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Submarine landslides retrogressively fail from intact material at the headwall and 

then become fluidized by strain weakening; the final deposits of these flows have low 

porosity, which controls their character in seismic reflection data. Submarine landslides 

occur on the open slope and also localized areas including margins of turbidite channel-

levee systems. I develop and quantify this model with 3-D seismic reflection data, core 

and log data from Integrated Ocean Drilling Program Expedition 308 (Ursa Basin, Gulf 

of Mexico), flume experiments, and numerical modeling. At Ursa, multiple submarine 

slides over the last 60 ky are preserved as mass transport deposits (MTDs). Retrogression 

proceeded from an initial slope failure that created an excavated headwall, which reduced 

the horizontal stress behind the headwall and resulted in normal faults. Fault blocks 

progressively weakened until the gravitational driving stress imposed by the bed slope 

exceeded soil strength, which allowed the soil to flow for more than 10 km away from 

the source area. The resulting MTDs have lower porosity (higher bulk density) relative to 

non-failed sediments, which ultimately produces high amplitude reflections at the base 

and top of MTDs. In the laboratory, I made weak (low yield strength) and strong flows 

(high yield strength) from mixtures of clay, silt, and water. Weak flows generate turbidity 
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currents while moving rapidly away from the source area. They create thin and long 

deposits with sinuous flow features, and leave behind a relatively smooth and featureless 

source area. In contrast, strong flows move slowly, do not generate a turbidity current, 

and create blocky, highly fractured source areas and short, thick depositional lobes. In 

Pleistocene turbidite channels of the Mississippi Fan, deep-seated rotational failures 

occurred in the flanking levees. The rotational failures displaced material into the channel 

from below where it became eroded by turbidity flows. This system achieved a delicate 

steady state where levee deposition and displacement along the fault into the channel was 

balanced by erosion rate of turbidity flows. This work enhances our understanding of 

geohazards and margin evolution by illuminating coupled processes of sedimentation, 

fluid flow, and deformation on passive continental margins. 
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Chapter 1:  Introduction 

Continental margins are ubiquitously affected by submarine landslides. 

Submarine landslides occur when the down-slope component of shear stress exceeds the 

resisting shear strength of the soil mass, which can be triggered by earthquakes, high 

overpressures, storm waves, and tectonic processes (oversteepening due to crustal uplift). 

The deposits of past slides, termed Mass Transport Deposits (MTDs), occur in a wide 

range of depositional environments, with highly variable geometries, lithologies, and 

geotechnical properties. The observation that MTDs comprise a significant fraction of 

continental margin deposits underscores that understanding the processes associated with 

submarine landslides is key for understanding how continental margins are constructed 

and reshaped over time. From a hazards perspective, submarine landslides can damage 

seafloor facilities and generate tsunamis that can devastate coastal communities and 

threaten human lives.  From an offshore drilling and well design perspective, MTDs are 

typically densified (have lower porosity) than non-remobilized sediment, which can 

significantly increase the installation time of self-penetrating jetted conductors (“jet 

pipes”) and suction anchor piles. 

Seismic reflection technology and interpretation software have rapidly improved 

in the past few decades and are the main tool used to image MTDs. The advantages of 

seismic reflection data are that the complex three-dimensional spatial morphology and 

internal architecture of submarine landslides can be analyzed in great detail quickly and 

effectively. However, seismic data does not yield direct information about the processes 

that ultimately created the observed morphology nor of in-situ geotechnical properties 

(e.g., porosity, lithology, pore pressure, and stress state). As a result, the marine 

geosciences community has compiled a vast catalog of deposit morphologies from 

1



 

continental margins around the world. However, the ultimate goal is to link the seismic 

observations to an understanding of failure and transport processes. This is turn can yield 

powerful insight for analyzing in-situ slope conditions, for hazards analyses, and for 

designing installation infrastructures (e.g., pipelines, wells, platform piles). The goal of 

this dissertation is a detailed understanding of the link between seismic facies and in-situ 

rock properties of MTDs, and ultimately, the underlying processes associated with 

submarine landslide failure, movement, and deposition. I synthesize different approaches 

by geoscientists who analyze MTDs in seismic data, outcrops, and cores, numerical 

modelers who simulate the physical transport processes, and the geotechnical engineer 

who has a detailed understanding of the stress-strain behavior of soils. 

In the following chapters I explore the mechanics of submarine landslide failure, 

transport processes during landslide movement, and how these are recorded in the 

seismic facies and rock properties. My methods include a detailed core-log-seismic 

analysis through of a series of submarine landslide deposits in the Gulf of Mexico, 

laboratory experiments of subaqueous mudflows, and finite element modeling of deep-

seated failures along the margins of channel-levee systems. The key contributions of this 

work are 1) how seismic facies link to the physical properties of landslide deposits, 2) 

how large retrogressive landslide complexes progressively weaken from block failure to a 

state of flow, 3) how the morphology of submarine landslide deposits record pre-failure 

stress conditions and dynamic flow behavior, and 4) that an evolving channel-levee 

system can destabilize as a result of channel incision and rapid levee loading, which is an 

important control on the lifespan of the channel. These results have significant 

implications for geohazards analyses, offshore drilling/well design, and understanding the 

slope failure processes and products that exert a fundamental control on continental 

margin stratigraphy. 
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CHAPTER 2: RETROGRESSIVE FAILURES RECORDED IN MASS TRANSPORT DEPOSITS IN 
THE URSA BASIN, GULF OF MEXICO  

I link seismic response, rock properties from core and log, and triaxial shear 

experiments to develop a conceptual and quantitative model of the multi-stage process of 

failure and post-failure evolution of submarine landslides in the Ursa Basin, Gulf of 

Mexico. I first present a detailed well-seismic tie and correlate between well sites from 

Integrated Ocean Drilling Program Expedition 308. High-amplitude seismic reflections 

and large excursions in resistivity record densification and not a lithologic contrast within 

clay-rich Mass Transport Deposits (MTDs) of the Ursa Basin. Within a single MTD 

densification is greatest near the base and it declines upwards, which controls the 

prominent basal reflection and the weak upper reflection observed in seismic. I defined 

two seismic facies within the MTDs. A Chaotic facies records greater transport based on 

our observation of grooves and flow-like features. This facies has the highest degree of 

densification and soft sediment deformation. In contrast, the Discontinuous Stratified 

facies suggests only limited transport: there are no grooves or flow-like features in 

seismic, pinnacles are undeformed sediments that have not moved, and soft sediment 

deformation is subtle in core. I then interpret my observations in terms of failure, 

transport, and depositional processes of clay-rich submarine landslides. I demonstrate that 

a high pore pressure ratio and strain-weakening were necessary to allow retrogressive 

failures in these sediments. Flow of material proceeded downslope for many kilometers 

because the gravitational driving stress was greater than the critical state strength. The 

ultimate deposits have a characteristically low porosity relative to bounding sediment and 

this controls their acoustic impedance.  
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CHAPTER 3:  MUDFLOW TRANSPORT BEHAVIOR AND DEPOSIT MORPHOLOGY: ROLE 
OF  SHEAR STRESS TO YIELD STRENGTH RATIO IN SUBAQUEOUS EXPERIMENTS 

In this study I build on Chapter 2 by exploring how the morphology of submarine 

landslide deposits record the pre-failure conditions and transport behavior. I developed a 

novel approach to trigger subaqueous mudflows from 10-cm thick mud beds for which I 

know the shear stress and shear strength a priori. Thus I am able to explore how the 

difference between shear stress and shear strength, defined as the Flow Factor (Ff = shear 

strength/yield strength), controls the resulting dynamic mudflow and the morphology of 

the deposit. I monitor the evolving flow with time lapse photos and video, and I map the 

final deposit with a high resolution laser scanner. A key result is that when yield strength 

and shear stress are nearly equal (Ff ~1), the result is a slow moving, low-volume, 

mudflow that retrogressively fails from the source area. The deposits grow piecewise as 

each fault block detaches from the source and accumulates at the back of the deposit.  

When the difference between yield strength and shear stress is large (Ff >1), the sediment 

bed is weak relative to the driving stress and thus generates a long-runout, high-volume 

flow. A second key result is that the yield strength is proportional to clay content and 

inversely proportional to water content. I show under what conditions clay-rich and silt-

rich sediment can produce similar mudflows and deposit morphologies. This work 

illustrates that detailed analysis of mudflow deposit morphology can yield important 

clues to the pre-failure stress conditions when the flow was initiated as well as the flow 

behavior. This has important implications for hazard assessments and for interpreting 

depositional history of past mudflows from a detailed analysis of surface morphology. 
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CHAPTER 4: DEEP-SEATED FAILURE AND EROSION OF LEVEES IN TURBIDITE 
CHANNELS OF THE UPPER MISSISSIPPI FAN, GULF OF MEXICO 

In this study I explore the fascinating interplay of rapid sedimentation and slope 

failure recorded in two Late Pleistocene channel-levee systems on the Mississippi Fan. 

Rapid levee accumulation rate outpaced fluid pressure diffusion, which in turn triggered 

paired rotational slump zones on both margins of the channel. In this manner, I propose a 

steady state system evolved where sedimentation on the levee was accommodated by 

displacement along the fault, and erosion of the toe thrusts by turbidity flows. Thus a 

self-recycling process established in which sediment was temporarily deposited on the 

levee but eventually conveyed through the failures zone and flushed down-system. This 

style of levee failure exerts a first-order control on channel morphology. If slumped 

levees plug the channel axis, avulsion may occur and reroute sandy flows. A fascinating 

stratigraphic consequence of these deep-seated failures is the violation of the Law of 

Superposition in which older strata overlie younger strata. This study contributes to the 

understanding of the coupled process of sedimentation-driven excess fluid pressure and 

slope failure in channel-levee systems, which are the major constructional elements on 

the world’s deep sea fans and common energy exploration targets.  
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Chapter 2   

Retrogressive Failures Recorded in Mass Transport Deposits in the 
Ursa Basin, northern Gulf of Mexico 

ABSTRACT  

Clay-rich Mass-Transport Deposits (MTDs) in the Ursa Basin, Gulf of Mexico, 

record failures that mobilized along extensional failure planes and transformed into long 

runout flows. Failure proceeded retrogressively: scarp formation unloaded adjacent 

sediment causing extensional failure that drove successive scarp formation updip.  This 

model is developed from 3-D seismic reflection data, core and log data from Integrated 

Ocean Drilling Project (IODP) Expedition 308, and triaxial shear experiments. MTDs are 

imaged seismically as low-amplitude zones above continuous, grooved, high-amplitude 

basal reflections, and are characterized by two seismic facies. A Chaotic facies typifies 

the downdip interior, and a Discontinuous Stratified facies typifies the 

headwalls/sidewalls. The Chaotic facies contains discontinuous, high-amplitude 

reflections that correspond to flow-like features in amplitude maps: it has higher bulk 

density, resistivity, and shear strength, than bounding sediment. In contrast, the 

Discontinuous Stratified facies contains relatively dim reflections that abut against intact 

pinnacles of parallel-stratified reflections: it has only slightly higher bulk density, 

resistivity, and shear strength than bounding sediment, and deformation is limited. In 

both facies, densification is greatest at the base, resulting in a strong basal reflection. 

Undrained shear tests document strain weakening (sensitivity = 3). I estimate that failure 

at 30 meters below seafloor will occur when overpressure = 70% of the hydrostatic 

effective stress: under these conditions soil will liquefy and result in long runout flows.  
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2.1 INTRODUCTION 

MTDs are the products of large mass failures that typically transport hundreds of 

km3 of material downslope. MTDs are composed of the deposits of slides, slumps, and 

debris flows (Stow, 1986; Weimer and Shipp, 2004). They can occur throughout a 

margin’s history, in all water depths, and over a range of bed slopes from steep (oceanic 

island flanks, ~10°) to very gentle (Mississippi delta, <0.5°) (Booth et al., 1993; 

Hampton, 1996; Masson et al., 2006; McAdoo et al., 2000; Moscardelli et al., 2006; 

Urgeles et al., 1997). MTDs play an important role in the development of continental 

margins and oceanic island flanks, and often comprise greater than 50% of the 

stratigraphic rock record in these settings (Garziglia et al., 2008; McMurtry et al., 2004; 

Newton et al., 2004). Hazards, including tsunamis, coastal erosion, and impacts on subsea 

cables, wellheads, and other structures can result from MTDs (Bardet et al., 2003; 

Hampton, 1996; Masson et al., 2006; Weimer and Shipp, 2004). MTDs have generated 

deadly and destructive tsunamis in Papua New Guinea, Norway, France, and the Aleutian 

Islands (Dan et al., 2007; Fryer et al., 2004; Tappin et al., 2001). Offshore oil and gas 

companies routinely model potential slide pathways and analyze conditions that drove 

past failures (Brand et al., 2003; Butenko and Barbot, 1980; Corthay II and Aliyev, 2000; 

Jeanjean et al., 2003; Niedoroda et al., 2003; Pirmez, 2004). MTDs are a drilling 

challenge because they are generally denser than non-deformed sediments (Piper et al., 

1997; Prior et al., 1984; Shipp et al., 2004).  

Seismic, core, and outcrop studies have each illuminated a wide range of MTD 

characteristics. Outcrop studies (Lucente and Pini, 2003; Lucente and Pini, 2008) have 

demonstrated the internal structure of MTDs. Core studies (Jenner et al., 2007; 

Moscardelli and Wood, 2008; Tripsanas et al., 2008) have illuminated variable lithofacies 

recorded in MTDs. Seismic studies have illuminated the wide range of geomorphologic 
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elements of MTDs (Gee et al., 2006; Homza, 2004; Jenner et al., 2007; Lucente and Pini, 

2003; Lucente and Pini, 2008; Martinez et al., 2005; Moscardelli and Wood, 2008; 

Moscardelli et al., 2006; Posamentier, 2003; Tappin et al., 2001; Tripsanas et al., 2008). 

Ocean Drilling Program Leg 155 on the Amazon Fan and Integrated Ocean Drilling 

Program (IODP) Expedition 308 in the Gulf of Mexico collected rock properties data 

through MTDs (Flemings et al., 2006; Piper et al., 1997). Piper et al., [1997] presented a 

comprehensive analysis of the Amazon fan MTDs but they lacked high-resolution 

seismic data to link facies with rock properties. 

IODP Expedition 308 cored, logged, and sampled several MTDs in the first 600 

meters below seafloor (mbsf) in the Ursa Region of the northern Gulf of Mexico 

[Flemings et al., 2006]. A high-resolution 3-D seismic volume (~20 km2), shot 

specifically for shallow hazard analysis, provides detailed imagery of the internal 

architecture of MTDs. The log and core data of IODP Expedition 308, together with the 

industry seismic data, represent a unique opportunity to better understand the properties 

of MTDs, to explore their relationship to seismic facies, and to ultimately illuminate the 

underlying processes associated with MTDs. 

I link seismic response, rock properties from core and log, and triaxial shear 

experiments to develop a conceptual and quantitative model of the multi-stage process of 

failure and post-failure evolution of failures recorded in clay-rich MTDs in the Ursa 

Basin. I first present a detailed well-seismic correlation and correlate between the wells 

across the drilling transect. I then characterize the seismic-core-log attributes of MTDs at 

Ursa and interpret my observations in terms of failure, transport, and depositional 

processes of clay-rich MTDs. I close by inferring how these MTDs initiated and evolved 

to their current state. 
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2.2 REGIONAL SETTING AND SEISMIC DATA 

The Ursa Basin lies 210 km (~125 miles) southeast of New Orleans, Louisiana 

(USA), on the Mississippi Fan, in water depths from 800-1500 meters (2600-4900 ft.) 

