologic Data Map. California Division of Mines and Geology, Sacramento CA, 1975. [ bib ]
[2450] Tamara N Jeppson, Harold J Tobin, and Yoshitaka Hashimoto. Laboratory measurements quantifying elastic properties of accretionary wedge sediments: Implications for slip to the trench during the 2011 Mw 9.0 Tohoku-Oki earthquake. Geosphere, 14:1411--1424, 2018. [ bib ]
[2451] M Jeyakumaran, JW Rudnicki, and LM Keer. Modeling slip zones with triangular dislocation elements. Bull. Seismol. Soc. Am., 82:2153--2169, 1992. [ bib ]
[2452] M. Jeyakumaran and J. W. Rudnicki. The sliding wing crack -- Again! Geophys. Res. Lett., pages 2901--2904, 1995. [ bib ]
[2453] J. H. Davies, O. Gudmundsson, and R. W. Clayton. Spectra of mantle shear wave velocity structure. Geophys. J. Int., 108:565--582, 1992. [ bib ]
[2454] Shaocheng Ji, Tongbin Shao, Katsuyoshi Michibayashi, Shoma Oya, Takako Satsukawa, Qian Wang, Weihua Zhao, and Matthew H Salisbury. Magnitude and symmetry of seismic anisotropy in mica-and amphibole-bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau. J. Geophys. Res.: Sol. Earth, 120:6404--6430, 2015. [ bib ]
[2455] Yingfeng Ji, Shoichi Yoshioka, and Takumi Matsumoto. Three-dimensional numerical modeling of temperature and mantle flow fields associated with subduction of the Philippine Sea plate, southwest Japan. J. Geophys. Res.: Sol. Earth, 121:4458--4482, 2016. [ bib ]
[2456] Yingfeng Ji and Shoichi Yoshioka. Slab dehydration and earthquake distribution beneath southwestern and central Japan based on three-dimensional thermal modeling. Geophys. Res. Lett., 44:2679--2686, 2017. [ bib ]
[2457] S. Ji, X. Zhao, and D. Francis. Calibration of shear-wave splitting in the subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophys., 239:1--27, 1994. [ bib ]
[2458] J. Jiang and N. Lapusta. Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352:1293--1297, 2016. [ bib ]
[2459] Chengxin Jiang, Brandon Schmandt, and Robert W Clayton. An anisotropic contrast in the lithosphere across the central San Andreas fault. Geophys. Res. Lett., 45:3967--3975, 2018. [ bib ]
[2460] Chengxin Jiang, Brandon Schmandt, and Robert W. Clayton. An Anisotropic Contrast in the Lithosphere Across the Central San Andreas Fault. Geophys. Res. Lett., 45:3967--3975, 2018. [ bib ]
[2461] I. Jiménez-Munt, M. Fernàndez, J. Vergés abd D. Garcia-Castellanos, J. Fullea, M. Pérez-Gussinyé, and J. C. Afonso. Decoupled crust‐mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin. J. Geophys. Res.: Sol. Earth, 116(B08403), 2011. [ bib | DOI ]
[2462] K. P. Jochum, A. W. Hofmann, E. Ito, H. M. Seufert, and W. M. White. K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 306:431--436, 1983. [ bib ]
[2463] T. John, S. Medvedev, L. H. Rüpke, T. B. Andersen, Y. Y. Podladchikov, and H. Austrheim. Generation of intermediate-depth earthquakes by self localizing themal runaway. Nature Geosc., 2:137--140, 2009. [ bib ]
[2464] M. R. W. Johnson. Shortening budgets and the role of continental subduction during the India-Asia collision. Earth Sci. Rev., 59:101--123, 2002. [ bib ]
[2465] KM Johnson and P Segall. Viscoelastic earthquake cycle models with deep stress-driven creep along the san andreas fault system. J. Geophys. Res.: Sol. Earth, 109(B10), 2004. [ bib ]
[2466] Kaj M Johnson, Jun'ichi Fukuda, and Paul Segall. Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake. Geophys. Res. Lett., 39(L20302), 2012. [ bib | DOI ]
[2467] Kaj M Johnson, Andreas Mavrommatis, and Paul Segall. Small interseismic asperities and widespread aseismic creep on the northern Japan subduction interface. Geophys. Res. Lett., 43:135--143, 2016. [ bib ]
