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Abstract 

 

The Cretaceous-Paleogene boundary deposit in the Gulf of Mexico: 

Oceanic basin response to the Chicxulub impact 

and 

Geomechanics of reservoir-scale sand injectites, Panoche Hills, 

California 

 

Jason Charles Sanford, MSGeoSci 

The University of Texas at Austin, 2015 

 

Supervisors:  Peter B. Flemings 

Sean P.S. Gulick 

John W. Snedden 

 
Given its passive marine setting and proximity to the impact basin, the Gulf is the 

premier locale in which to study the near-field geologic effect of a massive bolide impact. 

A thick (dm- to hm-scale) deposit of carbonate debris at the Cretaceous-Paleogene 

boundary is ubiquitous in the Gulf and identifiable on borehole and seismic data. Cores in 

the southeastern Gulf indicate that the deposit in the distal deepwater Gulf is 

predominately muddy debrite with minor turbidite. Mapping in the northern Gulf reveals 

that the impact redistributed ~1.05 x 105 km3 of sediment therein, implying over 1.98 x 

105 km3 Gulf-wide. Deposit distribution indicates that sediment derived from coastal and 
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shallow-water environments throughout the Gulf via impact-initiated seismic and 

megatsunamic processes. The Texas shelf and northern Florida Platform margin were 

primary sources of sediment, while the central and southern Florida Platform sustained 

localized platform collapse. The ancestral Louann salt basin had significant variation in 

bathymetry that influenced post-impact deposition in the north-central and northwestern 

Gulf. Impact-mobilized sediment and processes were able to overwhelm virtually all 

topography and depositional systems at the start of the Cenozoic, blanketing the Gulf 

with carbonate debris within days. 

The Panoche Giant Injection Complex (PGIC) in central California is a complete 

injectite system. We measured hundreds of injectites over ~600 m of stratigraphic 

thickness in two locales in order to determine geomechanical controls on injection. We 

document an injectite architecture in the PGIC that we interpret to reflect a reversal in 

paleostress state from reverse to strike-slip or normal with proximity to the paleoseafloor. 

We demonstrate that injectite aperture and bulk strain decrease with distance from the 

injection source. We model this behavior with three hydraulic fracture geometries and 

conclude that injectites formed via radially propagating hydraulic fractures. We 

document a northeast-southwest paleo-orientation preference of subvertical injectites, 

which reflects the control of Farallon plate subduction on stress state at the PGIC. We 

estimate that the PGIC was complete and active for ~1 Ma and punctuated by ~20–150 

ky-long periods of quiescence based on thickness and spacing of extrudites in the PGIC. 
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Figure 1:  (A) Paleogeographic map of the Gulf of Mexico at the end of the 

Cretaceous [Blakey, 2011], illustrating thickness and paleogeographic 

setting of known KPBD locales in the circum–Gulf region. (B) 

Schematic lithologic sections of the KPBD by distance from the crater. 

Change in composition and thickness of the KPBD with proximity to the 

crater strongly suggests a genetic link between the two. The locations of 

Cuban outcrops in (A) are repositioned relative to the paleolocation of 

Cuba; all other outcrops are displayed in their modern location. Note 

that the Mississippi Embayment at the end of the Cretaceous likely 

extended considerably northward of the limit depicted by Blakey [2011] 

(short-dashed line) in (A), as indicated by megatsunamigenic KPBDs in 

Missouri [Campbell et al., 2007; Frederiksen et al., 1982]. Cantarell is a 

supergiant oil field in which fractured KPBD comprises the primary 

reservoir [Cantu-Chapa and Landeros-Flores, 2001; Grajales-

Nishimura et al., 2000; Ricoy-Paramo, 2005]. Gray lines in (A) indicate 

coastline and administrative boundaries, and gray dashed lines indicate 

radial distance from the crater. KBPD outcrop and core locations and 

thicknesses are from various sources, counter-clockwise from northeast: 

Braggs, Mussel Creek, and Moscow Landing [Hart et al., 2013]; Shell 

Creek [King and Petruny, 2007]; Brazos [Yancey, 1996; Yancey and Liu, 

2013]; El Tecolete [Soria et al., 2001]; El Peñón [Stinnesbeck et al., 

1993]; Lajilla, El Mimbral, La Ceiba, and Coxquihui [Smit et al., 1996]; 

Bochil and Guayal [Grajales-Nishimura et al., 2000]; Cantarell [Cantu-

Chapa and Landeros-Flores, 2001]; Albion Island [Ocampo et al., 
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1996]; Armenia [Pope et al., 2005];  Actela [Fourcade et al., 1998]; 

Moncada [Tada et al., 2002]; Cacarajicara [Tada et al., 2003]; and 

Peñalver [Kiyokawa et al., 2002]. (B) is modified from Schulte et al. 

[2010]. See Table A1 in Appendix 1 for data from (A) in tabular form.

.............................................................................................................4 

Figure 2: Study area and data extent in the Gulf of Mexico. The red 300 m 

bathymetric contour line throughout the northern Gulf demarcates deep- 

and shallow-water provinces, as per Richardson et al. [2008]. Yellow 

highlights indicate lines displayed in Figures 5 and 9A–C. See section 

2.2 for an explanation of the types of penetrations (i.e., complete vs. 

partial, conventional vs. carapace). Fugro DeepFocus dataset not 

displayed. ..........................................................................................11 
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Figure 3: Seismic facies of the K-Pg KPBD in the Gulf of Mexico, with 

representative localities annotated. (A) Characteristic “blanket” facies in 

the deepwater Gulf, where not occluded by overlying salt or complicated 

by interacting salt: top and base are both defined by high-amplitude 

peaks, and the internal character is a uniform, high-amplitude trough; 

subtle subjacent stratal truncation (small red arrows). (B) Similar to (A), 

but with more severe truncation of subjacent strata and thinning onto 

adjacent salt ridge (large arrow). (C) Erosional facies: severe truncation 

of underlying strata (small red arrows) and conformable overlying strata; 

KPBD is either virtually nonexistent or below seismic resolution, and 

boundary “surface” is defined by a high-amplitude peak. (D) moderate- 

to low-amplitude discontinuous seismic facies: generally discontinuous 

internal character with subtle horizontal and dipping reflectors bounded 

by high-amplitude peaks (E) Chaotic slump facies on the Louisiana 

shelf: tabular, internally chaotic package bounded by high-amplitude 

peaks. (F) Variable-amplitude slump facies adjacent to the Florida 

Platform: mounded, internally chaotic package bounded by high-

amplitude peaks; onlapping superjacent strata. Scale interval is 1 km; 

vertical exaggeration (VE) annotated. ..............................................12 
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Figure 4: Segment of line CHICX-B from the 1996 Chicxulub survey 

demonstrating seismic facies of the KPBD at the crater, as well as crater 

morphology. The seismic response of the KPBD is characterized by a 

low- to moderate-amplitude, chaotic to semi-coherent seismic package 

bounded by upper short- and lower broad-wavelength peak. C1 is the 

Chicxulub 1 borehole, the nearest borehole to the center of the crater 

[Sharpton et al., 1994; Sharpton et al., 1996; W C Ward et al., 1995]. 

Note that the KPBD, as defined in this study, includes only the clastic 

breccia (“impact breccia”, “suevitic breccia”, or “suevite”) that overlies 

the crater, and not the underlying melt breccia, melt, and peak ring (of 

unknown lithology; see section 2.2 for explanation). Red arrows indicate 

onlap of Cenozoic strata. Vertical exaggeration (VE) annotated. 

Interpretation of the C1 borehole is modified from various authors 

[Sharpton et al., 1994; Sharpton et al., 1996; W C Ward et al., 1995].

...........................................................................................................12 

Figure 5: Type log of the KPBD in the deepwater Gulf of Mexico, demonstrating 

its characteristic signature: blocky with low gamma-ray counts (GR), 

high-resistivity (RES), low neutron-porosity (ΦN) and bulk-density (ρb), 

and high compressional acoustic velocity (DTC). Depth in true vertical 

meters below sea level (TVDSS). Shale volume (Vsh), synthetic seismic, 

and biostratigraphic ages are modified from Denne et al. [2013]. ...13 
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Figure 6: Structure at the top of the KPBD in the northern Gulf of Mexico, 

illustrating regional structural features and extreme local variation in 

structure within the Louann salt basin. Dashed black lines indicate the 

boundaries of key structural features, and dashed red lines indicate 

boundaries of salt provinces. Location of seismic transects in Figure 8 

are indicated by blue lines.................................................................24 

Figure 7: Interval thickness of the KPBD in the northern Gulf of Mexico, 

suggesting local basement and salt control. Individual and connected red 

arrows indicate point and line sources, respectively. SC = extinct 

spreading center mapped by Snedden et al. [2014] on (solid) and 

speculated from (dashed) seismic data. LOC = limit of oceanic crust per 

Hudec et al. [2013a]; [Hudec et al., 2013l]. Location of seismic transects 

in Figure 8 are indicated by black lines. ...........................................25 
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Figure 8: Uninterpreted (top) and interpreted (below) regional seismic reflection 

transects through the Gulf of Mexico, illustrating KPBD thickness and 

structure through structural provinces in the basin. Annotations at the top 

and base of each interpreted section indicate geographic and structural 

provinces, respectively. (A) Northwest-southeast depth-converted 

transect from the San Marcos Arch on the Texas shelf to the deepwater 

Gulf outboard of the Sigsbee Escarpment in Keathley Canyon (KC). 

Wells, from west to east: G.D. Vick #1, Willie Matejcek #1, Weiting #1, 

KC 102 #1 (Tiber Field). (B) North-south depth-converted transect from 

the Mississippi shelf to the deepwater Gulf outboard of the Sigsbee 

Escarpment. Wells, from north to south: Crown Zellerbach #1, Currie 

#1, Green Canyon (GC) 653 #3 (Shenzi Field). (C) North-south time 

transect from the Florida Platform to the Chicxulub impact basin. Note 

that at the crater, the mapped KPBD consists of clastic breccia (“impact 

breccia”, “suevitic breccia”, and/or “suevite”) and does not include melt 

or melt breccia (see section 2.2 for explanation). Seismic quality on the 

Yucatán Platform is noticeably diminished as a result of hard and 

acoustically “fast” platform carbonates that occlude underlying seismic 

stratigraphy. GRFZ: Gulf-rim fault zone after Klitgord and Schouten 

[1986]; DSSW: disconnected salt-stock-canopy province after Pilcher et 

al. [2011]; BWB: bucket-weld-basin province after Pilcher et al. [2011]; 

ASSC: amalgamated salt-stock-canopy province after Pilcher et al. 
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Figure 9: Uninterpreted (top) and interpreted (bottom) depth-converted seismic 

reflection section documenting suprasalt carapaces containing the KPBD 

and condensed Mesozoic and Early Cenozoic (Paleogene) strata in the 

Louann salt basin, Keathley Canyon (KC). As per Figure 8, purple 

shading indicates Callovian salt; green indicates Mesozoic (Upper 

Jurassic and Cretaceous) strata; black indicates KPBD; red indicates 

Paleogene strata; and yellow indicates secondary basin strata (Neogene 

and younger). Paired black circles indicate salt welds (solid line) and 

sutures (dashed lines). Note that the southernmost well penetrates the 

KPBD in-place, ~5 km below the carapaces. Wells, from north from 

south: KC 875 #1 and #2 (Lucius Field), KC 919 #2 and #1 (Hadrian 

Field). ................................................................................................27 

Figure 10: Structure at the base of the KPBD at the Chicxulub impact basin, 

illustrating crater morphology and preexisting structure. Approximate 

axes of the inner rim, annular trough, and peak ring are overlain in blue, 

and the Chicxulub embayment is indicated with a dashed red line. White 

lines indicate seismic control, and black circles represent borehole 

locations. The location of the C1 borehole is indicated (see Figures 5 and 

13). ....................................................................................................28 
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Figure 11: Interval thickness of the KPBD at the Chicxulub crater. Structural 

features of the crater (blue lines) and preexisting Chicxulub embayment 

(dashed red line) are taken from Figure 10. White lines indicate seismic 

control, black circles represent borehole locations, and adjacent numbers 

indicate KPBD thickness in boreholes. The location of the C1 borehole 

is indicated (see Figures 5 and 13). ...................................................29 

Figure 12: Idealized lithology of sites 540 and 536 cores, together interpreted to 

represent the entire KPBD sequence in the southeastern Gulf. The 

deposit can be divided into three units: poorly sorted muddy debrite, 

upward-fining turbidites, and massive carbonate mudstone. Red circles 

indicate location of spherules, and red curve at right represents idealized 

iridium concentration. C = cobblestone/pebblestone, G = grainstone, P = 

packstone, W = wackestone, M = mudstone, as per Dunham [1962]. See 

Table 1 for facies descriptions. See Appendix 2 for detailed core 

descriptions. ......................................................................................30 
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Figure 13: Schematic model for post-impact deposition in the eastern Gulf of 

Mexico. The impact initiates a seismic pulse that inputs seismic energy 

and a megatsunami into the Gulf. As the crater is forming to the 

southeast, seismic ground-roll and shaking rapidly travels across the 

Gulf, arriving onshore Florida in about 6 minutes (see Table A1). The 

megatsunami wave train travels at roughly a tenth the velocity of the 

Rayleigh-wave-driven seismic energy, with the first wave reaching the 

Florida coast in about an hour and generating a separate sequence of 

sediment gravity flows (mostly turbidites). Note that the location of 

DSDP Sites 536 and 540 is a paleohigh, resulting in the relatively thin 

deposit (~50 m). C1 is the Chicxulub 1 borehole, the nearest borehole to 

the center of the impact basin [Sharpton et al., 1994; Sharpton et al., 

1996; W C Ward et al., 1995]. PW1 and PW2 are pseudowells in the 

deepwater eastern Gulf, indicated by dashed-line boreholes. (B) 

Schematic lithologies of the KPBD through the Gulf. The turbidite 

deposits in the KPBD consist of multiple turbidite sequence, derived 

from distinct origins (e.g., Yucatán Platform, Florida Platform) 

depending on location. At the impact basin, the KPBD mapped in this 

study includes only clastic breccia, and not underlying melt and melt 

breccia (see section 2.2 for an explanation). Note the scale change across 

wells. PW1 and PW2 lithologies are hypothesized for the pseudowell 

locations in (A). Dashed red lines indicate hypothesized iridium curves.
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Figure 14:  Schematic model for postimpact deposition in the deepwater Louann salt 

basin province. By the time of the impact at the end of the Cretaceous, 

gravity- and sediment-loading–driven seaward salt migration has 

overcome the basement ramp of Hudec et al. [2013a]; [Hudec et al., 

2013l] and breached the limit of oceanic crust (LOC), resulting in an 

outer (seaward) salt-inflation high and an inner (landward) salt-

evacuation low within the salt basin. (A) After seismic and tsunamic 

energy input by the impact mobilizes sediment throughout shallow 

waters of the Gulf, the KPBD blankets the deepwater Gulf but is 

restricted within the salt basin in the region of the salt-inflation high, 

resulting in a regional trend of thinning in the distal salt basin (Figure 7). 

(B) After wave energy in the Gulf has dissipated, only the finest-grained 

fraction of remobilized carbonate sediment and iridium-enriched eject 

remains in the water column, which slowly deposits on the seafloor by 

suspension settling. (C) After all impact-related sedimentation has 

ceased, the resultant deposit preserves the original control of regional 

salt distribution on deposition, and normal sedimentation slowly 

reinstates as the ecosystem recovers. Model for salt migration and Late 

Cretaceous distribution modified from [Hudec et al., 2013a]. .........39 
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Figure 15: (A) Location map of the PGIC in the Panoche and Tumey Hills of 

central California. All results in this publication are from Moreno Gulch 

and Marca Canyon, two of the northernmost locales of the PGIC. (B) 

Stratigraphy of the mud-prone Moreno Formation overlying the sand-

prone Uhalde Formation, as well as a generalized schematic of PGIC 

architecture. (C) Schematic tectonic model of the PGIC on the western 

margin of the Great Valley forearc basin in the Late Creteaceous and 

Early Paleocene. (B) is modified from McGuire [1988] and (C) is 

modified from Ingersoll [1979]. .......................................................44 

Figure 16: Aerial imagery of (A) Moreno Gulch and (B) Marca Canyon in the 

northern Panoche Hills illustrating mapped source and remobilized 

sands of the PGIC, location of measurements and photogrammetric 

model acquired for this study, and stratigraphy of the Moreno Formation 

from [Bartow, 1996]. Locations of scan line areas are indicated by blue 

boxes and locations of Figures 7–8 are indicated by black boxes. Stars 

indicate approximate location of outcrop photographs in Figure 5. (C) 

Stereographic projection of poles to planes of all 36 bedding 

measurements collected in Moreno Gulch and Marca Canyon, with 

average bedding plotted as a great circle. (D) Stereographic projection of 

poles to planes of paleo-orientation of 327 injectite measurements 

collected in Moreno Gulch and Marca Canyon, illustrating clustering of 

sills paleo-oriented horizontally and high-angle dikes with an average 

paleo-orientation of 241° 71° ............................................................46 
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Figure 17: Schematic measured sections of (A) Moreno Gulch and (B) Marca 

Canyon illustrating architecture of the PGIC and stratigraphy of the 

Moreno Formation. Both locales expose the complete PGIC from source 

interval to extrudite interval. Architectural intervals and zones of the 

PGIC are approximately stratigraphically conformable. ..................48 

Figure 18: Quantitative grain size of 10 samples of remobilized and depositional 

sands in Moreno Gulch Marca Canyon. Grain size of the upper Uhalde 

Formation is very similar to that of remobilized sand from the PGIC, 

while that of the middle Uhalde Formation is not, indicating that the 

source sand interval is limited to the upper Uhalde Formation. Samples 

from the middle Uhalde Formation were obtained in the large canyon 

west of Marca Canyon. .....................................................................53 
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Figure 19: Field photographs of (A) source, (B–I) injected, and (J–O) extruded sand 

in Moreno Gulch and Marca Canyon. (A) Outcrop of the upper Uhalde 

Formation in Moreno Gulch with stacked turbidite sequences associated 

sedimentary structures. (B) Mudstone rip-up clasts in a sill in the sill 

zone of Moreno Gulch. (C) Linear flow structures at the boundaries of a 

~15- (top) and ~3-cm (bottom) sill in the sill zone of Marca Canyon. (D) 

Sill and high-angle dike interaction in the SDTZ of Moreno Gulch. (E) 

Large-scale crosscutting of low- and high-angle dikes in the dike zone of 

Marca Canyon. (F) A sill complex in the sill zone of Moreno Gulch 

illustrating the phenomenon of stratigraphic stepping. (G) Thin (cm-

scale) sills adjacent to a large sill at a point of stratigraphic stepping. (H) 

Micro-sills and -dikes with high silt to very fine sand content and no 

macroscopic aperture in the SDTZ. (I) Outcrop of the upper Marca and 

lower Dos Palos member documenting high-angle injectites in close 

proximity to the lowest extrudite horizon in Marca Canyon. (J) Outcrop 

of the Cima Lentil submember exposing three to four horizons of 

mounded extrudites in Moreno Gulch. (K) Soft-sediment deformation 

indicative of focused upward transport at the core of a mounded 

extrudite horizon in Marca Canyon. (L) Slope-forming sands of 

unknown origin in the Cima Lentil submember of Marca Canyon. (M) 

Pipe-like sand bodies in the Cima Lentil submember of Marca Canyon. 

(N) Outcrop with several distinctive concretions in the upper Marca 

member of Marca Canyon. (O) A small concretion with abundant 
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THE CRETACEOUS-PALEOGENE BOUNDARY DEPOSIT IN THE GULF 
OF MEXICO: OCEANIC BASIN RESPONSE TO THE CHICXULUB 

IMPACT 

Chapter 1: Introduction 

The Cretaceous-Paleogene (K-Pg) extinction event is the latest of five major extinction 

events in the Phanerozoic and is responsible for the extinction of ~36% of known marine animal 

genera and ~76% of known marine invertebrates [Jablonski, 1994; Raup and Sepkoski, 1982; 

Rohde and Muller, 2005]. The prevailing theory for the event invokes the Chicxulub asteroid 

impact as the sole cause of rapid global climatologic and ecologic crisis that occurred at the start 

of the Cenozoic [e.g., Pälike, 2013; Renne et al., 2013]. There is a consensus within the geologic 

community that impact-initiated processes led to the global deposition of the K-Pg boundary 

deposit (KPBD) [e.g., Bralower et al., 2010; Denne et al., 2013; Schulte et al., 2010], though the 

theory is not without critics [e.g., Keller, 2011; Keller et al., 1993; Keller et al., 2003a].  

The single-impact Chicxulub-crater hypothesis for the origin of the KPBD is now 

corroborated by more than 350 sites throughout the world that document the K-Pg boundary 

[Claeys et al., 2002; Schulte et al., 2010; Smit, 1999]. Furthermore, substantial change in 

thickness and lithology of the KPBD with proximity to the Chicxulub crater strongly suggests a 

genetic link between the two (Figure 1) [Schulte et al., 2010]. Shocked quartz, spherules, and 

clays enriched in platinum group elements have been identified at sites around the world, from 

proximal to virtually antipodal to the crater [e.g., L W Alvarez et al., 1980; Claeys et al., 2002; 

Gilmour and Anders, 1989; Kyte et al., 1985; Schulte et al., 2010; Smit, 1999]. At sites more than 

~5,000 kilometers from the crater (e.g., Gubbio, Italy, Caracava de la Cruz, Spain, and El Kef, 

Tunisia), this boundary clay, or “fireball layer” [Hildebrand and Boynton, 1990], comprises the 

entire KPBD [Perch-Nielsen et al., 1982; Schulte et al., 2010; Smit and Hertogen, 1980]. Within 
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~5,000 kilometers of the crater (e.g., “intermediate” sites in the Western Interior, Bermuda Rise, 

Caribbean, and shallow-water Gulf), the boundary clay incorporates a lower spherule-rich layer, 

and the entire KPBD is up to 1 m thick [e.g., Izett, 1990; MacLeod et al., 2007; Schulte et al., 

2009]. 