(Fig. 2.1). Late Pleistocene deposits in the Ursa Basin are associated with a much larger 

system in north-central Gulf of Mexico (Coleman and Roberts, 1988; McFarlan and 

LeRoy, 1988; Winker and Booth, 2000). Winker and Booth (2000) termed this the 

Eastern Depositional Complex. These strata accumulated in the last ~70 ka during 

Marine Isotope Stages (MIS) 1-4 during the Late Wisconsinan North American 

continental glaciation (Li et al., 2007; Winker and Booth, 2000; Winker and Shipp, 

2002).  

I focus on the sediments within the first 600 mbsf within the Ursa Basin (Fig. 

2.2). Winker and Shipp [2002], Flemings et al., [2006], and Sawyer et al., [2007a] 

describe the regional stratigraphy of these deposits. They can be divided into four 

successive depositional units: the Blue Unit basin-floor fan, the Ursa Canyon channel-

levee system, the Southwest Pass Canyon channel-levee system, and distal fan and 

hemipelagic deposits (Fig. 2.2). MTDs lie primarily within the levee sections of the 

Southwest Pass and Ursa channel systems.  The Blue Unit is an overpressured, sand-rich, 

formation that has caused significant problems during drilling when unconsolidated sand 

has flowed to the seafloor (Ostermeier et al., 2002; Ostermeier et al., 2000; Pelletier et 

al., 1999). 

The high resolution 3-D seismic data used here were acquired with 80 in3 sleeve 

gun array (TriCluster 80), with four 100m streamers towed from a single vessel, 0.5 ms 

digitization, and inline and trace spacing of 7.5 m and 6.25 m, respectively. Data are zero 

phase with frequency content of 150 Hz or higher. Vertical resolution is thus on the order 

of 3 meters. I use a black/white color convention with white representing a positive 
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impedance contrast (e.g., the seafloor is white). These data were processed with an 

automatic gain control (AGC) filter of 100 ms. Amplitudes in separate AGC windows are 

thus not directly comparable to each other and appropriate caution must be taken when 

interpreting amplitude variations across AGC windows. In this study the amplitude 

variations associated with MTDs are relatively small and lie within the same AGC 

window for a given MTD. Furthermore, the logging and coring data provide excellent 

means to verify the observed amplitude differences.  

 

2.3 RESULTS  

2.3.1 Well Tie  

I use a vertical seismic profile completed at Site U1324 to define a time-depth 

model and correlate core and log data with seismic data. Sixteen time-depth pairs, 

spanning the region from 84 to 499 mbsf, were acquired [Flemings et al., 2006]. I assume 

this velocity-depth profile describes the velocity structure beneath the entire cross section 

and use it to depth convert the seismic data (Fig. 2.2). As the sediment properties are 

similar to a depth of 250 mbsf at all sites (including all MTDs), I am confident in using 

the same time-depth model. The lithology and velocity structure in the lowermost 300 

mbsf at Site U1324 is unique to this site; therefore extrapolations to other sites between 

300-600 mbsf may not be as robust. Table 2.1 presents key seismic surfaces in both two-

way travel time and depth. 

Site U1324 is composed of two lithologic units: Unit I and Unit II as defined by 

IODP Expedition 308 (Flemings et al., 2006) (Fig. 2.3). Unit I extends from 0-365 mbsf 

and is composed of clay and silt; Unit II is composed of interbedded silt, sand, and clay 

and it ranges from 365 – 604 mbsf (Fig. 2.3). Seismic reflection S40-1324 lies at the 
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boundary of these two lithofacies. Reflections between the seafloor and S40-1324 are 

generally parallel and continuous, and are controlled by relatively minor changes in bulk 

density and/or velocity (Fig. 2.3). The prominent seismic reflection, S30, corresponds to 

a thin layer of relatively low velocity, low resistivity, and high porosity at the base of 

MTD-2 (Figs. 2.2 and 2.3). Below S40-1324, the response of the seismic, gamma ray, 

resistivity, velocity, and bulk density logs are more variable (Fig. 2.3). This is due in part 

to the variable lithology (interbedded sand, silt, and clay) but also because of some hole-

washout shown by the caliper log (Fig. 2.3). The reflections in this interval are not 

laterally continuous (Fig. 2.2).  

No core was collected at Site U1323; however, LWD logs were collected to 247 

mbsf (Fig. 2.4). Three units were defined [Flemings et al., 2006]. Logging Unit 1 extends 

from the seafloor to 197 mbsf and is interpreted to be dominated by mud with several 

silty intervals and two MTDs (Fig. 2.4). At the top of Logging Unit 2 there is a sharp 

decrease in the gamma ray and resistivity, which I interpret to be a sand (Fig. 2.4). 

Logging Unit 2 cannot be correlated to Site U1324 or Site U1322. In Logging Unit 3, 

gamma ray values increase with depth, which suggests an increase in clay content with 

depth (Fig. 2.4). Seismic reflections are discontinuous in this interval. At the base of 

Logging Unit 3 (242 mbsf), a high-amplitude reflection correlates with a low gamma ray 

response, which I interpret as a sand (Fig. 2.4). 

Site U1322 is composed ubiquitously of mud and the majority of the section is 

composed of MTDs (Fig. 2.5). Grain size does not change significantly with depth (Fig. 

2.5).  However, the resistivity, density, porosity, and shear strength are quite variable. 

Each zone of increased resistivity corresponds to a zone of increased bulk density and 

shear strength: in core and seismic data, these zones are shown to correspond to MTDs. 
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The abrupt increase in density at the base of each MTD is recorded with a prominent 

negative (black) reflection.  

 

2.3.2 Age and Correlation  

The base of the Blue Unit onlaps a regionally extensive condensed section, which 

contains the extinction events of the planktonic foraminifera Globorotalia flexuosa (70 

ka) and the calcareous nannofossil Pontosphaera 1 (~70 ka) (Styzen, 1996; Winker and 

Booth, 2000). The age of top of the Blue Unit is unknown.  IODP Expedition 308 cored 

to within ~20 meters of the top of the Blue Unit at Sites U1324 and U1322 and recovered 

sediments younger than 57 ka [Flemings et al., 2006].  

At Site U1324, age markers of 48, 42, 24, 16, and 10 ka were identified (Fig. 2.3). 

These correspond to the boundaries between planktonic foraminifera subzones Y5/Y4, 

Y4/Y3, Y3/Y2, Y2/Y1, and Y1/Z, respectively (Flemings et al., 2006; Kennett and 

Huddlestun, 1972).  At Site U1322, only age markers 57 ka, 24 ka, 16ka, and 10 ka, were 

identified (Fig. 2.2). However, the 57 ka and 24 ka markers are tentative because they 

were recovered within MTDs.  

I correlate the above timelines across the transect with the exception of the 48 ka 

and 42 ka timelines because they were not identified at Site U1322 (Fig. 2.2). The 24 ka 

age marker is robust at Site U1324 and ties to a foraminifera-rich bed (G. conglobatus), 

which correlates to seismic reflection S30. This foraminifera-rich bed was not recovered 

at Site U1322, but I can correlate S30. It is likely that the foraminifera-rich bed was 

eroded by the MTD at Site U1322, therefore the correlation at Site U1322 is tentative 

(dashed line in Fig. 2.2a). The 57 ka marker was not identified at Site U1324, but I 

correlate the 57 ka timeline from Site U1322 to Site U1324 by the downhole profiles of 

relative abundance of calcareous nannofossils [Flemings et al., 2006]. 
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2.3.3 Mass Transport Deposits  

MTDs at Ursa are imaged as low-amplitude zones between a high-amplitude, 

negative, basal reflection and a low-amplitude, positive, top reflection (Figs. 2.2-2.5) 

(Dugan et al., 2007b; Sawyer et al., 2007b; Urgeles et al., 2007). The sidewalls of MTDs 

are marked by the abrupt, steep truncation of channel-levee deposits (Fig. 2.2). I define 

10 MTDs (MTDs 1- 10) based on these criteria (Table 2.2). MTD-2 is a large, multi-

detachment, mass failure that extends beyond the limits of the seismic data.  In contrast, 

MTDs 3-10 contain a single detachment, are thinner and aerially smaller than MTD-2, 

and lie completely within the eastern levee of the Ursa Canyon channel system.   

I begin my analysis of MTDs by presenting a detailed description of the most 

prominent MTD at Ursa, MTD-2.  I present its large-scale, seismic geomorphology, and 

then focus in on the details of log and core behavior. I then explore the stacked set of 

MTDs at Site U1322 (MTDs 3-10).  

I focus on the changes in bulk density that occurred in the MTDs and how this has 

impacted other physical measurements. I describe the change in bulk density through the 

bulk density equation: 
( ) gfb ρφφρρ )1−+= ,      eq. 1  

where φ  is porosity, and fρ and gρ  are the fluid and grain density, respectively. When 

LWD bulk density data are expressed in terms of porosity or void ratio (e), I have 

assumed in all cases that fρ = 1024 kg/m3 and gρ = 2740 kg/m3 (Sawyer et al., 2008). I 

will discuss changes in porosity in terms of both porosity and void ratio (e), where: 

φ
φ
−

=
1

e
.       eq. 2 
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2.3.4 MTD-2 

The top and base of MTD-2 correspond to seismic surfaces S20 and S30, 

respectively (Fig. 2.2). The base of MTD-2 is a complex surface, with multiple 

detachment levels and grooves (Figs. 2.2 and 2.6).  The grooves occur on the eastern side 

and trend southeast, indicating the failure direction (Fig. 2.6). They extend for at least 1 

km, and are up to 5 meters deep. The top of MTD-2 has two appearances in map view: a 

dimpled texture in the western half, and a relatively smooth surface along the eastern half 

(Fig. 2.7). The dimpled texture corresponds to the tops of pinnacle features that I discuss 

in the next section.   

 

2.3.4.1 Seismic Facies of MTD-2  

Within MTD-2, I identify two seismic facies: 1) Chaotic, and 2) Discontinuous 

Stratified (Figs. 2.8 and 2.9, respectively). I summarize each facies and their attributes in 

Table 2.3. In seismic cross section, the Chaotic facies contains high-amplitude, 

discontinuous reflections (Fig. 2.8).  

The Discontinuous Stratified facies contains discontinuous reflections that abut 

against cone-shaped islands (“pinnacles”) of parallel stratified reflections (Fig. 2.9). Each 

pinnacle sticks above the surrounding material by a few meters and each is attached to 

the base of MTD-2. The pinnacles are distributed around Site U1324 as illustrated on the 

dip map of the top of MTD-2 (S20) (Fig. 2.7).  The dip angle of the sidewalls ranges 

from ~50°-60°. The basal reflection (S30) has higher amplitudes beneath the 

discontinuous reflections and is dimmer beneath the pinnacles (Fig. 2.9). Each pinnacle is 

upright and I observed no overturned or detached pinnacles. Furthermore, there are no 

grooves along the base of MTD-2 beneath the pinnacles. 
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Within the Discontinuous Stratified facies, there is a faulted slump block that lies 

between Sites U1324 and U1323 (Fig. 2.10). A steep sidewall scarp, between Sites 

U1324 and U1323, truncates the western edge of this block from the thick section of 

parallel seismic reflections of the Southwest Pass Canyon levee. The eastern toe of this 

slump block ramped up above the lower detachment surface and extruded onto the 

intermediate detachment level, and its top was eroded. The western half of the block 

contains extensional faults, and the eastern half contains compressional faults (Fig. 2.10). 

Similar zones of extension and compression within slumps have been observed in 

outcrops in Ireland (Martinsen and Bakken, 1990).  

Figure 2.11 illustrates the spatial distribution of the two facies. The high 

amplitude zone in the eastern part of the map corresponds to the Chaotic facies whereas 

the low amplitudes to the west correspond to the Discontinuous Stratified facies. Site 

U1322 and U1323 penetrated the high-amplitude region and Site U1324 penetrated the 

low-amplitude region.  

2.3.4.2 Petrophysics, Sedimentology, and Physical Properties of MTD-2 

At Site U1322, MTD-2 corresponds to the prominent zone of increased resistivity, 

bulk density, and shear strength (88 – 125 mbsf) (Figs. 2.5 and 2.12). In cores, MTD-2 is 

composed of deformed mud, with occasional folds, mud clasts, and no discernible 

bedding (Flemings et al., 2006) (Fig. 12).  The base is a sharp contact that separates 

deformed, dark-brown mud above from bedded, light-brown clay below (Fig. 2.12E). The 

high degree of deformation at Site U1322 is pervasive throughout MTD-2, with the 

exception of the top 5 m, where it is gradational and less intense (Fig. 2.12B).  

The bulk density is greater within MTD-2 than the bounding sediment (Fig. 

2.12A). The correspondence of the LWD-derived porosity with the measured porosity 

(Fig. 2.12) confirms that the densification is driven by loss of pore space. The greatest 
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densification (lowest porosity) occurs in the basal ~20 meters and densification declines 

upward to background values in the top 17 meters. I quantify the degree of densification 

by observing that the porosity above and below MTD-2 is approximately constant ( 0φ = 

51%): I assume this baseline porosity )( 0φ represents the porosity that would be present at 

this depth if there were no MTD present.  I calculate the porosity difference ( φΔ = φφ −0 ) 

where φ  is the porosity within the MTD.  The maximum densification is marked by a 

change in porosity ( φΔ ) of 0.10 units: this occurs about 8 meters above the base (Fig. 

2.12). Shear strength (Fig. 2.12A) is proportional to the densification, and is greatest at 

the base.  

The densification within MTD-2 controls the seismic response: the densification, 

and thus the impedance contrast, is greatest at the base, therefore the basal reflection is 

high-amplitude and negative polarity (high impedance to low impedance) (Figs. 2.8 and 

2.12). The internal reflections are chaotic and have locally high amplitudes because of the 

variations in impedance within the MTD itself (Figs. 2.8 and 2.12). The top reflection has 

an opposite polarity from the basal reflection because the impedance contrast increases 

with depth. 

At Site U1323, MTD-2 contains a prominent zone of increased resistivity and low 

porosity (91 -195 mbsf) (Fig. 2.4). The densification is fairly constant in the basal ~95 

meters, and declines upward to background values only in the upper ~6 meters. The bulk 

density log decreases at the base; however, this is likely related to poor hole conditions as 

recorded by the caliper log (Flemings et al., 2006). There are high amplitude reflections 

of the slump block as well as transparent zones similar to Site U1322. The basal 

reflection is high amplitude and negative polarity (high impedance to low impedance), 

internal reflections are low amplitude, and the top reflection has lower amplitude than the 

base and an opposite polarity (positive; low impedance to high impedance). 
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At Site U1324, MTD-2 correlates to a zone of slightly increased resistivity and 

velocity, and slightly lower porosity (107-165 mbsf) (Figs. 2.3 and 2.13). The 

densification is highest in the basal 15 m, and declines to background values towards the 

top. The maximum φΔ  is 0.07 porosity units, which occurs 15 m above the base. In core, 

MTD-2 contains only minor deformation features including small-offset faults and 

slightly tilted bedding (Fig. 2.13). Most of the deformation features are observed near the 

bottom of the MTD. The base, at 165 mbsf, is recorded by a color change from reddish 

brown clay above to dark brown clay below. This bed is enriched in foraminifera (G. 

conglobatus) and is identified by low velocity, high porosity, and low resistivity in the 

logs (Figs. 2.3 and 2.13). The seismic response is similar to that at Sites U1322 and 

U1323: the basal reflection has high amplitude due to the high impedance contrast (high 

impedance to low impedance) and the top reflection has an opposite polarity and lower 

amplitude. The internal reflections of MTD-2 at Site U1324 are unique from the other 

sites and are associated with the Discontinuous Stratified facies (as discussed above). 

