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Abstract 

 

Feasibility of Prediction of Principal Stress from Reflection Seismic Data 

 

Xin Liu, M.S. Geo. Sci. 

The University of Texas at Austin, 2021 

 

Supervisor: Mrinal K. Sen 

 

Orientations and magnitudes of subsurface principal stresses are crucial information for 

understanding the structure and tectonic processes inside the Earth. This knowledge is not only 

important in geotechnical applications but also vital in the petroleum industry. For example, the 

stress state in the Earth’s crust controls stress concentration around wellbores and, therefore, plays 

a critical role in wellbore instability and fluid flow in fractured reservoirs.  

Several efforts to obtain subsurface principal stresses have been reported in published 

articles. However, most of these studies are based on the analyses of well log data and core plug 

measurements, which only provide accurate information at some specific locations. On the other 

hand, seismic inversion is one popular approach that aims at predicting some of the physical 

properties from observed seismic data indirectly. It can provide an even greater comprehensive 

description of the subsurface geology but at a lower vertical resolution.  

Using laboratory data and theoretical modeling, several researchers have reported that 

subsurface stress can lead to seismic anisotropy. Noticeable anomalies in field seismic data due to 

anisotropy, such as non-hyperbolic move-out, AVO, and anomalous waveforms have also been 
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reported in the literature. However, no field scale estimation of subsurface stress variation from 

seismic data has yet been carried out. Therefore, in my research, I attempt to examine the feasibility 

of predicting principal stresses from seismic inversion based on a stress-anisotropy relationship.  

Forward modeling is the foundation of seismic inversion. The finite-difference (FD) 

method is the most widely used forward modeling method in seismic waveform inversion. 

However, it suffers from the stair-casing problem, which introduces unwanted noise from irregular 

model parameter boundaries. Therefore, I develop an improved mesh-free method to accurately 

describe the irregular boundaries.  

My work entails the following three closely related steps: 

1) Relate stress to anisotropy 

Rock physics can be used to create models for subsurface lithologies, which describe the 

petrophysical and elastic behavior through a set of empirical, heuristic, and theoretical relations. 

In my current work, I derive stress to stiffness relationship from laboratory measurements from a 

mudrock sample. This analysis demonstrates that the stiffnesses are anisotropic under vertical 

stress. 

2) Mesh-free anisotropy media forward modeling 

I develop the radial basis-function generated finite-difference (RBF-FB) method for the 

mesh-free discretization scheme. Then I generalize this forward modeling method for anisotropic 

media and test it on some synthetic models. I employ this method to generate synthetic 

seismograms based on a realistic model derived from laboratory data and demonstrate the effect 

of stress on seismic data. 

3) Seismic inversion sensitivity analysis 
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I generate synthetic seismograms for simple models for which stiffnesses are computed for 

different stress magnitudes and directions. These data are then inverted by a global optimization 

method called Very Fast Simulated Annealing (VFSA) to demonstrate the feasibility of seismic 

inversion for principal stress. The forward modeling procedure in the VFSA method is carried out 

via the mesh-free RBF-FD method. My initial work shows that the magnitudes and angles of the 

stress have noticeable effects on the seismic response that can be estimated by seismic inversion. 
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Chapter 1: Introduction 

1.1 Motivation 

The processes that contribute to the in-situ stress state primarily include plate tectonic 

driving forces, gravitational loading, and some human activities such as hydraulic fracturing and 

drilling. Plate driving forces cause the motions of the lithospheric plates that form the crust of the 

Earth. Gravitational loading forces include topographic loads and loads owing to lateral density 

contrasts and lithospheric buoyancy. These are modified by the local processes such as volcanism, 

earthquakes (fault slip), and salt diapirism. Especially, the presence of salt significantly perturbs 

the stress distribution (Nikolinakou et al., 2012). On the other hand, human activities such as 

mining and fluid extraction or injection can also cause local stress changes.  

A comprehensive understanding of subsurface stress distribution is vital for understanding 

the Earth’s interior structures and tectonic movement history. Moreover, in the oil industry, 

significant oil reserves exist against and beneath the salt. Salt structures control the initiation, 

maturation, and trapping of hydrocarbons (e.g., Luo et al., 2012; Nikolinakou et al., 2012; Heidari 

et al., 2017; McBride et al., 1998). Understanding the stress and pore pressure near the salt is 

essential for the development of a geomechanical model that can guide well design as part of an 

integrated process to minimize cost and maximize safety.  

Widespread studies have been conducted and different measurement methods and theories 

or empirical relationships have been established for estimating the stress state in the Earth’s crust. 

The underground stress state can be described by three mutually orthogonal principal stress 

components. Most studies have been based on well logs and core plug measurements, which only 

provide accurate information at some specific locations (e.g., Fang et al., 2012, 2013; Ong et al., 

2016).  
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Seismic anisotropy has been increasingly used as a tool to investigate the Earth’s interior 

stress distribution. Differential principal stress in the subsurface can create anisotropy through 

some mechanisms such as the closure of aligned cracks and mechanical discontinuities present in 

the rock mass (e.g., Tromp et al., 2019; Verdon et al., 2008; Sayers and Dasgupta, 2019). 

Anisotropy provides a convenient way to monitor stress orientations in the crust, especially when 

there is a lack of geodetic observations (well logging, interferometric synthetic aperture radar, 

etc.). Thus, understanding how seismic anisotropy is affected by stress is important for predicting 

principal stresses from seismic data.  

Many approaches have been proposed to calculate the effect of stress-induced anisotropy 

on the seismic data (e.g., Gurevich et al., 2010; Fichtner et al., 2013; Collet et al., 2012). The 

effect of stress on the accuracy of seismic inversion has also been investigated (e.g., Tromp et al., 

2018). However, there are different causes of seismic anisotropy, including intrinsic anisotropy, 

layer- or fracture-induced anisotropy, and stress-induced anisotropy (Sarkar et al., 2003). 

Therefore, it is important to distinguish the contribution of the stress-induced anisotropy from total 

anisotropy (e.g., Wang et al., 2013; Wang et al., 2015; David et al., 2018; Asaka et al., 2016). On 

the other hand, by measuring the physical properties of rock samples under different stress, it is 

possible to explicitly extract the relationship between stress and anisotropy. In my research, I focus 

primarily on stress-induced anisotropy and its effects on seismic data to estimate anisotropy/stress 

parameters.  

1.2 Objectives 

The ultimate goal of my research is to establish a robust and practical method to predict 

principal stresses from seismic data. In this work, I examine the feasibility of predicting the 
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subsurface stress state from seismic data. To achieve this goal, I implement three processes to 

bridge the gap between seismic data and subsurface principal stress.  

