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ABSTRACT

I compare five quantitative models suggested to
determine the borehole pressure (P,) associated with the
initiation of borehole-fluid loss through fractures in the
formation surrounding the borehole (Table 1). | compare the
models for a vertical borehole in a region with a normal stress
setting (op,0 < oo < 0y,) for elastic and elasto-plastic
formation rock behaviors. For elastic rock behavior, | use
analytical solutions (Table 1), and for elasto-plastic rock
behavior, I use finite-element solution of the Modified Cam

Clay model in undrained conditions. My comparison shows:

o Fluid loss due to shear fracturing requires a lower
borehole pressure than the loss due to tensile fracturing.

e The shear-fracturing borehole pressure changes
significantly with the anisotropy of in-situ horizontal
principal stresses (Fig. 2): when gy o = oy, Py = 03,9, and
when oy, o # 00, Pp = 0p 0.

o Fluid loss due to reactivating a critically-oriented fracture
in shear occurs at a borehole pressure significantly below oy, .
e Shear failure of borehole wall rocks precludes tensile
fracturing of the rocks.

e Plastic deformation of borehole wall rocks increases the

borehole pressure needed for fluid loss due to shear fracturing.
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Table 1: Borehole-fluid loss models along
with their analytical solutions for a
formation with elastic rock behavior.
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Figure 2: Borehole pressure gradients
predicted by models in Table 1 in
Equivalent Mud Weight (EMW) for a
formation with elastic rock behavior. The
left and right plots are respectively for a
region with isotropic and anisotropic in-situ
horizontal stresses. The plots are based on
an assumed overburden stress-depth profile
and hydrostatic pore pressure.




Table 1: Borehole-fluid loss models along with their analytical solutions for a formation with elastic rock behavior

Description Reduced loss borehole pressure
i (P'y, = P, — u,) (Elastic formation)

Tensile fracturing 30'h0 — 0"
Reopening a 36" — o
2 radial fracture that o H0
is normal to gy, 2
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Co 1+ sin
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Figure 2: Borehole pressure gradients predicted by models in Table 1 in Equivalent Mud Weight
(EMW) for a formation with elastic rock behavior. The left and right plots are respectively for a
region with isotropic and anisotropic in-situ horizontal stresses. The plots are based on an
assumed overburden stress-depth profile and hydrostatic pore pressure.