2.3.4.3 Strain in MTD-2 

The incremental volumetric strain ( vε ) (compression is positive) is, 

o
v e

e
+
Δ

=
1

ε ,        eq. 3 

where e is void ratio within the MTD and e0 is baseline void ratio ( 0φ expressed as 

void ratio). Within MTD-2 at Site U1322, maximum vε  is +12%, and the mean is +4% 

(Fig. 2.12). At Site U1324, maximum vε is +9%, and the mean is +2% (Fig. 2.13). Thus, 

the volume strain in MTD-2 at Site U1322 is twice that at Site U1324. In both cases the 

volume strain increases with depth within MTD-2.  

I calculate vertical strain between the pinnacles and surrounding sediment by 

calculating the height difference. I assume the pinnacles have undergone no strain and 
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represent the original thickness. In seismic data, I measured an average height difference 

of 3 meters between several pinnacles and their surrounding sediment. The average 

thickness of the pinnacles is 58 meters and consequently the vertical strain is 5% 

(positive values indicate compression). This value for vertical strain, which was derived 

near Site U1324, is quite similar to the average volumetric strain found from 

petrophysical data at Site U1324 (4%). This suggests that strain may have been largely 

uniaxial within the MTD. There is a progressive increase in height difference between 

pinnacles and surrounding sediment eastward away from Site U1324 towards the main 

side scarp. This suggests that vertical strain within MTD-2 increases eastward from Site 

U1324. 

 

2.3.5 MTDs 3-10 at Site U1322 

The high-amplitude reflections in the lower half of Site U1322, below seismic 

surface S30, correspond to a stacked set of 8 MTDs (MTDs 3-10) (Figs. 2.2 and 2.5). 

MTDs 3-7 are very thin (~3-20 meters) at Site U1322 and are difficult to distinguish from 

each other because of the high amplitude basal reflections; they thicken to the west where 

they are easier to map individually (Fig. 2.2). Each MTD correlates to a zone of increased 

resistivity, density, and shear strength between 141 - 234 mbsf (Dugan et al., 2007a; 

Flemings et al., 2006) (Figs. 2.2 and 2.5). In core, each MTD appears as homogeneous, 

highly deformed mud bounded by thin intervals of non-deformed mud. MTD-10 contains 

a smaller secondary MTD with identifiable headwall and sidescarps (Fig. 2.14) (Sawyer 

et al., 2007a). The distance between the sidewall scarps increases to the southeast, 

indicating a southeastern transport direction. The similarity of these MTDs to the more 

clearly imaged MTD-2 suggests that all the MTDs have a similar petrophysical behavior 

where each MTD is densified relative to its bounding sediment. 
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2.4. DISCUSSION  

2.4.1 History of MTDs at Ursa 

MTDs at Ursa developed within an evolving leveed-channel system.  MTD-10 

was the first failure at Ursa (post-Ursa Canyon) (Fig. 2.15). It records the total failure of 

the levee that flanks the eastern side of the Ursa Canyon. I interpret that the failure 

occurred relatively late in the history of Ursa levee deposition because of the thick levee 

deposits that it eroded. MTD-10 created a bathymetric low that trapped the 7 successive 

MTDs that followed (MTD-9 through MTD-3) (Fig. 2.15).  MTDs 3-10 were relatively 

small events. The Southwest Pass Canyon system (west of the study area) deposited thick 

levees, which capped MTDs 3-10 [Sawyer et al., 2007a] (Fig. 2.15).  MTD-2 was a large 

failure on the continental slope that formed within the levee material of the Southwest 

Pass Canyon system. MTD-2 formed three different detachment levels within the area of 

the drilling transect alone.  

 

2.4.2 Origin and Evolution of MTDs: Active Failure and Retrogression 

I use the observations at Ursa to develop a conceptual and quantitative model to 

describe the failure and post-failure evolution of MTDs. I envision five stages: 1) initial 

failure creates an open scarp, 2) extensional active failure occurs behind the open scarp, 

3) as strain accumulates the soil weakens, 4) the soil becomes weaker than the 

gravitational driving stress and flows downslope, and 5) uniaxial consolidation occurs 

after the fluidized material is arrested.  

The initial failure of the slope could have been generated by either high seepage 

forces in response to high sedimentation rates (Bishop, 1973; Dugan and Flemings, 2000; 

Elverhoi et al., 1997; Iverson et al., 1997; Terzaghi, 1956), tectonic forcing, or seismic 

activity (Brodsky et al., 2003; Hampton, 1996; Morgenstern, 1967; Schwab et al., 1988) 

19



(Fig. 2.16A). In the Ursa region, I interpret seepage forces and fluid overpressures are the 

dominant mechanisms for slope instability but seismic activity has also been recorded in 

the Gulf of Mexico (Dugan and Germaine, 2008; Flemings et al., 2006; Flemings et al., 

2008; Urgeles et al., 2007).  

The horizontal stress adjacent to the newly formed scarp is reduced, which 

reduces the mean effective stress and increases the shear stress. Failure caused by lateral 

unloading is termed Rankine active failure (Lambe and Whitman, 1969). Failure surfaces 

lie at 45° + 
2

fφ  to the plane on which the greatest principal stress acts (Fig. 2.16B), 

where fφ  is the internal angle of friction (Lambe and Whitman, 1969). At Ursa, fφ  is 

~25°, thus active failure planes should be oriented at 57.5° and I observe ~50°-60° failure 

surfaces (Fig. 2.9).  

To illustrate how the landslide mass is transformed from Rankine active failure to 

generalized flow, I examine the stress path of the soil during its evolution in a plot of 

mean effective stress (p’) vs. mean stress difference (q) (Fig. 2.17a). During 

sedimentation, consolidation is uniaxial (K0 conditions) (‘0’ to ‘1’, Figs. 2.16B and 

2.17A). Then, lateral stress (σ3’) is reduced and shear increases until Rankine active 

failure occurs (‘1’ to ‘2’, Fig. 2.17B). The effective stress path first curves up to the peak 

strength (pt. ‘2’, Fig. 2.17A) and then down to the left indicating both decreasing shear 

strength and decreasing mean effective stress. The decrease in mean effective stress is 

caused by contractive behavior during shear, which elevates the pore pressure as it takes 

on more of the total load (Iverson, 2005). Ultimately, the soil reaches critical state where 

it can continuously deform at constant volume, constant effective normal stress, constant 

shear stress, and constant strain rate (pt. ‘3’, Fig. 2.17). The degree of strain-weakening is 

described by the Sensitivity, St, which is the ratio of peak undrained strength to critical 
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state strength for a soil at a given water content and confining stress (Lambe and 

Whitman, 1969).  

Undrained triaxial tests document strain weakening in Ursa sediment (Dugan and 

Germaine, 2009). These data suggest that there is as much as 5% axial strain before peak 

strength is reached. In all of the Ursa triaxial experiments, soil weakens beyond peak 

strength; however, critical state strength was not reached before tests were stopped at 

<20% axial strain (Dugan and Germaine, 2009). Shipboard measurements of the ratio of 

peak vane shear strength to the remolded strength can also be used to estimate the degree 

of strain weakening. The shipboard estimates show that St is between 2-3 (Flemings et 

al., 2006). 

I re-plot one experimental effective stress path (TX 778 from Dugan and 

Germaine, 2009) during undrained shearing to simulate landsliding at Ursa (Fig. 2.18). I 

do not know the pore pressure (and thus vertical effective stress) that existed at failure, 

however I do know the present-day conditions (Dugan and Germaine, 2008; Flemings et 

al., 2008). It is likely that pore pressure was greater in the past than at present as 

sedimentation rates have decreased at Ursa over the last 10 ky (Flemings et al., 2006). I 

investigate three cases determined by the initial overpressure ratio, λ * (λ * is the ratio of 

the overpressure to the hydrostatic vertical effective stress): 1) present-day conditions 

whereλ * is 0.5 (Dugan and Germaine, 2008; Flemings et al., 2008), 2) λ * = 0.7, and 3) 

λ * = 0.9. I calculate the gravitational driving stress ( gτ ) assuming a 2-D infinite slope 

with slope-parallel seepage (Graham, 1984): 
θθτ cossin)( hvg PS −= ,     eq. 4  

where vS and hP are the total overburden stress and hydrostatic pore pressure, 

respectively. gτ  is 4.4 kPa at 30 mbsf on a typical slope (θ ) in the Ursa Basin of 1.5°, 

constrained from seismic data. Figure 2.18 illustrates several important points. First, only 
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the case of λ * = 0.9 results in a topographic driving stress that is greater than the in-situ 

shear stress under K0 conditions. However, even with this high pore pressure, the driving 

stress is less than the shear strength. If fact, an overpressure ratio of 0.92 would be 

necessary to instigate sliding given an infinite slope of 1.5 degrees and a friction angle of 

25.8°, given in this experimental result.  This result parallels previous work that have 

noted the extreme pore pressures necessary to generate slope failure (Coleman and Prior, 

1988; Prior and Suhayda, 1979; Terzaghi, 1956). Second, retrogressive failure due to 

lateral unloading can only occur if there is significant soil sensitivity. For the examples 

shown here, for an initial pore pressure ratio of 0.5, the sensitivity must be equal to 6 

whereas if the initial pore pressure ratio is 0.7, then the sensitivity need only be equal to 

3.  

In sum, I infer that a high pore pressure ratio ( *λ ≥  0.7) was necessary to initiate 

failure. To generate subsequent retrogressive failure, strain weakening, as expressed by 

significant soil sensitivity, transforms slope failures to long runout flows. Failure can 

proceed provided that the gravitational driving stress is greater than the critical state 

strength (Fig. 2.17) (Kayen et al., 1989; Poulos, 1981; Poulos et al., 1985; Schwab, 1988; 

Whitman, 1985). This allows the material to flow at the shear stress levels imposed by 

the regional topographic gradient without any other requirements and moves downslope 

for tens even hundreds of kilometers based on other studies of submarine debris flows 

(De Blasio et al., 2005; Elverhoi et al., 1997; Garziglia et al., 2008; Gee et al., 1999; 

Jansen et al., 1987; Laberg and Vorren, 2000; Masson et al., 1998; Masson et al., 1997; 

Mohrig et al., 1998; Niedoroda et al., 2003).  

An additional mechanism, not explored here, that could contribute to decreasing 

the soil strength below the topographic driving stress is the long-term effect of pore 

pressure rise following scarp formation (Bishop and Bjerrum, 1960; L'Hereux et al., in 
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press; Leroueil, 2001).  This effect is commonly observed in excavations in normally 

consolidated clays where total mean stress and pore pressure drop in response to 

undrained unloading. Over time, pore pressure rises and slope stability decreases, which 

can potentially drive slope failure.  An intriguing aspect of this process is that it provides 

an additional mechanism to drive retrogressive failure: if the undrained response does not 

weaken soil strength below the gravitational driving stress, the subsequent pore pressure 

rise could progressively weaken the soil until it does. 

 

2.4.3 Deposition and Densification of MTDs 

Experiments in subaerial and subaqueous debris flows document that high excess 

pore pressures are maintained throughout movement, and dissipate primarily after 

movement is arrested (Ilstad et al., 2004; Iverson, 1997; Major, 1996; Major, 2000; Major 

and Iverson, 1999; McArdell et al., 2007). Movement is arrested, presumably by a change 

in topographic gradient. Today the MTDs are denser than bounding sediment (Flemings 

et al., 2006) (Figs. 2.3-2.5). I interpret that prior to slope failure, the soil had a metastable 

‘cardhouse’ structure, typical of normally consolidated marine clays (Mitchell, 1993). 

During slope failure and subsequent transport, the soil is mechanically ‘remolded.’ 

Remolding deflocculates and reduces porosity of the soil at constant water content 

(Mitchell, 1993). Experimental work has shown that if a natural sample and its remolded 

version are uniaxially consolidated to an equivalent vertical effective stress, the remolded 

soil has a lower porosity (higher bulk density) (Burland, 1990; Chandler, 2000; 

Skempton, 1970). Not only is the original structure remolded, but a shear-induced fabric 

develops in which grains are aligned with long axes parallel to the direction of shear. 

Anisotropy of magnetic susceptibility (AMS) and scanning electron microscope (SEM) 

images record alignment of clay particles in Ursa MTDs (Yamamoto et al., 2005). I 
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attribute the densification and shear fabric of Ursa MTDs to remolding during downslope 

transport and deformation. Upon re-deposition, the MTD uniaxially consolidates, 

and because it is remolded, consolidates to a lower porosity for a given vertical effective 

stress than normally deposited soil above and below the MTD (see porosity offset at basal 

contact of MTD-2 in Fig. 2.13). 

 

2.4.4 Linking Seismic Facies with Sedimentology and Physical Properties 

We show that MTDs are denser than their bounding material and that 

densification is coincident with deformation (Figs. 2.12 and 2.13). Densification is 

greatest near the base of the MTD and it declines upwards. This accounts for the 

prominent basal reflection and the weak upper reflection observed in seismic. Within the 

MTD, extensive deformation results in a low-reflectivity internal character in seismic. 

Piper et al., (1997) also described the correspondence between transparent seismic zones 

and MTDs in the Amazon Fan. The Amazon Fan MTDs are ~50 meters thick with similar 

φΔ  as the Ursa MTDs [Piper et al., 1997]. Similarly, a common interpretation in 

sequence stratigraphic literature is that transparent zones are MTDs (Posamentier and 

Kolla, 2003; Weimer, 1990; Weimer and Shipp, 2004).  

A surprising outcome of this analysis is that strong seismic reflections and large 

excursions in resistivity record densification and not lithologic variation (e.g. Fig. 2.5). 

As a result, I am able to correlate MTDs with resistivity logs and this may result in a new 

methodology for mapping and interpreting MTDs from logs. Resistivity changes do not 

always map directly to lithologic contrasts but in this case resistivity maps to 

densification. 

A unique aspect of this study is that I could explore the spatial variation of 

properties within a single MTD. I documented two facies: Discontinuous Stratified and 
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Chaotic. I suggest that the Discontinuous Stratified facies records incipient failure within 

a retrograding slide (Fig. 2.9). In contrast the Chaotic facies is the product of a fluidized 

submarine gravity flow (Figs. 2.6, 2.8, and 2.11). This facies also has the greatest degree 

of densification and deformation as observed in cores (Figs. 2.5 and 2.12). MTD-2 

contains examples of both types. However, the stacked set of MTDs (3-10) are all 

characterized by the Chaotic facies and thus I interpret they are fluidized, long runout 

debris flows. 

 

2.5 CONCLUSIONS  

Strong seismic reflections and large excursions in resistivity record densification 

and not a lithologic contrast within clay-rich MTDs of the Ursa Basin. Densification is 

greatest near the base and it declines upwards, which controls the prominent basal 

reflection and the weak upper reflection observed in seismic.  

I defined two seismic facies within the MTDs. The Chaotic facies records greater 

transport based on the observation of grooves and flow-like features. This facies has the 

highest degree of densification and soft sediment deformation. In contrast, the 

Discontinuous Stratified facies suggests only limited transport: there are no grooves or 

flow-like features in seismic, pinnacles contain undeformed sediment that have not 

moved, and soft sediment deformation is subtle in core.  