The first step is to establish a relationship between stress and stiffness based on the physical 

properties of rock samples measured under different stress and stiffness. I assume that the 

subsurface media are tilted transversely isotropic (TTI). This may not be true in general but is quite 

close to the case of layered sedimentary rocks considered here. A transversely isotropic medium 

with a vertical symmetry axis (VTI) is a special case of TTI media. Here I illustrate my method 

based on VTI media. Laboratory measurements (Ranjpour, 2020) under each stress contain P- and 

S-wave velocities measured at vertical and horizontal directions, respectively, the P-wave velocity 

at an inclined angle, and the sample density. Based on these measurements, I will calculate the 

corresponding anisotropy under different stress. Note that the calculated stiffnesses are confined 

by the strain energy constraints, therefore, I employ the maximum likelihood method to obtain the 

most feasible stress-stiffness relationship. 

In seismic inversion workflows, forward modeling is the fundamental part and consumes 

most of the computation. However, the conventional finite-difference (FD)method utilizes regular 

grids to discretize model parameters, which leads to an inaccurate description of irregular model 

boundaries. This problem is called the stair-casing problem. On the other hand, stress variations 

around interfaces are crucial for drilling analysis that should not be confused with numerical 

modeling artifacts. To alleviate this problem, I use mesh-free discretization, which has been proved 

to be effective in dealing with the stair-casing problem and the overs-sampling problem (Fornberg 

and Flyer 2015). In this work, I implement acoustic TTI media seismic forward modeling with the 

mesh-free RBF-FD method.  
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In the final step, based on the stress-stiffness relationship obtained from lab measurements 

analysis, it is crucial to determine if seismic data are sensitive to subsurface stress. And if so, are 

they sensitive enough for predicting subsurface stress? Among the numerous inversion methods, 

the very fast simulated annealing (VFSA) is a global search method invented to avoid local minima 

(e.g., Sen and Stoffa, 1995; Datta et al., 2018). Therefore, I employ the VFSA to examine the 

sensitivity of seismic data to subsurface stress. Note that, the mesh-free RBF-FD method is used 

in the VFSA as the forward operator. The final results on some simple models demonstrate the 

feasibility of predicting subsurface stress from seismic data.  

1.3 Thesis organization 

This thesis has 5 chapters. Chapter 1 outlines the motivation for conducting this work, the 

overall objectives of this research, and the organization/outline presented within this thesis. 

Chapter 2 introduces seismic anisotropy and derives the stress-stiffness relationship through rock 

physics analysis of lab measurements. Chapter 3 illustrates the mesh-free RBF-FD method for 

seismic forward modeling and applies it to acoustic TI media modeling. Chapter 4 demonstrates 

the feasibility of inverting subsurface stress from seismic data via applying VFSA on some simple 

models. Chapter 5 concludes the thesis with a detailed summary of the outcomes achieved from 

the researches in Chapters 2, 3, and 4. 
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Chapter 2: Rock physics analysis 

In this thesis, I am focused on the two-dimensional (2D) stress state. In situ subsurface 

stress could be characterized by principal stresses, which represent the maximum and minimum 

normal stresses on a plane (when rotated through an angle) on which there is no shear stress. Under 

this condition, the maximum normal stress is referred to as the maximum principal stress. The 

magnitude and angle of the maximum principal stress could be the major factor that affects the 

rock physics properties, such as stiffness and density, therefore influencing the seismic response 

of the subsurface media.  

The lab measurements of one rock sample under different axial effective stress demonstrate 

an anisotropic behavior. Therefore, based on the TTI anisotropy theory, I derive the most likely 

stress-stiffness relationship from the lab measurements.  

2.1 Seismic anisotropy 

Anisotropy is the variation of a physical property depending on the direction in which it is 

measured; it is different from heterogeneity, which is the lack of spatial uniformity, the opposite 

of homogeneity. However, even though anisotropy and heterogeneity describe different 

phenomena, they are related because anisotropy arises from ordered heterogeneity that is smaller 

than the seismic wavelength , and every heterogeneous material is anisotropic to a degree at 

some scale .  

Anisotropy can be produced by multiple physical processes at different spatial scales. It 

exists from the microscale (crystal scale) to the macroscale, where it can be observed by seismic 

waves that have wavelengths up to hundreds of kilometers. Therefore, anisotropy may be strongly 

dependent on wavelength , as it results from the average properties of aligned or partially 

aligned heterogeneity, as shown in Figure 1.1.  
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Figure 2.1: The existence of anisotropy from the microscale to the macroscale: (a) The 

anisotropic olivine crystal. (b) The anisotropic aggregate is an example of re-crystallographic 

preferred orientation. (c) Cracks filled with fluid inclusions with a symmetry axis. (d) A finely 

layered transversely isotropic model with a vertical symmetry. (e) Seismic anisotropy at the 

lithosphere and asthenosphere boundary. (f) Radial anisotropy parameters in the upper mantle 

(Wang et al., 2013). 

 

Based on different mechanisms, seismic anisotropy is classified into three categories: 

Intrinsic Anisotropy: A solid has intrinsic anisotropy when it is homogeneously 

anisotropic down to the smallest particle size, which may be caused by lattice or crystallographic 

preferred orientation. This kind of anisotropy usually demonstrates a strong effect for short-

wavelength laboratory measurements, but it can also be observed when the preferred orientation 

has a scale of seismic wavelength, and otherwise, it will be hard to observe on long-wavelength 

seismic reflection data as the short-wavelength anisotropic effect is filtered, which is referred to 

as the upscaling process (e.g., Schoenberg and Muir, 1989; Wang et al., 2015).  

Layer- or fracture-induced Anisotropy: The presence of aligned cracks and fine layering 

is an important mechanism of seismic anisotropy (Schoenberg and Sayers, 1995). It is well known 

that the small-scale, or microstructural, factors include (Bandyopadhyay, 2009): (1) variations in 

the spatial distribution of grains and minerals; (2) grain morphology and (3) aligned fractures, 

cracks and pores, and the nature of their infilling material (e.g. clays, hydrocarbons, water, etc.). 
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During the deposition process, anisotropy is caused by the periodic layering associated with 

changes in sediment type, which produces materials of different grain sizes, and also by the 

directionality of the transporting medium which tends to order the grains under gravity by grain 

sorting. Fracturing and some diagenetic processes such as compaction and dewatering of clays, 

and alteration, etc. are post-depositional processes that can cause anisotropy (Maultzsch et al., 

2003). 

Stress-induced Anisotropy: Stress has the potential to affect most petrophysical rock 

properties. Schwartz et al. (1994) demonstrated two very different rock models, namely a cracked 

model and a weakly consolidated granular model, for stress-induced anisotropy. For the cracked 

model, stress-induced anisotropy is caused by the opening or closing of the compliant and crack-

like parts of the pore space due to tectonic stresses. For the weakly consolidated granular model 

(e.g., Oda et al., 1985; Arthur et al., 1977; Ouadfel and Rothenbug, 1999), stress-induced 

anisotropy is illustrated as the realignment of microscale particles, which is referred to as fabric 

(Kuhn et al., 2015) or platy grains (Bandyopadhyay, 2009). The cracked model suggests a greater 

velocity change in the direction perpendicular to the stress direction due to the closure of “soft 

cracks” normal to the direction of applied stress (Sayers et al., 2002). While the weakly 

consolidated granular model suggests the greater velocity change is parallel to the loading direction 

of stress because the fabric or platy grains are re-aligned perpendicular to the direction of applied 

stress (Adams et al., 2013). Here in this thesis, I derive the stress-stiffness relationship based on 

the rock physics analysis of measured seismic parameters under different vertical stresses.  