Even nearer to the crater (<1000 km), this lower ejecta bed incorporates a substantial 

clastic component with sedimentary structures indicative of high-energy depositional 

mechanisms (e.g. turbidity currents, debris flows, slumps, and slides) [Alegret et al., 2001; 

Campbell et al., 2007; Ferrell et al., 2011; Frederiksen et al., 1982; Grajales-Nishimura et al., 

2000; Keller et al., 2003b; Smit et al., 1992; Soria et al., 2001; Stinnesbeck et al., 1993; Yancey, 

1996; Yancey and Liu, 2013]. Paleogeography is increasingly a factor in KPBD thickness, 

geometry, and composition, though the lithologic consistency of the KPBD is remarkable 

throughout the Gulf. Because the impact occurred on the margin of the Yucatán Peninsula, a 

nominal 1,000-km radius circumscribes a wide range in paleogeography, and thus depositional 

setting and local response to the impact, from coastal to abyssal (Figure 1A). As such, the KPBD 

within this distance exhibits a wide range of thickness, from ~1 m (e.g., Brazos River outcrop, 

Texas) [Yancey, 1996; Yancey and Liu, 2013] to nearly 1 km (e.g., Cacarajícara formation, Cuba, 

impactites within the Chicxulub impact crater, Mexico) [Gulick et al., 2013; Tada et al., 2003] or 

more (this study; Figure 1). Generally, shallow-water deposits in the Gulf range from 1 m to 

many decimeters thick, whereas deepwater deposits are hectometers thick (Figure 1). 

Given this established change in character and thickness with proximity to the Chicxulub 

crater, the Gulf of Mexico represents a geographic, energetic, and depositional end-member to 

the continuum of global KPBD settings. The impact input ~100 teratons into the Earth system 

[Covey et al., 1994] and likely generated a magnitude 11 earthquake [Day and Maslin, 2005] at 
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the site of impact, initiating seismic shaking and ground-roll and a megatsunami wave train that 

would have traversed the Gulf within an hour [e.g., Boslough et al., 1995; Denne et al., 2013; 

Klaus et al., 2000; Norris and Firth, 1999; Norris et al., 2000; Tada et al., 2003; Yancey and 

Liu, 2013]. Given its proximity to the crater and its exceptional accommodation space, the 

deepwater Gulf was likely a regional sink to the tremendous amount of sediment generated by 

the impact. Thus, the Gulf is the premier locale in which to study the near-field geologic effect of 

a massive bolide impact. However, until recently, data in the Gulf has been limited to the basin 

periphery because of the expense and difficulty of acquiring deepwater data. Hydrocarbon 

exploration in the past decade has yielded significant borehole and seismic data that can be used 

to better understand the deepwater response to the impact in the Gulf [e.g. Denne et al., 2013; E 

D Scott et al., 2014]. 

It is the aim of this study to characterize and map the KPBD using borehole and seismic 

data throughout the northern Gulf of Mexico and to map the continuity of the KBPD from the 

northern Gulf to the Chicxulub impact basin. We present available lithologic data to determine 

the mechanisms responsible for deposition of the KPBD in the wake of the impact. We present 

data that leads to a comprehensive understanding of the deposit in the deepwater Gulf of Mexico, 

including the identification of impact-mbilized sediment sources and the role of syndepositional 

salt topography and postdepositional salt migration. For the first time, the KPBD is correlated 

from the Chicxulub impact basin to the deepwater Gulf, stratigraphically establishing a 

relationship between the impact and the KPBD.
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Figure 1:  (A) Paleogeographic map of the Gulf of Mexico at the end of the Cretaceous 
[Blakey, 2011], illustrating thickness and paleogeographic setting of known KPBD locales in the 
circum–Gulf region. (B) Schematic lithologic sections of the KPBD by distance from the crater. 
Change in composition and thickness of the KPBD with proximity to the crater strongly suggests 
a genetic link between the two. The locations of Cuban outcrops in (A) are repositioned relative 
to the paleolocation of Cuba; all other outcrops are displayed in their modern location. Note that 
the Mississippi Embayment at the end of the Cretaceous likely extended considerably northward 
of the limit depicted by Blakey [2011] (short-dashed line) in (A), as indicated by 
megatsunamigenic KPBDs in Missouri [Campbell et al., 2007; Frederiksen et al., 1982]. 
Cantarell is a supergiant oil field in which fractured KPBD comprises the primary reservoir 
[Cantu-Chapa and Landeros-Flores, 2001; Grajales-Nishimura et al., 2000; Ricoy-Paramo, 
2005]. Gray lines in (A) indicate coastline and administrative boundaries, and gray dashed lines 
indicate radial distance from the crater. KBPD outcrop and core locations and thicknesses are 
from various sources, counter-clockwise from northeast: Braggs, Mussel Creek, and Moscow 
Landing [Hart et al., 2013]; Shell Creek [King and Petruny, 2007]; Brazos [Yancey, 1996; 
Yancey and Liu, 2013]; El Tecolete [Soria et al., 2001]; El Peñón [Stinnesbeck et al., 1993]; 
Lajilla, El Mimbral, La Ceiba, and Coxquihui [Smit et al., 1996]; Bochil and Guayal [Grajales-
Nishimura et al., 2000]; Cantarell [Cantu-Chapa and Landeros-Flores, 2001]; Albion Island 
[Ocampo et al., 1996]; Armenia [Pope et al., 2005];  Actela [Fourcade et al., 1998]; Moncada 
[Tada et al., 2002]; Cacarajicara [Tada et al., 2003]; and Peñalver [Kiyokawa et al., 2002]. (B) is 
modified from Schulte et al. [2010]. See Table A1 in Appendix 1 for data from (A) in tabular 
form. 
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Chapter 2: Materials and methods 

SEISMIC DATA 
We relied primarily on seismic stratigraphic interpretation of regional depth-converted 

two-dimensional seismic reflection data in order to map the KPBD in the northern Gulf of 

Mexico (Figure 2). In total, we used over 210,000 km of depth-converted two-dimensional 

seismic data from four regional industry datasets and ~9,000 km2 of high-resolution depth-

converted three-dimensional seismic reflection data from one industry dataset (Figure 2). 

Additionally, we used two-dimensional data from two academic seismic reflection surveys for 

mapping of the KPBD on the northwestern Yucatán Platform. We depth-converted the original 

time data from these surveys for this study using velocity models produced by G L Christeson et 

al. [2009]. Paradigm Focus seismic processing software was used for depth-conversion. Finally, 

we utilized two-dimensional seismic reflection time data from multiple academic surveys to 

supplement interpretations of depth-converted data. These data were particularly valuable as they 

allowed correlation of the KPBD from the Chicxulub impact basin to the northern Gulf (Figure 

2). Detailed information on various sources for seismic data are tabulated in Table A4 of 

Appendix 1. We refer the reader to the Seismic Data Center (SDC) at UTIG for more 

information regarding all academic seismic data used for this study [Shipley et al., 2013]. 

SEISMIC INTERPRETATION METHODS 
We relied primarily on seismic stratigraphic interpretation methods [e.g., Sheriff, 1980; 

Snedden and Sarg, 2008; Vail, 1987] in order to map the KPBD on regional seismic data. The 

principles of sequence stratigraphy [e.g., Van Wagoner, 1988] were employed wherever 

beneficial, particularly where correlation of sub- and superjacent stratigraphy facilitated mapping 

of the KPBD. Recognition of seismic facies and stratal relationships is critical for mapping the 

KPBD throughout the northern Gulf. To that end, a number of seismic facies were identified, 
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revealing that the seismic character of the deposit varies significantly throughout the study area 

while maintaining key diagnostic features (Figure 3). Primary criteria for recognition of the 

KPBD in seismic data are a uniform, high-amplitude peak-trough-peak response (a single peak 

when erosional) and subjacent stratal truncation (Figure 3A–C). In shelf- and platform-proximal 

areas, diagnostic criteria for mounding or slumping of the KPBD include low-amplitude, chaotic 

or discontinuous internal character bounded by high-amplitude events (Figure 3D–F). 

Salt tectonics within the Louann salt basin (terminology of Hudec et al. [2013a]) can 

result in duplicate, out-of-place, or absent strata and thus require a mapping methodology that 

accounts for such cases. For instance, while the KPBD is typically located within primary (i.e., 

subsalt) basins, there exist areas where the KPBD is locally rafted with bounding strata via salt 

migration, resulting in out-of-place “carapaced” sections within secondary (i.e., suprasalt) basins 

that are unrepresentative of regional trends and controls on KPBD deposition. As such, the 

KPBD where carapaced was omitted from regional mapping. Additionally, the KPBD is absent 

in areas where salt stocks or roots are present (between individual primary basins), but given the 

scale of mapping for this study, coupled with the difficulty of resolving such areas on narrow-

azimuth two-dimensional seismic reflection data, the KPBD was mapped as continuous across 

primary basins throughout the Louann salt basin. 

Where the KPBD is too thin for crustal-scale vertical seismic resolution (e.g., Florida 

Platform and upper Texas shelf), we approximated KPBD thicknesses documented in borehole 

data by picking the base of the deposit on the first negative amplitude event below the positive 

amplitude event (i.e., peak) picked as the top of the deposit. We acknowledge the geophysical 

shortcomings of such a method, but deem it suitable in order to map the KPBD on seismic data 

within these locales without the need to correct for exaggerated thicknesses. 
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Within the Chicxulub impact basin, we consider the KPBD to be equivalent to the 

“impact breccia”, “suevitic breccia”, or “suevite” of previous investigators of geophysical and 

borehole data at the crater [Sharpton et al., 1994; Sharpton et al., 1996; W C Ward et al., 1995]. 

The rationale for this definition is seismic-, litho-, and chronostratigraphic: (1) it differentiates 

clastic brecciation (with some melting) above from shock-melting below, thus isolating the 

deposit most analogous to the KPBD elsewhere in the Gulf; (2) it coincides with a 

chronostratigraphic boundary that represents a transition from crater formation to debris 

deposition as the crater took its final form; and (3) the KPBD mapped throughout the Gulf, 

outside of the impact basin, is a clastic impact-related unit rather than an impactite, sensu stricto; 

and (4) it facilitates seismic interpretation, as this unit is a chaotic to semicoherent package 

bounded below by a generally well-resolved, broad-wavelength, high-amplitude peak that 

separates it from an incoherent section that extends downward indeterminately within the impact 

basin (Figure 4). While both the contact and the genetic processes are gradational, borehole and 

seismic data justify this distinction, as all boreholes within the impact basin penetrate clastic 

breccia overlying melt breccia and melt, and the contact between the two units correlates to the 

broad-wavelength peak consistently observed in seismic data (Figure 4). 

BOREHOLE DATA 
We utilized 408 wells penetrating the Cretaceous for this study: 40 deepwater (>300 m as 

per the Minerals Management Service (MMS)) wells, 51 shallow-water (<300 m) wells in 

federal waters, and 317 onshore and shallow-water wells in state waters (Figure 2) [Richardson 

et al., 2008]. Of the 40 deepwater Cretaceous wells, seven penetrate the KPBD within a salt-

related carapace and eight only partially penetrate the KPBD (typically logging <50 m of 

Cretaceous section), one of which is within a carapace. As with seismic data, we exluded wells 



 
 

8 

containing carapaced KPBD from regional structure and thickness mapping as they are 

stratigraphically and geographically out of place. Additionally, because partial penetrations do 

not log the base of the KPBD, they were not used for thickness mapping. In total, we used 401 

wells for structure mapping and 393 wells for thickness mapping.  

The majority of biostratigraphic and petrophysical data for wells utilized in this study 

were released by the U.S. Bureau of Ocean Energy Management (BOEM). In some cases, 

biostratigraphic data have been reinterpreted by Paleo-Data, Inc. (PDI), a micropaleontological 

firm and third-party sponsor of the Gulf Basin Depositional Synthesis Project (GBDS).  

While cores of the KPBD in the deepwater Gulf of Mexico are extremely rare, those that 

exist are critical to assessing the sedimentology and depositional processes of the KPBD. Leg 77 

of the Deep Sea Drilling Project (DSDP) acquired core at four sites (536–538 and 540) in the 

southeastern Gulf of Mexico that contain the KPBD [Buffler et al., 1984; Watkins and McNulty, 

1984]. 

During Leg 10 of the DSDP, conducted seven years prior to Leg 77, cores containing 

Cretaceous sediments were acquired at four sites (86, 94, 95, and 97) in the southern Gulf of 

Mexico [Worzel et al., 1970]. While the majority of these cores are interpreted to contain only 

Early Cretaceous sediments, core from Site 97 in the southeastern Gulf (adjacent to Leg 77 sites) 

possibly contains the KPBD [Smith and McNeely, 1970]. 

BOREHOLE DATA INTERPRETATION METHODS 
We employed borehole wireline, biostratigraphic, and lithologic data wherever available 

to corroborate seismic interpretation and reduce seismic data gaps for mapping. The KPBD is 

remarkably consistent in petrophysical character throughout the Gulf and generally exhibits a 

blocky signature of low gamma ray counts, neutron-porosity, and bulk density, and high 
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resistivity relative to bounding strata (Figure 5). Often, gamma ray counts increase slightly 

upward, while resistivity decreases slightly, interpreted to represent the upward-fining lithology 

of the deposit, as observed in cores at DSDP Leg 77. On the Florida Platform, the KPBD thins to 

<30 m, exhibits a slightly less “clean” log signature, and is often difficult to distinguish from 

over- and underlying platform carbonates. Furthermore, onshore wells generally contain a 

significantly thinner KPBD (often <10–15 m), though it exhibits similar low gamma ray counts 

and high resistivity. High compressional acoustic velocity relative to superjacent shales and 

subjacent marls results in a high impedance contrast, corroborating regional seismic 

identification of the KPBD (Figures 4 and 6). 

Where available, we used biostratigraphic data to guide wireline log interpretation or 

confirm the position of the KPBD. The KPBD in the deep water generally exhibits the 

characteristic K-Pg “boundary cocktail”, a mixture of reworked nannofossils and foraminifera 

first described by Bralower et al. [1998], as the work of Denne et al. [2013] recently confirmed. 

Over the course of June 17 and 18, 2013, we evaluated and described cores from DSDP 

Leg 77 at the Texas A&M IODP Gulf Coast Repository (GCR) in College Station, Texas. Visual 

and microscopic core description was performed on cores from sites 536–538 and 540 of Leg 77, 

guided by interpretations made by W Alvarez et al. [1992] and Bralower et al. [1998]. 

MAPPING METHODS 
We used Landmark DecisionSpace Desktop for seismic and borehole data interpretation 

and grid generation. We then imported the resultant grids into ArcGIS for minor processing, 

contouring, and volumetric calculation. We calculated KPBD volume from the interval thickness 

map produced from seismic and borehole mapping. To do so, we used the Zonal Statistics tool in 

ArcMap to tabulate map cell–based thicknesses, from which we calculated average thickness. 
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We then multiplied average thickness by the map area to determine total volume for the northern 

Gulf. Finally, we calculated KPBD in the southern Gulf by extrapolating the average thickness 

from the northern Gulf and multiplying it by the area of the southern Gulf based on the 

Cretaceous-Tertiary North American paleogeographic map of [Blakey, 2011]. We refer the 

reader to Appendix A1 for a detailed methodology of mapping and volumetric calculation. 
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Figure 2: Study area and data extent in the Gulf of Mexico. The red 300 m bathymetric 
contour line throughout the northern Gulf demarcates deep- and shallow-water provinces, as per 
Richardson et al. [2008]. Yellow highlights indicate lines displayed in Figures 5 and 9A–C. See 
section 2.2 for an explanation of the types of penetrations (i.e., complete vs. partial, conventional 
vs. carapace). Fugro DeepFocus dataset not displayed. 
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Figure 3: Seismic facies of the K-Pg KPBD in the Gulf of Mexico, with representative 
localities annotated. (A) Characteristic “blanket” facies in the deepwater Gulf, where not 
occluded by overlying salt or complicated by interacting salt: top and base are both defined by 
high-amplitude peaks, and the internal character is a uniform, high-amplitude trough; subtle 
subjacent stratal truncation (small red arrows). (B) Similar to (A), but with more severe 
truncation of subjacent strata and thinning onto adjacent salt ridge (large arrow). (C) Erosional 
facies: severe truncation of underlying strata (small red arrows) and conformable overlying 
strata; KPBD is either virtually nonexistent or below seismic resolution, and boundary “surface” 
is defined by a high-amplitude peak. (D) moderate- to low-amplitude discontinuous seismic 
facies: generally discontinuous internal character with subtle horizontal and dipping reflectors 
bounded by high-amplitude peaks (E) Chaotic slump facies on the Louisiana shelf: tabular, 
internally chaotic package bounded by high-amplitude peaks. (F) Variable-amplitude slump 
facies adjacent to the Florida Platform: mounded, internally chaotic package bounded by high-
amplitude peaks; onlapping superjacent strata. Scale interval is 1 km; vertical exaggeration (VE) 
annotated. 

 

Figure 4: Segment of line CHICX-B from the 1996 Chicxulub survey demonstrating 
seismic facies of the KPBD at the crater, as well as crater morphology. The seismic response of 
the KPBD is characterized by a low- to moderate-amplitude, chaotic to semi-coherent seismic 
package bounded by upper short- and lower broad-wavelength peak. C1 is the Chicxulub 1 
borehole, the nearest borehole to the center of the crater [Sharpton et al., 1994; Sharpton et al., 
1996; W C Ward et al., 1995]. Note that the KPBD, as defined in this study, includes only the 
clastic breccia (“impact breccia”, “suevitic breccia”, or “suevite”) that overlies the crater, and not 
the underlying melt breccia, melt, and peak ring (of unknown lithology; see section 2.2 for 
explanation). Red arrows indicate onlap of Cenozoic strata. Vertical exaggeration (VE) 
annotated. Interpretation of the C1 borehole is modified from various authors [Sharpton et al., 
1994; Sharpton et al., 1996; W C Ward et al., 1995]. 



 
 

13 

 

Figure 5: Type log of the KPBD in the deepwater Gulf of Mexico, demonstrating its 
characteristic signature: blocky with low gamma-ray counts (GR), high-resistivity (RES), low 
neutron-porosity (ΦN) and bulk-density (ρb), and high compressional acoustic velocity (DTC). 
Depth in true vertical meters below sea level (TVDSS). Shale volume (Vsh), synthetic seismic, 
and biostratigraphic ages are modified from Denne et al. [2013]. 

Chapter 3: Results 

STRUCTURE AND DISTRIBUTION OF THE BOUNDARY DEPOSIT IN THE NORTHERN GULF OF 
MEXICO 

Structure at the top of the KPBD in the northern Gulf of Mexico illustrates several 

regional features inherited from basement and salt-tectonic features and indicates possible 

structural controls on deposition (Figures 7 and 8). In particular, drastic variation in structure in 

the Louann salt basin suggests complicated salt dynamics, though detailed inspection is required 
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to obtain a sense of timing. Furthermore, DeSoto Canyon, likely an area of focused erosion 

during generation and deposition of KPBD sediment [Denne and Blanchard, 2013], exhibits a 

subtle regional expression on the northwest margin of the Florida Platform. Other regional 

features evident in the structure at the top of the KPBD are the Mississippi Salt Basin and the 

San Marcos Arch, both crustal features interpreted by several authors to have formed during 

opening of the Gulf of Mexico (Figures 9A and B) [Buffler, 1991; Salvador, 1991; Sawyer et al., 

1991]. 

Furthermore, thickness of the KPBD throughout the Gulf suggests several unique 

sediment sources and depositional processes and pathways (Figure 7). Local areas of thick 

KPBD on the north and northwestern shelf indicate areas of isolated slumping. Similarly, local 

thickening along the base of the Florida Platform suggests extensive platform collapse, whereas 

the rest of the eastern deep water indicates uniform KPBD thickness. The Florida Platform itself 

appears to have been an area of net erosion; in particular, DeSoto Canyon, on the northwestern 

margin of the Platform, appears to have sustained focused erosion and been a point source for 

deepwater deposition (Figure 7). The Louann salt basin appears to have been a regional sink for 

sediment mobilized by the impact. Finally, intrabasinal thickness trends suggest regional salt-

tectonic and basement control on deposition, while considerable local variation within individual 

provinces of the salt basin indicates the complex history of salt deformation and its syn- and 

postdepositional impact on the KPBD. Herein, “syndepositional” and “postdepositional” refer 

exclusively to timing relative to KPBD deposition. 

Gulf of Mexico paleoshelf 
In the western coastal region of the Gulf, the KPBD exhibits considerable change in 

structure and thickness due to a variety of factors (Figures 7–8 and 9A). On the upper Texas 
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shelf, the KPBD is a net-erosional feature (particularly on the San Marcos Arch), but transitions 

quickly into a thick (200–300 m) deposit on the lower Texas shelf, where listric faulting in the 

Gulf-rim fault zone (terminology of Klitgord and Schouten [1986]) strongly affects structure, but 

not thickness, of the deposit. Where salt interacts with the deposit on the lower Texas shelf, 

structure varies dramatically as a result of folding, and is occasionally interrupted by isolated salt 

stocks. 

In the northern coastal region, the Mississippi Embayment is a prominent feature, with 

the KPBD extending several hundred kilometers northward into the boot-heel of modern-day 

Missouri [Campbell et al., 2007; Frederiksen et al., 1982]. South of the Embayment, on the 

upper Mississippi and Louisiana shelf, the Mississippi salt basin is a regional basement low 

apparent in cross section, though the deposit appears to preserve only a subtle expression thereof 

(Figure 7 and 9B). However, the salt basin appears to have had little influence on boundary unit 

thickness aside from that of salt diapirs, suggesting that it was almost entirely infilled by post-

Callovian and Cretaceous sediments at the time of impact (Figure 7 and 9B). In the lower 

Louisiana, Mississippi, and Alabama shelf, faults within the Gulf-rim fault zone increasingly 

interact with the KPBD, but are rarely accompanied by thinning of the boundary unit, suggesting 

predominately postdepositional deformation (Figure 7 and 9B). 

The eastern coastal region is unique in the Gulf of Mexico as a result of the Florida 

Platform, a prominent and long-lived carbonate platform that has been a province of sustained 

carbonate sedimentation since the Late Jurassic [T M Scott and Anderson, 2001]. While the 

carbonate platform is generally uniform in structure, several regional features were inherited by 

the underlying rifted continental basement blocks, including the northeast Gulf basin (DeSoto 

Canyon area) and the Tampa embayment [Ewing, 1991; Marton and Buffler, 1999; Pindell, 
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1993]. However, most of these features are only subtly expressed in the structure of the KPBD 

(Figure 6).  

An interesting feature of the structure of the boundary unit is a northeasterly embayment 

in central Florida, suggesting the possibility of a local or regional waterway to the Atlantic north 

of the Florida Straits (Figure 6). While the majority of Florida was likely at least partially 

inundated at the end of the Cretaceous (see Figure 1) [Miller et al., 2010; Phelps, 2012; 

Sahagian et al., 1996; Vail and Mitchum, 1979], providing a general northeasterly outlet for 

wave energy initiated by the impact, a local depression in the Florida peninsular arch could have 

further reduced wave reflection and refraction from the Florida coast. 

Interval thickness of the KPBD on the Florida Platform indicates a minor thickening 

trend along the Florida coast (Figure 7). The deposit thickens to roughly 100 meters in this area 

from 0 meters up-slope (on the Florida coast) and 25 to 50 meters down-slope (on the platform). 