A high pore pressure ratio ( *λ ≥  0.7) and strain-weakening were necessary to 

propagate retrogressive failures in these clay-rich sediments. Failure of material can 

proceed downslope for many kilometers provided that the gravitational driving stress is 

greater than the critical state strength. The ultimate deposits (MTDs) have a 

characteristically low porosity relative to bounding sediment. I suggest that the original 

soil fabric is remolded by the failure process and results in a shear-induced fabric.  
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Table 1. Key seismic surfaces 
 

 
 
 
 
 
 
 
 
 
 

Site U1324 Water depth = 1056.0 m  
Surface twtbsf (ms) mbsf (m) 
Seafloor 0 0 
S10 45 35.5 
S20 135 104.5 
S30 210 165.8 
S40-1324 443 359.2 
S50-1324 559 463.7 
S60-1324 723 609.3 

 
 
 
 
 
 
 
 

Site U1323 Water depth = 1260.5 m  
Surface twtbsf (ms) mbsf (m) 
Seafloor 0 0 
S10 44 26 
S20 124 91 
S30 250 194 

 
 
 
 
 
 
 
 
 
 
 

 

Site U1322 Water depth = 1319.5 m  
Surface twtbsf (ms) mbsf (m) 
Seafloor 0 0 
S10 40 31.6 
S20 116 88.9 
S30 160 124.5 
S40-1324 233 181.8 
S50-1324 256 202.4 
S60-1324 280 221.1 
S70-1322 313 245.4 

 
 
twtbsf (ms) = two-way travel time below seafloor (milliseconds) 
mbsf = meters below seafloor (meters) 
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Table 2. Thickness and seismic facies of Ursa MTDs 
 
 

MTD Site U1324 

thickness (m) 

Site U1323 

thickness (m) 

Site U1322 

thickness (m) 

Seismic Facies 

MTD-1  16.1 10.1 21.2 Chaotic facies at Sites U1322 and 

U1323. Discontinuous Stratified 

facies at Site U1324 

MTD-2 58.0 97.4 34.0 Chaotic facies 

MTD-3 -- -- 4.9 Chaotic facies 

MTD-4 -- -- 6.3 Chaotic facies 

MTD-5 -- -- 6.3 Chaotic facies 

MTD-6 -- -- 2.9 Chaotic facies 

MTD-7 -- -- 8.5 Chaotic facies 

MTD-8 -- -- 17.1 Chaotic facies 

MTD-9 -- -- 17.8 Chaotic facies 

MTD-10 -- -- ~23.0 Chaotic facies 
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Table 3. Summary of MTD seismic facies and related properties. 
 

Seismic Facies  Attributes of base 
and top reflectors 

Internal 
Features 
Observed in 
Seismic Cross 
Sections 

Features 
Observed in 
Interval 
Amplitude 
Maps 

Physical 
Properties 

Deformation 
Features 
Observed in 
Core 

Ursa 
MTDs  

Interpreted 
Type of Mass 
Movement 

Chaotic Base: very high-
amplitude, negative 
reflection coefficient, 
continuous, often 
records grooves 
Top: lower amplitude 
than base, positive 
polarity, continuous 

Local packets 
of high-
amplitude 
chaotic 
reflections but 
otherwise low-
reflectivity and 
semi-
transparent 

High-
amplitude 
sinuous, 
channel-like 
features that 
correlate to 
sinuous 
features 
observed in 
cross section 

Pronounced 
increase in bulk 
density (i.e. lower 
porosity), 
resistivity, shear 
strength relative to 
bounding non-MTD 
sediment. Generally 
greatest towards to 
the base of MTD. 

No preserved 
bedding, 
homogeneuous 
appearance with 
common folds and 
rare mud clasts. 

Eastern 
sides of 
MTD 1 
and 2, 
MTDs 3-
10 

Debris flow: 
relatively long 
run-out, greater 
internal 
deformation.  

Discontinuous 

 

Stratified 
Base: high-amplitude 
but dims beneath 
“pinnacles,” negative 
reflection coefficient, 
no grooves 
Top: lower amplitude 
than base, positive 
polarity, continuous 

Local 
“pinnacles”of 
intact parallel 
stratified 
reflectors, 
otherwise 
discontinuous 
reflections with 
low-reflectivity  

Low-
amplitude, 
relatively 
featureless 

Minor increase in 
bulk density (i.e. 
lower porosity), 
resistivity, and 
shear strength 
relative to bounding 
non-MTD sediment. 
Generally greatest 
towards the base of 
MTD. 

Subtle and 
recorded as tilted 
bedding and small-
offset faults. 

Western 
sides of 
MTD-1 
and MTD-
2 

Slump: 
Relatively 
short run-out, 
limited internal 
deformation. 
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Table 4. Nomenclature 

Symbol Definition Dimensions 

φ∆ Porosity loss Dimensionless 

vε Incremental volumetric strain Dimensionless 

λ * Overpressure ratio Dimensionless 

p’ Mean effective stress 
2LT

M

φ Porosity Dimensionless 

fφ Friction angle Dimensionless 

q Mean stress difference
2LT

M

'
1σ Vertical effective stress 

2LT
M

'
3σ Horizontal effective stress 

2LT
M

θ Bed slope Dimensionless 

K0 Coefficient of lateral stress at rest Dimensionless 

Ph Hydrostatic pressure 
2LT

M

Sv Overburden stress 
2LT

M

Void ratio Dimensionless e

rb

rg

rf

Bulk density

Grain density

Fluid density

M
L3

M
L3

M
L3

e∆ Void ratio loss Dimensionless 
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The Ursa Region is located 210 km SE of New Orleans, Louisiana, USA (inset map). 
The IODP drilling transect is located in 1000-1300 meters of water. IODP Sites 
(circles), 3-D seismic survey (black rectangle), Ursa and Mars tension-leg platforms 
(squares), and top-hole position industry wells (black dots) are shown.
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resistivity (RES) LWD logs are posted as well as key seismic surfaces. Solid lines represent age-equivalent 
horizons that have been identified at IODP sites, and dashed lines are tentative timelines.
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Figure 2.6
Dip map on base of MTD-2, seismic reflection S30 (Fig. 2). Dip map accentuates 
variations in slope on surfaces (gray is relatively flat and black is relatively steep). 
Steep sidescarps, linear groove traces, and faults are recorded on the base of 
MTD-2. 
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Figure 2.7
Dip map of top of MTD-2, seismic reflection S20 (Fig. 2). The rugose texture in the 
western half records the tops of pinnacles.
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A. Close-up of seismic line A-A’ illustrating characteristic features of the Discontinuous 
Stratified facies with pinnacle features near Site U1324. B. Interpreted line. Sidewall 
angles on the pinnacles range between 45°-60°. Amplitude of the basal reflection, S30, 
dims beneath the pinnacles. This facies is present in the western areas of MTDs 1 and 2. 
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A. Close-up of seismic line A-A’ illustrating the faulted slump block 
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Figure 2.12
A. Log profile through MTD-2 at Site U1322. Incremental volumetric strain (εv) is 
calculated (equation 3) from the porosity loss (∆φ) by assuming an original porosity 
(φ) of 0.51 everywhere in the MTD: this approximates the porosity above and below 
MTD-2.  B-E. Core photos from the top (B), middle (C, D) and base (E) of MTD-2 Defor-
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Figure 2.13
A. Log profile through MTD-2 at Site U1324. Incremental volumetric strain (εv) is 
calculated (equation 3) from the porosity loss (∆φ) by assuming an original porosity 
(φ) of 0.49.  B-E. Core photos document the progression of soft-sediment deformation 
from the top (B), through the middle (C, D), and to the base (E). The deformation within 
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data.
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A. Conceptual p’-q plot showing stress paths from initial burial under uniaxial consolida-
tion (pt. 0-1), followed by undrained shear to peak strength (pt. 1-2) and strain-weakening 
(sensitivity) to critical state strength (pt. 2-3).. Each point on a p’-q diagram represents the 
peak point on a Mohr circle of effective stress and allows successive states of stress to be 
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Figure 2.18
Undrained effective stress paths for three pore pressure conditions following 
uniaxial consolidation from seafloor to 30 mbsf (pt. 0 to 1). Experimental stress 
path is experiment TX 778 of Dugan and Germaine [2009]. K

0
 = 0.56 and  = 

25.8°. Dugan and Germaine [2009] present the data normalized by the maxi-
mum vertical effective stress during K

0
 consolidation (285.9 kPa). To plot them 

here, we multiply the normalized q values by 85 kPa, 51 kPa, and 17 kPa to 
represent the in-situ stress conditions of  λ* of 0.5, 0.7, and 0.9, respectively. 
Mean effective stress (p’) is calculated from the total vertical stress (integrated 
bulk density log), the pore pressure assumption, and K

0
. Horizontal line repre-

sents the gravitational driving stress on a slip plane of 1.5°. Point ‘2’ represents 
peak shear strength. Critical state was not reached in triaxial tests but vertical 
arrows represent Sensitivity (S

t
) required to weaken the soil strength to the 

gravitational driving stress. 
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Chapter 3 

Mudflow Transport Behavior and Deposit Morphology: Role of Shear 
Stress to Yield Strength Ratio in Subaqueous Experiments 

 
 

ABSTRACT  

The ratio of the shear stress to yield strength, defined here as the flow factor, 

controls transport behavior and deposit morphology in experimental dam-break 

subaqueous mudflows. A high flow factor (yield strength much lower than shear stress) 

produced an immediate collapse of the source area volume with an accelerating flow and 

a prominent turbidity current. It discharged 78 % of the original volume in 2.5 minutes 

and emplaced a thin and broad deposit as a single mass. In contrast, a medium flow factor 

generated a slow retrogressive failure that left behind a blocky, highly fractured source 

area and constructed a short, thick and hummocky deposit. Internal levees formed in 

these flows and channeled material downdip while inhibiting lateral growth. The deposit 

was constructed piece-wise over a period of 11.8 minutes as opposed to single mass 

emplacement. When flow factor is low (yield strength nearly equal to shear stress), only a 

narrow zone of failure occurs and a short and thick deposit is constructed. My 

experiments suggest that a detailed analysis of deposit surface morphology from seismic 

or field data can yield important clues to the depositional history of the flow. This has 

important implications for hazard assessments that require accurate predictions of slide 

dynamics and for interpreting depositional history of past mudflows. 
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3.1. INTRODUCTION 

Submarine mudflows and debris flows are fine-grained, gravity-driven, flows 

having approximately equal parts water and solid by volume (Iverson, 1997; Mohrig et 

al., 1999; O'Brien and Julien, 1988). They are important sediment transport processes that 

redistribute large volumes of sediment and affect routing of subsequent mass flows 

including turbidity currents. (Aksu, 1984; Elverhoi et al., 2002; Embley, 1976; Gee et al., 

1999; Hampton, 1972; Masson et al., 1997; Prior et al., 1984; Urgeles et al., 1997). 

Mudflows may create tsunamis, coastal erosion, and destruction of seafloor pipelines, 

cables, and platforms (Dan et al., 2007; Dugan and Flemings, 2000; Masson et al., 2006; 

Synolakis et al., 2002; Zakeri et al., 2008).  

Mudflow deposits are imaged in 3-D seismic reflection data and record a 

fascinating variety of surface expressions and deposit architectures (De Blasio et al., 

2005; Gee et al., 2006; Gee et al., 1999; Henrich et al., 2008; Martinez et al., 2006; 

McAdoo et al., 2000; Minisini et al., 2007; Moscardelli et al., 2006; Mosher et al., 2004; 

Mulder and Alexander, 2001; Mulder et al., 1997; Piper et al., 1985; Piper et al., 1997; 

Pirmez, 2004; Posamentier, 2003; Twichell et al., 2009). It remains a challenge to 

identify the most diagnostic morphological elements and how they relate to flow behavior 

and failure conditions.  For example, some flow deposits appear to have moved a short 

distance from their source area with much of the initial stratigraphy preserved. In other 

cases, flows appear to have traveled hundreds of kilometers in which the initial soil 

structure is completely remolded.   

Much of the difficulty with interpreting mudflow deposit morphology is that 

mudflows occur within sediments of widely varying composition, porosity, and shear 

strength, in all tectonic settings, and are triggered by numerous mechanisms including 

sedimentation-induced overpressuring (Dugan and Flemings, 2000; Flemings et al., 2008; 
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Stigall and Dugan, 2010), gas-charging (Bunz et al., 2005), storm wave loading (Rogers 

and Goodbred; Seed, 1978), salt diapirism (Orange et al., 2003), earthquakes (Hornbach 

et al.; Morgenstern, 1967; Stigall and Dugan, 2010; Strozyk et al.), and volcanic activity 

(Moore et al., 1989)).  However, all mudflows initiate in the same manner: when the 

downslope component of shear stress exceeds the shear strength (Hampton, 1996; Iverson 

et al., 1997). The ratio between the shear stress that drives flow ( Dτ ) and the shear 

strength that resists flow ( Rτ ) is defined here as the flow factor (Ff) 

R

D
fF

τ
τ

= .      (1) 

If Ff is high (>> 1), soil strength is much weaker than the driving stress. If Ff is 

low (~1), soil strength is nearly equal to the shear stress. If Ff is less than 1, soil strength 

exceeds shear stress, and no flow will occur. The Ff is the inverse of the engineering 

factor-of-safety, which is the ratio of the resisting strength to the driving stress and a 

standard method for evaluating slope stability (Lambe and Whitman, 1969). 

Direct observations of natural subaqueous flows are not possible, thus laboratory 

flume studies and rheological models are the main tools to explore dynamic mudflow 

behavior. Most flume experiments inject a sediment-water slurry down a slope to study 

flow dynamics over a wide range of conditions and sediment properties (Mohrig et al., 

1998; Marr et al., 2002; Ilstad et al., 2004; De Blasio et al., 2005; Issler et al., 2005). 

However, this method does not capture the pre-failure or failure processes and conditions 

that preceded the flow. Experiments on subaqueous sediment failures starting from an in-

tact bed have been described in several studies (Ancey and Cochard, 2009; Cochard and 

Ancey, 2009; Einsele, 1974; Rettger, 1935; Schwartz, 1982; Zreik et al., 1995). These 

experiments induce failure by tilting a tabular sediment bed until failure occurs or with a 

‘dam-break’ release method in which a vertical wall is suddenly released in front of an 

inclined tabular bed (Ancey and Cochard, 2009; Cochard and Ancey, 2009). 
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Geotechnical models rely on force balances to predict that flow is initiated from intact 

soil when shear stress exceeds the shear strength (Hampton et al., 1978; Kayen et al., 

1989; Lee et al., 1991; Poulos, 1981; Schwab et al., 1988). Once flow is established, it is 

commonly assumed that the soil behaves as a non-Newtonian fluid defined by a yield 

strength and viscosity (Huang and García, 1999; Imran et al., 2001; Johnson, 1970). 

These viscoplastic models simulate flow runout distance, flow velocity, and deposit 

thickness based on the yield strength and viscosity. These models however do not predict 

the three-dimensional character or the fine-scale surficial features of the final deposit. 