Of the three causes for seismic anisotropy, stress-induced is the most interesting one due 

to its potential to predict in situ principal stresses (e.g., Rasolofosaon, 1998; Crampin et al., 1984). 

However, it is a challenge to distinguish the stress-induced anisotropy from the intrinsic anisotropy 
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and the layer- or fracture-induced anisotropy. Some claimed that most conventional unfractured 

reservoir rocks, such as sands, sandstones, and carbonates, show very little intrinsic anisotropy in 

an unstressed state (Bandyopadhyay, 2009). However, in the presence of shale, clay, and fine 

periodic layers, the seismic response shows similar anisotropic behavior as the stress-induced 

anisotropy (Zheng et al., 2009). The magnitudes of different seismic anisotropy remain to be 

investigated. A priori information and geological knowledge can be used to determine possible 

causes of anisotropy. 

2.2 Rock physics modeling  

It is possible to establish a relationship between stress and stiffness based on the physical 

properties of rock samples measured under different stress and stiffness (Spikes, 2014). To build 

the rock physics model, firstly, I assume that the subsurface media are transversely isotropic (TI), 

which may not be true in general but is quite close to the case of layered sedimentary rocks. A 

transversely isotropic medium with a vertical symmetry axis (VTI) is a special case of TI media. 

When VTI media is rotated, it is called tilted transversely isotropic (TTI) media, and the rotation 

angle is referred to as the tilt angle. In my work, I assume that the anisotropy is induced by stress. 

As shown in Figure 2.2 (a) (Adams et al., 2013), platy clay grains have a range of orientations. In 

this case, it is assumed to be isotropic or very weakly anisotropic. However, under uniaxial strain 

conditions, porosity has decreased following uniaxial compaction and there are alignments of the 

platy clay grains parallel to the horizontal axis, as shown in Figure 2.2 (b) and mark by red boxes. 

Velocity in the re-alignment direction is greater than that is perpendicular to the re-alignment 

direction. Therefore, the rock becomes anisotropic with a symmetric axis parallel to the direction 

of applied stress, which means it is a TI media with the tilted angle parallel to the direction of 

applied stress. 
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(a)                                                                             (b) 

Figure 2.2: Illustration of the stress-induced anisotropy. Back scattered electron microscopy 

(BSEM) images of Resedimented Boston Blue Clay loaded to different vertical effective stress 

(Adams et al., 2013).  

 

When considering anisotropy in the coordinates of the stress direction, the TI media is 

reduced to VTI media. Therefore, I will carry out my derivation based on VTI media theory. 

There are plenty of researches about the rock physics behavior under variant stress (e.g., 

Abdulhadi, 2009). Among them, Ranjpour (2020) carried out laboratory measurements on a 

mudrock specimen from Eugene Island – Gulf of Mexico. Mudrocks are primarily composed of 

connected pores filled with fluid, platy clay minerals, and quasi-spherical silt grains (commonly 

quartz). In this experiment, the rock was loaded with different vertical effective stress under 

uniaxial strain. Rock physical properties were measured under 8 vertical stress from 2.8 MPa to 

9.8 MPa. These measured properties include: 1) vertical and horizontal compressional wave 

velocities, 2) vertical and horizontal shear wave velocities, 3) vertical compressional wave velocity 

at an inclined angle; 4) and the sample density. Those properties are displayed in Figure 2.3, where 

VpH is the horizontal compressional wave velocity, VpΦ is the inclined compressional wave 

velocity, VpV is the vertical compressional wave velocity, VsHH is the 90 degrees incident shear 

wave velocity, VsVV is the 0-degree incident shear wave velocity. As shown in Figure 3.3, velocities 

vary under uniaxial strain with increasing vertical effective stress. The velocity changes of 
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different directions demonstrate anisotropic behavior, which indicates the presence of stress-

induced anisotropy. Moreover, the seismic velocity is stress-dependent and the anisotropy is 

increasing with stress. The lab measurements demonstrate a greater velocity in the direction of 

perpendicular to the stress direction, which could be explained by the platy grain re-alignment 

model described in Figure 2.2.  

Unlike the theoretical tock physics models described in the previous paragraphs, I derive 

an empirical relation between anisotropy parameters and vertical stress, which is described below.  

 

 

Figure 2.3: Mean velocity measurements as a function of vertical effective stress for uniaxial 

strain conditions (Ranjpour, 2020). 

 

2.2.1 Group velocity to phase velocity transformation  

There are at least two kinds of velocities to characterize seismic wave propagation in 

anisotropic media: group velocity and phase velocity (Helbig, 1994). The group velocity of a wave 

is the velocity with which the overall envelope shape of the wave's amplitudes, known as the 

modulation or envelope of the wave propagates through space. The phase velocity of a wave is the 

rate at which an individual plane wave or frequency propagates in any medium. This is the velocity 

at which the phase of any one frequency component of the wave travels. For such a component, 

any given phase of the wave (for example, the crest) will appear to travel with the phase velocity. 
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In a lossless isotropic medium, group velocity and phase velocity are identical. However, in 

anisotropic media, the two velocities are different. For VTI media, the illustration of the 

relationship between group and phase velocities is shown in Figure 2.4 (Tsvankin, 2001).  

 

Figure 2.4: Illustration of the relationship between group and phase velocities in VTI media 

(from Tsvankin 2001. 

 

The velocities measured in the laboratory such as those in Ranjpour’s (2020) experiment 

are all group velocities. In general, stiffness is calculated by phase velocities rather than group 

velocities. Under the VTI media assumption, at propagation angle equals 0 degrees or 90 degrees, 

phase velocities and group velocities are identical. However, the group compressional wave 

velocity VpΦ at inclined angle Φ should be transformed to phase velocity for stiffness calculation. 

Based on the VTI assumption, the group velocities are transformed to phase velocities by the 

following equation (Dellinger and Vernik, 1994): 
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Note that in Equation (2.1),  phaseV  and  groupV  are the phase and group velocities of the VTI 

media, respectively.   and   are the phase and group angles, respectively. The derivative of 
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group velocity with respect to the group angle   is used for calculation. Therefore, it is required 

to derive a continuous and differentiable function of the group velocity of group angle  ; here in 

those lab measurements,   equals 28 degrees. 

