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Abstract

This thesis evaluates some methods for the measurement of stiffness parameters of
soils, with an emphasis on the use of bender element technology in obtaining the shear
modulus. The experimental program consisted two primary stages. The beginning
part of the experimentation was concerned with evaluating the behavior of bender
elements, both free-standing and when applied to soil. For this case, experiments
were performed on dry Ticino sand. It was concluded that the bender element tip
geometry has a much greater impact than previously perceived, in particular with
long, slender geometries sometimes creating directly-propagating compressional waves
that interfere with the shear wave arrival detection. To reduce the uncertainty in
signal interpretation, a specimen aspect ratio of 1 was adopted, with a minimum
wavelength ratio of 2. The second part of the experimentation consisted of using
bender elements on Boston Blue Clay, both intact samples as well as Resedimented
Boston Blue Clay, created in the laboratory from processed powder. The results
obtained from loading normally consolidated specimens were generally consistent and
in good agreement with the literature. The unloading portion was observed to behaves
differently as a function of maximum consolidation stress, with the shear modulus
decreasing less during unloading as higher stress ranges are reached. In addition to the
testing performed on soils, a parametric study was conducted on common materials
including steel, aluminum, acrylic, and rubber in order to evaluate the results for
stiffness parameters measured using extensometers, accelerometers, and ultrasonic P-
wave transducers. With the conclusion of these experiments, the accelerometers were
shown to have highly variable results, especially for shear wave velocity, while the
other methods yielded relatively consistent, reliable results as compared to published
values. Finally, a new design for a triaxial setup that enables integrated measurements
of compressional and shear velocities in soil over a wide stress range is presented as
groundwork for the characterization of the complete stiffness matrix of BBC.

Thesis Supervisor: John T. Germaine
Title: Senior Research Associate and Senior Lecturer of Civil and Environmental
Engineering
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Chapter 1

Introduction

1.1 Problem Statement

Obtaining the elastic properties of soil has been a topic of interest in the geotech-

nical field for many decades and there have been continuing strides to improve the

measurements and technology used to acquire these parameters. When dealing with

highly nonlinear materials with very low yield strains such as clays, it becomes diffi-

cult to perform non-destructive experiments that remain within the range of elastic

deformation, which is usually taken to be below 0.01% strain. Wave propagation,

however, is a method that allows for the measurement of stiffness parameters while

inducing very small amounts of strain, attributing to its widespread popularity.

The stiffness parameters obtained from wave propagation testing have many im-

portant applications. They facilitate a higher level of understanding of the basic

natural behavior of soils, which can be translated to better predictions of how soil

will behave in certain circumstances. During site characterization, the use of wave

propagation becomes a vital component in obtaining elastic properties of soils, which

allows for a more comprehensive insight into the conditions that will be encountered

during construction. Moreover, they also aid in the development of an optimized

construction of structures, both with respect to foundation design and construction

sequencing. Finally, the wave propagation results can be used to develop models that

describe soil behavior as a function of various parameters, including void ratio, stress

17



level, etc.

The great variability that exists between methods of modulus measurements has

made it difficult to determine which technique provides the most accurate result, and

moreover which one should be used in design. In addition, there have not been many

systematic studies that develop a continuous relationship between stress level and

shear modulus value, which is also the cause of an average value of shear modulus

usually being used over a soil layer in the field that does not change as a function of the

applied loading. This static value can foster inaccurate predictions that underestimate

the stiffness likely faced in the field. Although it does introduce an inherent safety

factor into the results, it does not allow for an optimized system of structural design.

In additional, modulus values obtained in the laboratory are usually conducted in a

singular direction, which then translates to modeling environments. The introduction

of anisotropy can greatly refine the soil behavior predictions, which is one of the

reasons why bender elements have been gaining popularity in recent years.

While bender elements have the advantage of providing shear modulus values

for soft materials at a range of stress levels for a single specimen, as well as multiple

directions, there are still some uncertainties regarding the reliability of bender element

results. The signal interpretation aspect can lead to large errors. While there has

been a great effort to shed light on the behavior of bender element technology with

parallel studies and parametric studies, few institutions have looked at all the aspects

concerned with bender element testing that would allow for an unambiguous velocity

result, and no standards have been established.

Bender elements are valuable for measurements in soft materials that allow good

coupling to occur between the bender element and surrounding soil. Little research

has been conducted that looks at a very wide range of stress levels. Since there exists

a limit at which the bender element can no longer overcome the confining lateral

stresses that restrains it from deflecting, most bender element testing only covers a

stress range of up to 400kPa. Conversely, ultrasonic transducers optimally perform

at high stresses at which the soil has a high stiffness that overcomes the attenuative

nature of soft materials. Hence the transitional range between the low and the high
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stress levels has not been well-studied.

1.2 Scope and Objectives

One of the primary goals of this research has been to better understand the behavior

of bender element technology and eliminate factors that can cause ambiguous signal

interpretations leading to inaccurate shear modulus values. By conducting paramet-

ric studies and comparing the experimental results obtained in the laboratory with

various other sources of published results, a testing environment was established for

the bender elements that would provide consistent, reliable results.

Additionally, an investigation into the equipment effect on stiffness testing was

of interest in order to compare well-established results of common materials such as

metals and polymers. By using a variety of techniques, including accelerometers, ex-

tensometers, and ultrasonic transducers, a better understanding of how the equipment

and electronics themselves yield different results when all other testing conditions and

specimens are held identical.

The final aspect of this research consisted of establishing the groundwork needed

to carry forward with multi-directional velocity testing that would allow for the char-

acterization of the stiffness matrix of various clays. This entailed the design of a cubic

triaxial setup that would allow for seamless velocity measurements in a controlled en-

vironment under Ko conditions.

1.3 Organization

The sequence of this thesis is based on the intent to describe to the reader the relevant

steps taken during the during of this research. This document is divided into eight

chapters, which are described as follows.

Chapter 2 gives a summary on the background of bender element testing and how

the development of this technology has evolved over the years. First, there is a brief

introduction on the general principles of wave propagation and how they are applied
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to bender elements. Next, an outline of why velocity testing is important and how

it is applicable to the field. Finally, a literature review is conducted that compares

different experimental works, all of which used bender elements in some capacity.

Chapter 3 introduces the materials, which includes Boston Blue Clay (BBC) and

Ticino sand, used during this research, as well as how they are processed and the spec-

imen preparation. This section also covers the resedimentation process, also known

and reconstitution, that is used to create specimens at stress levels and with con-

sistent characteristics that allows for a controlled set of experiments without sample

variation.

Chapter 4 covers the testing equipment used, which includes bender elements,

ultrasonic transducers, accelerometers, and extensometers. Details on how each type

of instrumentation works are presented here, as well as limitations and advantages

of these different methods, followed by descriptions of the different data acquisition

systems used. Finally, a brief introduction to the new testing equipment developed

during this research with the intent of significant use in the future completes the end

of this chapter.

In order to better understand the behavior of bender elements and all the vari-

ables that could profoundly affect the measurements obtained using this technology,

Chapter 5 describes parameters that were varied in order to establish the significance

of its effect on the results. This includes the frequency, specimen geometry, boundary

conditions, and stress level used during the experimentation.

Chapter 6 investigates the data analysis component of bender element testing

and refers to the literature for the comparison of results obtained using various data

interpretation techniques. A brief explanation on the driving signals for BE testing

and ultrasonic transducers is included.

Finally Chapters 7 and 8 present the results of the experimentations conducted

at the MIT Geotechnical Laboratory, also comparing them to published results. In

addition, different methods of measuring the modulus of materials are used on com-

mon materials that have well-established published values as a form of evaluation

on the relative magnitude of scatter cause by purely the equipment in an attempt to
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better understand the variability present in the testing conducted on soil. Concluding

remark are found in Chapter 8, as well as an introduction to the possible future work

pertaining to this research.
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Chapter 2

Background

2.1 Introduction

The use of wave propagation to describe the small strain behavior of a material has

been a well documented, widely-used technique, as evidenced in the literature. There

are a number of ways with which to measure the elastic properties of soils, including

torsional shear, resonant column, on-specimen strain, and proximity sensors; however,

the use of wave propagation has become a prevalent technique due to its relative ease

of implementation. While the dynamic testing method of wave propagation has shown

to produce results well within the very small strain pre-failure region, the repeatabil-

ity of results and strain rate effects are still topics of research. There still exist many

questions on the interpretation of results produced by wave propagation techniques

despite its wide use in industry. Moreover, there have not been proper comparisons

between the static and dynamic methods of obtaining stiffness parameters. A descrip-

tion of static and dynamic testing can be seen in Table 2.1. The difference between

the two types of testing methods is that dynamic testing occurs at a strain rate high

enough to initialize an inertial effect within the specimen, whereas static testing oc-

curs at a much lower repetition rate at which inertial effects are obsolete [Santagata,

1998].
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Table 2.1: List of experiments classified as dynamic or static and their stain levels
(adapted from [Santagata, 1998])

Test Strain (%)
Triaxial (TX) > 0.05 external, > 0.0001

Static on specimen
Torsional Shear (TS) ML (Mono- > 0.0001
tonic)
Torsional Shear (TS) CL (Cyclic 0.0005 - 0.0011
Loading)
Resonant Column (RC) 0.00001 - 0.012

Dynamic Bender Element (BE) < 0.001
Ultrasonic Transducer (UT) < 0.0001

In the subsequent sections, various methods of obtaining the modulus values of

soils will be compared, as well as a more detailed look in particular at bender element

technology.

2.2 Velocity Testing

Velocity testing, which includes BE and UT technology, has been gaining popularity

as an experimental method due to its relative ease of obtaining the modulus of a

material. The bender elements themselves provide a shear wave velocity through the

soil (V), which can be used with the bulk density of the material (p) to calculate the

shear modulus Gmax as follows:

Gmax = P X V 2 (2.1)

where the subscript "max" signifies the initial stiffness, which is the maximum stiffness

measured.

The relationship between the P-wave velocity and the modulus it yields is not as

'From [Youn et al., 2008]
2From [Nishimura, 2005]
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straightforward. Depending on the boundary conditions, one of the following moduli

are obtained: elastic, bulk, or constrained. The elastic modulus is the case where a

theoretical elastic rod is uniaxially loaded and lateral deformation is permitted. The

bulk modulus is in the case of an infinite medium. Finally, the constrained modulus

is when an elastic rod is uniformly loaded under uniaxial conditions with no lateral

deformations [Johnson, 20111.

When using an ultrasonic P-wave transducer, the P-wave propagates directly down

the path orthogonal to the surface of origin. Since the P-wave can be appropriately

described as a compressional wave that moves in the vertical direction (without lat-

eral movement), the measured P-wave velocity is used to calculate the constrained

modulus:

Mz=pX V 2  (2.2)

While the constrained modulus is directly calculated from the compressional veloc-

ity, the more commonly used modulus to describe the behavior of materials is the

bulk modulus (K) [Mondol et al., 2008]. (K) can be calculated using the following

relationship:
4G

K = M - 4(2.3)
3

All the elastic parameters, including the moduli and Poisson's ratio, are related to

each other. More extensive derivations can be seen in [Stein and Wysession, 2003]

and [Van Der Hilst, 2004], but the final simplified versions can be seen as follows:

M = 2G(1 - (2.4)
1 - 2v

G = (2.5)
2(1 + v)

9KG
E = 3KG (2.6)

3Kwg 

where v is Poisson's ratio and E is Young's modulus. Although these relations are

25



useful tools, the abide by the assumption that the material is linearly elastic and

isotropic. Although it is clear that the materials tested during this research are not

isotropic, the equations are still used.

One of the great advantages of velocity testing is the ability to perform non-

destructive testing on specimens. Whereas the torsion shear and triaxial methods of

obtaining the shear and bulk modulus of a material require loading increments, from

which the behavior of the material dictates the stiffness parameters, velocity testing

does not require deformation of the entire specimen. The amount of deformation

necessary to obtain interpretable results for each type of testing is represented by the

strain values seen in Table 2.1.

One of the overlying questions regarding the different ways of measuring modulus

values of soils is whether one method provides the necessary values to accurately

assess in situ conditions. Historically, the laboratory-measured stiffness parameters

have underestimated the actual values seen in the field; however, this was usually

thought to have been caused by sampling disturbance [Santagata, 1998].

As seen in Figure 2-1, [Cho and Finno, 2010] conducted experiments comparing

seismic cone penetration test (sCPTs) performed on site with bender element exper-

iments performed on minimally-disturbed specimens from the same location. The

indicated bender element velocity is Vh, which means it is a vertically propagat-

ing, horizontally polarized wave. The thick line indicates sCPT results within 5m

of the location where the samples were taken from to be tested in the laboratory.

At the same elevation, the BE velocity results ranged from 180-195 m/s, while the

sCPT results varied from 185-225 m/s. This indicates good agreement between field

and laboratory results, with the slight difference in range likely caused by sample

disturbance. The range of the in situ behavior is slightly higher than the bender ele-

ment results, which is consistent with the previous observation regarding field versus

laboratory measurements stated above.

Another study, performed by [Nishimura, 2005] on London Clay, compared dif-

ferent methods of measuring the stiffness parameters using bender element testing,

resonant column, and cross-hole field measurements. The results are shown in Fig-
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ure 2-2, where the subscripts hh indicate horizontally propagating, horizontally polar-

ized shear wave velocity values and vh indicates vertically propagating, horizontally

polarized shear waves. Ranges for the various testing methods are given, with arrows

spanning the range of the measured parameters. It was evident that the field mea-

surements demonstrated the highest stiffness values, followed by resonant column,

and then bender element results.

While the discrepancies between field measurements and laboratory measurements

have been well-documented and widely accepted, few systematic attempts have been

made at establishing a correlation that resolves this misalignment of laboratory stiff-

ness parameters. While there have been a few studies done on rectifying the gap,

such as [Gist, 1994] who used the gas pocket model and corrected for local flow to

translate ultrasonic velocity measurements to seismic field measurements, attempts

to do so with bender element results are scant.

2.3 History of Bender Element Testing

The piezoceramic material used to construct bender elements was initially discovered

in the 1940s, but was first used in the application of wave propagation through soils

by [Shirley and Hampton, 1978]. Since its first use in the laboratory, bender elements

have been incorporated in many functional capacities of already-existing geotechnical

experimental setups. Not only have they been used in triaxial cells in multiple direc-

tions [Cho and Finno, 2010, Fioravante and Capoferri, 2001, Gajo et al., 1997, Leong

et al., 2009], but have also be used in oedometer cells [Yamashita et al., 2004, Zeng

and Ni, 1999], resonant column apparatuses [Ferreira et al., 2007, Youn et al., 2008],

torsional shear [Youn et al., 2008], and in the field under unconfined conditions [Asaka

et al., 2008]. Due to its ability to measure the shear modulus at low stresses, ben-

der elements remain widely used today, despite the difficulties experienced in signal

interpretation.
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2.4 Applications of Bender Elements

Small strain shear modulus measurements are a vital component in the geotechnical

design process. It was observed that most of the ground deformations occurring

in the field due to excavations and construction are in the small strain region of

0.001 - 0.5% [Jardine, 1995], thus the pre-failure behavior of soils at small strains

is a major area of interest. Strains below 0.001% are in the elastic range, which

allows for the assumption of useful tools and relations, such as, for example ray path

analyses and equations 2.1 through 2.6. Bender elements have strains below the

0.001% boundary, which makes them a worthwhile tool to characterize the stiffness

parameters of a soil.

In addition to the ability of bender elements to greatly enhance soil characteriza-

tion, they can be used as a method of better understanding velocity measurements

observed in soils. It is of great interest to the oil industry to develop a better under-

standing of the velocity behavior exhibited in soils and rocks as a way of enhancing

basin modeling techniques and locating hydrocarbon-rich reservoirs. The interpreta-

tions and analysis of sonic logs has become very sophisticated over the past decade;

however, there remain some uncertainties regarding the unloading behavior of soils

and rocks as well as the anisotropy they exhibit, sometimes making pore pressure

prediction techniques inaccurate [Bowers, 1995]. While very stiff soils and shales

have been extensively tested with ultrasonic transducers, little research has been

conducted on the low-stress regime and the transition from overconsolidated regions

to normally consolidated regions with respect to this application. Additionally, the

extensive ultrasonic transducer measurements that have been conducted sometimes

prove to be inconsistent and arbitrary interpretation techniques are utilized, such as

seen in [Yamashita et al., 2004].

28



2.5 3D Velocity Behavior

The relationship between the stress and strain experienced by a medium can be related

through an adaptation of Hooke's law, which originally related force to displacement

as follows:

F = k * u (2.7)

This equation was generalized into a 3 dimensional expression that can be simply

stated as the following relation:

o-ij = cijkt * eki (2.8)

where o is the stress tensor, c is the elastic stiffness tensor, and E is the strain tensor.

Since the subscript can range from 1 to 3 due to its 3 dimensional nature, and there

are 4 subscripts that define one term, there is a possibility of 81 independent terms;

however, for linear elastic material, the following holds true:

Cijkl = Cjikl

Cijkl cijlk

Cijkl = Cklij

This reduces the expression to 21 independent constants, as opposed to the initial

81 independent constants. These 21 independent constants describe an anisotropic

medium. Different types of symmetry can reduce this number even further, until

isotropy is reached, which consists of only 2 independent constants. In between these

two limits, there are many different levels of symmetry that the specimen can exhibit.

In the case of the clay specimens tested in this research, the material is taken to be

transversely isotropic (also called cross anisotropic). Using Voigt notation, the matrix
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form of equation 2.8 can be expresses as follows:

Oli C C12 C13 C14 C15 C16 ei

U 2  C12 C22 C23 C24 C25 C26 C2

U 3  C13 C23 C33 C34 C35 C3 63 (2.9)

U4  C14 C24 C34 C44 C45 C46 264

U5  C15 C25 C35 C45 C55 C56 2Es

6 j 16 C 26 C36 C46 C56 C66 \2e6j

where a1 =U 1 , 2 =U 2 2 , and U4 = 0 1 2 , and C1 = C1111, etc.

The factor of 2 is present in the strain tensor to account for the difference between

the average shear strain and the total engineering shear strain. The average shear

strain takes into account the average movement in the x direction relative to y and

the y direction relative to x, whereas the engineering strain is the total strain in the

x-y plane. -y is the engineering strain, while 6 is the average strain. -y and 6 are equal

when i=j. Otherwise y = 2c. See Figure 2-3 for a schematic representation.

As previously mentioned, the specimens tested in this research are transversely

isotropic, which means they have 5 independent constants. The above stiffness matrix

for a transversely isotropic medium can be populated as follows:

M M1 - 2G1  F 0 0 0

M1 - 2G1  M1 F 0 0 0

[Cij] = F F M2  0 0 0 (2.10)
0 0 0 G2  0 0

0 0 0 0 G2  0

0 0 0 0 0 G1

The subscripts represent the directions in which the constrained and shear moduli

were obtained. The coordinate system can be seen in Figure 2-4. A, B, and C

represent the possible directions to consider for a specimen. Since the specimen

is transversely isotropic, the A and B directions are identical and yield the same
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results. Hence, there are two directions of interest, which are labeled with subscripts

1 and 2. The horizontal direction is described by 1, while the vertical direction is

described as 2. The P and S in the figure represent a P-wave and S-wave. It should

be noted that the shear wave can be polarized in two principle directions, which is

described by the two S arrows orthogonal to each other. A graphic representation

of the possible waves is seen in Figures 2-6 and 2-5. The blue rectangles represent

the bender element tip and the red arrows indicate the direction of deflection. When

a vertically-propagating shear wave is sent through a transversely isotropic medium,

the polarization of the wave is irrelevant, since in both cases the wave travels through

the same layering. For a horizontally-propagating wave, however, the shear velocity

depends on the polarization of the wave, which determines the layers that it travels

through. In the case on the left in Figure 2-5, the S-wave is traveling completely in

the layer at which the bender element is placed. The case on the right, the wave is

propagating horizontal but has a vertical polarization, in which case the wave travels

across multiple layers. This wave yields the same value as a vertically-propagating

S-wave [Nihei et al., 2011].

F is the term that takes into account the diagonal direction and is expressed by

the following terms:

F= -C44 + 4p2 Vp - 2pV T(CI + C33 +2C 44) + (Cn + C44 )(C33 + C44) (2.11)

VpT is the P-wave velocity in the 450 diagonal direction that links the vertical to the

horizontal directions. When measuring the off-axis velocity, the difference between the

group velocity and phase velocity arrises. There has been some debate over how the

velocity data should be interpreted [Dellinger and Vernik, 1994]. One widely accepted

method was formulated by Dewhurst et al. as follows [Dewhurst and Siggins, 2006,

Kuila et al., 2011, Sarout and Gueguen, 2008]. In a transversely isotropic medium,

waves traveling in any direction is considered to be a group velocity, with the exception

of the principle axes where the group velocity is equal to the phase velocity. Since

the phase velocity is needed to complete the stiffness matrix, the P wave traveling
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at a 450 angle needs to be converted from a group to a phase velocity by solving the

relationship between phase and group velocities and the Christoffel equation. The

VpT term needs to be the phase velocity measurements in order to obtain the correct

stiffness matrix.