Here I trigger mudflows from static beds for which I know the shear stress and 

shear strength a priori. Thus I have a novel approach to explore how the difference 

between shear stress and shear strength, quantified as Ff, controls the characteristics of 

the dynamic mudflow and the morphology of the deposit. An advantage of the dam-break 

method is that I can capture the initiation of flow as it evolves from a static bed. Other 

dam-break experiments using Carbopol gel have been reported by Cochard and Ancey 

(2008) and Ancey and Cochard (2009). Here I conduct subaqueous experiments with 

mixtures of natural materials (kaolin clay, silt, and water). I describe my experimental 

methods and present dynamic behavior and deposit morphology of low, medium, and 

high Ff sediment-water mixtures. A key result of my experiments is that low, medium, 

and high Ff experiments produce unique transport behaviors and distinct deposit 

morphologies. Furthermore, similar behaviors can be produced from very different 

lithologies if the Ff is similar. I discuss these diagnostic features and processes and 

suggest this insight can guide studies of past mudflows and hazard analyses of possible 

future mudflows. A significant component of this study was developing a methodology to 

understand how different sediment mixtures behave as they progress through failure and 

post-failure states. 
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3.2. SEDIMENT RHEOLOGY 

3.2.1 Overview 

The experimental sediment slurries are mixtures of natural kaolin clay mined in 

Florida, U.S.A (E.P. Kaolin clay) (Pirkle, 1960), silica silt, and room temperature tap 

water. I characterize slurry rheology by clay fraction ( cε ), water content (w), yield 

strength ( yτ ), and Herschel-Bulkley viscosity parameters K and n. I then calculate the 

gravitational driving stress ( yτ ) for each mixture for a subaqueous 10-cm thick bed 

sloping at 10°. Finally, I calculate Ff by the ratio of the gravitational driving stress to 

yield strength. All experimental values are reported in Table 1. All symbols are defined in 

Table 2. 
 

3.2.2 Grain Size and Water Content 

I measured the grain size distributions of the kaolin clay and the silt with a 

standard hydrometer analysis (ASTM, 2007) (Figure 3.1). By mass, the kaolin clay is 

composed of 77 % clay-sized particles (< 2 μm) and 23 % silt-sized particles. The silt is 

composed of 90 % silt-sized and 10 % clay-sized particles. The reported clay fraction 

( cε ) for each experimental slurry is corrected for the grain size distribution of each 

component (Table 3.1). For example, a mixture of 75 % kaolin clay and 25 % silt 

contains 60 % clay-sized particles and 40 % silt-sized particles. Sediment with this grain-

size distribution is classified as a silty clay (Shepard, 1954). Thus cε is the percent by 

mass of clay-sized particles to the mass of the solids. 

100×=
solids

clay
c M

M
ε      (2) 

The water content of the slurries, w , is the mass ratio of water to solid grains:  

100×=
solids

water

M
Mw .     (3) 
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It is related to void ratio (e) and porosity (φ ) (assuming saturation = 100%): 

   
)1( φ

φ
−

== ewGs ,     (4) 

where Gs is the specific gravity of the solid grains. I chose this water content range 

because it allowed the mixture to be easily poured into the bed mold (as opposed to 

forming the bed through particle settling), and to have a porosity (φ ) characteristic of 

natural seafloor sediment that generate mudflows (Einsele, 1990; Keller et al., 1979; Lee 

and Baraza, 1999; Sawyer et al., 2009). 

 

3.2.3 Yield Strength 

I used a rotational viscometer (Fann model 35) to measure yield strength ( yτ ) of 

29 slurries, each with different clay fraction and water content. Viscometers are the most 

common tool to measure yield strength of fine-grained sediment-water mixtures (Coussot 

et al., 1998; Ilstad et al., 2004; Major and Pierson, 1992; Zakeri et al., 2008).   

All mixtures have a shear-thinning rheology in which the viscosity (slope of 

stress-strain curve) decreases as shear rate increases (Figure 3.2). Shear-thinning behavior 

is common for clayey slurries and is also referred to as pseudoplastic and Casson 

behavior (Coussot et al., 1998; Coussot and Proust, 1996; Coussot et al., 1996; Ilstad et 

al., 2004; Locat, 1997; Locat and Demers, 1988; Phillips and Davies, 1991). At each 

strain rate setting, I recorded shear stress readings at 20-second intervals for a total 5 

minutes. In all tests, the shear stress values increased over time and in most cases reached 

steady state after 5 minutes. In Figure 2, I plot the steady-state yield strength at each 
strain rate. To define yτ at zero strain rate, I fit each viscometer test with a Herschel-

Bulkley model: 
n

y Kγττ += ,      (5) 
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whereτ  is shear stress, K is apparent viscosity, γ  is shear strain rate, and n describes the 

rate of change of viscosity (n = 1 for Bingham; n <1 for shear-thinning).  

Yield strength is inversely proportional to water content and proportional to clay 

fraction (Figure 3.3) as noted by previous authors (Marr et al., 2001). As water content 

increases, the interaction between adjacent particles decreases and thus yield strength 

decreases (Lambe and Whitman, 1969). Clay minerals carry electrostatic forces that can 

result in a net attractive forces to increase yield strength (Craig, 1992). Therefore 

knowledge of composition or water content alone is insufficient for predicting yield 

strength and mudflow behavior. As I will show, a given composition (clay-rich or silt-

rich) can exist as either low or high Ff, depending on the water content. Similarly, a given 

water content can exist as low or high Ff depending on its grain size distribution. 
 

3.2.4 Gravitational Shear Stress  

The gravitational shear stress flow ( gτ ) is due to the weight of the submerged bed 

inclined at 10°. I calculate gτ  assuming a 2-D infinite slope (Graham, 1984): 

θθγτ cossinzbg = ,     (6)  

where bγ  is the submerged unit weight (Table 3.1), z is bed thickness (10 cm), and θ  is 

the bed slope (10°). The variation in w and grain densities between kaolin clay and quartz 
control the variation in gτ  (Table 3.1). 
 

3.2.4 Flow Factor 

For each viscometer test I calculated Ff from eq. 1; I used gτ  and yτ as the driving 

stress ( Dτ ) and resisting strength ( Rτ ) terms, respectively. I then plot w versus cε and 
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contour with respect to Ff (Figure 3.4). The advantage of the Ff contour plot is that I 

normalize for the competing effects of clay fraction and water content.  

I use figure 3.4 to predict that mixtures with equal Ff will produce similar styles 

of mudflow despite having markedly different water contents and compositions. I 

selected 6 mixtures for mudflow experiments that covered the wide range of Ff. I 

arbitrarily defined 3 Ff zones within Figure 3.4: high (Ff = ~6), medium (Ff = ~3), and 

low (Ff = ~1). Experiment 1 lies within the high Ff zone, experiments 2 and 3 within the 

medium Ff zone, and experiments 4-6 lie within the low Ff zone. 
 

3.3. MUDFLOW EXPERIMENT PROCEDURE 

Each experiment consists of 3 stages (Figure 3.5).  In Stage 1, I first mix silt, clay, 

and water in a concrete mixer for 45 minutes, then hand-scoop the slurry from buckets 

into a horizontal aluminum-framed plexi-glass inner tank to form a tabular bed 75 cm 

long, 24 cm wide, and 10 cm thick (0.18 m3). The average total mass of clay, silt, and 

water for each experiment was 45 kg. I then carefully smooth the surface of the bed and 

place colored sand grains on the surface to help visualize surface movements during the 

mudflow experiment. I then fill the outer tank with fresh water at room temperature to a 

depth of 2.5 meters. I first fill rapidly until the water surface reaches the bottom of the 

bed (20 minutes), then very slowly until the bed is submerged (~30 minutes). I then fill to 

the total depth of 2.5 meters and allow the bed to sit overnight. In Stage 2, I lower the 

front end of the inner tank to the 10° slope, raise the front gate to initiate flow, and collect 

time-lapse digital photos and video of the mudflow event until I no longer observe 

movement. In Stage 3, I map the source area and lobe deposit with a laser mapping 

system at 1mm x 1mm spatial resolution. I use the time-lapse photos and video to 
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quantify flow velocity and volumetric discharge rate. I use the deposit maps to quantify 

deposit geometry such as length, width, and thickness. 
 

3.4 RESULTS OF EXPERIMENTAL MUDFLOWS 

3.4.1 Summary  

I observed a continuum of dynamic behaviors and deposit morphologies between 

high, medium, and low Ff experiments (Figure 3.6).  High flow factor (Ff = ~6) produced 

an immediate collapse of the source area with an accelerating flow and an associated 

turbidity current, and deposited a long and thin deposit en masse. Medium flow factor (Ff 

= ~3) created a retrogressive mudflow in which many (~100) small blocks detached from 

the source area and accumulated piece-by-piece into one deposit. Finally, when Ff is low 

(Ff = ~1), a blocky failure occurs with very limited runout distance and volume.  In the 

following sections, I present details of high, medium, and low Ff experiments; I focus on 

the dynamic response and the final morphology of the accumulated deposit and source 

area. 
 

3.4.2 High Ff (Experiment 1) 

Experiment 1 had a high Ff of 6.23. The pre-failure deposit was therefore very 

weak relative to the shear stress. As a result, a rapidly moving mudflow (vp = 16.3 cm/s) 

developed with a prominent turbidity current that outpaced the lobe (Figure 3.6A). The 

event duration was 2.5 minutes during which most of the original volume (70%) 

discharged from the source area within the first 10 seconds (Figure 3.7 and Table 3.3). 

The final volumetric distribution was 73% in the depositional lobe, 5% in the turbidity 

current, and 22% remaining in the source area (Figure 3.7).    
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The prominent turbidity current obscured my visual observations of the mudflow 

body. As a result I did not see if the main body hydroplaned as it traveled across the tank 
floor. However, I used the densimetric Froude number (

dRF ) presented in Mohrig et al, 

1998 to further explore the possibility that this flow could have hydroplaned:  
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    (7) 

where v is flow velocity, bρ  is the bulk density of the material, wρ is density of water, g 

is gravitational acceleration, ha is flow thickness, andθ is bed slope. Mohrig et al, 1998 

suggest that flows with 
dRF greater than 0.35 are capable of hydroplaning. My calculated 

value for Experiment 1 is 0.65, which suggests that this flow hydroplaned. 

The source area is tabular and thin (~2 cm) (Figure 3.7A).  The surface contains 

subtle closely-spaced fractures that penetrate < 0.5 cm (Figure 3.6D and Figure 3.7A). 

These fractures developed only at the very end of the mudflow event and therefore are 

not associated with retrogressive failure.  

The characteristic deposit features of experiment 1 are the long runout distance 

(140.2 cm) and very thin profile (Figure 3.8A, E, and Table 3.3). The deposit contains 

subtle compression ridges in the central area, which coincides with the break-in-slope 

(Figure 3.9E). Otherwise this deposit is remarkably smooth. The maximum deposit 

thickness also occurs at the break-in-slope (Figure 3.9A) and thins gradually to the end of 

the deposit. The L:W ratio of.1.3 indicates that the longest dimension is in the dip 

direction.  
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3.4.3 Medium Ff (Experiments 2 and 3) 

Experiments 2 and 3 had medium Ff values of 3.53 and 3.05, respectively. I 

discuss experiment 3 in more detail but I point out key differences between both 

experiments. 

The dynamic response of experiment 3 was retrogressive block failure of the 

source area accompanied by piece-by-piece accumulation in the depositional lobe over a 

period of 11.8 minutes (Figure 3.6 C,D and Figure 3.7). During the initial 30 seconds, the 

mudflow moved rapidly (vp = 5.5 cm/s) but thereafter discharge rate was constant (Figure 

3.7 and Table 3.3). Internal levees formed during lobe construction and channeled 

material downslope between levee margins (Figure 3.6D). This limited lateral spreading 

of the deposit but enhanced growth in the dip direction. The final volumetric distribution 

was 40 % contained in the lobe deposit, 59 % in the source area, and 1 % in a turbidity 

current (Figure 3.7).    

I discuss the evolution of the retrogressive failure of experiment 3 in more detail 

(Figure 3.10). Within 5 seconds of flow initiation, a prominent headscarp formed ~25 cm 

upslope of the gate (Figure 3.10B). A zone of horst-graben structures and detached 

blocks developed between this headscarp and the gate. As each block detached from the 

main headscarp, it was progressively broken up into smaller blocks as it migrated through 

the system and accumulated at the back of the lobe deposit. With time, headwall retreat 

was balanced by downslope movement and growth of the lobe deposit. Levees formed 

within the interior of the deposit 20 seconds after gate release (Figure 3.10C). After 2.6 

minutes, the entire surface of the source area was a zone of retrogressive failure (Figure 

3.10D). The lobe continued to migrate downdip as it was pushed along by the evacuated 

blocks accumulating at the rear. As the deposit front was being pushed from behind, 

radial tension structures developed along the front (Figure 3.10D).  
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The final topography of the source area of experiment 3 records the retrogressive 

failure process (Figure 3.8A,C). Fracture spacing is 2-3 cm and fracture depth is 1- 2 cm.  

The deposit of experiment 3 has a hummocky surface texture (Figure 3.6D, and 

Figure 3.9A,C). Radial tension fractures occur along the perimeter of the lobe. The 

blocky surface topography is the result of the piece-by-piece construction process (Figure 

3.9A-C). The L:W ratio for experiment 4 is 1.9, which indicates the longest dimension is 

the dip direction. This reflects the role of the internal levees that acted to funnel material 

down-dip and limited lateral growth. Total runout distance was 63.7 cm and maximum 

lobe thickness was 1.9 cm (Figure 3.9A). 

Experiment 3 (Ff = 3.53) was a medium Ff experiment but it resulted in a run-out 

length that was nearly equal to the high Ff experiment 1 (Figure 3.9 and Table 3.3). 

However, I argue this flow behaved more like the medium Ff experiment 2 because it 

evacuated retrogressively, formed internal levees, and generated a dilute turbidity current. 

I attribute the long runout distance to lateral levees that formed in the interior of the flow 

that enhanced growth in the down-dip direction, as observed in Experiment 2. This 

allowed experiment 3 to attain an equivalent runout distance to experiment 1, despite 

having a lower Ff.  
 

3.4.4 Low Ff (Experiments 4-6) 

Experiments 4 - 6 had low Ff values (< 2) (Table 1). However, only experiments 4 

and 5 resulted in mudflow. The yield strength of the mixture used in Experiment 6 was 

greater than the shear stress (Ff = 0.95) and thus produced no flow. I discuss experiment 4 

in detail as the characteristic experiment for this group.  

The dynamic response of Experiment 4 was a very slow-moving blocky failure 

(Figure 3.6A,B; Table 3.3;). The event lasted 2.5 minutes; 3 blocks evacuated the source 
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area and amalgamated into a single deposit. 2 suture lines define the locations of where 

the blocks joined (Figure 3.6B). As each block impacted the lobe, the entire lobe deposit 

was pushed along the bottom. As the lobe advanced, it spread outwardly, which is 

recorded by radial tension fractures that developed along the perimeter of the lobe 

(Figure 3.6B). Only 10 % of the original source volume evacuated the source area (Figure 

3.7). The peak and average flow velocity (vp and va) was 0.8 cm/s and 0.1 cm/s, 

respectively (Table 3.3).  

The morphology of the source area records the limited retrogressive failure 

process (Figure 3.8A,B). The headwall marks the up-dip limit of retrogression. Down-dip 

of the headwall is a zone (35% by area) of detached fault blocks and grabens. Up-dip of 

the headwall is a smooth and featureless zone (65% by area) that is nearly unaltered from 

its pre-failure condition except for very subtle hairline cracks only visible with the naked 

eye. In the zone of detached blocks, the fracture spacing is 3-5 cm and penetration depth 

is limited to ~1 cm (Figure 3.7A).  