Kumar et al., (2004) approximated a group velocity as a function of group angle for VTI 

media, which is expressed as: 

 
 

 

2 2 4

 1 2 3

 1

2 4

2  

3  

( ) cos cos ,

01 1 1

1 cos cos ( ) .

1 0 0 90

group

group

group

group

V a a a

Va

a inv V

a V

  

  







   


          
      

           

 (2.2) 

By substituting lab measurements   0groupV   = VpV,   90groupV   = VpH,  ( )groupV   = VpΦ, 

into Equation (2.2), I obtain the analytical expression of the group velocity function of the group 

angle. Then, by substituting the group velocity function into Equation (2.1), I have the function of 

phase velocities of different angles.  

 

2.2.2 Phase velocity to stiffness mapping  

In VTI media, the relationship between the stiffness and phase velocities are given by 

(Tsvankin, 2001): 
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where the phase angle   is the transformed phase angle, which is correspondent to the inclined 

group angle  . By substituting the phase velocities obtained from Equations (2.1) and (2.2) into 

Equation (2.3), I obtain the stiffness values. 

 

2.2.3 Uncertainty in measurements and strain energy constraints  

Besides the direct calculations of the stiffness, I need to incorporate uncertainty because 

errors are inevitable in lab experiments. Second, strain energy constraints should be satisfied 

otherwise the medium cannot be physical. The strain energy constraints are (Yan et al., 2016): 
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. (2.4) 

Because of the lack of repeated measurements, I assume a 5% uncertainty for all 

measurements. Namely, for each vertical stress, all five measured velocities have 5% uncertainty 

in their values. Moreover, for the compressional wave velocity VpΦ that is not measured at 0 nor 

90 degrees, I assume its group angle Φ also has a 5% uncertainty. Take the compressional wave 

velocity measurements at vertical stress equals 4.8 MPa for example, the three blue dots, in Figure 

2.5, represent the measured group velocities. For the group velocities at 0 and 90 degrees, the 

group velocity has a 5% uncertainty in its velocity value, indicated by the blue vertical bars. For 

the group velocity measured at angle Φ, which is 28 degrees, the measurement has a 5% 

uncertainty in the measured value of the velocity as well as a 5% uncertainty in the propagation 

direction, indicated by the vertical and horizontal bars. Note that the value of the group angle Φ is 

relatively small, thus the horizontal bar which represents measurement angle uncertainty is not 

obvious in Figure 2.5.  
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Assuming a bivariate distribution of the possible value of the group velocity and angle 

within the error bar, I obtain a series of possible group velocity values. Then I transform the 

possible group velocity combinations to phase velocity based on the theory described in the 

previous section. Based on the new phase velocities, I calculated the stiffness and check the strain 

energy constraints described in Equation (2.4). Only those that satisfy the constraints are accepted. 

In Figure 2.5, I demonstrate the analysis for lab measurements obtained at vertical stress equals 

4.8 MPa. The red dots indicate the possible value of the measurements. The thin solid lines are 

possible group velocity functions. Compared to the curves in Figure 6 and the one group velocity 

curve of uniaxial effective stress at 4.8 MPa, Figure 2.5 demonstrates all possible group velocity 

curves that result in stiffness values that satisfy the strain energy constraints.  

 

Figure 2.5: Possible group velocity curves.  

 

Each group velocity curve in Figure 2.5 represents a set of stiffness. All possible stiffness 

values are demonstrated in Figure 2.6, where the error bar indicates the stiffness range resulting 



 15 

from an assumed 5% lab measurement uncertainty. The dots represent possible stiffness values 

that satisfy the strain energy constraints.  

 

Figure 2.6: Possible stiffness values for the rock sample under a 4.8 MPa vertical stress.  

 

In the same manner, I introduce the uncertainty to all the lab measurements obtained under 

different uniaxial effective stresses. The final possible stiffness for all stresses is displayed in 

Figure 2.8.  

 

Figure 2.7: Possible stiffness values for all different stress conditions.  

 

In the next step, I apply the maximum likelihood method to obtain a plausible stiffness 

estimation. More specifically, take the C11 from Figure 2.6 as an example. The most likely value 
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is the average of all possible values, which are marked as dots within the error bar. Finally, the 

most likely stiffness results are shown in Figure 2.8 as the solid lines. The dashed lines in Figure 

2.8 indicate the stiffness values calculated directly from the measure group velocities without 

applying the strain energy constraints nor the maximum likelihood method. The stiffness values 

represented by the dashed lines are not realistic because of the non-physical trend in C13. 

 

Figure 2.8: Stiffness as a function of stress. Dashed line: direct calculation from lab 

measurements. Solid line: the most likely results.  

 

2.2.4 Relating stress to stiffness and anisotropy parameters 

To obtain the relationship between stress and stiffness, I employ the power law to the 

stiffness in the form: v

ca b  , where a, b and c are the fitting coefficients. By using the least-

squares optimization, I obtain these coefficients for all the 5 stiffness curves. The fitting results 

are shown in Figure 2.9.  
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Figure 2.9: Power-law fitting results of stress to stiffness relationship. 

 

Thomsen parameters, which are a straightforward way to describe seismic anisotropy, are 

given by (Thomsen, 1986): 
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 (2.5) 

It is now well established that stress is a major factor that influences seismic velocities 

including seismic anisotropy. In order to study this problem, uniaxial stress or triaxial stress 

experiments are generally conducted. Here, I use a set of data from the vertical stress experiment 

(data courtesy from Tufts University) to demonstrate the workflow of relating stress to stiffness or 

anisotropy.  
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2.3 Calculating stiffness parameters for a 2D synthetic model 

Ranjpour’s (2020) lab measurements were conducted under different vertical stress while 

strain variation is uniaxial. Here I assume that under the maximum effective principal stress, 

subsurface media demonstrate the same uniaxial strain behavior. Thus, the vertical stress used in 

this laboratory experiment is assumed to be identical to the maximum effective principal stress. 

Based on the stress-stiffness relationship obtained from rock physics analysis of the lab 

measurements, I calculate the anisotropy model, shown in Figure 2.10 (b), from a synthetic salt 

basin stress model (Nikolinakou et al., 2018).  

 

 

(b)                                                                             (b) 

Figure 2.10: (a) Maximum effective principal stress '

1  of the synthetic salt basin stress model 

(Nikolinakou et al., 2018). (b) anisotropy model (horizontal compressional wave velocity) 

calculated from the stress model. 

 

Furthermore, based on the stiffness results and the Thomsen parameter expressions shown 

in Equation (2.5), the anisotropy parameters of the Maria model could be readily calculated. The 

results are shown in Figure 2.11. The tilt angle demonstrated in the bottom right of Figure 2.11 is 

set to be equal to the angle of the maximum effective principal stress. 
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Figure 2.11: Anisotropy parameters for synthetic salt basin stress model of Nikolinakou et al., 

2018. 