2.6 Methods of Obtaining the Shear Modulus

There are many methods of obtaining the shear modulus of a soil, with the four

most common being resonant column, torsional shear, triaxial deformation measure-

ments, and bender elements. The stiffness values obtained from each method are

not consistent from one method to another, which can be attributed to the strain

levels associated with the type of experiment. A schematic seen in Figure 2-7, which

approximately describes the expected behavior of the experimental results based on

strain values. As seen in the figure, at very low strain levels, the stiffness values are

very high and constant, in section (a). During section (b), the stiffness begins to

decrease in a non-linear manner, which is where most of the variability in the results

originates. Finally in part (c), the soil exhibits a slow decrease in stiffness with large

strain levels, which is where plastic deformation occurs.

2.6.1 Resonant Column

Resonant column tests are based on the vibration of a wave through the soil spec-

imen caused by an excitation force. The excitation force is produced by a coil and

magnet system that generates an electromagnetic force that moves the top plate ap-

propriately. Based on the measurements of resonant frequency of the specimen, as

well as the specimen geometry, amplitude of vibration, and the characteristics of the

driving vibration, the calculation of the shear modulus and shear velocity through

the system is performed [Isenhower et al., 1987]. Although the resonant column is a

well-respected testing method that has shown to yield consistent results since its first

introduction in 1963 by Hardin and Drenevich, there are some limitations attributed

to this experimentation technique. One shortcoming of the RC test is the inability to
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control the frequency at which the experiment is conducted since it is a function of

the soil being tested. Additionally, transitioning from one stress level to another due

to consolidation can make the RC technique more problematic than other methods,

as far as equipment setup is concerned. In addition, the excitation power needs to

be continuously adjusted. This can introduce some scatter in the results. The RC

test can also only be conducted in one direction at a time, thus lacking the multi-

directional capabilities that bender elements possess. Another concerning factor is

the occasional utilization of cement paste to cement the specimen to the endcaps,

in order to prevent bedding errors. This can cause some end-boundary effects and

non-uniform stress distributions [Kim and Stokoe, 1992]. Finally, to obtain measure-

ments, even with an experienced technician, at least 500 cycles of loading are required

before measurements can be taken [Isenhower et al., 1987]. Although the RC tests

are conducted under the assumption of a visco-elastic constitutive model, the other

methods also make similar assumptions.

2.6.2 Torsional Shear

The torsional shear method of obtaining the shear modulus is based on the principle

that applying a torque to a cylindrical specimen will yield a reaction equivalent to

the shear modulus of the specimen. Usually the TS experimentation is conducted in

a triaxial setup, with the ability to control the stress level at which testing is done.

Usually the amount of torque applied is non-destructive, thus multiple measurements

can be taken. The shear modulus is calculated by the simple relation below:

T L
G = - x - (2.12)

0 J

where T is the applied torque, 0 is the angle of rotation, L is the length of the speci-

men, and J is the polar moment of inertia of the specimen. One of the disadvantages

of torsional shear tests is that the amount of strain experienced in the specimen

varies as a function of the distance from the center of the specimen, thus causing

a non-uniform strain distribution. Another shortcoming is that, once again, only a
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single-directional shear modulus can be obtained and each data point requires one

specimen.

2.6.3 Triaxial Apparatus

Deformations monitored in triaxial specimens have been a useful tool in the measure-

ment of the Young's modulus while obtaining other parameters such as undrained

shear strength and friction angle values. The hardship faced with this method of

obtaining stiffness parameters of soil is the need to mount on-specimen measure-

ment devices that can monitor the deformations occurring without incurring defor-

mations themselves. Some methods used to perform such measurements include

high-resolution miniature LVDT's (Linear variable differential transformers), prox-

imity sensors, and local deformation transducers [Santagata, 1998]. Developing on-

specimen measurement techniques is vital in order to remain in the small strain

measurement region since off-specimen forms of measurements cannot reach nearly

as high of a resolution of less than 0.05% strain. A study performed by [Santagata,

1998] established an on-specimen yolk system fitted with LVDT's that was able to

measure the Young's modulus of the specimen for strains of 0.0001% or greater. This

remains in the region of small strain measurements, which is below 0.01% strain. It

was found, however, that the linear region characterized by section (b) in Figure 2-7

only requires strain levels below 0.05%.

2.6.4 Bender Elements

Bender elements have many resounding benefits that make them a desirable tech-

nology to use of material property testing of soils. They are a non-destructive way

of dynamic testing on soils and can measure the stiffness parameter at a specific

stress level without having to actively apply stresses or deform the specimen in order

to perform the measurement. The frequency at which the bender element is driven

can be changed to better accommodate the material being tested and to obtain the

clearest signal possible. It has multi-directional capabilities and can be integrated in
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many setups including triaxial, RC, TS, or simply in the field without any constrain-

ing conditions. The strain levels incurred on the specimen are very small relative

to TX and TS methods and remain entirely in the elastic region, as is calculated in

section 4.2.2. Overall, bender elements are a relatively economical alternative to the

instrumentation listed above.

2.7 Comparing Different Methods

One of the greatest uncertainties regarding stiffness parameter testing is the scatter

attributed to the data and the misalignment of results obtain from different methods.

One commonly believed explanation regarding the differences in results based on

the technology used is the strain level effect. If more strain is imparted during the

testing procedure, this incurs a softer response, hence yielding lower modulus values.

Based on this principle, bender elements would have the highest stiffness values, while

deformations measured with LVDT's in the triaxial apparatus would have the lowest

modulus measurements.

While not explicitly addressed in this thesis, the strain rate also has an influencing

factor on the measurement results for various instrumentation. For example, the

strain rate exhibited in the triaxial apparatus is usually around 0.5%/hr, torsional

shear as around 0.1-10%/hr [Santagata, 1998]), while dynamic testing is at least over

an order of magnitude larger. These rates are not absolutely correct calculations since

they vary so widely, but they do give approximate values and ranges. The resonant

column strain rate is between 102 - 105%/hr and bender elements can have a strain

rate of approximately 2.5 x 106 %/hr, as calculated in section 4.2.2. There is debate

over how much of an effect strain rate has on the shear modulus results and whether

a higher strain rate decreases the stiffness, thus creating a softer measurement. Rate

sensitivity is a topic that needs further investigation.

In order to further investigate the differences observed between testing methods, a

review of a few publications will be presented in an attempt to establish a consistent

trend in stiffness results according to testing methods.
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The first study is an inter-laboratory study by [Yamashita et al., 2004] conducted

in 11 countries by 23 institutions willing to follow a strict set of guidelines for making

specimens and performing experiments using both bender elements and some alterna-

tives including TX, RC, and TS. Toyoura sand was prepared using the air-pluviation

technique to achieve a relative density of 50% and 80%. One of the key observations

of this study was that when all the raw data provided by the different institutions was

re-evaluated by one person, the scatter in the data set reduced significantly, which is

evidence of the user-bias present in the signal interpretation of the results.

The Gma, obtained from bender elements was compared with the Gma, obtained

from accelerometers, P-waves, TS, TX, and RC. The accelerometer measurements

were performed using bender elements with the accelerometers reading the signals

that the BE's sent. The 'P-wave' method is using a bender element to send a P-wave

signal, which is used to back-calculate the shear modulus assuming a Poisson's ratio

of p = 0.5. While the K = 0.5 condition is of more interest for the research pertaining

to this thesis since all the past and future experimentation is using Ko conditions,

the K = 1 condition is presented initially for comparison. As can be seen for a

dry specimen at K = 1 conditions in Figure 2-8, there is very little difference in the

results, with triaxial generally yielding shear modulus values lower than BE, while the

accelerometer and P-wave methods have generally higher stiffness values, and finally

RC and TS have very similar results compared to BE. The higher values obtained

using the accelerometer and P-wave methods could be attributed to the assumption

of a Poisson's ratio since they were both back-calculated. Observing the K = 0.5

case for a dry specimen, it is evident that there is much more scatter than for the

K = 1 case, and this is likely due to the process of load application, since maintaining

K = 0.5 is technically more difficult than K = 1, which can lead to some minor errors

in stress levels. Putting this aside, the values seen in Figure 2-9 can still give an

approximate idea about the trend of results. The K = 0.5 conditions showed the P-

wave and accelerometer results once again yielding higher Gma, values than the BE's.

The triaxial was still generally lower in stiffness parameters than the BE, although

with slightly more variability than in Figure 2-8. The resonant column was almost
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identical to the bender element results. The saturated specimens exhibited somewhat

different results. As can be seen in Figures 2-10 and 2-11, the bender elements tended

to exhibit larger shear modulus values than both the TS and RC values. Finally, a

compilation of the different methods under saturated conditions for Toyoura sand is

shown as a function of void ratio in Figure 2-12, which was conducted during the

previous iteration of the parallel testing committee. The results showed relatively

good agreement between BE, RC, and TS tests with no distinctive trend. The largest

observable difference was found in the undrained triaxial testing techniques, which

were consistently 15% lower than the other methods. Since little detail was provided

regarding the precise triaxial apparatus implementation, it is not conclusive whether

the lower values were caused by bedding errors, due to the higher strain level, or a

combination of the two.

A study conducted by [Ferreira et al., 2007] performed simultaneous measurements

of the shear modulus of Porto residual soil using resonant column and bender element

methods. The results were plotted as a function of mean effective stress (as seen in

Figure 2-13), with best fit lines indicating the trend of the results. The (TD) and (FD)

indicate the method used to analyze the bender element signals and are addressed in

Chapter 6. The resonant column results were shown to produce consistently higher

values of the shear modulus as compared to the bender element results.

Another study performed by [Youn et al., 2008] performed torsional shear and

resonant column tests on Toyoura sand, both of which were retrofitted to contain

bender elements. A series of experiments were conducted for multiple void ratios as

well as dry versus saturated conditions. The results can be seen in Figures 2-14 and

2-15. The bender element velocity results were selected according to the peak-to-

peak method. For dry conditions, the bender element results were shown to yield

higher shear modulus results, followed by resonant column then torsional shear. At

a lower void ratio, the differences are amplified, whereas for a higher void ratio, the

differences are minimal. Void ratio e is calculated as the volume of voids divided

by the volume of soil grains. This supports the fact that the results diverge more

at higher densities, which could be a result of the grain contact engagement and the
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respective mechanisms exhibited in the respective methods. For saturated conditions,

these differences are not as pronounced, which would imply that the saturation effect

seen with the bender elements is more pronounced than for RC or TS. This could be

attributed to weak fluid flow effects due to the frequency range utilized (11kHz).

As a final form of comparison, it is warranted to look at both RC and TS relative to

each other, and observe whether there is a saturation effect such as seen in Figures 2-

14 and 2-15. A study performed by [Iwasaki et al., 1978] compared TS and RC at

various strain levels. The results seen in Figure 2-16 show an experiment conducted

on dry and saturated Toyoura sand at a mean principle stress of p = 1ksc. The y-axis

is normalized to the the value of 0 at 0.01%. It can be observed that there is a slight

trend of higher shear modulus values for dry specimens under RC testing. For TS,

there was essentially no observable trend. In Figure 2-17, the shear modulus is seen as

a function of void ratio at p = 1ksc, with the RC tests once again showing marginally

higher values for dry specimens, while no observable trend for TS is seen. Since the

void ratio used in these experiments is approximately e = 0.7, it can be compared

to the study conducted by [Youn et al., 2008]. While [Youn et al., 2008] does show

the same trend of decreasing shear modulus for saturated specimens, a much larger

difference is seen, as opposed to [Iwasaki et al., 1978]. Additionally, no difference in

the shear modulus obtained from the TS is seen in the study conducted by [Iwasaki

et al., 1978], whereas [Youn et al., 2008] shows a significant decrease in TS results

with saturated specimens.

After considering all the publications described above, the results were somewhat

inconclusive. Although the RC generally produced either the same shear modulus

or higher than the bender element [Nishimura, 2005, Ferreira et al., 2007, Yamashita

et al., 2004], the study conducted by [Youn et al., 2008] showed higher values for BE

as opposed to RC for dry samples of Toyoura sand. The TS results were very similar

to RC, with [Youn et al., 2008] showing slightly lower values for TS as compared to

RC and BE for dry sand. Finally, the results obtained via TX were usually lower

than those obtained by BE [Yamashita et al., 2004]. The lower value for TX can be

most readily explained through the strain softening effect; however, the strain rate
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Table 2.2: Summary of shear modulus values exhibited by the respective instrumen-
tation from various publications

sensitivity could reduce this discrepancy. Table 2.2 summarizes the trends observed.

39

Source Hierarchy of Gma, values
[Yamashita et al., 2004 RC = TS BE > TX

[Nishimura, 2005] RC > BE
[Ferreira et al., 2007] RC > BE

Dry: BE >RC >TS
[Youn et al., 2008] Sra: BE RC TS

' Saturated: BE = RC = TS
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Figure 2-1: Comparing bender element results to field results obtained using seismic
cone penetration tests (sCPT), both in the general site where samples for BE testing
occurred as well as specifically within 5m of the sampling areas [Cho and Finno, 2010]
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Figure 2-2: A study on London Clay conducted by [Nishimura, 2005] observed the
values of shear modulus depending on testing method. As observed in this figure,
in order of highest stiffness to lowest is field measurements, resonant column, then
bender elements
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Total Engineering Shear Strain Average Shear Strain

Figure 2-3: The total engineering strain is twice as much as the average shear strain
since the average shear strain takes the displacements in both directions and averages
rather than adds them up

PC

A
+$-+1P,

B'

Figure 2-4: The naming convention for propagating waves in various directions is
depicted here. The S and P-waves have two possible values for a transversely isotropic
medium
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Figure 2-5: Horizontal propagation through cross-anisotropic medium. The subscripts
correspond to the matrix seen in section 2.5

Vsz, G2

VPz, M2  V 2, M2

Figure 2-6: Vertical propagation through cross-anisotropic medium. The subscripts
correspond to the matrix seen in section 2.5
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Figure 2-7: Depending on the amount of stiffness exhibited during testing, the mod-
ulus value vary as seen in the schematic above. Region (a) is the lowest strain range
with constant stiffness, (b) indicates the onset of non-linear behavior, and (c) is the
slow decrease of stiffness [Santagata, 1998]
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Figure 2-8: From the parallel testing results, bender element measurements were
compared to accelerometer, P-wave, TX, TS, and RC for dry specimen under K=1
conditions [Yamashita et al., 2004]
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Figure 2-9: From the parallel testing results, bender element measurements were
compared to accelerometer, P-wave, TX and RC for dry specimen under K=0.5 con-
ditions [Yamashita et al., 2004]
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Figure 2-10: From the parallel testing results, bender element measurements were
compared to TX and RC for saturated specimen under K=1 conditions [Yamashita
et al., 2004]
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Figure 2-11: From the parallel testing results, bender element measurements were
compared to TX, TS, and RC for saturated specimen under K=0.5 conditions [Ya-
mashita et al., 2004]
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Figure 2-12: From the parallel testing results, bender element measurements were
compared to TX, TS, and RC for saturated specimen [Yamashita et al., 2004]
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Figure 2-13: Resonant column and bender element measurements were performed on

the same Porto soil specimens in a single apparatus. Results indicate good agreement

between the two methods. Both frequency domain (FD) and time domain (TD)
methods are shown in the results as a function of mean effective stress [Ferreira et al.,
2007]
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Figure 2-14: Resonant column and torsion shear experiments with added bender
elements in the setups were conducted on Toyoura sand under dry conditions [Youn
et al., 2008]
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Figure 2-15: Resonant column and torsion shear experiments with added bender
elements in the setups were conducted on Toyoura sand under wet conditions [Youn
et al., 2008]
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Figure 2-16: A comparison of RC and TS tests conducted at a confining pressure
p = lksc on saturated and dry specimens of Toyoura sand as a function of strain
level. The y-axis is normalized to the the value of G at 0.01% strain [Iwasaki et al.,
1978]
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Figure 2-17: A comparison of RC and TS tests conducted on saturated and dry
specimens of Toyoura sand as a function of void ratio. The y-axis is the shear modulus
G at mean principle stress of p = lksc [Iwasaki et al., 1978]
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Chapter 3

Materials and Specimen

Preparation

3.1 Materials

Two primary materials were used in the study of velocity testing using bender ele-

ments. The first half of the research was performed on Ticino sand, while the second

half was conducted on Boston Blue Clay (BBC). Dry sand was initially used due

to its greater ease of preparation, since the first portion of the experimentation was

focused on observing the behavior of the bender elements and how they transmit

signals through soft mediums. Once the results obtained from testing by sand were

sufficiently understood and provided consistent results, wet clay was used. Although

the clay introduced many more complications, the results are more pertinent to ex-

tensions of in situ behavior.

3.2 Ticino Sand

The beginning portion of the experimental progress was conducted on Ticino sand.

Sand was used due to its ease of specimen setup, and Ticino sand was in particular

chosen since it is a well-tested sand with published results for various parameters. The

initial experimentation was focused on establishing the behavior of the BEs, hence,
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Table 3.1: Range of test setup parameters for Ticino sand

Unit Range
Porosity, n( 0.33 - 0.45
Density, p(g/cm 3 ) 1.4 - 1.6
Void ratio, e() 0.6 - 0.85

Table 3.2: Material properties of Ticino Sand [Fioravante and Capoferri, 2001]

Property Specific gravity: Gs = 2.681
Mean particle size: D50= 0.55 mm
Uniformity coefficient: Cu = 1.6
7m .r=in 13.65kN/m 3  emax = 0.927

_Ymax = 16.67kN/m 3  emin = 0.578
Description Uniform coarse to medium sand
Morphology Angular (20%), Sub-angular (55%), Sub-rounded (25%)
Mineralogy Quartz (30%), Feldspar (30%), Mica (5%), Opaque (35%)

beyond comparison between the sequence of experiments and other published results,

no care was taken to perform extensive testing on Ticino sand at different loading

conditions. For a description of material properties of Ticino sand, see Tables 3.1 and

3.2.

3.2.1 Procedures and Experimental Setup

First the bottom bender element endcap is placed on the loading surface. A 3-inch

diameter brass tube is placed onto the lip of the endcap, which constrains any sand

from spilling out of the setup. The sand is poured into the brass tube in three separate

layers, of approximately the same quantity. After each layer is poured, the rodding

method is used, during which a long slender rod is forced through the layer, in a

circular motion around the specimen to ensure uniform distribution of sand. Regard

Figure 3-1 for the setup of this part of the experimentation. When complete, the

top endcap is simply placed on the surface of the sand, slightly pushing the bender

element in to ensure full contact around the tip. When the bender element endcaps
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(seen in Figure 3-12) are safely positioned on either side of the specimen, it can be put

under a load frame, such as the Terzaghi load frame pictured in Figure 3-13. During

the incremental loading process, S-wave measurements were taken immediately after

load application, usually within a minute. The aim was to obtain data before any

potential secondary compression could occur.

3.3 Boston Blue Clay

Boston Blue Clay (BBC) is an illitic glacio-marine clay with a low plasticity. The

behavior of BBC has been extensively tested and documented by many researchers,

including those listed in Figure 3-3. It is a very testable material (low consolidation

time, low swelling behavior, etc.) that does not exhibit extreme behavior in any

parameter, thus making it a good representative clay. The experiments of this research

were conducted on both intact BBC and resedimented BBC (RBBC). The intact BBC

was extracted from the courtyard outside of Killian Court at MIT into approximately

3-inch diameter metal boring tubes. The specimens tested were from Bore No. B10-

TP2B, Sample No. S1, from depths of 47-49 feet below ground surface.

The powder clay used to make RBBC is from batch Series IV BBC powder. The

series number represents the location of the source material. Thus far, testing at

MIT has been conducted on Series I-IV material, as listed in Figure 3-3. The exact

origin of Series I and II was not precisely recorded; however, Series III was known

to originate from an excavation site near Kendall Square (during the construction of

a parking garage) from a depth of 23m [Casey, 2011]. Series IV BBC was obtained

from an excavation site at MIT's Koch Biology Building (Building 68) in 1992.

The intact material was processed before it could be used to create reconstituted

samples. The processing steps comprised of the following:

1. Add tap water to wet material to create thick slurry;

2. Sieve the slurry through a #10 standard US sieve to remove detritus, which

includes any shells, twigs, rocks, etc.;
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3. Oven dry at 600 C;

4. Grind the clay to meet a specification of 95% passing a #100 standard U.S.

sieve. For Series IV this was performed by the Sturtevant Company using a

roller mill.