[2468] Kaj M. Johnson and Douglas Tebo. Capturing 50 years of postseismic mantle flow at Nankai subduction zone. J. Geophys. Res.: Sol. Earth, 123:10,091--10,106, 2018. [ bib ]
[2469] Christopher W Johnson and Paul A Johnson. Learning the low frequency earthquake activity on the central San Andreas Fault. Geophys. Res. Lett., 48:e2021GL092951, 2021. [ bib ]
[2470] K. T. M. Johnson, H. J. B. Dick, and N. Shimizu. Melting in the oceanic upper mantle: an ion microprobe study of Diopsides in abyssal peridotites. J. Geophys. Res.: Sol. Earth, 95:2661--2678, 1990. [ bib ]
[2471] H. O. Johnson. Techniques and studies in crustal deformation. PhD thesis, University of California, San Diego, 1993. [ bib ]
[2472] J. M. Johnson, Y. Tanioka, J. Ruff, K. Satake, H. Kanamori, and L. R. Sykes. The 1957 great Aleutian earthquake. Pure Appl. Geophys., 142:3--28, 1994. [ bib ]
[2473] J. M. Johnson, K. Satake, S. R. Holdahl, and J. Sauber. The 1964 Prince Wiliam Sound earthquake: Joint inversion of tsunami and geodetic data. J. Geophys. Res.: Sol. Earth, 101:523--532, January 1996. [ bib ]
[2474] M. Johnson and T. Plank. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem., Geophys., Geosys., 1(1007), 1999. [ bib | DOI ]
[2475] H. O. Johnson, D. C. Agnew, and F. K. Wyatt. Present-day crustal deformation in southern California. J. Geophys. Res.: Sol. Earth, 99:23951--23974, 1994. [ bib ]
[2476] M. J. Johnston, S. A. T. Linde, and M. T. Gladwin. Near-field high resolution strain measurements prior to the October 18 1989, Loma Prieta Ms 7.1 earthquake. Geophys. Res. Lett., 17:1777--1780, 1990. [ bib ]
[2477] M. Johri, E. M. Dunham, M. D. Zoback, and Z. Fang. Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations. J. Geophys. Res.: Sol. Earth, 119:1251--1272, 2014. [ bib ]
[2478] L. Jolivet and C. Faccenna. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 6:1095--1107, 2000. [ bib ]
[2479] Laurent Jolivet, Claudio Faccenna, Bruno Goffé, Evgenii Burov, and Philippe Agard. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. Amer. J. Sci., 303:353--409, 2003. [ bib ]
[2480] Laurent Jolivet, Claudio Faccenna, and Claudia Piromallo. From mantle to crust: Stretching the Mediterranean. Earth Planet. Sci. Lett., 285(1-2):198--209, 2009. [ bib ]
[2481] Laurent Jolivet, Emmanuel Lecomte, Benjamin Huet, Yoann Denèle, Olivier Lacombe, Loic Labrousse, Laetitia Le Pourhiet, and Caroline Mehl. The north cycladic detachment system. Earth Planet. Sci. Lett., 289:87--104, 2010. [ bib ]
[2482] Romain Jolivet, M Simons, Z Duputel, J-A Olive, HS Bhat, and Quentin Bletery. Interseismic loading of subduction megathrust drives long-term uplift in northern Chile. Geophys. Res. Lett., 47(e2019GL085377), 2020. [ bib ]
[2483] L. Jolivet, C. Faccenna, B. Goffè, M. Mattei, F. Rossetti, C. Brunet, F. Storti, R. Funiciello, J. P. Cadet, N. d'Agostino, and T. Parra. Midcrustal shear zones in postorogenic extension: Example from the northern Tyrrhenian sea. J. Geophys. Res.: Sol. Earth, 103:12123--12161, 1998. [ bib ]
[2484] L. Jolivet, C. Faccenna, N. d'Agostino, M. Fournier, and D. Worrall. The kinematics of back-arc basins, examples from the Tyrrhenian, Aegean and Japan Seas. In C. Mac Niocaill and P. D. Ryan, editors, The Mediterranean Basins: Tertiary extension within the Alpine orogen, volume 164 of Geol. Soc. London Spec. Publ., pages 21--53. Geological Society of London, London, 1999. [ bib ]
[2485] D.W.R. Jones, R.F. Katz, M. Tian, and J.F. Rudge. Thermal impact of magmatism in subduction zones. Earth Planet. Sci. Lett., 481:73--79, 2018. [ bib ]
[2486] A. G. Jones, L. Sonder, and J. R. Unruh. Lithospheric gravitational potential energy and past orogenesis: Implications for conditions of initial Basin and Range and Laramide deformation. Geology, 26:639--642, 1998. [ bib ]