This trend suggests that the Florida coast was a minor line source for sediment deposited on the 

platform after impact. Furthermore, comparison of this trend to the dominant trend of thick 

deposits on the lower Texas shelf may suggest that the Florida coast was a more significant 

source of sediment, but that the majority of this sediment was carried down-slope, possibly 

propelled from the platform by sediment gravity flows initiated by impact-related processes. 

Denne and Blanchard [2013] recently published evidence of focused collapse and 

erosion occurring in the DeSoto Canyon as a result of the Chixculub impact. Distribution of the 

KPBD indicates that an 80,000 km2 region immediately southeast of the DeSoto Canyon in the 

central Gulf accumulated the thickest deposits (~300 m on average) and suggests a point source 

from the DeSoto Canyon to the northeast (Figure 7). While this regional trend in thickness likely 

represents a number of factors, including it likely being a paleo-low and regional sink to 



 
 

17 

sediment throughout the Gulf, the trend suggests that the Desoto Canyon was an area of focused 

erosion that channeled sediments seaward from the northeastern Gulf coast and shelf. 

Louann salt basin (western/central deepwater Gulf) 
Generally, the most salient aspect of the structure of the boundary unit is its unique 

structural style within the Louann salt basin. Across the Sigsbee Escarpment, the KPBD (and 

primary basin stratigraphy, generally) deepens significantly, plunging from ~11 km below sea 

level (bsl) to over 15 km in areas. Within the salt basin, structural style appears to be divisible 

into eastern and western provinces (Figure 6) on the basis of both regional and local trends in 

structure. This division roughly coincides in the northern salt basin with the location of the 

seaward extension of the Brazos transform fault originally proposed by Simmons [1992] and 

recently substantiated by Hudec et al. [2013a]; [Hudec et al., 2013l]. In the southern salt basin, 

this division coincides with limit of oceanic crust (LOC) proposed by Hudec et al. [2013a]; 

[Hudec et al., 2013l]. 

In the western province of the Louann salt basin, the KPBD is generally elevated relative 

to the eastern province by approximately 2–4 km and thus represents a regional plateau, with 

relatively minor local variation in structure reflecting folding with ~1–3 km wavelengths within 

an area of isolated salt stocks and welds analogous to the Mississippi Canyon disconnected salt-

stock-canopy province of Pilcher et al. [2011] (Figure 8A). Eastward within this western 

province, isolated salt stocks amalgamate as volume of the para-autochthonous salt increases, 

resulting in a province of amalgamated canopies, likely with individual local feeders as per the 

amalgamated salt-stock-canopy province of Pilcher et al. [2011]. Within primary basins below 

these amalgamated canopies, the KPBD is generally isopachous, though structurally complex as 

a result of postdepositional salt-tectonic deformation. 
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The postdepositional influence of the Perdido fold belt on the KPBD in southwestern 

Alaminos Canyon is evident (Figure 6). The relatively isopachous nature of the deposit in the 

fold belt (Figure 7 and 9A) suggests that compression responsible for the belt postdates KPBD 

emplacement, in agreement with the common model for formation [Fiduk et al., 1999; Trudgill 

et al., 1999; Trudgill et al., 1995]. 

In the eastern province of the Louann salt basin, the KPBD is at its deepest (generally 

>12 km bsl) and varies substantially in depth (± ~3 km) over relatively short distances (25–100 

km) in local lows (Figure 6). To the north, this province appears to reflect coincident faulting of 

secondary basin (supra-salt) strata and folding of primary basin (subsalt) strata in a pillow-fold–

belt style as per Dooley et al. [2013] (Figure 8B). While local structure varies considerably in all 

directions, synclinal structures in the northern half of this province exhibit a subtle east-west 

axis, interpreted to represent the regional trend of faulting in the Gulf-rim fault zone that is 

expressed in the structure of the KPBD (Figures 8B). In the south-central portion of this eastern 

province, localized primary basins defined to the north by salt-related faulting and folding are 

occasionally controlled by overlying high-angle bucket-welds as defined by [Pilcher et al., 

2011]. Where bucket-welds are present, underlying primary-basin strata, including the KPBD, 

plunge 1 to 3 km below regional depth, as a result of overburden and overburden-driven 

migration of autochthonous (sub-primary-basin) salt. 

While the complexity of KPBD distribution within the salt basin frustrates interpretation, 

the characteristic variability in thickness of the KPBD within the salt basin is likely a palimpsest 

of syndepositional salt-topographic control and postdepositional salt movement. Both isopachous 

and thinning relationships of the deposit with salt are observed (Figures 4B and 9A and B). 

Areas where the KPBD is isopachous relative to underlying or interacting salt structures likely 
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represent postdepositional salt movement, whereas areas of thinning of the KPBD onto adjacent 

salt structures (e.g., Figure 8A) indicate that these salt structures were present when the KPBD 

deposited and that they locally restricted deposition. Early stages of postdepositional salt 

movement, either in the form of upward migration of underlying salt (e.g., structures analogous 

to Green Knoll) or lateral compression from advancing salt (e.g., Perdido fold belt), faulted and 

folded an otherwise isopachous and uniform KPBD (Figure 8A and B). 

Salt carapaces containing older (Paleogene to Cretaceous), typically condensed strata in 

the Gulf of Mexico have gained considerable interest in the last two decades as hydrocarbon 

exploration has revealed the complexity of salt-laden sedimentary basins [Hudec et al., 2013a; 

McGuinness and Hossack, 1993; Mount et al., 2007; Pilcher et al., 2011]. While KPBD 

penetrations within carapaces were not used in regional mapping, these wells serve to illustrate 

the complex dynamics of the Louann salt basin through time and the resultant complexity of the 

province today. Sediment loading on broad, long-lived salt highs can result in condensed 

sections that, through time, are transported (generally seaward) as the para-autochthonous salt 

migrates [Hudec et al., 2013a; Pilcher et al., 2011]. Eventually, the host salt body evolves into 

an allochthonous canopy with an overlying secondary basin containing the condensed section 

and an underlying primary basin containing in-place strata of the same age. As a result, certain 

boreholes exhibit anomalous stratigraphy, in which relatively old strata are penetrated at shallow 

depths (typically ~3–4 km bsl) prior to penetrating salt and then reencountered upon exiting salt. 

Carapaces containing the KPBD indicate areas where para-autochthonous proto-canopies were 

present at the time of KPBD deposition and subsequently rafted the KPBD and bounding strata. 

While the KPBD in such carapaces presumably contain a condensed clastic section and the entire 
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suspension-settled section, it is unknown the degree to which such proto-canopies restricted 

KPBD deposition and resulted in a condensed KBPD. 

Nine boreholes are interpreted to penetrate the KPBD within salt carapaces in the 

deepwater Gulf based on seismic and borehole data (Figure 2). Figure 9 illustrates a particularly 

spectacular example from Keathley Canyon (KC), where four wells (KC 875 #1–2 and KC 919 

#1–#2) penetrate the KPBD within a horizontal distance of ~14 km. While three of these wells 

penetrate the KPBD at roughly 3.5 km bsl, KC 919 #2 penetrates the deposit at approximately 

8.5 km bsl. Seismic data in the area of these wells reveals a complex setting in which an 

amalgamated salt-stock-canopy superposes carapaced Mesozoic and Cenozoic sediments, 

including the KPBD, high above in-place primary basin stratigraphy. 

Eastern deepwater Gulf 
Structure of the KPBD in the deepwater eastern Gulf of Mexico is relatively uniform, 

aside from the Florida escarpment (Figure 6). On the basin floor, the KPBD deepens gradually 

over ~600 km, from ~5 km bsl to adjacent to the Florida escarpment ~12 km bsl adjacent to the 

Sigsbee Escarpment. Distribution of the KPBD in the eastern Gulf of Mexico is self-evident 

relative to the complexity of the Louann salt basin (Figure 7). The deposit is virtually absent on 

the Florida Escarpment, but quickly thickens to ~100–150 m on the basin floor. Immediately 

adjacent to the platform (within ~25–50 km), the KPBD thickens locally in multiple areas to up 

to ~400 m. These local areas of thick deposit correspond to mounded, chaotic to semicoherent 

seismic facies interpreted to represent slump deposits resultant from platform collapse (Figure 

3D and F). 

Roughly 300 km outboard of the Florida Escarpment, the KPBD exhibits a regional, 

linear northwest-to-southeast thickening trend that coincides directly with the margin of the 
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extinct (~145 Ma) spreading center mapped on seismic reflection data by Snedden et al. [2014] 

and corroborated by recent seismic refraction and potential fields studies (Figure 7) [G 

Christeson et al., 2013; Norton et al., 2013]. This coincidence suggests that basement structure 

in the eastern deepwater Gulf had some influence in deposition of the KPBD, and that the extinct 

ridge was elevated relative to the surrounding seafloor at the time of deposition of the KPBD 

(Figure 8C). Spreading centers like that mapped in the eastern Gulf are often elevated relative to 

the adjacent sea floor [Perfit and Chadwick Jr, 1998].  

STRUCTURE AND DISTRIBUTION OF THE BOUNDARY DEPOSIT AT THE CHICXULUB IMPACT BASIN 
Because the KPBD immediately overlies melt breccia and melt that were created upon 

impact and thus comprise the uppermost section of the impact basin, the structure at the base of 

the KPBD can be utilized to approximate the structure of the impact basin itself (Figure 10). 

Structure at the base of the KPBD reveals the characteristic features of a multi-ring impact basin 

[French, 1998; Morgan et al., 1997; Sharpton et al., 1996]. These features include a semicircular 

inner rim with a diameter of ~180 km, an ~100 km diameter annular trough, an ~60–70 km-

diameter peak ring, and an inner central basin. 

In addition to revealing crater morphology, the structure at the base of the KPBD 

suggests that several paleotopographic features were present at the site of the impact, at least one 

of which likely had a significant role in post-impact deposition (Figure 10). To the east, south, 

and west, a semicircular structural high greater than 200 km in diameter is likely a composite 

feature resultant from pre-impact structure and imprinted crater morphology. However, a 

significant embayment to the northeast, referred to herein as the Chicxulub embayment, appears 

to be a significant paleostructural feature that was present at the time of impact, as has been 

suggested by Gulick et al. [2008]. The existence of this paleo-low at the time of impact likely 
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had important implications for postimpact deposition of ejecta and mass flows at and near the 

impact basin, providing a sediment evacuation route to the northeast (Figure 10). 

Interval thickness of the KPBD within the impact basin also suggests that crater 

morphology was a control on sediment distribution in the wake of the impact (Figure 11). 

Generally, the deposit thins over the peak ring and thickens within the central basin and annular 

trough. The thickest deposits are within the central basin, where they approach 1 km in thickness. 

To the northwest, deposit thickness increases relative to the rest of the impact basin, suggesting 

that the Chicxulub embayment did facilitate the evacuation of sediment to the deep water in a 

dominantly northeasterly direction, though differences in accommodation space within the crater 

may also have played a role (Figure 11). Distribution of the KPBD within and surrounding the 

impact basin is particularly important in that it established the paleotopography that likely was 

the foundation for early Cenozoic carbonate system recovery on the Yucatán Platform as 

reported by Whalen et al. [2013]. 

SEDIMENTOLOGY OF THE BOUNDARY DEPOSIT IN THE SOUTHEASTERN GULF OF MEXICO 
Four cores acquired during DSDP leg 77 in the southeastern Gulf (Figures 2 and 3) 

provide important insight into the sedimentology and depositional processes of the KPBD. 

Together, sites 536 and 540 are interpreted to span a nearly complete section of the KPBD, after 

W Alvarez et al. [1992] and Bralower et al. [1998]. At these sites, the KPBD consists of an ~50 

m interval of predominately sediment gravity flows and can be divided into six facies (Figure 12 

and Table 3). These facies and their interpreted depositional mode are: a thick (~40 m) basal unit 

of poorly-sorted pebbly mudstones with scattered cobble- and boulder-sized blocks, interpreted 

to have resulted from one or more muddy debris flows with entrained slump blocks; a middle 

(~10 m) unit comprised of at least five sequences of generally upward-fining carbonate 
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sandstones to mudstones, interpreted to represent deposition by successive turbidity currents; and 

a thin (~0.5 m) upper unit of massive carbonate mudstone with iridium enrichment measured by 

W Alvarez et al. [1992], interpreted to represent deposition of resuspended carbonate mud and 

silt- to clay-sized ejecta in the early Danian and resulting in the highest concentration of iridium. 

Detailed core descriptions of sites 536 and 540 are presented in Figures S1 and S2 of the 

supplementary information for this publication. 

This sedimentary succession is interpreted to be analogous to deepwater deposits 

throughout the deepwater Gulf of Mexico. The ~50 m condensed section observed at these core 

sites relative to typical deepwater deposits (>100 m) observed in borehole and seismic data is 

explained in two ways: (1) the sites were likely in a platform-marginal paleoenvironment without 

severe adjacent bathymetric relief relative to Florida Platform–marginal areas (Figure 1); (2) the 

sites are interpreted to have been on high-standing basement blocks, and thus likely represented 

areas of condensed deposition. This latter characteristic is supported by seismic data and made 

the sites ideal candidates for drilling into Paleozoic basement [Buffler et al., 1984]. 

Furthermore, based on the thickness and lower stratigraphic position of the muddy 

debrite part of the section, debris flow is interpreted to have been the first and primary 

mechanism of transport in the Gulf of Mexico in the wake of the impact. Furthermore, turbidity 

currents are interpreted to have been a significant contributor to the deposit in platform- and 

shelf-marginal settings, whereas deepwater deposits are speculated to consist mostly or entirely 

of muddy debrites, as is consistent with the typical well-log character and cuttings descriptions 

(Figure 5). Finally, the thin mudstone unit that “caps” the KPBD is interpreted to have draped the 

entire Gulf in the wake of the impact, and is analogous to the global boundary clay or “fireball 

layer” of Hildebrand and Boynton [1990]. Thus this mudstone layer is speculated to be virtually 
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ubiquitous in the Gulf. The fact that this layer is thicker than the global boundary clay (~0.5 m 

vs. <1 cm) is explained by the marine setting and proximity of the Gulf basin to the site of the 

impact, resulting in a large volume of resuspended carbonate mud that would have deposited 

within the same time frame as the finest fraction of iridium-enriched dust. 

 

Figure 6: Structure at the top of the KPBD in the northern Gulf of Mexico, illustrating 
regional structural features and extreme local variation in structure within the Louann salt basin. 
Dashed black lines indicate the boundaries of key structural features, and dashed red lines 
indicate boundaries of salt provinces. Location of seismic transects in Figure 8 are indicated by 
blue lines. 
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Figure 7: Interval thickness of the KPBD in the northern Gulf of Mexico, suggesting local 
basement and salt control. Individual and connected red arrows indicate point and line sources, 
respectively. SC = extinct spreading center mapped by Snedden et al. [2014] on (solid) and 
speculated from (dashed) seismic data. LOC = limit of oceanic crust per Hudec et al. [2013a]; 
[Hudec et al., 2013l]. Location of seismic transects in Figure 8 are indicated by black lines. 
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Figure 8: Uninterpreted (top) and interpreted (below) regional seismic reflection transects 
through the Gulf of Mexico, illustrating KPBD thickness and structure through structural 
provinces in the basin. Annotations at the top and base of each interpreted section indicate 
geographic and structural provinces, respectively. (A) Northwest-southeast depth-converted 
transect from the San Marcos Arch on the Texas shelf to the deepwater Gulf outboard of the 
Sigsbee Escarpment in Keathley Canyon (KC). Wells, from west to east: G.D. Vick #1, Willie 
Matejcek #1, Weiting #1, KC 102 #1 (Tiber Field). (B) North-south depth-converted transect 
from the Mississippi shelf to the deepwater Gulf outboard of the Sigsbee Escarpment. Wells, 
from north to south: Crown Zellerbach #1, Currie #1, Green Canyon (GC) 653 #3 (Shenzi Field). 
(C) North-south time transect from the Florida Platform to the Chicxulub impact basin. Note that 
at the crater, the mapped KPBD consists of clastic breccia (“impact breccia”, “suevitic breccia”, 
and/or “suevite”) and does not include melt or melt breccia (see section 2.2 for explanation). 
Seismic quality on the Yucatán Platform is noticeably diminished as a result of hard and 
acoustically “fast” platform carbonates that occlude underlying seismic stratigraphy. GRFZ: 
Gulf-rim fault zone after Klitgord and Schouten [1986]; DSSW: disconnected salt-stock-canopy 
province after Pilcher et al. [2011]; BWB: bucket-weld-basin province after Pilcher et al. 
[2011]; ASSC: amalgamated salt-stock-canopy province after Pilcher et al. [2011]. 
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Figure 9: Uninterpreted (top) and interpreted (bottom) depth-converted seismic reflection 
section documenting suprasalt carapaces containing the KPBD and condensed Mesozoic and 
Early Cenozoic (Paleogene) strata in the Louann salt basin, Keathley Canyon (KC). As per 
Figure 8, purple shading indicates Callovian salt; green indicates Mesozoic (Upper Jurassic and 
Cretaceous) strata; black indicates KPBD; red indicates Paleogene strata; and yellow indicates 
secondary basin strata (Neogene and younger). Paired black circles indicate salt welds (solid 
line) and sutures (dashed lines). Note that the southernmost well penetrates the KPBD in-place, 
~5 km below the carapaces. Wells, from north from south: KC 875 #1 and #2 (Lucius Field), KC 
919 #2 and #1 (Hadrian Field). 
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Figure 10: Structure at the base of the KPBD at the Chicxulub impact basin, illustrating 
crater morphology and preexisting structure. Approximate axes of the inner rim, annular trough, 
and peak ring are overlain in blue, and the Chicxulub embayment is indicated with a dashed red 
line. White lines indicate seismic control, and black circles represent borehole locations. The 
location of the C1 borehole is indicated (see Figures 5 and 13). 
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Figure 11: Interval thickness of the KPBD at the Chicxulub crater. Structural features of the 
crater (blue lines) and preexisting Chicxulub embayment (dashed red line) are taken from Figure 
10. White lines indicate seismic control, black circles represent borehole locations, and adjacent 
numbers indicate KPBD thickness in boreholes. The location of the C1 borehole is indicated (see 
Figures 5 and 13). 
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Figure 12: Idealized lithology of sites 540 and 536 cores, together interpreted to represent the 
entire KPBD sequence in the southeastern Gulf. The deposit can be divided into three units: 
poorly sorted muddy debrite, upward-fining turbidites, and massive carbonate mudstone. Red 
circles indicate location of spherules, and red curve at right represents idealized iridium 
concentration. C = cobblestone/pebblestone, G = grainstone, P = packstone, W = wackestone, M 
= mudstone, as per Dunham [1962]. See Table 1 for facies descriptions. See Appendix 2 for 
detailed core descriptions. 

Name Description Interpretation 
Massive 
mudstone 

Massive cream/buff micrite; iridium enrichment 
reported by Alvarez et al. [1992] Suspension settling  

Planar-laminated 
mudstone 

Planar-laminated to massive cream/buff mudstone 
to packstone Bouma Td 

Cross-bedded 
packstone 

Greenish-gray to cream/buff planar to wavy cross-
bedded packstone Bouma Tc 

Planar-laminated 
pebbly grainstone 

Greenish-gray/brown/tan to cream/buff planar-
laminated pebbly grainstone Bouma Tb 

Normal-graded 
pebbly grainstone 

Greenish-brown to cream/buff normal-graded 
pebbly grainstone with smectite Bouma Ta (Lowe S2) 

Reverse-graded 
cobbles 

Reverse-graded burrow-mottled chalk cobbles to 
large pebbles with little to no preserved matrix Bouma Ta (Lowe S1) 
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Pebbly mudstone Greenish-gray pebbly mudstone with unsorted 
floating clasts and blocks Muddy debrite 

*See Figure 12 for an idealized core interpretation and Appendices 2 and 3 for detailed core 
descriptions. 

Table 1: KPBD facies at sites 536 and 540* 
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Figure 13: Schematic model for post-impact deposition in the eastern Gulf of Mexico. The 
impact initiates a seismic pulse that inputs seismic energy and a megatsunami into the Gulf. As 
the crater is forming to the southeast, seismic ground-roll and shaking rapidly travels across the 
Gulf, arriving onshore Florida in about 6 minutes (see Table A1). The megatsunami wave train 
travels at roughly a tenth the velocity of the Rayleigh-wave-driven seismic energy, with the first 
wave reaching the Florida coast in about an hour and generating a separate sequence of sediment 
gravity flows (mostly turbidites). Note that the location of DSDP Sites 536 and 540 is a 
paleohigh, resulting in the relatively thin deposit (~50 m). C1 is the Chicxulub 1 borehole, the 
nearest borehole to the center of the impact basin [Sharpton et al., 1994; Sharpton et al., 1996; W 
C Ward et al., 1995]. PW1 and PW2 are pseudowells in the deepwater eastern Gulf, indicated by 
dashed-line boreholes. (B) Schematic lithologies of the KPBD through the Gulf. The turbidite 
deposits in the KPBD consist of multiple turbidite sequence, derived from distinct origins (e.g., 
Yucatán Platform, Florida Platform) depending on location. At the impact basin, the KPBD 
mapped in this study includes only clastic breccia, and not underlying melt and melt breccia (see 
section 2.2 for an explanation). Note the scale change across wells. PW1 and PW2 lithologies are 
hypothesized for the pseudowell locations in (A). Dashed red lines indicate hypothesized iridium 
curves. 

Chapter 4: Discussion 

REGIONAL SEDIMENT SOURCES FOR THE BOUNDARY DEPOSIT AND IMPLICATIONS FOR 
DEPOSITIONAL MECHANICS AND TIMING 

Mapping of the KPBD in the Gulf of Mexico yields many insights regarding impact-

related processes that resulted in its deposition in the wake of the Chicxulub impact. The first-

order observation to be made is that the majority of sediment deposited as a result of the impact 

appears to have been sourced not from the impact basin, but rather from Gulf basin–proximal 

shelf and platform settings. In particular, the Texas and Louisiana shelf and DeSoto Canyon 

appear to have been significant line and point sources, respectively, for sediment generated by 

the impact. Furthermore, mapping and observation of seismic data in the southern Gulf suggest 

that the transient crater and surrounding settings (e.g., the Campeche Escarpment) were primary 

local sources for sediment, and perhaps exceeded sediment volumes estimated for the northern 

Gulf. Finally, locally elevated sediment input in basin-margin settings (e.g., the Florida Platform 

and Texas and Louisiana shelf–margins) appears to have derived from slump and slide deposits 

resultant from relatively isolated episodes of platform collapse. 
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The logical conclusion to be made from this first-order observation is that the primary 

initiators of sediment transport during deposition of the KPBD were seismic shaking and ground-

roll and megatsunami wave trains, just as they were likely the two primary mechanisms for 

energy transfer from the impactor to the Earth. Coupling this conclusion with observations of 

cores of the KPBD and reasonable assumptions of seismic and tsunamic travel times, one can 

reconstruct the sequence and timing of KPBD deposition. Debrites, the first and most 

voluminous deposit, likely originated from seismic shaking and ground-roll, which would have 

reached the paleo–Florida and –Texas coasts within roughly seven minutes. Multiple boulders 

and cobbles floating in the mudstone matrix interpreted to represent muddy debrites suggest that 

platform collapse likely occurred simultaneously, also triggered by seismic processes. 