 

2.4 summary 

In this chapter, I derive a relationship between stiffness coefficients and stress and apply 

that relation to derive an anisotropic seismic model from a synthetic stress model of Nikolinakou 

et al. (2018). The lab measurements demonstrate a greater velocity perpendicular to the direction 

of applied stress, which is explained by the platy clay grain re-alignment process.under the 

assumption that maximum effective principal stress is related to transversely isotropy (TI) type of 

anisotropy. With the basic concepts about TI media, I analyze the lab measurements from the rock 

sample under different vertical stresses and relate those stresses to stiffnesses. Finally, I apply the 

stress-stiffness relationship to a 2D synthetic stress model and obtain the corresponding stiffness 

model, which is used for further analysis described in the following chapters.  
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Chapter 3: Mesh-free seismic forward modeling  

Conventionally, the finite-difference (FD) method employs a regular mesh (or uniform 

grids) to discretize model parameters, which, however, lacks the flexibility for various resolutions.  

Thus the detailed structures in a model can only be approximated using a large number of grid 

points. This oversampling problem can be alleviated using a mesh-free discretization, where 

scattered nodes are distributed suitably with respect to model parameters by changing nodal 

density accordingly (Fornberg and Flyer 2015). As a consequence, the number of nodes in the 

computational domain is reduced significantly, which saves significant computational costs. In 

other words, numerical simulation of wave propagation using the mesh-free finite-difference has 

the advantages of high computational efficiency and accurate description of irregular boundaries. 

In addition, this scheme is good at simulating wave propagation in models with large velocity 

contrasts and complicated model interfaces, such as the salt model.  

In this chapter, I explain the discretization scheme of the mesh-free method and the RBF-

FD method for calculating spatial derivatives in wave equations. Then, I apply the mesh-free 

method for acoustic TI media seismic wave simulation, which later will be used for VFSA to test 

the sensitivity of seismic inversion for stress. 

3.1 Mesh-free discretization 

Discretizations of model parameters have traditionally relied on structured meshes. 

Requirements for geometric flexibility, both to conform to irregular geometries and to achieve 

local refinement in critical areas, have led to increased use of unstructured meshes, often in the 

form of triangular/tetrahedral elements. In contrast, RBF-generated finite differences (RBF-FD) is 

a recent and altogether mesh-free approach. It makes it easy to combine geometric flexibility with 

high levels of accuracy and computational efficiency. It uses scattered nodes with spatially varying 
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density, without forming any associated ‘elements’ or connectivities between nodes. A key to a 

successful implementation of RBF-FD methods is being able to very rapidly generate node layouts, 

as needed for applications such as real-time weather forecasting, tsunami modeling, and seismic 

imaging. Fornberg and Flyer (2015) proposed the advancing front method for node placing in the 

mesh-free discretization. The primary advantages of this algorithm are computational speed, 

algorithmic simplicity, and the quality of the generated node distributions. I will not illustrate the 

detail of implementing the mesh-free discretization. Readers are referred to Fornberg and Flyer's 

(2015) paper. In this section, I will illustrate the major advantages of the mesh-free method 

compared to the conventional FD method. 

 

3.1.1 Accurate representation of irregular interfaces 

As mentioned earlier, the conventional FD method discretizes the computation domain 

with regularly distributed grids, as shown in Figure 3.1. The red cross indicates the FD stencil used 

to calculate spatial derivatives of wave equations. Figure 3.2 (a) demonstrates a two-layer model 

with an irregular interface, which is represented as the dashed line. However, the conventional FD 

method cannot accurately describe an irregular interface, as it is represented by the thick red 

polyline. The problem that the model interfaces do not align with the Cartesian grid is called the 

stair-casing problem, which is a non-neglectable source of resolution error.  

Figure 3.2 (b) shows the mesh-free discretization scheme for the two-layer model. The 

irregular interface is accurately described by the unstructured nodes. Figure 3.2 demonstrates that 

the mesh-free discretization scheme avoids the stair-casing problem by flexibly distributing nodes 

on the irregular interfaces. 
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Figure 3.1: Conventional finite difference discretization.  

 

 

(a) 
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(b) 

Figure 3.2: Discretization schemes for a two-layer model with an irregular interface. (a) 

conventional finite difference method. (b) mesh-free method.  

 

3.1.2 Adaptive distribution of mesh-free nodes 

For heterogeneous models, different resolutions are required for different parts of the 

model to adequately discretize them. For example, a lower resolution is required for a high-

velocity zone while a higher resolution is required for a low-velocity zone. However, in the 

conventional FD method, the meshing interval is chosen globally and is constant throughout the 

computation domain. The constant resolution for different parts of a model leads to the redundancy 

of modeling accuracy, also called the over-sampling problem. On the other hand, mesh-free 

discretization is a scheme that allows local modification of node configurations by simply placing 

more nodes in regions where needed and removing them from regions that are already 

overpopulated. Moreover, this scheme can flexibly distribute nodes without a computationally 

expensive meshing process. Therefore, mesh-free discretization can save plenty of nodes through 

distributing nodes adaptively to irregular boundaries and model parameters (Li et al., 2017). This 

means, in seismic wave simulation using the mesh-free discretization, for lower velocity areas or 

heterogeneous bodies such as multi-scale structures or interfaces with high contrast between 
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physical parameters, node distance could be small enough to assure sufficient sampling to capture 

the model features.  

In my work, the node distance is governed by a linear relationship with respect to the local 

velocity. The equation is expressed by: 

 max min
min min

max min

( )
v v

r v v r
r r

， (3.1) 

where maxv  and minv  are the maximum and minimum velocities, respectively. maxr  and minr  are 

the maximum and minimum node distances, respectively.  

Figure 3.3 displays a heterogeneous model with an irregular interface and an elliptical low-

velocity anomaly under the interface. Figure 3.4 is the mesh-free discretization of this model. Note 

that this model is non-rectangular, and the irregular boundaries are discretized by mesh-free nodes. 

Figure 3.5 shows the nodal distributions of the red square regions shown in Figure 3.4. These 

figures demonstrate the flexibility of the mesh-free discretization scheme and its accuracy in 

describing irregular interfaces. As shown in Figure 3.4, the node distances in different velocity 

zones are linearly related to the local velocities. Figure 3.5 demonstrates that the mesh-free method 

could accurately describe the non-Cartisen interfaces. This example shows that compared to the 

conventional FD method, the mesh-free discretization method has the advantages of overcoming 

the stair-casing problem and the over-sampling problem. 
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Figure 3.3: A heterogeneous model with a piecewise smooth boundary which is combined by a 

flat edge and a curved edge. The model contains an irregular interface and an elliptical low-

velocity anomaly under the interface. The solid black line represents the piecewise boundary. (Li 

et al., 2017) 

 

 
Figure 3.4: Overall nodal distribution for the heterogeneous model shown in Figure 3.3. The 

dashed squares indicate specific regions where scattered nodes are placed to fit the boundary ((a) 

and (b)) or the model structures ((c) and (d)). Their corresponding nodal distributions in zoom 

view are shown in Figure 3.5. (Li et al., 2017) 

 

 

Figure 3.5: Nodal distributions of the dash square regions shown in Figure 3.4. (Li et al., 2017) 
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3.2 Mesh-free discretization RBF-FD anisotropy seismic modeling 

3.2.1 RBF-FD for calculating spatial derivatives 

In the conventional FD method, the stencil for calculating spatial derivatives is shown in 

Figure 3.1 as the red cross. In the mesh-free method, the RBF-FD method is utilized to approximate 

the spatial derivatives. Figure 3.6 is an illustration of the quasi-uniform nodal distribution based 

on mesh-free discretization. As shown in this figure, the spatial derivatives at the red node are 

evaluated through the values on the nearby blue nodes.  
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Figure 3.6: Illustration of quasi-uniform nodal distribution. The small open circles indicate the 

FD stencil with M = 30, in which the little red dot represents the center node of the stencil. 

