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This thesis uses different variants of geomechanical modelling approaches to investigate 
stress, strain and geometry distribution and evolution through time of the Tarfaya salt basin, 
located on the West African coast. This work has been conducted by geomechanically 
simulating a sector of the Tarfaya basin containing key features such as diapirs, faults and 
encasing sediments using 3D and 2D static models and 2D evolutionary models. The study 
will allow to conclude whether it is possible to adopt 2D models as a good approximation of 
the more complex 3D models. In addition, this research will test the viability of applying 
evolutionary geomechanical modelling to a real basin to obtain insights of the basin 
formation and evolution through time. 

The 3D and 2D static geomechanical models of the Tarfaya basin system allowed to predict 
the stresses and strains in the basin at present day and compare the results between both 
approaches and with wellbore data. Both models are based on present-day basin geometries 
extracted from seismic data and use a poro-elastic description for the sediments based on 
calibrated log data and a visco-plastic description for the salt based on values from Avery 
Island. The models predict a significant horizontal stress reduction in the sediments located 
at the top of the principal salt structure that was modelled, named the Sandia diapir. This 
stress reduction is consistent with the measured data coming from an exploratory well drilled 
above Sandia. However, the 2D static geomechanical model shows broader areas affected by 
the stress reduction compared to the 3D model and overestimates its magnitude by less than 
1.5 MPa. The pattern of differential displacements seen in both 3D and 2D models for the 
sediments on top of the Sandia diapir is similar. These results highlight the possibility of 
using 2D static modelling as a valid approximation to the more complex and time consuming 
3D static models. 

A more in-depth study of the 2D static model using sensitivity analysis yielded a series of 
interesting observations: (1) the salt bodies and their geometry have the strongest impact on 
the final model results, controlling the stress distribution for the sediments on top of the 
diapir; (2) the elastic properties of the sediments do not impact the model results neither in 
the 3D approach nor in the 2D. What seems to affect most the model results are the material 
contrasts defined in the model; (3) the sea floor geometry (as tested in 2D) also seems to 
contribute to changes in the stress distribution of the sediments, although to a lesser extent 
than the effect of the salt bodies. In other words, the correct definition of the sediments with 
the highest material contrasts such as salt should be a priority when building static models. 
Such definition should be ranked ahead of the precise determination of the rheologic 
parameters for the sediments present in the basin. 

In this thesis, we also present the results of introducing an evolutionary geomechanical 
modelling approach to the Tarfaya basin. This study incorporates information of burial 
history, sea floor geometry and tectonic loads from a sequential kinematic restoration model 
to geologically constrain the 2D evolutionary geomechanical model. The sediments in the 
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model follow a poro-elastoplastic description and the salt follows a visco-plastic description. 
The 2D evolutionary model predicts a similar Sandia diapir evolution when compared to the 
kinematic restoration model and the present-day seismic information. This proves that 2D 
evolutionary geomechanical modelling can offer a significant advance in the study of the 
basin, by not only providing the stress and strain distribution and salt geometry at present 
day, but also reproducing their evolution during the Tarfaya basin history. 

Sensitivity analysis on the evolutionary model indicates that temporal and spatial variation in 
sedimentation rate is a key control on the kinematic structural evolution of the salt system. 
The variation of sedimentation rates in the model controls whether the modelled salt body 
gets buried by Tertiary sediments (after a continuous growth during the Jurassic and 
Cretaceous periods) or is able to remain active until the present day. Also, the study location 
is affected by the Altas orogenic inversion during the Cenozoic. The imposed shortening 
affects the final stress distribution of the sediments at the present day. We found that a rate 
of shortening that increases progressively, peaks and decreases progressively leads to a 
reduction of stresses in the sediments located above the salt structure, in line with the results 
obtained by the static modelling approach. 

To conclude, the results obtained during this study allowed us to understand the formation 
and evolution of the diapirs in the Tarfaya basin using carefully built geomechanical models. 
In particular, the 3D and 2D static models have provided useful insights in the mechanics of 
the present-day distribution of stresses above the salt. Although the 3D static models are a 
more complete description of the problem, the study demonstrates that carefully built 2D 
static models can provide information comparable to the 3D models, but without the time 
and computational power requirements of the 3D models. That makes the 2D approach very 
appropriate for the exploration stages of a particular prospect. If carefully built, such 2D 
models can approximate and yield useful information, even from complex 3D structures 
such as the Tarfaya basin salt structures.  This thesis also concludes that incorporating 
kinematic restoration data into 2D evolutionary models provides insights into the key 
parameters controlling the evolution of the studied system. Furthermore, it enables more 
realistic geomechanical models, which, in turn, provide more insights into sediment stress 
and porosity. 
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Motivation and objectives 
Geomechanical modelling techniques are becoming an increasingly popular approach to 
obtain stress and strain information from potential hydrocarbon targets for oil and gas 
exploitation (e.g., Fredrich et al. 2007b; Fernandez et al. 2015; Segura et al. 2016; Heidari et al. 
2018). This approach offers a complement to the pore pressure and fracture gradient studies 
traditionally performed in these settings, such as offset well, basin modelling and seismic 
velocity analysis. Geomechanical models can also be built using the inputs of these traditional 
studies to improve or increase confidence in the pore pressure and stress predictions.  

A geomechanical model can represent 3D or 2D geometries, and can be a static or 
evolutionary (or forward) model. The selection between these different approaches becomes 
important during hydrocarbon exploration and can be affected by time and budget 
constraints or required accuracy of the results. For example, 3D static models can provide 
the user with a full stress, strain and pressure description of the studied basin. These models, 
however, have the limitation of being time-consuming to build and are computationally more 
expensive to run. The 2D static geomechanical modelling may be a good alternative to the 
3D but requires additional geometric simplifications and assumptions. In some cases, these 
simplifications may lead to inaccurate results or final geometries that do not capture the full 
complexity of the modelled basin. Even in understood cases, both approaches may need 
parameters that are uncertain for the user, requiring sensitivity analysis to understand their 
influence and calibrate them. 

On the other hand, both 3D and 2D geomechanical static models do not account for the 
processes taking place during the basin formation and evolution. While static models can 
conveniently represent the present basin geometries, they fail to reproduce their evolution in 
time. Here is where the geomechanical evolutionary models can provide greater insights. 
Nevertheless, the final geometries produced by an evolutionary approach may not necessarily 
match the ones present in the studied basin. This fact requires the user to use various 
geological constraints and a painstaking iterative process to achieve the desired final 
geometric results.  

Previous studies have successfully used static geomechanical models to investigate the 
present geologic processes in salt basins, either using idealized salt geometries (e.g., Fredrich 
et al. 2003; Mackay et al. 2008; Luo et al. 2012; Nikolinakou et al. 2012) or actual salt geometries 
derived from seismic surveys (e.g. Fredrich et al. 2007b; van der Zee et al. 2011; Segura et al. 
2016; Heidari et al. 2018). Other authors have studied the evolution of salt basins using 
evolutionary geomechanical models (e.g., Ismail-Zadeh et al. 2004; Goteti et al. 2012; 
Gradmann et al. 2012; Crook et al. 2018; Hamilton-Wright et al. 2018; Nikolinakou et al. 2018a; 
Thigpen et al. 2019). In those cases, the authors have used kinematic restoration models as 
geologic constrains to drive their models to the desired final basin geometries. While all these 
studies highlight the value of using geomechanical modelling to understand salt tectonics, 
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rarely has the same salt basin been studied using all the modelling approaches available. This 
would provide a global view of both the evolution and the present state of stress and strain 
of the studied salt basin. 

To this end, this thesis aims to apply a full static and evolutionary geomechanical modelling 
study (both using 3D and 2D) in the same area, the Tarfaya basin. This approach allows 
investigation of a series of points that make up the objectives of this thesis: 

- To investigate the 3D static geomechanical modelling built by the oil company 
Repsol Exploración S.A. together with Rockfield Software Ltd for the Tarfaya basin. 
This particular model successfully predicted the stress distribution above the targeted 
diapir for the planning and drilling of an exploratory well. We aim to answer whether 
the accurate selection of input parameters was the cause of this success or, on the 
other hand, the robustness of the model would provide the same answer if another 
set of parameters for the sediments and salt are introduced. 

- To provide insights on the use of more simplified 2D static geomechanical models 
as a valid approximation to more complicated 3D static models. If those 2D models 
would provide similar results compared to the 3D model, that means the 2D static 
approximation is valid and would save time and money for future modelling in other 
basins. 

- To investigate 2D static models and establish which input parameters are critical for 
the correct definition of these models. In addition, that will provide a way to 
understand the mechanisms that cause the stress and strain distribution of this 
particular basin at present day. 

- Finally, to test if 2D evolutionary models can be used in a simple way to represent 
the history of the studied basin. In addition, and similarly to the static approach, to 
study the influence of input parameters to allow establishment of which ones are 
critical for the correct definition of these models. 

Consequently, we list below the list of tasks that the present thesis will need to address in 
order to answer all the objectives exposed previously:  

- Interpret the results and stress and strain generation mechanisms from the full 3D 
static geomechanical model of the Sandia salt structure in the Tarfaya basin. 

- Build a representative 2D static geomechanical model able to capture the key findings 
of the 3D model version, allowing a faster and simpler model definition and 
facilitating (or helping) the interpretation of the model results. 

- To build a 2D evolutionary geomechanical model of the Tarfaya salt basin to 
investigate the geological processes that took place during its formation and lead to 
the present geometries and state of stress and strain. 

- To perform a sensitivity analysis study of the principal model inputs for the three 
model approaches (3D static, 2D static and 2D evolutionary) and assess their impact 
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on the overall modelling results. This will allow a more complete understanding of 
which model inputs need to be accurately constrained for a successful representation 
of a salt basin. 

Thesis structure 
The present thesis has been written as a compilation of scientific articles published in journals 
indexed by the Journal of Citation Reports (JCR) or by Scopus. The memoir has been 
organised in four chapters: 

- CHAPTER 1 is an introductory section that aims to provide the reader with some 
contextual information to fully understand the results and discussions tackled in the 
subsequent chapters. On this basis, the chapter has been organised in two 
differentiated parts. Section 1.1 presents and briefly describes the principal modelling 
approaches used for the understanding of salt basins. The geomechanical modelling 
approach (both static and evolutionary) is introduced here. Section 1.2 presents the 
study area in which the thesis focuses on (the Tarfaya basin). This subsection explains 
the geological history of the basin, the seismic data and kinematic restoration models 
available for this study and the well data from an exploratory well drilled in the area. 
 

- CHAPTER 2 presents the compilation of the main results of the PhD thesis, which 
are published in the three articles annexed at the end of this memoir (see  annexes 1, 
2 and 3). After a brief introduction, this chapter is divided into three sections, one 
for each geomechanical modelling technique used to model the Tarfaya basin. For 
each section, we explain the process followed to set up the model, we list the key 
model results for a reference model (called the base-case model) and we show the 
results for the different model variants used for the sensitivity analysis. Sections 2.2 
and 2.3 are devoted to the 3D static and 2D static geomechanical modelling, 
respectively. The results of both approaches are published in the first two papers: 

 

o Hooghvorst, J.J., Harrold, T.W.D., Nikolinakou, M.A., Fernandez, O. & 
Marcuello, A. 2020. Comparison of stresses in 3D v. 2D geomechanical 
modelling of salt structures in the Tarfaya Basin, West African coast. 
Petroleum Geoscience, 26, 36–49 (Annex 1). 
 

o Hooghvorst, J. J., Harrold, T. W. D., Nikolinakou, M. A., Fernández, O., & 
Marcuello, A. (2019). Insights from Sensitivity Analysis of Geomechanical 
Modelling of a Salt Structure Offshore West Africa. American Rock 
Mechanics Association. (Annex 2). 
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The second paper mentioned represents an extension of the sensitivity analysis 
results for the 2D static approach, introduced in the first paper. Chapter 2.4 addresses 
the results of the 2D evolutionary geomechanical modelling, published in the third 
paper: 
 

o Hooghvorst, J.J., Nikolinakou, M.A., Harrold, T.W.D., Fernandez, O., 
Flemings, P.B., Marcuello, A., 2021. Geologically constrained evolutionary 
geomechanical modelling of diapir and basin evolution: A case study from 
the Tarfaya basin, West African Coast. Basin Research, 00, 1-20 (Annex 3). 
 

- CHAPTER 3 presents a discussion of the principal modelling drivers for both the 
studied static and evolutionary models, as well as a comparison between the different 
models. This chapter is divided into two sections, each of which addresses a different 
modelling approach (either static or evolutionary). Chapter 3.2 discusses the 
mechanisms for the stress reduction observed in both the 3D and the 2D static 
models, compares both approaches and ends by listing the principal modelling inputs 
that most influence the results, identified by the sensitivity analyses. Chapter 3.3 
discusses the contributors for the evolution of the studied diapir, compares the 
modelled diapir structure with the seismic sections available from the basin and 
finishes by comparing different diapir evolution scenarios depending on their 
different geologic constraints applied. 
 

- CHAPTER 4 lists the general conclusions of the present thesis, addressing the initial 
objectives proposed at the start of this research project (see Motivation and 
objectives). 

  



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 

13 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

 



 

14 
 

 
 



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 

15 
 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1. INTRODUCTION 
 



 

16 
 

 

 



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 

17 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

1.1 Modelling of salt systems 
A great number of hydrocarbon reservoirs in sedimentary basins around the world are 
located in the vicinity of salt structures (Meyer et al. 2005; Warren 2006; Beltrao et al. 2009; 
Yu et al. 2014). In salt tectonics, the term “salt” refers to a type of rock that is composed 
mainly by the mineral halite, although other minerals can also be present in its composition, 
such as anhydrite, gypsum, sylvite, etc (Jackson & Hudec 2017). Salt rocks are well known in 
geology for having a viscous rheology that causes them to flow under deviatoric stresses over 
geologic timescales. As a result, the presence of salt rocks can perturb the stress, strain and 
pore pressure distribution of the surrounding sediments (Dusseault et al. 2004; Orlic & 
Wassing 2013; Luo et al. 2017; Nikolinakou et al. 2018a). Traditional methods to predict 
stresses and pore pressures (Althaus 1977; Zoback 2007) may not be valid, therefore, in such 
areas and can lead to drilling difficulties, time-consuming operations, wellbore stability 
problems and, potentially, to endangerment of human life and the environment (Bradley 
1978; Seymour et al. 1993; Sweatman et al. 1999; Dusseault et al. 2004).  

The understanding of salt basins and their formation and evolution can provide valuable 
information to minimize the risks associated to drilling in such areas. This understanding is 
vital, not only in the oil and gas industry, but also for sectors such as the underground storage 
of H2 or CO2. To address this need, a series of modelling approaches have been developed 
and extensively used in recent years, some of which are briefly introduced below. 

1.1.1 Kinematic restoration 
Kinematic restoration (McGuinness & Hossack 1993; Rowan 1993; Hudec & Jackson 2004; 
Trudgill & Rowan 2004; Rowan et al. 2016) is an inverse approach that starts with the present-
day geometry of a particular basin and aims to reconstruct its past states of deformation. This 
method uses the structural interpretation of a basin at present-day as a starting point for the 
restoration process. The subsequent reconstruction of the past basin geometries takes into 
account processes such as the sedimentation and compaction of material, eustasy, fault-
related deformation, salt movement, isostasy and thermal subsidence (Rowan 1993; Rowan 
& Ratliff 2012). The kinematic restoration methodology reverses these processes and 
removes their effects on the studied basin. This approach assumes a variety of geometrical 
models to represent different types of deformation mechanisms, such as bed-length balance 
(flexural slip), vertical simple shear, inclined simple shear, fault-parallel slip, rigid-body 
rotation or area preservation (Rowan & Kligfield 1989; Schultz-Ela 1992). It also models 
processes such as isostacy, thermal subsidence or material compaction analytically, as time – 
and/or space – dependent functions.  

In recent times, some authors have presented restoration approaches using finite element 
methods to incorporate mechanical material behaviours (usually elastic laws) to aid the 
approximation of past deformations (Maerten & Maerten 2006; Moretti & Guiton 2006; 
Durand-Riard et al. 2013; Crook et al. 2018). Despite the additional constraint, kinematic 
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restoration approach has the limitation of lacking any prediction of the stress and pore 
pressure evolution during the basin restoration. In addition, it does not include any 
mathematical algorithms to constrain flow of viscous materials such as salt (Ismail-Zadeh et 
al. 2001). 

1.1.2 Physical modelling 
Physical (analogue) modelling is a forward approach that reproduces the evolution of 
geologic systems at laboratory scale. They use rock analogues with known rheologies such as 
sand, glass microbeads, silicon, etc. and predefined boundary conditions within a controlled 
laboratory setup that deforms at smaller spatial and temporal scales (Schellart & Strak 2016; 
Reber et al. 2020). King Hubbert (Hubbert 1937) established three rules for the scaling of 
physical models based on aspects of similarity: geometric similarity (model lengths must be 
proportional to natural system and angles must be equal), kinematic similarity (the process 
timing must be proportional) and dynamic similarity (the acting forces must be proportional). 
Physical models have been used to represent a wide variety of processes including faulting 
(Hubbert 1951; Dooley & Schreurs 2012; Corti & Dooley 2015), fold and thrust belts 
(Ramberg 1981; Massoli et al. 2006; Nilforoushan & Koyi 2007; Farzipour-Saein & Koyi 
2014), plutonism (Dietl & Koyi 2011) or halokinesis (Koyi 1998; Dooley et al. 2015, 2017; 
Dooley & Hudec 2017). The vertical and horizontal slicing of the resulting analog system 
can be combined with photography and with topography scanning to provide insights in the 
evolution and formation of structures observed in geology at present time.  

The principal limitations of these models are associated with material and topography scaling, 
leading to uncertainty on the timing and duration of the geological processes and exaggerated 
topographies (Schellart & Strak 2016). In addition, this approach does not provide 
information on the state of stress and pore pressures of the modelled systems. Furthermore, 
model reproducibility is highly related to human factors affecting model set-up (Schreurs et 
al. 2016). 

1.1.3 Basin modelling 
Basin modelling is a forward method that studies geological processes in sedimentary basins 
using geological, petrophysical, geophysical and geochemical data (Hantschel & Kauerauf 
2009). Basin modelling has been extensively used by the oil and gas industry to model 
petroleum systems. Some of the processes simulated by basin models range from deposition 
and compaction, erosion, heat flow, phase dissolution, to hydrocarbon generation and its 
accumulation and migration (Ben-Awuah et al. 2013). This approach is often used for 
evaluation of hydrocarbon potential in prospected areas.  

In contrast to physical modelling and kinematic restoration, basin modelling incorporates 
stress and pressure calculations. However, the method commonly assumes that the 
sediments deform uniaxially (e.g., Bolas et al. 2004; Gutierrez & Wangen 2005). This makes 



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 

19 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

it unable to capture the  stress, strain and pore pressure perturbations caused by complex 
deformation processes such as faulting or halokinesis (e.g., Stigall & Dugan 2010; Thibaut et 
al. 2014). 

1.1.4 Geomechanical modelling 
Recently, numerical modelling has become a successful option to reproduce the evolution of 
geologic systems (e.g., Beaumont et al. 2000; Kaus et al. 2008; Fernandez & Kaus 2014; Duffy 
et al. 2019). In particular, they can be applied in salt tectonics to integrate the basin 
sedimentation, the salt flow and other processes interacting with them ( e.g., Albertz & 
Beaumont 2010; Allen & Beaumont 2012; Fernandez & Kaus 2015; Baumann et al. 2017; 
Pichel et al. 2017). 

The geomechanical modelling technique is a numerical approach that allows the 
incorporation of the poromechanical behavior of the simulated sediments, including non-
uniaxial loading and porous fluid flow. It mostly uses finite element techniques to discretize 
the studied space and solve the governing equations for sediment and fluid flow behavior. 
Geomechanical modelling is now commonly used for the study of hydrocarbon prospects, 
especially in non-uniaxial frontier settings such as salt systems or compressional systems (e.g., 
Willson et al. 2002; Dusseault et al. 2004). This approach has the advantage of providing 
valuable insights on the geologic processes affecting the Earth (Nikolinakou et al. 2018b).   

Geomechanical models can be separated into two categories: static models and evolutionary 
(or forward) models. The present thesis will use both approaches to study the same salt basin, 
allowing us to acquire a more complete understanding of the processes affecting the area. 

1.1.4.1 Static geomechanical models 
Static geomechanical models are based on the present-day geological geometries, making 
them a convenient technique for the study of hydrocarbon prospects. They simulate the 
present-day state of stress and pore pressure, not accounting for the processes that took 
place during the evolution of the basin. Static geomechanical models can be built using the 
basin geometry at present day acquired from seismic data (e.g., Fredrich et al. 2007b; Segura 
et al. 2016; Heidari et al. 2018). 

These models usually include an initialization step in which the user introduces the 
gravitational force and the model calculates the initial stresses in the modeled field. A 
calculation step can then simulate geologic loadings such as salt relaxation, tectonic extension 
or shortening, or reservoir depletion, that cause stress changes and deformation.  At the end 
of the calculation stage, the model reaches a quasi-static equilibrium, and it is considered to 
represent the current day conditions of stress and pore pressure for the studied area.  

The principal limitation of the static models is their inability to capture geological processes 
that develop as a result of basin evolution (Nikolinakou et al. 2014). Similarly, they do not 
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show the evolution of basin geometries during geologic time spans. This limitation can be 
overcome using the evolutionary model approach. 

1.1.4.2 Evolutionary (forward) geomechanical models 
In contrast to static models, evolutionary geomechanical models can simulate time-
dependent processes such as deposition, tectonic loading, salt flow, and porous fluid flow. 
These models combine the development of the geologic systems with the deformation and 
the strength of the modelled sediments (e.g., Goteti et al. 2012; Gradmann & Beaumont 2012; 
Hamilton-Wright et al. 2018; Nikolinakou et al. 2018a; Thigpen et al. 2019). The model results 
can provide information on the evolution of the studied basin with time; stress-strain 
calculations are not limited to the present-day geometry configuration. Thus, evolutionary 
geomechanical models are a useful tool to simulate time-dependent processes, such as 
deposition and compaction, tectonic loading, salt flow, porous fluid flow, fault development, 
etc. 

However, the evolutionary models do not ensure that the final basin geometries will match 
the present-day basin geometries. In some cases, the evolution of these models can lead to 
totally different basin configurations, especially when large deformation processes are 
involved, such as in salt tectonics or faulting. To reproduce the present-day geometries, 
evolutionary models require of an iterative and painstaking process that increases 
disproportionally the time and effort spent building them. To overcome this limitation, some 
authors have combined the evolutionary approach with kinematic restoration to inform their 
evolutionary models and achieve final geometries more in line with the observed present-day 
basin geometries (Crook et al. 2018; Thigpen et al. 2019). The present thesis focuses part of 
the effort on using results from a kinematic restoration to constrain an evolutionary 
geomechanical model.  
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1.2 Geologic environment 
The area of interest of the present thesis is located in the distal part of the Tarfaya basin (red 
polygon, Figure 1.1) and centres around two salt structures, the Sandia diapir and the Western 
diapir (Figure 1.2). The Sandia diapir was the target for the drilling of an exploratory well 
(Sandia-1, black circle, Figure 1.1) by the oil-company Repsol Exploración S.A. in 2015. 

The Tarfaya basin sits on the north-western African passive continental margin. The basin is 
bounded by the Agadir and Essaouira basins to the north and by the Aaiun basin to the 
south. To the west, the basin terminates against the eastern Canary Islands (Lanzarote and 
Fuerteventura Islands) and the submarine Conception Bank. These two geographic features 
separate the Tarfaya basin from the deep Atlantic abyssal plain (Gouiza 2011). The 
bathymetrically deepest part of the basin forms a SW-NE trending bathymetric trough with 
roughly 2000 m water depth located beyond the edge of the continental shelf.  

 

Figure 1.1: Location map for the Tarfaya basin and geological features. Seismic section (Figure 1.2) 
is indicated by the red line PP’. Restored section (Figure 1.3) is indicated by the green line QQ’. 
Sandia-1 (black circle) and Cap Juby-1 (black triangle) well-head locations are also shown. The offset 
wells (black squares) used for the pre-drill pore pressure and stress predictions are also shown. The 
Geographic Coordinate System used is ETRS 1989. 
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1.2.1 Geological history 
The Tarfaya basin developed initially from the Late Triassic to Early Jurassic, during the 
rifting and opening of the Central Atlantic Ocean and the separation of the NW African 
margin from the North American margin. The rifting processes caused  basement extension, 
forming fault controlled half-grabens trending NNE-SSW to NE-SW, with large tilted blocks 
being on average 20 to 30 km wide and 50 to 100 km long (Piqué et al. 1998; Le Roy & Piqué 
2001). These half-grabens were infilled by thick syn-rift sequences of continental siliciclastic 
red beds and evaporites of Triassic age. The Triassic evaporites were the source layer for the 
present-day salt structures that populate this area (Tari & Jabour 2013). Rifting culminated 
with break-up and oceanization in the Early to Middle Jurassic (Tari & Jabour 2013).  

The initial development of salt structures began during the Jurassic and continued during 
Early Cretaceous, affecting the sea floor at these times (Michard et al. 2008). The location of 
the different salt structures was strongly controlled by the uneven distribution of Triassic salt 
thickness within the half-graben system (Tari & Jabour 2013). In other words, locations with 
thicker initial salt source layers were able to generate larger and more developed salt 
structures.   

During the Jurassic period, post-breakup thermal subsidence of the margin caused the 
western end of the Tarfaya basin to deepen, while a carbonate platform formed along its 
eastern, shallower continental margin. A relative sea-level fall during the Late Jurassic-Early 
Cretaceous (Berriasian to Valanginian) caused subaerial exposure and karstification of the 
Jurassic carbonate platform. This event was followed by sedimentation of alluvial siliciclastic 
materials forming the Tan Tan Delta complex (Michard et al. 2008; Wenke et al. 2011). 

The Tarfaya basin was then compressed by inversion of the Atlas and Anti-Atlas and uplift 
of northwestern Africa. This started during the Late Cretaceous (Coniacian) and lasted until 
the Quaternary with episodes of activity followed by quiescence (Frizon de Lamotte et al. 
2008). Atlasic uplift increased the sediment input (Wenke et al. 2011) and the compression 
reactivated the pre-existing salt structures formed during the Jurassic and Early Cretaceous 
(Tari & Jabour 2013). In addition, volcanic emplacement of the Canary Islands archipelago 
occurred during the Cenozoic (Carracedo & Perez-Torrado 2013).  

The present-day salt structures of the area are mainly composed by an autochthonous 
continuous salt source layer located approximately 9 km below sea level and by 
allochthonous salt bodies embedded within the Mezosoic and Tertiary sediments. Some of 
these salt structures are still active at the present day, affecting the sea-floor bathymetry. 
Other salt diapirs do not reach the sea floor. 
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1.2.2 Seismic data and interpretation 
The structure of the study area has been characterized using 3D seismic data acquired by 
Repsol in 2003 (red polygon, Figure 1.1) covering a surface of approximately 3250 km2. This 
data was migrated in time and depth and was complemented with vintage 2D reflection 
multi-channel seismic profiles (acquired in 1983) migrated in time. The seismic interpretation 
was constrained using data from the Cap Juby-1 well (black triangle, Figure 1.1), drilled by 
Mobil in 1983, reaching diapirized Triassic evaporites located below Upper Jurassic 
carbonates. The interpretation of the deeper units in the area is rather ambiguous because of 
the different geologic history of the deeper water basin (in the NW) compared to the 
shallower platform area (in the SE), where the Cap Juby-1 control well is located. In the 
platform area, the Jurassic and Triassic units are found at shallower depths as a result of the 
initial passive margin configuration and the overprint of Atlasic inversion, that uplifted the 
more proximal part of the passive margin starting in the Late Cretaceous. Seismic reflection 
data suggests that this inversion resulted in significant erosional truncation of units and 
accounted for 500-1000 m of uplift of the shelf area. Because thicknesses of pre-inversion 
(Mesozoic) units in the platform area were used as guides for their interpretation in the deep-
water, distal sector (Figure 1.2) there is more uncertainty in the interpretation of this distal 
domain. 