Furthermore, the transition to turbidites observed in the upper portion of the KPBD suggests a 

correlative transition in triggering mechanism, and thus is speculated to represent the first arrival 

of the megatsunami wave train generated by the impact, which would have reached the paleo–

Florida and –Texas coasts in ~75 minutes (see Table A2 in Appendix 1). Finally, the carbonate 

mudstone “cap” at the top of the KPBD represents a transition from catastrophic sediment 

gravity flows to suspended-sediment deposition through settling of both resuspended carbonate 

mud and the finest fraction of ejecta (silt- to mud-sized), including iridium-enriched dust. 

Several workers have made attempts to constrain the timing of deposition of fine-grained ejecta 

[e.g., W Alvarez et al., 1995; Goldin and Melosh, 2007], the latest of which establishes a 

maximum of ~2 weeks for deposition by Stokesian flow [Artemieva and Morgan, 2009]. See 

Table A2 and A3 of Appendix 1 for seismic and megatsunami wave velocities and first arrival 

calculations used herein. 
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This post-impact sequence of events is illustrated in Figure 13 and is predicated on the 

simple fact that tsunami wave trains travel slower than seismic energy by roughly an order of 

magnitude. In reality, a number of factors likely complicated this scenario. Debris flows 

originated from several locales (e.g., the Yucatán Platform, the Florida Platform, and the Texas 

and Louisiana shelf) at distinct times dependent upon the first arrival of seismic energy, but all 

within ~10 minutes after impact. Thus, the KPBD throughout the Gulf, and particularly in the 

distal deep water, may contain inter-bedded muddy debrites of unique origin (e.g., pseudowells 

in Figure 13B). Furthermore, tsunamis likely traveled as one or more wave trains, each of which 

could have initiated multiple episodes of turbidity currents. Thus, similar to debris flow deposits, 

turbidites in the KPBD are likely incoherent and of multiple origins and timings throughout the 

Gulf. Interestingly, the only component of the KPBD that is both ubiquitous and genetically 

selfsame is the iridium-enriched carbonate mudstone “cap”, as it deposited by settling of fine-

grained sediment and ejecta created or resuspended by the impact. 

SALT AND BASEMENT CONTROL ON BOUNDARY DEPOSIT DISTRIBUTION 
At the end of the Cretaceous, the Louann salt basin was undeformed relative to the 

present day [Hudec et al., 2013a]. However, subsequent salt movement in the Cenozoic has left 

an indelible mark on the structure of the KPBD, complicating signals of depositional controls 

and structural features. While the amount of sediment mobilized by the impact appears to have 

been sufficient to blanket the entire deepwater Gulf of Mexico, regional trends in thickness of the 

KPBD within the Louann salt basin province nevertheless appear to reflect existing structural 

and source controls on deposition (Figure 7). The southwest-to-northeast trend of thinning of the 

KPBD in the western salt basin coincides with the speculated limit of oceanic crust of Hudec et 
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al. [2013a]; [Hudec et al., 2013l], suggesting regional control by basement and overlying salt 

structure (Figure 7). 

Hudec et al. [2013a] recently document the existence of a 1–4 km-high ramp between 

thin, highly rifted continental (or “transitional” [e.g., Buffler and Sawyer, 1985; Ibrahim et al., 

1981]) crust and old oceanic crust in the northern Gulf of Mexico (Figure 14). Throughout the 

Late (post-Callovian) Jurassic, salt within the basin likely migrated basin-ward as a result of 

existing structure and sediment-loading on the shelf, welling within the low above thin 

transitional crust and buttressed by the basement ramp (Hudec et al. 2013a). By the start of the 

Cretaceous, salt may have breached the ramp, continuing its basin-ward allochthonous advance 

until aggradation of sediments on the salt terminus was sufficient to cease migration at the end of 

the Cretaceous. Thus, at the time of impact, the paleo–Sigsbee Escarpment (i.e., the seaward 

extent of salt) was likely southeast of the limit of oceanic crust and a regional salt high would 

have been located landward of this point (Figure 14A). Farther landward of this salt buttress, 

there likely would have been a regional basin (or minibasin province) created by relatively recent 

and long-lived (roughly 100 Ma) salt evacuation. 

The hypothesized Late Cretaceous ancestral salt basin is an analog or end-member to the 

modern Louann salt basin, in which it is helpful to define provinces by distribution and 

interaction of allochthonous salt as per Pilcher et al. [2011]. We postulate that in the Mesozoic, 

gravity- and sediment-loading-driven seaward migration created substantial accommodation 

space adjacent to the shelf, creating a relatively uniform regional salt-evacuation basin. While it 

is difficult to speculate as to the complexity of landward salt-evacuation basin because 

postdepositional salt movement has obscured any record thereof, we hypothesize that the basin 

was relatively uniform (and thus KPBD deposition was relatively isopachous) as a result of the 
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immaturity of the salt province. However, the KPBD in the western Louann salt basin exhibits 

considerable local change in thickness, suggesting either depositional control by local salt highs 

within the salt-evacuation basin, postdepositional overprint due to salt movement, or a 

combination thereof. While it is probable that the salt-evacuation basin had minor local changes 

in relief that had some control on sediment distribution (Figure 13), it is unlikely that the basin 

had significant relief that would result in the relatively short-wavelength variability in KPBD 

thickness. 

Aside from regional relief, salt topography within the Louann salt basin at the time of 

impact likely provided the greatest local bathymetric variation within the deepwater paleo-Gulf. 

Generally, the regionally isopachous nature of the KPBD within the salt provinces suggests two 

factors were involved in deposition of sediment redistributed by the impact: (1) salt topography 

was relatively minor at the time of the impact and subsequent sediment gravity flows, which 

permitted the deposit to blanket the seafloor in the deepwater; and (2) that the sediment gravity 

flows were sufficiently voluminous and energetic to surmount virtually all paleobathymetric 

highs within the salt province, which likely contained the highest local paleobathymetric relief in 

the Gulf. 

VOLUME OF SEDIMENT MOBILIZED BY THE CHICXULUB IMPACT IN THE GULF OF MEXICO 
Denne et al. [2013] recently calculated an estimate of ~5.8 × 104 to 2.59 × 105 km3 for 

the volume of global KPBD and ~4.3 × 104 to 1.16 × 105 km3 for KPBD within the Gulf of 

Mexico basin. While these calculations are valuable and reasonable estimations of sediment 

volume deposited by the impact, they are simplistic, as they rely upon a single minimum and 

maximum average thickness derived from end-member wells for entire regions of the Gulf (e.g., 

Gulf basin floor, Florida Platform, etc.). The regional seismic mapping performed for this study 
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affords a higher degree of accuracy for volumetric calculations, and results indicate that the 

volume of the KPBD in the northern Gulf of Mexico alone was ~1.05 × 105 km3 (Table 2), 

roughly equivalent to the upper bound suggested by Denne et al. [2013] for the entire Gulf. It is 

conservative to assume that deposits in the southern Gulf have a similar distribution and volume 

to those in the northern Gulf, given proximity to the crater; nevertheless, such an assumption 

yields a total KPBD volume of ~1.98 × 105 km3 (Table 2), more than twice the most recent 

estimate [cf., Denne et al., 2013]. Given the proximity of the southern Gulf to the Chicxulub 

impact basin, it is likely that the southern Gulf had considerably more sediment derived from the 

impact basin proper, and thus it is reasonable to speculate that average KPBD thickness in the 

southern Gulf is greater than that in the northern Gulf. As such, total KPBD volume in the Gulf 

is likely in excess of our estimate. Regardless, the KPBD represents the single most voluminous 

event deposit known. 
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Figure 14:  Schematic model for postimpact deposition in the deepwater Louann salt basin 
province. By the time of the impact at the end of the Cretaceous, gravity- and sediment-loading–
driven seaward salt migration has overcome the basement ramp of Hudec et al. [2013a]; [Hudec 
et al., 2013l] and breached the limit of oceanic crust (LOC), resulting in an outer (seaward) salt-
inflation high and an inner (landward) salt-evacuation low within the salt basin. (A) After 
seismic and tsunamic energy input by the impact mobilizes sediment throughout shallow waters 
of the Gulf, the KPBD blankets the deepwater Gulf but is restricted within the salt basin in the 
region of the salt-inflation high, resulting in a regional trend of thinning in the distal salt basin 
(Figure 7). (B) After wave energy in the Gulf has dissipated, only the finest-grained fraction of 
remobilized carbonate sediment and iridium-enriched eject remains in the water column, which 
slowly deposits on the seafloor by suspension settling. (C) After all impact-related sedimentation 
has ceased, the resultant deposit preserves the original control of regional salt distribution on 
deposition, and normal sedimentation slowly reinstates as the ecosystem recovers. Model for salt 
migration and Late Cretaceous distribution modified from [Hudec et al., 2013a]. 



 
 

40 

Chapter 5: Summary and conclusions 

Regional mapping of the KPBD in the Gulf of Mexico basin with seismic and borehole 

data reveals that the deposit is virtually ubiquitous in the Gulf of Mexico. Furthermore, core data 

and seismic correlation strongly support a genetic link to the Chicxulub impact, suggesting that 

the impact initiated catastrophic Gulf-wide processes that blanketed the entire basin. In 

particular, we present evidence of several characteristics of impact-generated depositional 

processes and the implications thereof: 

1) Sediment in the KPBD did not originate exclusively from the Chicxulub impact basin, 

but rather derived from shallow-water areas throughout the Gulf, as a result of seismic 

and wave energy that was input into the Gulf by the impact. In particular, the Texas and 

Louisiana shelf and DeSoto Canyon appear to have been major sources for sediment to 

the KPBD. As such, the KPBD as a whole is not an impactite, sensu stricto, but rather an 

impact-related clastic deposit. 

2) Sediment gravity flow was the primary mechanism for sediment transport in the Gulf as a 

result of seismic and tsunamic energy generated by the impact. Specifically, on the basis 

of KPBD sedimentology in the southeastern Gulf, muddy debris flows are speculated to 

be the first and dominant mechanism for sediment transport, with turbidity currents being 

a secondary mechanism in terms of timing and volume. Furthermore, muddy debris flows 

are interpreted to have been primarily seismogenic and to have been initiated within 

minutes of the impact. Likewise, turbidity currents are interpreted to be primarily 

megatsunamigenic and to have been initiated within ~1–2 hours of the impact. In 

platform- and shelf-marginal areas throughout the Gulf, local collapse due to seismic 

ground-roll and shaking resulted in slumps and slides that accompanied the debris flows. 
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Finally, sediment deposited by settling of suspended carbonate fines and iridium-enriched 

ejecta blanketed the Gulf, likely within 2 weeks of the impact.  

3) Salt distribution and geometry in the ancestral Louann salt basin played a significant role 

in controlling sediment deposition both regionally and locally. In particular, basement 

control on salt migration possibly resulted in a regional landward “salt-evacuation basin” 

and seaward “salt-inflated high” that resulted in a thick KPBD in the interior Louann salt 

basin and a thin KPBD proximal to the Sigsbee Escarpment. Furthermore, smaller-scale 

(1–3 km-wavelength) rugosity of the para-autochthonous salt sheet possibly produced 

local variation of KPBD thickness throughout the Louann salt basin. 

4) Mapping of KPBD thickness with seismic and borehole data throughout the northern 

Gulf of Mexico indicates that deposit volume in the northern Gulf is ~1.05 × 105 km3, 

suggesting that total KPBD volume in the entire Gulf is greater than ~1.98 × 105 km3. 

GEOMECHANICS OF RESERVOIR-SCALE SAND INJECTITES, 
PANOCHE HILLS, CALIFORNIA 

Chapter 1: Introduction 

The Panoche Giant Injection Complex (PGIC) is exposed on the western margin of the 

San Joaquin Valley in central California and is the largest known exposure of reservoir-scale 

sand injectites in the world [Vétel and Cartwright, 2010] (Figure 15). The PGIC is a complete 

injectite system (i.e., with connected source, injected, and extruded sands) with remobilized sand 

spanning ~600 m of true stratigraphic thickness (TST) over ~25 km of lateral stratigraphic 

distance (Figs. 15–16 and Table 2). 

Previous publications provide a descriptive framework for injectite geometry at the 

PGIC. Anderson and Pack [1915] originally identified injectites as being characteristic of the 
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Late Cretaceous (now recognized as Maastrichtian and Danian) foraminiferal and diatomaceous 

shales of the uppermost Chico Group, which they termed the Moreno Formation for its namesake 

and type locale, Moreno Gulch [McGuire, 1988]. Early studies focused on resolving the 

stratigraphy and depositional history of the Moreno Formation and bounding strata in the area 

[e.g., Durham, 1943; Martin, 1964; McGuire, 1988; Natland, 1957; Payne, 1951; 1962; Stock, 

1939; Zimmerman, 1944]. Jenkins [1930] made an early attempt to address injection 

geomechanics in the PGIC. 

Smyers and Peterson [1971] made the first effort to exhaustively characterize injectites 

and explain the geomechanical behavior of the PGIC. Since then, many efforts have been made 

to further characterize and interpret PGIC geomechanics [e.g., Friedmann et al., 2002; Minisini 

and Schwartz, 2007; Schwartz et al., 2003; A Scott et al., 2013; Vétel and Cartwright, 2010; 

Vigorito, 2007; Vigorito and Hurst, 2010; Vigorito et al., 2008; Weberling, 2002]. These studies 

have generally taken a regional approach, synthesizing hundreds to thousands of observations 

and measurements over the entire PGIC.  

In contrast, this study relies on detailed observation and measurement in two excellent 

locales in order to interpret injectite geomechanics. Moreno Gulch and Marca Canyon in the 

northern Panoche Hills contain stratigraphically complete exposures of the PGIC (Figs. 15–16). 

These exposures allow us to identify trends in injectite style and orientation and therefrom infer 

geomechanical controls. Moreno Gulch and Marca Canyon were first reported by Anderson and 

Pack [1915] and Payne [1951], respectively, though no work to date has focused exclusively on 

injectites in these locales. We utilize outcrop observations and measurements to construct a 

detailed two-dimensional stratigraphic model of the PGIC at Moreno Gulch and Marca Canyon. 

We use this stratigraphic model to infer the plaeostress state of the PGIC. We characterize 
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individual and cumulative aperture behavior and employ three conventional hydraulic fracture 

models (GdK, PKN, and penny models) to model this behavior. Finally, we invoke the results of 

this model to suggest that injectites in the PGIC were emplaced as radially propagating fractures. 
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Figure 15: (A) Location map of the PGIC in the Panoche and Tumey Hills of central 
California. All results in this publication are from Moreno Gulch and Marca Canyon, two of the 
northernmost locales of the PGIC. (B) Stratigraphy of the mud-prone Moreno Formation 
overlying the sand-prone Uhalde Formation, as well as a generalized schematic of PGIC 
architecture. (C) Schematic tectonic model of the PGIC on the western margin of the Great 
Valley forearc basin in the Late Creteaceous and Early Paleocene. (B) is modified from McGuire 
[1988] and (C) is modified from Ingersoll [1979]. 
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Figure 16: Aerial imagery of (A) Moreno Gulch and (B) Marca Canyon in the northern 
Panoche Hills illustrating mapped source and remobilized sands of the PGIC, location of 
measurements and photogrammetric model acquired for this study, and stratigraphy of the 
Moreno Formation from [Bartow, 1996]. Locations of scan line areas are indicated by blue boxes 
and locations of Figures 7–8 are indicated by black boxes. Stars indicate approximate location of 
outcrop photographs in Figure 5. (C) Stereographic projection of poles to planes of all 36 
bedding measurements collected in Moreno Gulch and Marca Canyon, with average bedding 
plotted as a great circle. (D) Stereographic projection of poles to planes of paleo-orientation of 
327 injectite measurements collected in Moreno Gulch and Marca Canyon, illustrating clustering 
of sills paleo-oriented horizontally and high-angle dikes with an average paleo-orientation of 
241° 71° 

PGIC architecture  Thickness (m) 
    Moreno Gulch Marca Canyon 
Extrudite interval    80  90  

Injectite interval 
 dike zone  210  210  

SDTZ  190 190 
sill zone  130 160 

Source interval    400  400  

Table 2: Stratigraphic thickness of the Panoche Giant Injection Complex. 

Chapter 2: Geologic background 

Tectonic and depositional setting 
The PGIC and its host Moreno Formation are exposed in a narrow belt along the eastern 

limit of the Panoche Hills at the western margin of the modern San Joaquin Valley (Figure 15). 

There, marine sediments of Middle Cretaceous to Paleogene age comprise an easterly dipping 

monocline that plunges beneath Neogene and Quaternary valley-fill of the ancestral Great Valley 

forearc basin. The Great Valley was a long-lived forearc basin formed by subduction of the 

Farallon plate. Throughout the Late Jurassic and Cretaceous, this basin sustained sedimentation 

predominately from the easterly Sierra Nevadan magmatic-plutonic complex that is recorded by 

the Great Valley Sequence (Figure 15C) [DeGraaff-Surpless et al., 2002; W Dickinson and 

Seely, 1979; W R Dickinson, 1976; Graham, 1987; Ingersoll, 1979; 1983]. During this time, 

490 520 570 610 
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sediments from the east slowly infilled the deep-marine basin as the westerly Farallon 

accretionary complex was a seaward paleobathymetric barrier (Figure 15C) [W Dickinson and 

Seely, 1979; W R Dickinson, 1976; Graham, 1987]. 

By the Late Cretaceous, the Great Valley forearc basin was a shallow sea, and by the 

Early to Middle Maastrichtian, uplift of the Farallon accretionary complex began contributing 

sediment from the west (Figure 15C) [McGuire, 1988; Mitchell et al., 2010]. Westward 

progradation throughout the Late Cretaceous and Early Paleocene resulted in a transition from 

cyclic deposition of sand and mud in a basinal setting, recorded by the upper Panoche Group, to 

steady deposition of organic rich mud in slope and shelfal settings, recorded by the Moreno 

Formation (Figure 15B) [McGuire, 1988; Payne, 1962]. By the Selandian, the Great Valley basin 

had filled to shelfal depths (< ~200 m), and by ~30 Ma, Farallon plate–subduction ceased as the 

proto–San Andreas transform margin formed [Atwater, 1970; Ingersoll, 1979]. 

Stratigraphy of the Panoche Giante Injection Complex 
The Moreno Formation conformably overlies the Uhalde Formation of the upper Panoche 

Group, which consists of sand with interbedded mud [McGuire, 1988; Payne, 1962]. Sands of 

the upper Uhalde Formation outcrop on a prominent ridge to the southwest of Moreno Gulch and 

Marca Canyon (Figure 16). This ridge represents a regional stratigraphic transition from the 

sand-prone Panoche Group to the mud-prone Moreno Formation, and is reflected topographically 

as a transition from steep and rugose to subtle and weathered terrain from west to east in the 

Panoche Hills. 

The Moreno Formation consists predominately of red-brown to gray thinly bedded (mm-

scale), but occasionally massive, brittle, and extremely friable mudstone. It is ~575 m thick in 

Moreno Gulch and ~700 m thick in Marca Canyon and is subdivided into 5 members according 
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to minor paleontologic and lithologic changes [McGuire, 1988; Payne, 1962]: the basal Dosados 

sand and shale member, the Tierra Loma shale member, the Marca shale member, and the upper 

Dos Palos shale member and its constituent Cima Lentil sub-member (Table 3 and Figures 15B 

and 17). The Moreno Formation is unconformably overlain by sands of the late Paleocene and 

Eocene Lodo Formation [McGuire, 1988; Payne, 1962]. In Moreno Gulch and Marca Canyon, 

this unconformity is within the Cima Lentil sub-member, though elsewhere in the Panoche Hills 

it is reported to be in the upper Dos Palos member (i.e., above the Cima Lentil) [Anderson and 

Pack, 1915; Bartow, 1996; Martin, 1964; McGuire, 1988; Payne, 1951; 1962]. 

 

Figure 17: Schematic measured sections of (A) Moreno Gulch and (B) Marca Canyon 
illustrating architecture of the PGIC and stratigraphy of the Moreno Formation. Both locales 
expose the complete PGIC from source interval to extrudite interval. Architectural intervals and 
zones of the PGIC are approximately stratigraphically conformable. 
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Stratigraphic unit Thickness (m) Predominant lithology 

 Moreno Gulch Marca Canyon  
 

Cima sand lentil 25 

 

125 
 Extrusive sand and slope-

forming mud and sand 

Dos Palos shale 75 75 Red-brown mud with 
extrusive sand 

Marca shale 125 125 Red-brown mud with a 
white-purple hue 

Tierra Loma shale 275 225 Red-brown mud 

Dosados sand & shale 75 150 Red-brown mud 

 

Uhalde Formation 1,030* Channel sands 

Undiff. 5,690* Sand and mud 
*Thicknesses from [Payne, 1962] 

Table 3: Stratigraphic thickness of the Moreno Formation and underlying Panoche Group. 

Chapter 3: Materials and methods 

Field measurement 
We measured the orientation (i.e., strike and dip) of 120 injectites and the aperture (i.e., 

thickness normal to the plane of orientation) of 117 injectites at Moreno Gulch (Figure 16A–B 

and Table 4). We measured the orientation of 210 injectites and the aperture of 230 injectites in 

Marca Canyon (Table 4). We measured bedding orientation at 15 locations in Moreno Gulch and 

19 locations in Marca Canyon (Figure 16 and Table 4). All measurements and observations were 

georeferenced with a handheld GPS unit (1–5 m accuracy). At both locales, we made systematic 

measurements along “scan lines” at successive stratigraphic levels in order to resolve 

stratigraphic changes in injectite orientation and aperture (Figure 16A–B). Scan lines are 

oriented roughly along-strike (145–150° bearing) [cf., Vétel and Cartwright, 2010]. We acquired 

a large, sparse scanline grid (0.082 km2, 8 lines) at Moreno Gulch and three small, dense grids at 

Marca Canyon (~0.023–0.054 km2, 5–10 lines each; Figure 16A–B and Table 5). We report 



 
 

50 

orientations as azimuthal strike and dip according to the right-hand rule (e.g., bedding is oriented 

333° 35°). We tabulate all measurement results in Table A6 of Appendix 3. 

Stereonet3D was used to stereographically project bedding and injectite orientation data 

[Allmendinger et al., 2012; Cardozo and Allmendinger, 2013]. Average (i.e., mean vector) 

bedding orientation was determined by the method of Fisher [1953] using Stereonet3D. 