[2487] C. H. Jones, B. P. Wernicke, G. L. Farmer, J. D. Walker, D. S. Coleman, L. W. McKenna, and F. V. Perry. Variations across and along a major continental rift: an interdisciplinary study of the Basin and Range Province, western USA. Tectonophys., 213:57--96, 1992. [ bib ]
[2488] L. E. Jones and S. E. Hough. Analysis of broadband records from the 28 June 1992 Big Bear earthquake; evidence of a multiple-event source. Bull. Seismol. Soc. Am., 85:688--704, 1995. [ bib ]
[2489] C. H. Jones, J. R. Unruh, and L.J. Sonder. The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 381:37--41, 1996. [ bib ]
[2490] Sigurjón Jónsson, Paul Segall, Rikke Pedersen, and Grímur Björnsson. Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424:179--183, 2003. [ bib ]
[2491] T. H. Jordan and E. G. Paulson. Convergence depths of tectonic regions from an ensemble of global tomographic models. J. Geophys. Res.: Sol. Earth, 118:4196--4225, 2013. [ bib ]
[2492] T. H. Jordan. Some comments on tidal drag as a mechanism for driving plate motions. J. Geophys. Res.: Sol. Earth, 79:2141--2142, 1974. [ bib ]
[2493] T. H. Jordan. Composition and development of the continental tectosphere. Nature, 274:544--548, 1978. [ bib ]
[2494] T. H. Jordan. Global tectonic regionalization for seismological data analysis. Bull. Seismol. Soc. Am., 71:1131--1141, 1981. [ bib ]
[2495] TH Jordan. Continents as a chemical boundary layer. Phil. Trans. Royal Soc. London. A, 301:359--373, 1981. [ bib ]
[2496] Thomas H Jordan, Peter Puster, Gary A Glatzmaier, and Paul J Tackley. Comparisons between seismic earth structures and mantle flow models based on radial correlation functions. Science, 261:1427--1431, 1993. [ bib ]
[2497] ML u Jost and RB Herrmann. A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60:37--57, 1989. [ bib ]
[2498] F. Jouanne, F. A. Audemard, C. Beck, A. van Welden, R. Ollarves, and C. Reinoz. Present-day deformation along the El Pilar Fault in eastern Venezuela: Evidence of creep along a major transform boundary. J. Geodynamics, 51:398--410, 2011. [ bib ]
[2499] J. Julia, C. J. Ammon, R. B. Herrmann, and A. M. Correig. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int., 143:99--112, 2000. [ bib ]
[2500] H. Jung and S.-i. Karato. Water-induced fabric transitions in olivine. Science, 293:1460--1463, 2001. [ bib ]
[2501] H. Jung, W. Mo, and H. W. Green. Upper mantle seismic anisotropy resulting from pressure-induced slip transitions in olivine. Nature Geosc., 2:73--77, 2009. [ bib ]
[2502] Project Jupyter. Jupyter website, 2021. online at jupyter.org/index.html, accessed 01/2021. [ bib ]
[2503] M. Kachanov. Effective elastic properties of cracked solids: critical review of some basic concepts. In V. C. Li, editor, Micromechnical modeling of quasi-brittle behavior, volume 45 of Appl. Mech. Rev., pages 304--335. American Society of Mechanical Engineers, 1992. [ bib ]
[2504] M. Kachanov. Elastic solids with many cracks and related problems. Advan. Appl. Mech., 30:259--445, 1994. [ bib ]
[2505] K. Kadinsky-Cade and R. J. Wilemann. Towards understanding aftershock patterns: The basic pattern for strike slip earthquakes. In Eos Trans. AGU, volume 63, page 384. American Geophysical Union, 1982. (abstract). [ bib ]
[2506] M. Käser, C. Castro, V. Hermann, and C. Pelties. SeisSol: a software for seismic wave propagation simulations. In High Performance Computing in Science and Engineering Garching/Munich 2009, pages 281--292. Springer, Berlin, Heidelberg, 2010. Package available online at www.seissol.org, accessed 02/2020. [ bib ]