After the material was processed as prescribed above, it was mixed in a manner

to ensure homogeneity and stored in 40-gallon containers [Cauble, 1996]. While the

above method was used for the Series IV batch, there are many different alternatives

to the process, which include breaking the pieces of wet clay and picking the detritus

out by hand or other such methods. A temperature of 60'C was chosen to prevent

any intrinsic changes to the properties of the soil. The produced powder form of clay

was used for the resedimentation process, which will be discussed in further detail in

section 3.3.2.

As previously mentioned, BBC has been extensively tested. It is a low plastic-

ity clay, which is a (CL) designation based on the Unified Soil Classification System

(USCS). Some additional index properties for Series IV are listed in Figure 3-4, in-

cluding the specific gravity, Atterberg limits, and plasticity index values. Atterberg

limits were obtained using the rolling method for the plastic limit and the Casagrande

cup for the liquid limit, yielding a plastic limit of wp = 23.5 ± 1.1% and a liquid limit

of WL 46.5 ± 0.9%. The plasticity index was calculated to be Ip = 22.7 ± 1.2% [Ab-

dulhadi, 2009]. The specific gravity G, was found based on the specific gravity pro-

cedures in ASTM D854 using a calibrated iodine flask, providing a G, = 2.72 ± 0.07.

The Grain Size Distribution (GSD) tests performed on the processed Series IV BBC

powder using the hydrometer test, as seen in Figure 3-5, indicate that 98% of the

BBC powder passed sieve #200. The #200 sieve indicates the upper bound for the

fines section of the grain size spectrum; therefore, the majority of the grains in the

BBC clay powder are less than 0.075mm in diameter [Germaine and Germaine, 2009].
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3.3.1 Sample Preparation

The majority of the specimens tested in this research were fabricated in the labo-

ratory (both the sand and clay). The advantages of making the specimens in the

laboratory are extensive. It allows the experiment to focus on the material properties

or experimental equipment in a controlled manner rather than allowing the sampling

and transportation of the specimen to have a dominating effect. In addition to be-

ing aware of any damage or potentially anomalous features of the specimen incurred

during the production, one can control the characteristics of the specimen itself. By

varying the components used to create the specimen, one can test the exact effects

that each component has on the soil behavior. Although this research does not exploit

the latter benefit, there is much future potential for velocity testing in this regime,

since the majority of velocity testing, as described in Chapter 2, has been conducted

on intact specimens.

3.3.2 Resedimentation

Following its initial introduction in 1961 by Bailey at the MIT Geotechnical Labo-

ratory [Abdulhadi, 2009], the process of resedimentation has been extensively used

and adapted to optimize the procedures. The governing idea is to create a cross-

anisotropic (to be discussed further in section 7.3.1), Ko consolidated specimen. The

resedimentation process involves incrementally loading a slurry until it reaches a pre-

scribed stress level. The stages are described in the following section.

3.3.3 Stages of Resedimentation

The three main steps involved in resedimentation after the clay powder is processed

are the following: mixing stage, loading stage, and extrusion stage.

The first step is creating a uniform slurry using the processed clay powder de-

scribed in section 3.3. The slurry consists of distilled water, sea salt, and clay pow-

der. For this research the slurry was mixed to 100% water content, meaning equal

parts of water and dry powder by mass. The salt concentration was set at 16g/L.
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Since the natural salt concentrations of BBC range from 4 to 32 g/L depending on

the deposit and depth, having a mid-range salinity prevents excessive changes to the

pore chemistry of the soil, which can alter the material properties of the specimen as

observed in [Horan, 2012]. The value of 16g/L was also used since it is the historical

batching value for the last few decades at MIT, and continuing to use this value al-

lows for comparison of current results to previous results. Additionally, the increased

salt concentration has not shown significant differences between the in situ tube BBC

and RBBC, as has been verified by many [Adams, 2011, Casey, 2011, Horan, 2012],

including results seen in Chapter 7.

The components seen in Figure 3-6 were mixed together to create the slurry.

First, the salt was dissolved in the water. Then, clay powder was incrementally

added to the water solution, taking care not to agitate the powder and cause loss

of fines. The components were mixed together using a KitchenAid mixer with a flat

beater attachment for a duration of about 30 minutes, which was long enough to

ensure thorough blending of the clay and sufficient time to allow the clay particles

to swell. For high-swelling clays, more time is needed for equilibration. After the

mixing process, the slurry was transferred into a Biichner flask under vacuum of 15

to 25 inches of mercury (in Hg). See Figure 3-7. The flask was sealed off and the de-

gassing process ensued for approximately 30 minutes to 1 hour. After the de-gassing

stage, the slurry was transferred to a rigid tube. To reduce side-wall friction, the

interior of the acrylic tube is greased with vacuum grease, and a floating tube setup

is used after a consolidation stress over 100kPa is reached. For the resedimented

specimens used in this research, the maximum stress reached was 100kPa, hence the

floating setup was not utilized. The bottom of the rigid tube is sealed off with a

tightly-fitting porous stone and nylon filter; thus, when the slurry is poured into the

tube, it remains constrained inside. The funneling process can be seen in Figure 3-

8. Care must be taken to perform the funneling in a continuous, fluid motion to

avoid air entrapment. The top of the tube is closed off with another nylon filter and

porous stone. Once the setup is complete, the outside container is filled with saline

water to create a bath at the same salinity as the slurry to maintain a consistent

58



pore chemistry. The specimen is subsequently loaded with a Load Increment Ratio

(LIR) of 1, to obtain enough primary consolidation without causing extrusion. LIR

is the ratio of the added increment of stress over the current stress. The first load is

the mass of the porous stone, followed by loading until a maximum load of 100kPa

is reached. An LVDT (Linear Variable Differential Transformer) is anchored to a

stationary surface and measures the displacement of the specimen when the spacer is

protruding above water. An example of a curve with adequate resolution of vertical

displacement can be seen in Figure 3-9. In the figure, the black circle indicates End

Of Primary (EOP) consolidation, which is the point at which the majority of the

deformation has occurred and the next load increment can be applied. After the first

few increments, the setup should look similar to Figure 3-10. Once higher stresses are

required, the hanger gravity system is utilized, as seen in Figure 3-11. The hanger

system ensures even application of the stress, creating a level surface and a laterally

uniform specimen. If the specimen is to be extruded and trimmed to be tested in a

triaxial cell, an overconsolidation ratio (OCR) of 4 must be reached before extrusion.

The OCR is the max(imum) past stress divided by the current stress. Hence if the

max stress the specimen is taken to is 100kPa, this load must be held well into

secondary compression to ensure sufficient settlement, with the final loading stage

being 25kPa.

The final step in the resedimentation process is the extrusion of the specimen. In

the case where the testing was performed in the rigid tube used for resedimentation,

as seen in Figure 3-13, the clay specimen was taken to an OCR=1, and only partially

extracted from the tube. Approximately 1 inch was cut off from either end of the

specimen to eliminate any surficial inhomogeneities and to ensure a surface exactly

orthogonal to the length of the tube. The clay specimen would remain in the tube for

testing, with bender elements on either end, which will be described in section 3.3.4.

3.3.4 Experimental Setup

During the experimental process, the bender element endcaps, porous stones, and

nylon filters are placed on either side, taking care to align the bender element tips
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in phase with each other. The porous stones have a hole in the center to allow the

bender element tip to protrude while maintaining a double-drainage system. In order

to create contact between the bender element and the clay, a small disc of clay is cut

to fit into the hole of the porous stone. This disc is scored and pushed onto the main

body of the clay specimen at the appropriate place for alignment. The bender element

tip is subsequently pushed into this disc of clay as the endcap comes into contact with

the porous stone. The experimental setup is placed in the saline bath and incremental

consolidation is performed on the clay specimen. Velocity measurements using the

bender elements are taken at the EOP, which is the characteristic time when the

majority of settlement has occurred, as marked in Figure 3-9. At this point, all the

pore pressure incurred by the application of load has dissipated and will not present

an effect in the velocity results. During each increment, the axial deformation is

measured with an LVDT or measuring device in order to calculate the travel length

of the S-wave for the velocity calculation.

Finally, at the conclusion of the experiment, the dimensions and masses are mea-

sured. After the soil has been oven-dried for 2-3 days, record the dry mass and to

perform the necessary void ratio calculations.

60



Figure 3-1: The specimen of Ticino sand is prepared using a funnel and the rodding
method, which involves using a long slender rod to puncture the sand and ensure
uniform distribution. This is performed in three stages.
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Figure 3-2: The dry sand specimen is loaded using the Terzaghi load frame pictured
here
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Serins Year Researcher TOpe Tests Performed

S 1961 Bailey Effect of salh concentration on
undrained shear strenmth

1963 Jackson Thixotropy Triaxial
1964 Varallyay Influence of stress system on Triaxial

undrained strenwth
1965 Ladd Use of pressurc transducer to

measure soil pre.ssur
1965 Preston Sample disturbance Triaxial
1966 Braathen Disturbance effects on undrained Triaxial

strenpth
1967 Dickey Developpment of plane strain Plane Strain Device

device
1967 Rixner Behavior in plane strain at Plane Strain Device

OCR 1, 2,4
1968 Bovee Behavior in plane strain at Plane Strain Device

OCR 1,.2,4
1970 Kinner Behavior of strip footings during Model footing tests

undrained loading

11 1982 Germaine Criss-anistropic behavior at DSC, Triaxial
OCR 4

1984 Bensai Stress-strain an elding behavior Triaxial
1985 O'Ncill Anisotrovy of Thixotropic clay DSC- Triaxial
1986 Fayad Volumetric and undrained behavior Triaxial
1987 Malek Behavior under cylic loading DSS

II 1988 Walbaum Investigation of samle distubance DSS
1988 Sheahan Modification of computer Triaxial

controlled traxial apparatus
1989 DeGroot Behavior in undrained DSS

multidirectional DSS at OCR 1
1990 Ahmed Nurmalized behavior in DSS DSS
1990 Seah Anisotrwy at OCR I DSC
1991 Ting Performance of sand drains Model testing
1991 Sheahan Time dependent material Triaxial
1992 Ortepa Cumputer autumtin of DSS DSS
1993 Cauble Cyclic and post-cyclic behavior DSS

in simple shear
1994 Saniagata Simulation as sampling disturbance Traxial

in soft clays using triaxial tests

IV 1994 Sinfield Simulation of sampling and effects CRS, Triaxial
on cmpression and sbear

1996 Cauble Behavior of model suction caisson Model caisson
1998 Santagata Pre-failure behavior Triaxial
1998 Force Strain rate selection in triaxial tests CRS
2000 Gonzalez Investigation of CRS consolidation CRS
2009 Abdulhadi Stability of bomcholes Triaxial, Model BH
2009 Moniz Normalized behavior in triaxial Triaxial

extension

Figure 3-3: Many experiments have been conducted on BBC. These listed above

represent tests performed on RBBC alone, indicating the large availability of data on

this material [Abdulhadi, 2009].
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Year Researcher Batch w, W, I, G, Clay fraction Salt
%) %L %) %) VL

1994 Zrick powder 46.4 22.5 23.9 2.78 60.1

1994 Sinfield powder 47.0 23.8 23.2 2.79
402 46.8 22.4 24.4
403 47.2 23.3 23.9

1996 Cauble powder 2.81
401 46.7 21.8 24.9
404 47.4 21.9 25.5 10.4
405 45.2 22.1 23.1 10.0
406 45.0 22.6 22.4 57.6 12.5
407 44.6 23.0 21.6 57.8 13.1
408 44.7 23.9 20.8 58.7 10.1
409 45.4 24.0 21.4 56.8 13.0
410 46.6 25.0 21.6 13.4
411 46.7 24.5 22.2 56.9 10.2
413 45.5 24.3 21.2 9.7
414 46.3 24.3 22.0 12.0
415 46.1 24.7 21.4 10.5
416 46.7 24.0 22.7 12.9
417 47.2 24.5 22.7 13.2

1998 Santagata 418
419 47.8 23.3 24.5

1998 Force 420 45.2 22.6 22.6

2009 Abdulhadi powder 46.5 23.5 23.0 2.81 56.0 11.1

Figure 3-4: The index properties listed are for Series IV RBBC and have been per-
formed numerous times by different researchers, yielding consistent results [Abdul-
hadi, 2009].
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Figure 3-5: Grain size distribution tests on RBBC show consistent results within the
Series IV batch [Abdulhadi, 2009].
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Figure 3-6: Three components used to mix the slurry: sea salt (16g/L), ground BBC
(1000g), distilled water (1L).

Figure 3-7: The de-airing station that ensures that no air bubbles are entrapped in
the slurry.
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(a) Initial stage of funneling (b) Progression of funneling

Figure 3-8: Funneling of the slurry into the floating tube setup. It is important to
keep contact with the slurry continuously during deposition to avoid air entrapment.

67



Time (s)

1 10 100 1000 10000 100000

0.1

0.2

.3
C
I

0.5

0.6

0.7

Figure 3-9: This settlement curve for RBBC indicates the End Of Primary (EOP)
consolidation with a black circle. This point in time is when most of the deformation
has occurred and there is an abrupt change of slope in the displacement v. time
relation. The first slope is considered primary consolidation while the second slope is
secondary compression which can generally be characterized as creep.
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Figure 3-10: Post-funneling, a porous stone and incremental spacers are added on
top of the slurry to begin the resedimentation process. It sits in a salt water bath (at
the same salt concentration as the slurry was made) with double-drainage access.
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(a) Resedimentation setup with hanger (b) Resedimentation setup with clipboard

Figure 3-11: The resedimentation setup here demonstrates that the specimen is loaded
using a spacer and hanger system, which ensures level application of pressure and
stable setup.
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Figure 3-12: The bender element tips embedded in acrylic endcap that fits inside a
standard 3 inch diameter sampling tube.

71



Figure 3-13: When the resedimentation process is complete, the specimen is prepared
and placed in a salt water bath with bender element endcaps on either side of the
specimen. It is incrementally loaded and velocity measurements are taken with the
completion of primary consolidation during each increment.
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Chapter 4

Testing Equipment

4.1 Introduction to Laboratory Equipment

The equipment used during this research had the express purpose of verifying the re-

producibility of modulus results of a material using various different techniques. This

study began and primarily focuses on the use of bender elements and the measurement

of the shear modulus (Gmax); however, the use of P-wave transducers, accelerome-

ters, and extensometers were utilized to establish a comparison of results based on

testing format. This chapter provides an introduction to the equipment used for this

comparison, including how to use it as well as how it works.

4.2 Bender Elements

4.2.1 Introduction

The bender elements primarily used for the experiments in this research were made

at the University of Massachusetts, Amherst from plate stock produced at Piezo

Systems Inc. (PZT-5B, configuration T220-A4-X,Y). They will later be referred to as

Geometry B. As will be discussed in section 5.2, there was a parametric study done

during this research on the geometry of the bender element tips, and it was seen that

the UMass geometry (Geometry B) had the optimal dimensions.
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4.2.2 Description of Equipment Characteristics

Bender elements are made out of two piezoceramic plates (PZT-5B lead zirconate

titanate) with a thin layer of brass between them. The ceramic plates are externally

plated with nickel electrodes for charge transfer. Piezoceramics can be used as both

actuators and sensors. Actuators convert electrical energy into a mechanical motion

while sensors create a voltage signal from mechanical motion. When a voltage is

applied to the 2-layered element, one side expands while the other contracts, causing

a bending motion, as seen in Figure 4-1. Similarly, the physical wave passing over

a receiver piezoceramic sends a response that is transmitted as a voltage whose am-

plitude is dependent on the force being exerted on the 2-layer element. As the force

begins to bend the actuator, a differential in charge is created to balance out the

motion, which is the signal being read by the receiver. The piezoceramics used in this

research were purchased from Piezo Systems, Inc (Woburn, MA, USA). Initially the

dimensions [length x width x thickness] of the piezoceramic plates were [12.7 x 6.35 x

0.51mm], as can be seen in Figure 4-3, with the final dimensions post epoxy coating

and embedment are [5.08 x 8.64 x 1.52mm] as seen in Figure 4-2 for Geometry B.

The energy transfer between the piezoceramics and power source/receiver occurs

through a wired connection to the bending elements. Two or three wires are soldered

to the piezoceramic plates to transmit the voltage to the bending actuators, depending

on the poling of the device. The piezoceramics can be polled in parallel or in series.

In both instances there is a positive and negative charge applied to the bending

actuators. The negative charge is usually ground. In Figure 4-3, the bender element

on the left is an example of a parallel-poled configuration, where the positive charge

is applied at the center shim between the two bending plates. The ground wires

are connected on both of the external faces. This 3-wired system allows the bender

element to deflect twice as much as the series-poled scenario. The bender element on

the right is in series, which has a single wire on each side of the piezoceramic material,

mounted on nickel electrodes. This applies a voltage over both of the piezoceramic

plates at the same time, allowing the elements to bend only half as much as the parallel
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configuration. A comparison to a circuit board can be made to better explain the

behavior. When a constant voltage of 1OV is applied to a circuit with two resistors of

equal resistance (for example R=4Q), the total current in the parallel case is 5 Amps,

with 2.5 Amps in each resistor. If the resistors are in series, the total resistance is

R=8Q, yielding a total current of 1.25 Amps, which is also experienced in each resistor.

Hence the deflection of the bending elements is related to the behavior of the current,

which is twice as much in each resistor when they are in parallel as opposed to in

series. This makes a parallel configuration optimal as an actuator versus a receiver.

The amount of displacement of the bending actuators for parallel and series can

be calculated from the respective equation below:

3L 2Vd31Ax, = 3 2(4.1)

3L 2Vd31Ax8 = 3 2  (4.2)
2T 2

These equations are assuming that the elements act like beams, with one end fixed

similar to a cantilever, as seen in Figure 4-1. In the above equations, Ax [m] is the

amount of lateral displacement at the free end with no load, L[m] is the length of the

bender element above the point of fixture, V [V] is the applied voltage, T [m] is the

thickness of the bender element, and d3 is the piezoelectric charge constant [m/V].
The piezoelectric constant is a material property and for the piezoceramic material in

the capacity of a bender actuator has a value of d31 = 3.73 * 10-10 m/V, as specified

by the distributor of the piezoelectrics. The length specified above is the length of

the cantilever part and not the entire bender element. All the dimensional values are

taken of the bender element before the epoxy coating since the behavior is based on

the piezoceramic material and its material properties, thus only its dimensions are

used. The presence of the epoxy coating likely decreases the displacement, although

for these rough approximations, the epoxy effect was disregarded.

Using the equations above, the calculated lateral displacement was Ax = 1.11pm

for the parallel configuration and Ax = 0.555pm for the series-poled case. The
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larger displacement for the parallel configuration makes the energy transferal to soft

mediums better, thus creating a stronger transmitted mechanical wave, which is why

the parallel-poled motor is used to sending the signal. On the receiving end, the

series-poled configuration is used since the same amount of deformation caused by

the parallel sender causes twice as much voltage upon arrival at the receiving end.

Ideally if a voltage of V=10V were sent with a parallel-poled bender element, the

received output signal at the opposite series-poled end would read 20V; however,

this would be the case of ideal situations and does not consider the attenuation,

dispersion, and electrical losses in the system. Additionally this would require no

lateral restraint, which is not the case as soon as the bender element tip is placed

inside a soil specimen.

Strain rate has generally shown to have an effect on experimentally-obtained re-

sults, including strength and permeability factors. These factors vary as a function

of the strain rate during the CRS and triaxial compression tests [Gonzalez, 2000].

As a first order comparison, the strain rate is calculated for the bender elements,

although a comparison between various strain rates is not conducted explicitly. As

will be discussed in section 5.1, there was not an observable frequency effect on the

results from experiments conducted for this research. Since the strain rate is directly

dependent on the frequency of the signal, it is evident that strain rate is not a gov-

erning factor in the results. The strain exhibited by the bender elements is calculated

by the following equation:

Y = AX/L (4.3)

where -y is the shear strain, and L is the cantilever length of the bender element tip.

The strain rate can then be calculated using the following:

S= 4 * y/T (4.4)

where T is the period of the signal, or the inverse of the frequency. There is a factor of

4 in the above equation to account for the fact that the maximum bending away from

the resting position occurs after the completion of only a quarter of the wavelength.
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Thus over the span of one period of the wave, the end of the cantilever tip travels 4

times the lateral distance calculated via equations 4.1 and 4.2.

Assuming an average shear wave velocity of Vs = 150m/s and a frequency of

f = 8kHz, the calculated strain is approximately y = 0.0219% for the parallel

configuration. Using this value and equation 4.4, the strain rate is ' = 700%/sec.

This strain rate is the maximum possible strain rate, since it considers that the full

amount of deflection will occur for a given applied voltage; however, this is likely

not the case after the bender element is pressed into a specimen, which incurs lateral

restraint.