The deposit morphology records its piece-by-piece depositional history (Figure 

3.6 A,B, Figure 3.9 A,B). The depositional lobe contains 3 blocks. Each block is 

separated by a suture line, which is imaged as a furrow oriented perpendicular to flow 

direction (Figure 3.6 A,B, Figure 3.9 A,B). Radial tension fractures are distributed along 

the perimeter of the toe. The total runout was 10.1 cm, and maximum thickness was 4.5 

cm. The lobe is longer in the strike direction indicated by an aspect ratio of 0.4 (Table 

3.3) 
 

3.5. DISCUSSION 

I summarize the continuum of flow behavior and deposit morphology as a 

function of flow factor. In all cases, mudflow begins when the initial flow factor is above 
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1 and ends when flow factor drops to 1. When the flow factor is high (Ff > 6) the driving 

stress is much greater than the material strength, which results in an immediate collapse 

of the source area into a rapidly accelerating mudflow (possibly hydroplaning) with a 

prominent turbidity current (Figure 3.6 A,B). The flow evacuates rapidly from the source 

area, which drives the flow factor to also drop rapidly. The result is a rapid mudflow 

event but with a short duration (Figure 3.7). The deposit is thin, and broad, with a smooth 

surface texture with very little surface relief. The source area contains only subtle surface 

fractures (Figure 3.6A). When initial flow factor is intermediate (Ff  ~ 3), a retrogressive 

failure process is established in which the master headwall retreats up-dip at a moderate 

pace (Figure 3.6 C,D. Figure 3.7). In these cases, the flow factor drops much more slowly 

than when flow factor is high. The result is a slower mudflow but with a long duration. 

The deposit develops internal levees during its growth stage, which funnel material 

downdip into a long and narrow deposit. Finally, if the initial flow factor is low, shear 

stress and resisting strength are nearly equal and the resulting failure is a slow-moving 

small-volume flow that is short-lived and does not generate a turbidity current (Figure 3.6 

E,F). It leaves behind a fractured source area with a master headwall that does not retreat 

far up-dip. The length:width ratio is less than 1 indicating that the longest dimension in 

the strike direction.  

In all experiments, the flow factors progressively decreased during the dynamic 

release phase and converged to a value of approximately 1, which marked the end of the 

mudflow event (Figure 3.11). I calculated the theoretical final bed thickness that each 

experiment would converge to, assuming a final flow factor of 1, and plotted them 

against the observed final bed thickness. The match is very good for medium and high 

flow factor experiments, indicating that these flows stopped moving when the 

gravitational shear stress dropped (via decrease in bed thickness) to a value equal to the 

71



yield strength. For the low flow factor experiments, this relationship is more difficult to 

discern because only the front portions of these beds actually failed (Figure 3.8). In cases 

where flow factor is low, the zone immediately adjacent to the stress-drop experiences 

failure, but far from the stress drop, the slope is essentially unaffected. This is consistent 

with observations of ‘pinnacle’ failure blocks near a prominent headscarp in the Gulf of 

Mexico (Sawyer et al, 2009).  

From my experiments I elucidate relationships between the initial flow factor and 

the resulting mudflow dynamics and morphology (Figure 3.12).  Peak flow velocity, 

runout distance, and volumetric discharge decrease with decreasing values of Ff  (Figure 

3.12A, B, C). This is because as Ff decreases, the pre-failure material becomes stronger 

relative to the imposed shear stress. This suggests that if the shear stress is more than 

twice the material yield strength, the mudflow can rapidly transport a large volume of 

material far from the source area. Below this threshold a mudflow will deposit a 

relatively low volume of material close to the source area. A more complex relationship 

exists for aspect ratio (L:W), deposit thickness, and mudflow duration (Figure 3.12 D,E, 

F). The deposit aspect ratio is less than 1 for low Ff (Ff < 2), indicating the longest 

dimension is perpendicular to flow. Aspect ratio is greater than 1 for medium and high Ff, 

indicating that the deposit is longer in the flow-parallel direction. The peak in aspect ratio 

(Figure 3.12C) (experiment 3) is caused by lateral levees that funneled material in the 

downdip direction while simultaneously restricting lateral growth (Figure 3.6D). At 

higher values of Ff, the material yield strength is weak enough that the deposit can 

expand in the strike direction nearly as much as it can in the downdip direction (and no 

levees are formed), which results in aspect ratio only slightly above 1. Deposit thickness 

increases slightly between experiment 2 and 3 but decreases for higher Ff. This makes 

intuitive sense because yield strength decreases as Ff increases. Finally, mudflow 
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duration is short at low and high Ff values and peaks at medium Ff values. The peak value 

(experiment 3) reflects the retrogressive failure that lasted nearly 12 minutes. This 

suggests the longest duration flows correspond to retrogressive failure. If the initial flow 

factor is too high, or too low, retrogressive failure cannot occur.  

The wide contrast in release mechanism (Figure 3.6), evacuation rate, (Figure 3.7) 

and depositional style are important because knowledge of the initial slide acceleration 

and volume are critical components for modeling of the magnitude of slide-generated 

tsunami and impact force on pipelines (Bondevik et al., 2005; Løvholt et al., 2005; Zakeri 

et al., 2008). I observed two fundamentally different release mechanisms: the high Ff 

experiment resulted in a high-velocity, high-volume flow and deposited en masse, most 

of which occurred in the first 10 seconds (Figure 3.7). In contrast, the medium Ff 

mudflow was a slow-velocity, low-volume retrogressive flow that constructed the final 

deposit as piece-by-piece accumulation of ~100 small detached blocks over a period of 

11.8 minutes (Figure 3.7). It is common to assume the total volume of a slide deposit was 

deposited by a single body, however in light of the retrogressive failure, it is clear that 

this assumption is not correct for retrogressive events. 

Many of the world’s large mass-transport deposits (MTDs) display a combination 

of features observed in my low, medium, and high Ff experiments. For example, MTDs 

off the Canary Islands (Masson et al., 2002; Urgeles et al., 1997), in the Gulf of Mexico 

(McAdoo et al., 2000; Sawyer et al., 2009), and Storegga and other areas offshore 

Norway (Bryn et al., 2005; De Blasio et al., 2005; Gauer et al., 2005; Kvalstad et al., 

2005), have headscarp regions that are characterized by a broad zone of normal faults 

(similar to experiment 3) that disintegrated into liquefied long runout flows (similar to 

experiment 1). However, in my experiments, the broad zone of normal faults in 

experiment 3 did not spawn liquefied long-runout flows and the liquefied flow of 
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experiment 1 did not spawn from a retrogressive release mechanism in the source area. A 

key difference is likely because strain weakening of natural sediments has been shown to 

play a significant role in the post-failure behavior and morphology of large MTDs 

(Kvalstad et al., 2005; Sawyer et al., 2009). These soils weaken after peak strength is 

exceeded, which allows long runout flows to evolve from a low Ff state to a high Ff state. 

When failure initiates, flow factor is low because the shear stress has just exceeded the 

peak shear strength, which forms fault blocks. However, as strain continues, these 

materials progressively weaken under the imposed stress, which increases the flow factor 

(eq. 1), and allows the material to evolve into long runout flows.  

I suggest that the ratio of the driving stress to the resisting strength (Ff) can be a 

useful metric for interpreting, in a relative sense, the linkage between flow transport 

behavior and deposit morphology. However, scaling-related issues are inherent to 

geomorphic experiments that use small-scale laboratory experiments to infer field-scale 

processes (De Blasio et al., 2004; Ilstad et al., 2004; Mohrig et al., 1999; Paola et al., 

2009; Parsons et al., 2001). The low stress levels imposed in my set-up means that 

cohesion is potentially a significant component of slurry strength. In natural scale flows 

involving 10s-100s of meters of vertical thickness, cohesion is negligible compared to the 

frictional component. However, I only focus on the magnitude of the yield strength as it 

relates to the shear stress. It is the ratio of these that dictates flow behavior and 

morphology in my experiments. In addition, the experimental slurries are not strain 

weakening soils, which may be a significant factor controlling morphology and transport 

style of large-scale retrogressive MTDs. The ‘dam-break’ flow triggering mechanism 

used in my experiments is not the most relevant to natural triggering mechanisms but my 

main goal was to hold the release mechanism constant while exploring a range of deposit 

strengths. Finally, I rely on the concepts of Paola et al (2009) that, although most 

74



geomorphic experiments are not dynamically scaled, they do simulate spatial geometry 

and kinematics of natural systems and therefore can illuminate the critical linkages 

between landscape evolution and sedimentary processes. 
 

3.6 CONCLUSIONS 

These experiments illuminate how the difference between yield strength and flow-

inducing shear stress controls mudflow dynamic behavior and deposit morphology. When 

this difference is small, yield strength and shear stress are nearly equal, which results in a 

slow moving, low-volume, mudflow that retrogressively fails from the source area. The 

deposits grow piecewise as each fault block detaches from the source and accumulates at 

the back of the deposit.  As the difference between yield strength and shear stress 

increases, mudflows become progressively weaker and thus produce longer-runout, 

higher-volume flows. The flows move, and emplace, as a single body. Detailed analysis 

of deposit morphology can yield important clues to the depositional history of the flow. 

Although the experiments are presented separately according to flow factor, it is clear 

that natural mudflows and slope failures often display the entire continuum of behaviors 

observed in these experiments. In summary, this work has important implications for 

hazards assessments, including slide-generated tsunami modeling, which rely heavily on 

the initial release mechanism and volumes of the slide. 
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Exp. Ff

High 
Med 
Low

cε Classification w φ Gs bγ bρ gτ yτ

    % % %  kN/m3 g/cc Pa Pa 
1 6.23 High 37 Clayey silt 107 74 2.63 4.19 1.43 71.65 11.5 
2
3

3.53 
3.05 

Med 
Med 

37
77

Clayey silt 
Clay

82
150 

69 
79 

2.63 
2.60 

5.17 
3.21 

1.52 
1.33 

86.57 
54.85 

24.5 
18.0 

4
5
6

1.91 
1.38 
0.95 

Low
77
37
77

Clay
Clayey silt

Clay

130 
67
107 

77 
64 
74 

2.60 
2.63 
2.60 

3.58 
5.80 
4.16 

1.36 
1.59 
1.42 

61.16 
99.24 
71.07 

32.0 
72.0 
75.0 

Table 3.1: Physical properties of flow experiments:.
Flow factor (Ff ) is the ratio of gravitational driving stress (τg) to yield strength (τy ), clay fraction 
(εc ) reported as the percent of solid mass composed of clay-sized particles (< 2µm), water 
content (w), porosity (φ), specific gravity (Gs), and buoyant unit weight (γb). Grain size classifica-
tion is according to Shepard, 1954. Gs is the specific gravity of the mixture weighted according 
to the mass fraction of kaolin clay (Gs = 2.59) and silica silt (Gs = 2.65). 
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 snoisnemiD noitinifeD lobmyS
Ff  sselnoisnemiD rotcaF wolF

Dτ Driving Shear Stress 2LTM

Rτ Resisting Shear Strength 2LTM

cε  sselnoisnemiD noitcarF yalC
w  sselnoisnemiD tnetnoC retaW

yτ Yield Strength 2LTM
K Herschel-Bulkley apparent viscosity LTM
n  sselnoisnemiD tnenopxe yelkluB-lehcsreH
γ Shear Strain Rate s-1

gτ Gravitational Shear Stress 2LTM
z Bed thickness L

dRF sselnoisnemiD rebmun eduorF cirtemisneD
θ  ° epols deB

bρ Bulk density of slurry 3LM

wρ Density of water 3LM

bγ Buoyant unit weight 22 LsM
ha Flow thickness L

pv Peak flow velocity L/T

av Average flow velocity L/T
%vol Volumetric discharge from source area  (% of original) Dimensionless 

g Gravitational acceleration 2TL

Table 3.2: Nomenclature
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Exp Ff Event 
Duration* 

Flow
Vel.** 

vp,
va

Max. 
deposit 
runout

(L)

L:W Max. 
 deposit 

thickness

Turbidity
current?

Volume 
evacuated  

(% of 
original) 

Source area 
features

Deposit features 

   %  mc  mc s/mc setuniM  
1 6.23 2.5 16.3 

1.0 
140.4 1.3 1.5 Yes, 

prominent 
78 Relatively Smooth, subtle 

fractures 
Smooth, flat, lobate deposit, 
subtle compression ridges 

2 3.53 3.4 10.7, 
0.7 

138.8 1.2 1.5 Yes, 
minor 

63 Smooth, thin, subtle surface 
fractures

Curvilinear surface features 
(lateral levees), compression 
ridges, hydroplaned detached 
blocks 

3 3.05 11.8 5.5, 
0.1 

63.7 1.9 4.0 Yes, 
minor

40 Retrogressive fault blocks 
(100% of source area) 

Lateral levees, compression 
ridges, blocky appearance 

4 1.91 2.5 0.8, 
0.1 

10.1 0.4 4.5 No 10 Retrogressive fault blocks 
(35% of source area) 

Short, thick lobe, suture 
lines in central lobe, radial 
tension cracks along 
perimeter

5 1.38 0.5 0.2, 
0.02  

5.2 0.2 4.0 No 7 Frontal zone of large fault 
blocks (15% of source area) 

Short, thick lobe, one main 
suture line running laterally 
across lobe. 

6 0.95 No 
mudflow 

0 0 0 0 No 0 No deformation  No deposit 

Table 3.3: Characteristics of mudflow experiments. Experiments 1, 3, and 4 (bold rows) are characteristic of high-, medium-, and low-Ff 
flow types, respectively that I discuss in detail. Aspect ratio is defined as the maximum deposit length divided by the maximum 
deposit width. *Event duration is defined as the time over which I observed material evacuating from the source channel. **Flow 
velocity is estimated from time lapse overhead photos and reported as peak velocity (v

p
) and average velocity (v

a
, (time for the front to 

reach maximum runout distance)).
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Figure 3.1. Hydrometer-derived grain size distribution of kaolin clay and silt. 
Silt:clay boundary is defined at 2 μm. The kaolin clay is composed of 77 % clay-
sized particles and 23 % silt-sized particles. The silt is composed of 90 % silt-
sized particles and 10 % clay-sized particles.
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Figure 3.2: Rheology of experimental mixtures. 
Viscometer data are plotted as gray circles and a Herschel-Bulkley model is fit to 
each test to define yield strength (τy) (intercept at strain rate = 0 s-1).
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various mixtures. Yield strength is proportional to clay fraction (εc) and inversely propor-
tional to water content (w).
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Figure 3.4: Flow factor contour plot. 
Flow factor contours (labeled in white boxes) are overlain on a cross plot of clay 
fraction (εc) versus water content (w) (and porosity, ). Viscometer tests are indicated as 
circles and mudflow experiments are indicated by numbered stars. Note that each 
mudflow experiment also corresponds to a viscometer test (Figure 3.2). Grain size 
classification is according to Shepard, 1954. Experiment 1 lies within the high flow 
factor zone, experiments 2 and 3 lie within the medium flow factor zone, and experi-
ments 4-6 lie within the low flow factor zone.

83



Stage 2:  Mud flow release and dynamic evolution
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Stage 3:  Morphology of final deposit
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Figure 3.5: Experimental set-up and procedure. 
A. Mud slurry is poured into inner tank and submerged. B. Mudflows are 
triggered by lowering tank onto the 10° slope and then vertically releasing 
front gate. Video and digital photos capture the time evolution of the 
resulting flow. C. The final deposit morphology of both the lobe and source 
area are scanned a laser with 1mm x 1mm resolution.
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Figure 3.6: Characteristic features of flow experiments. 
A, B: High F

f
 mudflow (experiment 1) produced a rapid mudflow that accelerated away from the source area immediately upon gate opening and produced a promi-

nent turbidity current. C,D: . Medium F
f
 (experiment 3) produced a long-duration (11.8 minutes) retrogressive failure (C) that constructed a long and narrow blocky 

deposit (D). E,F: Low F
f 
(experiment 4), produced a short-duration (2.5 minutes) blocky failure. Three individual fault blocks evacuated the source area (E) and accumu-

lated piece-by-piece in the lobe deposit (F). 
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Figure 3.7: Volumetric release rate of high, medium, and low F
f
 mudflows. 