Contouring of orientation data was also performed with Stereonet3D. In order to estimate paleo-

orientation of injectites, all data were rectified to bedding-horizontal by rotating 35° 

counterclockwise around an axis trending 333° and plunging 0° (i.e., the average bedding plane; 

Figure 16C). 

In order to plot paleo-orientation and aperture data by True Stratigraphic Position (TSP), 

we converted data from Cartesian coordinates (i.e., UTM coordinates with elevation values) into 

TSP with basic trigonometric transforms. This methodology is detailed in Appendix 3. 

Unmanned aerial vehicle photogrammetry 
We acquired photogrammetric data of Moreno Gulch with a DJI Phantom 2 UAV unit 

gimbal-mounted with a GoPro Hero3. We used Agisoft PhotoScan Pro to process 

photogrammetric data and export processed models to Applied Imagery Quick Terrain Modeler 

and ArcGIS Desktop for laboratory mapping. Acquisition and processing methodology is 

detailed in Appendix 4. 

Grain size analysis 
We collected 10 samples of depositional and remobilized sand for quantitative grain size 

analysis. Samples were disaggregated by water dissolution and sonication and analyzed using a 

Malvern Mastersizer 3000 laser diffraction particle size analyzer. 
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Laboratory mapping 
We mapped the PGIC on aerial imagery in Moreno Gulch and Marca Canyon to evaluate 

locale- and regional-scale architecture (Figure 16). Parent, injected, and extruded sands and 

accessory elements (e.g., mudstone mounds and carbonate concretions) were mapped by 

coupling field observations and measurements with aerial imagery. The photogrammetric data 

acquired for this study were used for mapping in Moreno Gulch (5–10-cm resolution), whereas 

Spot Image imagery via Google Earth Pro was used in Marca Canyon (~2.5-m resolution). 

Locale 
Bedding 

orientation 
Injectite 

orientation 
Injectite 
aperture Scan lines 

Moreno Gulch 15 120 117 4 
Marca Canyon 19 210 230 20 
Total 34 330 347 24 

Table 4: Number of orientation and aperture measurements and scan lines. 

Locale Name Line spacing (m) Lines/grid Area (km2) 
Moreno Gulch MG1 80 5 0.082 
 
Marca Canyon 

MC1 30 10 0.054 
MC2 30 9 0.027 
MC3 30 5 0.023 

Table 5:  Scan line grid geometries and logistics 

Chapter 4: Results 

STRATIGRAPHY OF THE PANOCHE GIANT INJECTION COMPLEX 
Contacts between most members of the Moreno Formation are impossible to ascertain in 

the field as a result of the lithologic homogeneity of the formation. Two exceptions are the 

Marca member, which is distinct in outcrop and aerial imagery for its purple-white hue, and the 

Dos Palos member and Cima Lentil submember, which are distinct for sands therein (Figure 16).  

The majority of thinning of the Moreno Formation from Marca Canyon to Moreno Gulch is in 

the Cima Lentil sub-member (~100 m; Figure 17 and Table 3). This change in thickness is likely 

at least in part due to the overlying erosional unconformity at the base of the Lodo Formation 
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(Figures 16B and 17), though thinning also occurs in the Tierra Loma (~50 m) and Dosados 

members (~75 m; Table 3). Other members of the Moreno Formation are isopachous across the 

two locales (Table 3). 

Bedding measurements of the Moreno Formation are difficult to acquire due to the 

friability of mudstones, except in the upper Dosados and lower Tierra Loma, where bedding is 

more fissile and planar. Consequently, bedding measurements are concentrated in this interval. 

The average orientation of the 36 bedding measurements is 333° 35°, with a standard deviation 

of 9° strike and 7° dip. (Figure 16C). Bedding orientation is remarkably homoclinal throughout 

the PGIC in Moreno Gulch and Marca Canyon and does not exhibit any significant change with 

stratigraphy or locale. 

ARCHITECTURE OF THE PANOCHE GIANT INJECTION COMPLEX 
The PGIC is a complete injectite system composed of three intervals: a source sand 

interval, an injected sand (i.e., injectite) interval, and an extruded sand (i.e., extrudite) interval. In 

Moreno Gulch and Marca Canyon, the entire PGIC (including the source interval) is less than 

~1.1 km thick, whereas the interval of remobilized (i.e., injected and extruded) sand is ~600 m 

thick (Table 2). 

Source interval 
The upper Uhalde Formation outcrops on the ridge to the southwest of Moreno Gulch and 

Marca Canyon (Figure 16) and is the inferred source for the PGIC based upon grain size, 

composition, and proximity to injectites. This inference has been made by previous authors [e.g., 

Friedmann et al., 2002; Jenkins, 1930; Payne, 1951; Smyers and Peterson, 1971; Vigorito, 2007] 

but is corroborated here by quantitative grain size analysis of samples from the middle and upper 

Uhalde Formation and from remobilized sands (Figure 18). Sandstone of the upper Uhalde 
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Formation consists of carbonate-cemented, gray-brown to tan sands. Sands are well sorted, 

unimodal, and upper-fine to lower-medium–grained (Figure 18 and Table A6). Grain size 

decreases to very fine ~400 m below the top of the Uhalde Formation (in the middle Uhalde 

Formation according to thicknesses reported by [Payne, 1962]), indicating that the source sand 

interval is limited to the upper Uhalde Formation and is less than ~400 m thick (Figure 18). 

Most outcrops of the upper Uhalde Formation in Moreno Gulch and Marca Canyon 

contain one or more of three distinct lithofacies: an upward-fining basal unit, a planar-laminated 

middle unit, and an upper wavy- to ripple-laminated unit with climbing ripples, convolute 

laminae, and flame structures (Figure 19). Individual units are decimeters thick and together 

comprise a partial Bouma turbidite sequence (i.e., Ta–Tc). Individual Bouma sequences are 

stacked throughout the upper Uhalde Formation, with contacts that often exhibit soft-sediment 

deformation (Figure 19). On an outcrop scale, stacked sequences frequently have cuneiform 

bases and are typically 2–4 m thick. 

 

Figure 18: Quantitative grain size of 10 samples of remobilized and depositional sands in 
Moreno Gulch Marca Canyon. Grain size of the upper Uhalde Formation is very similar to that 
of remobilized sand from the PGIC, while that of the middle Uhalde Formation is not, indicating 
that the source sand interval is limited to the upper Uhalde Formation. Samples from the middle 
Uhalde Formation were obtained in the large canyon west of Marca Canyon. 
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Injectite interval 
Injectites are abundant throughout the Moreno Formation and intrude mudstones at 

virtually all angles and a wide range of apertures (mm- to dm-scale). The injectite interval is 

~490 m thick in Moreno Gulch and ~520 m thick in Marca Canyon (Table 1 and Figure 17). 

Rarely, mudstone rip-up clasts (~1–30 cm in the largest dimension) are entrained in injected sand 

(Fig. 5B). Sands are poorly carbonate-cemented, well sorted, and range in color from brown to 

orange to yellow to gray, but are typically light gray and/or orange. Grain size is fine and 

unimodal, though most sands contain a substantial amount of medium to coarse silt (Figure 18). 

Injectites are typically massive, but very rarely exhibit planar laminations that are always 

subparallel to contacts and typically reside on the periphery of injectites and border a massive 

central core (Fig. 5C). 

We define three populations of injectites based on the dip of their paleo-orientation (i.e., 

paleodip): sills (< 15° paleodip), low-angle dikes (15–65° paleodip), and high-angle dikes (< 65° 

paleodip; Table 5). We encountered 55 sills, 61 low angle dikes, and 211 high angle dikes in 

Moreno Gulch and Marca Canyon (Table 6). The population size of high-angle dikes in Moreno 

Gulch and Marca Canyon is possibly biased by the higher probability of encountering a high-

angle feature than a low-angle feature when moving roughly along-strike in the field, as well as 

the degradation in outcrop quality in the lower Moreno Formation, where sills are most common. 

The majority of injectites are approximately planar but occasionally vary significantly in 

orientation (i.e., strike and dip) and aperture in outcrop. Dikes, particularly the low-angle variety, 

are the most irregular and often kink, curve, and step, particularly when adjacent to another dike 

or injection (Figure 19D). Low-angle dikes are also the least continuous where traceable. Many 

dikes locally interact by noticeably changing orientation or trajectory in close proximity to other 

injectites, and often crosscut each other (Fig. 19D–E). 
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Injectite styles cluster and exhibit paleo-orientation preferences (Figure 16D). Average 

paleo-orientation of all sills is horizontal (306° 2°) and average paleo-orientation of all high-

angle dikes is 241° 71° (Table 6 and Figure 16D). The low-angle dike population exhibits no 

paleo-orientation preference (Table 6 and Figure 16D). The high-angle dike orientation 

preference has been reported previously [e.g., Friedmann et al., 2002; Smyers and Peterson, 

1971; Weberling, 2002]. 

The injectite interval is composed of a basal sill zone, an intermediate sill-dike transition 

zone (SDTZ), and an upper dike zone (Figures 17 and 20). Contacts between these zones are 

gradational and record the upward transition from sills to high-angle dikes. The ~241° 71° paleo-

orientation preference of high-angle dikes is consistent across the dike zone and SDTZ (Fig. 

20B–C and Table 6). High-angle dikes are virtually absent in the sill zone. 

The injectite interval is 30 m thinner at Moreno Gulch than at Marca Canyon as a result 

of thinning of the sill zone (Table 2 and Figure 17). The SDTZ and the dike zone exhibit only 

minor changes in thickness (< ~5 m) between the two locales (Table 2 and Figure 17). 

Architectural zones are roughly stratigraphically conformable, despite relatively minor changes 

in thickness between locales: the sill zone resides within the Dosados and lower Tierra Loma 

members (only the former in the case of Marca Canyon); the SDTZ resides within the lower to 

middle Tierra Loma; and the dike zone resides within the upper Tierra Loma, Marca, and lower 

Dos Palos members (Figure 17).  

Previous authors have proposed various architectures for the injectite interval of the 

PGIC [e.g., Friedmann et al., 2002; Smyers and Peterson, 1971; Vétel and Cartwright, 2010; 

Vigorito and Hurst, 2010; Vigorito et al., 2008]. Most identify a lower sill-prone zone and an 
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upper dike-prone zone, though none distinguish a SDTZ between the two. [Vigorito et al., 2008] 

propose a tripartite architecture based on net-to-gross sand content rather than injectite style. 

Sill zone 
The sill zone is an ~130–160-m thick zone where thick (~2–10 m) sills predominate 

(Figures 3 and 6 and Table 2). Sills are the most abundant style of injection in this zone (N = 33), 

though low-angle dikes are also common (N = 15; Table 6). High-angle dikes are virtually absent 

(N = 2; Table 6). In the sill zone, the primary means of stratigraphic transgression by injectites is 

stratigraphic stepping of sills, where part or all of a sill bends upward to connect with an 

overlying sill (Figure 19F). Thick (~2–10 m) sills often commingle in this fashion, resulting in 

decimeter-thick networks of interconnected sills (Figure 19F). This phenomenon has been 

described by several authors [Hurst et al., 2011; A Scott et al., 2013; Vigorito et al., 2008]. 

Occasionally very thin (mm- to cm-thick) sills accompany thick sills (~3–10 m), and often are 

concentrated in areas where larger sills step up-section (Figure 19G). Injection of these features 

is evidenced by irregular, thicknesses and stratigraphic discordance (Figure 19G). Millimeter- to 

cm-thick sills are not exclusively associated with thick sills in the sill zone, and are focused in at 

least one horizon in the SDTZ (middle Tierra Loma) in Marca Canyon. Sills are concentrated in 

the upper ~50 m of the sill zone, though this may be due to the scarcity and quality of exposures 

in the lower sill zone in both Moreno Gulch and Marca Canyon (Figures 16 and 20). 

Sill-dike transition zone 
The SDTZ is a 190-m thick zone where sills, low-angle dikes, and high-angle dikes 

commingle (Figs. 17 and 20 and Table 2). High-angle dikes are most common in this zone (N = 

90), and low-angle dikes are slightly more numerous than sills (N = 29 and 22, respectively; 

Table 6). Many high-angle dikes extend over decimeters to hectometers and ascend into part or 
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all of the dike zone (Figures 21–22). These stratigraphically extensive high-angle dikes often 

cluster, with two to three dikes originating from a single nexus in the SDTZ and extending 

upward into the overlying dike zone (Figs. 21–22). Low- and high-angle dikes often intersect and 

connect sills in the SDTZ (Figure 19D). Occasionally, very thin (< 1 mm) sill and dike features 

exist that exhibit no macroscopic aperture, but rather are light-colored streaks in mudstone with 

high silt to very fine sand content (Fig. 19H). In the upper SDTZ and lower dike zone, low-angle 

injectites often appear to be sills in outcrop but upon measurement are revealed to be low-angle 

dikes (Figures 16B and 21C). The relative abundance of sills, low-angle dikes, and high-angle 

dikes is roughly constant throughout the SDTZ (Figure 20A).  

Dike zone 
The dike zone is approximately 210 m thick (Figs. 17 and 20 and Table 2). High-angle 

dikes predominate this zone (N = 119; Table 6). Low-angle dikes are scarce in the dike zone (N 

= 17) but are concentrated in the lower half (Table 6). Sills are entirely absent (Figures 20 and 

Table 6). Stratigraphically extensive dikes in this zone typically cluster and originate the middle 

or upper SDTZ (Figures 16 and 21). The dike zone of the Moreno Gulch exposure exhibits one 

such cluster, while the dike zone of the Marca Canyon exposure exhibits at least two (Figs. 16–

17, and 21). 

In Marca Canyon, thin (< 10 cm) high-angle dikes are present within ~1 m of the lowest 

extrudite horizon in the Dos Palos member (Figure 16 and 19I). In Moreno Gulch, the last 

observed dike is ~50 m beneath the extrudite horizon. However, the apparent absence of 

injectites in this interval at Moreno Gulch may be due to the very poor exposures there (Figure 

16). 
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Figure 19: Field photographs of (A) source, (B–I) injected, and (J–O) extruded sand in 
Moreno Gulch and Marca Canyon. (A) Outcrop of the upper Uhalde Formation in Moreno Gulch 
with stacked turbidite sequences associated sedimentary structures. (B) Mudstone rip-up clasts in 
a sill in the sill zone of Moreno Gulch. (C) Linear flow structures at the boundaries of a ~15- 
(top) and ~3-cm (bottom) sill in the sill zone of Marca Canyon. (D) Sill and high-angle dike 
interaction in the SDTZ of Moreno Gulch. (E) Large-scale crosscutting of low- and high-angle 
dikes in the dike zone of Marca Canyon. (F) A sill complex in the sill zone of Moreno Gulch 
illustrating the phenomenon of stratigraphic stepping. (G) Thin (cm-scale) sills adjacent to a 
large sill at a point of stratigraphic stepping. (H) Micro-sills and -dikes with high silt to very fine 
sand content and no macroscopic aperture in the SDTZ. (I) Outcrop of the upper Marca and 
lower Dos Palos member documenting high-angle injectites in close proximity to the lowest 
extrudite horizon in Marca Canyon. (J) Outcrop of the Cima Lentil submember exposing three to 
four horizons of mounded extrudites in Moreno Gulch. (K) Soft-sediment deformation indicative 
of focused upward transport at the core of a mounded extrudite horizon in Marca Canyon. (L) 
Slope-forming sands of unknown origin in the Cima Lentil submember of Marca Canyon. (M) 
Pipe-like sand bodies in the Cima Lentil submember of Marca Canyon. (N) Outcrop with several 
distinctive concretions in the upper Marca member of Marca Canyon. (O) A small concretion 
with abundant tubeworm fossils from the Dos Palos member of Marca Canyon. Approximate 
locations of photographs are indicated in Figure 16. 

Injectite 
style Dip 

Architectural 
zone 

Number of 
measurements 

Average paleo-
orientation 

Standard 
deviation 

    Strike Dip Strike Dip 

Sill < 15° 

all 55 216° 88° 99° 4° 
Dike Zone 0 – – – – 
SDTZ 22 208° 87° 89° 4° 
Sill Zone 33 314° 2° 103° 4° 

Low-
angle 
dike 

15–
65° 

All 61 – – 113° 16° 
Dike Zone 17 – – 128° 17° 
SDTZ 29 – – 109° 14° 
Sill Zone 15 – – 91° 15° 

High-
angle 
dike 

> 65° 

All 211 241° 71° 81° 6° 
Dike Zone 119 240° 71° 83° 6° 
SDTZ 90 242° 72° 79° 6° 
Sill Zone 2 – – – – 

Table 6: Injectite paleo-orientation by style and architectural zone. 
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Figure 20: (A) Injectite paleodip versus TSP above PGIC source for all injectites measured 
in Moreno Gulch and Marca Canyon. Stereographic projections of poles to planes of injectite 
paleo-orientation in the (B) dike zone, (C) SDTZ, and (D) sill zone.  
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Figure 21: Stratigraphically extensive high-angle dikes and associated sills and low-angle 
dikes mapped in the middle to upper SDTZ and dike zone in (A) Moreno Gulch and (B–C) 
Marca Canyon. See Figure 2 for location. 

 

Figure 22: Simplified stratigraphically extensive high-angle dikes in (A) Moreno Gulch and 
(B–C) Marca Canyon documenting several examples of Type II injectite aperture behavior. 
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Extrudite interval 
Discrete mounded and sheet-like sandstone bodies are common in an interval within the 

Dos Palos member and Cima Lentil sub-member in both locales. This interval is ~80 m thick in 

Moreno Gulch and ~90 m thick in Marca Canyon (Figure 16 and Table 2). Sands within these 

bodies are well sorted, fine-grained, and similar in grain-size distribution to sandstones of the 

upper Uhalde Formation (Figure 18). Sandstones exhibit massive to planar-, wavy-, ripple-, and 

cross-laminated fabrics, with contorted laminae and soft-sediment deformation commonly 

present (Figure 19K). At the thickest point of mounded sandstone horizons, flame structures 

typically commingle in a stacked fashion (Figure 19K). Small (~2–100-cm diameter) spherical to 

oblate sandstone bodies with pipe-like morphologies accompany extrudite horizons throughout 

the Cima Lentil submember (Figure 19M). In cross section, these sandstone bodies often exhibit 

concentric weathering. These features are particularly common subjacent to the lowest tabular 

sand horizon in Marca Canyon (at ~650 m TST in Figure 16B). Tan to pale yellow vuggy 

concretions are common in the upper Marcos and Dos Palos members and Cima Lentil 

submember (Fig. 19N). Concretions occasionally contain common to abundant tubeworm fossils 

(Figure 19O). These fauna are reported to be vestimentiferan and have been studied in detail by 

Schwartz et al. [2003]. 

We interpret the mounded and sheet sand bodies of the Dos Palos member and Cima 

Lentil submember to be extrudites based on the presence of stacked flame structures indicating 

upward flow, similarity in grain size and composition to subjacent injected sands, and sand 

volcano–like mound morphologies. Extrudites in Marca Canyon were previously reported by 

Vigorito et al. [2008] and A Scott et al. [2013], and are associated with cold-seep carbonates 

throughout the Panoche Hills reported by Schwartz et al. [2003] and Minisini and Schwartz 

[2007]. We interpret that the extrudites extend into the Dos Palos member below the Cima Lentil 
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submember, in contrast to previous authors who have either mapped or inferred extrudites to be 

exclusively within the Cima Lentil (Figures 16–17) [e.g., A Scott et al., 2013; Vigorito et al., 

2008]. 

HIGH-ANGLE INJECTITE BEHAVIOR IN THE UPPER INJECTITE INTERVAL 
We calculated average and cumulative aperture of high-angle dike measurements and 

plotted them versus true stratigraphic position to characterize aperture and frequency of high-

angle dikes in the upper SDTZ and dike zone (Figure 23). We calculated average aperture from 

all aperture measurements (347 total; Table 4) in Moreno Gulch and Marca Canyon, whereas we 

used only scan line aperture measurements (125 total over 24 scan lines) in Moreno Gulch and 

Marca Canyon to calculate cumulative aperture. Both cumulative and average aperture decrease 

linearly with proximity to the paleoseafloor (Figure 23). 

Average aperture decreases linearly from 2.3 m in the upper SDTZ to 0.25 m at the top of 

the dike zone (Figure 23A). The linear correlation of average aperture with depth is strong (R2 = 

0.92), though average aperture near to the extrudite zone is approximately constant for ~50 m 

(475–525 m in Figure 23A). Standard deviation of average aperture also decreases with 

stratigraphic position, from 2 m at the top of the SDTZ to 0.13 m at the top of the dike zone (bars 

in Figure 23A). Standard deviation does not behave linearly, but rather steps down from ~1–2 m 

to less than 1 m within a ~40 m interval in the middle dike zone (350–490 m in Figure 23A). 

Normalized cumulative aperture is a direct measure of the minimum horizontal strain due 

to injection. This ranges from ~5% at the top of the SDTZ to less than 1% at the top of the dike 

zone (Figure 23B). The linear correlation of normalized cumulative aperture with depth is not as 

strong as that of average aperture (R2 = 0.78), though this could be partly due to differences in 

sample size and calculation methodology (see caption in Figure 23). Normalized cumulative 
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aperture is also approximately constant in the upper ~50 m of the dike zone, similar to average 

aperture (475–525 in Figure 23B). Standard deviation of normalized cumulative aperture 

decreases with depth, from ~0.75–1.25 m at the top of the SDTZ to ~0.12–0.17 m at the top of 

the dike zone (bars in Figure 23B). Standard deviation does not behave linearly, and some of the 

largest standard deviations (~2 m) are in the lower to middle dike zone (310–400 m in Figure 

23B). 

Although average and cumulative aperture decreases upwards, individual dikes do not 

always follow this bulk behavior (Fig. 21). We observed dikes that thin unidirectionally upwards 

(“Type I”) and those that thicken and then thin upwards (“Type II”; Figure 21–22). 

 

Figure 23: High-angle dike aperture versus stratigraphic position. The “source” is the top of 
the Uhalde Formation. (A) Average aperture is calculated from all injectite measurements (360 
total; Table 2) within a 25-m TST window in 12.5-m intervals. Horizontal bars indicate standard 
deviation, with the largest being 2.00 m. Vertical bars indicate normalized standard deviation 
(i.e., coefficient of variation), with the largest being 1.35  (B) Normalized cumulative aperture is 
calculated from scan lines (Fig. 2), with each point representing one scan line. Horizontal bars 
indicate standard deviation, with the largest being 2.04 m. Vertical bars indicate normalized 
standard deviation, with the largest being 1.24. 
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PALEO-ORIENTATION OF EXPOSURES 
It is tempting to view an outcrop exposure (e.g., Figs. 21–22) as a vertical cross section of 

injectites. In fact, field exposures are at a low angle relative to paleovertical (Figure 24). The 

angle of the exposure relative to paleovertical is 53° in Moreno Gulch and 45° in Marca Canyon 

(Figure 150A). In other words, a field exposure traverses 100–132 m laterally for every 100 m it 

climbs vertically. Therefore, exposures record any lateral change in injectite behavior that may 

exist, as well as vertical change. This implies that aperture behavior observed in the field (e.g., 

Figs. 7–9) is a composite of lateral and vertical behavior. 