 

Figure 1.2: Seismic interpretation across a transect in the deep part of Tarfaya basin (red line PP’, 
Figure 1.1). This section combines 3D seismic (NW side) with vintage 2D reflection multi-channel 
(SE side). Location of the seismic line is also highlighted with the red rectangle on the present-day 
section in the sequential kinematic restoration model (Figure 1.3) 

The thick Tertiary basin (up to 4 km thick) located in the deep-water domain (Figure 1.2) 
wedges towards the SE onto the continental shelf area and overlies a regional-scale erosional 
unconformity in the continental shelf and across the shelf break. Basinward, and barring 
areas deformed by diapirism, Tertiary units lie conformably over Cretaceous sediments. Both 
Tertiary and Mesozoic (Jurassic and Cretaceous) sediments display thickness changes and 
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deformation related to diapirism of the underlying Triassic evaporites. These evaporites cut 
through the overlying units in the form of the Western diapir (NW side, Figure 1.2) and the 
Sandia diapir (SE side, Figure 1.2). Published observations of half-graben geometries suggest 
that these salt diapirs may have nucleated above rotated basement fault-blocks along the 
Moroccan Atlantic margin (Le Roy & Piqué 2001; Tari & Jabour 2013). The Western diapir 
is active at present-day and deforms the sea floor. The Sandia diapir, which was the target of 
the Sandia-1 exploratory well (black circle, Figure 1.1), ceased its growth during the Tertiary. 
Both diapirs display geometries that are consistent with passive down-building development 
during the Mesozoic, and a phase of flaring (lateral expansion) during the Cretaceous. 
Folding of Paleogene strata above the diapirs indicates that they were reactivated by 
shortening during the Tertiary, causing further growth of the Western diapir and extrusion 
onto the sea floor. However, in the case of the Sandia diapir, shortening only caused folding 
of the overburden and lateral flow of salt toward the centre of the salt structure. 

1.2.3 Kinematic restoration 
The interpretation of the acquired seismic data allowed the construction of a regional-scale 
cross-section (section QQ’, Figure 1.1) that was the basis for a sequential kinematic 
restoration back to Triassic times, the time of deposition of the evaporites (Figure 1.3). This 
restoration accounted for compaction of sediments by assuming average shale or sandy shale 
lithology (as proven by the Sandia-1 well) and using the compaction curves of Sclater & 
Christie (1980). It also considered local isostasy and corrected for the effect of thermal 
subsidence by applying the curves of McKenzie (1978) (the beta factor was estimated from 
the expected crustal thickness based on the interpreted top of the basement and assuming 
an isostatically equilibrated crust). The effects of salt diapirism were accounted in the model 
following the approach of Rowan & Ratliff (2012). Finally, the sequential restoration 
accounted for Atlasic shortening and uplift. Horizontal shortening of 5 km was added to 
represent the 500-1000 m of uplift and the shelf segment was lowered progressively back to 
Cretaceous times to account for this uplift. Maintaining the section below sea level honours 
evidence of a shallow marine setting (less than 50 m water depth) present at that location 
from present-day back to Cretaceous times. 

The kinematic restoration model begins at the end of Triassic with a flat salt layer (pink unit, 
Figure 1.3). The salt is located on top of Triassic syn-rift siliciclastic red beds (purple unit, 
Figure 1.3). The evaporites are filling the half-grabens formed by the faulted basement 
(brown units, Figure 1.3). 

The deposition of the Jurassic (blue units, Figure 1.3) and Cretaceous sediments (dark green 
and light green units, Figure 1.3) triggers salt diapirism and forms the two major structures 
studied in this thesis: the Sandia diapir at the SE and the Western diapir at the NW (Figure 
1.3). During the Cretaceous interval, both diapirs flare: the Western diapir forms overhangs 
(enlarged periphery of the diapir crest; Jackson & Hudec, 2017) at both sides and the Sandia 
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diapir forms an overhang at its SE side and a salt sheet (salt breadth several times greater 
than its thickness; Jackson & Hudec, 2017) at its NW side. At the end of Cretaceous, the 
Western diapir is emergent at the sea floor, contrary to the Sandia diapir that was buried.  

From Paleocene until present day, the Western diapir grows by downbuilding and remains 
at sea floor. On the other hand, the Sandia diapir remains buried, with a welded salt stem 
(slender part of the salt diapir connecting its upper part with the pedestal; Jackson & Hudec, 
2017). The ongoing sedimentation combined with the tectonic shortening applied from 
Paleocene until present-day times causes the diapir crest to inflate, arching the Tertiary 
sediments deposited above (orange to gray materials, Figure 1.3).
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 Figure 1.3: Sequential kinem
atic restoration of a regional section across the Tarfaya basin (green line Q

Q
’, Figure 1.1), w

hose present-day geom
etry is based on 2D

 
and 3D

 seism
ic interpretation, from

 Triassic to present day. Locations Y
 and Z

 in red are used for thickness extraction and burial history reconstruction (Figure 2.16). 
Location of Sandia-1 exploratory w

ell and projection of C
ap Juby-1 w

ell are show
n on the present-day panel. D

ashed red box indicates location of seism
ic section in 

Figure 1.2. W
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1.2.4 Well data 
The Sandia-1 frontier exploratory well (black circle, Figure 1.1) was planned to drill close to 
the crest of the Sandia diapir. Its location was hundreds of kilometres away from the nearest 
comparable well, being the stratigraphy of the subsurface highly uncertain. The targets of the 
well were four different sand-rich turbiditic deposits in the supra-salt Tertiary sediment 
package (Table 1.1). The Miocene to Quaternary shales are the seal for these reservoirs. The 
Tertiary sediments on top of the diapir are affected by an array of faults that result in complex 
trap geometries for hydrocarbons (Figure 1.4). The well trajectory crosses one of these major 
faults at a depth of approximately 1500 m below sea level (Figure 1.4a).  

Table 1.1: Tertiary sand reservoirs targeted by the Sandia-1 well (black circle, Figure 1.1). 

Reservoir 
name 

Depth below 
sea level 

(TVD, m) 
Age Geology Target 

R1 1600 Miocene Turbiditic sands  
R2 1956 Miocene Turbiditic sands Main 
R3 2370 Oligocene Turbiditic sands  
R4 2787 Paleocene Turbiditic sands Secondary 

 

Repsol performed a predrill prediction using offset wells and seismic velocity data to estimate 
the pore pressures and stresses near the drilling location (solid lines, Figure 1.5). This 
prediction used data from two offset wells (black squares, Figure 1.1) located 300 km from 
the study area, which were considered the closest deep-water analogues for the Sandia-1 well 
location. Closer wells like Cap Juby (black triangle, Figure 1.1), were not used as they were 
located on the continental shelf, a too dissimilar environment when compared with the 
studied area. 

 
Figure 1.4: (a) section showing Tertiary sediments above the Sandia diapir (in pink). The four sand 
reservoirs (yellow layers) targeted by the Sandia-1 well (dashed red line) are affected by an array of 
faults (black lines). (b) Structural map of the top of reservoir R1 and the faults affecting it. Position 
of Sandia-1 well-head and its trajectory are shown by red dot and red line, respectively. 
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The drilling of the Sandia-1 well was completed on the 28th January 2015 and took a total 
of 74 days, six of which were non-productive because of losses near the bottom part of the 
section. Posterior CBIL image logs from this problematic section (see Annex 4: Sandia-1 well 
log data and CBIL data) revealed a series of drilling induced tensile fractures (DITF) that 
indicated a lower minimum horizontal stress (green dots, Figure 1.5) compared to the values 
expected by the predrill prediction (solid black line, Figure 1.5). This stress reduction is 
consistent with the Leak-off tests performed near the problematic section (yellow dots, 
Figure 1.5). 

The different stratigraphic units drilled by the well are shown in Figure 1.6. The well reached 
a total depth (TD) of 2946 m below sea level (equivalent to 3093 m in measured depth, MD). 

 

 
Figure 1.5: Profile along Sandia-1 well showing overburden stress (solid brown line) and minimum 
horizontal stress, σh (solid black line) from the predrill study. The σh prediction from 3D static model 
(dashed black line; see Figure 2.2b) is included for comparison. The data points from the well drilling 
are represented by leak-off tests (LOT) measurements, formation integrity tests (FIT) measurements 
and drilling induce tensile fractures (DITF) observed (yellow, red and green dots, respectively). The 
decrease of σh near the salt interface (at 3,000 m) predicted by the 3D model is consistent with data 
obtained during the drilling operations. 
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Figure 1.6: Stratigraphic log showing the lithologies prognosed before and after the drilling of the 
Sandia-1 exploratory well, both in measured depth (MD) and true vertical depth (TVD). R1, R2, R3 
and R4 correspond to the targeted reservoirs by the Sandia-1 well (Table 1.1).  
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2.1 Introduction 
In this chapter, we present a summary of the results obtained to fulfil the objectives outlined 
in the Preface of this thesis. We structure this section in three separate subchapters that focus 
on the results of: the 3D static modelling, the 2D static modelling and the 2D evolutionary 
modelling. The two first subchapters summarize the static results that appear in the 
publications: 

- Hooghvorst et al, 2019: Insights from sensitivity analysis of geomechanical modelling 
of a salt structure offshore west Africa (Annex 2). 

- Hooghvorst et al, 2020: Comparison of stresses in 3D v. 2D geomechanical 
modelling of salt structures in the Tarfaya Basin, West African coast (Annex 1). 

These static models aim to represent the stresses and strains of the modelled location at the 
present day. In other words, they provide the present-day geomechanical conditions of the 
studied area before any drilling activity or hydrocarbon extraction.   

The third subchapter summarizes the evolutionary results that appear in the publication: 

- Hooghvorst et al, 2021: Geologically constrained evolutionary geomechanical 
modelling of diapir and basin evolution: A case study from the Tarfaya basin, West 
African coast (Annex 3). 

The evolutionary model aims to simulate the evolution of the Sandia diapir over time. This 
technique allows the modelling of the geologic processes taking place during the diapir 
evolution, such as deposition, tectonic loading, salt flow, etc. 

We begin each of the subchapters by giving a general overview of the corresponding model 
setup and initial parameters and conditions. We follow by exploring results obtained from 
the model. These results are considered the base-case reference for subsequent comparisons. 
Finally, we present the sensitivity analysis results performed for each of the models. The 
modelling results and their sensitivity analyses create the base for the modelling discussion 
presented in the following CHAPTER 3.   
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2.2 3D static geomechanical model 
2.2.1 Model setup 
The 3D geomechanical static model presented here has been built using the software Elfen 
(Rockfield 2017) and using a quasistatic, drained, finite-element formulation. The model is 
based on the pre-drill stratigraphy obtained by Repsol but simplifying the sand formations 
representing the reservoirs from 4 to two layers. In this study, we are not updating the 
stratigraphy to the actual depths known after drilling for various reasons: 

- The pre-drill and post-drill stratigraphy are not very different. It was considered the 
changes in the model results produced by updating the stratigraphy would not 
introduce important differences. 

- The present study is based on building on the work conducted initially by Repsol. 
The 3D geomechanical modelling was the first step to understand the prospect and 
this study uses it to derive further approaches to improve the knowledge we can 
obtain in the exploratory stage, where data is not always available and uncertainties 
are high. 

The 3D model domain is discretised by an unstructured finite-element mesh formed by linear 
tetrahedral elements of 400 m in size. This model also incorporates a region of 4 km2 centred 
around the well location and composed by a finer mesh of 50 m. As a result, the model 
contains a total of 3.97 million elements.  

The domain modelled covers an extension of 23 km by 25 km and a depth of 9 km (Figure 
2.1a). It comprises the location of the Sandia-1 exploratory well, in addition to the different 
horizons, faults and salt structures extracted from the seismic survey. Two sand layers and 
three, thicker shale layers compose the sedimentary materials (Figure 2.1a). The sand 
represents the system of reservoirs present in that area. The model also includes an 
autochthonous and continuous salt layer at the bottom and a series of allochthonous salt 
structures embedded within the sedimentary materials (Figure 2.1b). Both the autochthonous 
and allochthonous salt structures are connected by 200m-wide salt columns. These features 
are not seen in seismic, which shows independent salt bodies, but are necessary for the 
software’s initialization procedures. Finally, the model includes a simplified fault network 
located on top of one of the main allochthonous salt structures (the Sandia diapir, Figure 
2.1b), composed by two faults: a north-south trending fault with a maximum throw of 400 
m; and a secondary fault that intersects the trajectory of the exploratory well. These faults 
use a Coulomb friction law with no cohesion and a friction coefficient of 0.3. 

We apply the boundary conditions at the four lateral sides of the model domain in the form 
of horizontal displacement restriction. The base of the model also includes a restriction for 
the vertical displacements. The upper part of the model, representing the present-day sea 
floor, has no restriction of displacements in any direction. 
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The input parameters of the model that are discussed below include the initial pore-pressure 
profile, the initial stress ratios (the ratio between the vertical and horizontal effective stresses 
under uniaxial conditions), the material properties and the temperature gradient used. These 
inputs were calibrated using information coming from offset wells (black squares; Figure 1.1) 
and from velocity analysis. For the case of the offset wells, we used the closest deep-water 
analogues to the studied location (black squares, Figure 1.1). We discarded the wells closer 
to the Sandia-1 well (Cap Juby well, black triangle, Figure 1.1) for being located on the 
continental shelf, in an environment considered too dissimilar compared with the prospected 
area. 

We used a drained analysis to run the geomechanical model for this study. That means the 
stress calculations for the modelled sediments are uncoupled from the porous fluid flow. 
The initial pore pressure profile for each horizon is obtained from a pre-drill offset well 
analysis, using the offset wells in equivalent depths from the sea surface (black squares; Figure 
1.1). The pore pressure profile for shallowest and intermediate shale layers (S1 and S2, Table 
2.1) is hydrostatic, whereas a constant overpressure is present in sand layers and the deepest 
shale layer (R1, R2 and S3 layers, Table 2.1). There is zero pore pressure in salt.  

 

Figure 2.1: Static 3D geomechanical model. (a) Model geometry representing the statigraphic 
distribution of sand, shale and salt horizons. The green dot represents the position of the Sandia 1 
well head. (b) 3D salt structure, major faults and the Sandia well trajectory (green line). 
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Table 2.1: Summary of input properties for the different horizon layers defined in the 3D static 
model. 

Stratigraphy Description 

Depth at 
well 

location 
(m) 

ρs 
(Kg/m3) 

ρf 
(Kg/m3) 

Overpressure 
(Mpa) ν 

Range 
of E 

(Mpa) 
KH Kh 

S1 Shales & 
siltstones 

885 - 
1600 2650 1025 - 0.3 290 - 

2250 0.87 0.73 

R1 Sand 1600 - 
1746 2650 1025 0.9 0.3 2500 0.89 0.77 

S2 Shales & silt 1746 - 
1950 2650 1025 - 0.3 2800 0.90 0.80 

R2 Sand 1950 - 
2075 2650 1025 2.7 0.3 3100 0.88 0.75 

S3 Shales & 
siltstones 

2075 - 
3100 2600 1300 1.3 0.3 3650 - 

50000 0.90 0.80 

 

The initialization of the geomechanical model requires the input values for the stress ratios 
(KH and Kh) to obtain the initial horizontal effective stresses (σ’H, σ’h) as a fraction of the 
initial vertical effective stress, σ’v: 

𝜎𝜎𝑣𝑣′ =  𝜎𝜎𝑣𝑣 − 𝑢𝑢 
 

(1) 

𝐾𝐾𝐻𝐻 =
1
2

(1 + 𝐾𝐾ℎ) 

 

(2) 

 

𝐾𝐾ℎ = 𝜎𝜎ℎ
′

𝜎𝜎𝑣𝑣′
 , 𝐾𝐾𝐻𝐻 = 𝜎𝜎𝐻𝐻

′

𝜎𝜎𝑣𝑣′
 

 

(3) 

 

where σv is the overburden, u the pore pressure, σH the maximum horizontal stress and σh 
the minimum horizontal stress. 

It is assumed that the maximum horizontal stress, 𝜎𝜎𝐻𝐻 in the studied area acts in the east-west 
direction due to basinward gliding of sediments on the basal salt layer. Consequently, the 
minimum horizontal stress, σh, is oriented in north-south direction. Kh and KH (eq. 2) are 
used to obtain the initial σ’h and σ’H respectively (eq. 3). The initial stress ratio values for each 
layer can be found in Table 2.1 and have been obtained using the offset well data from the 
well analogues (black squares; Figure 1.1). As for the salt, its viscous rheology makes it unable 
to sustain deviatoric stresses, generating a uniform stress state and having an initial stress 
ratio of one. 

The sediment materials in this model have a porosity-depth profile for each horizon that was 
calibrated at the well location based on log data. The measured interval velocity at the well 
location gives us an estimate for the bulk density, ρb, of the sediments. The porosity is then 
calculated assuming values of grain and fluid densities (Table 2.1): 
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𝑛𝑛 =
𝜌𝜌𝑏𝑏 − 𝜌𝜌𝑠𝑠
𝜌𝜌𝑤𝑤 − 𝜌𝜌𝑠𝑠

 

 

(4) 

 
where ρw and ρs are the water and grain densities, respectively. Because horizons have 
different thicknesses across the field than at the well location, porosity-depth profiles for 
each horizon are extrapolated for the maximum depth of the given horizon.   

The model uses a poroelastic material model to represent the rheology of the shale and sand 
sediments. Because of very limited experimental or field data, the input elastic parameters 
are calibrated based on observations from regional wells (Table 2.1). The poroelastic 
behaviour is defined using an empirical expression to incorporate porosity changes  
(Rockfield 2017): 

𝐸𝐸 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 �
𝜎𝜎′ + 𝐴𝐴
𝐵𝐵 �

𝑟𝑟

𝑛𝑛𝑐𝑐 
(5) 

 
 

where E is the elastic modulus, Eref a reference elastic modulus, n the porosity and A, B, r 
and c are material constants used to define the shape of the elastic modulus profile (Table 
2.2). The shallowest and deepest shale horizons have an elastic modulus that varies with 
depth. This allows us to account for depth variations of material properties within these 
thicker horizons. The range of values of the elastic modulus, E, for each horizon is shown 
in Table 2.1. 

The salt bodies are modelled using a steady state creep model. This is a reduced form of the 
Munson-Dawson formulation (the two steady-state terms are included and the transient term 
is omitted, considered negligible over geological time scales) (Munson & Dawson 1979). This 
constitutive model considers the salt viscosity as a function of both stress and temperature. 
The Munson-Dawson model has been extensively used to simulate the viscous flow of salt 
in deep-water basins such as the Gulf of Mexico or the offshore of Brazil (Fredrich et al. 
2003; Marketos et al. 2016; Segura et al. 2016; Thigpen et al. 2019). The viscosity of the salt 
depends on both the differential stress and the temperature. The input parameters for the 
salt model are based on Avery Island salt (Munson 1997; Fredrich et al. 2007a) because of 
the lack of field data for this specific area (Table 2.3). The Avery Island salt is considered to 
represent average salt behaviour.  

Finally, we introduce in our model a constant temperature gradient of 3.61 °C per 100 m, 
based on an integrated 2D and 3D petroleum system model for thermal maturity evaluation. 
The model was calibrated using the offset wells, taking into consideration the variation in 
sedimentation, salt presence and crustal structure. The gradient value used is in line with 
published results from the area (Rimi 2001; Zarhloule et al. 2010).  
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Table 2.2: Input material parameter values for poroelastic sand and shale sediments.  

 
Eref  

(MPa) 
A  

(MPa) 
B  

(MPa) r c 

Shallow shales (S1) 100 -1 -1 0.4 -2.1 
Sands (R1) 2500 -1 -1 0 0 
Intermediate shales (S2) 2800 -1 -1 0 0 
Sands (R2) 3100 -1 -1 0 0 
Deep shales (S3) 150 -1 -1 0.55 -1.4 

 

Table 2.3: Input material parameter values for viscolpastic Munson-Dawson model (Munson 1997; 
Fredrich et al. 2007b). 

Parameter Units Value  Parameter Units Value 
E MPa 31000  N2  5 
ν  0.25  Q2 cal/mol 10000 
ρ Kg/m3 2100  R cal/°K/mol 1.987 
A1 1/s 5.95E+22  T0 °K 0 
N1  5.5  Tconst °K 273 
Q1 cal/mol 25000  G0 MPa 12400 
A2 1/s 6.87E+12  dG/dT MPa/°K 10 

 

2.2.2 Model results 
We explore the results of the 3D static model using the minimum horizontal-to-vertical 
effective stress ratio (K, eq. 6).   

𝐾𝐾 =
𝜎𝜎ℎ′

𝜎𝜎𝑣𝑣′
 

(6) 

 
This ratio shows the locations where the stress state has been changed compared to the initial 
conditions. Because the analysis is static (no deposition) and drained, the overburden profile 
and the pore pressure do not change during the simulation. As a result, the vertical effective 
stress (σ’v) does not change either. Hence, an increase in the value of K compared to the 
uniaxial conditions (Table 2.1) is translated to an increase of the horizontal effective stress 
(σ’h). Contrarily, a decrease in K relative to the uniaxial values means a reduction of σ’h.  

In the 3D static model, K remains higher than the uniaxial conditions (green contours, Figure 
2.2a) in locations near the salt source layer, adopting values higher than 0.9 in some locations 
(orange and red contours, Figure 2.2a). K also increases in regions adjacent to the 
allochthonous salt structures. In contrast, K decreases to values below 0.7 (light blue 
contours, Figure 2.2a) above the allochthonous structures. Values of K fall below 0.55 (dark 
blue contours, Figure 2.2b) in places around the fault located above the Sandia diapir, both 
at sea floor (around the shallowest part of the fault) and near the crest of the salt body.  
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The stress results of the 3D static model also include the orientation of the principal stresses. 
In particular, the maximum principal stress (σ1) remains vertical across the model, except in 
some localized areas near salt structures. At these places, the maximum σ 1 rotation on a 
vertical plain does not exceed 10°. Consequently, both the intermediate and the minimum 
principal stresses (σ2 and σ3, respectively) are mainly located in a horizontal plain (Figure 2.3). 
This implies that σ2 can be approximated by the maximum horizontal stress σH and that σ3 

can be approximated to the minimum horizontal stress (σh). The orientations of σH and σh 
show notable changes across the model (Figure 2.4). Areas not affected by salt or faults 
remain with azimuth values for σH of 90° (dark green contours, Figure 2.4), corresponding 
to an east-west direction. This orientation changes for the sediments near the faults and the 
salt diapirs. At these locations, the azimuth angle for σH can vary ±30°. 

In this model, when looking at the displacement results, we focus on the direction of 
displacements rather than their predicted magnitudes. This is because the model 
underestimates the displacement magnitudes due to the assumption of an elastic behaviour 
for the sediment materials. On the other hand, the displacement direction provides insights 
on possible patterns of salt relaxation and the interaction between diapirs and their 
neighbouring sediments.  
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Figure 2.2: (a) Minimum stress ratio results (K) for different vertical sections across the model. The 
stress ratio is higher than its corresponding initial value for sediments below salt or near deeper salt 
structures. In contrast, the stress ratio is lower than its initial value at shallow depths above salt, 
around the faults and near the crest of the Sandia diapir. (b) Minimum stress ratio (K) for section A-
A’ near the well location. The stress ratio is notably reduced at the bottom part of the well above salt. 
Initial minimum stress ratio is 0.8 (light green contour colour) for intermediate and deepest shales, 
and 0.75 (dark green contour colours) for the shallowest shales and two reservoirs. 
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Figure 2.3: Minimum principal stress plunge results for different vertical sections across the model. 
The minimum principal stress remains horizontal in most part of the model, except in few localized 
areas near salt, where the orientation varies less than 20° from the horizontal plane. 
 

 

Figure 2.4: Orientation of maximum and minimum horizontal stresses, σH and σh, for two horizontal 
sections of the 3D model. Contours represent the azimuth of σH. The blue and red arrows illustrate 
the directions of σH and σh, respectively. The original east-west direction of σH changes in locations 
near the salt structures and around the major fault. 
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The horizontal displacements are mainly oriented east-west, with a westward direction trend 
(green to dark blue contours, Figure 2.5a). They are maximum around the fault and on the 
sediments located on top of the Sandia diapir. The footwall side of the fault shows greater 
displacements compared to the hanging wall (darker blue contours, Figure 2.5a). This 
difference in displacements between both sides of the fault is in agreement with the reduction 
in stresses (K reduction) present around the crest of the salt diapir (Figure 2.2b). The 
horizontal north-south displacements indicate a relatively small area near the north end of 
the major fault where the sediments undergo a northward displacement (Figure 2.5b). North-
south displacements are negligible in the rest of the model. 

Finally, the vertical displacements are strongly localized around the major fault above the 
Sandia diapir (Figure 2.5c). These displacements show a downward movement of the hanging 
wall (dark blue contours, Figure 2.5c). The footwall of the fault does not show appreciable 
vertical displacements. 
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Figure 2.5: (a) Horizontal east-west displacements across the model, showing mostly westward 
displacements (blue contours) concentrated above the eastern diapir and around the major fault. Near 
the well location (section A-A’), the results display greater westward displacements for the sediments 
in the footwall compared to the hanging wall. (b) Horizontal north-south displacements across the 
model, showing mostly northward displacements (orange contours) located on the north end of the 
Sandia diapir. Near the well location (section A-A’), the results show no significant north south 
displacements. (c) Vertical displacements across the model, showing downward movement (blue 
contours) around the hanging wall of the major fault. Near the well location (section A-A’), the 
vertical displacements are concentrated on the hanging-wall side of the fault. 
  



Chapter 2: Summary of results 
 

44 
 

2.2.3 Sensitivity analysis results 
Some of the input parameters used in the 3D base-case model have a high uncertainty caused 
by the lack of field data. We perform a sensitivity analysis study to assess their influence on 
the final geomechanical results. A list of the tested parameters is provided in Table 2.4.    

Table 2.4: Summary of sensitivity analysis for the 3D static model 

Variable changed Original value Modified value 

Poisson's Ratio 0.3 
0.25 
0.4 

Elastic Modulus Horizon and depth 
dependent (Table 2.1) 

increased 20% 
decreased 20% 

 

The elastic parameters used for the modelled materials are one of the main sources of 
uncertainty. In particular, the sensitivity analyses we perform focus on the elastic modulus 
and the Poisson’s Ratio of the shale layers, representing the predominant fraction of the 
sediment material. For each parameter changed, we compare the resulting model with the 
base-case model, obtaining the comparison ratio S: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑆𝑆) =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 

 

(7) 

 

This direct subtraction between models is possible because all models have the same 
numerical mesh, allowing a node-by-node comparison. According to eq. 7, values of S close 
to zero represent small variations between the base-case and the changed models when the 
studied parameter is changed, meaning that this parameter has a low influence on the model 
results. On the other hand, larger values of S represent larger variations between the base-
case and the changed model, meaning the parameter that has been varied has a higher 
influence on the model results. 

The statistical results for the sensitivity analysis using the comparison ratio S are shown in 
Table 2.5. This table lists the average, the median and the standard deviation results of S for 
each of the varied models (by rows) and comparing different model results (by columns). In 
addition, we add the number of points omitted for each comparison, that represent points 
with unrealistic values that would skew the comparison. This number is usually low for all 
the comparisons performed, varying between 0 and 2%. The median values in Table 2.5 for 
the principal stresses results show a very small S for all the changes considered, with small 
standard deviations. These results mean that the imposed changes in the elastic parameters 
have a very low influence on the principal stress results.  The median and standard deviation 
values in Table 2.5 for the displacement results have S values higher than the ones for the 
stress results, especially when the input elastic modulus is varied. This is explained by the 
small overall magnitude of the displacements in these models, a consequence of the elastic 
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assumption for sediment behaviour. Slight changes in the already small base-case 
displacement results produce values of S that are far higher when compared to the S values 
for the stress results. Despite that, the median values of S for the displacements are still small, 
not exceeding 0.21. 

Another way to compare results between the base-case model and the sensitivity analyses is 
to directly subtract stress results along the exploratory well trajectory (Figure 2.6). This figure 
shows that the change in elastic parameters has a minor effect on the predicted horizontal 
stress, σh along the exploratory well, with the greatest difference being less than 0.15 ppg. 
Specifically, the elastic modulus has a greater influence on the stress results when compared 
to the Poisson’s Ratio, that has a negligible effect along all the well trajectory. 

 

Figure 2.6: Difference in prediction of horizontal stress σh between sensitivity analysis and base-case 
models along the Sandia-1 exploration well. The major difference is obtained when varying the Elastic 
Modulus, but it does not exceed 0.15 ppg. This indicates little effect of the elastic parameter variation 
on horizontal stress. Sea surface located at upper part of the plot and salt diapir located at bottom.
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2.3 2D static geomechanical model 
The 3D modelling approach is the best approximation to the actual basin geometries 
obtained from the seismic survey. Despite that, the 3D model has the important limitation 
of being time-consuming to design and computationally more expensive to run. This fact 
has limited our ability to further test and reproduce different versions of the 3D 
geomechanical model and has motivated the use of a plane-strain 2D version. Part of the 
objectives of the present thesis is to investigate whether the 2D approach, while simplified, 
can be adopted as a convenient tool to approximate the stress and strain prediction from the 
3D model. In addition, the 2D model approach will allow us to better explore the 
contribution of the various input assumptions. 