[2507] Y. Y. Kagan and D. D. Jackson. Probabilistic forecasting of earthquakes. Geophys. J. Int., 143:438--453, 2000. [ bib ]
[2508] Yan Y Kagan. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int., 148:520--541, 2002. [ bib ]
[2509] Y. Y. Kagan. On the geometric complexity of earthquake focal zone and fault systems: A statistical study. Phys. Earth Planet. Inter., 173:254--268, 2009. [ bib ]
[2510] Y.Y. Kagan, D.D. Jackson, and R.J. Geller. Characteristic earthquake model, 1884–2011, R.I.P. Seismol. Res. Lett., 83:951--953, 2012. [ bib ]
[2511] Y. Y. Kagan and L. Knopoff. Spatial distribution of earthquakes: the two-point correlation function. Geophys. J. Int., 62(2):303--320, 1980. [ bib ]
[2512] Y. Y. Kagan. Stochastic model of earthquake fault geometry. Geophys. J. R. astr. Soc., 71:659--691, 1982. [ bib ]
[2513] Y. Y. Kagan and L. Knopoff. The first-order statistical moment of the seismic moment tensor. Geophys. J. R. Astr. Soc., 81:429--444, 1985. [ bib ]
[2514] Y. Y. Kagan. Random stress and earthquake statistics: Spatial dependence. Geophys. J. Int., 102:573--583, 1990. [ bib ]
[2515] Y. Y. Kagan. Incremental stress and earthquakes. Geophys. J. Int., 117:345--364, 1994. [ bib ]
[2516] Y. Y. Kagan and D. D. Jackson. Long-term probabilistic forecasting of earthquakes. J. Geophys. Res.: Sol. Earth, 99:13685--13700, 1994. [ bib ]
[2517] YY Kagan and DD Jackson. New seismic gap hypothesis: Five years after. J. Geophys. Res.: Sol. Earth, 100:3943--3959, 1995. [ bib ]
[2518] Y. Y. Kagan. Are earthquakes predictable? Geophys. J. Int., 131:505--525, 1997. [ bib ]
[2519] Y. Y. Kagan and D. D. Jackson. Spatial aftershock distribution: Effect of normal stress. J. Geophys. Res.: Sol. Earth, 103:24453--24467, 1998. [ bib ]
[2520] Y. Y. Kagan. Universality of the seismic moment-frequency relation. Pure Appl. Geophys., 155:537--573, 1999. [ bib ]
[2521] Akira Kageyama, Tetsuya Sato, and Complexity Simulation Group. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas, 2:1421--1431, 1995. [ bib ]
[2522] Yavor Kamer and Stefan Hiemer. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. J. Geophys. Res.: Sol. Earth, 120:5191--5214, 2015. [ bib ]
[2523] M. Kameyama, D. A. Yuen, and H. Hiromi. The interaction of viscous heating with grain-size dependent rheology in the formation of localized slip zones. Geophys. Res. Lett., 24:2523--2526, 1997. [ bib ]
[2524] É. Kaminski and N. M. Ribe. A kinematic model for for recrystallization and texture development in olivine polycrystals. Earth Planet. Sci. Lett., 189:253--267, 2001. [ bib ]
[2525] É. Kaminski and N. M. Ribe. Time scales for the evolution of seismic anisotropy in mantle flow. Geochem., Geophys., Geosys., 3(2001GC000222), 2002. [ bib ]
[2526] É. Kaminski. The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophys. Res. Lett., 29:10.1029/2002GL014710, 2002. [ bib ]
[2527] É. Kaminski, N. M.. Ribe, and J. T. Browaeys. D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophys. J. Int., 157:1--9, 2004. [ bib ]
[2528] H. Kanamori and T. H. Heaton. Microscopic and macroscopic physics of earthquakes. In J. B. Rundle, D. L. Turcotte, and W. Klein, editors, GeoComplexity and the Physics of Earthquakes, volume 120 of Geophys. Mono., pages 147--163. American Geophysical Union, Washington, DC, 2000. [ bib ]
[2529] H. Kanamori and D. L. Anderson. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65:1073--1095, 1975. [ bib ]
[2530] H. Kanamori. The energy release in great earthquakes. J. Geophys. Res.: Sol. Earth, 82:2981--2987, 1977. [ bib ]
[2531] Hiroo Kanamori and Don L Anderson. Importance of physical dispersion in surface wave and free oscillation problems. Rev. Geophys., 15:105--112, 1977. [ bib ]
