13.15: Borehole Stability in Unlithified Mudrocks

Jack Germaine, Tufts University

ABSTRACT
The mud weight limits of borehole stability are
computed using a number of mechanisms, such as
the in situ pore pressure and the least principal
stress. In unlithified mudrocks, borehole contraction
due to undrained shear deformations may become
the most critical lower limit for the mud weight.
\quad In this laboratory study, a thick-walled hollow
cylinder apparatus was used to measure the
borehole response to increases and decreases in
cavity pressure. Tests were performed on
resedimented Boston Blue Clay. Borehole closure
curves (Fig.1) were interpreted to obtain the stress-
strain relationship which was then used to predict
field closure response.
Undrained analysis based on the shape of the
stress strain curve and the undrained strength ratio
can be used to establish a lower limit of mud weight
based on acceptable squeezing deformations of the
borehole

CLICK ON IMAGE FOR LARGER VIEW

Fig. 1: Top: measured borehole closure response for specimen of resedimented Boston Blue Clay compared to a numerical simulation of the experiment. Bottom: derived stress strain response from the simulation showing behavior for shearing in the horizontal plane.

Back

Fig. 2: 2 Variation of the normalized undrained strength ratio vs effective stress for various loading directions. Triaxial compression is the strongest. Shearing in the horizontal plane (Hollow Cylinder) is much weaker and close to triaxial extension.

Back