2.3.1 Model setup 
Similarly to the 3D model, we build the 2D geomechanical static model using the software 
Elfen (Rockfield 2017). The 2D model is a plane-strain, quasistatic, drained, finite-element 
model. We define the model geometry by extracting a cross-section of the 3D model (Figure 
2.7) oriented SE-NW on a plane that contains the exploratory well. We chose the orientation 
of this section to capture the key elements of the 3D model, such as the faults crossing the 
well trajectory, the salt structure located below the well and the anticline formed by the salt-
roof sediments. This section also captures part of a salt structure located at the NW of the 
study area (the Western diapir) as well as a small portion of a third salt structure in between. 
It should be noted that the orientation of the 2D model does not exactly correspond to the 
east-west orientation of the maximum principal stress. However, the difference between the 
initial stress ratios KH and Kh is small, averaging 0.11. Hence, the orientation chosen should 
have a low impact on the final stress results. 

The 2D model domain is discretised by an unstructured finite-element mesh formed by linear 
rectangular elements of 200 m in size, with a finer mesh region with elements 50 m in size 
and located on top of the Sandia diapir structure. 

 

Figure 2.7: (a) 3D model showing the geometry of the salt and faults, together with the cross section 
(in red) used for the 2D model geometry. (b) Geometry of the 2D model.  
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The boundary conditions applied in this model restrict horizontal displacements at the 
vertical sides of the model domain and both horizontal and vertical displacements at the base 
of the model. The upper part of the model is a free surface representing the present-day sea 
floor. 

Finally, we use the same input values as in the 3D static model (see section 2.2.1) for the fault 
properties, the initial pore pressure and initial stress ratios (Table 2.1), the material properties 
(Table 2.2 and Table 2.3), and the temperature gradients. This allows a more consistent 
comparison between the 3D and the 2D model results, which is part of the scope of this 
study. 

2.3.2 Model results 
As for the 3D static model prediction, we use the minimum horizontal-to-vertical effective 
stress ratio (K, eq. 6) to explore the stress prediction of the 2D static model. We can compare 
the final stress state of the sediments to their initial K0 value of 0.8 (light blue contours, 
Figure 2.8a). These contours show a region around the Western diapir where K has increased 
to values near 1.5 (red contours, Figure 2.8a). More importantly, there is a reduction of K 
for the sediments located above the Sandia diapir. In particular, the stress ratio remains below 
0.8 around the faults and reaches its minimum value both near the sea floor surface and on 
the sediments located immediately on top of the salt crest. It should be noted that the stress 
reduction located at the upper SE corner of the model is probably related to boundary effects 
and it is not discussed further.  

We extract the stress values along a vertical profile W located on top of the Sandia diapir to 
further investigate the stress state of the sediments at that location (solid lines, Figure 2.8b). 
We compare with the stress profiles for the same sediment material loaded under uniaxial 
conditions or, in other words, without any perturbations caused by salt, faults, etc (dashed 
lines, Figure 2.8b). Comparison between the uniaxial stresses and the stresses resulting from 
the model illustrates the effect of the fault and the salt body on the overall stress state of the 
sediments. The model vertical stress (solid blue line, Figure 2.8b) shows a very similar trend 
when compared to the uniaxial vertical stress (dashed blue line, Figure 2.8b), with a slight 
increase just above the salt. In contrast, the model horizontal stress (solid green line, Figure 
2.8b) shows a consistently lower trend compared to the uniaxial horizontal stresses (dashed 
blue line, Figure 2.8b). The difference between the model prediction and the uniaxial profile 
increases with depth and reaches its maximum value of 4.5 MPa at the salt-sediment interface 
located at 3 km below sea level. This reduction is the cause of the stress ratio drop around 
the salt crest seen in Figure 2.8a.  

  



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 
 

49 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

 

Figure 2.8: (a) Horizontal to vertical stress ratio predicted by the 2D model. The ratio changes near 
the salt structures, compared to its initial value of 0.8 (green contours). Specifically, it decreases above 
the Sandia diapir, reaching values around 0.6. (b) Geomechanical prediction (solid lines) for 
horizontal (green) and vertical (blue) stress along a vertical profile W (in a) compared with uniaxial 
stresses (dashed lines). Geomechanical horizontal stress is lower than uniaxial, reaching a maximum 
difference of 4.5 MPa at the salt-sediment interface.  
 

  



Chapter 2: Summary of results 
 

50 
 

As for the discussion of the 3D model displacement results, here we focus on direction of 
sediment and salt displacements rather than their absolute magnitude. We find that sediments 
move towards the NW across nearly all of the model. This NW displacement is maximum 
on the footwall side of the fault and responds to the overall NW slope of the sea floor. 
Sediment vertical displacements show a general downwards movement that is maximum 
both at the hanging wall side of the SE fault above Sandia and at the central part of the 
model. A combination of both displacement magnitudes and their direction is shown in 
Figure 2.9. A detailed section at the Sandia diapir (Figure 2.9) illustrates how the 
displacements of the sediments above the diapir are linked to the salt flow below. The SE 
side of the Sandia diapir experiences a downwards salt flux, while the NW side of the Sandia 
diapir moves towards the west. This differential movement of salt causes the diapir to 
collapse on its SE side and to spread laterally on its NW side. The sediments located on top 
of the diapir respond to that salt flux in a similar fashion: the hanging wall side moves 
downwards whereas the footwall side moves towards the west. These two movements 
generate a region of horizontal extension focussed on the crest of the salt structure.  

 

 

Figure 2.9: Sediment-displacement magnitude (colour contours) and displacement direction 
(arrows). Displacements have an overall westwards trend across the model and are largest on the 
footwall side of the fault located above the Sandia diapir (red contours). The detailed section around 
the Sandia diapir shows the relation between the salt flux and the displacement of the sediments 
located above. 
  



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 
 

51 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

The horizontal strain prediction (Figure 2.10) further illustrate this horizontal extension at 
the crest of the diapir caused by the differential sediment displacement. Extension is largest 
above the Sandia diapir (warm contours, Figure 2.10). Near the flanks of the Western diapir, 
a localized zone of shortening strain develops (blue contours, Figure 2.10), resulting from 
the lateral expansion of the salt diapir in the shallow section. 

 

Figure 2.10: Horizontal strain across the 2D model. Red contours represent extensional strains and 
blue contours represent shortening strains. A region of extensional horizontal strain develops at the 
crest of the Sandia diapir, between the two faults. Shortening horizontal strains develop at both sides 
of the Western diapir. 
 

2.3.3 Sensitivity analysis results 
We use sensitivity analysis in the 2D model to provide insights on the influence of the 
different model assumptions on the final results. In addition to changes in elastic parameters 
examined in the 3D sensitivity study, other structural framework changes have been tested 
using 2D models (Table 2.6). These additional changes were too complex to test in 3D due 
to limitations of computational power and time availability. Their study in 2D models allows 
a more complete assessment of the mechanisms that change the stress and strain state in this 
particular salt system. 

Table 2.6: Summary of the sensitivity analysis run for the 2D static model. 

Variable changed Original value Changed value 

Poisson's Ratio 0.3 
0.25 
0.4 

Young Modulus Horizon and depth 
dependent (Table 2.1) 

increased 20% 
decreased 20% 

Salt replaced by shale Salt Shale 
Sea floor geometry 1° sea floor slope Horizontal sea floor 
Number of diapirs 3 diapirs 1 diapir (eastern diapir) 

Width of salt columns 200 m 400 m 
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The change in the elastic shale parameters in the 2D model resulted in a very small variation 
in the magnitude of stress relative to the base-case model. Even though the magnitude of 
this change is ten times greater than in 3D, the overall influence is insignificant. 
Consequently, the 3D conclusion is still valid in the 2D study: changing the elastic parameters 
within reasonable values does not affect the overall results. 

The replacement of the salt lithology in the modelled diapirs by shale lithology helps to 
illustrate the contribution of the salt viscous behaviour over the stress changes across the 
model. We compare the results of vertical and horizontal stress along a vertical location 
above the Sandia salt structure (Figure 2.11, inset). The vertical stress (blue lines, Figure 2.11) 
does not greatly vary between the base-case model and the model with shale lithology in the 
diapirs. On the other hand, the decrease in horizontal stress (green lines Figure 2.11) only 
occurs above a diapir composed by salt. This decrease is not present when shale lithology 
forms the diapir structure. This result highlights that the stress changes near the crest of the 
base-case salt diapir are mainly caused by the viscous salt deformation. 

 

Figure 2.11: Stress profiles along vertical section located at the crest of the Sandia diapir for the base-
case model (solid lines) and the model where the salt lithology is changed by shale (dashed lines). The 
horizontal stress reduction near the salt structure is not present when the diapirs are substituted by 
shale lithology. Vertical stress is similar in both cases (blue lines). 
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The 2D base-case model has a sea floor geometry with a 1° slope towards the NW that causes 
a general NW displacement of the sediments (Figure 2.12a). We define a new model where 
the sea floor is horizontal (Figure 2.12b). This change causes the sediment displacements to 
become mainly vertical across the modelled section. The contours of stress ratio above the 
Sandia diapir indicates a less pronounced stress reduction when compared to the base-case 
model. Thus, the displacements caused by the sea floor slope also contribute to the stress 
reduction above the Sandia diapir. 

 

Figure 2.12: Results of stress ratio (contours) and sediment displacements (arrows) for (a) 2D 
basecase model and (b) 2D model with flat sea floor. The leftwards displacement trend in (a) 
dissappears when the sea floor is flat. The stress ratio reduction above the Sandia diapir in the 
basecase model is slightly reduced when the sea floor is flattened. 
 
We continue the sensitivity analysis by running a 2D model version of the base-case model 
where the two western salt diapirs have been removed and only the Sandia salt diapir is 
present. This change allows to identify the interaction between the modelled diapirs and the 
stress reduction detected above Sandia on the base-case model. The results show that the 
stress changes are less pronounced in the changed model (Figure 2.13b) compared to the 
base-case model (Figure 2.13a), indicating that the presence of deformable salt west of the 
base-case model allows additional westward sediment displacement. This extra displacement 
contributes, in turn, to the stress reduction present above the Sandia diapir in the base-case 
model (Figure 2.13b).    
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Figure 2.13: Stress ratio results above the Sandia diapir predicted by (a) the base-case model; (b) the 
model without the western diapirs; (c) the model with thicker salt columns.  
 
Finally, we test the assumption of salt columns of 200 m width that connect all the salt diapirs 
to the salt source layer located at the base of the model. This parameter has an impact on the 
pressure connectivity between the source layer and the diapir bulbs. Setting the width of the 
salt columns to 200 m in the base case model (same size as the mesh elements in the 2D 
geomechanical model) ensures no pressure connectivity between the salt bodies. To test this 
parameter, we widen the salt columns to 400 m and observe the changes in the final model 
stress state (Figure 2.13c). The results from this change show a similar minimum stress ratio 
reduction than the base-case model (Figure 2.13a), with slightly broader contours both at the 
diapir crest and at the sea floor. Thus, the width of the diapir columns has a low influence 
over the stress results.  

We summarize the results of the 2D sensitivity analyses in Figure 2.14 by showing the 
deviation of the principal stress values from the base-case model results due to each of the 
changes applied. The comparison of principal stresses is performed along a vertical section 
located at the crest of the Sandia diapir (same as Figure 2.11, inset). This location is chosen 
because it has the highest stress changes present in the base-case model. The greater the 
deviation due to a particular model change, the greater impact this model assumption has 
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over the results. This comparison clearly shows that changes in the elastic properties of the 
shale sediments have the least impact over the principal stress results. The changes in elastic 
modulus result in less than 1% difference, whereas the Poisson’s Ratio changes do not alter 
the base-case stress results. The influence of the viscous salt lithology and the presence of 
other diapirs in the model result in the highest stress changes, 9% and more than 7% 
respectively. It is important to note that these changes mainly influence the minimum 
principal stress, which is sub-horizontal. Other changes like the sea floor geometry or the 
width of the salt feeders also have a noticeable influence on the stress results, affecting both 
principal stresses by 2 to 4%. 

 

Figure 2.14: Change in principal stress values between 2D sensitivity analyses and base-case model 
results. Salt rheology and additional salt diapirs yield the greatest stress changes. Variation of elastic 
parameters does not noticeably affect the stress results. 
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2.4 2D evolutionary geomechanical model 
The static geomechanical approach can be a convenient tool to model basin geometries at 
present day, usually obtained from seismic or field data. These models can provide a first-
order approximation of the stresses, strains and pressures around existing structures. Despite 
that, the static approach lacks input from past geological processes during the evolution of 
the basins. In this section, we present a geomechanical study from the Tarfaya basin using 
an evolutionary approach that overcomes the limitations of the static approach. Here, the 
Sandia diapir geometry is not predefined as a model input, but results from the simulation of 
deposition, salt flow and shortening. That allows us to explore the different geological 
processes taking place during the basin formation that contributed to the present-day 
configuration of the basin. 

2.4.1 Model setup 
We build a 2D plane strain geomechanical evolutionary model (called the base-case model, 
BC) using the software Elfen (Rockfield 2017). This model is based on a quasi-static, finite-
element formulation accompanied by an automated adaptive-remeshing technique (Peric & 
Crook 2004). The remeshing is activated when the model reaches a threshold plastic strain 
of 0.7, generating an increase of smaller elements inside the remeshed region. The domain is 
discretized with a mesh composed by unstructured rectangular elements of 200 m in size and 
a minimum of 80 m when re-meshed. In addition, the model incorporates a geometric 
pinching technique that allows the removal of thin layers that would otherwise cause too 
much element distortion and may lead to numerical instabilities. The model is drained, 
meaning that the pressures are hydrostatic and no excess pore pressures are generated during 
the simulation. We assume a fully submerged basin, therefore, the stresses obtained from the 
model are expressed as effective stresses. 

The initial geometry for the BC model is composed by a salt layer 2 km thick covered by a 
thinner shale layer averaging 1.1 km thickness on top (Figure 2.15a). The salt layer has an 
initial salt dent at the center of the salt top surface (salt seed) and slight sags at both sides of 
it to facilitate the initialization of the salt diapir. The shale layer on top of the salt has the role 
of preserving the initial geometry of the salt layer by preventing any lateral salt flow towards 
the lateral minibasins at the beginning of the analysis. We apply the boundary conditions at 
both sides of the model domain by restricting the horizontal displacements. We also restrict 
displacements in the horizontal and vertical direction at the base of the model. The upper 
part of the model is free to move in any direction, representing the sea floor during the basin 
history. 

We define the sedimentary layers to be deposited on top of the salt by using both a burial 
history curve (Figure 2.16) and the paleo-bathymetries provided by the sequential kinematic 
restoration model of the basin (Figure 1.3).  
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Figure 2.15: (a) Initial geometry for the salt (pink) and shale (gray) layers in the geomechanical 
evolutionary Elfen model (BC model), along with basic model dimensions and boundary conditions. 
(b) Definition of deposition horizons: at the beginning of each stage, the upcoming layer thickness is 
obtained from burial history curve (Figure 2.16a) and applied at the right side of the model (location 
A), starting at the current top surface. For example, for the Jurassic modelling stage, the deposited-
layer thickness is 4500 m (blue line, Figure 2.16a) defines the elevation of the Jurassic deposition 
horizon at the right end of the evolutionary model (A). The Jurassic bathymetric slope obtained from 
the kinematic restoration (Figure 1.3; Table 2.7) is then used to define the Jurassic horizon across the 
model. Sediment compaction and salt mobilization modify the geometry of the sea floor, which 
becomes the baseline for the next deposition stage (b2) (c) Shortening application curves for the 
base-case model (solid line) and a variant model (sigmoid dashed line).    
 
 

 

Figure 2.16: Burial history curves resulting from thickness extractions in the sequential kinematic 
restoration model of the Tarfaya basin section (Figure 1.3). (a) Burial history curve at location Y (SE 
of Sandia diapir, Figure 1.3). (b) Burial history curve at location Z (NW of Western diapir, Figure 
1.3). 
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To obtain the burial history for the simulation of the Sandia diapir (Figure 2.16a), we extract 
the thickness of sedimentary layers from the kinematic restoration model along a vertical 
profile 10 km east of the diapir (location Y; Figure 1.3). We perform this extraction for each 
of the geologic intervals shown in the kinematic restoration model. The results from this 
extraction are shown in Figure 2.16. It is worth noting that the shallowest layer at each 
geologic interval in the kinematic restoration model is already de-compacted and, hence, its 
thickness is used in the BC evolutionary model with no further adjustment. Then, for each 
modelled geologic interval, the deposited-layer thickness provided by the burial history curve 
(Figure 2.16a) is added into the geomechanical evolutionary model on top of the current sea 
floor. This defines the elevation of the upcoming deposition horizon (Figure 2.15b). This 
calculation is applied at the right end of the evolutionary model, 30 km from the initial salt 
seed to ensure far-field conditions (arrow in location A, Figure 2.15b). We extend the 
deposition horizon across the evolutionary geomechanical model using the average 
bathymetric slope extracted from the kinematic restoration model at each geologic interval 
(Figure 1.3). Then, the model fills the space between the current sea floor and the upcoming 
horizon by adding sediments to simulate the deposition of a new layer (Figure 2.15b). 

The movement of the salt in this evolutionary model is not prescribed. The differential 
loading generated by the weight of the deposited materials causes the salt to deform and 
flow, loading the newly deposited sediments. This, together with sediment compaction, 
modifies the topography of the sea floor in the model, which becomes the new baseline for 
the next deposition stage (Figure 2.15b). This means that the elevation of each deposition 
horizon depends on both the burial history and the preceding model evolution.  

Table 2.7: Thickness and sea floor angles from sequential kinematic restoration model at the end of 
each geologic time interval. 

Name Duration        
(M. yr.) 

Total thickness 
at end of stage 

(m) 

Sea floor angle 
at end of stage 

(°) 
Jurassic 52 4500 0.43 
Lower Cretaceous 45 1270 0.32 
Upper Cretaceous 34 1230 0.22 
Paleocene/Eocene 32 1000 0.32 
Oligocene 11 615 0.21 
Miocene 17.1 1080 0.42 
Pliocene 2.8 620 0.38 
Present day 2.5 700 0.53 

 

The BC evolutionary model also accounts for the tectonic shortening between Upper 
Cretaceous (100 Ma) and the present day, representing the Atlas inversion and the uplift of 
Africa at that time. We apply this shortening by deforming the geometry of the model base 
from its original length of 65 km to a final length of 60 km. The shortening deformation rate 
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increases gradually over the first 50 Myr to ensure numerical stability and follows an 
exponential curve thereafter (solid black line, Figure 2.15c). All the geometric features of the 
model base scale proportionally.  

The BC evolutionary model is composed by two different lithologies: salt and shale. The salt 
is modelled using the same Munson-Dawson formulation (Munson & Dawson 1979) as the 
static models (see sections 2.2.1 and 2.3.1), with some variations on the input parameters to 
reduce the salt viscosity and to facilitate the first salt displacements (Table 2.8). The initial 
salt stress state is uniform (K0 = 1). The model assumes a homogeneous and isotropic salt 
material, not accounting for inner layering and anisotropies. 

The sediment behaviour is represented by an elastoplastic material using the SR3 constitutive 
model (Crook et al. 2006). The rheologic parameters of this model are listed in Table 2.9 and 
shown in Figure 2.17. This model is based on the critical state theory, following a single-
surface, rate-independent, non-associated formulation. A key feature of the critical state 
model is the incorporation of both mean and differential stress to compaction. In other 
words, porosity evolves during the simulation because of deposition, salt loading, and 
tectonic shortening. Subsequently, density also changes as a function of porosity.  

Finally, we introduce a constant temperature gradient in this model of 3.1°C per 100 m, 
following some examples present in the literature about this particular location (e.g., Rimi 
2001; Zarhloule et al. 2010). The starting temperature at a sea floor temperature is 4°C.  

 
Table 2.8: Material properties for salt (Munson 1997; Fredrich et al. 2007a) 

Parameter Units Value  Parameter Units Value 
E Mpa 10000  N2  5 
ν  0.35  Q2 cal/mol 10000 
ρ Kg/m3 2100  R cal/°K/mol 1.987 
A1 1/myr 1.89E+39  T0 °K 10 
N1  5.5  Tconst °K 273 
Q1 cal/mol 25000  G0 MPa 12400 
A2 1/myr 2.17E+29  dG/dT MPa/°K 10 
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Table 2.9: Material properties for sediments (Nygard et al. 2006; Rockfield 2017) 

Parameter Units Value  Parameter Units Value 
E Mpa 40  Ψ ° 51 
ν  0.25  β0  0.6 

ρwater Kg/m3 1000  β1 1/Mpa 0.725 
ρgrain Kg/m4 2700  α  0.25 

κ  0.01  N  1.3 
pt,0 MPa 0.085  n0  0.38 

pc,0 MPa -1  Hardening 
properties  Figure 

2.17 
β ° 60     

 

 
Figure 2.17: Hardening parameters for SR3 material model used for the sediments (Rockfield 2017). 
 

2.4.2 Model results 
The aggrading sediments in the BC model and their unequal thickness impose a differential 
load on the salt layer. The resulting shear (differential) stress drives the viscous salt flow from 
the salt source layer towards the diapir. The average salt differential stress in the model ranges 
between 0.05 and 1 MPa and is comparable with values from published studies (e.g., Schléder 
& Urai 2007). Despite its low value, this shear stress is able to mobilize the salt, given the 
salt’s average viscosity. The relatively low strain rates and low upper crustal temperatures 
used in this study yield an average salt viscosity between 1017 to 1019 Pa·s, consistent with 
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typical values reported for salt rocks (van Keken et al. 1993; Marketos et al. 2016; Hamilton-
Wright et al. 2019; Rowan et al. 2019). 

The deposition of the earliest Jurassic sediments results in a differential overburden load 
between the higher salt point (the salt seed defined initially, Figure 2.15a, Figure 2.18a) and 
the lower points on the salt surface (the sagged areas in the middle of the two lateral 
minibasins, Figure 2.15a, Figure 2.18a). This differential overburden triggers the salt flow 
towards the centre of the model. Further Jurassic deposition causes the salt diapir to widen 
and rise, reaching the surface at 145 Ma (Figure 2.18b). At this time, the upper half of the 
diapir is narrower than its lower half and the 6.5 Km thick pedestal (triangular-shaped base 
connecting the diapir with the salt source layer; Vendeville & Nilsen, 1993). The pedestal 
allows the salt to flow from the source layer into the diapir. After that time, the Early 
Cretaceous sediments begin to deposit and at 123 Ma (Early Cretaceous, Figure 2.18c), the 
diapir morphology changes: its upper part widens considerably relative to the end of Jurassic. 
The salt pedestal is still considerably wider than the diapir, containing a large salt volume; 
however, the source layer has thinned significantly. 

At the end of Early Cretaceous (100 Ma, Figure 2.18d), the source layer welds along both 
sides of the diapir, completely isolating the pedestal and the diapir. Despite that, the salt 
already accumulated on the pedestal allows the diapir to continue growing and the salt to 
flow on the basin surface. This forms a salt sheet downslope and an overhang upslope 
(Figure 2.18d). The salt sheet emplaced downslope has a total breadth of approximately 8 
Km and is about 2 Km thick. 

The Upper Cretaceous deposition from 100 to 66 Ma completely buries the salt system 
(Figure 2.18e). However, the diapir keeps rising and thickening the salt sheet by depleting 
salt from the pedestals and thinning the diapir stem (the slender part of the diapir structure 
that connects the upper part with the pedestal, Jackson & Hudec, 2017). At this time, the 
regional shortening begins (solid black line, Figure 2.15c) and contributes by facilitating the 
flow of salt towards the upper parts of the diapir and by further narrowing the salt stem 
(Figure 2.18f). The shortening remains active until the end of the simulation (present day, 0 
Ma, Figure 2.18g) and drives salt flow form the salt sheets towards the centre of the diapir. 
Thus, the diapir crest inflates despite the subsequent deposition of Paleocene to Quaternary 
layers. This process causes the bending of the Tertiary layers emplaced on top of the salt 
structure. 
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Figure 2.18: Evolution of the Sandia diapir predicted by the base-case geomechanical model. Profile 
A (vertical black line) indicates the location where the layer thicknesses from burial history diagram 
(Figure 2.16a) are applied. (a) Initial geometry representing the top Triassic evaporites (pink) and an 
initial thin layer of Jurassic sediments (blue); (b) End of Jurassic deposition (blue). The salt diapir 
reaches the sea floor; (c) Mid-stage of Lower Cretaceous sediment deposition (dark green). Salt is 
about to break out into a salt sheet and source layer has thinned; (d) End of Lower Cretaceous 
deposition (dark green) with salt sheet formed downslope and salt overhang upslope. The source 
layer is welded on both sides of diapir and connected to the upper part by a salt stem; (e) End of 
Upper Cretaceous deposition (light green). Diapir is buried.  Regional shortening is activated during 
this stage; (f) Paleocene to Miocene deposition. Shortening continues. Salt volume in pedestal 
decreases and diapir stem thins, while the diapir bulges upwards, arching its roof sediments; (g) 
Present-day, following Pliocene and Quaternary deposition. Shortening continues. Salt volume in 
pedestal and in stem further decreases, as does the extent of the salt sheets. The diapir bulges upwards 
arching its roof sediments. 
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2.4.3 Sensitivity analysis results 
The evolutionary geomechanical model for the Tarfaya basin depends on a number of 
parameters that control its progress, e.g., shortening rates, temperature gradient, 
sedimentation rate, etc. Some of these parameters also have a high level of uncertainty 
associated to them. This is the case, for example, for the presence of the basal structural high 
below the salt layer or the geometry of the shortening rate curves. We can reduce the 
uncertainties of the input parameters by analysing their influence over the final model results. 
For that, we built and ran further models using the same initial configuration as the base-
case model (BC) presented in section 2.4.1 but changing one of the target parameters at a 
time to assess its influence. The model variants (Table 2.10) defined and run are: 

- MV1: we use a shortening rate that increases, peaks and decreases progressively 
(dashed line, Figure 2.15c) instead of the BC exponential shortening rate (solid line, 
Figure 2.15c), maintaining the same shortening magnitude of 5 Km and its timing.  

- MV2: we remove the basal triangular feature representing the rotated fault block 
interpreted below the diapirs (Figure 1.3. Also Figure 2.15a). Instead, the base of the 
salt in this model is totally flat. 

- MV3: we increase the temperature gradient of the basin from 31°C/km (temperature 
used in the BC model) to 36°C/km. 

- MV4: we extract the burial history and the initial salt thickness along a vertical 
location at the NW side of the basin (location Z, Figure 1.3), obtaining the curves 
from Figure 2.16b. The MV4 aims to reproduce the Western diapir and explore the 
effect of the deposition history on the evolution of a salt diapir. 

- MV5: we reduce the sedimentation rates for Pliocene and Quaternary from 620 and 
700 m/M.yr., respectively (BC model) to 61m/M.yr. The original values come from 
the extraction of the layer thicknesses from the kinematic restoration model (pale 
yellow and grey lines, Figure 2.16a). However, they are interpreted to be 
unrealistically high and the new value of 61m/M.yr. adopted here is more in line with 
the sedimentation rates during the previous Oligocene and Miocene stages. 

Table 2.10: Summary of the sensitivity analysis run for the 2D evolutionary model. 

Variable changed Model Name Original value Changed value 

Shortening ratio MV1 Exponential (Figure 2.15c) Sigmoidal (Figure 2.15c) 

Salt base geometry MV2 Basal triangular shape Flat base 

Temperature gradient MV3 31°C/km 36°C/km 

Thickness extraction 
at location (Figure 1.3) MV4 location Y location Z 

Plio-Quaternary rates MV5 620 to 700 m/M.yr. 60 m/M.yr. 
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2.4.3.1 MV1 results (variation of shortening rates) 
Many salt basins around the world show evidence that salt flow can be driven by tectonic 
shortening (Vendeville & Nilsen 1993; Nilsen et al. 1996; Koyi 1998; Brun & Fort 2004; 
Dooley et al. 2009). The Tarfaya basin has suffered shortening during its history (Michard et 
al. 2008; Wenke et al. 2011; Tari & Jabour 2013) but the timing and the rate of deformation 
of the shortening is not confidently known. The model MV1 uses a sigmoidal shortening 
curve (dashed line, Figure 2.15c) instead of the exponential shortening curve used in the BC 
model (solid line, Figure 2.15c). The timing of the shortening application and the total 
magnitude of 5 Km are not changed with respect to the BC model. The diapir geometry 
obtained from the MV1 model shows little differences when compared to the BC model 
(Figure 2.19b vs Figure 2.19a). From that we infer the shortening rate changes applied to this 
particular case do not greatly alter the kinematics of the salt diapir. 