 

Figure 24: (A) Paleo-orientation (solid) and modern orientation (dashed) of planes 
representing exposures in Marca Canyon and Moreno Gulch. Paleodip of exposures ranges 
between 37° and 45°. (B) Schematic of paleo-exposure of stratigraphically extensive high-angle 
dikes in Moreno Gulch (c.f. Fig. 7A) and (C) simplified model of injectites intersected by paleo-
exposure. 

TWO-DIMENSIONAL INJECTITE MODELS 
Conventional two-dimensional hydraulic fracture models rely on propagation of a crack 

by linear elastic deformation under plane-strain conditions as established by England and Green 

[1963]: 

 

 
(1) 
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Where W(x) is the fracture width in the propagation direction,  is the pore pressure, 

p, in excess of an external stress, σ, L is the extent of the fracture in the propagating direction, 

and G and ν are the linear elastic rock properties shear modulus and Poisson’s ratio, respectively. 

Models assume that pore pressure distribution in the propagation direction is defined by laminar 

Newtonian flow through a narrow channel. Width in the propagation direction therefore varies as 

a function of the pressure drop within that channel. 

 Two classic two-dimensional hydraulic fracture models are the Perkins-Kern-Nordgren 

(PKN) and Geertsma–de Klerk (GdK) models (Figure 25) [J Geertsma and De Klerk, 1969; 

Nordgren, 1972; Perkins and Kern, 1961]. Both models assume that the height, H, of the fracture 

is fixed and that the fracture propagates linearly (Figure 25A–B). Another model, the “penny” 

model, is similar to the PKN and GdK models but assumes that the fracture propagates radially 

(Figure 25C) [Abe et al., 1976; J Geertsma and De Klerk, 1969]. The PKN model assumes that 

the fracture channel is elliptical in cross-section. The shape of the fracture in the propagating 

direction is therefore: 

 

 
(2) 

In contrast, the GdK model assumes that the fracture channel is rectangular in cross-section. The 

shape of the fracture in the propagating direction is therefore elliptical and independent of y:  

 

 
(3) 

Finally, the penny model is parabolic in the radial propagation direction, r: 

 

 
(4) 

Where R is the extent of the fracture and is equivalent to L in equations (1–3). 
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The differing assumptions of these three models result in unique physical implications. 

All models taper significantly in fracture width with distance from the fracture origin (Figure 

25D). The PKN model tapers marginally more than the GdK model from 0 to ~0.6 times the 

fracture extent, but then tapers significantly less for the remainder of the fracture length (Figure 

25D). The parabolic shape of the penny model tapers the most throughout the fracture length 

(Figure 25D). The physical implication the penny model is that this parabolic taper is the result 

of flow divergence via outward propagation of the fracture in all directions in the x-z plane due 

to radial propagation (Figure 25C). 

We use these three model geometries (i.e., equations [2-4]) to replicate high-angle dike 

behavior observed Moreno Gulch and Marca Canyon (Figure 26). We assume that the PGIC can 

be represented by a number of randomly placed, vertically oriented injectites of the same size 

(Figure 150C). By approximating PGIC exposures as planes that cut injectites at 37–45° relative 

to bedding (i.e., paleohorizontal), we can easily model injectite behavior in the field as a series of 

traverses intersecting a single injectite at the same angle, but at different positions (Figure 26A-

D). Individual traverse apertures can then be summed and averaged in order to model bulk 

aperture behavior to compare to field results. 

We modeled injectite geometry and aperture behavior for PKN, GdK, and penny 

geometries (Figs. 26–27). Models result in unique exposure geometries dependent upon the 

location of the traverse on the injectite face (Figure 26D–F). Exposure geometries are analogous 

to injectite geometries seen in outcrop (e.g., Figs. 21 and 22). The GdK model fails to reproduce 

the Type II geometry (Figure 26D). The PKN and the penny models reproduce both injectite 

geometries (Figure 26E–F).  
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All models result in decreasing average and cumulative aperture with stratigraphic 

distance from the point of injection (Figure 27). However, none of the models exhibit a truly 

linear correlation between aperture and stratigraphic position. The penny model exhibits the most 

linear correlation for average and cumulative aperture (R2 = 0.91 and 0.96, respectively). The 

PKN model exhibits a more linear correlation than the GdK model for average aperture (R2 = 

0.85 vs. 0.80) and cumulative aperture (R2 = 0.90 vs. 0.85). 
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Figure 25: Illustration of fracture geometries in (A) PKN, (B) GdK, and (C) penny fracture 
models. (D) Fracture aperture versus fracture length for the three fracture models, defined by 
equations for width in (A–C). 

 

Figure 26: Traverse geometries for the three fracture models. (A–C) Cartoons of injectite 
geometries for GdK, PKN, and penny fracture models. (D–F) Aperture versus true stratigraphic 
position (TSP) for four traverses at at different points of the injectite geometries. These plots area 
analogous to injectite exposures in the field. Traverses are oriented 40° from horizontal. 
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Figure 27: (A) Average and (B) normalized cumulative aperture of GdK (red), PKN (blue), 
and penny (black) geometries. Average and cumulative aperture are calculated from 40 equally 
spaced traverses oriented 40° from horizontal. 

 

Chapter 5: Discussion 

INJECTION GEOMECHANICS 
Analysis of cumulative and individual aperture behavior of high-angle dikes in Moreno 

Gulch and Marca Canyon yields four insights: 

1. Outcrop exposures traverse as much or more lateral stratigraphic distance than 

vertical, indicating that bulk aperture behavior is a composite of lateral and 

vertical changes away from the source. 

2. Average aperture decreases linearly with distance from the injection source, 

indicating that individual injectites thin and diminish in number on a 

stratigraphic scale. 
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3. Cumulative aperture decreases linearly with proximity to the seafloor, indicating 

that bulk strain of injection diminishes from ~5% at the base of the dike zone 

to less than 1% near the paleoseafloor. 

4. Individual injectites do not always conform to bulk trends, but rather exhibit Type 

I and II geometries. 

An injectite model must replicate individual and cumulative aperture behavior. 

Specifically, a model must be able to reproduce both injectite geometries (i.e., Type I and II) and 

exhibit linearly decreasing average and cumulative aperture with distance from the source. We 

consider the GdK injectite model to be unsatisfactory because it fails to reproduce Type II 

injectite geometry. We deem the PKN and penny models to be valid because they reproduce both 

injectite geometries and roughly approximate average and cumulative aperture behavior (Figure 

26 and 28). However, we favor the penny model because it produces a more linear correlation 

between aperture and stratigraphic position. Interestingly, a simpler radial model with a linear 

taper approximates the field data far better than the parabolic penny model (“linear penny” in 

Figure 28). 

We interpret that the PKN and penny models are valid because they incorporate laterally 

varying aperture behavior. The PKN model achieves lateral variation via vertical linear 

propagation of a crack that is elliptical in horizontal cross-section and fixed in length, whereas 

the penny model achieves lateral variation via radial flow divergence [Abe et al., 1976; J. 

Geertsma, 1989; Nordgren, 1972; Perkins and Kern, 1961]. Therefore, the PKN model implies a 

linear source and the penny model implies a point source (Figure 29). While it is possible that 

injection initiates from a line source, it is implausible that an elliptical fracture would propagate 

vertically without diminishing in length with distance from the source. We therefore favor the 
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penny model as the more geologically plausible model because it incorporates radial flow 

divergence away from a point source. 

 Though we favor the penny model, it exaggerates average aperture and, to a lesser 

degree, cumulative aperture relative to field data (Figure 28). We propose that this is due to the 

failure of the model to account for changing stress with depth. A model that accounts for 

changing stress with depth would result in a more pronounced taper. Consequently, average and 

cumulative aperture behavior of such a model would likely better approximate field behavior. 

Nevertheless, average and cumulative aperture behavior of the penny model approximate field 

results, indicating that the penny model is compatible with injectite geomechanics in the PGIC. 

We therefore conclude that injectites in the PGIC formed through radial propagation of fractures 

from a point source of injection. 

 

Figure 28: (A) Schematic pore pressure profile of the PGIC illustrating rotation of stress state 
from reverse to normal or strike-slip with proximity to the seafloor. Vertical stress is based on an 
assumed bulk density of 2,000 kg/m3. (B) Pore pressure profile of the Kumano forearc basin and 
Nankai accretionary prism calculated from borehole failures by Chang et al. [2010].  Vertical 
stress is determined from bulk density logs. Modified from Chang et al. [2010]. 
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Figure 29: Illustration of (A) linear propagation from a linear source as per the PKN fracture 
model and (B) radial propagation from a point source as per the penny model. 

TECTONIC CONTROL FOR INJECTION 
High-angle dikes in Moreno Gulch and Marca Canyon are generally oriented NE-SW 

(~241° 71°). We interpret that dikes opened normal to the least principle stress [e.g., Hubbert 

and Willis, 1957; 1972; Zoback et al., 1985], suggesting that the maximum horizontal stress at 

the time of injection was also oriented NE-SW.  This NE-SW orientation of the maximum stress 

is coincident with the trajectory of the Farallon plate in the Late Cretaceous and early Paleogene 

[Bunge and Grand, 2000; Engebretson et al., 1985]. Likewise, the inferred NW-SE minimum 

horizontal stress orientation (~150°) is parallel to the margin of the westerly subduction zone in 

the Late Cretaceous and Early Paleogene [Blakey, 2013; W R Dickinson, 1976; Ingersoll, 1979]. 

We therefore conclude that the stress regime at the time of injection was tectonically controlled. 

PALEOSTRESS REGIME AT THE PANOCHE GIANT INJECTION COMPLEX 
We assume that tensile failure of hydraulic fractures occurs perpendicular to the 

orientation of the least principal stress (σ3) [e.g., Hubbert and Willis, 1957; Hubbert and Willis, 

1972] and infer the stress regime at the time of injection (Figure 30). Sills predominate the sill 

zone, indicating that the least principal stress was oriented vertically (σ3 = σv) therein during 

injection. The presence of both dikes and sills in the SDTZ indicates that the vertical and 
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minimum horizontal stresses were roughly isotropic (σ3 = σv ≈ σh). Finally, the predominance of 

high-angle injectites in the dike zone suggests that the minimum stress was oriented horizontally 

(σ3 = σh) there. We therefore conclude a reverse stress state (σv = σ3) in the sill zone, a 

reverse/strike-slip stress state (σv ≈ σh = σ3) in the SDTZ, and a normal or strike-slip stress state 

(σh = σ3) in the dike zone at the time of injection (Figure 30). 

These conclusions indicate a transition in stress state from reverse to normal or strike-slip 

with proximity to the seafloor at the time of injection. We propose that stress state was generally 

static (i.e., stress state at a given depth did not change over the duration of PGIC injection) but 

varied as a function of depth. In this model, stress state rotates from reverse to normal/strike-slip 

with proximity to the seafloor (Figure 30). Injectites propagate first as subhorizontal sills within 

the reverse stress regime of the sill zone, perpendicular to overburden (i.e., the least principal 

stress). These sills occasionally step up along planes of weakness (i.e., existing fractures) or 

mechanical anisotropy (i.e., lithologic heterogeneity), gradually ascending the Moreno 

Formation as the magnitude of σh relative to that of σv decreases. As σh approaches σv in 

magnitude, injection style transitions gradually from sills to low-angle and high-angle injections, 

with the latter becoming increasingly predominant as σh continues to decrease relative to σh 

(Figure 30). 

The strong NE-SW orientation preference of high-angle dikes in the SDTZ and dike zone 

indicates that the horizontal stresses were anisotropic (σH >> σh) at the time of injection in both 

intervals (Figure 30). While we cannot definitively conclude the same for the sill zone, it is 

logical to assume that this horizontal stress anisotropy would only increase with depth, given the 

tectonic setting. We cannot distinguish the stress regime of the dike zone as normal (σv > σH > 

σh) or strike-slip (σH > σv > σh), as we are unable to evaluate the magnitude of σH relative to σv. 
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No previous work has invoked a stress-state reversal to explain PGIC architecture. 

Alternatively, some authors have explained architecture with changes in pore pressure magnitude 

relative to magnitude of the vertical stress. Vigorito and Hurst [2010] propose that pore pressure 

was supralithostatic lower in the PGIC, resulting in sill emplacement there. Vétel and Cartwright 

[2010] report that sills are present throughout the PGIC, and therefore interpret that pore pressure 

was supralithostatic throughout injected interval.  

 The proposed phenomenon of stress-state reversal with depth has precedent in other 

forearc basins. Chang et al. [2010] report a similar phenomenon in the modern Kumano forearc 

basin and Nankai accretionary wedge, offshore Japan (Figure 156B). By in situ stress estimation 

from wellbore failures (i.e., borehole breakouts and drilling-induced tensile fractures) in four 

vertical boreholes, Chang et al. [2010] demonstrate that the stress state generally transitions from 

normal to strike-slip with depth. In one borehole (C0001), they demonstrate that stress state 

transitions from normal to reverse over virtually the same scale (~600 m) proposed in the PGIC 

(Figure 156). Chang et al. [2010] propose stress partitioning across geologic domains (i.e., 

forearc basin versus accretionary wedge) as a potential cause of this phenomenon of stress-state 

reversal. Similarly, the proposed stress-state reversal in the PGIC could be explained by the 

increasing influence of gravity-driven extension and decreasing influence of subduction-driven 

compression with proximity to the seafloor. 
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Figure 30: (A) Schematic pore pressure profile of the PGIC illustrating rotation of stress state 
from reverse to normal or strike-slip with proximity to the seafloor. Vertical stress is based on an 
assumed bulk density of 2,000 kg/m3. (B) Pore pressure profile of the Kumano forearc basin and 
Nankai accretionary prism calculated from borehole failures by Chang et al. [2010].  Vertical 
stress is determined from bulk density logs. Modified from Chang et al. [2010]. 

 

DURATION AND PERIODICITY OF INJECTION 
We estimate that the PGIC was a complete and active system for ~0.8–1 My in the 

Danian. This estimate is based on an 80–100 m thick extrudite interval and a compacted 

sedimentation rate of 100 m/Ma for the Dos Palos Shale Member as per McGuire [1988], and is 

within the range of 0.5–2 My reported by Schwartz et al. [2003] and Minisini and Schwartz 

[2007] based on carbonate paleoseep deposits in the PGIC. Furthermore, thickness between 

discrete extrudite horizons indicates that activity was punctuated by ~20–150 ky periods of 

quiescence. Given the poor quality of outcrops in the Dos Palos and constituent Cima Lentil, as 
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well as the unknown origin (i.e., depositional or extruded) of slope-forming sands hosting 

extrudite mounds in the Cima Lentil, the upper bound of this range is possibly inflated. 

Chapter 6: Summary and conclusions 

Through field observation, measurement, and mapping of the PGIC we produce several 

important insights regarding architecture of the PGIC and geomechanical controls thereon: 

1)  The PGIC is a complete injectite system, with source, injectites, and extrudites 

readily observable in the field. This system was complete and episodically extruding 

sand onto the paleoseafloor over ~1 My in the Danian, punctuated by ~20–150 ky-

long periods of quiescence. 

2) The NE-SW orientation preference of high-angle dikes indicate that subduction of the 

Farallon plate controlled the stress regime at the site of injection. 

3) The PGIC exhibits a tripartite injectite architecture that indicates a stress state 

reversal from reverse to normal or strike-slip with proximity to the seafloor. We 

propose that this was a static stress state imposed on Late Cretaceous sediments by 

competition of gravity-driven extension in the shallow subsurface of the forearc basin 

and subduction-driven compression at depth, similar to the modern Kumano forearc 

basin. 

4) Injectites were emplaced via radial propagating hydraulic fractures. Because injectites 

are radial features and were formed via flow divergence, injectite aperture and bulk 

strain decreases radially away from the injection source. 
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Appendix 1: Detailed mapping methodology of the Cretaceos-Paleogene 
boundary deposit 

Landmark DecisionSpace Desktop was used for seismic and borehole data interpretation 

and grid generation. Specifically, the Frameworks to Fill module was used to define surfaces by 

a single seismic horizon, relate it to a single well surface, and output a grid that synthesized and 

interpolated seismic and borehole data. Furthermore, the Frameworks to Fill module allowed the 

top and base of the boundary unit to be hierarchically and stratigraphically “linked” via the 

module’s “Conformance” feature, so that the base of the KPBD horizon conformed to that of the 

top when the former was null. Such a method essentially automates the assumption that interval 

thickness is constant unless defined otherwise by data. 

The paucity and variability of well and seismic control for mapping in certain areas (e.g., 

Louann salt basin, inland of the seismic data limit, etc.) made it necessary to tailor methods of 

mapping to maximize coverage while ensuring reliability. After experimentation and comparison 

of results, spline interpolation was determined to honor and interpolate the data best, and thus 

was used for all computer-generated maps (Table A1). In the case of maps of the deposit within 

the impact basin, it was deemed appropriate to interpretively hand-contour seismic and borehole 

data together and then grid seismic and borehole data with the contours as an added control. 

Generally, density of data used in this study is higher in the eastern Gulf than in the 

western Gulf, and density onshore is generally lower and much more variable, as borehole data 

comprise virtually all onshore control (Figure 1). For this reason, cell size used for gridding was 

smallest in the eastern Gulf, moderate in the western Gulf, and largest onshore (Table A5). Given 

the limited extent of data within the impact basin and control by interpretive contours, mapping 

at the crater employed the smallest cell size (Table A5). 
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After grids were generated with Landmark DecisionSpace, they were imported into ESRI 

ArcGIS for minor processing, including grid merging, up-sampling of grid size, unit conversion, 

and contour generation. In the case of maps with multiple grids with unique cell sizes, cell size 

of grids were upsampled and smoothed as necessary prior to merging into a single grid. For 

example, in the case of the regional structure map, the grid in the western Gulf (approx. 84 km 

cell size) was upsampled to match the cell size of the eastern Gulf grid (approx. 9 km cell size), 

then smoothed using the Focal Statistics tool and merged with the other grids. This process is 

cosmetic (i.e., to eliminate a “pixelated” appearance), and does not appreciably distort the grid. 

Volumetric calculation from the resultant interval thickness map was performed using the 

Zonal Statistics tool in ArcMap. In order to determine total volume of sediment from the results 

of the Zonal Statistics tool, average thickness was determined by dividing the cumulative 

thickness of all cells (the sum of the “SUM” field) by the total number of cells (the sum of the 

“COUNT” field), and grid area was determined by multiplying the total number of cells by the 

cell size (Table A5). Average thickness was then multiplied by the calculated grid area to 

calculate the total sediment volume. For volumetric estimate in the southern Gulf, the area of the 

southern paleo-Gulf was determined from the 65 Ma North American paleogeographic map of 

Blakey [2011], and the average KPBD thickness determined for the northern Gulf was applied to 

the resultant area. 

 

Thickness 
(m) 

Proximity 
(m) 

Paleogeographic 
setting Reference publication 

Shell Creek 0.75 <5000 shallow-water [King and Petruny, 2007] 
Brazos River 1 <5000 shallow-water [Smit et al., 1996] 
Crowley's 
Ridge 1.85 <5000 shallow-water [Campbell et al., 2007] 

El Penon 7.5 <5000 shallow-water [Smit et al., 1996; 
Stinnesbeck et al., 1993] 

Moscow 
Landing 9 <5000 shallow-water [Hart et al., 2013] 
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Mussel Creek 9.5 <5000 shallow-water [Hart et al., 2013] 
Braggs 10 <5000 shallow-water [Hart et al., 2013] 
El Tecolote 12 <5000 shallow-water [Soria et al., 2001] 
New Madrid 1 <5000 shallow-water [Frederiksen et al., 1982] 
Coxquihui 0.88 <1000 shallow-water [Smit et al., 1996] 
Lajilla 1.1 <1000 shallow-water [Smit et al., 1996] 
La Ceiba 1.7 <1000 shallow-water [Smit et al., 1996] 
El Mimbral 3 <1000 shallow-water [Smit et al., 1996] 
Actela 15 <1000 shallow-water [Fourcade et al., 1998] 

Guayal 51 <1000 shallow-water [Grajales-Nishimura et al., 
2000] 

Bochil 61* <1000 shallow-water [Grajales-Nishimura et al., 
2000; Smit et al., 1996] 

Moncada 1.9 <500 shallow-water [Tada et al., 2002] 
Armenia 13 <500 shallow-water [Pope et al., 2005] 
Albion Island 16 <500 shallow-water [Ocampo et al., 1996] 

DSDP Leg 77 50 <1000 deepwater† 
[W Alvarez et al., 1992; 
Bralower et al., 1998] and 
this study 

Penalver 180 <1000 deepwater [Tada et al., 2003] 

Cantarell 275 <500 deepwater [Cantu-Chapa and 
Landeros-Flores, 2001] 

Cacarajicara 750 <500 deepwater [Kiyokawa et al., 2002] 
*Smit et al. [1996] does not consider <50 m breccia unit as part of KPBD. 
†DSDP Leg 77 sites are on uplifted basement blocks, and therefore likely condensed (see 
text). 

Table A1: Thickness, proximity, and paleogeographic setting of KPBD locales in the 
circum-Gulf region. 

Type Wave velocity (km/s) Wave velocity (km/min) 
P-wave* 5.0 300 
S-wave† 3.0 180 
Rayleigh wave‡ 2.7 160 
Megatsunami wave§ 0.25 15 
*Approximate average acoustic velocity for carbonates [e.g., Burger et al., 2006; Milsom, 
2007]. 
†Taken to be 60% of P-wave as per Burger et al. [2006]. 
‡Taken to be 90% of S-wave velocity as per Burger et al. [2006]. 
§Per S N Ward [2011] for maximum tsunami velocity in 6-km water depth. 

Table A2: Velocities for seismic and megatsunami waves used for first arrival calculation. 

Locale Distance from crater Ground-roll arrival Megatsunami 



 
 

82 

(km) (min) arrival (min) 
Campeche Escarpment 210 1.3 14 
Yucatán Platform margin 
(at DSDP Leg 77 Sites) 510 3.1 34 

Florida Platform margin 800 4.9 53 
Paleo–Florida coast* 1,120 6.9 75 
Paleo–Texas coast* 1,130 7.0 76 
*Rayleigh wave energy (i.e., ground-roll) is assumed to be the primary destructive 
seismic energy. 
†Measured from 65 Ma North American paleogeographic map of Blakey [2011]. 