[2532] R. V. S. Kanda and M. Simons. An elastic plate model for interseismic deformation in subduction zones. J. Geophys. Res.: Sol. Earth, 115(B03405), 2010. [ bib | DOI ]
[2533] D. L. Kane, G. A. Prieto, F. L. Vernon, and P. M. Shearer. Quantifying seismic source parameter uncertainties. Bull. Seismol. Soc. Am., 101:535--543, 2011. [ bib ]
[2534] Yoshihiro Kaneko, Laura M Wallace, Ian J Hamling, and Matthew C Gerstenberger. Simple physical model for the probability of a subduction-zone earthquake following slow slip events and earthquakes: Application to the Hikurangi megathrust, New Zealand. Geophys. Res. Lett., 45:3932--3941, 2018. [ bib ]
[2535] Yoshihiro Kaneko, Yoshihiro Ito, Bryant Chow, Laura M Wallace, Carl Tape, Ronni Grapenthin, Elisabetta D'Anastasio, Stuart Henrys, and Ryota Hino. Ultra-long duration of seismic ground motion arising from a thick, low-velocity sedimentary wedge. J. Geophys. Res.: Sol. Earth, 124:10347--10359, 2019. [ bib ]
[2536] Ichiro Kaneoka and Nobuo Takaoka. Rare gas isotopes in hawaiian ultramafic nodules and volcanic rocks: constraint on genetic relationships. Science, 208:1366--1368, 1980. [ bib ]
[2537] S. Kaneshima and G. R. Helffrich. Subparallel dipping heterogeneities in the mid-lower mantle. J. Geophys. Res.: Sol. Earth, 108, 2003. [ bib | DOI ]
[2538] S. Kaneshima and G. Helffrich. Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science, 283:1888--1891, 1999. [ bib ]
[2539] Honn Kao, Shao-Ju Shan, Herb Dragert, Garry Rogers, John F Cassidy, and Kumar Ramachandran. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature, 436:841--844, 2005. [ bib ]
[2540] J. L. Kaplan and J. A. Yorke. Chaotic behavior of multidimensional difference equations. In H.-O. Peitgen and H.-O. Walter, editors, Functional Differential Equations and Approximations of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204--227. Springer, Berlin, 1979. [ bib ]
[2541] P. Kapp, M. Taylor, D. Stockli, and D. Lin. Active development of low-angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 36:7--10, 2008. [ bib ]
[2542] Paul Kapp and Peter G DeCelles. Mesozoic--Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Amer. J. Sci., 319:159--254, 2019. [ bib ]
[2543] Bryan M Kaproth and C Marone. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip. Science, 341:1229--1232, 2013. [ bib ]
[2544] P. Karabinos, S. D. Samson, J. C. Hepburn, and H. M. Stoll. Taconian orogeny in the New England Appalachians: Collision between Laurentia and the Shelburne Falls arc. Geology, 26:215--218, 1998. [ bib ]
[2545] H. Kárason and R. D. van der Hilst. Constraints on mantle convection from seismic tomography. In M. A. Richards, R. G. Gordon, and R. D. van der Hilst, editors, The History and Dynamics of Global Plate Motion, volume 121 of Geoophys. Mono., pages 277--288. American Geophysical Union, Washington DC, 2000. [ bib ]
[2546] H. Kárason and R. D. van der Hilst. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res.: Sol. Earth, 106:6569--6588, 2001. [ bib ]
[2547] H. Kárason. Constraints on mantle convection from seismic tomography and flow modeling. PhD thesis, Massachusetts Institute of Technology, Cambridge MA, June 2002. [ bib ]
[2548] S.-i. Karato and B. B. Karki. Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res.: Sol. Earth, 106:21771--21783, 2001. [ bib ]
[2549] S.-i. Karato, M. R. Riedel, and D. A. Yuen. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 127:83--108, 2001. [ bib ]
[2550] S.-i. Karato. Mapping water content in the upper mantle. In J. Eiler, editor, Inside the Subduction Factory, volume 138 of Geoophys. Mono. American Geophysical Union, Washington, DC, 2004. [ bib ]