We do find, however, that the final stress state between the models changes significantly 
when the shortening rates are varied (Figure 2.19c & d; Figure 2.20). We use the horizontal-
to-vertical effective stress ratio K (colour contours, Figure 2.19c & d) to illustrate how 
stresses change compared to the uniaxial state (K0=0.8). Effective stress-ratio values lower 
than 0.8 (darker blue contours, Figure 2.19c & d) indicate a decrease in horizontal effective 
stress (σ'h) relative to the vertical effective stress (σ'v). K=1 (green contours, Figure 2.19c & 

d) indicates a uniform stress state (σ'h = σ'v). K higher than 1 (warm contours, Figure 2.19c 

& d) indicates that σ'h is higher than σ'v. The final stress state in the BC model shows values 
around 1.2 on the sediments located at the flanks and higher than 1.3 near the diapir crest 
(Figure 2.19c). The shallowest sediments of the diapir roof, however, are affected by a 
decrease of the stress ratio, result from the bending of the layers. By contrast, the stress state 
from the MV1 model presents a general decrease of the stress ratio for the sediments located 
above the salt structure, reaching values of K around 0.6 (below uniaxial, Figure 2.19d). In 
this same model, the sediments located near the salt flanks of the salt diapir have values of 
K around uniaxial (0.8) for the sediments. 

We can also compare the results from both the BC and the MV1 models by looking at the 
stress profiles along a vertical location crossing the sedimentary roof above the salt crest. 
This stress extraction is made at the end of the simulation. Both the BC and MV1 vertical 
effective stresses (solid blue lines, Figure 2.20) are very similar to the uniaxial vertical effective 
stress (dashed blue lines, Figure 2.20), with a slight increase at the bottom of the profile, near 
the salt. On the other hand, the horizontal effective stresses for the BC model (solid green 
line, Figure 2.20a) decrease below uniaxial values (dashed green line, Figure 2.20a) for the 
shallow section and increase more than 20 MPa above uniaxial values in the deepest section.  
However, the MV1 horizontal effective stresses (solid green line, Figure 2.20b) are below 
uniaxial conditions (dashed green line, Figure 2.20b) across the whole sedimentary roof. The 
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maximum horizontal effective stress decrease with respect uniaxial conditions in the MV1 
model reaches 4 MPa, 750 m from the crest of the salt structure. 

 

Figure 2.19: (a) Final geometry of the Sandia diapir as predicted by the BC model; (b) final geometry 
of the Sandia diapir as predicted by the MV1 model, using the sigmoidal shortening rates (dashed line 
Figure 2.15c); (c) present-day geometry and contours of the horizontal-to-vertical effective stress 
ratio K for BC model; (d) present-day geometry and contours of the horizontal-to-vertical effective 
stress ratio K for MV1 model. The uniaxial K0 value is 0.8 (light blue contour colours). K higher than 
1 (warm contour colours) represent σ'h higher than σ'v. K below 0.8 (darker blue contour colours) 
represent decreased σ'h and lateral extension. 

 

Figure 2.20: Stress profiles at vertical section along the sedimentary roof at present-day (inset) for 
(a) BC model and (b) model MV1. Depth zero indicates sea floor. 
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2.4.3.2 MV2 results (basal triangular feature) 
Both the Sandia and the Western diapirs were initially assumed to develop on top of the 
highest points of the rotated fault blocks that form the basin basement (Figure 1.3). Other 
regional seismic interpretation and regional constraints from the bibliography seems to 
support this hypothesis (Le Roy & Piqué 2001; Tari & Jabour 2013). Nevertheless, these 
basal features below the diapirs cannot be established unambiguously with the available data 
because the seismic quality below the salt is poor. 

The BC model assumes the Sandia diapir develops above one of these triangular basal 
features formed by the highest points of the basement. The model MV2 built here tests 
whether these salt-base highs have a notable effect on the evolution of the diapir by replacing 
the basal indentation present in the BC model (Figure 2.15a) with a flat salt base. The general 
characteristics of the resulting diapir in MV2 (Figure 2.21b) are similar to the BC one (Figure 
2.21a): the diapir rises early during the deposition of Jurassic sediments, a salt sheet develops 
downslope during the Early Cretaceous and the source layer welds at both sides of the diapir 
pedestal at the same interval.  However, the diapir at MV2 reaches the surface earlier than 
the BC diapir and has a thicker upper part at the end of Jurassic. This fact prevents the diapir 
to grow higher as happens in the BC model. At Early Cretaceous time, the diapir expands 
and forms shorter salt sheets at both sides. The burial of the structure happens shortly after 
that time, contrary to the BC model, where the salt is completely buried at 101 Ma (beginning 
of Late Cretaceous). The final diapir geometry in MV2 is 400 m shorter and with a salt stem 
twice as thick compared to the BC diapir (Figure 2.21). 

 

 

Figure 2.21: Final geometry of the Sandia diapir as predicted by (a) the BC model and (b) the MV2 
model, with a flat salt base. The lack of the basal triangular feature below the diapir generates a shorter 
and thicker final salt geometry. 
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2.4.3.3 MV3 results (variation of temperature gradient) 
The temperature gradient used in the BC model is not precisely known at the study location 
and may influence the salt viscosity and flow behaviour. The base-case model uses a 
temperature gradient of 31°C/km, considered a lower bound for the study area (Rimi 2001; 
Zarhloule et al. 2010). This value is based on an integrated 2D and 3D petroleum system 
model for thermal maturity evaluation that Repsol built internally prior to the drilling of the 
Sandia-1 exploratory well. 

We investigate the effect of increasing the temperature gradient to 36°C/km on the evolution 
of the salt diapir and its final geometry (model MV3; Figure 2.22b). The resulting diapir rises 
during the Jurassic and generates a salt sheet during Early Cretaceous times, similar to the 
BC model.  The source layer also welds during Early Cretaceous. The main effect of the 
higher temperature gradient in model MV3 is that the diapir upbuilds to the surface before 
the end of Jurassic, faster than the BC diapir and has a wider upper half. This small increase 
in salt-flow velocity results from the fact that the salt viscosity is at most an order of 
magnitude lower in the MV3 compared to the BC model (1017 and 1018 Pa·s), because of the 
higher temperature. The lateral expansion of the upper half part of the diapir starts at 131 
Ma (Early Cretaceous) and generates a shorter salt sheet at the NW side and a shorter 
overhang at the SE at 122 Ma (Early Cretaceous). The structure is buried by ongoing 
sedimentation just after the formation of the salt sheet and overhang. The final diapir 
geometry in model MV3 (Figure 2.22b) is 600 m shorter and with a salt stem twice as thick 
compared to the BC diapir (Figure 2.22a). 

 

 
Figure 2.22: Final geometry of the Sandia diapir as predicted by (a) the BC model, using a 
temperature gradient of 31°C/km and (b) the MV3 model, using a temperature gradient of 36 °C/km. 
The higher temperature gradient used in MV4 generates a final diapir geometry that is shorter and 
thicker compared to the BC geometry. 
  



Chapter 2: Summary of results 
 

68 
 

2.4.3.4 MV4 results (variation of burial history) 
The burial history curves extracted from the kinematic restoration model (Figure 2.16) show 
that Jurassic and Cretaceous periods have higher sedimentation rates at location Z (basinward 
part of the studied cross section, NW from the Western diapir, Figure 1.3), relative to 
location Y (location used to build BC model, SE from the Sandia diapir, Figure 1.3). These 
higher sedimentation rates imply a larger accommodation space for the sediments, hence 
larger volume of salt withdrawal at the basinward end of the basin.  

We build the evolutionary model MV4 using the burial history (Figure 2.16b) obtained along 
location Z in the kinematic restoration model (Figure 1.3), combined with a thicker initial 
salt layer (Figure 2.23a). The main target is to explore whether model MV4 leads to a 
geometry somewhat similar to the Western diapir.  

Similar to model BC, the deposition of the first Jurassic sediments in model MV4 results in 
a differential overburden stress between the salt seed and the topographic lows on the salt 
top surface. That allows the initiation of salt flow towards the centre of the model (Figure 
2.23a & b). The subsequent deposition of Jurassic layers drives the salt from the source layer 
into the diapir. The fast deposition at this stage allows the diapir to upbuild to the surface at 
158 Ma, before the end of Jurassic (Figure 2.23b). At this time, the upper diapir half is 
narrower than its lower half and pedestal. At 135 Ma (Early Cretaceous, Figure 2.23c) the 
salt source layer is significantly thinned at both sides of the diapir. The upper half of the salt 
structure remains at the surface and has grown wider and developed overhangs at both sides. 
The sedimentation of Early Cretaceous partially buries these overhangs, limiting their lateral 
extension. By 100 Ma (Figure 2.23d), Lower Cretaceous sediments have buried the diapir. 
However, a significant volume of salt remains in the pedestals, and continues to drive salt 
flow to the upper parts of the diapir. As a result, the diapir crest inflates and the overhangs 
continue to grow.  The onset of the Atlas inversion and shortening during Late Cretaceous 
(66 Ma, Figure 2.23e) both narrows the diapir stem and drives salt from the overhangs toward 
the upper diapir. This inward and upward salt-flow volume is sufficient to sustain a gradual 
rise of the diapir through the sedimentary roof. Eventually, the salt is able to pierce the roof 
and upbuild to the present-day surface at 5 Ma (Figure 2.23g). 



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 
 

69 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

 

Figure 2.23: Stages of evolutionary model using the burial history curve from the NW end of the 
basin (Figure 2.16b) and applied at location B, together with a thicker initial salt source layer 
compared to the BC model. (a) Initial geometry representing the top Triassic, with salt layer (pink) 
and initial thin layer of Jurassic sediments (blue); (b) Salt diapir reaches the sea floor at the end of 
Jurassic; (c) Salt forms overhangs at both sides, buried by Early-Cretaceous sediments (dark green). 
Source layer welds. (d) Further Early-Cretaceous sedimentation buries the diapir. Salt from pedestals 
increases overhang thickness; (e) Late-Cretaceous sedimentation (light green) drive bulging of diapir 
crest. Shortening begins; (f) Shortening narrows the diapir stem and drives salt from overhangs 
toward the diapir centre. Salt bulges upward; (g) Salt pierces the roof and upbuilds to the surface at 
present day. 
 
2.4.3.5 MV5 results (variation Plio-Quaternary sedimentation rates) 
The sedimentation rates extracted from the kinematic restoration model and used in the BC 
model are significantly higher for the Plio-Quaternary interval (light yellow and gray blocks, 
Figure 2.24) when compared to the rest of the Tertiary rates of deposition, being 620 m/Myr 
and 700 m/Myr for the Pliocene and Quaternary, respectively.  

Model MV5 tests the significance of this assumption by reducing the Plio-Quaternary rates 
to values similar to The Miocene rate (60 m/Myr, yellow block, Figure 2.24). The resulting 
present-day geometry of the basin in the model MV5 is not notably different from the BC 
model. This is because the duration of the Plio-Quaternary interval is short (5.3 Myr) and 
occurs also at the end of the simulation, once the salt structure is already formed. Despite 
the high sedimentation rates, the sediment layer thicknesses are small, and the additional 
overburden load applied by these layers does not produce any notable effect on the 
kinematics of the system. 
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Figure 2.24: Rate of deposition for different geologic intervals from Jurassic until present day. Each 
interval is represented by a coloured block, the width of which is proportional to the duration of the 
geologic interval. The application of the tectonic shortening in the model is represented by the grey 
horizontal bar. The different diapir evolution phases are shown by the blue horizontal bars. 
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3.1 Introduction 
This chapter aims to interpret the results obtained from the different modelling techniques 
used in this thesis and presented in CHAPTER 2. In particular, this chapter uses the results 
from the base-case model and the sensitivity analyses performed to understand the behaviour 
of each model approach discussed. For the case of the static approach, this discussion 
chapter also deals with the comparison between 3D and 2D modelling, discerning if the 
simpler 2D static approach can still represent the behaviour correctly represented by the 3D 
model. Finally, the sensitivity analyses for both the static and the evolutionary approaches 
also allows to identify which input parameters dominate the model results. This creates a 
series of guidelines for the static and evolutionary model definition of similar salt basins, 
indicating which parameters are paramount for the correct model design.  

The discussion chapter is organized in two different sections: the first section focuses on the 
interpretation of the static modelling approach, summarizing the discussion given in the 
publications: 

- Hooghvorst et al, 2019: Insights from sensitivity analysis of geomechanical modelling 
of a salt structure offshore west Africa 

- Hooghvorst et al, 2020: Comparison of stresses in 3D v. 2D geomechanical 
modelling of salt structures in the Tarfaya Basin, West African coast 

The second section summarizes the discussion of the evolutionary modelling approach that 
appear in the publication:  

- Hooghvorst, et al, 2021: Geologically constrained evolutionary geomechanical 
modelling of diapir and basin evolution: A case study from the Tarfaya basin, West 
African Coast. Basin Research  
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3.2 Static modelling 
3.2.1 Stress reduction mechanism 
The results of both the 3D and 2D static models presented in the previous chapter show a 
horizontal stress reduction for the sediments located above the crest of the Sandia diapir 
(Figure 2.2b and Figure 2.8). Both static models also predict the same displacement pattern 
for the sediments above Sandia, where the SE region (hanging wall side of the fault) has a 
downward displacement and the NW region (footwall side of the fault) has a westward 
displacement (Figure 2.5a &c and Figure 2.9). The sediments located on top of the diapir 
crest are placed in the middle of these two differential displacements, hence they experience 
an extensional horizontal strain, identified in the 2D model by Figure 2.10 (red contours at 
the crest of the Sandia diapir). This horizontal extension is the cause of the stress reduction 
predicted by both the 3D (blue contours, Figure 2.2b) and the 2D (blue contours, Figure 2.8) 
static models above the Sandia diapir. Furthermore, it has been observed during the drilling 
operations of the Sandia-1 exploratory well (black circle; Figure 1.1). 

The stress reduction and lateral strains predicted above the Sandia diapir are in agreement 
with the results from other geomechanical models using both idealized geometries (Luo et al. 
2012; Nikolinakou et al. 2012) and actual salt geometries (Barnichon et al. 1999; Segura et al. 
2016). In addition, other authors report the presence of normal faults in sediments above 
salt structures that are an indication of extensional regimes in these areas (Davis et al. 2000; 
Dusseault et al. 2004). In particular, Dusseault et al. (2004) report an area of exceptionally low 
values of minimum horizontal stress in an anticline structure located above a Gulf of Guinea 
salt dome. 

The sensitivity analyses performed in the static models have been crucial for better 
understanding the cause for the stress reduction above Sandia. In particular, when we replace 
the salt lithology in the 2D static model with a shale material, we observe no stress reduction 
above Sandia (Figure 2.11). This result shows that the difference in rock properties between 
the salt and the sediments encasing the salt diapir is one of the main drivers of the stress 
reduction detected in the base-case models. In other words, the viscous rheology of the salt 
and its resulting relaxation causes the stress perturbation above the diapir. 

Other sensitivity analyses have shown that the sea floor geometry also affects the sediment 
displacements above Sandia. The 2D static model predicts no differential displacements 
above the salt diapir when the sea floor is changed from the original 1° towards the west to 
horizontal (Figure 2.12). In addition, the stress reduction above Sandia is slightly reduced 
when the sea floor is changed to a flat surface. All this demonstrates the sea floor geometry 
also drives part of the reduction of stresses above the salt. 

Other changes involving the variation of the number of diapirs modelled or the width of the 
diapir feeders further supports our conclusion that the contrast in properties between the 
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salt and the shale lithologies is the major factor causing the stress reduction above salt 
observed in the base-case static models.  

3.2.2 Static model comparison 
Part of the scope of this static modelling study includes the comparison between the 3D and 
the 2D approach. This comparison aims to identify the differences in prediction and 
investigate whether 2D modelling can still represent the stresses and strains in the salt basin 
adequately, despite its simplifications.  

We have found that both the 3D and 2D models predict a reduction of stress ratios above 
the Sandia salt diapir. The area of this stress ratio reduction is broader and extends shallower 
in the 2D model (Figure 3.1b) when compared to the 3D model (Figure 3.1a). Only at the 
salt crest do both modelling approaches predict the same value, being 0.6 (compared to the 
initial value of 0.8).  

 

Figure 3.1: Horizontal to vertical effective stress ratio predicted for sediments above the Sandia 
diapir for (a) the 3D static model and (b) the 2D static model. Both models present a reduction of 
stress ratio of about 0.6 at the crest of the structure, compared with the initial 0.8. However, the 
reduction in the 2D model affects a broader area above the diapir. Vertical profiles W and W’ are 
used to quantitatively compare the stress change between the 3D and 2D model (Figure 3.2). 
 

When looking at the predicted displacement directions, both model approaches are 
consistent for the sediments above Sandia (Figure 2.5 and Figure 2.9). In both cases, the 
footwall has greater westward displacements than the hanging wall. At the same time, the 
hanging wall has greater downward displacement than the footwall. Even though these 
differential displacements are qualitatively similar in both approaches, the 2D model 
consistently predicts higher magnitudes of displacement than the 3D model. That is because 
there are no out-of-plane displacements in the 2D model, and, therefore, the salt deforms 
only on the modelled plane. On the other hand, the 3D model allows displacements along 
the three dimensions, and, hence, less displacement is needed to achieve the same level of 
relaxation.  
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We can further compare the stress results between both approaches by plotting the 
horizontal stress change (eq. 8) against the depth normalized by the depth of the salt crest, 
H.  

∆𝜎𝜎ℎ′ = 𝜎𝜎′ℎ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝜎𝜎′ℎ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (9) 

 
This comparison is done along a vertical profile W for the 3D model and W’ for the 2D 
model (red vertical profiles, Figure 3.1), located at the crest of the Sandia diapir. The values 
of horizontal stress change show the stress reduction above the diapir ( Figure 3.2). Both 
models predict a similar reduction of 4.5 MPa for the sediments located at the crest of the 
salt structure (i.e., at a normalized depth H of 1). However, the 2D model (green line, Figure 
3.2) predicts higher horizontal stress reduction along the vertical profile, reaching a 
maximum difference that approaches 1.5 MPa at 80% of the crest depth (i.e., at a normalized 
depth H of 0.8). The 3D model (red line, Figure 3.2) shows a horizontal stress change that 
becomes zero at half of the crest depth. At the same depth, the 2D horizontal stress reduction 
is still 0.7 MPa. In the 2D model, the salt influence extends two thirds of the vertical profile, 
reaching up to 30% of the crest depth. In other words, the stress reduction caused by the 
2D diapir reaches shallower sediments on top of the salt structure when compared to the 3D 
diapir. In the 3D model, sediments located at depths shallower than H = 0.5 (shallower half 
of the sedimentary roof) are not affected by the diapir.  

 

Figure 3.2: Horizontal stress change with depth normalized by salt depth for 3D static (red line) and 
2D static (green line) models along vertical locations W and W’ (Figure 3.1) above the salt body, 
respectively. The stress perturbation due to salt attenuates faster with distance from the salt body in 
the 3D model compared to the 2D case. Normalized depth of zero represents the sea floor and 1 
represents the diapir crest. 
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We use the elastic theory to explain why the 2D model predicts broader areas of decreased 
horizontal stress, higher reduction of horizontal stress and higher sediment displacements 
above the Sandia diapir when compared to the 3D model. In particular, we use the elastic 
solutions for the stress distribution resulting from a load applied on a semi-infinite, elastic, 
isotropic and homogeneous medium (Boussinesq 1885). Different load configurations 
applied on the medium will generate different distributions of vertical stress in depth. Here, 
we compare the distributions of vertical stress caused by the application of a strip load 
(infinite out-of-plane length) with that of a circular load (Figure 3.3). Both loads have the 
same magnitude q and width B (the width of the strip load is equal to the diameter of the 
circular load). In this example, the strip load represents a 2D plane-strain solution, whereas 
the circular load represents a 3D axisymmetric solution. 

The elastic solutions show that the vertical stress perturbation caused by the application of 
the strip load (equivalent to our plane-strain model) is broader than the application of the 
circular load (equivalent to our 3D model). The circular load generates a more localized stress 
perturbation that dissipates faster with distance. For example, if we consider a value of B = 
1 m and an applied stress q = 1 MPa/m, then at a distance of 6 m from the load application 
surface, the vertical stress is 0.1 MPa for the case of the strip load (red dot, Figure 3.3) but 
only 0.015 MPa for the case of the circular load (blue dot, Figure 3.3). 

 

Figure 3.3: Illustration of the solution for the vertical stress distribution in an elastic, semi-infinite 
medium caused by the application of a 2D load (represented as a strip load) and a 3D load 
(represented as a circular load) using the solution from Boussinesq (1885). There is no gravity load. 
Blue and red dots correspond to the values of vertical stress at 6 m from the load for the 3D and 2D 
case, respectively, where B = 1 m and q = 1 MPa/m. The load in this figure is applied from below 
to represent the influence of the salt diapir on its sedimentary rood. Modified from US Army Corps 
of Engineers (1990). 
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This elastic theory analogy can be extended to our geomechanical models. In our case, the 
loading is applied by the salt diapir in the form of an imposed strain. Hence, for a simplified 
application, we consider the width of the salt crest to be the loading area (equivalent to the 
load B, Figure 3.3). The 2D model is analogous to the strip load case in Figure 3.3, because 
it is plane-strain, which corresponds to an infinitely long salt wall. The 3D model can be 
compared to the circular load from Figure 3.3. Based on Boussinesq’s elastic theory, the 3D 
salt load should result in a smaller region of stress changes, closer to the crest (i.e., location 
of load application). Indeed, this is consistent with our geomechanical results seen in Figure 
3.1. 

3.2.3 Input uncertainty 
The sensitivity analysis study allows us to quantitatively compare the influence of the 
different model assumptions. In particular, the 2D sensitivity analysis results show how the 
stress prediction from the base-case model changes when changing both elastic parameters 
and geometric and framework assumptions (Table 2.6). The comparison of these different 
stress results (Figure 2.14) allows us to rank the assumptions tested from higher to lower 
impact: 

1. The presence of salt lithology (9%); 
2. The presence of other salt diapirs in the 2D section (7%); 
3. Sea floor slope which imposes a differential load across the width of the model (4%); 
4. The connection between the diapirs and the autochthonous salt source layer (3%). 
5. Elastic properties of the sediments (below 1%) 

This ranking shows which assumptions should be more carefully determined when designing 
a similar geomechanical model. For example, according to the above list, the geometry and 
presence / absence of salt diapirs should be given a greater weight than the elastic properties 
of the sediments encasing the salt structures. The same is true between the sea-floor slope 
and the sediment elastic parameters. 

The salt geometries and the sea-floor slope assumptions have not been tested in 3D due to 
the complexity of the process and by time restrictions. Nevertheless, the consistency on the 
stress and displacement results and the similar small sensitivity response of the elastic 
assumptions suggest that the same conclusions can be extended to the 3D approach. 

3.2.4 Limitations and future research recommendations 
The study of the Tarfaya basin using 3D and 2D static models has shown a series of 
limitations which are listed here and can serve as guidelines for future improvement of the 
present work: 

- The static models built and discussed in this study are drained, meaning that we do 
not simulate the fluid flow inside the basin and we ignore pore-pressure generation. 
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The impermeable nature of the salt lithology can contribute to the pore pressure by 
blocking possible drainage paths inside the sediments and generating overpressures. 
Another mechanism for the salt to generate overpressures is by flowing and loading 
the surrounding sediments. Hence, coupling fluid flow with salt deformation in the 
static models would provide a more complete stress, strain and pore pressure 
prediction of the Tarfaya system. 

- The sediments used for both the 3D and 2D static models behave as poroelastic 
materials. One of the results of the sensitivity analysis has been the low impact of the 
elastic properties of the sediments over the model results. Hence, future models using 
the same poroelastic rheology can benefit by adopting simpler elastic models other 
than the one adopted in this study (eq. 10). Nevertheless, the introduction of more 
sophisticated models for the sediments like elastoplastic models and the introduction 
of frictional strength will result in more realistic displacements of sediments and salt. 
These rheologic models can also help detect regions where the material is close to 
failure. 

- The faults modelled assume one set of frictional properties that do not change during 
the sensitivity analysis. Studying the sensitivity of the frictional parameters would 
help better understand the interrelation between salt deformation and stress 
reduction. 

- Similar to the previous point, the sensitivity analysis could have been expanded to 
include changes in temperature gradient in the 3D and 2D static models. 
Nevertheless, is worth noting that variations in temperature in the static models 
would mainly affect the viscosity of the salt lithology and, hence, the time needed for 
the static model to converge to a solution. Temperature effects becomes more 
important in evolutionary models of salt systems. 

- All the models used in this study are performed using the Finite Element Method 
(FEM) as implemented in the software Elfen (by Rockfield Ltd.). This particular 
approach was the natural option to continue the work Repsol began by building the 
3D model of the study area, which was started with the same tool. In addition, the 
selection of FEM-based models and, in particular, the software Elfen, is supported 
by the validation given by other researchers from the field in recent years (Segura et 
al. 2016; Heidari et al. 2018b; Nikolinakou et al. 2018a; Thigpen et al. 2019). This 
ensured our work remains relevant for future years. Despite all that, we acknowledge 
that our work can be performed using different software, or altogether different 
numerical methods such as Discrete Element Methods (DEM). The selection of 
other methods may entail different assumptions of input requirements and may yield 
different results compared to our cases. The testing of all these other options was 
not one of the goals of the present research but may be the natural next step to our 
research, as an interesting line for a future investigation.      
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- Finally, the understanding of salt systems like the Tarfaya basin can greatly benefit 
from the introduction of evolutionary geomechanical modelling. This approach, 
contrary to the static one, can help study the complete stress and strain history 
through time. With evolutionary modelling, the initial assumption of a stress 
distribution introduced in the static approach is not needed. In addition, evolutionary 
modelling provides a complete evolution of the salt structures and how this evolution 
affect the basin stresses. We address this line of improvement in the 2D evolutionary 
geomechanical modelling of the Tarfaya basin in the present thesis.   
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3.3 Evolutionary modelling 
3.3.1 Influence of sedimentation rates on diapir evolution 
The base-case evolutionary model results together with the sensitivity analyses has shown 
that the sedimentation rates of the Tarfaya basin are a key driver for the system evolution. 
In particular, we show that the variation of rates of deposition with time (Figure 2.24) 
influences the development of the Sandia diapir (BC model, Figure 2.18). The rapid 
sedimentation at the beginning of the simulation (Jurassic) mobilizes the salt from the source 
layer towards the central part of the basin, initializing the rise of the diapir and allowing it to 
reach the surface at the end of Jurassic.  

We quantify the effect of sedimentation on salt flow by plotting the salt horizontal pressure 
gradient (Figure 3.4). This gradient can be calculated by subtracting the sediment overburden 
load on salt away from the diapir from the salt pressure inside the diapir at the same depth 
(Figure 3.4-inset). The higher the salt horizontal pressure gradient, the more salt volume is 
driven toward the diapir and the faster the diapir growth is. The salt gradient for the Sandia 
diapir in the BC model (blue line, Figure 3.4) increases rapidly during the Jurassic, illustrating 
the acceleration of salt flow towards the diapir. As a result, by the end of the Jurassic interval 
(at 145 Ma), the diapir has upbuilt to the sea floor and a significant volume of salt has 
accumulated in the salt pedestals (Figure 2.18b). This creates a readily available salt stock 
near the diapir that contributes to its continuing development during Cretaceous times, 
despite the decrease in sedimentation rates (87 m/Myr during Jurassic, blue block in Figure 
2.24 vs. 30 m/Myr during Cretaceous, dark and light green blocks in Figure 2.24). As a result, 
the diapir remains at the sea floor (Figure 2.18c), gradually widens during Early Cretaceous, 
and eventually breaks into a salt sheet at the end of this interval (Figure 2.18d). The salt at 
the pedestals sustains the diapir growth even though the source layer thins and welds at the 
end of Early Cretaceous. Eventually, the depletion of the pedestal salt volume combined 
with the continuous Late Cretaceous sedimentation buries the salt structure. 

The evolution of model MV4 (Figure 2.23) further illustrates the importance of the 
sedimentation rates in the diapir evolution. In this model, the higher sedimentation rates 
during the Jurassic result in a higher horizontal pressure gradient in the salt source layer 
(green vs. blue line, Figure 3.4). This promotes a faster salt flow compared to the BC model, 
and a greater amount of salt pumped into the MV4 diapir, despite the fact that the source 
layer in MV4 welds much earlier than the one in the BC model. As a result, salt in MV4 not 
only accumulates in the pedestals and upbuilds to the sea floor, but also forms diapir 
overhangs (Figure 2.23d). The faster sedimentation during Early Cretaceous on the MV4 
compared to the BC model prevents the formation of a long salt sheet at this stage, resulting 
instead in shorter and thicker overhangs. This geometry allows additional salt volume to be 
stored readily available to flow in response to the later-applied shortening. As a result, the 
system is able to sustain a second phase of diapir rise to the present-day sea floor. Contrary 
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to MV4 diapir, the BC diapir gets buried during Cretaceous times (Figure 2.18e) because a 
sufficient salt volume could not be mobilized. 