As previously mentioned, the bender elements were covered with epoxy to protect

the piezoceramic material and electrically isolate the bender element from the soil

and end pedestal. After the application of the uniform epoxy layer over the tips, the

dimensions increased to [13.97 x 8.64 x 1.52mm] . The epoxy coating was cast using

the molds shown in Figure 4-4, with a brass part to hold the bender element plate in

place and the teflon part to house the epoxy in place. The brass rig clamps on to the

small section of bender element below the area where the wires were soldered onto the

plates. Thus, the soldered wires are also partly covered by epoxy to further secure

the electrical connection. Due to teflon's non-adhesive behavior, the encapsulated

bender element tips are easily extracted once the mold is taken apart. This system

was used for the production of the bender elements with Geometry B (from UMass

Amherst). At the MIT Geotechnical laboratory, the bender elements were created

using a variation of the above procedures. Rather than soldering the wires onto the

piezoceramic plates, a conductive epoxy was used to adhere the wires to the nickel

surface. This avoided the requirement to solder wires to the piezoceramic material,

which proved to be more difficult than conventional wire-to-wire soldering. Another

variation to the procedures used at UMass was the epoxy coating step. Initially at the

MIT laboratory, the epoxy coating was placed arbitrarily and allowed to flow until

it cured. This, however, was one of the contributing factors to the different velocity

results measured between different bender element tip geometries. The epoxy coating,

coupled with the differences in bender element tip geometries, as discussed in section
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5.2, was shown to cause a difference in velocities by more than a factor of 2.

Another consideration to be taken into account when constructing the bender

elements is the crosstalk effect caused by the electromagnetic coupling of bender

elements, such as exhibited by numerous researchers [Lee and Santamarina, 2005,

Alramahi et al., 2008, Cha and Cho, 2007]. Crosstalk manifests itself very early in

the output signal. The output signal crosstalk causes a wave to occur at the same

time as the input signal, which would imply infinite velocity. It is generally easily

distinguishable and does not pose an extreme impediment to signal interpretation,

but the elimination of crosstalk can eliminate unwanted signal. This is achieved by

ensuring the soil is electrically grounded with the bender element tips. Electrically

grounding the soil to the bender element also prevents the saturation of the received

signal, rendering the velocity measurements uninterpretable.

4.2.3 Data Acquisition System

The measuring system forms a closed loop as can be seen in Figure 4-5. The sending

bender element is activated by a voltage sent from a function generator. The function

generator is a National Instrument (NI USB-6251) device, which is controlled by

the LabView Signal Express program on a PC computer. Using this program, the

frequency and wave type can be specified. The prescribed frequency was chosen to be

8kHz for all the experimental results discussed in the results chapter. Additionally,

a sinusoidal wave was chosen as the wave type, as opposed to a square, triangle,

ramp, etc.. This topic will be discussed further in section 6.2. The input signal,

upon arrival at the bender element, causes a lateral deformation of the piezoceramic

tip that propagates a mechanical shear wave in the direction orthogonal to the end

surface of the BE tip. The wave travels across the specimen and reaches the receiving

BE tip, that generates a voltage signal as charge accumulates in an effort to equalize

the movement it is experiencing from the mechanical wave. This voltage is amplified

using a signal amplifier by 1000 times, and is fed into the data acquisition unit, which

is combined with the function generator. Finally, this signal is fed into the computer

for display and time averaging. The input signal is also displayed on the computer
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along with the output signal. This is achieved by using a split BNC connector that

allows the input signal to travel to both the sender bender element as well as the data

acquisition system. The entire system is shown in the circuit diagram in Figure 4-5

and was used for all the bender element results from BE001 to BE043. After this

point, due to technical difficulties with the computer program, the received signal

was fed directly into an oscilloscope rather than into the data acquisition system

and computer. This did not alter the received signals in any way and only allowed

for more seamless data processing without technical interruptions. The computer

was still needed since it drives the function generator that creates the input signal.

The addition of the oscilloscope can be seen in Figure 4-6. On the left hand side is

the signal amplifier unit which has multiple signal amplification capabilities and was

used to amplify the bender element signal by 1000 times. The device in the middle

is the National Instrument function generator, which transmits the voltage signal to

the bender element. Lastly, on the far right hand is the oscilloscope into which the

input voltage and the output voltage are fed. The signal acquisition is set to conduct

continuous averaging (128 times) to obtain a smoother signal with minimal noise.

Both of the signals are saved and processed manually for the calculation of the shear

wave arrival time.

The data processing stage is performed using Excel to manually pick the arrival

time from the output signal. This is one of the largest uncertainties concerned with

the use of bender elements. If the signal is not clear, it can be difficult to decide

which arrival time to select. The goal of this research has been to clarify this process

by improving the quality of the output signal and control the parameters that might

undesirably affect the results, such as cause side-boundary reflections that interfere

with the shear wave propagating down the specimen. By conducting parametric

studies with various bender element tips and various specimen geometries, the factors

affecting velocity measurements have been identified. The aspect ratio of the bender

element tip was shown to control the likelihood that a directly-traveling P-wave is

produced. In addition, the aspect ratio of the specimen determines the clarity of the

signal. Finally, with the systematic compilation and comparison of published results
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for shear modulus values with those from this research have verified the validity of

the measurements described in this thesis. Further details concerning the manner in

which the arrival time is chosen are discussed in Chapter 5.

4.2.4 Spring System

During the testing of Ticino sand, a wider setup was utilized to control the boundary

reflections discussed in Chapeter 5. When using the wider setup, such as the 20cm

diameter steel tube, the load was applied directly on the acrylic bender element

endcap that was placed directly on a piece of thin wooden disc with a hole in the

center to allow for the protrusion of a bender element tip. Since it was deemed to

insufficiently distribute the applied load over the surface of the specimen, a spring

setup was adopted. As seen in Figure 4-7, load was applied on the outer ring of the

specimen with springs. As the load was applied on the central acrylic endcap, the

corresponding amount of compression was applied with clamps on the springs that

transferred the load onto the specimen. Results are discussed in section 7.1.

4.3 P-wave Transducers

4.3.1 Introduction

The ultrasonic P-wave transducers used in this research were commercially purchased

at Valpey Fisher Corporation, Hopkinton, MA. These custom piezoelectric transduc-

ers contain a 1" 1MHz crystal that is housed in a metal casing, as seen in Figure 4-8.4

The size of the element determines the frequency that it produces.

4.3.2 Description of Equipment Characteristics

Requiring a peak to peak voltage of 50-100V, these immersible transducers produce

a signal that does not require an amplification system like the bender elements. The

transducer has a flat surface (as seen in Figure 4-9) that is put in contact with the

material that is being tested. This flat surface is known as the matching layer, which
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provides a reduction in the transition of impedance from the piezoelectric element and

the material being tested. Impedance is the ratio of sound pressure over the particle

velocity, which is an indicator of the amount of stress caused by the movement of

molecules at a particular frequency [Mavko et al., 2003]. The acoustic impedance for

the matching layer is between the impedance of the element and impedance of water.

The theory behind the way an ultrasonic piezoelectric transducer works is similar

to the bender elements. Both use piezoceramic materials and deform when excited by

a voltage. The difference lies in the way that the material deforms. The piezoelectric

transducer contracts and expands longitudinally when a differential voltage is applied,

which causes a mechanical vibration in the form of an acoustic wave to propagate.

Whereas the bender element needs to be inserted into the material, which is good

for soft materials, the P-wave transducer only needs to contact the material at the

surface. If the material is too soft, or the interface between the material and the

transducer does not observe complete contact, no signal will be transmitted. This is

often caused by the presence of air between the material and the transducer, which

causes an acoustic impedance mismatch. The signal is reflected back rather than

propagated through the material. In order to ensure coupling between the specimen

and transducer, some o-ring grease can be applied. In the case of testing saturated

clay specimens, the water acts as the couplant.

4.3.3 Data Acquisition System

The P-wave transducers are driven by a pulse generator. The one used in this research

is the Agilent 214A Pulse Generator with the capacity to send a square wave at 1MHz

and a voltage up to 100V. It can be seen in Figure 4-10. The choice of input wave

is discussed in section 6.2. Similar to the data acquisition system for the bender

elements, this setup is connected to an oscilloscope that reads the input and output

voltage, which is then processed using Excel to select the P-wave arrival. The signals

are still averaged (128 times) but no amplification system is necessary.
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4.4 Accelerometers

4.4.1 Introduction

Included in this multi-equipment study of the shear and constrained moduli of ma-

terials is the accelerometer. The accelerometer used for this research is a monolithic

Integrated Circuit (IC) that requires low power and yields high precision measure-

ments of acceleration. The microchip used in this research is the Analog Devices Dual

Axis Accelerometer (ADXL203), pictured in Figure 4-11.

4.4.2 Description of Equipment Characteristics and Experi-

ment

The ADXL203 has dual axis capabilities, meaning that it can concurrently produce

an analog output for the x and y directions, as depicted in Figure 4-12. Although the

shear and P-wave measurements taken using these accelerometers could have been

performed with a single axis, it proved useful to have dual axis functionality when

the chip was mounted on the metal endcaps, thus allowing for simultaneous shear

and P-wave measurements without re-orientation. These accelerometers require very

little voltage (approximately 3-6V) and produce a strong signal with a sensitivity of

1000mV/g. As can be seen in Figure 4-14, given an input voltage of 5V, as was used

during this research, the output voltage is approximately 0.75V, depending on the

material and its attenuation properties. With an acceleration range of ±1.7g, the

accelerometer has a shock survival of 3500g.

The small size of the accelerometers (5x5x2mm), as can be seen in Figure 4-13,

allows for the easy integration of the accelerometer in already existing test setups. To

evaluate the potential of this technology with an application to geotechnical testing,

experiments were conducted on common materials (i.e. acrylic, steel, aluminum) to

compare the modulus results with other forms of measurement such as extensometers

and P-wave transducers. The results will be discussed in section 7.4. The experi-

mental setup can be seen in Figures 4-15(a) and 4-15(b). Wires were soldered to the
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appropriate pins of the accelerometer, as listed in Figure 4-12, with the ground at

pin 3, the outputs at pins 6 and 7, and the power wire at pin 8. The chips were then

adhered to metal endcaps with superglue for signal transmission. The presence of

the metal endcaps would alter the velocity reading but a zero was taken before data

processing, so the offset was taken into account. Although the experimental setup

is in a load frame, it was used for alignment purposes and only a nominal load was

applied. The material being tested was placed between the two endcaps. An impulse

was applied at the top portion of the load frame, directly above the line of propaga-

tion that would lead across both of the accelerometers. This was usually achieved by

dropping a small metal ball (such as used in a ball bearing), or any other hard metal

object at the top of the frame. This would send a P-wave through the specimen. For

an S-wave, the top bar of the load frame would be struck in the lateral direction.

Care was taken to ensure the orientation of the microchips was appropriate for the

signal sent. Since the X and Y axes of the accelerometer were in the horizontal plane

of the chip, it was oriented vertically, as seen in the closeup in Figure 4-15.

4.4.3 Data Acquisition System

The accelerometers were connected to a power source and an oscilloscope. The oscillo-

scope was able to log the impulse as it passed over the first and second accelerometer.

The impulse was created by a blunt force caused by a hard object, such as a steel

ball dropping at the top of the load frame. The time difference between the to signals

was taken as the travel time over the length of the specimen. These calculations pro-

vided P and S-wave velocity results for various materials. No amplification or signal

averaging was needed since only a single signal was measured at a time. The high

sensitivity of the accelerometers powered at 5V created signals that often exceeded

5V if the impulse was struck too forcefully. When this occurred, the signal would be

too saturated and square off when it reached 5V.
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4.5 Extensometers

4.5.1 Introduction

As the final means of comparing the moduli of a material, extensometers were used

to measure the Young's modulus of the material during uniaxial loading. An exten-

someter measures small deformations in length associated with applied stress. Using

the stress-strain relationship during loading, the elastic modulus can be approximated

from the slope of the initial portion of the curve. The contact extensometer used in

this research was the Instron Industrial Products series 2620-826 item. These exten-

someters contain strain gauge units arranged in a Wheatstone bridge circuit and have

the ability to measure dynamic testing up to ±20% strain with an input voltage of

4V.

4.5.2 Description of Equipment Characteristics and Experi-

ment

The extensometers measure the amount of strain that occurs during loading of the

specimen over the length of the gauge section. The displacements measured are over

the length of the gauge length, thus when calculating the percent of strain, it is taken

with respect to this distance. In the case of the extensometers used in this research,

the gauge length was 19 = 25.4mm.

To attach the extensometers to the specimen, rubber bands were used to wrap

around and bind one extensometer on either side of the specimen, as can be seen

in Figure 4-17. While they are attached, two pins are engaged to hold the gauge

length(Figure 4-16). Before loading, the pins are withdrawn, which allows the ex-

tensometer to measure displacement. The setup of the experiment can be seen in

Figure 4-17. Vertical load was manually applied within the capacity of the load cell,

which was 2000lbs. Both the loading and unloading portions were monitored when

possible in order to verify the elastic behavior of the material.
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4.5.3 Data Acquisition System

Initially the data acquisition was performed by the MIT Geotechnical Laboratory

Centralized DAQ System; however, due to insufficient resolution, the AD1170 sys-

tem was used to record the measurements. The AD1170 data acquisition card, as

described in more detail in [Abdulhadi, 2009], is an analog to digital converter with

high resolution (Analog Devices Inc.) with variable bit and integration time ratings.

The bits range from 7 to 22, while the integration time ranges from 1 to 350ms. Ad-

ditionally, a gain of 100 was used to further reduce the noise in the signal. For this

testing, an integration time of 166.7ms with a resolution of 22 bits was used. The

AD1170 averages the signal, which, combined with the high bit resolution, yields a

high-quality signal with minimal noise.

4.6 New Equipment Development

4.6.1 Introduction

The Geotechnical Laboratory at MIT has been developing its equipment and proce-

dures for many years, which includes the construction of custom equipment directly

supervised by the researchers and instructors. The benefits extend from having an

intimate familiarity with the equipment that allows for efficient troubleshooting and

repair, to highly customized equipment that enables unique test setup parameters.

The majority of this research was performed using the setup described in section 3.3.4,

with two bender elements installed in acrylic endcaps that are placed on either side of

the resedimentation tube; however, throughout the duration of this research, further

equipment development was conducted. The goal was to have P and S-wave prop-

agation capabilities in multiple directions. The first step is to establish a modified

triaxial setup that has vertical data acquisition capabilities, as is described in sub-

sequent sections. The prospective long-term goal is to include lateral transducers to

simultaneously acquire vertical and lateral measurements.
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4.6.2 Triaxial Setup

The setup used for the velocity testing of clay specimens is a modified triaxial, or

more aptly named, a biaxial setup. The vertical stress and confining stress are varied

to obtain the shear and constrained moduli of the specimen as a function of vertical

effective stress. The specimen is loaded under KO conditions using a moveable vertical

piston attached to a load cell, incrementally increasing the vertical stress from 1OOkPa

to 1,0OOkPa, with unloading portions incorporated during this process. Figures 4-

18(a) and 4-18(b) shows a 3D KeyCreator T representation of the experimental

setup. As can be seen, a pedestal with drainage openings is inserted over the bottom

pedestal to keep it in place. The top endcap is held in place by a tight flexible

rubber membrane that surrounds the cubic specimen and is held onto the endcaps

with greased o-rings. Both the top and bottom endcaps have drainage lines that

permit flow from the porous stones to a channel that leads to either the bottom

pedestal or a top drainage line. The flow is routed to the pore pressure plumbing

in the manifold, which can be monitored and controlled with the use of pressure

transducers. A closeup of the endcaps can be seen in Figures 4-19 and 4-20.

The triaxial setup is encompassed in a plexiglass cylindrical chamber which is

transparent to allow for visual monitoring of the experiment. The chamber is filled

with cell fluid (silicon oil) that surrounds the specimen and is pressurized to apply uni-

form lateral load on the specimen. The cell pressure and pore pressure are controlled

by Pressure Volume Actuators (PVA's). The PVA's are controlled by a computer

that acquires the real-time data from the monitoring transducers. Automation is an

important aspect of running KO experiments since ensuring no deformation during

loading of a flexible wall setup is a tedious process to perform manually. The Ko

conditions monitored by the computer feedback system is established by calculating

the change in pore fluid relative to the axial displacement. The entire triaxial setup

is held together with chamber rods, which keep the bearing plate and piston bearing

assembly in place, allowing the axial stress to be applied by an external load frame.

An internal load cell monitors the amount of axial load applied to the specimen and
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vertical displacement is monitored using external Linear Variable Differential Trans-

formers (LVDT's). The measured displacements are converted to strains, which are

taken relative to the inputed geometry of the specimen. Before the initiation of Ko

consolidation, the volumetric strain is adjusted to match the value of the axial strain.

The computer control thus keeps the volumetric strain and axial strain the same by

increasing the cell pressure as the axial stress increases.

4.6.3 Data Acquisition

The advantages of a triaxial setup is complete control and automation of the setup of

the experiment, which gives more accurate and precise results. In order to efficiently

monitor the experiment, sensors are needed to obtain and feed back continuous infor-

mation to the computer control system. The following components are required for

the experimental process.

Centralized Data Acquisition System

The MIT Geotechnical Laboratory has a central data acquisition system that is used

by virtually all the experimental setups. A Hewlett Packard HP3497A data acquisi-

tion unit is used as an analog to digital converter, which feeds the signals to a 486

microprocessor Windows PC. This system can monitor up to 160 channels with auto-

ranging amplification capabilities, which enables low-noise signal detection without

additional signal conditioning. The acquisition of data from the LVDT, load cell, and

pressure pressure transducers are thus streamlined into one central unit for ease of

analysis.

4.6.4 Square Triaxial Endcaps

The choice of square endcaps for this experimentation was a unique alteration to the

normally-cylindrical triaxial setup. The reasons for this geometry include the ability

to test three directions independently from each other. In addition, the equipment

used to perform the velocity measurements is preferentially placed on a flat surface
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rather than a curved surface to ensure optimal wave propagation. Finally, permeabil-

ity and resistivity measurements are available for this geometry by [Adams, 2011],

which proves a convenient form of comparison. The square endcap, as previously

mentioned, houses a brass insert containing a P-wave transducer and bender element.