Mudflow 1 (high F
f
) occurred as a rapid pulse in which 70 % of the initial source volume 

released within 5 seconds including a prominent turbidity current (Figure 3.6A). Thereaf-
ter, flow rate decelerated dramatically until all flow stopped at 2.5 minutes. Mudflow 3 
(medium F

f
) occurred over a long period of retrogressive failure (11.8 minutes). In the 

first minute, 28 % of the initial source volume released and thereafter an additional 12 % 
released during steady retrogressive failure. Mudflow 4 (low F

f
) released only 10 % of the 

initial source volume in slow retrogressive failure over a flow duration of 2.5 minutes.

86



0 20 40 60
0

2

4

6

8

10

Distance downslope of back wall (cm)

S
ou

rc
e 

A
re

a 
Th

ic
kn

es
s 

(c
m

)

10 cm10 cm10 cm DCB

C

B

back 
wall

back 
wall

A

Exp. 4 Ff = 1.91Exp. 3 Ff = 3.05Exp. 1 Ff = 6.23

original thickness
D, exp. 4C, exp. 3B, exp. 1 exp. 2 exp. 5

D

Figure 3.8: A. Source area thickness profiles and photos (B-D). 
The observed surface topography is diagnostic of initial F

f 
: high initial F

f 
 results in a smooth 

source area (green profile, photo B). A medium F
f 
 (red profile, photo C) results in a stair-

stepped morphology produced by retrogressive failure. When initial F
f 
 is low (black, orange 

profiles, photo D), only the zone immediately adjacent to the stress drop experiences failure. 
Behind the failure zone, the bed only slightly redistributes its slope. The final thickness repre-
sents the thickness required to achieve an overall F

f 
 of 1, which defines the end of mudflow 

movement.
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Figure 3.9: Deposit profiles and morphology.
A. Lobe thickness profiles for experiments 1-4 (experiments 5 and 6 could not be mapped with the laser). B-E. Deposit surface maps (dip 
maps which accentuate local variations in the surface). Cross section locations indicated by dashed line. Experiment 1 (high flow factor) 
is thin and broad with maximum thickness located in the central portion of the deposit at the break-in-slope. Experiments 2 and 3 show 
curvilinear surface flow features, internal levees, and hummocky surface topography t hat reflect retrogressive failure. Experiment 4 has a 
very short and thick deposit with one main suture line running laterally across the lobe where two blocks joined (Figure 5E), and radial 
tension features along its perimeter.
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Figure 3.10: Evolution of retrogressive failure. 
A-D. Line drawings from overhead time lapse photos of experiment 3. A. Pre-
release configuration. B. 5 seconds after front gate is removed, the headwall is 
retreating as material evacuates the source area and constructs the lobe. C. 20 
seconds after release, the headwall has retreated up-dip, lobe has increased in size, 
and lateral levees form, which restrict the lateral spreading of the deposit. D. 2.6 
minutes after release, the headwall has retreated nearly to the back wall. The toe 
front of the deposit, beyond the lateral levees, developed radial tension features. 
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Figure 3.11: Final source area bed thickness (theoretical vs. observed).
Mudflows end when the flow factor drops to a value of 1. For the observed 
thickness, I took the average height across the profile in Figure 8 for experi-
ments 1-3. I calculated the final thickness by assuming a flow factor of 1 and 
solving for the bed thickness, z, that gave a shear stress equal to the yield 
strength (eq. 6). For experiments 4 and 5 the source area did not completely 
evacuate, therefore I plot two points for each of these experiments: the 
far-field thickness (white circle, 10 cm) and the mid-height of the frontal 
failure zone (black circles). 
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Figure 3.12: Mudflow dynamic and morphologic characteristics. 
A-C). Peak flow velocity, runout distance, and % evacuated volume are propor-
tional to flow factor. (D-F) Aspect ratio (L:W), deposit thickness, and event 
duration are non-linear.  The peak aspect ratio and mudflow duration occurred 
in experiment 3 in which lateral levees directed growth in the downdip direc-
tion. and slow retrogressive failure proceeded for nearly 12 minutes.  
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Chapter 4 

Deep-Seated Failure and Erosion of Levees in Turbidite Channels of the 
Upper Mississippi Fan, Gulf of Mexico  

 

 

 

 

ABSTRACT  
The levees of Late Pleistocene channels on the Mississippi Fan failed repeatedly 

along deep-seated listric faults where they rotated down into the subsurface, reemerged 
into the channel axis from below, and ultimately eroded down-system. Failure localized 
along an overpressured clay unit beneath the channel-levee system. Extensional fault 
surfaces linked the levee crest with thrust faults that emerged in the channel from below. 
A steady state system evolved where sedimentation on the levee was accommodated by 
displacement along the fault and erosion of toe thrusts by turbidity flows. Thus sediment 
was temporarily deposited on the levee but eventually conveyed through the failure zone 
and flushed down-system. I forward model the initiation of deep-seated failures with a 
finite element code (PLAXIS) calibrated with inputs of geometry, and material properties 
constrained from seismic reflection data and Integrated Ocean Drilling Program 
Expedition 308 data. I find that deep-seated failure originated within overpressured clay. 
The deep clay was loaded rapidly by the sand, which induced overpressure in the deep 
clay. The additional surcharge of the thick levee triggered deep-seated failure that 
localized just beneath the sand/clay boundary. A fascinating stratigraphic consequence of 
base failure is the violation of the Law of Superposition in which older strata are 
exhumed and emplaced above younger strata. This study illuminates the linkages 
between sedimentation, erosion, and the mechanical stability of channel-levee systems on 
modern and ancient deep-sea fans. 
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4.1 INTRODUCTION 

Submarine channel-levee systems are primary constructional elements on the 

world’s deep sea fans including the Mississippi (Bouma et al., 1985; Weimer and Buffler, 

1988), Amazon (Damuth et al., 1983a; Damuth et al., 1983b), Bengal (Emmel and 

Curray, 1985), Niger (Deptuck et al., 2007; Heinio and Davies, 2007), Zaire (Babonneau 

et al., 2002; Droz et al., 2003; Gervais et al., 2001; Migeon et al., 2004), Mauritania 

(Zühlsdorff et al., 2007), Indus (McHargue and Webb, 1986), and South China Sea 

(Shengqiang et al., 2009). They transport mud, sand, and gravel from the continental 

margin to the deep ocean (Bouma et al., 1985; Normark, 1970; Pirmez, 2003). Within a 

single channel-levee system, relatively coarse sediment is confined within the channel 

axis, and relatively fine-grained sediment constructs gull-wing shaped levees that thin 

away from the channel (Flood and Damuth, 1987; Kane et al., 2009; Peakall et al., 2000; 

Pirmez, 1994; Straub and Mohrig, 2008). Length scales of channel-levee systems can be 

on the order of 100-1000 km long and 1-10 km wide. Channels can be purely 

aggradational with no erosion of subsurface, or highly erosional with deep excavations 

into the subsurface (Labourdette and Bez, 2010). Levees record Earth’s climate history 

(Damuth et al., 1983b; Prins and Postma, 2000; Weber et al., 1997; Zühlsdorff et al., 

2007) and can be productive hydrocarbon reservoirs (Abreu et al., 2003; Hackbarth and 

Shew, 1994; Mahaffie, 1994; Mayall et al., 2006; Steffens et al., 2004). 

Stability of levees is required for the channel to maintain an open conduit for 

turbidity flows. Slope failure can occur in two modes: shallow-seated slope failure or 

deep-seated base failure. In slope failure, sidewall sediment fails directly into the channel 

and the failure plane intersects at, or above, the toe-of-slope (Terzaghi and Peck, 1948). 

Slope failures are commonly observed in seismic data (Deptuck et al., 2007; Labourdette 

and Bez, 2010) and in outcrops (Kane et al., 2007; Morris and Busby-Spera, 1990) of 
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submarine channel-levee systems. In base failure, the failure plane passes below the toe-

of-slope because the soil is unable to support the weight of the overlying soil and the 

failed material yields toward the open space (Terzaghi and Peck, 1948). Base failure has 

been observed in geotechnical construction of embankments and excavations (Bishop and 

Bjerrum, 1960; Bjerrum and Eide, 1956; Terzaghi and Peck, 1948), including the Panama 

Canal (Binger, 1948). Historical accounts in the Culebra Cut of the Panama Canal 

included railroad tracks being pushed up tens of feet from below by the toe thrusts of the 

deep-seated failures. Base failure has been observed in subaerial channel systems 

(Brooks, 2003; Laury, 1971; Williams and Flint, 1990) but the authors are unaware of 

published examples in submarine channel-levee systems other than those presented here. 

Here I describe and forward model base failure in Late Pleistocene channel-levee 

systems in the upper Mississippi Fan in the Gulf of Mexico. I use a finite element soil 

model to simulate the initiation of base failure with soil properties constrained by core 

and logging data, and geometry constrained by 3-D seismic reflection data. I discuss the 

important role of excess pore pressure in driving base failures, and the implications for 

hydraulic connectivity of deepwater channel sands and the stratigraphic consequences of 

base failure. 

 

4.2 BASE FAILURE IN MISSISSIPPI FAN CHANNELS 

Base failures occurred in two Late Pleistocene channel-levee systems in the Ursa 

Region on the upper Mississippi Fan (Figure 4.1). These channels were active in the last 

65 ky and lie within 300 meters of the present day seafloor where they are imaged with 3-

D seismic reflection data. Winker and Shipp [2002], Flemings et al., [2006], and Sawyer 

et al., [2007a] describe the regional stratigraphy.  
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The Ursa Canyon channel-levee system is defined in seismic cross section by the 

high-amplitude reflections (HARs) in the channel axis and the presence of flanking 

levees (Figure 4.2). The channel axis is approximately 1000 meters wide and HARs are 

sub-horizontal and onlap the channel margin (Figure 4.2). The channel sands are 

surrounded by a listric fault-bounded semi-transparent seismic facies that is composed of 

steeply-dipping internal reflections. The angle of inclination of internal reflections 

increases from near-horizontal at the top of the facies, to near-vertical underneath the 

channel axis. The semi-transparent facies is, in turn, unique from the Blue Unit on which 

the channel system developed. The semi-transparent facies is composed entirely of mud, 

as documented by well MC 942-1, whereas the Blue Unit contains laterally continuous 

sands interbedded with mud, shown by well MC 899-1 (Figure 4.2). The semi-transparent 

facies has completely compartmentalized the Blue Unit. The total width of the Ursa 

channel and margin slides is approximately 5000 meters. 

The listric faults occur on both margins of the channel. In cross section view, 

listric fault surfaces extend into the subsurface 200-300 meters to the base of the Blue 

Unit, become bed-parallel, and link to thrusts that reemerge into the channel axis from 

below (Figure 4.2). In map view, the listric faults have preserved a cuspate morphology 

with individual widths of approximately 500 meters (Figure 4.3). Overall however, 

adjacent faults linked up and formed complex cross-cutting relationships. The result is a 

zone of channel-margin slides that occur along the channel margins over a ~40 km length 

for which we have seismic coverage (Figure 4.2).   

In addition to these channel-margin slides, numerous other slope failures have 

occurred throughout the Pleistocence section in the Ursa Region, and their origin has 

been linked with high overpressure induced by rapid sedimentation (Flemings et al., 

2008; Sawyer et al., 2009; Stigall and Dugan, 2010; Urgeles et al., 2009). Significant 
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present-day overpressure was measured during Integrated Ocean Drilling Program 

Expedition 308 (Dugan and Germaine, 2008; Flemings et al., 2008; Long et al., in 

review). In the 1990s, installation of the Ursa tension-leg platform and numerous well 

penetrations encountered high overpressure in the Blue Unit and the underlying mud 

(Eaton, 1999; Ostermeier et al., 2000; Pelletier et al., 1999; Winker and Shipp, 2002). I 

explore the role of overpressure in the finite element modeling analysis of channel 

margin slides. 

 

4.3 CONCEPTUAL MODEL OF SYSTEM EVOLUTION  

Sawyer et al, (2007) presented a conceptual model of the channel-margin base 

failures (Figure 4.4). The Blue Unit basin-floor fan was deposited rapidly above a clay 

unit with laterally continuous sands and mud. The Ursa Channel system then developed 

in 4 phases. In Phase 1, the turbidity flows scoured the Blue Unit, which established the 

channel. The subsequent bypass phase involved turbidity flows that continued to erode 

the channel and fine-grained sediment overspill constructed thick levees on the channel 

margins (Figure 4.4A). In Phase 2, base failure formed in response to the weight of the 

levees and the lack of lateral support adjacent to the channel axis (Figure 4.4B).  Each 

failure plane defined a foot-wall slide block that was composed of both levee and 

underlying Blue Unit sediment.  Displacement along the fault produced a toe thrust into 

the adjacent channel axis. Subsequent turbidity currents eroded this material down-

channel.  The erosion of this toe-thrust material, coupled with continued levee growth, 

promoted a dynamic equilibrium: turbidity currents flushed the channel axis while 

simultaneously depositing new levee on the margins, thereby inducing displacement 

along the fault into the channel (Figure 4.4C). Fault displacement was suppressed and 

eventually ceased as the channel switched from a bypass phase to a fill phase. The filling 
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and onlapping sands suppressed displacement along the fault and eventually filled the 

channel with onlapping sands. (Figure 4.4D). 
 

4.4 MODEL OF SYSTEM EVOLUTION 

To test the conceptual model, I use a two-dimensional finite element soil 

modeling package PLAXIS (Brinkgreve, 2002). PLAXIS solves the governing equation 

of consolidation (Biot, 1941) in response to applied loading or unloading and links soil 

behavior with a constitutive soil model (e.g. Mohr-Coulomb). For plane strain, the mean 

total stress is (p) is 

2
31 σσ +

=p , 

and the maximum shear stress (q) is  

2
31 σσ −

=q , 

where 1σ  and 3σ are the principal stresses. The mean effective stress (p’) controls soil 

behavior and is equal to the total stress less the pore pressure (u) 

upp −=' . 

The excess pore pressure (ue) is the pore pressure less hydrostatic pressure (uh) 

ue = u - uh.  

For a change in total mean stress ( pΔ ), the change in pore pressure ( uΔ ) is  

    pBu Δ=Δ , 

where B is Skempton’s pore pressure parameter. The value of B is 1 for saturated soils, 

but is set to 0.99 for numerical stability in PLAXIS (Brinkgreve, 2002). The diffusion of 

excess pore pressure with time (t) is solved with the consolidation equation (Biot, 1941) 
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For each lithology I define a single value of hydraulic conductivity (K) and 

compressibility (mv), which are related to the coefficient of consolidation (cv): 

wv
v m

Kc
γ*

= , 

where wγ  is the unit weight of water. The hydraulic conductivity is related to absolute 

permeability (k) by 

 
w

Kk
γ
μ

= , 

where μ is the dynamic viscosity of water. I do not model the change in permeability or 

compressibility with effective stress.  