 

Figure 3.4: Comparison of horizontal salt pressure gradient between BC model (blue line) and MV4 
model (green line). We define horizontal salt pressure gradient as the difference between the sediment 
overburden load on salt away from the diapir and the salt pressure inside the diapir at the same depth 
(inset). The higher sedimentation rates in model MV4 generate a consistently higher horizontal salt 
pressure gradient with time. The point in each line represents the time when the source layer welds. 
 

3.3.2 Influence of shortening rates on stress distribution 
The evolutionary geomechanical models provide the stress distribution around the salt 
structures resulting from the system evolution. This allows us to study the influence of 
shortening rates on the present-day stress state near the Sandia diapir (Figure 2.19).  

The sensitivity analysis results obtained by building the MV1 model show that the rate of 
shortening (exponential or sigmoidal curve, Figure 2.15c) does not seem to greatly affect the 
diapir kinematics (Figure 2.19a vs. Figure 2.19b). This is because the formation of the Sandia 
diapir develops and matures between Jurassic and Late Cretaceous, under stable tectonic 
conditions. The onset of shortening begins just after this interval, when the diapir has already 
reached the surface and the salt sheet and overhangs are emplaced and buried under 
sediments. In other words, the shortening does not interfere with the main period of diapir 
rise and development. In addition, the rates applied are mostly the same except for the final 
parts of the model: in the exponential curve, the shortening accelerates at the end of the 
simulation, whereas in the sigmoidal curve, the shortening decreases and deactivates just 
before the end of the simulation. All these explains the lack of influence of the shortening 
on the final diapir geometry. 
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Nevertheless, the sensitivity analysis changing the shortening curves detected changes on the 
final stress state distribution around the salt. The exponential shortening curve (solid black 
line, Figure 2.15c) applied in the BC model (Figure 2.19a) results in an active regional 
compressive load at present day, which pressurizes the diapir salt. Because of the overburden 
thickness, the crest cannot expand, and instead loads the sediments around it. As a result, 
the stress ratio increases to values near 1 at the salt flanks (green/yellow contour colours, 
Figure 2.19a), and to K=1.4 around the crest (orange contour colours, Figure 2.19a), 
illustrating increase in horizontal stress compared to its uniaxial value (K0 = 0.8).  

In contrast, the sigmoidal shortening curve (increases progressively, peaks and decreases 
progressively, dashed black line, Figure 2.15c) applied in model MV1 (Figure 2.19b) results 
in decreasing shortening rates toward the end of the simulation and termination of 
shortening 2 Myr before present day. The lack of tectonic load causes the diapir to deform 
downward and outward to achieve a uniform stress state. This behaviour is equivalent to the 
one seen in our static model approaches built in this study for the same salt diapir. 
Consequently, the stress ratio at the crest decreases to values of K near 0.65, indicating a 
decrease in horizontal stress (Figure 2.19b). The 3D and 2D static models also show a 
decrease in horizontal stress at the crest of the structure caused by the same salt relaxation 
phenomenon (Figure 2.2b & Figure 2.8, respectively). In addition, this reduction was also 
detected during the drilling of the Sandia-1 exploratory well (Figure 1.5, also Annex 4: Sandia-
1 well log data and CBIL data), indicating that the shortening rates following a sigmoidal 
curve are more appropriate to represent the tectonic history of the Tarfaya basin. 

3.3.3 Layer thicknesses comparison between kinematic restoration and 
evolutionary geomechanical models 

One of the advantages of the evolutionary geomechanical models built in the present study 
is that not only do they incorporate the geological inputs coming from the kinematic 
restoration model, but also incorporate the strength and deformation characteristics of 
sediments in the study of a salt-basin evolution. We can compare the layer thicknesses from 
the BC evolutionary geomechanical model against the kinematic restoration model to 
demonstrate this contribution. In particular, we compare both models at: (a) location close 
to the diapir, near the tip of the source-layer weld (locations X and C, Figure 1.3 & Figure 
2.18, respectively); (b) location far from the diapir, above a salt high, where the salt source 
layer is not depleted (locations Y and A, same as the location used to constrain the 
evolutionary model, Figure 1.3 & Figure 2.18, respectively). Whereas both approaches 
predict the same thicknesses away from the diapir (solid shapes in Figure 3.5 fall on the 1:1 
line), the geomechanical model predicts 20% thicker layers closer to the diapir (empty shapes 
in Figure 3.5 fall around the 1:1.2 line). 

We perform this comparison for the Jurassic, Cretaceous and Oligocene sediments (colours 
blue, green and orange in Figure 3.5, respectively) and for the time intervals of Late 



Chapter 3: Summary of discussions 
 

86 
 

Cretaceous, Oligocene and present day (triangle, circle and square shapes in Figure 3.5, 
respectively). Consider, for example, the Jurassic sediments (blue shapes). Near the salt 
structure (empty shapes), at the end of Late Cretaceous (empty blue triangle, Figure 3.5), the 
restoration model provides a thickness of 4300 m, whereas the evolutionary model predicts 
5000 m. 

 

Figure 3.5: Comparison of layer thickness predicted by the kinematic restoration model (Figure 1.3) 
and the BC evolutionary geomechanical model (Figure 2.18) at 2 locations: (a) far from the diapir 
above a salt high (Y vs. A in Figure 1.3 & Figure 2.18; solid shapes); and (b) near the diapir, above a 
salt weld (X vs. C in Figure 1.3 & Figure 2.18; empty shapes). Layers considered: Jurassic, Upper 
Cretaceous and Oligocene units (blue, green and orange colours, respectively). Comparison times: 
Late Cretaceous, Oligocene and present day (triangular, circle and square shapes, respectively). Points 
on the 1:1 dashed line indicate agreement between the two models. Points closer to the 1:1.2 dashed 
line indicate that the evolutionary geomechanical model predicts more compaction. 
 

In addition, the geomechanical model predicts a notably higher compaction of the Jurassic 
layer between Late Cretaceous and present day near the diapir (empty blue square, Figure 
3.5): the final evolutionary model thickness is 4600 m (8% compaction), compared to 4200 
m (2.3% compaction) in the restoration model. This can be explained by the presence of the 
salt weld below Jurassic. Particularly, the source-layer weld generates higher mean stresses 
near the tip and a zone of higher shear stress that radiates upwards from the weld (Heidari 
et al. 2016). The geomechanical model captures this contribution of mean and shear stress 
to compaction, because it simulates sediments as porous elasto-plastic material. The 
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additional sediment compaction cannot be accounted for in the restoration model and causes 
an increase in the deposition space in the evolutionary geomechanical model, allowing more 
material to be deposited on top of Jurassic. This, in turn, results in the thickness increase 
observed in the geomechanical model near the diapir (empty shapes in Figure 3.5) compared 
to the kinematic restoration model. 

Overall, the insights obtained from the comparison between the evolutionary geomechanical 
and the kinematic restoration models highlight the importance of modelling the viscous salt 
flow and its response to sediment loading during the diapir and basin evolution.   

3.3.4 Parameters with minor influence on the Tarfaya basin evolution 
The sensitivity analyses have also shown that some of the changes applied do not seem to 
have a great influence on the overall model results. These changes are the shortening rates 
when looking only at the salt kinematics, the shape of the base of the salt and the temperature 
gradient of the basin. 

We already discussed the influence of the shortening rates applied with regard to the diapir 
kinematics and its final geometry (3.3.2 Influence of shortening rates on stress distribution). 
It is important to know that, despite the little effect on the final diapir morphology, the 
shortening rate variation greatly changes the final stress distribution of the sediments around 
the diapir. 

The presence or absence of the salt-base high does not greatly impact the evolution or final 
geometry of the diapir (MV2 model, Figure 2.21).  The diapir geometry is similar to the BC 
geometry, with, the creation of a weld and the salt-sheet and overhang during Cretaceous 
and the buried structure under Tertiary sediments at the end of the simulation. However, 
there are some changes occurring on the timing of the different stages of diapir growth that 
generate some minor differences when compared to the BC model. Firstly, salt flows more 
easily into the MV2 diapir in the absence of a rotated fault block feature at the salt base 
(Figure 2.21b), causing the diapir to reach the surface slightly earlier than the BC diapir. This 
translates to an earlier maturation of the MV2 diapir. Secondly, the salt source layer welds at 
an earlier time (nearly 20 Myr earlier than BC model), preventing the diapir to rise further. 
This causes the generation of a shorter, wider final structure. In contrast, the presence of a 
salt-base high (BC model, Figure 2.21a) delays the diapir rise. It should be noted that a salt-
base high may play a key role in focusing salt flow into a structure, whereas in both models 
the diapir location is predefined with a seed in the initial geometry (Figure 2.15a). 

The increase in temperature gradient in the salt does not greatly change the overall evolution 
or the final diapir geometry either (MV3 model, Figure 2.22). The temperature increase 
causes the salt viscosity to decrease, which facilitates salt flow into the diapir during the 
Jurassic. This causes a net result similar to the previous case discussed (MV2 model, with a 
flat salt base) where the MV3 diapir evolves faster, reaching the surface and welding the salt 
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source layer at earlier times compared to the BC model. The resulting salt structure matures 
earlier, being buried by sediments during the Early Cretaceous, compared to the BC diapir 
that is buried during the Late Cretaceous. The final MV3 diapir geometry (Figure 2.22b) is 
shorter and wider compared to the BC structure (Figure 2.22a).  

3.3.5 Limitations and future research recommendations 
The study of the Tarfaya basin using a 2D evolutionary model has shown a series of 
limitations that are listed here. Future work could focus on overcoming some of these 
limitations. 

- The present 2D evolutionary models simplify the Atlas inversion and shortening into 
a continuous event that extends from Late Cretaceous until present day. However, 
the Atlas shortening most probably happened in distinct pulses (Fraissinet et al. 1988; 
Görler et al. 1988; El Harfi et al. 1996; Frizon de Lamotte et al. 2000). Considering 
these shortening pulses may greatly affect the development of the salt diapirs, 
especially the Western diapir that continues to rise during the Tertiary until it reaches 
the sea floor. 

- The simulations present in this study are 2-dimentional plane-strain models, not 
accounting for any out-of-plain salt flow. As a result, they require wider source layers 
for the interpreted salt thickness to overcome the lack of the out-of-plane 
component. Hence, they overestimate the lateral extent of source-layer withdrawal 
during diapir evolution and rise. 3D evolutionary models would better represent the 
Tarfaya salt basin, overcoming these limitations. Despite that, the difficulty to 
constrain these models and their computational power requirements may be a 
limitation of using 3D evolutionary models. 

- The sediments used in the 2D evolutionary models use a poro-elastoplastic 
description, which is a significant improvement compared to the 2D and 3D static 
models built at the beginning of this study. Nevertheless, the material description can 
be further improved by calibrating the models for the specific study area. In addition, 
the constitutive formulation does not account for strain softening of faulting. As a 
result, differential stresses may be unrealistically high in locations where faults would 
otherwise form. 

- Similar to the 3D and 2D static models, the 2D evolutionary models built are drained 
and do not model the generation of overpressures. Coupling fluid flow to salt flow 
and deposition would generate overpressures that can prevent compaction and 
reduce the accommodation space for each deposition stage (Swarbrick et al. 2002; 
Nikolinakou et al. 2018a; Heidari et al. 2019). In addition, overpressures would 
decrease the strength of the sediments by keeping the effective stress low, hence 
playing a key role in the kinematics of salt flow (Nikolinakou et al. 2018a).  
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- The sediment geology has been simplified to a single lithology. Data from wells 
drilled on the continental shelf of the area indicate the presence of carbonates in the 
Jurassic sediments. This study did not account for those lithologies because it is not 
clear whether such layers exist in the basinward location of the study area. The 
influence of such lithologies over the diapir evolution can be assessed by including 
them in a sensitivity analysis. 
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4.1 Introduction 
This chapter comprises the concluding points of the present study and aims to answer the 
initial goals listed at the beginning of the thesis. These conclusions are organized in two main 
parts based on the modelling approach.  

Therefore, the first part lists the results obtained by the exhaustive study and comparison of 
the 3D and the 2D static geomechanical modelling approaches. We summarize the main 
points influencing our static models, inferring that this approach can be applied to study 
complex structural settings, even in the exploration stages, with limited data.  

The second part focuses on the conclusions we obtained by adding the evolutionary 
approach to our study, listing the factors influencing the evolution of the Tarfaya basin. In 
addition, we point out that evolutionary modelling, despite being more challenging than its 
static counterpart, can be applied in basin studies with some basic geologic constraints to 
help its definition, yielding reasonable and useful results. 

4.2 Static geomechanical modelling conclusions 
The interpretation of the 3D static model results has shown a significant decrease in the 
horizontal stress for the sediments located near the crest of the Sandia salt diapir. The model 
also predicts a rotation of the horizontal principal stresses affecting the area. These results 
are consistent with the data coming from the Sandia-1 exploratory well, showing a region of 
decreased horizontal stress for the sediments on top of the salt diapir. In addition, the 3D 
geomechanical model also included higher horizontal east-west displacements at the foot-
wall of the major fault above the Sandia diapir and the higher vertical displacements at its 
hanging wall.  

The sensitivity analysis testing the elastic parameters on the 3D static geomechanical model 
has shown the negligible impact of these parameters on the final results. This is an interesting 
result, especially when these models are built in stages where the data from the sediments 
present in the basin is scarce and there are no samples available to constrain the rheology of 
those sediments. 

The lack of the required computational power to run a large variety of these complex 3D 
models made impossible to further test other input parameters (such as the presence or 
absence of the salt pillars below the diapirs, the change of the sea floor slope, the presence 
or absence of salt, etc). Here is where the study of the same static models in a 2D framework 
becomes interesting, since they have offered a more simplified way to further study the same 
structures, allowing a deeper level of insight on the mechanisms generating the stress 
decrease seen both in the well data from Sandia-1 and in the 3D static model.  

The 2D static geomechanical model results have shown a horizontal stress reduction near 
the Sandia diapir similar to the 3D static model results. This decrease reaches absolute values 
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around 4.5 MPa for both the 3D and the 2D versions. Nevertheless, further comparison 
between the 3D and 2D static model results indicated that the 2D version overestimates both 
the changes in stress and the displacements for the shallower sediments above the salt 
structure. In particular, the stress perturbation for the suprasalt sediments yielded by the 2D 
model comprised a broader area and affected sediments lying 20% shallower than the 3D 
prediction. The sediments located at the shallower half above the crest of the salt diapir in 
the 3D model did not experience any stress perturbation, whereas in the 2D model there was 
still 0.7 MPa of stress reduction (16%) induced by the salt at the sediments halfway the diapir 
depth. These differences between 3D and 2D static models are due to the fact that the plain-
strain 2D model miscalculates the stress changes caused by a 3D loading. Despite these 
differences, the 2D static model has proved to be a useful tool to approximate and explore 
the more complete 3D model, since both approaches yield similar stress and strain 
distributions above the Sandia diapir. 

The cheaper computational power requirements and less time consuming 2D static model 
has allowed for a more complete sensitivity analysis compared to the 3D version. Similarly, 
to the 3D study, the variation of the elastic parameters for the sediments has led to minimal 
changes on the model results, confirming the conclusions from the 3D sensitivity analysis.  

More importantly, the sensitivity analysis study highlighted the difference in rock rheology 
between the salt and the encasing sediments as one of the main drivers of the stress changes. 
In particular, we showed that the ability of the salt to flow and relax in this model induces a 
series of differential displacements for the sediments located above the diapir: the sediments 
at the east side of the diapir roof move downwards, whereas the sediments at the west side 
of the diapir roof move westwards. The sediments comprised in the middle of these two 
regions of different displacements (the sediments located just on top of the diapir crest) 
experiment extensional horizontal strains, causing the stress reduction seen in the Sandia-1 
data and in the 3D and 2D models. When the salt lithology in the 2D model was replaced by 
shale (hence, it does not flow as the salt does), the stress reduction disappeared. Thus, the 
salt rheology seems to be the main driver for the stress perturbations above the diapir and, 
as such, attention should be given to the correct definition of the geometries of the salt 
bodies. 

As a second order sensitivity analysis result, the sea floor geometry also drives part of the 
reduction of stresses above the salt. A 2D without any sea floor slope led to slightly reduced 
stress perturbations compared to the original 2D model. 

To summarize, the static geomechanical modelling study performed during this research has 
shown that the two essential points that have an important influence in our models are: 

1) Large rheological contrasts between modelled materials, such as sediment and salt. 
2) The geometry of these contrasting units. 



 Geomechanical study of the Tarfaya basin using 3D/2D static and evolutionary models 
 

95 
 

PR
E

FA
C

E
 

C
H

A
PT

E
R

 1
 

C
H

A
PT

E
R

 2
 

C
H

A
PT

E
R

 3
 

C
H

A
PT

E
R

 4
 

R
E

FE
R

E
N

C
E

S 

 

That means we can apply static geomechanical studies as shown in this research for any basin 
for which we can construct models based on reflection seismic information, even when 
rheological characterization is not precise. Indeed, if large rheological contrasts actually exist, 
they should be detected on seismic as strong reflections caused by contrasts in impedance 
(which depends on rheology). As for the geometry of these contrasts (in other words, the 
geometry of salt structures for the case of this particular study), we can also derive them from 
seismic. However, additional effort may be required in structurally complex settings, 
requiring not only 2D but also 3D seismic acquisition. But even in such cases, carefully built 
2D static models can be a sufficiently good approximation for these 3D complex settings, as 
we showed by the comparison of our 3D and 2D static geomechanical comparison. These 
2D models, if representative, are much more flexible that a cumbersome 3D model of the 
whole area: despite the simplifications required to build them, they are a cheaper option 
compared to 3D models and provide a fast way to apply sensitivity analyses to test any 
uncertainties in the input parameters.  

All this shows us that static geomechanical modelling can be used to understand complex 
settings, even in exploration stages where the uncertainties are high and sediment rheology 
data is not available. This study concluded that, even simple 2D static models, with their 
respective sensitivity analyses, can add value to the prognosis and help reduce uncertainties.  

4.3 Evolutionary geomechanical modelling conclusions 
The evolutionary 2D modelling provides a step forward compared to the previous static 
models built during this study, since it allowed to explore the formation and evolution of the 
Tarfaya basin, both under a kinematically and geomechanically point of view. 

The 2D evolutionary geomechanical model used geological inputs of sea floor slope 
evolution and sedimentation rates from a kinematic restoration model. The Sandia diapir 
kinematics and evolution through time obtained from this model were similar to the one 
provided by the input restoration model:  

- The Sandia diapir began its formation during Jurassic, where the diapirism was 
triggered by high sedimentation rates. 

- At the end of Jurassic, the Sandia diapir reaches the sea floor and begins to spread 
laterally, forming a salt sheet downslope and an overhang upslope. This formation is 
possible thanks to the stock of salt accumulated at the pedestals during Jurassic and 
by the lower sedimentation rates of Early Cretaceous.  

- At the end of Early Cretaceous the diapir stops spreading and welds its source layer. 
The sediments bury the salt structure under a thin roof. 

- The Atlas shortening reactivates the diapirism during the beginning of Late 
Cretaceous. The salt from the sheet and overhang of the diapir flow towards the 
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centre and starts to bulge the crest of the structure, arching the sedimentary roof on 
top. 

- The diapir at present day shows a geometry similar to the seismic data available, with 
a diapir welded at its base, buried by Tertiary sediments, with a salt sheet formed 
downslope and an overhang formed upslope. 

The sensitivity analysis performed for the 2D evolutionary geomechanical model has 
identified the changes in the sedimentation rate during the basin formation to be the main 
driver of the halokinetic evolution. In particular, when the sedimentation rates are increased 
to represent deeper locations of the basin, the resulting diapir is able (in combination with a 
thicker initial salt source layer) to reach the sea floor at the end of the simulation thanks to 
the secondary growth during the Atlas shortening. This result is consistent with the Western 
diapir evolution from the seismic section, located in the deeper parts of the Tarfaya basin, to 
the west of the Sandia diapir. 

We have also shown that the variation of shortening-rate histories on the evolutionary 
models had a low effect on the halokinetics in this particular basin because the diapirs mainly 
develop between Jurassic and Late Cretaceous, before the onset of shortening. However, the 
changes in shortening rates significantly affected the present-day stress state above the Sandia 
diapir. When a progressively increase and then decrease of the shortening history was applied, 
the sediments on top of Sandia showed a horizontal stress reduction compatible with both 
the 3D and 2D static models and with the drilling data coming from the Sandia-1 exploratory 
well. 

Finally, other sensitivity analyses concluded that changes in the diapir base geometry and the 
temperature gradient generated shorter and wider diapirs but had a low impact on the salt 
structure evolution. 

In conclusion, we have demonstrated that it is possible to take a step further from the static 
approach and model the evolution of a complex salt basin like Tarfaya. The incorporation 
of geological data (rates of deposition, sea floor geometry, shortening rates, etc) leads to 
more realistic evolutionary geomechanical models that helps us understand the present-day 
geometries of geologic structures and help illuminate the key drivers of their structural 
evolution. In turn, geomechanical models incorporate the mechanical interaction between 
salt and sediments and can provide valuable information on the evolution of stress, porosity 
and potentially pore pressure with time, ultimately providing a more complete picture of the 
basin history. 
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Annex 1: Comparison of stresses in 3D vs. 2D 
geomechanical modelling of salt structures in the Tarfaya 
Basin, West African coast 
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Abstract: We predict stresses and strains in the Tarfaya salt basin on the West African coast using a 3D static geomechanical
model and compare the results against a simplified 2D plane-strain model. Both models are based on present-day basin
geometries, are drained, and use a poroelastic description for the sediments and visco-plastic description for salt. We focus on a
salt diapir, where an exploratory well has been drilled crossing a major fault. The 3Dmodel shows a significant horizontal stress
reduction in sediments at the top of the diapir, validated with measured data later obtained from thewell. The 2Dmodel predicts
comparable stress reduction in sediments at the crest of the diapir. However, it shows a broader area affected by the stress
reduction, overestimating its magnitude by as much as 1.5 MPa. Both models predict a similar pattern of differential
displacement in sediments along both sides of the major fault, above the diapir. These displacements are the main cause of
horizontal stress reduction detected at the crest of the diapir. Sensitivity analysis in both models shows that the elastic
parameters of the sediments have a minimal effect on the stress–strain behaviour. In addition, the 2D sensitivity analysis
concludes that the main factors controlling stress and strain changes are the geometry of the salt and the difference in
rock properties between encasing sediments and salt. Overall, our study demonstrates that carefully built 2D models
at the exploration stage can provide stress information and useful insights comparable to those from more complex
3D geometries.
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A great number of hydrocarbon reservoirs in basins around the
world are located near or below salt structures (Meyer et al. 2005;
Warren 2006; Beltrao et al. 2009; Yu et al. 2014). This fact has led
to a large number of drilling operations close to salt diapirs. The
viscous rheology of the salt makes it unable to sustain deviatoric
stresses, therefore salt flows and changes its shape until it reaches an
isostatic (uniform) stress state. As a result, sediments encasing salt
structures may experience deformation and changes in their stress
state and pore-pressure distribution (Orlic & Wassing 2013; Luo
et al. 2017; Nikolinakou et al. 2018). This uncertainty in stress and
pressure state has led to major problems during drilling operations in
salt-related basins, including hazardous conditions and additional
expense. For example, Bradley (1978) discussed borehole collapse
incidents next to a salt structure in the Gulf of Mexico, Eugene
Island. Seymour et al. (1993) reported 26.3% of non-productive
drilling time for wells close to salt diapirs in the North Sea. Narrow
drilling windows near salt formations in the Gulf ofMexico, leading
to severe lost circulation, hole instabilities and high-pressure kicks,
are also reported by Sweatman et al. (1999). Finally, Dusseault et al.
(2004) exemplified the case of a well above a Gulf of Guinea salt
dome, where lower than expected minimum horizontal stresses
resulted in 92 lost drilling days.

In the last 20 years, geomechanical modelling has been
established as a tool to reduce uncertainty in complex prospects
with salt-related structures. Geomechanical models employ poro-
mechanical constitutive formulations to predict stress, strain and
pore pressure of sediments in basins. Geomechanical models can be

static (e.g. Segura et al. 2016; Heidari et al. 2018) or evolutionary
(e.g. Goteti et al. 2012; Nikolinakou et al. 2018; Thigpen et al.
2019). Static models are built based on present-day geometry, while
evolutionary models simulate the evolution of the salt system
(Nikolinakou et al. 2014). Therefore, static models are most often
used to study specific prospects. Most published static studies
employ 2D geomechanical models. Early examples use idealized
salt geometries (e.g. Fredrich et al. 2003), which provide insights
into salt–sediment interaction but do not describe real field cases.
Several 2D studies of actual salt geometries – derived from seismic
surveys – have also been documented (Fredrich et al. 2007a; Segura
et al. 2016; Heidari et al. 2018). Such 2D models allow preliminary
results to be obtained faster than a complete 3Dmodel. However, 2D
models can only represent complex 3D salt structures with a plane-
strain or axisymmetrical geometry; hence, they cannot incorporate
stress changes and deformation associated with the three-dimen-
sional nature of the salt system. There are a few studies that perform
a full 3D geomechanical model of actual salt geometries (van der
Zee et al. 2011; Adachi et al. 2012; Segura et al. 2016) overcoming
the limitations of the 2D models. These models, however, have the
downside of being computationally expensive and labour-intensive.

At an early exploration stage, the selection of a 3D v. 2D
geomechanical model becomes important. The final choice can be
influenced by time and budget constraints or the required accuracy
of the results. Geometrical variability, complex fault networks,
changes in lithologies or salt–sediment interaction can be factors
that tip the balance from one approach to another.

© 2019 The Author(s). Published by The Geological Society of London for GSL and EAGE. All rights reserved. For permissions: http://www.geolsoc.org.uk/
permissions. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics
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This work presents a case study for the Tarfaya salt basin on the
NW African coast (Fig. 1). A rank wildcat exploration well was
drilled above a salt-cored anticline. A 3D elastic static geomecha-
nical model was developed before the drilling of the exploration
well to obtain a stress–strain understanding of the area, as well as to
assess the stability of the complex 3D pattern of faults above the
diapir. This 3D model concludes that a significant horizontal stress
reduction is present in the sediments above the salt structure. Results
of the 3D analysis were later validated with data from drilling of the
exploration well. Sensitivity analysis on input material properties
has also been performed because of the lack of data for a precise
material description. This analysis shows almost no effect on the
results.

A 2D model has been built from a representative transect of the
full 3D geometry that includes the exploration well. The results from
this simpler model are consistent with the horizontal stress reduction
above the salt structure seen in the 3D model. The sensitivity
analysis also shows a low influence of the sediment elastic
properties. In addition, it allows us to identify the high contrast
between salt–sediment properties and the seafloor geometry as the
main causes of stress and strain changes in the poroelastic model.

We compare the results between the 3D and 2D models in order
to explore whether the simplified 2D case can lead to similar results
to the 3D case. The comparison shows a similar reduction in
magnitude of horizontal stresses in sediments located near the salt
crest. However, the 2D model predicts a more extensive area of
stress and strain perturbations above salt. The displacements of the
roof sediments in both models have similar patterns but the 2D
model yields higher magnitudes. These results allow us to consider
the 2D simplification as a realistic first-order simulation of the
basin, in agreement with available data and results from the more
complex 3D model.

Prospect geological system

The study zone is located in the Tarfaya Basin, between the
Moroccan shore and the island of Lanzarote from the Canary
archipelago (Fig. 1). It extends approximately 3250 km2 and
comprises numerous salt bodies that are part of the structures
identified along the NWAfrican margin (Tari & Jabour 2013).

The Tarfaya Basin is characterized as a passive margin formed
during the Late Triassic–Early Jurassic rifting and opening of the
Central Atlantic and the separation of the NWAfrican margin from
the North American margin. The rifting caused stretching of the
basement, forming fault-controlled graben that were filled by
siliciclastic and evaporitic sediments. These evaporites were the
source layer for the present-day salt structures. The uneven
distribution of salt along these graben is the principal cause for
the distribution of individual salt structures at the present day (Tari
& Jabour 2013).

Post-rift differential thermal subsidence and submersion of the
basin towards the west favoured the formation of a carbonate shelf
and triggered the salt tectonics (Tari & Jabour 2013). During the Late
Jurassic–Early Cretaceous, a relative sea-level fall caused a subaerial
exposure and karstification of the carbonate platform (Wenke et al.
2011). A very significant sedimentary influx from the continental
margin also takes place during the Early Cretaceous, depositing thick
sand layers forming the Tan-Tan deltaic formation (Gouiza 2011).