See Figure 4-21 for the endcap without the brass insert. The P-wave transducer and

bender element can be seen in Figure 4-22. They are connected to a board-board

connecter header, which will be exposed at the bottom end of the brass insert. Inside

the acrylic endcap is a board-board connector socket that is wired to a 9-pin electrical

connector unit that passes the wires through the base of the triaxial cell. The wires

are then externally connected to the signal source and oscilloscope.
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Figure 4-1: When a differential voltage is applied to the bender element, it deforms
laterally as shown here. The input voltage, length (L), and thickness (T) are used to
calculated the deflection (Ax). Ay is the change in length of the BE tip

Figure 4-2: This bender element tip has been embedded into an acrylic endcap and
acts like a cantilever, held rigid at one end. The dimensions shown are the ones used
for the calculations of the bender element deflection. This bender element is already
covered in epoxy. See Figure 4-3 for pre-epoxy example
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Figure 4-3: These are bender element tips that have been soldered to be in series and
parallel. The left shows a piezo-ceramic plate in parallel, which is usually used as the
sender since it can deflect twice as much as in series. The right hand side is wired in
series, with the two lead wires on opposite sides of the plate. This configuration is
usually used for receiving end (Picture courtesy [Landon, 2004])
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(a) First stage of casting the bender elements in the epoxy coating

(b) Second stage of casting the bender elements, using teflon
and brass cast

Figure 4-4: The wired ceramic plates are cast in epoxy for electrical insulation and
water-proofing using a teflon mold and a brass clamping section [Landon, 2004]
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Function
Generator

Data Acquisition

Figure 4-5: The circuit diagram of the BE testing scheme can be seen here. The
function generator is commanded by a computer, which then sends an input signal
into the bender element on one end of the specimen. The shear wave travels down
the specimen and is received by the bender element at the other end. The signal is
amplified by 1000 times and sent into the data acquisition system
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Figure 4-6: The bender element is driven by a National Instrument function generator
at 10V and a frequency of 8kHz (shown in the middle and connected to a computer off
to the side). On the far left is an amplifier that amplifies the output signal for higher
resolution. On the far right is an oscilloscope that displays the input and output,
which was incorporated for easier processing of output signal
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Figure 4-7: The springs seen here were compressed an amount equal to the force
exerted on the central acrylic bender element endcaps that would be placed in the
middle of this setup
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(a) Cross section of P-wave transducer (b) 3D view of the P-wave transducer

Figure 4-8: This metal housing contains the piezoelectric crystal inside that has the
capability to send a 1MHz P-wave signal through stiff mediums (Valpey.com). The
side with the threading is the surface put in contact with the specimen. All dimensions
in inches

Figure 4-9: An ultrasonic piezoelectric P-wave transducer, as shown here, was used
for the P-wave signal transmission and acquisition
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Figure 4-10: This square pulse generator sends a high voltage high frequency pulse
to the P-wave transducer to propagate a signal

Figure 4-11: The accelerometer pictured above was used to pick up vibrations trans-
mitted through stiff mediums

ADXL203
TOP VIEW

(Not to Swig)
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I

Figure 4-12: The various pins for connections are depicted above. For the dual-axis
accelerometer, two signal channels are available (Analog Devices)

96



0

0.0041

R 0.008.
(4 PLCS)

0.087
-0.07B

0.063

0.077
- 0.07
0.06

(PAI4OVQIW 1.
INU DETAIL A
"M OPIM~ M

0.054

0-06,-AM

W1nan YE

OUS

OET*U..A
IGPTWW RI

Figure 4-13: The versatility of this accelerometer is enhanced by its small size. The
listed dimensions are listed in inches with a permissible margin of error (Analog
Devices)
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Figure 4-14: Given an input voltage of 5V, the received signal generates approximately
0.75V. The left graph is for X-axis results and the graph on the right is for Y-axis at
25'C (Analog Devices)
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(a) Closeup of the accelerometers attached to (b) Test setup for the accelerometer testing in
endcaps with superglue a load frame

Figure 4-15: Pictured here is a setup used to measure the shear and longitudinal wave
velocities through a steel cylinder using accelerometers. The signal is propagated with
an impulse applied at the top extremity of the setup, thus allowing the wave to travel
across both accelerometers. The travel time between the two signals is then calculated
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Figure 4-16: The extensometer pictured above was used for the stress-strain mea-
surements of materials under uniaxial loading. The pin is engaged for the starting
position, and before testing begins, it is taken out. This allows the extensometer to
be in range when initializing the experiment
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Figure 4-17: Extensometers are attached to either side of the specimen using rubber
bands. The material is loaded manually up to 2000 lbs. The extensometers are
attached to a AD1170 Data Acquisition Card, which feeds the results to a computer
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(a) Side view of modified triaxial velocity mea- (b) 3D view of modified triaxial velocity mea-
surement setup without chamber rods surement setup

Figure 4-18: Overall graphic of the modified triaxial setup used for velocity testing
of cubic RBBC specimen under controlled vertical and cell pressures
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Figure 4-19: Above is a closeup of the square acrylic endcap with a removable brass
cup that houses the bender element and P-wave transducer, held securely in place
with an o-ring. Exposed is a drainage line that comes in contact with the porous
stone and is controlled by the pore pressure PVA. The other visible channel that
leads out of the bottom is for the electrical connections

Figure 4-20: This closeup depicts how the porous stone fits around the brass cup and
lies flush with the surface of the transducer. After a filter paper is placed onto the
porous stone, the RBBC cubic specimen pushed onto the surface of the stone with the
bender element protruding into the specimen and the P-wave transducer in contact
with the surface
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Figure 4-21: These acrylic endcaps have a versatile insert (now empty) that can house
the desired transducers, including P-wave transducers and bender elements

Figure 4-22: The bender element and P-wave transducer seen here are electrically
connected to a board-board connector header, that are potted in a brass cup with
epoxy. The brass cup is then connected to a board-board connector socket inside the
acrylic endcap seen in Figure 4-21
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Chapter 5

Investigation of Variables that

Affect Bender Element

Measurements

5.1 Frequency Effect

5.1.1 Bender Element Frequency Behavior

The input frequency at which the bender element behaves is dictated by the user.

The general range for bender elements is from 2kHz to 20kHz, depending on the

geometry of the tips. The decision of which frequency should be used to drive the

bender elements depends on the test conditions and can be altered to produce the

optimal output signal. The wavelength ratio, as discussed in section 5.3.1, is one of

the limiting factors of the input frequency used and always needs to be calculated

to ensure sufficient wave repetitions. The frequency chosen can also depend on the

material being tested. The attenuative qualities of a medium are sometimes more

effectively overcome by altering the frequency. For example it was shown that by

reducing the frequency in Figure 5-1 from 1MHz to 0.1MHz (when using ultrasonic

transducers) one can increase the strength of the signal by a factor of 3 or more, with

all other parameters held constant. Although Figure 5-1 is from an experiment with
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ultrasonic S-wave transducers, the concept transcends to other mediums.

The frequency behavior of bender elements can be further explained be observing

the frequency response of two bender element tips transmitting a signal directly to

each other without any medium between them. When the bender element is agitated

at a frequency lower than its natural resonant frequency (f,), the wave that travels

from the sender bender element tip is at that specific frequency, and eventually will

resonate at a frequency approximately at the resonant frequency, as seen in Figure 5-

2. However, if a frequency higher than f, is applied as the input frequency, the

bender element cannot send a wave at that high frequency but rather sends a wave

at the f,. This behavior can be seen in Figure 5-3. It should be noted that all graphs

with bender elements have the output signal amplified by 1000 by the external signal

amplifier. Additionally, the signal was again multiplied by 100 when indicated in

the legend for clarity in the graph, so as to approximately match the scale of the

input signal. Therefore, in Figure 5-10, when the first peak of the output signal

has an amplitude of 1OV, this really means that the voltage measured was 0.0001V.

Figures 5-2 and 5-3 were conducted using a setup without an amplifier so they do

not need to be divided by 1000.

5.1.2 Frequency Effect on Modulus Results

The frequency effect on the results of laboratory experiments has been a topic of

discussion when trying to relate the laboratory results with field sonic logging results.

The largest frequency effect can typically be seen in the P-wave velocities of partially-

saturated materials tested at seismic versus ultrasonic velocities [Hofmann, 2006]. As

can be seen in Figure 5-4, depending on the boundary conditions and the frequency at

which the specimen is tested, the elastic constant changes in a non-linear fashion. The

theoretical explanation is derived from the ability for the stiffness to increase due to

the fluid-induced pressure. For example, during drained conditions if a high frequency

wave passes over a partially saturated area, the tendency for the fluid to migrate and

cause a pressure gradient adds to the overall stiffness of the system, increasing the

value of the elastic constants. Reference Figure 5-5 for various situations where the
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frequency can have an effect on the measured bulk modulus. As can be seen, the

absence of a pore fluid shows the results to be independent of frequency, as well

as when the boundary conditions are undrained. The drained conditions show a

dramatic increase with increasing frequency.

The issues mentioned above are mostly faced with compressional waves because

the presence of fluid highly affects the bulk and constrained moduli, while relatively

small effect is seen in the shear modulus. Since a shear wave cannot travel through

a fluid, the presence or absence of a fluid is theoretically irrelevant to the magnitude

of the shear modulus, although it has been experimentally shown that dry specimens

have higher S-wave velocities than saturated specimens [Mondol et al., 2008, Hofmann,

2006, Zimmer, 2003] due to the effect fluid has on the particle contact area.

During this research, the use of bender elements to obtain the shear wave velocity

was found to be independent of the frequency used for the function generator, as

seen in Figure 5-6 for a saturated BBC specimen with bender elements. The range

at which the bender elements were driven was extremely small relative to the range

needed to see a difference. After testing at various frequencies, a frequency of -8kHz

was chosen for all the experiments on BBC.

5.2 Bender Element Tip Geometry

In order to better understand the bender element signals, the effect that the geometry

of the bender element tips was investigated. A parametric study was performed on

Ticino sand using the same setup and KO loading conditions. Multiple experiments

were performed in a rigid tube to ensure repeatability. The three different geometries

are described in Table 5.1

The results shown in Figure 5-7 indicate a strong effect on the velocity depending

on the geometry of the bender element tips. The differences can be explained by the

creation of additional waves due to the geometry of the specimen. If the bender ele-

ment tips are wider and shorter (i.e. Geometry B), it is less likely for a side-traveling

P-wave to occur. Hence the lowest H-T ratio will produce a clear forward propagating
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Table 5.1: Specifications of the three different bender element tip geometries tested
under the parametric study

Geometry Height Width Thickness H-T ra- Description

(mm) (mm) (mm) tio
A 6.97 6.95 2.91 2.4 Tip was epoxied by dip-

ping method, causing
rounded edges

B 5.37 8.72 2.32 2.3 Epoxied using a mold
to have perpendicular
square ends

C 5.7 7.12 1.55 3.7 Excessing epoxy placed
on tips using dipping
method. Uneven distri-
bution of epoxy, and ben-
der element was installed
at an angle to the endcap

S-wave with minimal side-traveling longitudinal waves. In the case of Geometry A,

the velocities are much higher since the recorded arrival time was a P-wave rather

than an S-wave. The P-wave taken as the first arrival was a directly-traveling P-wave

that was caused by the bender element geometry. For longer bender element tips,

the amount of vertical displacement that occurs during deflection, signified by Ay

in Figure 4-1, is greater, and thus is more likely to cause a P-wave signal. This is

further supported by the fact that the velocity difference between Geometry A and

B is about a factor of two, and usually the P-wave velocity is roughly two times the

value of the S-wave velocity. Hence to say that the observed arrivals are P-waves

would be a valid assumption.

Geometry C is an anomalous geometry for a couple of reasons. It had an excessive

amount of epoxy coating the piezoceramic tip, which could alter the arrival of the

signal or create a damping effect that would present a much slower signal. The epoxy

could have also weakened the shear wave such that the signal that presents itself is

a P-wave reflection that arrives much later. Additionally, it was imbedded into the

endcap at a slight angle to the surface, thus when two endcaps are perfectly aligned
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with each other, the propagating shear wave would not travel directly down the path

of the specimen. Instead it would travel off the vertical axis and the observed signal

could be a reflection, thus explaining the unusually slow shear wave arrival time.

The conclusion was to proceed with Geometry B since it had a low H-T ratio which

would decrease the likelihood of P-wave propagation. Furthermore, as is discussed in

section 7.1 and 7.2, the results from this bender element geometry proved to compared

well with other published results. Finally, it is unlikely that a single exact geometry

exits that can provide the best results. There is a range, with an H-T ratio less than

2.3 being a good upper limit. This ratio can be decreased further, however, this also

decreases the strength of the signal since there is a smaller tip-to-soil contact area

and embedment length. There is a theoretical lower bound were the tip becomes too

small to effectively act as a cantilever; however, more testing needs to be performed

to aptly assess this lower bound.

5.3 Specimen Boundary Effects

The boundary effects alter the quality of the signal and the validity of the results.

Previous studies using bender elements [Leong et al., 2009, Jovicic et al., 1996, Kuila

et al., 2011, Gajo et al., 1997, Fioravante and Capoferri, 2001, Piane et al., 2011, Cho

and Finno, 2010] have used the triaxial cell setup, which can cause unwanted signal

interference due to the geometry of the setup. Additionally, if sufficient distance is

not kept between the two bender elements, other factors can alter the signals. In

the proceeding sections, the specimen geometry is discussed, illuminating the balance

required between the wavelength and aspect ratio of the specimen.

5.3.1 Geometric Ratios

The geometry of the specimen can greatly affect the signals and the clarity with which

they are interpreted. Since the format of the experiments as well as the geometry of

the specimens can vary greatly, it is vital that the following requirements be fulfilled

regardless of the setup.
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Wavelength Ratio

The wavelength ratio is defined as follows:

d
r = - (5.1)

A

where d is defined as the tip-to-tip length between the edges of the bender element

tips, as depicted in Figure 5-9 and A as the wavelength of the shear wave propagated

through the specimen. The wavelength ratio needs to be greater than two in order

to obtain an unambiguous signal. When the bender element tips are closer than this

wavelength ratio of two, the near-field effect becomes apparent. The near-field is a

perturbation in the received signal which often travels at the speed of a P-wave and

can cause an error in the interpretation of the arrival time [Leong et al., 2009, Wang

et al., 2007, Youn et al., 2008]. An example of the near-field effect can be seen in

Figure 5-10. If a specific distance is required due to equipment restrictions, the

frequency of the input signal can be altered.

The ultimate outcome of an experiment that violates the wavelength ratio is no

only an incorrect signal, but also an incorrect velocity. The precursory wave might

be mistaken for an S-wave arrival, and hence can cause higher velocity readings.

Aspect Ratio

The second ratio that is important for the clarity of the signals is the aspect ratio. It

is defined as the following:
d d

ra - or - (5.2)
2r w

In the case of a non-cylindrical specimen, w is the horizontal width of the specimen,

such as the width of a cube. r is the radius of a cylindrical specimen. Again, the

length measurements can be seen in Figure 5-9. The aspect ratio should be less than

one, which would allow any side traveling wave to arrive after the directly propagating

wave. A further discussion of this topic is in section 5.3.2.

To have the best aspect ratio would mean that the wavelength ratio is compro-
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mised. As the aspect ratio decreases (if the specimen becomes shorter and wider), the

distance between the tips decreases. Recalling equation 5.1, as d decreases, the ratio

rw decreases. Since rw needs to be greater or equal to 2, this becomes an iterative

process. It is an optimization that requires careful consideration. This is one of the

driving factors for the cubic triaxial setup. The square specimen allows for a much

smaller aspect ratio than a triaxial experiment, which usually has an r, of between 2

and 2.5.

5.3.2 Ray Path Analysis

In the case that side-traveling P-waves are created by the bender elements, a ray

path analysis would give some insight on which kind of wave interaction is occurring.

Thus with the regular brass tube and the wider tubes, a series of experiments were

performed to investigate the signal interference that might obscure the arrival of the

S-wave. Although the ray path analysis assumes a perfectly elastic isotropic medium,

which is not the case during our experimental setup, it does allow a rough estimate of

the behavior of various waves. The reflections investigated include a P-P, P-P-P, P-

P-P-P, P-S, CAR, and P'. All of these cases can be seen in Figure 5-11. The multiples

of the P-P reflections describe a P wave that travels at an angle 6 from the original

surface, with different numbers of reflections. The P-S reflection indicates a P-wave

converted into an S-wave at the boundary. The CAR is the critical angle of reflection

and indicates an angle at which a side-traveling P-wave reaches the vertical boundary

and travels along the boundary as a P-wave, until eventually reflecting back at the

same angle to the receiver. When the wave is traveling along the boundary, it travels

at the speed of the confining medium, which is brass in the case of this research. The

critical angle is found from the following equation:

Be = sin-1 (c1 /c 2 ) (5.3)

where ci and c2 are the speeds at which the wave propagates through the primary

medium and the secondary medium, respectively. Although initially considered, since
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File ra P' S P-P P-P-P P-P-P- P-S CAR
Name P
BE021 0.38 0.00014 0.00024 0.00037 0.00070 0.00105 0.00053 0.00075
BE016 0.51 0.00016 0.00027 0.00024 0.00040 0.00058 0.00033 0.00048
BE009 0.96 0.00018 0.00032 0.00024 0.00039 0.00055 0.00034 0.00039

Table 5.2: Travel times (in seconds) of all the different reflection for various specimens
with similar height but varying aspect ratios

the secondary medium was copper and the longitudinal velocities through copper are

significantly higher than those through soil, it was evident that these CAR reflections

were insignificant and would occur before the completion of the input signal, especially

due to the high attenuation that occurs in the secondary medium. Finally the P' wave

is a weak P-wave that can travel directly down the vertical axis. A directly traveling

P-wave would be caused by the change in vertical distance of the bender element tip,

as denoted by Ay in Figure 4-1. See Table 5.2 for example calculations of travel times

for different travel paths.

A series of experiments was conducted using bender element Geometry A, which

was the geometry that produced P-waves, causing high shear velocity readings. Re-

ferring to Figures 5-12, 5-13, and 5-14 it is evident that as the side boundaries widen,

the signal is much clearer and there is a strong, distinct arrival, whereas if the d length

is much longer and the r is smaller, the signal is not nearly as clear due to the many

reflections that occur off the boundaries. Figures 5-12, 5-13, and 5-14 correspond

to diameters of 7.5cm, 11.3cm and 20cm, respectively, while vertical distance was

held relatively constant. A series of ray path calculations were conducted to assess

whether the assumption that Geometry A causes P-waves to propagate was accurate.

The widest geometry was selected for the ray path calculations and three scenarios

were considered. The first signal recorded was taken to be either the S-wave arrival,

the first P-P reflection, or a directly traveling P' wave. As can be seen in Figure 5-15,

the times of the corresponding reflections were calculated assuming a Poisson's ratio

of 0.3. For clarity, the arrows indicate where the max point of the wave would arrive.
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In Figure 5-15(a),5-15(b), and 5-15(c), it is evident that the first two cases would not

correspond to reasonable arrivals. The third case, however, would support the fact

that there is a single P-wave that travels down the same path that the S-wave follows,

while the rest of the reflections are greatly attenuated and decrease in strength due

to the long distances they travel.

The same ray path calculation was performed for Geometry B, which does not

produce orthogonally-traveling P-waves. The images seen in Figure 5-16 firstly indi-

cate that the directly-traveling P' wave is not a reasonable explanation for the waves

seen in the output signal. In Figure 5-16(c), if the first peak were the arrival of the P'

wave, this would also not allow for a distinct S-wave arrival, and it does not explain

the second peak in the signal. In the P-P case (Figure 5-16(b)), the arrival of a valid

S-wave would not occur at all. The time at which the S-wave would arrive according

to the ray path calculation does not have any identifiable peaks. Since the bender

elements firstly produce shear wave signals and potential weak P-waves, it is evident

that the lack of an S-wave would be the most unlikely case. It is clear that none of

the calculated arrival times for reflections match up with signals. Finally, the last

case in which the first arrival is an S-wave clearly shows that the P' does not occur

and that the second peak can be explained by a side-traveling P-wave or alternatively

the resonance of the bender element. As before, the CAR case was disregarded since

the transmission of a wave through sand, then to the metal tube, and then back to

the sand would likely cause an extensively weakened signal that would not show up

in the output. The supporting images are shown in Figures 5-17 and 5-18.

5.3.3 Soft vs. Hard Boundary

As mentioned previously, the boundary can play a part in the wave propagation

process. While the CAR reflection was taken to be negligible in the case that the

confining material is brass since the signal would travel so quickly and be highly

attenuated that it would not be picked up by the receiver, the effect of the boundary

was considered in a different aspect. The stiffness of the boundary was altered to

observe the effect it could have on the polarity of the signal. Revisiting Geometry A,
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which was proven to produce a directly-traveling P'-wave and S-wave, two cases were

tested. The first is the brass tube filled with Ticino sand, and the second was was

a brass tube lined with paper on the inside and filled with Ticino sand. The brass

acts as a stiff boundary while the paper produces a soft boundary that can change

the polarity of a P-wave upon contact. Looking at Figure 5-19, the first two waves

are identical, but the rest of the waves are almost exactly opposite in polarity. This

supports the fact that the very first signal is a directly propagating P-wave, and the

second is the arrival of the S-wave, neither of which would have changed in polarity

since they do not come in contact with the boundary. The later reflections, however,

all come in contact with the side boundary and change in polarity. Hence with the

strong evidence that the Geometry A bender elements create P-waves in addition

to S-waves, the alternative Geometry B, which clearly produced only S-waves, was

adopted.

5.4 Stress Effect on Output Signal

The amplitude of the output signal acquired from the receiver bender element is

greatly affected by the lateral restraint acting on the element. The amount of deflec-

tion experienced by the bender element, as seen in Equations 4.1 and 4.2, is governed

by the geometry of the bender element tip and the differential voltage applied to the

bender elements. There is a linear relationship between the deflection experienced

by the bender element and the force applied on it by the surrounding material. This

relationship seen in Figure 5-20 is derived from the following equations for parallel

and series, respectively:

F, = 4 VWT (5.4)
3Lg31

2VWT
Fs = 3 3  (5.5)

3Lg31
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where 931 is the piezoelectric voltage constant that relates mechanical stress ap-

plied to the electric field generated by the piezoelectric material, with units of Volt-

meter/Newton. L, W, T are length, width, and thickness of the bender element tip,

respectively. The piezoelectric voltage constant, as specified by manufacturers, was

taken to be g31=0.08798 Vm/N. The graph seen in Figure 5-21 depicts the output

signal for a range of stresses, with the vertical axis representing the output voltage

amplified by 1000 times. As clearly seen in the figure, as the vertical effective stress

applied on the laterally confined Ticino sand increases, the output voltage decreases.

The lateral force acting on the bender element can roughly be calculated assuming

KO conditions with Ko=0.5 for sands. Using the equations above, one can calculate

the allowable stress range and required input voltage to obtain signals.

5.5 Lag in Response

Similar to most data acquisition systems, the bender elements do have a electrical

time lag in the response time from which the signal is activated to the time that

it is received. This is partly due to the external wiring as well as the bender ele-

ments themselves. The proportion of the lag time attributed to these two parts is

indistinguishable and irrelevant.

The lag time measurements can be performed by putting the two bender element

tips together and observing the difference between the input and output signal. As

can be seen in Figures 5-2 and 5-3, there is a delay between the input signal and the

first output. In these two cases, the perceived lag time is not identical. This can be

caused by the way the two tips are held together. If they are held exactly aligned,

they produce a lag seen in Figure 5-2, whereas if they are slightly misaligned during

this process, a greater lag is observed, as seen in Figure 5-3. In each of these, it

is clear that the lag is very small and when incorporated in the calculation of the

velocity, it is usually negligible. This is especially the case in the triaxial setup which

is perfectly aligned, causing minimal lag.