 

In mesh-free discretization, the spatial derivatives need to be taken special care of, because 

the stencil used to compute derivatives is usually not regular. Many techniques have been proposed 
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to calculate partial derivatives over scattered nodes. RBF-FD is one such method, which has gained 

significant popularity due to its efficiency and computational speed as compared to other mesh-

free methods. Recently, the combination of polyharmonic spline RBFs augmented with high-order 

polynomials (PHS+Ploy) in the RBF-FD formulation has demonstrated several merits such as 

significant robustness even for single-sided stencils, simple formulation free from tuning the shape 

parameter, and the potential of maintaining the accuracy for large-sparse linear systems (e.g., 

Fornberg and Flyer, 2015; Bayona et al., 2017, Mishra et al., 2019). The order of convergence for 

the PHS+Poly RBF-FD is mostly dependent on the highest degree of the augmented polynomials, 

which also dictates the stencil size. This feature makes it possible to adapt different stencil sizes 

for different fill distances while keeping the order of convergence consistent for the entire 

computational domain. Different variations of RBF-FD methods have been recently shown to work 

effectively for seismic modeling (e.g., Martin et al., 2015; Berljavac et al., 2020). 

The RBF-FD is a method that the approximation of an operator L (such as the first-order 

or the second-order derivatives) at the central node xc is obtained as a weighted sum of function 

values on the central node and its neighboring (M - 1) nodes, which can be expressed as (Martin 

et al., 2015): 

  
1

( ) ,
c

n

i ix x
i

Lf x w f x




  (3.2) 

where ai is the weighted coefficient of the ith node and ϕ(|| x – xk||), k = 1, 2, 3…, M are radially 

symmetric functions. Here I employ the PHS-RBF, namely ϕ(r) = r2m+1, where m, an odd number 

greater than 3, is the power of the PHS. By solving Equation 3.2, the weight ai for approximating 

operator L can be obtained. Moreover, by including additional polynomials into RBF-FD and 

adding matching constraints, the RBF-FD can defeat the stagnation error in convergence rate 

because the order of convergence is determined by the highest degree of the augmented 



 28 

polynomials. For instance, when including Taylor monomials (1, x, y), the matrix form of equation 

(3.2) is (Larsson et al., 2013): 

(3.3) 

For a certain partial derivative operator L, solving Equation (3.3) yields the correspondent 

weights, and then disregards the auxiliary weights a1
*, a2

*, and a3
*. The results ai, where i = 1, 2, 

3…, M, corresponding to the ith nodes in the stencil, can be used as weights to compute the partial 

derivative. 

 

3.2.1 RBF-FD for mesh-free modeling of acoustic TI media 

Seismic inversion is a technique used to obtain high-quality subsurface properties. Despite 

the elastic nature of the Earth, the anisotropic acoustic wave equation is typically used to model 

wave propagation in seismic inversion. This simplification is essential for being efficient and can 

avoid cross-talk and other multi-parameter elastic seismic inversion. Duveneck et al. (2008) and 

Xu et al. (2016) proposed a two dimensional (2D) an accurate acoustic TI media wave equation: 
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where the interim terms are expressed by: 
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 (3.5) 

In Equations (3.4), UH and Uv are the particle displacements in horizontal and vertical 

directions, respectively. VpH, ԑ and δ are the Thomsen parameters that characterize media 

anisotropy. In Equation (3.5), θ and φ are the tilted and azimuth angles of the TI media, where θ 

is assumed to be identical to the angle of the maximum effective principal stress, φ is 0 for 2D 

media.  

 

3.3 Numerical example of mesh-free discretization RBF-FD anisotropy seismic modeling 

Here I apply the mesh-free RBF-FD seismic forward modeling for the acoustic TI media 

shown in Figure 2.11. Figure 3.7 are the results for isotropic media modeling and anisotropic 

media, respectively. As shown in Figure 3.7, the source is placed in the center of the model. And 

the nodes are adaptively distributed according to local velocity. Those results prove the validity of 

acoustic anisotropic modeling with the mesh-free RBF-FD method.  

 

 

(a) 
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(b) 

 

(c) 

Figure 3.7: Mesh-free RBF-FD modeling results. (a) isotropic model correspondent to the 

synthetic salt basin. (b) isotropic media modeling snapshot. (c) acoustic TI media modeling. 

 

Then I carry out another seismic modeling on this model, where I put the source at the 

center on the surface and the receiver line is buried 200 m below the surface. Figure 3.8 shows the 

shotgathers obtained from mesh-free RBF-FD simulation for isotropic (a) and the anisotropic cases 

(b). Figure 3.9 displays the difference between the two shotgathers. These results show the effect 

of stress on seismic response. 
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(a)                                                               (b) 

Figure 3.8: Mesh-free RBF-FD modeling shotgathers. (a) isotropic media. (c) acoustic TI media. 

 

 
Figure 3.9: Difference between shotgathers of isotropic media and acoustic TI media. The 

difference between direct waves before 700 ms is caused by numerical dispersion. The difference 

between reflected waves is caused by stress-induced anisotropy. 
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3.4 Summary 

In this chapter, I illustrate the advantages of mesh-free RBF-FD seismic modeling, which 

are an accurate representation of irregular interfaces and flexible nodal distribution. Then I apply 

this method to acoustic TI media simulation. At last, I compare the results of the isotropic and 

anisotropic simulations. The difference indicates the effect of stress on seismic response.  
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Chapter 4: Seismic inversion for stress 

In Chapter 2, I derive a relationship between stress and stiffness using laboratory 

measurements of one rock sample. However, before applying seismic inversion for stress, it is 

important to investigate the feasibility of inverting for stresses from reflection seismic data. In this 

chapter, I test if it is possible to invert for stress information from seismic data based on the stress-

stiffness relationship described in Chapter 2. 