During the Late Cretaceous, the initial compression of the Atlas
began, causing a moderate sediment input (Wenke et al. 2011) and
reactivating pre-existing salt structures until the Miocene. This
period of time is considered by Tari & Jabour (2013) to be the main
period for the formation of salt sheets and canopies seen north of the
Tarfaya Basin, and also coincides with the volcanic emplacement of
the Canary archipelago (Carracedo & Perez-Torrado 2013). Most of

Fig. 1. Location map of the survey
area (red polygon) situated between the
Canary archipelago and the southern
Moroccan shore. The green dot
indicates the location of the
exploratory well.
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the salt structures present in the study area are still active at the
present day, affecting in some cases the seafloor bathymetry
(Fig. 2). The same figure shows other diapirs not reaching the
seafloor, due to their early welded stem, forming pinched diapirs
within the basin. An exploratory well path was proposed above one
of these buried salt structures and through the overlying network of
faults (Fig. 3). The crest of this Triassic salt diapir is at 3000 m bsl
(below sea level). The salt bulb at the top of the diapir has been
interpreted on seismic to be disconnected from its autochthonous
source layer due to welding of its stem. The folded geometry of the
overlying Tertiary sediments indicates that salt in the bulb has risen
after its original emplacement. The main objective of the
exploratory well was to test the presence of hydrocarbons at four
different sand-rich turbiditic deposits in the supra-salt Tertiary
sediment package. A fault network located above the salt diapir
cross-cuts the reservoir intervals.

Model set-up

We built a 3D geomechanical model using Elfen (Rockfield 2017).
The model is based on a quasistatic, drained, finite-element
formulation. It uses an unstructured finite-element mesh containing
3.97 million linear tetrahedral elements, with a mesh size of 400 m.
A refined mesh region (4000 × 4000 m) centred in the well location

is used with an element size of 50 m. The boundary conditions
applied restrict horizontal displacements at the four lateral sides of
the model and restrict vertical displacements at the base. The pre-
defined faults are modelled using double-sided discrete contact that
allows sliding to occur along the faults, as well as a stress
redistribution around them. The faults use a Coulomb friction law
using a cohesion of 0 MPa and a coefficient of friction of 0.3.

The input parameters of the model include the initial pore-
pressure profile, initial stress ratios (the ratio between the vertical
and horizontal effective stresses considering uniaxial conditions)
and material properties for each horizon. We calibrated these inputs
using offset well and seismic velocity analyses. The offset wells
used (yellow dots in Fig. 1) are the closest deep-water analogues to
the studied location. Closer wells (red dots in Fig. 1) are discarded
for being located on the continental shelf, a too dissimilar
environment when compared with the studied zone.

Geometry

The domain included in the 3D model covers a subset of about
570 km2 of the total area of the survey shown in Figure 2 and
comprises the location of the well trajectory. The geometries for the
different horizons modelled are extracted from the interpretation of
the seismic survey. The base of the model is at a depth approximately

Fig. 2. (a) Survey area seafloor
topography. The general NW downwards
slope is perturbed by salt-related
morphologies: domes with moats caused
by the salt reaching the surface and
seafloor troughs related to buried salt-
induced faults. The rectangle indicates the
study area and the green dot represents the
exploration well. (b) The location of
major diapirs with seabed expression
(pink polygons). The red dashed line
separates two different salt regions: the
NW side has a thicker salt source layer,
which allows diapirs to reach the seafloor,
whereas the SE side has a thinner salt
source layer and buried diapirs.

Fig. 3. Static 3D geomechanical model.
(a) Model geometry representing the
stratigraphic distribution of sand, shale
and salt horizons. The green dot indicates
the position of the well. (b) 3D salt
structure, major faults and the well
trajectory (green line).

3D/2D geomechanical modelling comparison: Tarfaya
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9 km below the seafloor, along the interpreted base of the
autochthonous salt layer. Two sand layers represent the system of
reservoirs above the salt (Fig. 3a). The autochthonous and
allochthonous salt structures are connected by 200 m-wide salt
columns. This is contrary to the seismic interpretation which shows
independent bodies, but is necessary because of the software’s
initialization procedures. To ensure there is no salt flow from the
source layer, the width of the salt columns is sufficiently narrow
(Fig. 3b).

The complex fault network above the salt diapir is simplified and
represented by only two faults: a north–south-trending fault, which
is the only one to have a maximum throw in excess of 400 m, and a
secondary fault that intersects the trajectory of the exploratory well
(Fig. 3b).

Initial stress state

In sediments, stress calculations are uncoupled from porous fluid
flow (drained analysis). The initial pore-pressure profile for each
horizon is obtained from a pre-drill offset well analysis, using wells
in equivalent depths from the sea surface (yellow dots in Fig. 1).
The pore-pressure profile for the shallowest and intermediate shale
layers (S1 and S2: Table 1) is hydrostatic, whereas a constant
overpressure is present in the sand layers and the deepest shale layer
(R1, R2 and S3 layers: Table 1). There is zero pore pressure in salt.

Input stress ratios (KH and Kh, see Appendix A for the
nomenclature) are used in the model initialization to obtain
the initial horizontal effective stresses (s0

H, s
0
h) as a fraction of

the initial vertical effective stress, s0
v:

s0
v ¼ sv � u (1)

KH ¼ 1

2
(1þ Kh) (2)

Kh ¼ s0
h

s0
v

KH ¼ s0
H

s0
v

(3)

where σv is the overburden, u is the pore pressure, sH is the
maximum horizontal stress and sh is the minimum horizontal stress.

It is assumed that themaximum horizontal stress,sH, in the studied
area acts in the east–west direction due to basinwards gliding of
sediments on the basal salt layer. Consequently, the minimum
horizontal stress,sh, is orientated in the north–south direction.Kh and
KH (equation 2) are used to obtain the initial s0

h and s
0
H, respectively

(equation 3). The initial stress ratio values can be found in Table 1 and
have been obtained using the offset well data from the well analogues
(Fig. 1). The salt structures have an assigned initial stress ratio value
of 1 because salt is assumed to have a uniform stress state.

Material properties

Porosity–depth profiles for each horizon material are calibrated at
the well location based on log data. An estimate for the bulk density,
rb, of sediments is obtained from the measured interval velocity at

the well location. The porosity is then calculated assuming values of
grain and fluid densities (Table 1):

n ¼ rb � rs
rw � rs

(4)

where rw and rs are the water and grain densities, respectively.
Because horizons have different thicknesses across the field than at
the well location, porosity–depth profiles for each horizon are
extrapolated for the maximum depth of the given horizon.

The shales and sands are modelled as poroelastic materials.
Because of very limited experimental or field data, the input elastic
parameters are calibrated based on observations from regional wells
(Table 1). The poroelastic behaviour is defined using an empirical
expression to incorporate porosity changes (Rockfield 2017):

E ¼ Eref
s0 þ A

B

� �r
nc (5)

where E is the elastic modulus, Eref is a reference elastic modulus, n
the porosity, and A, B, r and c are material constants used to define
the shape of the elastic modulus profile. Input values can be found in
Table B1 of Appendix B.

Note that the two reservoirs (R1 and R2: Fig. 3a) and the shale
layer between them have a constant elastic modulus, E, that is equal
to Eref. The shallowest and deepest shale horizons have an elastic
modulus that varies with depth. This allows us to account for depth
variations of material properties within these thicker horizons. The
range of values of the elastic modulus, E, for each horizon is shown
in Table 1.

The salt bodies are modelled using a steady-state creepmodel. This
is a reduced form of the Munson–Dawson formulation (the two
steady-state terms are included and the transient term is omitted,
considered negligible over geological timescales) (Munson &
Dawson 1979). This constitutive model considers the salt viscosity
as a function of both effective stress and temperature. In the absence
of field-specific data, input parameters for the salt (Appendix B,
Table B2) are calibrated based on Avery Island salt (Munson 1997;
Fredrich et al. 2007b), considered to represent average salt behaviour.

A temperature gradient of 3.61°C per 100 m is used in the model,
based on an integrated 2D and 3D petroleum system model for
thermal maturity evaluation. The model was calibrated to the offset
wells, taking into consideration the variation in sedimentation, salt
presence and crustal structure. The gradient value used is in line
with published results from the area (Rimi 2001; Zarhloule et al.
2010).

2D model set-up

The 2D model is plane strain. The geometry is defined by taking a
cross-section through the 3D model orientated SE–NW that passes
through the exploratory well (Fig. 4). This section is not orientated
parallel to the maximum horizontal stress in the 3D model. The
orientation of the section was chosen to capture several key elements
of the 3D model, such as the faults crossing the well trajectory, the
diapir located below the well and the anticline in the sediments

Table 1. Summary of input properties for the different horizon layers defined in the 3D model

Stratigraphy Description
Depth at well
location (m) ρs (kg m

−³) ρf (kg m
−³)

Overpressure
(MPa) ν Range of E (MPa) Kh KH

S1 Shales and siltstones 885–1600 2650 1025 – 0.3 290–2250 0.73 0.87
R1 Sand 1600–1746 2650 1025 0.9 0.3 2500 0.77 0.89
S2 Shales with silt in upper region 1746–1950 2650 1025 – 0.3 2800 0.80 0.90
R2 Sand 1950–2075 2650 1025 2.7 0.3 3100 0.75 0.88
S3 Shales and siltstones 2075–3100 2600 1300 1.3 0.3 3650–50 000 0.80 0.90

Grain and fluid densities for the first four layers are 2650 and 1025 kg m−3, respectively, and are 2600 and 1300 kg m−3, respectively, for the deepest shale layer (S3).
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overlying the salt body. In addition, other diapirs present in the 3D
model are included to incorporate possible interactions between the
different salt bodies. The difference between values of KH and Kh

shown in Table 1 are small, averaging 0.11. Hence, choosing an
orientation of 2D section that is not parallel to the original KH

direction in the 3D model has a low impact on the stress results. The
boundary conditions applied restrict horizontal displacements at
both sides of the model, and restrict both horizontal and vertical
displacements at the base.

The initial pore-pressure profiles, stress ratio and material
properties for each layer used in the 2D model are the same as in
the 3D model to allow a more consistent comparison between the
model results.

3D modelling

Model results

The viscous rheology of the salt makes it unable to sustain
deviatoric stresses; therefore salt flows and changes its shape until it
reaches an isostatic (uniform) stress state. In the 3D model, salt
stresses relax within 50 kyr. This salt movement loads the encasing
sediments and changes their stress state. Hence, the stresses and
strains at the end of the simulation represent the current-day
geomechanical conditions for the studied area before any drilling
activity or hydrocarbon extraction.

Stresses

The minimum stress ratio (Fig. 5) is obtained from the calculated
values of horizontal and vertical effective stress (equation 3). This
ratio illustrates locations in the salt system where the stresses have
changed with respect to the initial stress state. Because the analysis
is static (no deposition) and drained, the overburden profile and the
pore pressure do not change during the simulation. As a result, the
vertical effective stress (equation 1) does not change either. Hence, a
minimum stress ratio higher than its initial value implies an increase
in s0

h. On the other hand, a minimum stress ratio lower than its initial
value reflects a decrease in s0

h.
We identify notable stress changes in areas located near the salt

structures and around the faults. Along the section A–A′ and near
the well location (Fig. 5b) we observe an increase in Kmin near the
salt source layer and a decrease above the salt diapir, both at
seafloor (around the shallowest part of the fault) and near the crest of
the salt body. Stress reduction above the salt is greater on the
footwall side of the fault, where the well is located, reaching values
below 0.55.

We find that the maximum principal stress remains vertical and
the minimum principal stress horizontal with the exception of a few
small areas near salt, where the maximum stress rotation (on a
vertical plane) is less than 10°. In contrast, we find a notable rotation
of principal stresses on the horizontal plane (Fig. 6), especially near
salt diapirs (blue and red colour contours in Fig. 6). This rotation of

horizontal principal stresses from their initial orientation (east–west
for the maximum principal stress; azimuth 90°: Fig. 6) indicates
loading from salt. For example, the sediments between the two
diapirs located at the NWmodel edge experience compression from
both diapirs, rotating the azimuth of the maximum horizontal stress
counterclockwise from 90° to less than 60°. The horizontal principal
stresses also rotate around the major fault.

Displacements

We focus on the direction of predicted displacements, because the
assumption of elastic behaviour for the sediments underestimates
their magnitude. Displacement direction can provide insights into
possible patterns of salt relaxation, and the interaction between
diapirs and their neighbouring sediments.

The horizontal east–west displacements mainly develop towards
the west throughout the model domain (blue contours in Fig. 7a and
b), and are greater for the sediments located above the eastern diapir
and around the major fault. Displacements are greater in the footwall
of the fault, compared to the hangingwall (darker blue contours at the
footwall side in Fig. 7b). This difference in displacement magnitudes
causes extension in the sediments above the diapir that explains the
predicted reduction of stresses (Fig. 5b). Horizontal displacements
are negligible along a north–south section through the well.

Vertical displacements are localized around the major fault above
the eastern diapir, indicating a downwards movement of the hanging
wall (blue contours in Fig. 7c and d).

Sensitivity analysis

All input conditions may affect the final static solution. The input
with the highest uncertainty in the 3D geomechanical model is the
elastic properties for the sediments, due to the lack of field data. In
order to understand the influence of the elastic constants on the
geomechanical results, we perform a sensitivity analysis (Table 2)
focusing on the elastic modulus and Poisson’s ratio of the shale
formations (non-reservoir sediments). Variation of the elastic
properties of the sand layers in the model was omitted. Sand
layers represent a very small fraction of the sediment column and
have little or no influence on the basin stress field.

Comparison across the model volume using model
subtraction

We illustrate the effect of parameter variation in sensitivity analyses
by subtracting a given result of a sensitivity analysis from the base-
case model:

comparison ratio (S) ¼ base-case model� senstivity model

base-case model
(6)

This is possible because the numerical mesh is the same in all
models, allowing node by node comparison. Values of S close to 0
imply a small change in the results caused by changing the studied

Fig. 4. (a) Location of cross-section A–A′
used for the 2D model geometry. The
green dot indicates the position of the
exploratory well. (b) Geometry of cross-
section A–A′ used to build the 2D model.
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elastic parameter. In contrast, larger values of S indicate that the
difference between the compared models is greater and, thus, the
impact of the studied elastic parameter is more significant.

A statistical summary of the sensitivity analysis comparison
results is shown in Table 3. In addition to the values of average,
median and standard deviation, the percentage of omitted nodes for
the analysis is also presented for each variable studied. These have
locally spurious values that would skew the comparison between
models if they were included. They constitute a very small fraction
of the nodes in the model (0–2%: Table 3).

The median values for the principal stresses are very close to 0 in
each of the comparison cases with small standard deviations,
meaning that the changes imposed on the elastic parameters had
little impact on the base-case results.

The median and standard deviation values for the displacement
results are greater than the ones for the principal stresses. However,
they still represent a small change in the base-case results. It should

be noted that because of the elastic assumption for sediment
behaviour, displacements in all these models are very low, less than
2 m in any of the three principal directions (Fig. 7).

Comparison of sensitivity results along the well trajectory

We also compare results of the sensitivity analysis (Table 2) along
the well trajectory (Fig. 8) for the first 1000 m below seafloor. We
find that variations in either the elastic modulus or Poisson’s ratio
have little impact on the horizontal stress, with the greatest
difference being lower than an equivalent mud weight of 0.15 ppg
(pounds per gallon).

2D modelling

Modelling results

Similar to the 3D case, the 2D geomechanical results represent the
current-day stress and strain conditions.

Displacements calculated with the 2D model illustrate how the
salt flows, and how this affects the sediment strain and stress state. In
particular, the eastern diapir exhibits a downwards flux at its eastern
side and a westwards movement at its western part, causing the
diapir to collapse and spread laterally (red arrows in Fig. 9). The
same differential movement is also seen in the sediments encasing
the diapir (green arrows in Fig. 9). As a result, the footwall of the
fault undergoes a greater westwards displacement than the hanging

Fig. 5. (a) Minimum stress ratio (Kmin) for
different vertical sections across the
model. The stress ratio is higher than its
corresponding initial value for sediments
below the salt or near deeper salt
structures. In contrast, the stress ratio is
lower than its initial value at shallow
depths above the salt, around the faults
and near the crest of the eastern salt body.
(b) Minimum stress ratio (Kmin) for
section A–A′ near the well location. The
stress ratio is notably reduced at the
bottom part of the well above the salt. The
initial minimum stress ratio is 0.8 (light
green contour colour) for intermediate and
deepest shales, and 0.75 (dark green
contour colours) for the shallowest shales
and two reservoirs.

Table 2. Summary of sensitivity analysis for the 3D static model

Variable
changed Original value Modified value

Poisson’s ratio 0.3 0.25
0.4

Elastic modulus Horizon- and depth-dependent
(Table 1)

Increased 20%
Decreased 20%
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wall, which moves mainly downwards. In other words, the pattern
of salt relaxation can explain the differential displacements above
salt observed both in 2D (Fig. 9) and 3D (Fig. 7b) models, and is
interpreted to be responsible for the decrease in horizontal stress
above the diapir’s crest.

The horizontal strain profile confirms the extensional zone
located above the eastern diapir due to the differential sediment
displacements (red contours in Fig. 10). The maximum extension
occurs immediately above the crest of the salt structure. Localized
shortening horizontal strains develop near the flanks of the western
diapir (blue contours in Fig. 10), resulting from the lateral expansion
of the salt diapir in the shallow section.

Extensional strains (Fig. 10) correspond to a horizontal-to-
vertical effective stress ratio lower than its initial value of 0.8 (blue
contours in Fig. 11a). In contrast, shortening strains (Fig. 10)
correspond to a stress ratio higher than its initial value (red contours
in Fig. 11a). The stress ratio reduction in the sediments above the
eastern diapir is maximum immediately above the crest of the salt
structure and where the faults reach the seafloor.

A stress profile has been extracted along the crest of the salt
structure (W profile in Fig. 11a) in order to compare geomechanical
stress results with uniaxial stresses along a sediment column having
the same burial depth (Fig. 11b). The uniaxial vertical effective stress
(dashed lines in Fig. 11b) is calculated from the overburden weight of
sediments and assigned pore pressure (equation 1). Then, the
horizontal effective stress is calculated using the initial stress ratio
(equation 3). We find that the geomechanical horizontal stress (solid
green line in Fig. 11b) is consistently lower than its uniaxial value and
decreases notably within 1 km from the crest of the salt structure, with
a maximum difference of around 4.5 MPa at the salt–sediment
interface. This reduction is consistent with the stress ratio reduction

near the crest of the eastern diapir (Fig. 11a) and illustrates the effect
of the extensional strains on sediment stress. The vertical stress
predicted by the geomechanical model (solid blue line in Fig. 11b)
remains close to the uniaxial value, with a slight increase just above
the salt.

Sensitivity analysis

Similar to the 3D model, a 2D model sensitivity analysis has been
performed to assess the influence of the different model assump-
tions over the final results. In addition to changes in elastic
parameters, other structural framework changes have been tested
using 2D models (Table 4) that were too complex to test in 3D, due
to limitations of computational power and time availability.
Performing these additional changes and studying their impact on
the final results provides insights into the main mechanisms that
change stress and strain in the salt basin.

Changes in the shale elastic parameters resulted in less than
0.01% variation in the magnitude of stress relative to the base-case
2D model. The magnitude of stress changes is 10 times greater than
that seen in the 3D sensitivity analysis models; however, both
changes are insignificant. Hence, changing the elastic parameters
within reasonable values does not affect the overall results.

Substitution of salt with shale in all three diapirs allows us to
explicitly see the contribution of salt creep in the stress and strain
changes across the model. Stresses along vertical profile W
(Fig. 11a) remain uniaxial when the salt volumes are assigned the
shale rheology (Fig. 11b). This confirms that the decrease in
horizontal stress (solid green line in Fig. 11b) and stress ratio (blue
contours above eastern diapir in Fig. 11a) result from the
deformation of the salt (red arrows in Fig. 9).

Fig. 6. Orientation of the maximum and
minimum horizontal stresses, σH and
σh, for two horizontal sections of the
3D model. Contours represent the
azimuth of σH. The blue and red arrows
illustrate the directions of σH and σh,
respectively. The original east–west
direction of σH changes in locations
near the salt structures and around the
major fault.
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Defining a flat seafloor mainly changes the pattern of sediment
displacements across the model. Sediment displacements are
primarily westwards in the base-case model but they become
vertical when the seafloor slope is removed.

A model without the central and western diapirs shows less
horizontal stress reduction above the eastern diapir when compared
to the base-case model. The displacements above the eastern diapir
have the same distribution as the base case (Fig. 9) but with a lower
magnitude on its western side. In other words, the presence of the
other diapirs translates to higher westwards displacements across the
model.

Finally, increasing the width of the salt columns that connect the
salt source layer with the diapirs has a low influence in the final
stress field.

Discussion

Stress reduction mechanism

The stress results from both the 3D and 2D models show a
horizontal stress reduction located at the crest of the eastern diapir.
In addition, both models agree on the two different displacement
patterns seen above the eastern diapir (Figs 7 and 9):

• A significant downwards component of displacement in the
hanging wall (eastern side of the main fault) caused by the
salt withdrawal below.

• A westwards displacement in both the salt and the footwall
sediments of the main fault.

This differential movement causes extensional horizontal strain
above the diapir (Fig. 10). This extension is directly linked to the

horizontal stress reduction and, hence, the stress ratio reduction
seen both in the 3D model and the 2D model (Figs 5 and 11).
Furthermore, it is manifested by the faults located above the
diapir.

When the salt lithology in the 2D model is replaced by shale, the
lateral strain and the stress reduction are not present (Fig. 11b). From
this we conclude that the difference in rock properties between the
salt and the encasing sediments is one of the main drivers of the
reduction in horizontal stress above the salt body.

In addition, the two different displacement patterns above the
eastern diapir causing the extension of the sediments at the crest are
not present when the seafloor is horizontal. This demonstrates that
the seafloor geometry also drives the stress reduction above salt.

During the drilling operations of the exploratory well, the stress
reduction was validated with data from formation integrity test (FIT)
and leak-off test (LOT) measurements (Fig. 12). Detection of
drilling-induced tensile fractures (DITF) at a depth of 2600 m
allowed an additional estimation of the minimum horizontal stress
(green dots in Fig. 12), which agrees with the LOT data and
confirms the stress reduction.

Horizontal stress reduction and lateral extensional strains in
sediments above diapirs has been observed in geomechanical
models using both idealized geometries (Luo et al. 2012;
Nikolinakou et al. 2012) and actual salt geometries (Barnichon
et al. 1999; Segura et al. 2016). Other authors reported the presence
of normal faults in the sediments above salt structures (Davis et al.
2000; Dusseault et al. 2004), indicating extensional regimes in these
areas. Dusseault et al. (2004) also reported an area of exceptionally
low values of minimum horizontal stress in an anticlinal structure
above a Gulf of Guinea salt dome.

Fig. 7. (a) Horizontal east–west displacements across the model, showing mostly westwards displacements (blue contours) concentrated above the eastern
diapir and around the major fault. (b) Horizontal east–west displacements for section A–A′ (shown in a) passing near the well location, displaying greater
westward displacements for the sediments in the footwall compared to the hanging wall. (c) Vertical displacements across the model, showing downwards
movement (blue contours) in the hanging wall of the major fault. (d) Vertical displacements for section A–A′ (shown in c) passing near the well location.
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2D v. 3D modelling comparison

Comparison of results from the 3D and the 2D models allow us to
identify differences in prediction and to investigate whether 2D
modelling – despite its simplifications – can still represent stresses
in the salt basin adequately.

We have found that both 3D and 2Dmodels predict a reduction in
the stress ratio above the salt crest. However, the area of low stress
ratio is broader and extends shallower in the 2Dmodel (Fig. 11) than
in the 3D model (Fig. 5). Only at the salt crest do both modelling
approaches predict the same value (stress ratio of 0.6, reduced from
the initial value of 0.8). We also found that the direction of
displacements in the sediments above the salt structure is consistent
between the 3D and 2D models (Figs 7 and 9). In both cases, the
footwall has greater westward displacements than the hanging wall.
At the same time, the hanging wall has a greater downwards
displacement than the footwall. Although displacements are
qualitatively similar, the 2D model consistently predicts higher
magnitudes than the 3D model.

Elastic theory can explain why the 2Dmodel predicts broader areas
of decreased horizontal stress and higher magnitudes of sediment
displacement above salt than the 3D model. We use elastic solutions
for stress distribution resulting from a load applied on a semi-infinite,
elastic, isotropic and homogeneous medium (Boussinesq 1885).
Specifically, we compare the vertical stress distribution with depth
caused by the application of a strip load (infinite out-of-plane length)
with that of a circular load (Fig. 13). Both loads result in the same

Table 3. Statistical summary of sensitivity analysis results, reporting comparison ratio S (equation 6)

σ1 σ2 σ3 East–west displacement North–south displacement Vertical displacement

Increase ν Average −4.45 × 10−5 7.34 × 10−5 −1.70 × 10−5 1.02 × 10−3 7.06 × 10−4 −3.87 × 10−3

Median −2.40 × 10−5 −2.70 × 10−5 −2.00 × 10−6 2.08 × 10−3 4.18 × 10−4 8.60 × 10−5

SD 5.07 × 10−3 3.02 × 10−3 1.86 × 10−3 0.02 0.04 0.06
Points omitted (%) 1.80 × 10−3 2.28 × 10−4 0 0.04 0.13 0.47

Decrease ν Average 3.02 × 10−5 −5.09 × 10−5 −9.71 × 10−7 −2.75 × 10−4 −1.97 × 10−3 3.42 × 10−3

Median 6.00 × 10−6 4.00 × 10−6 −1.00 × 10−6 −9.10 × 10−4 −1.10 × 10−5 −1.07 × 10−4

SD 2.43 × 10−3 1.26 × 10−3 6.44 × 10−4 0.01 0.03 0.04
Points omitted (%) 4.06 × 10−4 5.07 × 10−5 0 0.02 0.08 0.20

Increase E Average −3.62 × 10−5 −3.34 × 10−4 −7.21 × 10−5 0.15 0.12 0.18
Median 9.10 × 10−5 −3.71 × 10−4 3.90 × 10−5 0.16 0.16 0.15
SD 0.02 6.84 × 10−3 3.14 × 10−3 0.04 0.09 0.11
Points omitted (%) 0.02 2.46 × 10−3 0 0.15 0.83 1.31

Decrease E Average −4.19 × 10−5 4.02 × 10−4 6.03 × 10−5 −0.21 −0.15 −0.30
Median −2.24 × 10−4 5.37 × 10−4 −4.70 × 10−5 −0.22 −0.22 −0.21
SD 0.02 7.90 × 10−3 3.87 × 10−3 0.06 0.12 0.14
Points omitted (%) 0.03 3.35 × 10−3 0 0.25 1.43 2.42

Fig. 8. The difference in the prediction of horizontal stress, σh, between
sensitivity analysis and base-case models along the first 1000 m of the
exploration well. The major difference is obtained when varying the
elastic modulus, but it does not exceed 0.15 ppg. This indicates little
effect of the elastic parameter variation on horizontal stress. TVDSS, true
vertical depth subsea.

Fig. 9. Displacements of salt at the eastern diapir and the sediments
encasing it. Salt displacements (red arrows) show a downwards movement
for the eastern side of the diapir and a westwards movement for its
western side. Sediment displacements above the diapir (green arrows)
follow a pattern similar to the salt displacements. Colour contours indicate
magnitudes of displacements for the sediments.
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applied stress q. Thewidth of the strip load, B, is equal to the diameter
of the circular load (Fig. 13). The strip and circular case represent a 2D
plane strain and a 3D axisymmetrical load, respectively. Elastic theory
shows that the vertical stress perturbation caused by the application of
the strip load (equivalent to the plane-strain model) is broader than the
application of circular load (equivalent to the axisymmetrical model);
the circular load generates a stress perturbation that is more localized
and dissipates faster with distance. For example, if we consider a value
of B = 1 m and an applied stress q = 1 MPa m−1, then at a distance of
6 m from the load application surface the vertical stress is 0.1 MPa for
the strip-load case (red dot in Fig. 13) but only 0.015 MPa for the
circular-load case (blue dot in Fig. 13).

In our geomechanical models, loading is applied by the salt (in
the form of imposed strain). Hence, for a simplified application,

we consider the width of the salt crest to be the loading area
(equivalent to B in Fig. 13). The 2D model is analogous to the
strip-load case in Figure 13 because it is plane strain, which
corresponds to an infinitely long salt wall. Similarly, the 3D
model can be compared to the circular load from Figure 13
because the salt geometry in 3D is relatively circular (Fig. 3).
Based on Boussinesq’s elastic theory, the 3D salt load should
result in a smaller region of stress changes, closer to the crest (i.e.
the location of load application). Indeed, this is consistent with
our geomechanical results (Fig. 14).

