13.11: Laboratory measurements of lateral stress evolution in resedimented mudrocks

Athma Bhandari, UT Austin - Institute for Geophysics

ABSTRACT

Uniaxial strain testing of resedimented Gulf of Mexico - Eugene Island (smectite-rich material) and resedimented Boston Blue Clay (illite-rich material) under drained conditions revealed that the uniaxial lateral stress ratio (K_0) does not change with time and stress level ($\sigma'_a = 15 - 45$ MPa). In the meantime, the vertical creep (decrease in the void ratio) continues approximately at a log-time decreasing rate ($C_{\alpha}/C_{c} = 1.3$ -2.1%), consistent with other observations. I document K_0 of 0.75 for the smectite-rich material and 0.58 for the illite-rich material. I maintained the uniaxial strain condition (constant radius) in our experiments by direct feedback from a linear variable differential transformer sensor mounted in the radial direction. I kept constant the axial effective stresses (σ'_a) of 15 MPa, 30 MPa, and 45 MPa over ~10 days each. After lateral stress perturbations from the K_0 stress state, the stress ratio changes towards K_0 . The rate of change is higher in the smectite-rich material than in the illite-rich material. A better understanding of the lateral stress ratio and its evolution will help constrain better lateral stress or fracture gradient in the subsurface.

CLICK ON IMAGE FOR LARGER VIEW

ratio) and K0 evolution with time

Fig. 1: Test program showing stress and pressure versus elapsed time. After initial isotropic compression and back pressure saturation, I incrementally loaded the specimen axially in small stress increments (red curve) until I reached the axial effective stress of 15 MPa. I held the stress constant at 15 MPa for 10 days. I then increased the axial effective stress to 30 MPa and held it constant for 10 days Finally, I increased the axial effective stress to 45 MPa and held it constant for 10 days. I held the pore pressure (green curve) constant at 5 MPa during the stress increments and three stress holds.

Back

Fig. 2: Vertical creep (decrease in the void ratio) and K0 evolution with time. The lateral stress ratio (K0) remains constant with time while I continue to measure void ratio decrease.

Back