To link effective stress to soil strain I used the well-known Mohr-Coulomb model 

(MC). MC is an elastic-perfectly plastic constitutive model in which a yield function 

separates elastic (recoverable) strain and plastic (irreversible) strain. Elastic strain obeys 

Hooke’s Law of linear elasticity, with the input parameters Young’s modulus (E) and 

Poisson’s ratio (υ ). The yield function is the extension of Mohr-Coulomb theory to 

general states of stress with the effective stress input parameters of angle of internal 

friction (φ ) and cohesion (c). Non-associated flow is assumed and defined with the 

dilatancy angle (ψ ). The angle of internal friction also defines the value of the lateral 

stress ratio (K0) according to Jaky’s formula (K0 = 1-sinφ ).  

I define model geometry from seismic data, and lithology and material properties 

from cores recovered on IODP Expedition 308. The model domain is 5000 meters wide 

with maximum soil thickness of 1400 meters at the levee crest (Figure 4.5). From bottom 

to top, the model consists of a layer of clay (1000 m thick) that is overlain by a sand (150 

m thick) and capped by a clay levee (200 m crest thickness) (Figure 4.5). Water depth is 

1000 meters measured from the top of the sand. We do not know the initial incision depth 

or the original levee height. However, a horizontal line drawn from the top of the Blue 
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Unit to the base of the HARs in the channel axis provides a minimum incision depth of 

50-75 meters. We also do not know the original levee thickness prior to base failure 

because of post-channel erosion by adjacent channel-levee systems. However, levee 

thicknesses measured in other channels in the region are on the order of 100-300 meters. 

For the clay lithology, I assign permeability constrained from consolidation experiments 

(Long et al., 2008), and shear strength from triaxial experiments (Dugan and Germain, 

2009) (Table 4.1). To simplify the model, I assume that the entire Blue Unit is composed 

of a single sand unit and assign typical sand material properties (Table 1).  

I model the depositional history in the following steps (Figure 4.5): 1) uniaxial 

consolidation of the deep clay, 2) uniaxial consolidation of the Blue Unit, 3) 

instantaneous excavation of a 75-meter deep channel with 10° sidewall angles, and 4) 

instantaneous deposition of a 200-meter thick levee with 10° sidewall angles.  I assume 

plane strain conditions and vertical symmetry at the channel midline. No flow is allowed 

across the left, right, and bottom boundaries. No lateral displacement is allowed across 

the left and right boundaries, and no displacements are allowed across the right, left, and 

bottom boundaries. The finite element mesh is composed of 15-node elements with over 

3.2x105 nodes. I tested sensitivity of the solution to mesh size and boundary conditions.  

The most sensitive parameter controlling slope stability of the model is the 

development of excess pore pressure in the deep clay that underlies the Blue Unit. I first 

run the simulation with hydrostatic pore pressure conditions everywhere (Figure 4.5). 

This case simulates one end member in which sedimentation is slow enough to allow 

complete drainage for all loading phases. I then analyze a case in which the deep clay is 

allowed to develop overpressure (Figure 4.5B). To do this, I use PLAXIS to simulate 

instantaneous deposition of the Blue Unit followed by consolidation for 1000 years. The 

105



Ursa Channel is excavated as an undrained unloading. Finally, the levee is deposited as 

an undrained loading. 

 

4.5 RESULTS 

Hydrostatic Example 

Base failure is not predicted in the hydrostatic example (Figure 4.6). The 

geometry is not under failure but it does adjust to the imposed unloading (channel 

excavation) and loading (levee) by vertically consolidating beneath the levee and 

uplifting in the channel axis. Vertical profiles beneath the levee crest (A-A’) and the 

channel floor (B-B’) illustrate the magnitude of excess pore pressure (ue) and hydrostatic 

vertical effective stress ( 'vhσ ) with depth at the end of simulation. 'vhσ  is the total 

vertical stress less the hydrostatic pore pressure. This difference between ue and 'vhσ  is 

the vertical effective stress 'vσ . Note the vertical profiles are plotted with respect to 

meters below sea level and are not updated to reflect consolidation or uplift.  

The evolution of pressure and stress curing the channel excavation and levee 

loading is captured in the stress path plot (Figure 4.6B). Points 1 and 2 are located in the 

deep clay beneath the levee crest and channel floor, respectively. Before channel 

excavation, both points start from an initial condition on the k0 consolidation line. This is 

the result of one-dimensional deposition of the deep clay and the Blue Unit. The effect of 

the channel excavation is most pronounced in point 2. The reduction of the vertical stress 

caused by the excavation (75 m) reduced the mean effective stress (p’) and shear stress 

(q). The shear stress (q) has been reduced because the vertical effective stress drops to a 

value closer to the horizontal effective stress, therefore the difference decreases. Point 1 

is located relatively far from the channel excavation and therefore the stress path changes 

only slightly up and to the left. This indicates a slight decrease in p’ and a slight increase 
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in q, driven by a slight decrease in horizontal effective stress. The loading of the levee is 

most pronounced in point 1.Here, the vertical stress has increased much more than the 

horizontal stress, which increased both p’ and q.  The stress path rises up, and to the right, 

towards the failure envelope (Figure 4.6B). Point 2 is relatively far from the levee loading 

and the primary effect is an increase in the horizontal effective stress. The stress path 

moves only slightly down (decreasing q) and to the right (increasing p’).  

 

Overpressured Example 

Base failure occurs in the deep clay in the overpressured example (Figure 4.7). 

The shape of the failure surface is illustrated in the deformed mesh, although 

displacements are not to scale. The failure plane soles out in the deep clay layer beneath 

the sand. It does not extend significantly deep into the deep clay because this is the depth 

where the lowest effective stress occurs, shown by the vertical profiles A-A’ and B-B’. In 

the model the total load of the sand is applied instantaneously (undrained), thus the total 

stress increase is transferred directly to excess pore pressure. Without further loading, 

consolidation (drainage) is allowed to occur for a period of 1000 years. However, the low 

permeability of the clays at Ursa prohibits complete drainage to occur during this time 

period. As a result, only the top several meters of the clay have experienced some amount 

of drainage, illustrated in the slight increase in vertical effective stress beneath the sand in 

profile A-A’ (Figure 4.7B). If no consolidation time were allowed into the model, the 

lowest effective stress, and thus failure, would occur at the sand/clay interface. 

Furthermore, if complete consolidation was allowed, the solution would converge to the 

hydrostatic example and no failure would occur. For deep failure to occur, a zone of high 

overpressure and low effective stress must be present. 
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The stress path plot shows how deep-sated failure evolved (Figure 4.7B). Points 1 

and 2 both start from the k0 consolidation line, as in the hydrostatic example. The key 

difference in this case, however, is the sand is not included in the initial k0 stress 

condition. The loading of the sand is modeled as an undrained horizontal load uniformly 

distributed above the deep clay. The result at both points is no change in the stress path 

because the sand load is applied to the pore pressure. However, the slight deviation up 

and to the right observed in both points is due to the consolidation phase. The excavation 

of the channel at point 2 resulted in a vertical drop in the stress path. The mean effective 

stress does not change because the unloading is applied to the pore pressure. The shear 

stress (q) drops because the vertical stress has decreased and the horizontal stress has not 

changed. At point 1, the stress path rises vertically upward in response to the excavation 

because the horizontal stress has dropped relative to the vertical stress. At both points, it 

is worth noting that that the excavation itself, even when applied instantaneously, is not 

enough to drive failure. Although, given a deep enough excavation, points 1 and 2 would 

eventually intersect the failure envelope. The subsequent instantaneous loading of the 

levee pushes the stress paths at both points to the failure envelope. At this point, the 

calculation phase terminates and no further loading or unloading can be applied. 

 

4.6 DISCUSSION 

High excess pore pressure was necessary to trigger base failure of Late 

Pleistocene levees in the Gulf of Mexico. If pore pressure remained hydrostatic 

throughout the depositional history, no base failure would have occurred (Figure 4.6).  

However, the low permeability clay was buried rapidly by a basin-floor fan so that excess 

pore pressure could not fully dissipate except for the top few meters. The subsequent 

excavation of the channel provided an increased in shear stress in the subsurface but not 
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enough to induce base failure. The deposition of the levee provided the additional loading 

necessary to trigger failure (Figure 4.7B). Another potential process that could have 

contributed to excess pore pressure in the deep clay is rapid sedimentation in the clay unit 

itself. In a high deposition rate region such as the Ursa Region and with such low 

permeability clays, it is reasonable to suggest this unit could have had significant 

overpressure even before deposition of the basin-floor fan and channel system. If this was 

the case, the starting condition on the stress path plot would be farter down the k0 line, 

and therefore would have less vertical distance to the failure line. In other words, deep-

failure would have been achieved with less total stress changes. 

The simulation captures the initiation of the system but the Ursa Canyon clearly 

records numerous failure planes that suggest multiple occurrences of this type of failure 

(Figure 4.2 and 4.3). It is also clear from seismic data that this system continued to 

evolve after the initial deep-seated failure. If the failures ceased after this initial stage, we 

would observe Blue Unit Sands in the facies penetrated at well MC942-1. The fact that 

the Blue Unit has been completely displaced by failed levee shows that these faults were 

active long enough to at least convey the entire Blue Unit vertical thickness (~200 

meters), and perhaps more, through the system and ultimately downslope as proposed in 

Figure 4.4. 

Base failure in submarine channel-levee systems is potentially a common process 

despite the paucity of published examples because of the common deepwater succession 

of a sandy basin floor fan rapidly deposited above fine-grained units and ultimately 

overlain by channel-levee systems (Posamentier, 2003; Winker and Booth, 2000). 

Therefore the geomechanical conditions required for base failure are common. However, 

the steady-state levee deposition- failure-erosion process that occurred in these Gulf of 

Mexico channels is likely to be the result of a delicate balance between erosion rate of 
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turbidity flows to maintain an open channel and continual levee deposition to drive active 

displacement along the fault. If turbidity flow erosion rate is exceeded by the volumetric 

influx rate of failed material entering the channel, the channel axis become progressively 

filled and therefore susceptible to channel avulsion before a steady state can be reached. 

On the other hand, in very deep channels, turbidity flows may scour too deeply into the 

subsurface thus preventing construction of thick levees, which supply the necessary 

driving force for continual fault displacement. It is interesting to note that it is 

unnecessary to invoke a special “weak” layer at depth with unique soil properties. In fact 

the “weak” layer is as a result of the high pore pressure and low effective stress 

developed in the basal clay as opposed to having a unique mineralogy, for example.  

Base failure in submarine channel-levee systems has important implications for 

hydraulic connectivity in deepwater reservoirs, channel avulsions, and interpreting 

stratigraphy.  First, base failure of levees such as those observed in the Gulf of Mexico 

results in a low-permeable mud core that disconnects the permeable sand layers within 

the basin floor fan. This dramatically affects the lateral connectivity and bulk 

permeability structure of the sand-rich basin floor fan. In analog deepwater reservoirs, 

this is an important consideration when assessing reservoir connectivity.  Secondly, if 

base failure plugs the channel, an avulsion may occur if turbidity flow erosion rate is not 

high enough to maintain an open channel. If frequent avulsions occur, thin sand bodies 

will be distributed across many short-lived channels as opposed to thick amalgamated 

sands within long-lived channels. The stratigraphic consequence of base failure is that 

older strata are exhumed and emplaced above younger strata, a violation of the Law of 

Superposition. 
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4.7 CONCLUSIONS  

The levees of at least two major Late Pleistocene channels on the Mississippi Fan 

failed repeatedly along deep-seated failures on both sides of the channel axis. I propose a 

steady state system evolved where sedimentation on the levee was accommodated by 

displacement along the fault (at least 200 meters), and erosion of the toe thrusts by 

turbidity flows. Thus sediment was temporarily deposited on the levee but eventually 

conveyed through the failure zone and flushed down-system. Deep-seated failure was 

caused by high excess pore pressure (low effective stress) in a deep clay that underlies 

the channel system. This style of levee failure exerts a first-order control on fan 

morphology and the distribution of sand and mud in leveed channel zones in deep-sea 

fans. If slumped levees plug the channel axis, avulsion may occur and reroute sandy 

flows elsewhere in the fan. A stratigraphic consequence of base failure is the violation of 

the Law of Superposition in which older strata overlie younger strata. This study 

contributes to our understanding of the linkages between channel morphology, flow, and 

deposits in present-day and ancient submarine channel-levee systems. 
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Parameter Symbol Unit Ursa Silty Clay Sand
CMCMledoM lairetaM

Saturated Unit Weight γsat kN/m3
18.6 20

Initial void ratio ei 1 0.5
Horizontal hydraulic conductivity Kx m/s 1x10-10 1x10-5

Vertical hydraulic conductivity Ky m/s 1x10-10 1x10-5

compressibility mv 1/Pa 7x10-7 1x10-5

Coefficient of consolidation cv m2/sec 1x10-8 1x10-3

Young's modulus E kPa 1x103 8x104

Poisson's ratio ν - 0.3 0.3
05.0aPkcnoisehoC

Friction angle φ ° 23 30
Lateral stress ratio k0 - 0.6 0.5

Table 4.1 Material Properties
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Figure 4.1
Base map of two late Pleistocene submarine channel-levee systems in northern Gulf of 
Mexico. The Ursa Canyon and Southwest Pass Canyon channel-levee systems contain a 
wide zone of channel-margin slides (light gray) that surround channel-axis sands (dark 
gray). Dashed polygon delineates high-resolution 3-dimensional seismic data. Circles 
represent industry wells and IODP Expedition 308 wells (U1324-U1322). Seismic cross-
section A-A’ is shown in Figure 4.2
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Figure 4.2
Deep-seated channel-margin slides of the Ursa Canyon are imaged in seismic cross section A-A’ and tied to industry wells. 
Channel-margin slides are composed of steeply dipping reflectors that are composed of mud, documented by MC 942-1. The 
slides zone thickness is over 200 meters and completely compartmentalizes the sandy Blue Unit basin-floor fan.  A thick clay 
unit lies beneath the channel-levee system and Blue Unit.
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Figure 4.3
Map view of channel-levee system (time slice indicated by dashed line in Figure 4.2) 
shows the cuspate morphology of the listric normal faults o nthe margins of the Ursa 
Canyon channel-levee system.  Faults bound the classic signature of channel sands 
(HARs).

115



deposition 
(sink)

levee  deposition (sediment sink)

failure 
(source)

high overpressure in deep clay from levee loading

deep-seated failures form on overpressured clay

dynamic equilibrium: 
levee deposition = levee failure = erosion down-slope

failures stop as channel backfills with sand

Figure 4.4
Evolution of base failure in channel-levee systems (adapted form Sawyer et al, 
2007). (A) Turbidity currents incised the Blue Unit and deposited thick levees in 
Phase 1. (B) Weight of levees induced base failure and forced Blue Unit and levee 
material to slide down on circular failure planes, and force toe thrust up through 
the channel floor.  (C) Levee growth, rotational sliding, and channel excavation 
continued in dynamic equilibrium to maintain a conveyor belt process in Phase 4 
until the system ended (D).
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Figure 4.5 Simulation phases for forward model.
In step 1, a clay unit is deposited one-dimensionally. In step2, a sand (150 m thick) is depos-
ited above the clay.  in step 3, a 75 m deep excavation is cut in to the sand. In step 4, a 200 m 
thick levee is deposited above the sand and to the side of the escavation. Case 1 is hydro-
static pressure everywhere in the mdoel (no excess proe pressure). Two end member cases 
are simulated with respect to the pore pressure. A hydrostatic case assumes pore pressure is 
hydrostatic everywhere and for all loading steps. The overpressured case allows excess pore 
pressure to develop in the deep clay in response to the deposition of the sand unit and the 
loading of the channel system.
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