The difference between the 2D and 3D models is further
illustrated by plotting the horizontal stress change (equation 7),
against the depth normalized by the depth of the salt crest, H
(Fig. 15) for both models along vertical profile W for the 2D model

Fig. 10. Horizontal strain across the 2D
model. Red contours represent extensional
strains and blue contours represent
shortening strains. A region of extensional
horizontal strain develops at the crest of
the eastern diapir, between the two faults.
Shortening horizontal strains develop at
both sides of the western diapir.

Fig. 11. (a) Horizontal to vertical stress
ratio predicted by the 2D model. The ratio
changes near the salt structures compared
to its initial value of 0.8 (green contours).
Specifically, it decreases above the eastern
diapir, reaching values of around 0.6. (b)
Geomechanical prediction (solid lines) for
horizontal (green) and vertical (blue)
stress along a vertical profile W compared
with uniaxial stresses (dashed lines) and a
model where salt is replaced by shale
(dotted lines). Geomechanical horizontal
stress is lower than uniaxial, reaching a
maximum difference of 4.5 MPa at the
salt–sediment interface. When salt is
replaced by shale, there is no stress
reduction and stresses are close to uniaxial
conditions. TVDSS, true vertical depth
subsea.
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and W′ for the 3D model (Fig. 14):

Ds0
h ¼ s0

h, initial � s0
h, model (7)

Both models predict a horizontal stress reduction of around
4.5 MPa at the crest of the salt structure. However, the 2D model
predicts a higher horizontal stress reduction along the vertical
profile, reaching a maximum difference of 1.5 MPa from the 3D
model at 80% of the crest depth. In the 3D model, the horizontal
stress change becomes 0 at half the crest depth. At the same depth,
the 2D horizontal stress reduction is 0.7 MPa. In fact, the salt
influence in the 2D model extends along two-thirds of the vertical
profile, up to 30% of the crest depth. Note that this difference
between the 2D and 3D geomechanical results would be less if the
simulated structure resembled more closely a salt wall.

Input uncertainty and limitations

Sensitivity analysis allowed us to quantitatively compare the effect
of different model assumptions. We found that a change in the
elastic parameters had no significant effect in both the 2D and 3D
models. Parameters that have a larger impact on the stress
distribution in this study are:

• the presence of salt lithology (9%);
• the presence of other salt diapirs in the 2D section (7%);
• the seafloor slope which imposes a differential load across

the width of the model (4%);
• the connection between the diapirs and the autochthonous

salt source layer (3%).

The percentage indicated for each scenario represents the change in
stress relative to the base case.

These are interesting fundamental observations that should be
considered when designing a geomechanical model and given
greater weight than the elastic properties of the sediments.

In this study, we focus on the understanding and comparison of
3D and 2D geomechanical static model approaches. This study can
be improved in various ways:

• We assume these models are drained; hence, the effect of salt
movement on pore-pressure generation is not considered.

Table 4. Summary of the sensitivity analysis run for the 2D static model

Variable changed Original value Modified value

Poisson’s ratio 0.3 0.25
0.4

Young modulus Horizon- and depth-dependent
(Table 1)

Increased 20%
Decreased 20%

Salt replaced by shale Salt Shale
Flattened seafloor 1° seafloor slope Horizontal

seafloor
Number of diapirs 3 1 (eastern diapir)
Width of salt columns
(m)

200 400

Fig. 12. Profile along the exploration well (Fig. 3) comparing minimum
horizontal stress, σh, from the pre-drill study (solid black line) with σh
predicted by the 3D model (dashed black line). The decrease in σh near
the salt interface (at 3000 m) predicted by the 3D model was validated by
data obtained during the drilling operations, including leak-off test (LOT)
measurements, formation integrity test (FIT) measurements and the
drilling-induced tensile fractures (DITF) observed (yellow, red and green
dots, respectively). Overburden stress, σv, is shown with a solid orange
line. TVDSS, true vertical depth subsea.

Fig. 13. Illustration of the solution for the vertical stress distribution in an
elastic, semi-infinite medium caused by the application of a 2D load
(represented as a strip load) and a 3D load (represented as a circular load)
using the solution from Boussinesq (1885). There is no gravity load. Blue
and red dots correspond to the values of vertical stress at 6 m from the load
for the 3D and 2D cases, respectively, where B = 1 m and q = 1 MPa m−1.
Modified from US Army Corps of Engineers (1990).
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Coupling porous fluid flow with salt deformation in our
models would provide a more complete prediction of stress,
strain and pore pressure.

• Sediments are modelled to behave as poroelastic materials.
One of the conclusions of the sensitivity analysis is the
low impact of elastic properties over the results. Hence,
a simpler elastic model other than equation (5) could be
used.

• Introducing plasticity and frictional strength in the sediment
description will result in more realistic displacements and
can help to detect regions where the material is close to
failure.

• One set of frictional properties were assumed for the faults.
A sensitivity analysis of these frictional parameters would
help to better understand the interrelation between salt
deformation and sediment stress reduction.

• The temperature gradient used in the 3D and 2D models has
not been varied during the sensitivity analysis. This is
because a variation in temperature would mainly affect the
viscosity of the salt lithology and, hence, the time needed for
the static model to converge to a solution. Temperature
effects become more important in evolutionary models of
salt systems.

In fact, the introduction of evolutionary geomechanical modelling
can help in studying the complete stress–strain history through time.
Our models are static and assume an initial stress distribution that
changes when the salt moves. An evolutionary approach would
forego this initial assumption, and would provide a complete
evolution of the salt structures and how this evolution affects the
basin stresses. Nonetheless, our study presents an explanation for
the stress and strain changes due to the presence of salt in the
Tarfaya Basin and provides considerations for deciding between a
2D and a 3D approach.

Summary

We developed a 3D model of the Tarfaya salt basin, on the West
African coast. We focused on a salt structure where an exploratory
well was later drilled. We found a decrease in horizontal stress near
the crest of the salt and rotation of the horizontal principal stresses.
Sensitivity analysis performed on the elastic parameters for the
different shale horizons showed a negligible impact on the final
results. In addition, we detected higher horizontal east–west
displacements at the footwall of the major fault above the salt
structure and higher vertical displacements at its hanging wall.

A 2D section was built from the 3D geometry to intersect the salt
and exploration well. The stress results from the 2D model show a
similar horizontal stress reduction. The 2D model, however,
predicts a broader area of stress perturbation above the salt.
Overall comparison between the 3D and 2D models show that the
2D model overestimates both stress changes and displacements in
areas above the salt. A quantitative comparison between the models
along a vertical well passing through the salt crest shows that the
extent of salt influence on suprasalt sediments is 20% shallower in
the 2D model: sediments located at the shallower half of the vertical
profile in the 3D model do not experience any stress change,
whereas in the 2D model there is still 0.7 MPa of stress reduction
(16%) in the middle of the vertical profile. This is due to the fact that
a plane-strain 2D model misrepresents the stress changes caused by
a 3D loading.

Fig. 14. Horizontal to vertical stress ratio predicted for sediments above the eastern diapir for (a) the 2D model and (b) the 3D model. Both models present
a reduction in the stress ratio of about 0.6 at the crest of the structure compared with the initial 0.8. However, the reduction in the 2D model affects a
broader area above the diapir. Vertical profiles W and W′ are used to quantitatively compare the stress change between the 2D and 3D models (Fig. 15).

Fig. 15. Horizontal stress change with depth normalized by salt depth for
both 2D (green line) and 3D (red line) models along vertical profiles W
and W′ (Fig. 14) above the salt body. The stress perturbation due to salt
attenuates faster with distance from the salt body in the 3D model
compared to the 2D case.
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The 2D model allows for a more exhaustive sensitivity analysis
thanks to the considerably reduced number of elements present and
the computational power required. We found that the difference in
rock rheology between the salt and the encasing sediments is one of
the main drivers of stress changes. As such, attention should be
given to the definition of the salt geometry.

In conclusion, we found that a 2D model of the prospect is a valid
alternative to the more complex and time-consuming 3Dmodelling.
The insights provided by the 2D model can be used to obtain stress
and strain information in an early exploration stage despite the
overestimation in their magnitude and extent. A 2D approach would
be more accurate for a prospect with salt walls or elongated diapirs.
On the other hand, 2D models would overestimate stress and strain
in prospects with more circular salt bodies. In such cases, a 3D
model may be considered as a better approach.
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Annex 2: Insights from sensitivity analysis of 
geomechanical modelling of a salt structure offshore west 
Africa 
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1. INTRODUCTION 

A great number of hydrocarbon reservoirs in basins 
around the world are located near or below salt structures 
(Warren, 2006; Beltrao et al., 2009; Yu et al., 2014). This 
fact has led to a large number of drilling operations close 
to salt diapirs. The presence of salt structures may cause 
changes in the stress state and pore pressure distribution 
of the sediments encasing them (Luo et al., 2017; 
Nikolinakou et al., 2018). The resulting uncertainty of the 
stress and pressure state in this locations can cause 
difficulties during the drilling operations, leading to 
potential hazardous conditions and additional expenses 
(Sweatman et al., 1999; Dusseault et al., 2004). 

In the last decade, geomechanical modelling has 
increasingly been used to reduce the uncertainty near salt. 
Several examples use 2D geomechanical models of actual 
salt geometries derived from seismic surveys (Fredrich et 
al., 2007b; Segura et al., 2016; Heidari et al., 2018). Other 
studies perform a full 3D geomechanical model of actual 
salt geometries (van der Zee et al., 2011; Adachi et al., 

2012; Segura et al., 2016). 2D models allow fast 
preliminary results but their plane-strain or axisymmetric 
simplification cannot represent the full three-dimensional 
stress changes caused by salt deformation. On the other 
hand, 3D models overcome the limitations of 2D cases at 
the expense of being computationally expensive and labor 
intensive. 

We present a case study in the Tarfaya salt basin, located 
on the NW African coast, where a rank wildcat 
exploration well was planned to be drilled above a salt 
structure. A predrill 3D elastic static and drained 
geomechanical model was built using Elfen (Rockfield, 
2017) to obtain a full stress and strain description around 
the salt structure. The model geometry was built using 
information from a seismic survey. Initial conditions 
(stress ratio, pore pressure, material properties) were 
defined using data from an offset well analysis. The 3D 
model results showed a significant horizontal stress 
reduction in the sediments above the salt structure, 
affecting the part of the well trajectory closest to salt. 
These results where later validated with data from the 
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drilling of the exploratory well. A 2D model was then 
build using a transect of the 3D geometry that included 
the exploration well. That allowed us to compare the 
results from both models and perform a more exhaustive 
sensitivity analysis of the input parameters. The 3D model 
sensitivity analysis only examined changes in the elastic 
properties of the shale materials present in the model. In 
contrast, the 2D sensitivity analysis included changes in 
diapir and seafloor geometry, presence or absence of salt 
and the same elastic properties changes performed in 3D.   

Overall, we show a 3D vs 2D geomechanical comparison 
on an actual salt-related basin and perform sensitivity 
analysis for both models to identify the mechanism that 
drives the changes in stress and strain on this area. 

2. MODEL DESCRIPTION 

2.1. 3D model description 
We use Elfen (Rockfield, 2017) to build a 3D 
geomechanical model based on a quasistatic, drained, 
finite-element formulation (Fig. 1a). It uses an 
unstructured finite element mesh containing 3.97 million 
linear tetrahedral elements, with a mesh size of 400 m. 
The boundary conditions applied restrict horizontal 
displacements at the four lateral sides of the model and 
restrict vertical displacements at its base. The pre-defined 
faults are modelled using double-sided discrete contact 
that allows sliding to occur along the faults as well as a 
stress redistribution. The faults use a Coulomb friction 
law. 

The geometries for the salt and the sediment layers 
modelled are extracted from the interpretation of the 
seismic survey. The autochthonous and allochthonous salt 
structures are connected by 200 m wide salt columns that 
prevent any salt flow from the source layer (Fig. 1b).  

The model is drained with an initial non-hydrostatic pore 
pressure profile. This profile assigns a constant 
overpressure for both sand reservoirs and for the deepest 
shales (Table 1). The initial stress state (Table 1) assumes 
that the maximum horizontal stress, sH, acts in the east-
west direction due to basinward gliding of the sediments 
on the basal salt layer. Consequently, the minimum 
horizontal stress, sh, acts in the north-south direction. The 
initial minimum and maximum stress ratio, Kh and KH, are 
defined as: 

 ,  (1) 

where σ’v is the vertical effective stress, σ’H is the 
maximum horizontal effective stress and σ’h is the 
minimum horizontal effective stress. Values for Kh and 
KH (Table 1) have been determined using offset well data. 
The salt structures have an initial stress ratio of one 
because they are assumed to have a uniform stress state. 

Table 1: Summary of input properties for modelled horizons. 

Horizons ρs  
(Kg/m³) 

ρf 

(Kg/m³) 
Overpressure 

(MPa) ν 
Range 
of E 

(MPa)
Kh KH 

1st shale 2650 1025 - 0.3 290 - 
2250 0.73 0.87 

1st sand 2650 1025 0.9 0.3 2500 0.77 0.89 
2nd shale 2650 1025 - 0.3 2800 0.80 0.90 
2nd sand 2650 1025 2.7 0.3 3100 0.75 0.88 
3rd shale 2600 1300 1.3 0.3 3650 - 

50000 0.80 0.90 
 

We model the shale and sand sediments with a poro-
elastic constitutive model, calibrating the material 
parameters using offset well log data. The salt is modelled 
using a viscoplastic model that accounts for salt creep 
(Munson & Dawson, 1979). The material calibration is 
based on the Avery Island salt (Munson, 1997; Fredrich 
et al., 2007a), which – in the absence of field data – is 
considered to represent average salt behavior.  

2.2. 2D model description 
The geometry used to build the plane strain 2D model is 
extracted from a transect of the 3D geometry (Fig. 1a). 
This transect captures key elements from the 3D model 
such as the main diapir above the well, the well trajectory 
and faults crossing it, as well as two more diapirs located 
at the west (Fig. 1c). 

The initial pore pressure profiles, initial stress ratios for 
each layer and the material properties used are the same 
in both 3D and 2D models, to allow a more consistent 
comparison of results. The boundary conditions applied 
restrict horizontal displacements at both sides of the 
model and both horizontal and vertical displacements at 
the base. 

3. MODEL RESULTS 
The results of stress and strain at the end of the simulation 
for both the 3D and 2D models represent the current day 
geomechanical conditions for the location modelled 
before the drilling of the well and the hydrocarbon 
extraction. Both models predict a decrease in the 
minimum stress ratio, Kmin, (Fig. 2) for the sediments 
located above the eastern salt structure when compared 
with their initial values from Table 1. This decrease in the 
stress ratio is primarily caused by changes in the 
minimum horizontal stress.  

 The 3D model shows a significant reduction of the 
minimum principal stress strongly localized both at the 
crest of the salt diapir and at the upper part of the faults, 
where these reach the seafloor (dark blue contours in Fig. 
2a). According to Table 1, the value of initial Kh for the  
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Fig. 1: (a) Full 3D geomechanical model geometry, showing the salt (in pink), the sand reservoirs (in yellow), the shales (in gray) 
and the location of the exploratory well (green dot). The dashed red section labeled as A-A’ shows the transect used to build the 2D 
model. (b) Geometry of the salt and the faults in the 3D model. (c) 2D model built from the geometry of the 3D A-A’ transect. 

 
 
 

 
Fig. 2: Minimum horizontal to vertical stress ratio predicted for the sediments above eastern diapir for (a) the 3D model and (b) the 
2D model. Both models show a stress ratio reduction at the crest of the structure when compared with the initial value of 0.8. The 
reduction of the 2D model affects a broader area above the diapir. Vertical sections W and W’ are used to quantitatively compare 
the stress changes between models in Fig. 3.
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deepest shales is 0.8 and 0.73 for the shallowest shales. 
The stress ratio results imply a reduction of 0.2 at both 
locations, reaching values of 0.6 at the salt crest and 0.5 
at the seafloor.  

 On the 2D model case, the reduction is maximum 
approximately at the same locations as the 3D case (dark 
blue contours in Fig. 2b). The magnitude of the maximum 
reduction is about the same as in the 3D model. However, 
the stress ratio decreases in a much larger area in the 2D 
model, compared to the 3D results. 

A more explicit comparison between both cases is shown 
in Fig. 3, where the horizontal stress change,  (eq. 2) 
along the vertical profiles W and W’ (Fig. 2) is plotted 
against the depth from seafloor normalized by salt depth, 
H. 

 (2) 

The greatest  occurs at the salt crest for both models 
(H = 1), reaching values of around 4.5 MPa. The 2D 
model predicts higher horizontal stress reduction along a 
greater part of the vertical profile, reaching a maximum 
difference of 1.5 MPa from the 3D model at 80% of the 
crest depth. The stress reduction in the 2D model extends 
along two thirds of the vertical profile, becoming zero at 
30% of the crest depth. On the other hand, the horizontal 
stress change in the 3D model becomes zero at half the 
crest depth. 

 
Fig. 3: Minimum horizontal stress change ( ) with depth 
from seafloor normalized by salt depth (H), for both 2D (green 
line) and 3D (red line) models along vertical profiles W and W’ 
(Fig. 2). The stress perturbation affects shallower sediments in 
the 2D model compared to the 3D case. 

The decrease in horizontal stress above the eastern diapir 
is caused by the movement of the salt and resulting 

sediment deformation (Fig. 4). The 2D model shows a 
downwards salt flux at the eastern side of the diapir and a 
mainly westwards salt flux at its western side, causing the 
diapir to collapse and extend laterally (red arrows Fig. 4). 
As a result, the footwall of the fault moves westwards, 
whereas the hanging wall moves mainly downward. 
(green arrows Fig. 4) This difference in displacements 
causes the sediments at the crest of the salt diapir to 
undergo horizontal extension, which reduces the in-plane 
horizontal stress. 

 
Fig. 4: Sediment (green arrows) and salt (red arrows) 
displacements around the eastern diapir in the 2D model. The 
difference in sediment displacement at each side of the faults 
causes the stress reduction predicted by the 2D and 3D models. 

4.  SENSITIVITY ANALYSIS RESULTS 
We performed several sensitivity analyses in both 3D and 
2D models, to assess the influence of our assumptions 
over the final results (Table 2). 
Table 2: Summary of sensitivity analyses for 3D and 2D 
models. 

Variable changed Original value Modification 3D 2D

Poisson's Ratio 
(ν) 0.3 0.25   

0.4   
Elastic Modulus 

(E) 
Horizon and depth 

dependent (Table 1) 
Incr. 20%   
Decr. 20%   

Salt by shale Salt Shale   
Flat seafloor 1° slope 0° slope   

Number of diapirs 3 diapirs 1 diapir   
Salt columns width 200 m 400 m

 
4.1. Elastic parameters 
To understand the influence of input elastic parameters, 
we varied the Poisson’s ratio and elastic modulus in both 
2D and 3D models. In both cases, the increase or decrease 
of the elastic parameters does not have substantial impact 
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on the stress results. The maximum difference from the 
basecase prediction was in the order of 0.1ppg.  
4.2. Role of viscous salt movement 
We replace the salt material with shale lithology in all the 
salt structures to illustrate the contribution of salt viscous 
movement over the stress changes across the model (2D 
model, Fig. 5). 

Fig. 5: Reduced stress profiles (stress s minus hydrostatic u) 
along vertical section W’ (Fig. 2b) for basecase model (solid 
green line) and shale lithology (dashed green line). The 
horizontal stress reduction near the salt structure is not present 
when the diapirs are substituted by shale lithology. Vertical 
stress is similar in both cases (blue line). 
We compare the decrease in horizontal stress along the 
vertical well W’ (Fig. 2b), for the base case (solid green 
line, Fig. 5) and shale-lithology (dashed green line, Fig. 
5). The decrease in horizontal stress only occurs above 
salt, highlighting that stress changes are caused by the 
viscous salt deformation. 
4.3. Seafloor geometry 
The 2D basecase model has a seafloor slope of about 1° 
towards the NW. That seems to cause a general NW 
displacement of the modelled sediments (red arrows in 
Fig. 6a). When the seafloor is modified and set horizontal, 
displacement becomes mainly vertical (red arrows in Fig. 
6b). The stress ratio decreases above the eastern diapir 
(Fig. 6b), however, the change is less pronounced than in 
the basecase. Hence, we find that displacements caused 
by the seafloor slope contribute to the stress reduction 
above the diapir. 

 

4.4. Interaction between diapirs 
We run a 2D model with only the eastern diapir present, 
in order to study the influence of the 2 western diapirs on 
the stress changes above the eastern diapir (Fig. 7). We 
find that stress changes are less pronounced compared 
with the basecase model. This indicates that the presence 
of deformable salt at the west end of the studied basin 
allows for additional westward sediment movement, 
which, in turn, contributes to the stress reduction above 
the eastern diapir. 
4.5. Salt column width 
The salt columns in all 3 diapirs of the 2D basecase have 
been widened from 200 m to 400 m to test their 
contribution over the model results (Fig. 8). The results 
above the eastern diapir show a minimum stress ratio 
reduction similar to the basecase (Fig. 2b), with contours 
slightly broader at the crest and near the seafloor. Hence, 
the applied column-width change has a low influence over 
the stress results. 

5. DISCUSSION 
We show that both 3D and 2D static geomechanical 
models predict extension above the eastern diapir and, as 
a result, decrease in horizontal stress. The magnitude of 
the reduction is around 4.5 MPa in both 2D and 3D 
immediately above the crest. However, the area of 
sediments affected by the stress reduction is broader in the 
2D model, reaching sediments at shallower depths. This 
difference can be explained by the plane-strain 
simplification in the 2D model. In the 3D case, the salt 
flow can be distributed in all three directions, whereas in 
the 2D case, the salt flow is constrained on the modeled 
plane, resulting in greater deformations of the salt and 
higher stress changes for the sediments encasing it. 

We apply a series of changes in the 3D and 2D models to 
discern what are the principal model inputs that most 
affect the final stress and strain results. The influence of 
these changes over the principal stresses is summarized in 
Fig. 9. This figure shows the deviation of the principal 
stress results from the basecase model due to the changes 
introduced in each of the sensitivity analyses. These 
deviations are taken along a vertical section located at the 
crest of the eastern salt diapir (vertical section W’ in Fig. 
2b). The higher the deviation due to a particular model 
change, the higher impact this model assumption has over 
the results. The changes in the elastic properties of the 
sediments have the least effect over the principal stress 
results. In particular, changes in Poisson’s ratio are 
negligible, whereas changes in the Elastic modulus of the 
sediments result in less than 1% of stress change for the 
minimum principal stress. Other aspects such as the salt 
lithology or the presence of other diapirs in the model 
have the highest influence over the stress changes, 
resulting in nearly 9% and 7% difference compared with 
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Fig. 6: Results of minimum stress ratio (contours) and sediment displacements (arrows) for (a) 2D basecase model and (b) 2D model 
with flat seafloor. The leftwards displacement trend in (a) disappears when the seafloor is flat. The stress ratio reduction above the 
eastern diapir in the basecase is slightly reduced when the seafloor is flattened.

 

 
Fig. 7: Minimum stress ratio results predicted by 2D model 
around eastern diapir for a model with no other diapirs present. 

 

 

 
Fig. 8: Minimum stress ratio results predicted by 2D model 
around eastern diapir for a model with widened salt columns. 
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Fig. 9: Change in principal stresses between 2D sensitivity 
cases against basecase model. Cases involving changes in salt 
presence and its geometry show the greater stress changes. The 
variation of elastic properties of the materials does not affect 
the stress results. 

the basecase model, respectively. These changes affect 
mainly the minimum principal stress. The seafloor 
geometry also has a noticeable influence, affecting both 
principal stresses by 4%. 

The 2D sensitivity analyses help us identify the main 
mechanisms that cause stress reduction above the eastern 
diapir. We find two different displacement patterns above 
the eastern diapir: 

 A significant downwards component of 
displacement in the hanging wall (eastern side of 
the main fault) caused by the salt withdrawal 
below (salt presence and its viscous rheology 
being the primary mechanism; Fig. 9). 

 A westwards displacement in both the salt and the 
footwall sediments of the main fault due to the 
seafloor slope (seafloor geometry being the 
secondary mechanism; Fig. 9). 

This differential movement above the diapir (Fig. 4) 
causes extensional horizontal strains that lead to a 
decrease in horizontal stress and, hence, minimum stress 
ratio reduction at the salt crest (Fig. 2).  Salt movement is 
the primary mechanism that causes the stress changes 
above salt. This highlights the importance of properly 
defining salt geometry in geomechanical models. 

6. SUMMARY 
We develop a 3D geomechanical model of the Tarfaya 
salt basin, located on the West African Coast. The model 
predicts a decrease in horizontal stress near the crest of 
the salt structure targeted by an exploratory well. This 
result was later validated once the well was drilled.  

We also build a 2D model using the geometry from a 3D 
transect and the same model inputs as the 3D 
geomechanical model. The 2D model predicts similar 
horizontal stress reduction at the crest of the salt structure. 
However, the area of sediments above the salt affected by 
the stress reduction is broader in the 2D model, indicating 
that 2D models may overestimate stress changes in some 
locations. 

The 2D model allows for a more complete sensitivity 
analysis because it requires less computational power and 
has significantly less number of elements when compared 
with the 3D version. We identify that the viscous salt 
movement and the regional slope of the seafloor are the 
main mechanisms that drive stress changes above the 
eastern diapir. 
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Annex 3: Geologically constrained evolutionary 
geomechanical modelling of diapir and basin evolution: A 
case study from the Tarfaya basin, West African coast 
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Abstract
We systematically incorporate burial history, sea floor geometry and tectonic loads 
from a sequential kinematic restoration model into a 2D evolutionary geomechani-
cal model that simulates the formation of the Sandia salt diapir, Tarfaya basin, NW 
African Coast. We use a poro-elastoplastic description for the sediment behaviour 
and a viscoplastic description for the salt. Sedimentation is coupled with salt flow 
and regional shortening to determine the sediment porosity and strength and to cap-
ture the interaction between salt and sediments. We find that temporal and spatial 
variation in sedimentation rate is a key control on the kinematic evolution of the 
salt system. Incorporation of sedimentation rates from the kinematic restoration at a 
location east of Sandia leads to a final geomechanical model geometry very similar 
to that observed in seismic reflection data. We also find that changes in the varia-
tion of shortening rates can significantly affect the present-day stress state above 
salt. Overall, incorporating kinematic restoration data into evolutionary models pro-
vides insights into the key parameters that control the evolution of geologic systems. 
Furthermore, it enables more realistic evolutionary geomechanical models, which, in 
turn, provide insights into sediment stress and porosity.
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Highlights

•	 High sedimentation rates during Jurassic is the key driver for the Sandia diapir 
evolution

•	 The Atlas shortening reactivates the Tarfaya diapirs during Late Cretaceous by 
mobilizing salt towards the crest

•	 Higher sedimentation rates at early stages of diapir formation affect whether the 
diapir will upbuild to the sea floor

•	 Different shortening rates have significant effect on the present-day stress state 
above Sandia
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1  |   INTRODUCTION

The study of the formation and evolution of sedimentary 
basins provides valuable information on the key geological 
processes that led to the present-day geometry and state of 
stress and pore pressure. Both inverse (kinematic restoration) 
and forward (physical, basin and geomechanical modelling) 
approaches have been developed to identify and study the 
fundamentals of these processes.

Kinematic restoration (Hudec & Jackson,  2004; 
McGuinness & Hossack,  1993; Rowan,  1993; Rowan 
et al. 2016; Trudgill & Rowan, 2004) is an inverse approach 
that starts with the present-day geometry of a basin and re-
constructs past deformation states by taking into account the 
deposition of sediments and their compaction, eustasy, fault-
controlled deformations, isostasy, thermal subsidence and salt 
movements (Rowan & Ratliff, 2012). However, this method 
does not simulate the evolution of stresses during the basin 
restoration. In addition, established kinematic restoration 
techniques of salt systems do not explicitly model salt flow. 
Recently, there have been efforts to combine kinematic res-
torations with finite-element modelling (Crook et  al. 2018; 
Durand-Riard et al. 2013; Maerten & Maerten, 2006; Moretti 
& Guiton, 2006). These approaches simulate the stress–strain 
behaviour of sediments to better approximate the past defor-
mation of the studied systems but do not include viscous laws 
for the salt flow.