[2551] S.-i. Karato, H. Jung, I. Katayama, and P. Skemer. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Ann. Rev. Earth Planet. Sci., 36:59--95, 2008. [ bib ]
[2552] S.-i. Karato. On the origin of the asthenosphere. Earth Planet. Sci. Lett., 321--322:95--103, 2012. [ bib ]
[2553] Shun-ichiro Karato, Tolulope Olugboji, and Jeffrey Park. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nature Geosc., 8:509--514, 2015. [ bib ]
[2554] S.-i. Karato. Rheology of the lower mantle. Phys. Earth Planet. Inter., 24:1--14, 1981. [ bib ]
[2555] S.-i. Karato. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior: a preliminary result. Phys. Earth Planet. Inter., 55:234--240, 1989. [ bib ]
[2556] SI Karato. Grain growth kinetics in olivine aggregates. Tectonophys., 168:255--273, 1989. [ bib ]
[2557] S.-i. Karato and P. Li. Diffusion creep in perovskite: implications for the rheology of the lower mantle. Science, 255:1238--1240, 1992. [ bib ]
[2558] S.-i. Karato. On the Lehmann discontinuity. Geophys. Res. Lett., 51:2255--2258, 1992. [ bib ]
[2559] S.-i. Karato and P. Wu. Rheology of the upper mantle: a synthesis. Science, 260:771--778, 1993. [ bib ]
[2560] S.-i. Karato. Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science, 262:1708--1711, 1993. [ bib ]
[2561] S.-i. Karato. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett., 20:1623--1626, 1993. [ bib ]
[2562] S.-i. Karato and D. C. Rubie. Toward an experimental study of deep mantle rheology: A new multianvil sample assembly for deformation studies under high pressures and temperatures. J. Geophys. Res.: Sol. Earth, 102:20111--20122, 1997. [ bib ]
[2563] S.-i. Karato. Seismic anisotropy in the deep mantle, boundary layers and the geometry of convection. Pure Appl. Geophys., 151:565--587, 1998. [ bib ]
[2564] S.-i. Karato and H. Jung. Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett., 157:193--207, 1998. [ bib ]
[2565] Krister S Karlsen, Clinton P Conrad, Mathew Domeier, and Reidar G Trønnes. Spatiotemporal variations in surface heat loss imply a heterogeneous mantle cooling history. Geophys. Res. Lett., 48(6):e2020GL092119, 2021. [ bib ]
[2566] K. E. Karlstrom, D. Coblentz, K. Dueker, W. Ouimet, E. Kirby, J. Van Wijk, B. Schmandt, S. Kelley, G. Lazear, L.J. Crossey, R. Crow, A. Aslan, A. Darling, R. Aster, J. MacCarthy, S.M. Hansen, J. Stachnik, D.F. Stockli, R.V. Garcia, M. Hoffman, R. McKeon, J. Feldman, M. Heizler, M.S. Donahue, and the CREST Working Group. Mantle-driven dynamic uplift of the Rocky Mountains and Colorado Plateau and its surface response: Toward a unified hypothesis. Lithosphere, 4:3--22, 2012. [ bib ]
[2567] T. von Karmàn. Progress in the statistical theory of turbulence. J. Mar. Res., 7:252--264, 1948. [ bib ]
[2568] S. L. Karner and C. Marone. Healing and time-dependent weakening in simulated fault gouge (abstract). EOS, Trans. AGU, 79:F629, 1998. [ bib ]
[2569] M. Karpychev and L. Fleitout. Long-wavelength geoid: the effect of continental roots and lithosphere thickness variations. Geophys. J. Int., 143:945--963, 2000. [ bib ]
[2570] M. Karpychev and L. Fleitout. Simple considerations on forces driving plate motion and on the plate-tectonic contribution to the long-wavelength geoid. Geophys. J. Int., 127:268--282, 1996. [ bib ]
[2571] JA Karson, GL Früh-Green, Deborah S Kelley, EA Williams, Dana R Yoerger, and M Jakuba. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30oN. Geochem., Geophys., Geosys., 7(Q06016), 2006. [ bib | DOI ]
[2572] K. A. Kastens and J. Mascle. The geological evolution of the Tyrrhenian sea: an introduction to the scientific results of ODP Leg 107. In K. A. Kastens and J. Mascle, editors, Proc. ODP, Scientific Results, volume 107, pages 3--26. ODP Program, 1990. [