 

4.1 Seismic inversion  

Despite the elastic nature of the Earth, the acoustic wave equation is typically used for 

seismic inversion. In this work, in order to reduce the complexity of stress inversion, I will focus 

on acoustic anisotropic media, where anisotropy is induced by stress, and the stress stiffness 

relationship is assumed to be identical to the one obtained from laboratory measurements. 

Therefore, anisotropic parameters of the acoustic TI media can be expressed by the magnitude and 

angle of the maximum effective stress. This chapter introduces a new acoustic TI wave equation, 

where, compared to the conventional ones, the seismic parameters are substituted by the magnitude 

and angle of the maximum effective stress. This makes it convenient to directly invert for stress 

information from the seismic records. Furthermore, in order to test the sensitivity of this seismic 

inversion for stress, I employ a global optimizing method to avoid being trapped in local minima, 

and I test this inversion on some simple models. 
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4.2 Stress inversion from seismic data 

4.2.1 Stress based-acoustic TI media wave equation  

Based on the stress-induced anisotropy theory, I assume that the tilt angle is identical to 

the angle of the maximum effective stress. Moreover, according to the stress stiffness relationship 

obtained from Chapter 2, the Thomsen parameters can be expressed by the magnitude of the 

maximum effective principal stress. Therefore, the acoustic TI wave Equation (3.4) can be re-

written as: 
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 (4.1) 

where a, b, and c with the subscripts are the coefficients obtained from power-law fitting of the 

stress to stiffness, shown in Figure 2.9. Note that the parameter δ is not substituted by the stress 

variable, because δ is a very small value and insensitive to seismic inversion. In practice, δ is 

obtained from well logging interpolation and is kept constant during seismic inversion.  

 

4.2.2 Very fast simulated annealing 

The goal of seismic inversion is to estimate subsurface media parameters from observed 

seismic data. Based on the stress-stiffness relationship, I develop a simplified stress estimation 

workflow as shown in Figure 4.1. In this workflow, synthetic data are generated from an assumed 

model and then compared with the observed data. If the misfit between the synthetic data and the 

observed data is very small, the assumed model is accepted as the solution. Otherwise, the model 

is updated and the synthetics are recomputed and compared to the observations again. This loop is 

repeated until the misfit reaches an acceptable minimum value or the maximum iteration is 
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reached. The forward modeling part is carried out via the mesh-free RBF-FD method. The most 

crucial part of this workflow is updating the stress model, also called optimization.  

Optimization methods are broadly classified into two categories: local optimization and 

global optimization. The local optimization methods utilize local information such as the local 

gradient of the data misfit to compute the update. Local optimization methods are widely used due 

to their higher convergency rate, but they suffer from being trapped in local minima (Yao et al., 

2018). On the other hand, the global optimization methods use global information to compute the 

model update. Their convergency rate is generally much lower than the local optimization 

methods. The global optimization methods’ low convergence rates make it hard to deal with very 

large models, especially in 3D.  

 

Figure 4.1: simplified workflow of seismic inversion for stress. 

 

The simulated annealing algorithm (SA) is a global search method invented to avoid local 

minima. It was first proposed by Kirkpatrick et al. (1983) as it is analogous to the natural process 

of crystal annealing when a liquid cools to a solid state. The main shortcomings of this algorithm 
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are its slow convergence and difficulty in the tuning of its parameters. It is claimed that newer 

versions of fast SA (FSA) and very fast SA (VFSA) have resolved these problems (e.g., Sen and 

Stoffa, 1995; Datta et al., 2018).  

Very fast simulated annealing (VFSA) (Ingber and Rosen, 1992; Sen and Stoffa, 2013) is 

a global optimization algorithm inspired by the physical process of annealing. It does not require 

a good starting model to converge to the global minimum and is ideally able to start from any 

random position in the search space.  

The VFSA, like the physical process of heat bath annealing, aims to minimize the energy 

(error) of a system. At every iteration, a dimensionless parameter T, which is called the 

temperature, dictates the perturbation and acceptance of the candidate models. The major 

improvement in VFSA compared to SA is that the new model is drawn from a temperature-

dependent Cauchy-like distribution centered on the current model, which is described in Equations 

(4.2), (4.3), and (4.4). This method usually starts with a high temperature evaluating a random 

model and perturbs it using a temperature-dependent Cauchy distribution given by 

 ,( )
new old i max min

m m y m m    (4.2) 

where mold is the previous candidate model, here, the model represents target subsurface seismic 

parameters, here it refers to the magnitude and angle of the maximum effective principal stress. 

mnew is the new candidate model, mmax is the max value of the search space, mmin is the minimum 

value of the search space, and yi is given by 

 
2 1 ,( ) [ 1( )0.5 1)]u

i i i
y sgn u T T      (4.3) 

where Ti is the temperature at the ith iteration, sgn is the signum function, and u is a random number 

in (-1,1). This perturbation function in equation (4.4) is what makes VFSA “fast” compared to 

conventional simulated annealing (SA) (Metropolis et al., 1953). Although the perturbation 
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function in SA chooses new models from the entire search space at every iteration, VFSA has a 

Cauchy-like distribution that shrinks the perturbation amplitude as the temperature reduces. The 

cost function value of the new model Enew here is the difference between the synthetic data and the 

observed data, and mnew is accepted as the solution if Enew ≤ Eold, where Eold is the cost function 

value for the old model. When Enew ≥ Eold, mnew is accepted with a probability Pi given by 

 
,i

E

T

i
P e





 (4.4) 

where Pi is the probability of accepting worse solutions, ΔE= Enew − Eold, is the difference in cost 

between the current and perturbed model, and Ti is the temperature at the ith iteration (Metropolis 

et al., 1953). 

The probability of accepting worse solutions using this criterion gradually diminishes with 

decreasing temperature meaning that the acceptance of worse solutions reduces by the decreasing 

temperature. This enables model exploration at higher temperatures and gradually switches to 

model exploitation as the temperature reduces. The steps are repeated at each iteration with 

lowering temperatures to obtain an optimum model. To ensure that the algorithm performs optimal 

model exploration, a few forward evaluations are performed in the same iteration/temperature. The 

total number of forward evaluations is given by the product of the number of iterations and runs 

per temperature.  

Given its advantages in avoiding local minima and relatively faster convergence rate and 

more stable convergence path, VFSA is used in this work to compute the model update. 
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4.3 Sensitivity analysis of seismic inversion for stress 

In the sensitivity analysis experiments reported here, the observations are generated from 

known models. These synthetic data are used in VFSA which starts with a random model to 

investigate if the algorithm can find the known true model. 

Here, I utilize a two-layer model and a model with continuous change in stress, to test the 

feasibility of stress inversion from seismic data. As shown in Figure 4.2, the two-layer model 

consists of two homogenous layers each with a different stress magnitude and direction. On the 

other hand, the stress increases with depth using a linear trend. While model 1 contains reflections 

from the discontinuity, model 2 contains turning ray arrivals. Note that complex structural models 

can be built using these two simple models as bases. 