115



0.0015

0.001

0.0005

0

-0.0005

-0.0015
-0.00001 0.00001 0.00003 0.00005 0.00007 0.00009

Time (s)

Figure 5-1: Using an ultrasonic piezoelectric S-wave transcuder of 1MHz, when al-
tering the input frequency the amplitude of the voltage can change depending on
the material tested. In this case, 300micron quartz sand is tested at 61kPa. Due to
the attenuative properties of sand, the lower frequency input signal yields a signal
of better quality. Note that the arrival time remains constant when the frequency is
varied
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Figure 5-2: When the bender element is driven at a frequency below its natural
resonant frequency, such as at 7kHz, the output wave is at that driving frequency,
while the later waves remain at the natural resonant frequency
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Figure 5-3: When the bender element is driven at a frequency higher its natural
resonant frequency, such as at 20kHz, the output wave is at the resonant frequency
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Figure 5-4: As the frequency of the input wave increases, there is a larger tendency
for frequency-dependent properties to govern the results [Hofmann, 2006]
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Figure 5-5: The frequency effect was observed to have the largest impact on bulk
modulus results for a partially saturated drained specimen. Under higher frequencies,
fluid migration causes higher stiffness values [Hofmann, 2006]
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Figure 5-6: The frequency was varied for a saturated BBC specimen at 400kPa using
bender elements. There is no discernible difference in arrival times, as seen in the
circled region
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Figure 5-7: A parametric study of the bender element tip
pending on the way the epoxy is deposited on the tip and
the results can vary by a factor of 2
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Figure 5-8: The deflecting bender element produces an orthogonally-propagating S-
wave and in certain cases can also produce side-traveling P-waves
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Figure 5-9: This schematic representation shows bender element endcaps on either
side of a cylindrical specimen. The aspect ratio and wavelength ratio limits are based
on these dimensions
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Figure 5-10: This signal obtained from an experiment on Ticino sand at 8kHz demon-
strates the result of having a wavelength ratio lest than 2, where the near-field effect
occurs. Additionally, this signal exhibits crosstalk, which is electrically induced when
the bender elements are not electrically isolated
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Figure 5-12: A small diameter is used with a d=8cm and r=3.75cm at a stress of
100kPa. As can be seen, the signal arrives very early and there are a lot of reflections.
The likelihood that there boundary reflections is high and the signal does not have a
distinct arrival
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Figure 5-13: A medium diameter is used with a d=7.9cm and r=5.65cm at a stress
of 88kPa. As can be seen, the signal arrives early but there are fewer reflections than
in the previous case. It is more evident which signal is the arrival
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Figure 5-14: A small diameter is used with a d=7.6cm and r=10cm at a stress of
1OOkPa. As can be seen, the signal arrives very early but this time the signal is very
distinct and there are far fewer boundary reflections and interferences. This allows
for a more unambiguous selection of the arrival time
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Figure 5-15: An extensive ray path analysis on Figure 5-14 provides more insight into
the waves registered by the receiver bender element for Geometry A
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Figure 5-16: An extensive ray path analysis on Figure 5-14 provides more insight into
the waves registered by the receiver bender element for Geometry B
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Figure 5-17:
signal due to
isP,

The arrival of the CAR was shown to not have an impact on the output
its high attenuation. This image is for Geometry A assuming first arrival

40

30

20

10

0

-10

-20

-30

-40
0 0.0002 0.0004 0.0006 0.0008

ime (s)

0.001

Figure 5-18: The arrival of the CAR was shown to not have an impact on the output
signal due to its high attenuation. This image is for Geometry B assuming first arrival
is S
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Figure 5-19: The same experiment was conducted on Ticino sand in a brass tube using
Geometry A. In one case the inside of the tube was lined with paper, which simulated
a soft boundary, while the other case was just the brass shell, which is considered a
hard boundary. As can be seen here, after the arrival of the first wave, the subsequent
waves flip in polarity, confirming that they are side-boundary reflections

128



0.6

0.5

0.4

0.3

01

0.1

'4

9%
Lb

0
0.OE+00

-m-2 V

10 V

20V

"50 V

100y

N

N

2.OE-06 4.OE-06 6.OE-06
Displacement (m)
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Chapter 6

Data Analysis Methods

The data processing component of bender element testing has proven to be the largest

challenge faced by new testing facilities. The dominant form of signal processing is the

time domain method and manual selection of the arrival waves in the signal. While

this remains the most-used method, as well as the method used in this research, there

have been attempts at procuring a methodology that bypasses the manual selection

component that can be tedious and user-dependent, such as the cross correlation

method and the frequency domain method.

6.1 Arrival Time Selection

The three main types of analyses done on the output signal are time domain, cross-

correlation, and frequency domain. The time domain can be further separated into

two types of arrival selection: peak-to-peak or start-to-start. While this research

does not experimentally investigate the effects that these data analysis methods have

on the velocity results, this chapter provides an explanation and comparison of the

various methods commonly used. This research has maintained the use of the start-to-

start method due to the results seen in published papers as well as to avoid potential

dispersion effects caused to the wave from the source to receiver, as will be discussed

in the following sections.
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6.1.1 Time Domain

The time domain method is the simplest to implement as far as computational ca-

pabilities; however, it can prove to be more difficult than the other methods due to

the need for the user to manually decide which arrival to select. It is best performed

by a researcher with experience at selecting the arrival time and with a knowledge

of wave propagation principles as well as the mechanical behavior of the bender ele-

ments. Since the traces are time-averaged, the selection of the arrival time becomes

even more unambiguous.

There are two primary ways in which the arrival time can be selected. The first is

the start-to-start method, which is essentially self-descriptive. The travel time from

the beginning of the input wave to the beginning of the output wave is taken. An

example can be seen in Figure 6-1. The portion when the signal departs from OV

and begins to form a positive peak is where the travel-time ends. It is known that a

positively trending signal is the arrival of the shear wave if the bender element tips

are checked to see whether they are in phase with each other. This is accomplished

by putting the two bender element tips to each other. It will be evident that in one

orientation, the output signal will match the polarity of the input signal, whereas

if the bender element is rotated 180', the first output signal will be a negatively-

polarized wave. Example results performed by [Asaka et al., 2008] using the start-to-

start method are seen in Figure 6-2, where the input frequency was varied and the

observed arrival time was monitored. It was evident that irrespective of the frequency,

the starting point at which the signal arrives at the receiver remained constant. This

highlights the frequency-independent benefit of the start-to-start method.

The second type of time domain travel time selection is the peak-to-peak method,

also shown in Figure 6-1. This method is easier to visually detect in many cases, thus

is chosen for the ease of identifying the maximum peak of the signal. One shortcoming

of this system is the inability to account for dispersive effects that might widen the

period of the output signal, as compared to the input signal. While it some cases

it might be a negligible effect, in other cases, the dispersion could be considerable,
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depending on the soil being tested. This is particularly a concern for sand, especially

saturated sands. One can evaluate whether dispersion has occurred by measuring the

period of the input wave versus the output wave to assess whether it is a concern.

6.1.2 Cross-Correlation

Since one of the uncertainties of interpreting velocity results for bender elements is the

selection of arrival times, there have been a few attempts at eliminating the human-

prone error in arrival time selection by using numerical methods of auto-selecting the

arrival time. The cross-correlation method is based on a comparison of the input

signal with the first positive output signal. The following equation is used during this

analysis:

CCry(ts) = lim - X(t)Y(t + ts)dt (6.1)
T--+oo T 0

where T is the recording period, t, is the time shift between the input and output, X(t)

is the time history of the input wave, and Y(t) is the time history of the received wave.

To obtain the cross correlation maximum value CCxy, the fast Fourier transform

(FFT) is taken of the X(t), after which it is multiplied by the complex conjugate

of Y(t) and the inverse FFT is taken of the product. This maximum value CCxy

corresponds to the total travel time of the wave. A more detailed explanation can be

found in [Viggiani and Atkinson, 1995].

One of the disadvantages of the cross correlation method is that it takes the first

positive peak of the output to produce a travel time calculation. In some cases, there

are precursory waves that present themselves in the output signal (i.e. caused by near-

field effect or P-waves), which would not be recognized as such by the computational

method of cross-correlation. Another shortcoming of the cross-correlation method

is its dependence on the frequency of the signals. If the input signal frequency is

different from the output signal frequency, errors will arise in the velocity calculations.

Since this is sometimes the case when the bender elements are driven at frequencies

higher than their natural resonant frequency, a careful check of the f" needs.to be

performed to ensure that the input frequency matches the output frequency before
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the CC method can be used. Another factor that can alter the output frequency is

dispersion. Since this is a factor that one cannot control, the CC method can prove

to be unreliable, depending on the dispersion characteristics of the soil being tested.

6.1.3 Frequency Domain

The frequency domain method of signal interpretation, also called the cross-spectrum

method, is based on interpreting the phase of the signal. It decodes the relative

phase of the input and output waves using Fourier transforms to separate out the

signal into its harmonics. The phase (in radians) is plotted against frequency (in

kHz) and the slope of a linear fit of this line is divided by 27r to produce the group

travel time [Viggiani and Atkinson, 1995, Chan, 2010]. The phase can be obtained

using a continuous sweep function and a spectrum analyzer [Ferreira et al., 2007].

Although the frequency domain method of selecting the arrival time reduces the

user-bias associate with arrival selections, it still requires someone with expertise

to perform post-processing verification of the experimental results. As opposed to

the time domain method, which is continuously performed with the judgement of

the user, thus readily identifying anomalous waveforms, the computer automated

method of FD is more prone to overlooking such instanced that might greatly affect

the subsequent outcome.

6.1.4 Comparison of Different Methods

There have been studies that compare results obtain using various velocity inter-

pretations based on a single data set. One was performed by [Asaka et al., 2008] on

Porto residual soil, where the cross correlation method and time domain method were

utilized and compared, as seen in Figure 6-3. The solid markers indicate measure-

ments using the TD method while hollow markers indicate CC. The results obtained

from CC show much more variability than the hand-picked start-to-start method as

a function of input frequency. This is likely due to the frequency effect on the cross

correlation method, which takes into account the difference in frequency between the
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input and output signal.

Another study conducted by [Chan, 2010] on cement-stabilized kaolin, which var-

ied the input frequency and observed the velocity calculations for each of the above-

specified methods. It can be seen that the visual picking method (start-to-start time

domain method) produces the most consistent results with increasing frequency. As

discussed in section 5.1, there should be no frequency effect on the calculation of the

velocity results, given the specific frequency range. The high variability of the cross-

spectrum method is likely caused by the fact that the output frequency will behave at

the frequency of the input wave up until the natural resonant frequency, after which

it will behave at the natural resonant frequency. Since the cross-spectrum method

is based on the frequency of the output, which changes until it reaches f,,, the high

level of variation is expected. Similarly, the cross-correlation is also affected by the

change in frequency, as was also evidenced by the study peformed by [Asaka et al.,

2008].

A comparison between the frequency domain (FD) and time domain (TD) start-

to-start method can be seen in Figure 2-13, where [Ferreira et al., 2007] tested Porto

residual soil. The difference between the two methods of signal analysis are shown to

be minimal, mathematically described as shear modulus relations of GTD = 4.31p/0. 624

versus GFD = 3.467p'0 658 , where G is the shear modulus and p' is the mean effective

stress. The FD results were shown to yield lower shear modulus values than TD

methods. It is clear, however, that there is a higher amount of scatter in the FD results

than observed in the TD results, likely indicating the FD sensitivity to dispersive

effects.

6.2 Square versus Sinusoidal Wave Input

When using a function generator, there are multiple types of input waves that can

be selected, including the square, sinusoidal, ramp, and triangle waveforms. For ben-

der element testing, the sinusoidal wave is the most commonly used, followed by the

square wave. For ultrasonic transducers, a square wave is used. The primary differ-
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ence between ultrasonic transducer and bender elements is that ultrasonic transducer

are driven by a pulse, while bender elements are driven by a frequency at or below

their natural resonant frequency (fn).

6.2.1 Bender Elements

While most of the research conducted on bender elements, including this research, use

sinusoidal waveforms, there have been some studies that investigated the use of square

waves. The reason for the widespread use of sinusoidal waves is because they make

the bender element behave in a harmonic fashion, which is conducive to controlling

the output signal. When the harmonic motion is used to excite the bender element,

the bender element tip reacts in the same harmonic motion, creating a shear wave, as

long as the input frequency is at or below the natural resonant frequency (f,). When

a square wave is used, a spectrum of frequencies is sent through the specimen rather

than simply one input signal at one particular frequency, which prevents the user from

controlling the properties of the wave sent through the specimen. This also makes the

data analysis methods of cross correlation and frequency domain impossible. With

a sinusoidal wave, all the options are still viable. An example of a signal obtained

using a square wave can be seen in an experiment performed by [Jovicic et al., 1996]

in Figure 6-5. The x-axis of this graph is normalized by the true arrival of the shear

wave. The interpretation of the received wave becomes difficult as the quality of the

signal is much more degraded as compared to sinusoidal input waves.

6.2.2 Ultrasonic Transducer

Ultrasonic transducers are excited using pulser systems that have high signal ampli-

tudes of around 100V. Additionally, they usually run at high frequencies on the order

of 1MHz. Equipment that has the capacity to drive a high voltage, high frequency

signal usually only has one output waveform, which can most aptly be described as

a square pulse wave that creates a positive square, without a negative component.

The square wave used to excite the ultrasonic transducers in this research can also be
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described as a burst that lasts for a duration of 1/f where f=0.65MHz. Most arbitrary

function generators run on Direct Digital Synthesis (DDS), which cannot easily run

at 1MHz and 100V, since this usually exceeds the capacity of the digital counting

techniques used to create the various waveforms. Thus the use of a square wave is the

singular option. In addition, at these magnitudes, the waveform becomes irrelevant

since the device is no longer sensitive to the type of wave.
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Figure 6-1: This is an example of the time domain method of obtaining the travel
time. The start-to-start and peak-to-peak methods are depicted in the figure
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Figure 6-2: Changing the input frequency has shown to have no effect on the arrival
time detection when using the start-to-start method for bender element testing on
silica sand [Asaka et al., 2008]
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Figure 6-5: A square wave used during bender element testing for the input signal
creates a received signal of degraded quality. It becomes difficult to determine whether
to select the arrival time at the point labeled 0 or 1 [Jovicic et al., 1996]

140



Chapter 7

Results and Discussion

Numerous experiments were performed on both BBC and Ticino sand to verify the

behavior of the equipment and compile propagation velocities for different condi-

tions. An extensive list of bender element experiments run at the MIT Geotechnical

Laboratory can be seen in Tables 7.1 to 7.3. The aim of the experimentation was

twofold: a) establish a set of defining parameters that enable the consistent, reliable

measurement of the shear modulus of soil using the available bender elements as

well as criteria to be followed when using new bender elements, and b) gather mea-

surements of shear velocity in BBC and relate it to the loading pattern during the

experimentation. The first goal was achieved through the testing of Ticino sand and

was successfully compared to published results. The second goal was accomplished

to a capacity that included the loading and unloading cycles that allowed for the

development of a relationship between the stress state and the shear modulus of the

specimen.

The results from part a) are presented in section 7.1, while the results from ex-

periments conducted on BBC are presented ins section 7.2. Furthermore, some key

observations on the anisotropy present in BBC as well as the testing variability present

in results depending on mode of experimentation are addressed.
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Table 7.1: List of experiments conducted using bender elements. TS=Ticino sand. Comment field left blank if setup consisted
of brass tube and no lining

Test Mate- BE Max. G, Satur- Initial Final Initial Initial Final Comments
ID rial Geom- Stress ation d d Bulk Void Void

etry (kPa) (%) (cm) (cm) Density Ratio, Ratio,
(g/cm 3 ) e e

BE002 TS A 205 2.68 0 31.55 31.51 1.46 0.83 0.83
BE003 TS A 583 2.68 0 33.14 32.89 1.44 0.85 0.85
BE004 TS A 558 2.68 0 20.94 20.49 1.52 0.79 0.76
BE005 TS A 200 2.68 0 2.064 2.022 - - - Very Short
BE006 TS A 200 2.68 0 7.49 7.34 1.5 0.69 0.67 2kHz
BE007 TS A 200 2.68 0 7.44 7.24 1.51 0.76 0.74 2kHz
BE008 TS A 5 2.68 0 7.34 7.29 1.53 0.75 0.74 Rotating top cap 3600
BE009 TS A 200 2.68 0 7.34 7.14 1.53 0.75 0.72
BE010 TS A 200 2.68 0 7.49 7.24 1.51 0.77 0.74 Paper liner
BEO11 TS B 200 2.68 0 9.14 8.99 1.54 0.74 0.72
BE012 TS B 200 2.68 0 9.44 9.14 1.5 0 0.79 0.75 Paper liner
BE013 TS A 200 2.68 0 8.24 7.94 1.78 0.50 0.47 Cardboard endcap liner
BE014 TS A 200 2.68 0 8.24 7.74 - - - Styrofoam spacer
BE015 TS A 200 2.68 0 8.24 7.99 1.54 0.73 0.70 Paper liner, cardboar end-

cap liner
BE016 TS A 88 2.68 0 5.81 - - - - Wider diameter (11.3cm)
BE018 TS A 88 2.68 0 8.8 8.67 1.53 0.74 0.74 Wider diameter (11.3cm)
BE019 TS A 88 2.68 0 7.93 7.885 1.53 0.75 0.75 Wider diameter (11.3cm)
BE020 TS A 88 2.68 0 8.33 8.08 1.47 0.82 0.81 Wider diameter (11.3cm),

paper liner



Table 7.2: List of experiments conducted using bender elements. TS=Ticino sand. Comment field left blank if setup consisted
of brass tube and no lining

Test Mate- BE Max. G. Satur- Initial Final Initial Initial Final Comments
ID rial Geom- Stress ation d d Bulk Void Void

etry (kPa) (%) (cm) (cm) Density Ratio, Ratio,
(g/cm 3 ) e e

BE021 TS A 100 2.68 0 7.66 7.565 1.6 0.66 0.67 Wider diameter (20cm)
BE022 TS A 200 2.68 0 7.14 7.06 1.55 0.73 0.71 Paper liner
BE023 TS B 600 2.68 0 7.54 7.14 1.47 0.83 0.76 Plastic liner
BE024 TS B 200 2.68 0 7.016 6.966 1.48 0.81 0.79 Paper liner
BE025 TS A 600 2.68 0 9.12 8.6 1.49 0.80 0.71 Plastic liner
BE026 TS A 102 2.68 0 6.64 6.54 1.42 0.89 0.88 Wider diameter (20cm)

with springs

BE027 TS A 200 2.68 0 7.34 7.04 1.41 0.90 0.85
BE028 TS A 200 2.68 0 7.19 7.02 1.43 0.88 0.85 Paper liner
BE030 TS A 102 2.68 0 9.307 9.187 1.52 0.76 0.76 Wider diameter (11.3cm)

with springs
BE031 TS A 102 2.68 0 9.69 9.5 1.53 0.75 0.74 Wider diameter (11.3cm)

with springs
BE032 TS B 200 2.68 0 22.91 22.71 1.42 0.88 0.86 Long tube
BE033 BBC A 800 2.78 86 9.54 8.7 1.75 1.08 0.91 OCR=1.8
BE034 TS B 200 2.68 0 9.44 9.25 1.58 0.69 0.68 Wider diameter (11.3cm)

with springs
BE035 TS C 200 2.68 0 7.88 7.73 1.47 0.83 0.80 Paper liner
BE036 TS C 400 2.68 0 7.87 7.67 - - - Paper liner
BE037 TS AB 400 2.68 0 8.54 8.49 1.56 0.72 0.71 A sender, B receiver
BE038 TS AB 400 2.68 0 8.64 8.49 1.56 0.71 0.69 B sender, A receiver
BE039 TS C 200 2.68 0 7.92 7.76 1.55 0.73 0.70



Table 7.3: List of experiments conducted using bender elements. TS=Ticino sand. Comment field left blank if setup consisted
of brass tube and no lining

Test Mate- BE Max. G, Satur- Initial Final Initial Initial Final Comments
ID rial Geom- Stress ation d d Bulk Void Void

etry (kPa) (%) (cm) (cm) Density Ratio, Ratio,
(g/cm 3 ) e e

BE040 TS B 200 2.68 0 9.31 9.21 1.57 0.70 0.68
BE041 TS C 200 2.68 0 7.8 7.65 1.57 0.70 0.68 Geometry C epoxy shaved
BE042 TS C 200 2.68 0 7.76 7.68 1.56 0.71 0.70 Geometry C epoxy shaved
BE043 BBC B 900 2.78 - 9.47 8.47 1.96 0.98 0.88 OCR=1.8
BE044 RBBC B 1600 2.78 98.3 10.17 6.89 1.97 0.86 0.81 OCR=1, acrylic tube
BE045 RBBC B 1600 2.78 100 13.85 10.71 1.98 1.31 0.77 RS217, OCR=1, acrylic

tube
BE046 RBBC B 1600 2.78 95.4 14.08 9.731 1.96 1.64 0.81 RS224, OCR=1, acrylic

tube
BE047 RBBC B 1600 2.78 97 12.98 10.04 1.99 1.31 0.77 RS221, OCR=1, acrylic

tube
BE048 TS B 200 2.68 0 9.5 9.19 1.37 0.95 0.90
BE049 TS B 100 2.68 0 14.85 14.75 1.5 0.79 0.78 Wider diameter (11.3cm)

with springs
BE050 TS B 100 2.68 0 9.48 9.04 1.69 0.58 0.57 Wider diameter (20cm)

with springs



7.1 Ticino Sand Results

The first series of experiments was performed on Ticino sand. This material was

chosen for its ease of preparation and the ability to do many tests in a relatively

short time span. In addition, the results were compared with published data to

observe how bender elements used in this research relate to other published results.