Table A3: Data sources for seismic and borehole data used in this study. 
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Locale  Sub-locale*  Type Source (dataset name) Location 

 
 

Offshore 
northern 

Gulf 

 All  2-D seismic 
depth 

IonGeoventures 
(GulfSPAN) Proprietary 

All  2-D seismic 
depth 

Fugro (DeepEast & 
DeepFocus) Proprietary 

All  Borehole U.S. Bureau of Ocean 
Energy Management data.boem.gov 

GC, WR, 
AT 

 3-D seismic 
depth WesternGeco (E-Dog) Proprietary 

 
 
 
 
 

Onshore 
northern 

Gulf 

All  2-D seismic 
depth 

IonGeoventures 
(LandSPAN) Proprietary 

 TX  Borehole Texas Railroad 
Commission rrc.state.tx.us 

LA  Borehole Louisiana Department of 
Natural Resources sonris.com 

MS  Borehole Mississippi Oil & Gas 
Board ogb.state.ms.us 

AL  Borehole Alabama State Oil & Gas 
Board gsa.state.al.us 

FL  Borehole Florida Department of 
Environmental Protection dep.state.fl.us 

MO  Borehole U.S. Geological Survey [Frederiksen et 
al., 1982] 

 
 
 
 
 

 
Southern 

Gulf 

 

All 

 
2-D seismic 
time 

University of Texas 
Institute for Geophysics 
Seismic Data Center 

Restricted 
(ig.utexas.edu/sdc)  
[Shipley et al., 
2013] 

Chicxulub 
Crater 
 
 

 

2-D seismic 
time†

 

University of Texas 
Institute for Geophysics 
Seismic Data Center 

ig.utexas.edu/sdc 
(Cruise #96L676 
& EW0501) 
[Gulick and 
Barton, 2005; 
Gulick et al., 
2008; Morgan et 
al., 2005] 

Borehole Petróleos Mexicanos 
(Pemex) 

[Sharpton et al., 
1994; Sharpton et 
al., 1996; W C 
Ward et al., 1995] 

DSDP Leg 
77 

 
Core Integrated Ocean Drilling 

Project (IODP) 

Gulf Coast 
Repository 
(iodp.tamu.edu) 

*GC = Green Canyon; WR = Walker Ridge; AT = Atwater Valley; TX = Texas; LA = 
Louisiana; MS = Mississippi; AL = Alabama; FL = Florida; MO = Missouri 

†Depth-converted for this study 

Table A4: Sources of seismic and borehole data used in this study. 
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Locale Map Cell size (km2) Gridding method 
  Onshore West East  
Northern 
Gulf 

Structure (Figure 7) 83.61 37.16 9.29 Spline 
Interval thickness (Figure 8) 83.61 37.16 9.29 Spline 

Chicxulub 
impact basin 

Structure (Figure 10) 2.32 Hand-contour, spline 
Interval thickness (Figure 11) 2.32 Hand-contour, spline 

Table A5: Mapping parameters used in this study 



 
 

85 

Appendix 2: Core description of the Cretaceous-Paleogene boundary deposit 

at DSDP Leg 77 Sites 536 and 540 

Core descriptions of the KPBD at DSDP Leg 77 Sites 536 and 540 begin on the 

following page. 
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Appendix 3: True Stratigraphic Position transformation for field 
measurements of the Panoche Giant Injection Complex 

For analysis of stratigraphic trends in the PGIC, True Stratigraphic Thickness (TST) 

between points of measurement and the top of the Panoche Formation was calculated in order to 

plot points by True Stratigraphic Position (TSP; Fig. A1 and Table A1). Prior to transformation, 

Digital Elevation Model (DEM)–derived elevation data was attached to UTM coordinates of 

data. Given a point along a datum (e.g., the top of the Panoche Formation) and a point of 

measurement, the horizontal distance between the two is: 

  (5) 

Where (xmeasurement, ymeasurement) and (xdatum, ydatum) are the horizontal Cartesian coordinates of the 

measurement and datum points, respectively. The bearing of the traverse from the datum point to 

the measurement point, Φtraverse, is: 

 
 

(6) 

Given a bedding orientation of strike, Φbedding, and dip bearing, Φdip, the absolute value of the 

difference between the traverse bearing and the dip bearing, θTSP, is: 

  (7) 

And the horizontal distance normal to the strike of bedding, YTSP, is: 

  (8) 

The horizontal Cartesian coordinates of the resulting point (i.e., measurement point rectified 

along-strike to dip-normal) are (xTSP, yTSP), where: 

  (9) 
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  (10) 

The measurement point is now transformed such that it and the datum point can be viewed in a 

true-dip–section (Fig. A1B). The apparent thickness of the stratigraphic section, Tapparent, is: 

 
 

(11) 

Where ZTSP is the vertical distance between the transformed measurement point and the datum 

point. The slope of the apparent thickness, αapparent, and the sum of the slope of the apparent 

thickness and the dip of bedding, θapparent, are: 

 
 

(12) 

  (13) 

The true stratigraphic thickness, TST, is then: 

  (14) 

 

Figure A1: Diagram illustrating terminology and trigonometry of transform from Cartesian 
coordinates to True Stratigraphic Position.
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Locale Feature 
Longitude 

° 
Latitude 

° 
Easting 

m 
Northing 

m 
Elevation 

m 
TSP 
m 

Strike 
° 

Dip 
° 

Paleo-
strike 

° 

Paleo-
dip 
° 

Aperture 
m 

MG bedding -120.74348 36.72749 701505 4067016 506 -46 323 33 237 3 
 MG bedding -120.73853 36.72955 701942 4067256 327 72 326 45 319 12 
 MG bedding -120.73844 36.73049 701947 4067360 301 86 327 40 319 7 
 MG bedding -120.73838 36.73048 701953 4067359 302 89 322 24 166 10 
 MG bedding -120.73843 36.73057 701948 4067368 308 96 326 32 206 2 
 MG bedding -120.73909 36.73115 701888 4067432 329 108 332 38 349 5 
 MG bedding -120.73705 36.73021 702073 4067332 311 140 337 29 107 6 
 MG bedding -120.73459 36.72786 702298 4067076 322 164 330 34 358 1 
 MG bedding -120.73699 36.73108 702075 4067428 301 165 337 22 134 12 
 MG bedding -120.73728 36.73147 702049 4067471 365 221 327 40 319 7 
 MG bedding -120.73564 36.73177 702194 4067508 289 233 332 48 338 15 
 MG bedding -120.73275 36.73114 702454 4067443 256 297 318 42 288 11 
 MG bedding -120.73278 36.73189 702449 4067526 302 360 336 39 6 7 
 MG bedding -120.73259 36.73266 702465 4067613 325 414 343 16 136 18 
 MG bedding -120.72879 36.73173 702807 4067517 266 483 340 51 356 19 
 MG injectite -120.74134 36.72853 701694 4067136 426 7 52 14 124 34 11.89 

MG injectite -120.74136 36.72853 701692 4067136 428 9 160 56 158 89 0.36 
MG injectite -120.74110 36.72872 701715 4067158 415 15 46 20 112 34 15.54 
MG injectite -120.74064 36.72886 701756 4067174 397 22 327 46 323 13 1.83 
MG injectite -120.74036 36.72902 701780 4067193 384 29 339 61 347 29 0.30 
MG injectite -120.74036 36.72902 701780 4067193 384 29 326 39 311 6 2.44 
MG injectite -120.73681 36.72657 702104 4066928 326 34 344 32 72 8 6.00 
MG injectite -120.74351 36.72751 701503 4067018 503 50 327 37 312 4 

 MG injectite -120.73882 36.72962 701916 4067262 311 50 290 15 174 23 
 MG injectite -120.73957 36.72956 701850 4067254 368 65 313 45 283 16 5.00 

MG injectite -120.73872 36.73049 701923 4067359 295 71 323 36 278 5 
 MG injectite -120.73930 36.72963 701874 4067263 360 72 321 43 300 11 2.44 

MG injectite -120.73861 36.73048 701933 4067359 294 74 325 30 182 4 
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MG injectite -120.73811 36.73013 701978 4067320 302 88 220 43 197 61 
 MG injectite -120.73804 36.73010 701985 4067317 307 94 321 33 236 4 1.83 

MG injectite -120.73810 36.73018 701979 4067327 308 95 331 35 359 2 3.66 
MG injectite -120.73870 36.73048 701924 4067358 327 98 343 31 80 8 3.00 
MG injectite -120.73809 36.73020 701979 4067328 313 100 333 28 129 5 1.50 
MG injectite -120.73865 36.73050 701929 4067360 327 101 325 40 309 7 2.00 
MG injectite -120.73799 36.73014 701989 4067322 311 101 314 33 233 8 1.04 
MG injectite -120.73545 36.72751 702223 4067036 306 104 321 36 269 5 4.00 
MG injectite -120.73800 36.73017 701988 4067326 314 104 307 22 182 15 0.33 
MG injectite -120.73798 36.73015 701989 4067323 316 105 309 31 220 11 1.50 
MG injectite -120.74127 36.73231 701690 4067556 381 106 329 38 329 5 

 MG injectite -120.73800 36.73014 701988 4067322 319 107 228 36 196 52 0.50 
MG injectite -120.73794 36.73019 701994 4067328 316 109 317 38 270 9 3.96 
MG injectite -120.73562 36.72772 702207 4067058 313 111 324 40 304 8 2.50 
MG injectite -120.73802 36.73024 701986 4067333 320 111 220 43 197 61 19.96 
MG injectite -120.73786 36.73018 702000 4067326 319 113 266 36 217 35 1.02 
MG injectite -120.73889 36.73083 701907 4067396 345 118 

    
0.61 

MG injectite -120.73782 36.73019 702004 4067327 322 118 328 28 154 5 1.50 
MG injectite -120.73510 36.72755 702254 4067041 306 119 233 83 230 87 0.91 
MG injectite -120.73773 36.73012 702012 4067320 323 120 

    
0.05 

MG injectite -120.73797 36.73029 701990 4067339 328 121 
    

0.08 
MG injectite -120.73773 36.73012 702012 4067320 323 121 246 80 239 78 0.53 
MG injectite -120.73532 36.72767 702234 4067053 313 121 331 38 343 5 1.22 
MG injectite -120.73780 36.73019 702006 4067328 324 121 

    
0.13 

MG injectite -120.73789 36.73025 701998 4067334 326 121 53 85 57 83 0.28 
MG injectite -120.73780 36.73020 702005 4067329 325 122 237 72 227 76 0.15 
MG injectite -120.73822 36.73047 701967 4067358 334 122 

    
0.10 

MG injectite -120.73844 36.73056 701947 4067368 340 122 331 43 337 10 0.99 
MG injectite -120.73829 36.73050 701961 4067361 337 124 346 82 351 51 0.13 
MG injectite -120.73904 36.73098 701893 4067413 353 124 47 90 49 84 0.08 
MG injectite -120.73837 36.73054 701954 4067365 340 124 

    
0.08 
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MG injectite -120.73812 36.73042 701977 4067352 334 125 
    

0.08 
MG injectite -120.73819 36.73046 701970 4067357 336 125 

    
0.15 

MG injectite -120.73919 36.73109 701880 4067425 358 127 11 90 16 66 4.42 
MG injectite -120.73782 36.73039 702004 4067350 332 133 215 35 188 56 31.09 
MG injectite -120.73686 36.73002 702090 4067311 303 134 325 42 312 9 1.09 
MG injectite -120.73714 36.73021 702064 4067332 313 138 251 76 241 72 

 MG injectite -120.73720 36.73088 702057 4067406 289 139 329 31 149 2 
 MG injectite -120.73573 36.72815 702196 4067106 334 139 254 82 247 75 0.30 

MG injectite -120.73685 36.73005 702091 4067314 307 139 325 32 212 2 
 MG injectite -120.73665 36.73053 702108 4067368 280 142 55 80 61 80 
 MG injectite -120.73577 36.72822 702192 4067114 338 143 321 44 301 12 0.46 

MG injectite -120.73774 36.73128 702009 4067449 305 146 345 58 360 27 
 MG injectite -120.73568 36.72826 702200 4067118 337 147 83 67 91 83 0.46 

MG injectite -120.73661 36.73033 702112 4067346 306 157 247 78 239 76 2.67 
MG injectite -120.73660 36.73043 702112 4067357 303 159 318 30 207 7 1.50 
MG injectite -120.73665 36.73042 702107 4067355 307 159 

    
0.25 

MG injectite -120.73667 36.73043 702106 4067357 307 160 
    

0.61 
MG injectite -120.73666 36.73042 702107 4067356 307 160 52 90 53 86 0.25 
MG injectite -120.73663 36.73039 702110 4067353 307 160 302 47 267 22 0.48 
MG injectite -120.73659 36.73046 702113 4067360 304 161 241 82 236 82 0.30 
MG injectite -120.73460 36.72783 702298 4067073 324 164 246 79 239 77 0.91 
MG injectite -120.73739 36.73099 702041 4067417 323 164 

    
0.25 

MG injectite -120.73697 36.73077 702079 4067394 313 164 230 80 226 87 0.13 
MG injectite -120.73690 36.73070 702085 4067386 313 165 

    
0.13 

MG injectite -120.73694 36.73076 702081 4067393 313 165 
    

0.13 
MG injectite -120.73691 36.73071 702084 4067388 314 166 97 80 277 79 0.20 
MG injectite -120.73749 36.73107 702031 4067426 327 166 96 71 280 88 0.58 
MG injectite -120.73315 36.72706 702429 4066990 291 166 53 85 57 83 4.00 
MG injectite -120.73750 36.73109 702030 4067428 327 167 

    
0.20 

MG injectite -120.73647 36.73040 702124 4067354 308 167 229 81 226 88 2.00 
MG injectite -120.73679 36.73097 702094 4067416 299 167 275 34 218 29 
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MG injectite -120.73751 36.73110 702029 4067430 328 168 
    

0.30 
MG injectite -120.73795 36.73149 701989 4067472 346 179 197 48 184 73 0.30 
MG injectite -120.73786 36.73142 701997 4067464 345 180 

    
0.53 

MG injectite -120.73792 36.73147 701991 4067470 348 181 11 68 28 46 0.15 
MG injectite -120.73796 36.73151 701988 4067474 349 182 350 47 22 19 0.81 
MG injectite -120.73796 36.73153 701988 4067476 349 182 246 74 236 73 0.23 
MG injectite -120.73335 36.72738 702410 4067026 306 182 230 76 224 83 2.00 
MG injectite -120.73805 36.73158 701980 4067482 351 183 86 67 94 84 0.15 
MG injectite -120.73329 36.72738 702416 4067026 306 185 301 79 293 51 2.00 
MG injectite -120.73618 36.73043 702149 4067358 314 185 250 80 243 76 1.50 
MG injectite -120.73822 36.73176 701964 4067501 367 196 2 24 103 18 10.01 
MG injectite -120.73550 36.73118 702208 4067442 264 196 321 44 301 12 

 MG injectite -120.73575 36.73067 702188 4067385 300 199 228 72 220 81 1.50 
MG injectite -120.73275 36.72718 702465 4067004 307 200 60 90 240 90 0.50 
MG injectite -120.73825 36.73184 701961 4067510 372 201 354 13 134 22 4.06 
MG injectite -120.73233 36.72727 702502 4067015 295 210 282 52 250 36 2.00 
MG injectite -120.73540 36.73071 702218 4067391 296 211 252 83 246 77 1.63 
MG injectite -120.73543 36.73068 702216 4067387 299 211 63 90 242 88 3.00 
MG injectite -120.73710 36.73140 702065 4067463 360 221 

    
2.01 

MG injectite -120.73534 36.73109 702223 4067432 292 223 328 27 153 6 7.26 
MG injectite -120.73455 36.73099 702294 4067424 268 231 82 81 263 86 

 MG injectite -120.73452 36.73100 702297 4067424 270 233 276 75 263 58 
 MG injectite -120.73454 36.73112 702295 4067437 272 239 254 82 247 75 
 MG injectite -120.73433 36.73069 702315 4067391 289 246 295 54 267 31 0.36 

MG injectite -120.73429 36.73074 702318 4067396 289 250 252 55 228 55 0.64 
MG injectite -120.73412 36.73076 702332 4067399 283 252 243 49 216 55 1.68 
MG injectite -120.73453 36.73099 702296 4067424 302 260 77 80 260 89 2.74 
MG injectite -120.73393 36.73089 702350 4067414 284 265 226 73 219 83 

 MG injectite -120.73452 36.73111 702296 4067436 304 266 254 83 248 76 1.07 
MG injectite -120.73458 36.73119 702291 4067445 309 270 227 71 219 80 2.44 
MG injectite -120.73403 36.73114 702340 4067441 296 280 71 90 249 84 1.00 
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MG injectite -120.73382 36.73112 702359 4067439 290 283 70 90 248 84 4.00 
MG injectite -120.73427 36.73130 702318 4067459 305 284 237 75 229 79 5.00 
MG injectite -120.73309 36.73093 702424 4067420 278 295 93 64 101 85 0.33 
MG injectite -120.73324 36.73124 702410 4067453 283 303 241 90 241 89 3.40 
MG injectite -120.73303 36.73105 702429 4067433 282 304 

    
0.13 

MG injectite -120.73266 36.73144 702462 4067477 255 310 251 80 244 75 
 MG injectite -120.73355 36.73149 702382 4067481 296 311 208 73 24 89 
 MG injectite -120.73358 36.73153 702379 4067485 297 312 215 88 38 79 3.35 

MG injectite -120.73332 36.73159 702402 4067493 300 327 224 77 220 87 3.00 
MG injectite -120.73248 36.73106 702479 4067436 284 329 132 61 314 87 4.88 
MG injectite -120.73256 36.73192 702469 4067531 271 345 64 90 243 87 

 MG injectite -120.73258 36.73149 702469 4067483 291 345 257 85 252 76 3.12 
MG injectite -120.73258 36.73196 702467 4067535 273 346 232 68 221 75 

 MG injectite -120.73259 36.73158 702467 4067493 290 347 237 82 233 84 0.30 
MG injectite -120.73279 36.73181 702449 4067518 297 353 252 85 247 79 0.61 
MG injectite -120.73285 36.73185 702443 4067522 300 355 147 42 148 75 1.47 
MG injectite -120.73286 36.73189 702442 4067526 299 355 147 51 147 84 

 MG injectite -120.73282 36.73185 702446 4067522 301 357 231 79 226 85 2.79 
MG injectite -120.73284 36.73191 702444 4067529 304 361 158 55 156 88 1.02 
MG injectite -120.73347 36.73237 702387 4067578 334 377 5 35 69 20 5.18 
MG injectite -120.73152 36.73169 702563 4067508 272 379 55 82 60 81 0.18 
MG injectite -120.73188 36.73198 702530 4067539 283 384 243 60 225 63 0.66 
MG injectite -120.73151 36.73172 702563 4067511 279 385 258 81 250 72 3.00 
MG injectite -120.73152 36.73173 702563 4067512 280 386 265 86 259 73 2.44 
MG injectite -120.73187 36.73202 702530 4067543 290 391 240 80 234 81 0.38 
MG injectite -120.73197 36.73213 702521 4067555 295 395 39 85 45 75 1.52 
MG injectite -120.73186 36.73209 702532 4067551 292 396 206 84 28 78 0.10 
MG injectite -120.73163 36.73197 702552 4067538 286 396 238 75 230 78 

 MG injectite -120.73164 36.73199 702551 4067541 287 397 
    

0.11 
MG injectite -120.73207 36.73219 702512 4067562 300 398 232 65 219 73 0.51 
MG injectite -120.73221 36.73230 702500 4067574 307 402 182 83 4 69 0.18 
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MG injectite -120.73159 36.73197 702556 4067538 292 402 244 78 237 77 2.00 
MG injectite -120.73027 36.73178 702674 4067520 267 426 114 87 290 66 

 MG injectite -120.73049 36.73193 702654 4067536 281 435 
    

0.23 
MG injectite -120.73082 36.73229 702624 4067575 298 449 

    
1.14 

MC bedding -120.72806 36.70441 702943 4064489 469 -28 338 47 269 2 
 MC bedding -120.73049 36.70968 702713 4065067 460 -27 337 30 315 5 
 MC bedding -120.72787 36.70432 702960 4064479 462 -27 331 31 122 2 
 MC bedding -120.72781 36.70431 702966 4064477 459 -27 337 38 103 2 
 MC bedding -120.72692 36.70932 703032 4065036 340 52 344 35 136 6 
 MC bedding -120.72746 36.71188 702978 4065319 357 102 344 34 19 3 
 MC bedding -120.72575 36.70935 703137 4065041 332 107 340 32 8 4 
 MC bedding -120.72785 36.71235 702941 4065370 382 114 331 32 3 8 
 MC bedding -120.72676 36.71152 703041 4065280 339 115 342 28 98 5 
 MC bedding -120.72620 36.71110 703092 4065234 333 128 341 34 15 7 
 MC bedding -120.72294 36.70924 703388 4065035 305 226 333 36 352 15 
 MC bedding -120.72228 36.70852 703449 4064957 295 234 337 47 355 15 
 MC bedding -120.72266 36.70896 703414 4065004 307 234 333 35 73 6 
 MC bedding -120.72180 36.70794 703493 4064893 295 243 336 40 56 7 
 MC bedding -120.72169 36.70842 703502 4064947 307 271 326 34 102 8 
 MC bedding -120.71941 36.70635 703711 4064722 302 331 347 34 58 8 
 MC bedding -120.71903 36.70724 703743 4064821 284 359 306 36 52 9 
 MC bedding -120.71846 36.70690 703795 4064785 276 373 327 38 61 10 
 MC bedding -120.71947 36.70805 703701 4064910 380 432 332 27 95 14 
 MC injectite -120.73052 36.70968 702710 4065067 460 -29 354 27 242 13 0.30 