 

 

Figure 4.2: Illustration of how to represent a complicated model with a sum of simple models. 
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First, I examine the sensitivity of changes in stress values in seismic data. For this purpose, 

I generate a series of synthetic shotgathers with changing stress values. I carry out a sensitivity test 

using these gathers as follows: 

● Use the shot-gather from model 1 or model 2 as the observation (field seismic data). 

● Compute the mean square difference (misfit) between each of the shot-gathers (computed 

for different stress models) and the observation. 

● Generate a contour plot of the difference. 

 

4.3.1 Model 1: Two-layer model with a discontinuous change of stress 

Figure 4.3 demonstrates the layout of the two-layer model, where the stress parameters are 

known. The only two unknowns are the magnitude and angle of the upper layer stress. The search 

ranges of the upper layer stress parameters are shown at the bottom of Figure 4.3. Figure 4.4 

displays the shotgathers of the true model, the starting model, and their difference. The shotgathers 

of the true model is referred to as the observation, as it is regarded as the observation from the field 

survey. I generate a contour plot of the difference between the synthesized seismic data and the 

observation. Each cell on the contour map represents the value of the root mean square difference 

between the observation and the seismic data obtained from one stress state. As shown in Figure 

4.5 (a), the red ellipse marks the difference between the seismic data, which is generated by 

assuming the upper layer stress state to be 3.84 MPa and 27 degrees, and the observation. Figure 

4.5 (a) also indicates the true stress state, which is located at the cell with a minimum error value. 

However, the exhaustive search is not practical nor accurate (the true model is not necessarily 

located at the sampling point). To efficiently search for the true stress state, I employ the VFSA 
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method. The error as a function of iteration is displayed in Figure 4.5 (b). The red dots in Figure 

4.5 (a) and (b) are one-to-one mappings, which indicates the convergency path of the VFSA 

method. Figure 4.5 indicates that the exhaustive search took 400 evaluations, while the VFSA 

converged to the true value at around 30 iterations. Moreover, the exhaustive search is not practical 

nor accurate, because the true model is usually not on the sampling point. Note that, in this simple 

model exercise, due to the simplicity of this model, only one shot gather is used. However, in 

multi-shot cases, this method should be paralleled to use all shotgathers. 

 

Figure 4.3. The two-layer model with fixed lower layer stress. 
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(a)                                           (b)                                    (c) 

Figure 4.4. (a) Seismic data from the true stress state (observation). (b) seismic data from a 

different stress state (guess). (c) the difference between the two seismic data. 

 

 

(a)                                                                              (b) 

Figure 4.5. Results for the two-layer model inversion. (a) the contour of the seismic data 

difference with the observation. (b) error function of using the VFSA method. 

 



 42 

4.3.1 Model 2: One-layer model with a continuous change of stress 

Next, I carry out the exercise on the continuous model, where the stress varies linearly with 

respect to depth, as shown in Figure 4.6. So the unknowns are the starting stress, the stress value 

at the top of this model, and the stress gradient, the stress change per unit depth. Here I set the 

reference model with starting stress of 2.8 MPa and the stress gradient to be 0.01 MPa/m. The tilt 

angle is fixed to be 30 degrees for this TI media. I conduct the same seismic inversion as for the 

two-layer model.  

Figure 4.7 demonstrates the contour of the root mean square difference between the 

synthesized seismic data and the observation for the continuous model. The difference between 

Figures 4.5 and 4.7 is that in Figure 4.7 (a), the x- and y-axis are the starting stress and the stress 

gradient. Figure 4.7 (b) shows the error curve of the VFSA for this continuous model. Figure 4.7 

(a) indicates for stress inversion of the starting stress and the stress gradient, the error contour is 

flatter than the one in Figure 4.5 (a). Therefore, it takes more iterations to converge to the final 

result, as shown in Figure 4.7 (b).  

 

Figure 4.6: The continuous model with unknown starting stress and stress gradient. 
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(a)                                                                              (b) 

Figure 4.7. Results for the continuous model inversion. (a) the contour of the seismic data 

difference with the observation. (b) error function of using the VFSA method. 

 

4.4 Summary  

In this chapter, I have demonstrated the feasibility of predicting stress from seismic data 

through synthetic experiments on two simple models. Moreover, complex structural models can 

be built using these two simple models as bases, as shown in Figure 4.2. Therefore, these works 

demonstrate the feasibility of seismic data-based stress prediction.  

  



 44 

Chapter 5: Conclusions and future work 

5.1 Conclusions  

First, this thesis analyzes the lab measurements to obtain the maximum likelihood stress to 

stiffness relationship. In this step, I assume the subsurface media to be transversely isotropic, then 

transform the measured group velocities to the phase velocities to calculate stiffness. Next, I utilize 

the maximum likelihood method to mitigate the influence of measurements error. At last, I used 

the power law to extrapolate the stress-stiffness relationship to a higher stress range. 

The second step of this thesis is applying the mesh-free method to acoustic TI media 

seismic forward modeling. First, I illustrate the advantages of mesh-free discretization compared 

to the conventional FD methods. Then, I explain the RBF-FD method which is used for solving 

the mesh-free seismic wave equation. At last, I apply this method to an anisotropic model and 

simulate the propagation in anisotropic TI media. 

The last step is a sensitivity analysis of the seismic inversion for stress. First, introduce the 

VFSA algorithm. Then I applied the seismic inversion on some simple models. The results 

demonstrate the feasibility of predicting stress from seismic data. 

 

5.2 Future work 

Future work may include implementing seismic inversion for stress with full waveform 

inversion (FWI), which is a local optimization method. Seismic stress inversion based on FWI 

might be possible to estimate stress from complicated models. 
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Appendix A: Nomenclature table 

Symbol Name Dimensions 

Cij Stiffness N/m 

  Wavelength m 

VpH Horizontal compressional wave velocity m/s 

VpV Vertical compressional wave velocity m/s 

VsHH Horizontal shear wave velocity m/s 

VsVV Vertical shear wave velocity m/s 

VpΦ Inclined compressional wave velocity m/s 

'

v  
Vertical stress under uniaxial strain Pascal 

'

1
 

The magnitude of maximum effective principal stress Pascal 

  Group angle degree 

  Phase angle degree 

  
The angle of maximum effective principal stress; 

the tilted angle of anisotropy 

degree 

Vgroup Group velocity m/s 

Vphase Phase velocity m/s 

aij Power lay fitting coefficient for Cij: the constant dimensionless 

bij Power lay fitting coefficient for Cij: the multiplier dimensionless 

cij Power lay fitting coefficient for Cij: the power dimensionless 

ai RBF-FD weight for the ith node dimensionless 

UH Horizontal particle displacement in acoustic TI media dimensionless 
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UV Vertical particle displacement in acoustic TI media dimensionless 

ԑ Compressional anisotropy dimensionless 

δ Shear anisotropy dimensionless 

η Short offset anisotropy dimensionless 
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