7.1.1 Ticino Sand Velocity and Gmax measurements

During the testing of Ticino sand, multiple bender element geometries were used as

well as different lateral boundary conditions. Refer to Tables 7.1 to 7.3 for exact

descriptions of particular experiments. As discussed in section 5.3, the specimen

boundary effects were investigated to assess the optimal experimental setup conditions

for the use of bender elements. During this process, wider cylindrical setups were

explored. The first set of results pertaining to this stage can be seen in Figure 7-1.

When shifting to a wider setup of up to a large diameter of 20 cm, the velocity

results shifted up, as seen in Figure 7-1. These experiments were conducted with 7.5

cm diameter acrylic endcaps that were placed in the middle with a wooden board

placed at the surface of either end of the metal tube to restrain the sand and apply

the load. It should be noted that this stage of experimentation occurred before

the transition to Geometry B bender element tips, thus the results will have higher

velocities. The results are still valid in the aim to compare the behavior as wider

geometries are adopted. Returning back to the results in Figure 7-1, the shifting of

the velocity curve upward as the diameter increased was attributed to the preferential

loading of the middle section of the specimen. Since the load was applied on the

small acrylic endcap, which was attempting to transfer a portion of the load with a

thin piece of plywood along the horizontal surface of the specimen, the core of the

specimen was exhibiting much higher stresses than the rest of the specimen. During

the calculations of the Vertical Effective Stress, the applied load was taken over the

entire area of the specimen, thus averaging the stress within the entire specimen. The

velocity measurements for that data point were governed by the high-stress core, thus
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skewing the velocity curve. To verify this explanation of the results, experiments were

conducted using a spring loading system that would equally apply load to the outer

periphery of the cylindrical specimen, seen in Figure 4-7. With the newly distributed

load, the results converged, as seen in Figure 7-2.

The next stage in verifying the repeatability of testing procedures, various speci-

men heights were chosen to observe whether the travel times appropriately changed

to yield consistent velocity measurements. As can be seen in Figure 7-3, even with

varying lengths d, the velocity curves proved to be extremely consistent. These results

were conducted using Geometry A bender elements, which would produce velocities

higher than those of the shear velocity expected in Ticino sand, likely caused by

direct P-waves as discussed in section 5.3. The next graph (Figure 7-4) shows the

same comparison, but this time using bender element Geometry B. The results from

Geometry B do not have the same level of repeatability as did Geometry A. This can

be attributed by the fact that the setup with Geometry A was more stable than that

of B. The bottom acrylic endcap for A has a lip that allowed the brass tube to rest

directly on the endcap, preventing the extrusion of sand out the sides. Being able to

more aptly restrain the sand from extruding out the sides allowed for a more precise

estimation of the height and density of the specimen, as well as the alignment of the

bender element tips. Moreover, the higher consistency with Geometry A might be

attributed to the propagation of P-waves through the specimen, which usually have a

lower percentage of error than S-waves [Piane et al., 2011]. Besides these two factors,

the results seen in Figure 7-4 are relatively consistent with an overall error band of

less than ±7%.

The results found in Figure 7-4 will be further analyzed since the Geometry B

provides reliable results of the desired shear wave velocity. The velocity results were

used to obtain the shear modulus curves seen in Figure 7-5. As mentioned above, there

is a likelihood that the density calculations are prone to error due to the extrusion of

sand. This fact is evident in Figure 7-5 where the error band has increased to ±23%

due to both multiplication of the velocity term as well as density variability.
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7.1.2 Comparison with Published Data

To put the scatter in the Gmax into better perspective, the shear modulus results are

compared to other experiments conducted on Ticino sand. The shear modulus results

obtained with Geometry B are compared to two published sources: [Fioravante and

Capoferri, 2001] and [Pestana-Nascimento, 1994], as well as Geometry A for reference.

The Geometry A results were included to once again reiterate the fact that this bender

element geometry produced much higher velocities that correspond to P-waves rather

than S-waves.

Fioravante, as mentioned previously in this paper, conducted bender element test-

ing on Ticino sand. The shear modulus curve obtained from Fioravante is based on

individual data points, as are the curves from this research. The results agree very

favorably, as seen in Figure 7-6.

The next shear modulus curve was obtained from an empirical relation developed

by Pestana. The relation was based on a large database of shear modulus results for

Ticino sand, mostly comprised of resonant column tests. The equation is as follows:

(Gmax/Pa )n = -Cb (1 - WIa 71)
2 (1 + it')

where Pa is the atmospheric pressure, n is the porosity, a' is the mean effective stress,

while Cb and p' are experimentally derived constants. An average n = 0.426 was

used in the calculations, with Pa = 101kPa. Cb and p' range from 600-975 and

0.2-0.3 respectively. The mean effective stress is defined as follows:

1
' -(' + 2a ) (7.2)

where o is calculated assuming Ko 0.5, meaning /o' = 0.5, thus yielding the

following relation:

2 = -o' (7.3)
3v

Using equation 7.1 and converting the mean effective stress to vertical effective stress,

the corresponding curve is obtained in Figure 7-6. Once again, the results match up

147



very well with each other, thus showing the reliability of the results obtained during

this research with both published bender element results as well as results obtained

from different methods. A closer look at the comparison between the published results

and the results from this research can be seen in Figure 7-7, where all the shear

modulus experimental data from from this research was combined with a polynomial

fit for clarity.

7.2 Boston Blue Clay

7.2.1 Compression Behavior

As prescribed in previous chapters, BBC was tested in either thin-walled sample tubes

(the same ones which were used to collect the intact samples), or acrylic consolidation

tubes used for resedimentation. All the compiled compression curves can be seen in

Figure 7-8 and 7-9, with labels referring to the test id and material tested, as can be

seen in Table 7.1-7.3. Figure 7-8 is in e-or space, while Figure 7-9 is shown in e-logo"

space. As is evident, the RBBC specimens that were resedimented to an stress of

50kPa (BE044, BE046) start at approximately the same void ratio and follow similar

compression curves, while the specimens resedimented to 100kPa (BE045, BE047)

start at a lower void ratio but eventually converge with the other RBBC specimens.

The tube specimens of natural BBC start at much lower void ratios but also eventually

converge with the RBBC specimens. BE047 is shifted slightly below the other curves,

likely indicating that some extrusion occurred. The unloading portions are also seen

in the figure, which indicates when load was reduced and the specimens were allowed

to swell. The unloading portion will be examined more carefully in section 7.2.4. The

repeatability of the curves agrees very well considering the frequency of data points

and the setup conditions. As compared to triaxial cell measurements that have a

higher degree of control than the resedimentation tubes used for these experiments,

the results align very closely.

The first specimens tested were natural samples of BBC. The tube specimens were
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cut directly with the tube, with the surface on both sides extracted via hand scraper

to create a recess for the bender element endcaps. A wire was run around the inside

perimeter of the tube between the clay and the brass to relieve the adhesion of the

clay on the inner surface of the brass tube. This was only done for the second tube

specimen (BE043) and not the first test (BE033), which made the measurements

before the breakthrough not representative of consolidation behavior. Since consoli-

dation cannot fully occur until the clay breaks free from the side walls, the beginning

portion, up until around 500kPa, may show underestimations of stress levels as well

as lower amount of vertical deformation.

7.2.2 In situ v. Resedimented Behavior

A comparison of the velocity behaviors for the two tube BBC specimens versus a

resedimented specimen (RBBC) is shown in Figure 7-10. As can be seen, the initial

portion for the BBC has a much higher velocity since it begins in an overconsolidated

state; however, when it reaches its preconsolidation pressure of 450kPa, it enters the

normally consolidated region and begins to follow a similar trend to the resedimented

specimen. The eventual slope of BE043 matches up with the normally consolidated

RBBC, whereas the BE033 line plateaus, which implies there was likely error in the

experiment or data processing.

Further comparison was conducted on the velocity curves that included all tests

performed during this research on BBC. The complete graph of velocity curves in-

cluding the unloading portion can be seen in Figure 7-11. The results indicate a

curved logarithmic trend in linear space for velocity versus vertical effective stress.

The unloading portions tend to have a decreased slope as compared to the normally

consolidated region. Some unloading portions also exhibit slight curving downwards,

which is not evident in the e-o' plot, thus indicating a velocity effect. While the nat-

ural BBC specimens do not align very well with the normally consolidated specimens

in this graph, they were left in for reference. In a different setup, with the elimination

of the adhesion to the side walls, they might align better than at present, although,

the difference could also be a function of the composition of the specimens.

149



The unloading portions for RBBC seen in Figure 7-11 introduce some scatter in the

results, however, when taken out, the resulting velocity curves show good agreement,

as seen in Figure 7-12.

7.2.3 Comparison with Published Data

In order to verify the results with published data, the velocity curves were transformed

into shear modulus curves, using Equation 2.1. Since there is a squared factor in

the relation, the differences between the respective velocity curves are expected to

be amplified to an extent, as can be seen in Figure 7-13 as compared to Figure 7-

12. There has not been an extensive amount of testing performed on clay, especially

BBC, with respect to shear modulus values. Hence [Santagata, 1998] was considered a

reliable source that performed Young's modulus measurements on RBBC, and more

specifically used the same Series IV batch material to resediment her specimens.

[Santagata, 1998] developed a correlation for the elastic modulus of a specimen as

a function of void ratio and vertical consolidation stress (o,). The equation can be

seen as follows:

EuAJAX = 270e-2 .45 (7) 0 43(MPa) (7.4)

where e is the void ratio and o is the vertical consolidation stress in MPa. This

captures the behavior of the loading portion only, and the unloading portion will be

discussed in section 7.2.4. Note that this equation hold for undrained conditions.

Since [Santagata, 1998] developed a correlation to calculate the elastic modulus,

it had to be converted to the shear modulus to compare with the results from this

research. Assuming undrained conditions (t = 0.5), Equation 2.5 can be used to

calculate the shear modulus. The results are plotted in Figure 7-15, showing both the

EuAx and Gma, from [Santagata, 1998], as well as the Gma, results obtained during

this research. As can be seen, the results compare relatively well, with the bender

element results yielding higher stiffness results than those obtained by [Santagata,

1998] using mechanical deformation measurements. This can be explained by the

strain-softening theory discussed in section 2.6, causing an underestimation in the
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TX aparatus.

7.2.4 OCR Effect

The OCR effect on velocity results has been a topic of interest recently with respect

to its application for pore pressure predictions at great depths below the ground.

When a layer of soil is overpressured, either due to undercompaction (similar to an

undrained behavior), fluid expansion, and unloading [Bowers, 1995,Bowers, 2001], the

velocity results could cause the incorrect calculation of overburden stress and hence

pore pressure. In such cases of undercompaction, there is usually an underprediction

of pore pressure, which can have serious implications. Thus the relationship of the

OCR to the slope of unloading is observed for two of the RBBC specimens (BE046

and BE047). The slope of unloading from the compression curve (C,) in semi-log

space is compared to the slope of the shear modulus (m) in semi-log space in order

to maintain consistency in units. Additional unloading experiments were performed,

but the results did not yield accurate deformation behavior, as is the case for BE033,

in which the specimen had insufficiently separated from the boring tube. All the

cases are summarized in Table 7.4. Although the BE033 experiment with natural

BBC in the brass tube is included in the table, it is not included in the analysis

since it evidently did not exhibit normal deformation behaviors, as supported by its

calculated C, value.

The two primary experiments chosen to support the unloading trend are BE046

and BE047, which were both RBBC specimens tested in their acrylic consolidation

tubes. The velocity curves for the respective experiments are shown in Figures 7-

16 and 7-17. As is seen in these figures, the unloading portion is initially linear,

but develops into a curved shape as unloading continues. Studies such as [Bowers,

1995] have been performed that attempted to describe this curved shape with fitted

equations; however, due to the semi-log space use in the compression curves, as well

as the ability to better fit a linear curve in semi-log space, the rest of the analysis is

performed with the axial consolidation stress in log scale.

When comparing the unloading slopes of the compression curve (C,) at different
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unloading loops, there is a small discrepancy between the slopes, which is attributed

to the elasto-plastic behavior of soil. The second and third slopes tend to be steeper

than the first one. The results observed in Table 7.4 do not entirely convey a consistent

trend unless the second loop in BE047 is disregarded, in which case there would be

a trend of increasing slopes with increasing stress level. This trend is also supported

by [Adams, 2011], who found that the unloading RBBC portions slope C, tended

to lie between -0.0269 to -0.0348 from 60 - 600kPa range, with increasing slopes for

increasing stress level increments. The scatter produced in the bender element results

is attributed to the crude use of bender element endcaps applied to either side of a

free-standing consolidation tube, with possible extrusion and infrequent data points.

Graphs of the compression curves of BE046 and BE047 in semi-log space can be

seen in Figures 7-18 and 7-19. While there is a perceivable trend in the slopes of

the compression curves, the changes are very small relative to the overall changes

experienced by the specimen.

Finally, shear modulus curves in semi-log space can be seen in Figures 7-20 and

7-21. When comparing the slopes of the compression curve (C) to shear modulus

curve (m), the slope tends to decrease with increasing max stress level. Since the

unloading portions were all taken to approximately the same OCR, they can be readily

compared. It is expected that as the OCR increases, the slope of the unloading portion

m should increase, therefore the low value seen for m2 for BE046 is partly attributed to

the lower OCR level that was reached. Additionally, the second loop for BE047 once

again does not agree with the trend, therefore is likely an outlier, since m 2 is lower than

M 3 . The trend of decreasing slope m with increasing max stress level conceptually can

be explained by the travel path of the velocity through a compressed medium. With

increasing stress level, the particle alignment produced a more direct transmittal of

energy that presented as an increase in the velocity measurements. As the specimen

was unloaded, the contacts established during compression remained more intact than

the state at which they were at the same stress level but during normal consolidation.

A schematic of this concept can be seen in Figure 7-22. Another contributing factor

that can explain the behavior is the achievement of higher horizontal stresses during
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Table 7.4: The unloading portions of bender element testing on RBBC were compared,
with a summary of results is shown

Test Unloading Max Stress OCR Gm, slope, m Compression
Loop Level (kPa/kPa) Curve slope, C,

(kPa) (1/kPa)
BE033 1 600 3 22,489 -0.0023

1 800 2 29,241 -0.0230
2 1600 1.6 7,721 -0.0258
1 400 2 61,187 -0.0527

BE047 2 800 2 36,257 -0.0318
3 1600 2 38,644 -0.0571

incremental loading.

7.3 Anisotropy Measurements in Clay

7.3.1 Evaluation of cross-anisotropic behavior

The resedimentation process has been shown to repeatedly yield results supporting its

cross-anisotropic behavior. For example, in [Germaine, 1982], based on the directional

shear cell measurements, the lateral directions proved to have consistent strength

properties and yield criteria. Furthermore, [Adams, 2011] showed that in cubic triax-

ial resedimented specimens, the permeability was uniform in both lateral directions,

which were arbitrarily squared-off. Generally in the field, the historical depositional

process occurred in the vertical direction, building upon laterally-homogeneous layers;

however, there is also possibility of erosional effects and differential lateral movements

which would cause uneven smearing between layers causing an arbitrary sample to

have orthotropic symmetry. When samples are made in the laboratory using the

resedimentation technique, the clay is Ko consolidated, preventing any lateral hetero-

geneities as the uniaxial vertical compression is performed.

The effectiveness of producing a cross-anisotropic specimen during resedimen-
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tation has also been evaluated with respect to the boundary interactions with the

resedimentation tube. During the consolidation process, as is well known for oedome-

ter testing [Germaine and Germaine, 2009], the side wall friction has an effect on the

homogeneity of the specimen. The stress distribution along the wall will not neces-

sarily be uniform, especially with tubes that have higher aspect ratios, as the stress

at the top is higher than at the base [Abdulhadi, 2009]. The specimen can also vary

laterally, with the center having no knowledge of the sidewall friction. Tests were per-

formed by [Germaine, 1982] to ensure the homogeneity of water content throughout

the specimen using x-ray diffraction pattern and air-drying vertical and horizontal

cuts the test for stratification. Both results showed reliable uniformity throughout

specimens.

In the case of the testing performed during this research, sidewall friction was

deemed irrelevant. When bender element testing was performed in the resedimenta-

tion tubes, the bender elements were centrally placed so that the shear wave propa-

gated vertically down the middle of the tube, away from the side walls. Additionally,

when cubic triaxial specimens are cut, the area of clay that was adjacent to the wall

during resedimentation would be cut away to form the desired geometry.

7.3.2 Anisotropy Results in Clay

As previously mentioned, the future development of this research is to simultane-

ously measure P and S-waves in the vertical and horizontal directions to populate

the anisotropy matrix. Before this occurs, some preliminary anisotropy testing was

conducted on oven-dried specimens that ranged in stress from 300kPa to 1OMPa.

These specimens of RBBC had been previously tested in both CRS and Cubic Tri-

axial Permeability tests. The stress level reported was the maximum stress level

that the specimen was resedimented to. All of them, however, were unloaded to an

OCR=4, which means that when they were tested by [Adams, 2011], they were at

1/4th of the maximum stress level listed. The specimens were then oven-dried and

used for P-wave testing at atmospheric stress. The results of the P-wave velocities

using ultrasonic transducers measured in the vertical and horizontal directions can
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be seen in Figure 7-23. The velocity in the horizontal direction is considerably faster

than the vertical direction, which can be explained by the preferential clay particle

alignment in the horizontal direction. There is also a consistent trend according to the

increasing stress level, demonstrating that the velocities in the two directions diverge

as the stress goes up. The rate at which the velocities vary as a function of stress

are not equal for the different directions. The horizontal velocity increases linearly

with a slope of 27 (m/s)/MPa, while the vertical direction decreases with a slope of

-9 (m/s)/MPa. The rate of change of the horizontal velocity is 3 times as fast as the

vertical velocity. The increasing horizontal velocity is a material-dependent property

caused by the preferential alignment of clay particles in the horizontal plane. The

decreasing vertical velocity is, however, difficult to explain and could be attributed to

a drying effect. With oven-drying, there is a high likelihood that horizontally-oriented

cracks occurred, which would decrease the P-wave velocity. A similar behavior was

exhibited in a study done by [Piane et al., 2011] that vertically loaded shales and

recorded a decrease in shear and compressional velocities when confining stress was

held constant. This decreasing trend was attributed to crack formation.

In order to more readily compare the velocities in the horizontal and vertical

directions, the anisotropy value is calculated as follows:

r= Vh/Vv (7.5)

where Vph is the P-wave velocity in the horizontal direction and Vv is the velocity in

the vertical direction. The results of the anisotropy calculation are shown in Figure 7-

24. The P-wave velocity anisotropy for dry RBBC can be roughly described by the

following equation:

rvp = 0.045a-max + 1.62 (7.6)

omax is the max vertical consolidation stress in MPa.

In Figure 7-24, a data point from Fioravante is shown for comparison [Fioravante

and Capoferri, 2001]. As previously mentioned, Fioravente conducted bender element

testing on Ticino sand and measured the P-wave velocity in vertical and horizontal
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directions under isotropic effective stress levels. Although his experiments were under

isotropic conditions while this research was conducted on Ko consolidated, it is clear

that clay has a much higher anisotropy ratio, relatively speaking, than sand due to

the particle geometry and contact distribution.

While most anisotropy measurements conducted on clays are performed while the

clay is saturated, the tests performed here were done on oven-dried specimens for two

reasons. Firstly, the specimens tested were readily available from previous testing

and would provide immediate results at a wide range of stress levels, which would

normally take many months to make. Secondly, with the absence of water, the P-

wave velocity behavior through the clay specimens can be singled out. The velocity

of P-waves through water is similar to a threshold. If the velocity through the porous

medium is lower than the P-wave velocity of water (V=1480m/s), then the readings

will be that of water. Only when it reaches values higher than that of water will the

P-waves represent the velocity through the medium, which is at high stresses, usually

greater than 500kPa. Looking at Figure 7-23, the measured vertical P-wave velocity

is lower than the velocity through water, in which case the velocity would primarily

be that of water. Although drying the specimen can modify its behavior, the velocity

anisotropy results of dehydrated materials are a better indicator of the clay specimen

behavior and the structure of the clay particles.