MC injectite -120.72701 36.70921 703025 4065023 345 49 228 33 194 50 2.50 
MC injectite -120.72881 36.71271 702854 4065407 385 76 1 26 96 17 4.00 
MC injectite -120.72830 36.71236 702901 4065370 367 79 326 30 175 3 4.00 
MC injectite -120.72674 36.70966 703047 4065073 357 83 318 39 277 9 0.69 
MC injectite -120.72849 36.71260 702884 4065396 387 91 359 52 28 27 4.00 
MC injectite -120.72762 36.71192 702963 4065322 355 93 32 70 47 59 1.30 
MC injectite -120.72737 36.71178 702985 4065307 346 95 327 32 195 2 2.00 
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MC injectite -120.72731 36.71173 702991 4065301 347 98 247 89 245 85 0.76 
MC injectite -120.72620 36.70949 703097 4065056 346 98 327 42 321 9 0.51 
MC injectite -120.72879 36.71302 702856 4065442 402 99 336 35 35 4 0.91 
MC injectite -120.72578 36.70933 703134 4065038 327 100 227 34 194 51 3.00 
MC injectite -120.72755 36.71194 702969 4065325 361 102 336 30 101 5 10.00 
MC injectite -120.72848 36.71275 702884 4065413 397 104 336 44 353 12 10.00 
MC injectite -120.72882 36.71307 702853 4065447 409 104 335 33 62 3 0.56 
MC injectite -120.72888 36.71311 702847 4065452 415 106 333 36 8 4 0.41 
MC injectite -120.72885 36.71311 702850 4065452 413 106 331 31 122 2 0.15 
MC injectite -120.72579 36.70942 703133 4065048 335 108 168 90 351 59 1.50 
MC injectite -120.72770 36.71221 702955 4065354 374 111 328 33 239 1 14.00 
MC injectite -120.72834 36.71279 702897 4065417 397 112 328 34 300 1 0.76 
MC injectite -120.72758 36.71214 702966 4065346 370 113 339 38 22 8 0.25 
MC injectite -120.72722 36.71181 702999 4065311 359 114 327 41 320 8 20.00 
MC injectite -120.72731 36.71190 702991 4065321 362 115 318 44 293 13 20.00 
MC injectite -120.72685 36.71159 703033 4065288 344 116 262 25 197 32 1.52 
MC injectite -120.72827 36.71279 702903 4065418 399 117 242 71 231 73 1.32 
MC injectite -120.72755 36.71213 702969 4065346 375 118 312 36 249 10 0.28 
MC injectite -120.72814 36.71272 702915 4065410 394 118 234 82 231 86 0.28 
MC injectite -120.72753 36.71213 702970 4065346 374 119 51 85 55 82 0.43 
MC injectite -120.72797 36.71256 702930 4065393 390 119 9 56 36 35 18.00 
MC injectite -120.72788 36.71249 702938 4065385 390 122 235 75 227 80 0.23 
MC injectite -120.72687 36.71171 703031 4065301 350 123 343 25 115 10 0.30 
MC injectite -120.72623 36.71113 703089 4065238 328 124 343 56 358 25 0.28 
MC injectite -120.72681 36.71172 703036 4065302 356 130 67 90 246 86 0.30 
MC injectite -120.72584 36.71137 703124 4065265 336 156 101 90 276 69 0.30 
MC injectite -120.72511 36.71072 703190 4065195 322 165 232 68 221 75 1.17 
MC injectite -120.72484 36.71079 703215 4065202 329 187 261 90 258 78 1.78 
MC injectite -120.72400 36.70997 703291 4065114 313 196 24 63 45 49 0.91 
MC injectite -120.72465 36.71091 703231 4065217 331 201 252 60 232 58 4.00 
MC injectite -120.72495 36.71141 703203 4065271 340 205 64 82 68 86 1.24 
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MC injectite -120.72459 36.71091 703236 4065217 333 205 237 82 233 84 2.13 
MC injectite -120.72477 36.71110 703220 4065237 341 207 239 81 234 83 1.52 
MC injectite -120.72458 36.71094 703237 4065220 336 209 234 70 224 76 0.66 
MC injectite -120.72431 36.71102 703261 4065229 326 217 239 75 231 78 2.44 
MC injectite -120.72452 36.71126 703242 4065255 336 220 71 88 250 85 3.15 
MC injectite -120.72426 36.71097 703265 4065224 332 223 60 83 64 85 0.13 
MC injectite -120.72433 36.71102 703259 4065230 338 225 253 88 250 81 2.36 
MC injectite -120.72427 36.71106 703264 4065234 336 228 246 70 234 70 3.00 
MC injectite -120.72434 36.71132 703258 4065262 334 229 221 42 197 59 2.00 
MC injectite -120.72352 36.71002 703334 4065120 327 233 72 79 76 88 0.61 
MC injectite -120.72451 36.71164 703242 4065297 340 234 328 39 323 6 0.30 
MC injectite -120.72412 36.71110 703277 4065239 333 234 66 85 68 90 3.25 
MC injectite -120.72426 36.71154 703264 4065287 328 234 326 43 317 10 2.44 
MC injectite -120.72355 36.71049 703330 4065172 321 239 339 29 101 7 0.69 
MC injectite -120.72423 36.71157 703267 4065290 332 240 321 45 303 13 1.22 
MC injectite -120.72416 36.71139 703274 4065270 335 241 68 86 249 89 1.24 
MC injectite -120.72196 36.70824 703479 4064926 296 244 203 66 197 87 0.91 
MC injectite -120.72395 36.71107 703293 4065236 342 250 64 84 67 88 0.23 
MC injectite -120.72396 36.71111 703292 4065240 342 250 68 85 249 89 1.47 
MC injectite -120.72223 36.70902 703452 4065012 306 257 272 68 255 54 0.51 
MC injectite -120.72191 36.70858 703481 4064964 303 260 212 63 203 81 1.32 
MC injectite -120.72173 36.70839 703499 4064943 298 261 340 68 347 36 2.74 
MC injectite -120.72194 36.70859 703479 4064965 307 262 237 82 233 84 2.08 
MC injectite -120.72221 36.70895 703454 4065005 315 264 97 87 274 73 0.81 
MC injectite -120.72165 36.70816 703507 4064918 306 265 73 90 251 82 1.52 
MC injectite -120.72378 36.71120 703307 4065250 348 265 244 74 234 74 2.00 
MC injectite -120.72129 36.70780 703540 4064879 295 266 103 84 281 73 0.09 
MC injectite -120.72214 36.70894 703460 4065003 314 267 271 42 228 35 0.28 
MC injectite -120.72177 36.70848 703495 4064953 306 267 164 64 343 84 1.98 
MC injectite -120.72188 36.70865 703484 4064971 308 267 234 73 226 79 1.83 
MC injectite -120.72390 36.71151 703296 4065285 348 268 65 90 244 87 1.42 
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MC injectite -120.72367 36.71120 703318 4065251 343 268 238 65 224 70 0.43 
MC injectite -120.72158 36.70822 703512 4064925 303 268 262 79 253 68 1.78 
MC injectite -120.72133 36.70791 703535 4064891 298 269 63 83 66 86 0.81 
MC injectite -120.72220 36.70901 703455 4065011 320 270 111 80 290 74 0.79 
MC injectite -120.72220 36.70904 703455 4065014 320 270 271 75 258 60 0.36 
MC injectite -120.72156 36.70822 703514 4064924 306 272 78 84 258 85 1.14 
MC injectite -120.72365 36.71122 703319 4065253 346 272 243 90 242 88 1.83 
MC injectite -120.72370 36.71123 703315 4065254 349 272 253 50 224 50 3.18 
MC injectite -120.72368 36.71126 703317 4065258 347 272 99 82 278 77 0.64 
MC injectite -120.72128 36.70795 703540 4064895 299 274 167 90 350 59 5.00 
MC injectite -120.72375 36.71159 703310 4065294 351 280 71 90 249 84 2.00 
MC injectite -120.72143 36.70825 703525 4064928 311 282 73 90 251 82 1.52 
MC injectite -120.72071 36.70742 703592 4064838 292 284 179 64 356 87 2.00 
MC injectite -120.72058 36.70735 703604 4064830 287 285 168 67 347 82 1.50 
MC injectite -120.72136 36.70828 703532 4064932 313 289 87 90 263 75 1.22 
MC injectite -120.72174 36.70887 703496 4064997 319 289 13 61 36 42 1.42 
MC injectite -120.72137 36.70833 703531 4064938 316 292 333 21 142 12 5.00 
MC injectite -120.72118 36.70813 703548 4064915 312 293 321 32 223 4 4.00 
MC injectite -120.72148 36.70864 703520 4064971 316 294 338 44 360 12 3.05 
MC injectite -120.72336 36.71136 703345 4065269 351 294 243 79 236 79 7.00 
MC injectite -120.72179 36.70900 703492 4065011 330 299 

    
1.04 

MC injectite -120.72145 36.70860 703522 4064967 322 299 351 35 59 12 2.97 
MC injectite -120.72333 36.71133 703348 4065266 356 299 74 79 78 89 0.51 
MC injectite -120.72359 36.71166 703324 4065302 362 299 51 84 56 81 1.47 
MC injectite -120.72155 36.70884 703513 4064993 321 299 322 32 221 4 1.12 
MC injectite -120.72335 36.71136 703346 4065269 358 300 254 77 244 71 3.05 
MC injectite -120.72331 36.71136 703350 4065269 357 301 237 90 57 89 2.13 
MC injectite -120.72124 36.70831 703542 4064936 322 303 331 45 336 12 1.30 
MC injectite -120.72152 36.70887 703516 4064996 322 303 157 48 155 81 1.22 
MC injectite -120.72202 36.70968 703469 4065086 332 305 341 48 1 17 1.63 
MC injectite -120.72111 36.70827 703554 4064931 325 311 236 88 235 90 0.27 
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MC injectite -120.72070 36.70775 703592 4064874 317 312 222 83 41 87 1.07 
MC injectite -120.72074 36.70779 703588 4064879 318 312 351 78 359 48 1.07 
MC injectite -120.72098 36.70809 703566 4064911 327 314 48 72 60 69 0.43 
MC injectite -120.72110 36.70826 703555 4064930 330 314 60 86 62 87 0.53 
MC injectite -120.72313 36.71146 703365 4065280 362 317 73 84 254 88 1.32 
MC injectite -120.72331 36.71179 703348 4065317 365 318 234 80 229 84 1.40 
MC injectite -120.72129 36.70891 703537 4065002 326 318 

    
3.30 

MC injectite -120.72311 36.71146 703367 4065280 363 319 63 88 243 90 2.59 
MC injectite -120.72120 36.70885 703544 4064995 327 322 74 43 99 59 1.22 
MC injectite -120.72127 36.70881 703538 4064990 333 322 95 46 111 69 0.94 
MC injectite -120.72116 36.70867 703548 4064975 334 325 181 90 6 63 0.46 
MC injectite -120.72154 36.70916 703513 4065029 345 327 189 73 8 81 1.78 
MC injectite -120.72295 36.71149 703382 4065285 362 327 261 78 251 68 3.73 
MC injectite -120.72307 36.71193 703369 4065333 365 334 

    
0.36 

MC injectite -120.72090 36.70836 703572 4064942 339 335 79 87 258 82 1.83 
MC injectite -120.72283 36.71155 703392 4065292 365 337 

    
3.94 

MC injectite -120.72112 36.70893 703551 4065004 339 338 245 75 236 74 2.74 
MC injectite -120.72171 36.70984 703496 4065104 350 339 343 52 1 21 3.05 
MC injectite -120.72074 36.70820 703587 4064924 339 339 

    
2.67 

MC injectite -120.72279 36.71154 703395 4065290 366 339 252 86 248 80 0.43 
MC injectite -120.72057 36.70809 703603 4064912 335 342 

    
1.68 

MC injectite -120.72135 36.70944 703530 4065061 345 344 307 73 298 43 0.33 
MC injectite -120.72137 36.70942 703528 4065058 348 344 111 72 293 81 0.36 
MC injectite -120.72064 36.70840 703596 4064947 333 345 63 90 242 88 0.58 
MC injectite -120.72056 36.70828 703603 4064933 332 345 66 90 245 86 2.00 
MC injectite -120.72072 36.70837 703589 4064943 341 346 255 72 242 66 1.83 
MC injectite -120.72043 36.70844 703614 4064951 322 347 105 84 283 72 1.00 
MC injectite -120.72266 36.71164 703407 4065301 366 348 51 88 53 84 0.99 
MC injectite -120.72043 36.70842 703615 4064950 326 350 90 83 269 80 0.94 
MC injectite -120.72020 36.70809 703636 4064913 322 350 

    
13.97 

MC injectite -120.72053 36.70842 703605 4064949 334 351 76 90 253 81 1.63 
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MC injectite -120.72040 36.70834 703617 4064941 328 351 79 90 256 79 1.07 
MC injectite -120.72097 36.70898 703564 4065011 345 351 62 84 65 87 

 MC injectite -120.72052 36.70843 703606 4064950 335 353 56 54 78 59 0.69 
MC injectite -120.72080 36.70873 703581 4064983 344 353 182 72 1 80 1.52 
MC injectite -120.72037 36.70847 703619 4064955 328 356 243 85 240 84 0.61 
MC injectite -120.72104 36.70920 703558 4065034 348 356 162 79 343 69 0.61 
MC injectite -120.72030 36.70842 703626 4064949 327 357 76 90 253 81 1.50 
MC injectite -120.72078 36.70874 703583 4064984 349 358 181 73 0 79 1.02 
MC injectite -120.72254 36.71170 703418 4065308 370 360 229 78 224 85 0.91 
MC injectite -120.72134 36.70963 703530 4065082 359 360 25 65 45 51 2.13 
MC injectite -120.72030 36.70839 703626 4064946 332 360 73 86 253 86 1.02 
MC injectite -120.72192 36.71093 703474 4065224 357 361 356 43 39 19 0.61 
MC injectite -120.72248 36.71167 703423 4065305 370 362 236 82 232 85 0.91 
MC injectite -120.71992 36.70823 703661 4064929 317 364 

    
3.05 

MC injectite -120.72025 36.70853 703630 4064962 331 366 236 86 234 88 1.17 
MC injectite -120.72027 36.70851 703628 4064959 334 367 242 87 240 86 0.86 
MC injectite -120.71999 36.70829 703655 4064935 325 368 158 90 340 58 3.00 
MC injectite -120.72008 36.70838 703646 4064946 328 369 210 85 32 79 0.42 
MC injectite -120.72015 36.70847 703639 4064955 331 369 72 90 250 83 1.04 
MC injectite -120.72094 36.70934 703567 4065050 357 372 182 90 7 63 1.52 
MC injectite -120.72017 36.70858 703637 4064968 335 375 334 64 338 31 1.00 
MC injectite -120.72061 36.70898 703597 4065011 352 376 

    
1.93 

MC injectite -120.72067 36.70906 703591 4065020 360 381 224 73 217 84 4.57 
MC injectite -120.72093 36.70945 703567 4065062 364 381 

    
3.51 

MC injectite -120.71978 36.70858 703672 4064968 319 381 263 76 252 65 0.30 
MC injectite -120.72216 36.71176 703451 4065316 373 383 

    
0.69 

MC injectite -120.72009 36.70859 703644 4064969 340 383 248 88 246 83 0.86 
MC injectite -120.72030 36.70911 703624 4065026 351 394 156 55 155 88 1.07 
MC injectite -120.71974 36.70858 703676 4064969 332 394 253 82 246 76 0.69 
MC injectite -120.72045 36.70924 703611 4065040 359 396 252 85 247 79 2.44 
MC injectite -120.71978 36.70859 703672 4064969 338 397 263 78 253 67 0.51 
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MC injectite -120.71991 36.70871 703660 4064982 344 398 246 84 242 81 0.71 
MC injectite -120.71988 36.70871 703663 4064982 344 399 243 81 237 80 0.97 
MC injectite -120.71976 36.70876 703674 4064989 336 401 239 70 228 73 0.91 
MC injectite -120.71985 36.70884 703665 4064997 340 401 102 65 108 89 0.71 
MC injectite -120.72037 36.70930 703617 4065047 359 401 250 64 233 63 4.57 
MC injectite -120.71976 36.70879 703673 4064992 336 401 237 79 231 82 0.91 
MC injectite -120.72036 36.70931 703618 4065048 358 402 132 43 137 75 0.66 
MC injectite -120.71996 36.70889 703655 4065002 346 402 107 62 113 88 0.79 
MC injectite -120.71951 36.70872 703696 4064984 331 408 81 72 87 86 0.86 
MC injectite -120.71964 36.70884 703684 4064997 335 408 245 81 239 79 1.04 
MC injectite -120.71946 36.70864 703701 4064976 333 411 253 89 250 82 0.48 
MC injectite -120.71960 36.70884 703688 4064998 339 413 237 79 231 82 1.47 
MC injectite -120.71972 36.70903 703677 4065018 345 417 44 82 51 75 0.04 
MC injectite -120.72013 36.70948 703638 4065067 362 420 

    
3.66 

MC injectite -120.71902 36.70860 703740 4064972 323 424 102 71 285 86 0.76 
MC injectite -120.71884 36.70828 703757 4064937 323 426 247 77 239 75 1.12 
MC injectite -120.71912 36.70876 703731 4064989 328 427 72 90 250 83 0.10 
MC injectite -120.71912 36.70876 703731 4064989 328 427 72 90 250 83 0.11 
MC injectite -120.71912 36.70876 703731 4064989 328 427 72 90 250 83 0.17 
MC injectite -120.71912 36.70876 703731 4064989 328 427 71 90 249 84 0.18 
MC injectite -120.71891 36.70859 703750 4064971 322 429 94 71 278 89 0.81 
MC injectite -120.71895 36.70858 703746 4064971 327 431 283 61 260 43 1.50 
MC injectite -120.71927 36.70900 703717 4065016 341 436 238 83 234 85 1.55 
MC injectite -120.71928 36.70896 703716 4065011 344 437 233 77 227 82 2.00 
MC injectite -120.71942 36.70924 703702 4065042 345 437 

    
0.20 

MC injectite -120.71920 36.70897 703723 4065012 340 438 222 70 214 82 0.23 
MC injectite -120.71756 36.70758 703873 4064863 283 442 230 76 224 83 0.06 
MC injectite -120.71753 36.70757 703876 4064860 283 443 235 60 219 67 0.10 
MC injectite -120.71755 36.70759 703874 4064863 285 444 242 67 228 69 0.08 
MC injectite -120.71758 36.70762 703871 4064867 287 445 220 79 37 89 0.03 
MC injectite -120.71774 36.70780 703856 4064886 291 445 

    
0.13 
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MC injectite -120.71757 36.70759 703872 4064864 290 447 221 71 214 84 0.10 
MC injectite -120.71784 36.70791 703847 4064898 303 451 221 48 201 64 0.43 
MC injectite -120.71895 36.70901 703745 4065018 339 451 190 76 10 79 0.23 
MC injectite -120.71883 36.70889 703756 4065005 338 453 97 76 279 83 0.07 
MC injectite -120.71876 36.70877 703763 4064991 338 454 113 67 296 86 0.08 
MC injectite -120.71901 36.70912 703740 4065030 343 454 242 73 232 74 0.94 
MC injectite -120.71917 36.70936 703725 4065056 350 457 237 75 229 79 0.53 
MC injectite -120.71901 36.70908 703739 4065026 349 457 240 71 229 74 1.00 
MC injectite -120.71788 36.70806 703843 4064914 309 458 97 63 104 85 0.13 
MC injectite -120.71804 36.70827 703828 4064937 318 462 108 58 115 85 0.09 
MC injectite -120.71886 36.70921 703752 4065040 348 467 232 66 220 74 0.71 
MC injectite -120.71801 36.70831 703831 4064942 322 467 

    
0.20 

MC injectite -120.71888 36.70916 703751 4065034 351 467 239 69 227 73 
 MC injectite -120.71803 36.70831 703829 4064942 324 468 

    
0.33 

MC injectite -120.71877 36.70923 703761 4065042 346 471 241 64 226 67 0.56 
MC injectite -120.71899 36.70944 703740 4065065 356 473 234 77 228 82 0.30 
MC injectite -120.71760 36.70835 703867 4064947 307 477 179 42 170 72 0.20 
MC injectite -120.71870 36.70925 703767 4065045 350 478 

    
0.61 

MC injectite -120.71771 36.70840 703857 4064953 317 481 232 81 228 86 0.09 
MC injectite -120.71742 36.70816 703884 4064927 309 484 

    
0.38 

MC injectite -120.71772 36.70848 703856 4064962 322 487 222 69 214 81 0.05 
MC injectite -120.71684 36.70777 703937 4064884 298 495 272 90 268 73 0.46 
MC injectite -120.71774 36.70868 703854 4064983 330 497 

    
0.20 

MC injectite -120.71742 36.70852 703883 4064967 318 500 
    

0.25 
MC injectite -120.71765 36.70872 703862 4064988 328 502 231 83 229 89 0.23 
MC injectite -120.71653 36.70768 703965 4064876 293 505 116 82 294 70 0.10 
MC injectite -120.71699 36.70825 703922 4064938 306 506 222 70 214 82 0.18 
MC injectite -120.71679 36.70797 703941 4064906 303 506 108 61 114 87 0.10 
MC injectite -120.71763 36.70883 703864 4065001 334 510 247 84 242 81 0.48 
MC injectite -120.71686 36.70808 703935 4064919 308 510 106 63 112 89 0.46 
MC injectite -120.71756 36.70880 703870 4064998 331 510 224 79 221 89 0.18 



 
 

116 

MC injectite -120.71753 36.70875 703873 4064991 331 510 240 70 229 73 0.18 
MC injectite -120.71685 36.70805 703935 4064915 310 511 27 76 39 61 0.51 
MC injectite -120.71738 36.70858 703887 4064974 326 511 221 75 216 87 0.25 
MC injectite -120.71778 36.70903 703850 4065023 341 513 

    
0.01 

MC injectite -120.71732 36.70864 703892 4064980 328 516 212 79 30 85 0.33 
MC injectite -120.71725 36.70869 703898 4064986 325 519 

    
0.03 

MC injectite -120.71389 36.70655 704204 4064756 311 626 156 90 337 57 1.50 
 

Table A6: Bedding and injectite orientation measurements and injectite aperture measurements collected in Moreno Gulch (MG) 
and Marca Canyon (MC). Easting and northing are in the NAD83 UTM Zone 10N coordinate system. TSP is True 
Stratigraphic Position above the top of the Uhalde Formation (the PGIC source). Paleostrike and paleodip record the 
rotated orientation of data (i.e., paleo-orientation.
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Appendix 4: Unmanned Aerial Vehicle data acquisition and processing 
of Moreno Gulch, Panoche Hills 

A camera-equipped UAV was used to acquire aerial photography over the course 

of a week in October 2014 to obtain high-resolution (cm-scale) aerial imagery and 

elevation data of Moreno Gulch. A DJI Phantom 2 UAV unit with a GoPro Hero3 

mounted via gimbal was flown at ~30 m above ground level, in an effort to achieve a 

uniform photographic resolution. Actual UAV elevation likely fluctuated between 10-50 

m as a result of extreme topography within the locale. In order to georeference the 

photogrammetric model, a grid of control points was acquired with a high-precision (dm-

scale) Trimble GEOXH 6000 handheld GPS unit with a pole-mounted Trimble Zephyr 2 

antennae. Control points were spaced ~100 m apart and were code (preferred) or carrier-

processed using Trimble Pathfinder Office software. 

Roughly 10,000 photographs were manually selected for photogrammetric 

modeling. Agisoft PhotoScan Pro software was used to align photographs and 

georeference them to control points, after which the project was divided into four subsets 

to compensate for the extraordinary number of photographs. Each subset was then used to 

generate point clouds, meshes, and photographic textures in PhotoScan Pro. Resulting 

models were then exported as point clouds or DEM/orthophoto pairs for merging and 

mapping in Applied Imagery Quick Terrain Modeler or ArcGIS Desktop, respectively. 
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