7.3.3 SEM Image Analysis

In order to develop a better understanding of the behavior exhibited by RBBC tested

during this research, Scanning Electron Microscope (SEM) images were taken of the

some of the tested specimens post-experiment. These SEM's were taken on cubic

specimens produced by [Adams, 2011] that underwent permeability testing before

being cut and imaged. This batch of cubic specimens from [Adams, 2011] comprise

the majority of the data points seen in the anisotropy relationships in Figures 7-23

and 7-24. The anisotropy seen in the velocity results clearly transcend to the visual

realm. Observing Figures 7-25 and 7-26, the two directions are very different. These

particular images were taken from a specimen that was consolidated to a maximum
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stress of 8MPa and rebounded to an OCR=4, with a porosity of n=0.536 at the

maximum stress level. In Figure 7-25, the majority of the voids are relatively small

and there are a few larger-sized grains that have been cut, so that the large diameter

of the particle is exposed. Since the specimen was cut horizontally, the likelihood

that one of the larger grains to be cut at the wide point is very slim, as is seen by

the scarcity of large-sized particles. When looking at the vertical cut in Figure 7-26,

many of the long, flat clay particles are seen since there is a much higher possibility of

cutting through them due to their platey geometry. It is also evident that the flat clay

particles are preferentially oriented in the horizontal direction, with a few of them

still tilted at a much smaller angle relative to the horizontal than they originally were

during deposition. The orientation of the particles becomes closer to zero degree tilt

with increasing stress level, unless there is a large particle underneath it to prevent

this, such as seen in the area circled with a red box in Figure 7-26.

7.4 Comparison of Different Methods of Measur-

ing the Constrained Modulus, and Others

In order to evaluate different techniques of obtaining the elastic properties for various

materials, a series of experiments were performed on cylindrical samples of multi-

ple materials including the following: steel, aluminum, acrylic, and rubber. These

samples were all approximately 7.1cm in height and 3.4cm in diameter. The three

techniques were ultrasonic P-wave transducers, extensometers, and accelerometers.

The P-wave transducers were used for their ability to easily test solid materials.

The transducers were placed on the top and bottom flat surfaces of the specimen

with the help of couplant (specifically vacuum grease in this case). The couplant

ensures the transmittal of energy between two flat, hard surfaces. No additional force

was applied except to keep the transducers in place. The start-to-start arrival time

method was used to determine the travel time of the wave over the length of the

specimens. Using the density of the material and the velocity of the P-wave, the
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Table 7.5: Constrained modulus (M) for various materials obtained using different
methods

Steel Aluminum Acrylic Rubber
Published values' (GPa) 283 102 8.5 0.2

P-wave transducer (GPa) 227.5 89.8 8.2 -
Accelerometer (GPa) 193.1 81.7 4.13 0.093

constrained modulus was computed. The results can be seen in Table 7.5, as well

as graphically in Figure 7-27. It should be noted that the rubber specimens were

too long to obtain a P-wave measurement using the ultrasonic transducer due to the

highly attenuative nature of the material.

The accelerometers introduced in section 4.4 were used to measure both the com-

pressional and shear wave velocities through the various materials. The cylindrical

test specimens were placed between two endcaps with mounted dual-axis accelerom-

eters (Figure 4-15). The accelerometers were placed in an orientation so that the

Y-axis was in the vertical direction and the X-axis was in the horizontal direction. To

propagate an arbitrary waveform through the specimen, the load frame was struck

with a hard object. A steel ball was dropped at the top of the load frame to send a

compressional wave through the specimen, which would be registered by the Y-axis

component of the accelerometer. To create a shear wave, a metal object was used

to strike the side of the top bar of the load frame. This would send a SH wave that

would be picked up by the X or Y-axis component of the accelerometer. The height

of the plug is divided by the time between the arrivals of the first signals passing the

accelerometers on either endcap to obtain the velocity of the signal. This calculated

velocity is corrected by the measured "blank" velocity. This is obtained by omitting

the specimen and placing the two endcaps on top of each other. This facilitates the

seamless testing of multiple specimens of various heights without the need to consider

the distance between the accelerometers and whether to measure the distance between

'The published values were found in [Callister and Rethwisch, 2011] and [Harper, 2001]
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Table 7.6: Shear modulus (G) for various materials obtained using different methods

Steel Aluminum Acrylic Rubber
Published values' (GPa) 79.3 26 1.18 0.0034

Accelerometer (GPa) 22.2 7.28 0.44 0.058

the centerline of the accelerometers or the extreme ends of the accelerometers. The

P-wave velocities obtained were used to calculate the constrained modulus M, and

can be seen in Table 7.5. The tangential accelerometer measurements were used to

calculate the shear modulus of the specimens. The results can be seen in Table 7.6

and Figure 7-28. The accelerometers have consistently been shown to under-predict

the elastic parameters of the materials tested, with an especially large discrepancy in

the shear modulus values.

Some of the difficulties exhibited during the testing with accelerometers included

the variability in the signals recorded. Manually sending the wave through the spec-

imen introduces the opportunity for human-induced variability. The frequency or

force with which the wave is propagated is likely to change from one trial to the

next. Although this would theoretically be irrelevant to the measurement of travel

time from one accelerometer to the next, there is a chance of mis-hits or double hits

that might interfere with the signal readings. Furthermore, there is a sensitivity fac-

tor that needs to be considered. Materials with high travel speeds are more likely

to have errors and variability between multiple iterations due to the sensitivity of

the material. Slight variability in user-defined travel times can have large effects on

the velocity readings. This makes the accelerometers sub-optimal for high stiffness

materials.

As described in section 4.5, 2 extensometers were mounted on either side of the

curved portion of the cylinder with elastic bands. The vertical load was increased

while the deformation was monitored by the extensometers. One advantage of the

extensometers is its ability to measure the Young's modulus of both very hard ma-
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Table 7.7: Young's modulus (E) for various materials obtained using different meth-
ods

Steel Aluminum Acrylic Rubber
Published values1 (GPa) 207 69 3.34 0.01-0.1
Extensometer (GPa) 206.5 71.2 3.7 0.012
Accelerometer (GPa) 62.4 17.9 1.25 -
Accelerometer using M and 182.6 65.9 3.1 0.0099
published G (GPa)
Accelerometer assuming 193.1 81.7 4.1 0.093
measured M is rod modulus
(GPa)
P-wave transducer (GPa) 195.5 67.4 3.3 -

terials (i.e. steel, concrete) as well as that of soft materials with large deformations

like rubber. Although, in order to capture the deformation behavior of extremely stiff

materials, higher resolution is usually needed, thus the AD1170 data acquisition card

was used with a high integration time. Multiple experiments were performed on each

material, with the averaged results presented in Table 7.7. They are compared to

published values that are generally found in literature. Since even the published val-

ues tend to vary slightly, an approximate average was taken. Additionally, it should

be noted that for the materials tested, even though they were common materials,

it was unknown the exact type of material grade they were, for example whether

the aluminum was Aluminum 1100-0, 2024-T4, or 6061-T6. Rubber has an especially

wide range comparatively, since there is a wide variety of rubbers and rubber compos-

ites. Additionally, this variation in results could also be amplified by end conditions

during testing. The values seen in Table 7.7 from the extensometers correspond very

well with the well-established results. They are consistently slightly higher than the

published results, which could be a function of the extensometers or the type of steel

tested. A graph of the results can be seen in Figure 7-29.

As can be seen in Table 7.7, the calculated Young's modulus from the measured

shear and compressional velocities show some discrepancies between the expected
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values and the obtained values, although this is based on the poor quality shear

modulus results. As a better point for comparison, two other cases were considered

for Young's modulus calculations with respect to the accelerometers. The first case is

using the measured M from the accelerometers and the published values for G. This

allows for a more accurate comparison for Young's modulus values rather than using

the innacurate G values obtained via accelerometer. The results are seen in Figure 7-

29. Another consideration taken into account was that the wave propagating through

the specimen behaved more like a rod wave, thus the modulus calculated from the

P-wave velocity via accelerometer is actually the Young's modulus. These results can

be seen in Figure 7-30. Although this research does not advocate that this is the

correct type of wave in this case, it is an interesting mode of comparison that leaves

room for interpretation.

In addition to the Young's modulus obtained from accelerometers and extensome-

ters, P-wave transducers are included in the comparison by taking the P-wave velocity

obtained from the ultrasonic transducers and calculating the Young's modulus by as-

suming a published shear modulus value. The calculations can be seen in Table 7.7.

The two dominating factors that had an effect on the accelerometer seemed to be

the endcap issue and the length of the specimen. All the results presented above were

based on measurements conducted on 7.1cm tall specimens with the use of circular

endcaps that were mounted with accelerometers using a strong adhesive. The endcaps

created an interface which would cause possible reflections and conversions, thus

altering the signal. Without continuous contact, the signals were likely affected by a

lack of solid contact between the accelerometers and specimen. In addition, the short

specimens did not allow the waves to develop, which leaves the signals prone to near-

field effects. Both of these issues were eliminated in testing performed on a long solid

steel rod on which the accelerometers were mounted directly. When waves were sent

through the steel rod of 2m length, the average P-wave velocity was V = 6005m/s,

which would give M = 281GPa. Under these testing conditions, the S-wave velocity

yielded an average of V, = 1740m/s, which would give G = 24GPa, which is less

than half of the expected value. Thus, the results support the use of accelerometers
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on non-sensitive materials of low stiffness with a large distance over which the waves

can travel to establish separation of the received signals. Furthermore, no setup used

during this research could provided reliable shear wave results, indicating an area of

concern for use in future experimental programs.

The variability would have been reduced if a consistent source of wave propagation

were established. The P-wave transducers function at a frequency range outside the

capacity of the accelerometers, which deems them inoperable with accelerometers.

Bender elements, on the other hand, did not have the capability to send a strong

enough signal through stiff materials. While it is evident that accelerometers are not

well-suited for testing materials such as steel or aluminum under the current testing

procedures, further testing needs to be conducted whether it would be a viable option

for testing of soils.
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Figure 7-11: Velocity curves of the BBC specimens tested with bender elements,
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Figure 7-17: A velocity curve for BE047 in linear space
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Figure 7-21: A shear modulus curve for BE047 in semi-log space
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Unloading

Figure 7-22: The schematic represents what is occurring during loading and unload-
ing. The particle contacts established during loading are maintained to a certain
extent, which lead to higher velocities during these unloading stages than a normally
consolidated specimen at the same stress level
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Figure 7-23: The P-wave velocity in two directions is measured on dried RBBC with
the max. stress level being the maximum stress level the specimen was taken to before
unloading to an OCR=4, then testing and oven-drying, and finally P-wave velocity
measurements were performed
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Figure 7-24: The P-wave anisotropy is measured on dried RBBC with the max. stress
level being the maximum stress level the specimen was taken to before unloading to
an OCR=4, then testing and oven-drying, and finally P-wave velocity measurements
were performed
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Figure 7-25: Horizontal SEM Image of RBBC cubic specimen consolidated to a max-
imum stress of 8MPa with a porosity of n=0.536 [Courtesy of UT Austin]

Figure 7-26: Vertical SEM Image of RBBC cubic specimen consolidated to a maxi-
mum stress of 8MPa with a porosity of n=0.536 [Courtesy of UT Austin]
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Figure 7-28: Shown here are shear modulus values for various materials obtained
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Figure 7-29: Shown here are Young's modulus values for various materials obtained
using different methods. The accelerometer results are calculated using the M mea-
sured with accelerometers and a published G value
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Figure 7-30: Shown here are Young's modulus values for various materials obtained
using different methods. The accelerometer results are calculated using the M mea-
sured with accelerometers directly by assuming that the wave is in fact more repre-
sentative of the rod modulus
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Chapter 8

Conclusions and Further Research

8.1 Summary of Conducted Work

The overarching goals of this research consisted of understanding the behavior of the

relatively novel technology of bender elements, as well as beginning to describe the

velocity measurements observed during bender element testing of both sands and

clays, with a primary focus on Boston Blue Clay. With the ability to measure the

dynamic shear modulus of a material, the progression onto the characterization of its

stiffness properties is readily achievable.

The published results available for bender elements were compared and have been

shown to yield inconsistent results. In order to better understand the reasons behind

the variability present in published data, a study of the behavior of bender elements

and the results they produce was conducted by performing a parametric study on the

bender element tip geometry, as well as varying certain boundary conditions including

the wavelength ratio and aspect ratio. This stage of testing was conducted on Ticino

sand due to ease of setup and fast turnover rate.

The next stage consisted of performing experiments on BBC, using both bender

elements and ultrasonic P-wave transducers. This facilitated a better understanding

of the unloading effect on the shear modulus of BBC as a function of OCR and

maximum effective consolidation stress. The anisotropy behavior of velocity in clays

was also recorded using ultrasonic transducers as a means to bring foresight into the
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development of the stiffness matrix.

Finally, the use of various forms of wave propagation testing and deformation mon-

itoring enabled a cross-comparison of results based on the technology used. During

this portion of the experimental work, extensometers, accelerometers, and ultrasonic

P-wave transducers were used to test common materials such as steel, aluminum, and

acrylic, which have all been extensively tested and have available published results

for comparison purposes.

The additional aspect of this research included the modification and development

of the cubic triaxial setup for velocity testing. Although the cubic triaxial has been

utilized already at the MIT geotechnical laboratory, it was only used for permeability

measurements without further consolidation of the specimen. This setup was devel-

oped for the capabilities of measuring P and S-wave velocities during KO consolidation

of the cubic specimen.

8.2 Interpretation of Velocity Results

With the conclusion of the experimental program, the performance of bender elements

has been sufficiently assessed to ensure a confident interpretation of the obtained

output signals. The parametric study conducted with different bender element tip

geometries showed the significance that the tip geometry has on the signals that are

transmitted. The long, slender geometry was shown to more likely produce directly-

traveling P-waves as opposed to shorter, wider geometries, which can be attributed

to the amount of axial displacement of the bender element with respect to its original

position, which induces weak P-wave signals in addition to directly-traveling S-waves

and side-traveling P-waves. Altering the specimen geometry allowed for the elimina-

tion of side-traveling wave interactions with the received signal allowing for a more

confident assessment of the arrival of the directly-traveling signals. The ray path anal-

ysis showed the possible arrival times of various waves depending on the classification

of the first arrival wave, which also made it clear that for long, slender bender tip

geometries, a weak P-wave arrival can be expected. This supported the further use
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of the short, wide bender element tips in order to eliminate ambiguities and maintain

the bender element as a device that singularly measures S-wave velocities to avoid

complications in signal interpretations. Additionally, after conducting extensive ray

path analyses and modifying the specimen geometry, the optimal experimental setup

chosen for further velocity testing in clays was the cubic triaxial setup. This prevents

side-boundary reflections that can interfere with signal interpretation and enables an

easier mounting configuration for the introduction of horizontal velocity testing.

It was also observed that for the ranges of stress and frequency tested, which con-

sisted of 50-1600kPa and 2-8kHz, the results remained consistent irregardless of the

input frequency used. The selected input voltage similarly did not show any effect

on the travel times of the waves but did indicate a increase in amplitude directly

proportional to an increase in the input voltage. This is a useful behavior to note

when transitioning to higher stress levels that exhibit weak signals. The stress level

applied to the specimen corresponds to the amplitude of the signal, as well as show an

increasing trend in the measured velocity. As the stress increases, the stiffness prop-

erties of the specimen also increase, leading to a roughly logarithmic trend of velocity

as a function of stress level, proven consistently with the experiments conducted on

both Ticino sand and BBC.

The unloading behavior of BBC introduced an interesting trend reversal evident

when comparing the compression curves and the shear modulus curves of a specimen

of BBC in semi-log space. The swelling behavior during unloading becomes more

pronounced, indicated by an increase in the absolute C, value of a e-logo. On the

other hand, the shear modulus tends to maintain the increased stiffness even as the

specimen is unloaded, which is more exaggerated as higher stress regimes are encoun-

tered. This indicates that when soils have been overconsolidated, the stiffness level

after unloading is likely higher than usually expected, thus causing underestimations

of stiffness parameters which can lead to inaccurate deformation predictions. Studies

such as [Santagata, 1998] attempt to describe the OCR effect on the stiffness param-

eters; however, the amplitude of stiffness is generally underestimated with respect to

the actual values. The bender element results propose a more significant impact on
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the stiffness results attributed to hysteretic effects.

8.3 Equipment Effect on Stiffness Parameters

The appropriate method that should be used to measure the stiffness parameters

of a material have long been a topic of debate. The results can greatly vary as a

function of the technique used employed in the experimentation, which was evident

through the parametric study conducted on common materials using both dynamic

wave propagation testing as well as static deformation measurements. The reliabil-

ity of extensometers, which are based on on-specimen strain gauge measurements,

was supported by the results obtained during this research. P-wave transducers were

also found to yield reliable results that were consistent with the extensometers, how-

ever the use of accelerometer is still a topic of discussion. During this experimental

program, they proved to be unreliable for S-wave measurements; however, they did

exhibit somewhat consistent results for the P-waves, especially when directly mounted

on the specimen and separated by a substantial distance (1m) that allowed the waves

to separate. The limiting factor for the accelerometers is also the natural resonant

frequency. In the case of the ones used for this research, the f" = 5.5kHz, which

renders testing above this frequency sub-optimal. Additionally, the geometry of the

specimen is a parameter that can determine the ability to use these various forms of

measuring the elastic properties. In the case of the P-wave transducer, if the medium

is highly attenuative, only short distances can be used, whereas the accelerometers

work well for long distances and long wavelengths.

8.4 Future Work

There are many areas related to this work that warrant further research, both topics

that were briefly covered in this research as well as other topics not addressed. Since

this field of research is relatively new to the geotechnical engineering environment,

there is much work to be done in order to accumulate a coherent understanding of
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velocity testing in soils.

The first area of expansion is the actual testing of cubic specimens in the triaxial

setup to obtain shear velocity measurements using bender elements and compressional

wave velocity measurements using ultrasonic P-wave transducers. A systematic test-

ing of a particular soil needs to be conducted over a wide range of stress level, ranging

from very low stresses (50kPa), when bender elements are optimal, up to high stresses

of IMPa when the P-wave transducers will acquire signals that reflect the P-wave ve-

locity through the soil rather than only through water. Both forms of equipment

would be concurrently used throughout the duration of the experiment to the best of

their ability. While the capacity of the current triaxial cell used for this research would

only permit reaching a level of IMPa, further modifications can be implemented to

reach higher stress levels. The aim would be to eventually reach a stress of 1OOMPa,

which would allow for a more comprehensive set of velocity measurements.

Related to the first topic that can be further researched is the inclusion of shear

ultrasonic transducers in addition to the bender elements and P-wave ultrasonic trans-

ducers. When the stress level is reached at which the bender elements can no longer

deflect due to the confining pressure, the ultrasonic S-wave transducer can be uti-

lized to continue to high stresses with the capability of obtaining S and P-waves

concurrently up to 1OOMPa

With the development of the experimental tested indicated above, the addi-

tion of horizontal velocity measurements would allow for the characterization of the

anisotropy matrix. As described in section 2.5, the horizontal P and S-wave veloci-

ties are needed to complete the stiffness matrix for a cross-anisotropic medium. This

could be seamlessly integrated onto the vertical surfaces of the cubic specimens. Fur-

thermore, a verification of cross-anisotropic behavior can be conducted by performing

horizontal velocity measurements in two distinct directions. One component needed

to be explored for the completion of the stiffness matrix is obtaining the P-wave ve-

locity in the 45' angle, which could be obtained by sending a wave from the side

transducer and receiving it at an axial transducer.

While the effect of OCR and the unloading stress path was introduced in this
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research, a further study is warranted. With additional testing, the unloading portion

can be characterized systematically as a function of OCR and maximum stress level,

which would permit a better understanding of velocity behavior during unloading

of soils. While the unloading behavior in shales has been somewhat documented

(i.e. [Bowers, 1995]), to the authors knowledge there have been no studies investigating

the unloading velocity patterns associated with clays. Whereas unloading of shales

can introduce cracking that would alter the results, clays would provide a better

relationship between unloading and velocity independently of irreversible deformation

mechanisms.

Due to the importance of pore pressure prediction in the field, a more in-depth look

into the effect of pore pressures on velocity measurements is warranted. By inducing

pore pressure in the triaxial setup and observing its effect on the clay specimen,

an attempt to make a distinction between the undercompaction versus unloading

behavior exhibited in the field can be made, both of which have a significant effect

on the velocity measurements.

Finally, given the profound effects of bender element tip geometry on the velocity

measurements, the geometry needs to be limited to a range where the P-waves are no

longer a concern. This would eventually lead to an industry quality ASTM standard

on the BE technique for soils.
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