Physical (analogue) modelling is a forward method 
that studies the evolution of geologic systems using rock 
analogues with predefined rheologies and boundary con-
ditions within a laboratory set-up that deforms at smaller 
spatial and temporal scales (Reber et  al.  2020; Schellart 
& Strak, 2016). The rules for model scaling were initially 
established by King Hubbert (Hubbert,  1937) using three 
aspects of similarity: geometric, kinematic and dynamic 
(Koyi,  1997). Physical models have been used to repre-
sent a wide variety of processes including strike-slip fault 
systems (Corti & Dooley, 2015; Dooley & Schreurs, 2012; 
Hubbert,  1951), fold and thrust belts (e.g. Farzipour-
Saein & Koyi,  2014; Massoli et  al.  2006; Nilforoushan 
& Koyi,  2007; Ramberg,  1981), plutonism (Dietl & 
Koyi, 2011) or salt-related deformation (e.g. Dooley et al. 
,2015, 2017; Dooley & Hudec, 2017; Koyi, 1998). The prin-
cipal limitations of these models are associated with mate-
rial and topography scaling, leading to uncertainty on the 
timing and duration of the geological processes, exagger-
ated topographies and no information on the internal stress 
state of the modelled systems and its evolution through time 
(Schellart & Strak,  2016). Furthermore, model reproduc-
ibility is highly related to human factors affecting the model 
set-up (Schreurs & Buiter, 2016). Despite these limitations, 
physical modelling is a particularly strong tool for investi-
gating and visualizing geologic processes.

Basin modelling is another forward method that studies 
geological processes in sedimentary basins using geological, 
petrophysical, geophysical and geochemical data (Hantschel 
& Kauerauf,  2009). Basin modelling has been extensively 
used by the oil and gas industry to model petroleum systems. 
Simulated processes range from deposition and compac-
tion, erosion, heat flow, phase dissolution, to hydrocarbon 
generation and its accumulation and migration (Ben-Awuah 
et  al.  2013). Some basin models incorporate stress and/or 
pressure calculations. However, the method commonly as-
sumes that the sediments deform uniaxially, hence it cannot 
capture stress, strain and pore pressure perturbations caused 
by complex deformation processes such as faulting or haloki-
nesis (e.g. Bolas et  al.  2004; Gutierrez & Wangen,  2005; 
Stigall & Dugan, 2010; Thibaut et al. 2014).

Recent advances in understanding the evolution of geo-
logical systems result from the incorporation of non-uniaxial 
deformation in basin models and the introduction of poro-
mechanical numerical models (Albertz & Beaumont, 2010; 
Beaumont et  al.  2000; Fernandez & Kaus,  2015; Kaus 
et  al.  2008; Nikolinakou et  al.  2018). Poromechanical 
(geomechanical) models, in particular, incorporate cou-
pled porous fluid flow and the full stress tensor in model-
ling the compression behaviour and strength of sediments. 
Geomechanical models are now commonly used for the study 
of hydrocarbon prospects, especially in non-uniaxial frontier 
settings such as salt systems or compressional systems (e.g. 
Dusseault et al. 2004; Willson et al. 2002). Static geomechan-
ical models are often built using the basin geometry at the 
present day (e.g. acquired from seismic data), and can pro-
vide a first-order estimate of stress and pressure around exist-
ing structures (e.g. Fredrich et al. 2007; Heidari et al., 2018; 
Hooghvorst et al. 2020; Segura et al. 2016). Stress calculation, 
however, lacks input from past geological processes during 
the evolution of the structures (Nikolinakou et  al.  2014). 
Evolutionary geomechanical (forward) modelling can simu-
late time-dependent processes, such as deposition, tectonic 
loading, salt flow and porous fluid flow. Hence, it couples 
the deformation and strength of sediments with the develop-
ment of geologic systems (Goteti et al. 2012; Gradmann & 
Beaumont,  2012; Gradmann et  al.  2012; Hamilton-Wright 
et  al.  2019; Nikolinakou et  al.  2018; Thigpen et  al.  2019). 
The principal limitation of the evolutionary models is the 
difficulty in producing the observed present-day geometry 
(Nikolinakou et al. 2014). To the best of our knowledge, very 
few studies have tried to incorporate the geologic history of a 
given basin into an evolutionary geomechanical model (e.g. 
Crook et al. 2018; Thigpen et al. 2019).

Our study is one of the first systematic approaches to in-
corporate burial history, sea floor geometry and tectonic loads 
from a sequential kinematic restoration into an evolutionary 
geomechanical model of a salt basin. In addition to using the 
kinematic restoration to constrain the geomechanical model, 



      |  2051
EAGE

HOOGHVORST et al.

we employ a poromechanical description of sediment be-
haviour to capture the interaction between salt movement, sed-
iment deposition and deformation and to study parameters that 
drive the salt system evolution. We simulate the development 
of the Sandia diapir in the Tarfaya basin, West African Coast 
and compare our model predictions with the inferred kinematic 
evolution of the basin. We find that the depositional history, 
and especially the variation in early sedimentation rates, is the 
key parameter that drives the evolution of the Sandia diapir 
to its present-day geometry. We also illustrate the importance 
of tectonic shortening to diapirism and the present-day stress 
state. Overall, we show that careful representation of the dep-
ositional and tectonic history can enable more realistic evo-
lutionary geomechanical models, with final model geometries 
that resemble the seismic interpretation of geologic structures.

2  |   GEOLOGICAL CONTEXT

The Tarfaya basin is a passive continental margin basin lo-
cated offshore SW Morocco (Gouiza, 2011) and bound by the 
Agadir and Essaouira basins to the north and by the Aaiun basin 
to the south (Figure 1). On the west, the basin ends against the 
eastern Canary Islands (Lanzarote and Fuerteventura islands) 
and the Conception Bank that separate it from the deep abys-
sal plain. To the east, the basin is bound on the onshore, from 
north to south, by the Atlas belt, the Anti-Atlas and their unde-
formed foreland. At present, a SW-NE trending, 2000 m deep 
bathymetric trough defines the most distal part of the basin at 
the edge of the continental shelf.

The Tarfaya basin formed during Late Triassic to Early 
Jurassic rifting and opening of the Central Atlantic and 

the separation of the NW African margin from the North 
American margin. Rifting caused extension of the basement, 
forming fault-controlled half-grabens trending NNE-SSW to 
NE-SW (Le Roy & Piqué, 2001; Piqué et  al. 1998), which 
were infilled by thick syn-rift sequences of continental silici-
clastic red beds and evaporites of Triassic age. The Triassic 
evaporites are the source layer for the present-day salt-cored 
structures in this area (Tari & Jabour, 2013).

During the Jurassic, post-breakup thermal subsidence of 
the basin caused the western part to deepen. A carbonate plat-
form formed along the eastern, shallower, continental mar-
gin. Initial development of salt structures began during the 
Jurassic and continued during Early Cretaceous, affecting the 
sea floor surface at these times (Michard et  al.  2008). The 
location of individual salt structures was strongly controlled 
by the uneven distribution of Triassic salt thickness within 
the half-graben system (Tari & Jabour, 2013).

A relative sea-level fall during the Late Jurassic–Early 
Cretaceous (Berriasian to Valanginian) caused subaerial ex-
posure and karstification of the carbonate platform. This was 
followed by sedimentation of alluvial siliciclastic materials 
forming the Tan Tan Delta complex (Michard et  al.  2008; 
Wenke et al. 2011).

The Tarfaya basin was then compressed by inversion 
of the Atlas and uplift of northwestern Africa. This started 
during the Late Cretaceous (Coniacian) and lasted until the 
Quaternary with episodes of activity followed by quiescence 
(Frizon de Lamotte & Zizi,  2008). Atlasic uplift increased 
the sediment input (Wenke et  al.  2011) and the compres-
sion reactivated pre-existing salt structures formed during 
the Jurassic and Early Cretaceous (Tari & Jabour,  2013). 
In addition, volcanic emplacement of the Canary Islands 

F I G U R E  1   Location map for the 
Tarfaya basin and geological features. 
Seismic section (Figure 2) is indicated by 
the red line PP′. Restored section (Figure 3) 
is indicated by the green line QQ′. Sandia-1 
(black circle) and Cap Juby-1 (black 
triangle) well-head locations are also shown. 
The Geographic Coordinate System used is 
ETRS 1989
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archipelago occurred during the Cenozoic (Carracedo & 
Perez-Torrado, 2013).

3  |   STRUCTURE AND EVOLUTION

The study area is located at the most distal part of the Tarfaya 
Basin (Figure  1) and centres around the Sandia and the 
Western diapirs (Figure  2). Seismic interpretation of pro-
prietary 3D seismic migrated in time and depth was com-
plemented with vintage 2D reflection multi-channel seismic 
profiles (acquired in 1983) migrated in time. Interpretation 
was constrained with data from two exploration wells. The 
Cap Juby-1 well (black triangle, Figure  1) was drilled by 
Mobil in 1983 and reached diapiric Triassic evaporites below 
Upper Jurassic carbonates. The Sandia-1 well (black circle, 
Figure 1) was drilled by Repsol in 2015 and reached Paleocene 
siliciclastics above the Sandia salt diapir (Figure 2).

The good quality of the seismic data in the shallowest 
5 km together with the well data makes the interpretation of 
the Tertiary section straightforward (Figure 2). The interpre-
tation of the deeper units is more ambiguous because of the 
different geologic history of the deeper water basin (in the 
NW) compared to the shallower platform area (in the SE), 
where the Cap Juby-1 control well is located. In the platform 
area, the Jurassic and Triassic units are found at shallower 
depths as a result of the Atlasic inversion that started in the 
Late Cretaceous. Seismic reflection data suggest that this 
Atlasic inversion resulted in significant erosional truncation 
of units and accounted for 500–1000 m of uplift of the shelf 
area. Because thicknesses of pre-inversion (Mesozoic) units 
in the platform area were used as guides for their interpreta-
tion in the deep-water sector (Figure 2), there is more uncer-
tainty in the interpretation of deeper units.

The key regional-scale feature of the study area is a thick 
Tertiary basin (up to 4 km thick) in the deep-water domain 
(Figure 2). This Tertiary basin wedges towards the SE onto 
the continental shelf and overlies a regional erosional un-
conformity in the continental shelf and across the shelf 
break. Basinward, and barring areas deformed by diapirism, 
Tertiary units lie conformably over Cretaceous sediments. 

Both Tertiary and Mesozoic (Jurassic and Cretaceous) sed-
iments display thickness changes and deformation related to 
diapirism of the underlying Triassic evaporites. These evap-
orites cut through the overlying units in the form of diapirs at 
two locations on this cross section (Figure 2).

Published observations of half-graben geometries sug-
gest that these salt diapirs may have nucleated above rotated 
basement fault-blocks along the Moroccan Atlantic margin 
(Le Roy & Piqué, 2001; Tari & Jabour,  2013). The basin-
ward diapir (Western diapir) is active at the present day 
and deforms the seabed. The landward diapir (Sandia dia-
pir), which was the target of the Sandia-1 exploratory well 
(black circle, Figure 1), ceased growth during the Tertiary. 
Both diapirs display geometries that are consistent with pas-
sive down-building development during the Mesozoic, and 
a phase of lateral expansion during the Cretaceous. Folding 
of Paleogene strata above the diapirs indicates that they were 
reactivated by shortening during the Tertiary. Shortening 
caused further growth of the Western diapir and extrusion 
onto the seabed. However, in the case of the Sandia diapir, 
shortening only caused folding of the overburden and lateral 
flow of salt towards the centre of the salt structure.

The geomechanical model we present is based on a se-
quential kinematic restoration of the regional cross section 
to Triassic times, during the deposition of the evaporites 
(Figure 3). This restoration accounted for decompaction of 
sediments by assuming average shale or sandy shale lithol-
ogy and compaction curves of Sclater and Christie (1980). 
Despite the presence of carbonates in the Jurassic section 
of the shallow-water domain, the restoration assumed sandy 
shale materials for the entire Jurassic. This is the expected li-
thology in the deeper part of the basin, which is the objective 
of the geomechanical modelling. The restoration also con-
sidered local isostasy and corrected for the effect of thermal 
subsidence by applying the curves of McKenzie (1978) (the 
beta factor was estimated from the expected crustal thickness 
based on the interpreted top of the basement and assuming 
an isostatically equilibrated crust). It accounted for the ef-
fects of salt diapirism following the approach of Rowan and 
Ratliff (2012). Finally, the sequential restoration accounted 
for the Atlasic shortening of 5  km based on the unfolded 

F I G U R E  2   Seismic interpretation 
across a transect in the deep part of Tarfaya 
basin (red line PP′, Figure 1). This section 
combines 3D seismic (NW side) with 
vintage 2D reflection multi-channel (SE 
side). Location of the seismic line is also 
highlighted with the red rectangle on the 
present-day section in Figure 3
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length of the Cretaceous–Paleocene horizon, considered to 
be pre-Atlasic.

4  |   EVOLUTIONARY MODEL 
DEFINITION

We built a series of 2D plane strain evolutionary geome-
chanical models using the finite element program Elfen 
(Rockfield, 2017). A base-case model (BC, Table 1) is used 
as reference model for comparison in a series of sensitivity 
analyses. A number of model variants (MV, Table 1) explore 
the influence of selected input parameters. Each variant mod-
ifies one parameter compared to the BC model (Table 1).

4.1  |  Base-case model

The base-case (BC) model has an initial geometry that includes 
a 2-km thick salt layer and a shale layer averaging 1.1  km 
thickness on top (Figure 4). The role of the shale layer is to pre-
serve the initial geometry of the salt top surface by preventing 
the salt from moving laterally towards the minibasins during 
the model (gravity) initialization step. We introduce an initial 
seed (in the form of a small salt dent circled in Figure 4a) at the 
centre of the salt top surface and a slight sag of the salt surface 
at both sides of the seed to facilitate the initiation of the salt 
diapir. Displacements are constrained in both the horizontal 
and vertical directions at the base of the model and only in the 
horizontal direction at the sides of the model.

Name Variable changed Original value Changed value

Base-case

BC – – –

Sensitivity analysis

MV1 Shortening rate Exponential (Figure 4c) Sigmoidal (Figure 
4c)

MV2 Basal geometry With triangular shape No triangular shape

MV3 Temperature gradient 31°C/km 36°C/km

MV4 Burial history Figure 5a Figure 5b

MV5 Plio-Quaternary sed. 
rates

620 and 700 m/Myr 61 m/Myr

T A B L E  1   Summary of evolutionary 
models

F I G U R E  4   (a) Initial geometry for the salt (pink) and shale (gray) layers in the evolutionary geomechanical Elfen model, along with model 
dimensions and boundary conditions. The seed and sag of the salt surface geometry are introduced to numerically facilitate initiation of diapir. 
Dashed lines represent layers that will be deposited on top of the model (b) Definition of deposition horizons: at the beginning of each stage, the 
upcoming layer thickness is obtained from burial history curve (Figure 5a) and applied at the right side of the model (location A), starting at the 
current top surface. For example, for the Jurassic modelling stage, the deposited-layer thickness is 4500 m (blue line in Figure 5a) and defines 
the elevation of the Jurassic deposition horizon at the right end of the evolutionary model (A). The Jurassic bathymetric slope obtained from the 
kinematic restoration (Figure 3, Table 2) is then used to define the Jurassic horizon across the model. Sediment compaction and salt mobilization 
modify the geometry of the sea floor, which becomes the baseline for the next deposition stage (b2) (c) Shortening application curves for the BC 
and MV2 to MV5 models (solid line) and for the MV1 model (sigmoid dashed line)



      |  2055
EAGE

HOOGHVORST et al.

We use both a burial history curve (Figure  5a) and the 
paleobathymetries provided by the sequential kinematic res-
toration model (Figure 3) as boundary conditions for the evo-
lutionary model (Figure 4b). To obtain the burial history for 
the simulation of the Sandia diapir (Figure  5a), we extract 
the thickness of sedimentary layers from the kinematic resto-
ration model along a vertical location 10 km east of the diapir 
(location Y; Figure 3), at the end of each geologic interval 

(Table 2). The shallowest layer at each geologic interval in 
the restoration model is de-compacted and, hence, its thick-
ness is used in the evolutionary model with no further adjust-
ment: for each modelled geologic interval, the deposited layer 
thickness provided by the burial history curve (Figure  5a) 
is added to the current sea floor in the evolutionary model 
to define the elevation of the upcoming deposition horizon 
(Figure 4b). This calculation is applied at the right end of the 
evolutionary model, 30 km from the Sandia diapir, to ensure 
far-field conditions (arrow in location A, Figure 4b). We ex-
tend the deposition horizon across the model using an aver-
age bathymetric slope (Table 2), which we determine from 
the kinematic restoration by measuring the average sea floor 
slope angle at each geologic interval. We then simulate depo-
sition in the evolutionary model by filling the space between 
the current sea floor and the upcoming horizon (Figure 4b).

The movement of the salt in this evolutionary model is not 
prescribed. The differential loading imposed by the weight 
of the deposited material causes the salt to deform and flow. 
This, together with sediment compaction, modifies the to-
pography of the sea floor in the model. Because the seafloor 
geometry at the end of a given deposition step becomes the 
baseline for the next deposition stage, the upper surface of 
each deposition horizon depends on both the burial history 
and the preceding model evolution (e.g. Early Cretaceous 
stage, Figure 4b).

We simulate the tectonic shortening between Upper 
Cretaceous (100 Ma) and the present day by imposing short-
ening on the model that deforms it from its original length of 
65 km to a final length of 60 km. The shortening deformation 
rate increases gradually over the first 50 Myr to ensure nu-
merical stability and follows an exponential curve thereafter 
(solid curve, Figure 4c).

The salt is modelled using the Munson–Dawson formula-
tion (Appendix A; Munson & Dawson, 1979). The Munson–
Dawson model has been extensively used to simulate the 
viscous flow of salt in deep-water salt basins such as Gulf 
of Mexico, West African coast or offshore Brazil (Fredrich 
et  al.  2003; Hooghvorst et  al.  2020; Marketos et  al.  2016; 
Segura et al. 2016; Thigpen et al. 2019). The salt viscosity 

F I G U R E  5   Burial history curves resulting from thickness 
extractions in the sequential kinematic restoration model of the Tarfaya 
basin section (Figure 3). (a) Burial history curve at location Y (SE of 
Sandia diapir, Figure 3) used in all but the MV4 models. (b) Burial 
history curve at location Z (NW of Western diapir, Figure 3) used in 
MV4

Name
Duration 
(Myr)

Total thickness at end 
of stage (m)

Sea floor angle at 
end of stage (°)

Jurassic 52 4500 0.43

Lower cretaceous 45 1270 0.32

Upper cretaceous 34 1230 0.22

Paleocene/eocene 32 1000 0.32

Oligocene 11 615 0.21

Miocene 17.1 1080 0.42

Pliocene 2.8 620 0.38

Present day 2.5 700 0.53

T A B L E  2   Thickness and sea floor 
angles from sequential kinematic restoration 
model at the end of each geologic time 
interval
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depends on both differential stress and temperature. Because 
of the absence of field data, input parameters for the salt 
(Table A1) are calibrated based on Avery Island salt (Fredrich 
et al. 2007; Munson, 1997), which is considered to represent 
average behaviour for Gulf of Mexico salt. The initial salt 
stress state is uniform (K0 = 1, see Appendix B for nomen-
clature), but differential stresses develop later in the model 
because of sediment loading. In addition, we assume the salt 
to be a homogeneous and isotropic material and we do not ac-
count for inner layering and anisotropies. A temperature gra-
dient of 3.1°C per 100 m is used (e.g. Rimi, 2001; Zarhloule 
et  al.,  2010), starting with a sea floor temperature of 4°C. 
This gradient is based on an integrated 2D and 3D petroleum 
system model for thermal maturity evaluation.

The sediment is modelled as a porous elastoplastic mate-
rial using the SR3 constitutive model (Crook et al. 2006, see 
Appendix A). This model is based on the critical state theory, 
following a single-surface, rate-independent, non-associated 

formulation. Density also changes as a function of porosity 
(Figure A2). A key feature of the critical state model is the 
incorporation of both mean and differential stress to compac-
tion. In other words, porosity evolves during the simulation 
because of deposition, salt loading and tectonic shortening. 
Because at shallow depths, the horizontal stress in a salt col-
umn is higher than the uniaxial horizontal stress of sediments 
at the same depth (Heidari et  al.  2017), a salt diapir loads 
sediments laterally. A key difference from commonly used 
basin models is that salt deforms the wall rocks and phys-
ically widens, when sediments deform plastically. In this 
case, sediment layer line lengths are not being preserved, the 
salt diapir can upbuild through the roof and/or flow laterally 
within sediments and the shape of the salt structure may not 
be dictated by the relative magnitudes of sedimentation and 
salt-rise rates (Nikolinakou et al. 2017).

The evolutionary Elfen model is based on a quasi-static, 
finite-element formulation accompanied by an automated 

F I G U R E  6   Evolution of the Sandia diapir predicted by the BC model. Location A (vertical black lines) indicates the location where the layer 
thicknesses from the burial history (Figure 5a) are applied. Locations A and C are used to compare the BC model thicknesses with the kinematic 
restoration model (Figure 12). (a) Initial geometry representing the top Triassic evaporites (pink) and an initial thin layer of Jurassic sediments 
(blue); (b) End of Jurassic deposition (blue). The salt diapir reaches the sea floor; (c) Mid-stage of Lower Cretaceous sediment deposition (dark 
green). Salt is about to break out into a salt sheet and source layer has thinned; (d) End of Lower Cretaceous deposition (dark green) with salt 
sheet formed downslope and salt overhang upslope. The source layer is welded on both sides of diapir and connected to the upper part by a salt 
stem; (e) End of Upper Cretaceous deposition (light green): diapir is buried.  Regional shortening is activated during this stage; (f) Paleocene to 
Miocene deposition. Shortening continues. Salt volume in pedestal decreases and diapir stem thins, while the diapir bulges upwards arching the 
roof sediments; (g) Present-day, following Pliocene and Quaternary deposition. Shortening continues. Salt volume in pedestal and in stem further 
decreases, as does the extent of the salt sheets. The diapir bulges upwards arching the roof sediments.[Corrections updated on 25 July 2021, after 
initial online publication: Figure 6 caption has been corrected in this version.]
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adaptive-remeshing technique (Peric & Crook,  2004) that 
activates when the model reaches a threshold plastic strain 
of 0.7. When activated, the remeshing technique locally gen-
erates an increase of smaller elements. The model is drained 
(i.e. pore pressures are hydrostatic) and we assume a fully 
submerged basin; therefore, the stresses obtained from the 
model are effective stresses. The mesh is composed of un-
structured rectangular elements with an initial size of 200 m 
and a minimum size of 80 m when re-meshed. In addition, 
geometric pinching allows the removal of very thin layers 
that would otherwise cause element distortion and numerical 
instabilities.

4.2  |  Model variants

A number of parameters control the basin and diapir evolution 
(e.g. shortening rates, temperature gradient, sedimentation 

rate, etc.). Some of these parameters, like the presence of 
a basal structural high or the very high sedimentation rates 
for the Pliocene and Quaternary intervals, also have a high 
level of uncertainty. We built and ran further models using 
the same initial configuration as the BC model but changing 
one of these parameters at a time to assess its influence. The 
model variants are:

-	 MV1: we use a sigmoidal shortening rate (dashed line, 
Figure 4c) instead of the BC exponential shortening rate 
(solid line, Figure  4c), maintaining the same shortening 
magnitude of 5 Km and its timing.

-	 MV2: we remove the basal triangular feature representing the 
rotated fault block interpreted below the diapirs (Figure 3).

-	 MV3: we increase the temperature gradient of the basin 
from 31°C/km to 36°C/km.

-	 MV4: we extract the burial history and the initial salt 
thickness along a vertical location at the NW side of the 

F I G U R E  7   Final geometry of Sandia 
diapir as predicted by: (a) BC model; (b) 
MV1 model with sigmoidal shortening rates 
(dashed line, Figure 4c); (c) MV2 model 
with no basal fault; and (d) MV3 model with 
temperature gradient increased to  
36°C/km.[Corrections updated on 25 July 
2021, after initial online publication: Figure 
7 caption has been corrected in this version.]

F I G U R E  8   Present-day geometry and contours of the horizontal-to-vertical effective stress ratio K for (a) base-case evolutionary model using 
an exponential shortening curve (solid line, Figure 4c); and (b) evolutionary model using a sigmoidal shortening curve (dashed line, Figure 4c). The 
uniaxial K0 value is 0.8 (light blue contour colours). K higher than 1 (warm contour colours) represent śh higher than śv. K below 0.8 (darker blue 
contour colours) represent decreased śh and lateral extension. See Appendix C for vertical stress profiles above these diapirs and Appendix B for 
figure nomenclature.[Corrections updated on 25 July 2021, after initial online publication: Figure 8 caption has been corrected in this version.]
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basin (location Z; Figure 3). This model aims to reproduce 
the Western diapir and explore the effect of deposition 
history on the evolution of a salt diapir.

-	 MV5: we reduce the sedimentation rates for Pliocene and 
Quaternary from 620 and 700  m/Myr, respectively, to 
61 m/Myr. The original values come from the extraction 
of the layer thicknesses from the kinematic restoration 
model. However, they are interpreted to be unrealistic. 
The new values for this model are more in line to the sedi-
mentation rates for Oligocene and Miocene.

5  |   EVOLUTIONARY MODEL 
RESULTS

The prograding sediment wedge imposes a differential load 
on the salt layer. The resulting shear (differential) stress 
drives viscous salt flow. The average salt differential stress in 
the model varies between 0.05 and 1 MPa and is comparable 

F I G U R E  9   Stages of MV4 model where we use the burial history curve from the NW end of the basin (Figure 5b) applied at location B, 
together with a thicker initial salt source layer compared to the BC model (Figure 4a). (a) Initial geometry representing the top Triassic, with salt 
layer (pink) and initial thin layer of Jurassic sediments (blue); (b) Salt diapir reaches the sea floor at the end of Jurassic; (c) Salt forms overhangs at 
both sides, buried by Early-Cretaceous sediments (dark green). Source layer welds. (d) Further Early-Cretaceous sedimentation buries the diapir. 
Salt from pedestals increases overhang thickness; (e) Late-Cretaceous sedimentation (light green) drive bulging of diapir crest. Shortening begins; 
(f) Shortening narrows the diapir stem and drives salt from overhangs toward the diapir centre. Salt bulges upward; (g) Salt pierces the roof and 
upbuilds to the surface at present day.[Corrections updated on 25 July 2021, after initial online publication: Figure 9 caption has been corrected in 
this version.]

F I G U R E  1 0   Rate of deposition for different geologic intervals 
from Jurassic until present day. Each interval is represented by a 
coloured block, the width of which is proportional to the duration of 
the geologic interval. The application of the tectonic shortening in the 
model is represented by the grey horizontal bar. The different diapir 
evolution phases are shown by the blue horizontal bars.[Corrections 
updated on 25 July 2021, after initial online publication: Figure 10 
caption has been corrected in this version.] 
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with published values (e.g. Schléder & Urai, 2007). Despite 
its low value, this shear stress is able to mobilize the salt, given 
the salt's average viscosity. The relatively low strain rates and 
low upper crustal temperatures used in this study yield an 
average salt viscosity between 1017 and 1019 Pa·s, consistent 
with typical values reported for salt rocks (Hamilton-Wright 
et  al.,  2019; Marketos et  al.  2016; Rowan et  al.  2019; van 
Keken et al. 1993).

5.1  |  Base-case model results

The deposition of the earliest Jurassic sediments results in 
a differential overburden load between the salt seed (initial 
salt dent; dashed circle in Figure 4a) and the topographic 
lows on the salt top surface, triggering the salt flow into 
a diapir (Figure  6a,b). Further Jurassic deposition drives 
salt from the source layer into the diapir, which widens 
and rises, reaching the surface at 145 Ma (Figure 6b). At 
this time, the upper half of the diapir is narrow compared 
to the lower half and the 6.5 km thick pedestal (triangular-
shaped base connecting the diapir with the salt source 
layer; Vendeville & Nilsen, 1993). The thick pedestal al-
lows salt to flow from the source layer into the diapir. At 
123 Ma (Early Cretaceous, Figure 6c), the diapir morphol-
ogy changes: the diapir remains at surface but the upper 
part has grown considerably wider relative to the previ-
ous time illustrated in Figure 6b. At 123 Ma (Figure 6c), 

the salt pedestal is still wider than the diapir; however, the 
source layer has thinned significantly.

At 100  Ma (end of Early Cretaceous, Figure  6d), the 
source layer welds along both sides of the diapir, leaving the 
pedestal completely isolated. However, a significant volume 
of salt exists in the pedestal, which allows for the diapir to 
continue growing and for salt to flow on the basin surface. 
This forms a salt sheet downslope (salt breadth several times 
greater than its thickness; Jackson & Hudec, 2017) and an 
overhang upslope (enlarged periphery of the diapir crest; 
Jackson & Hudec,  2017; Figure  6d). In our case, the salt 
sheet developed downslope has a total breadth of approx-
imately 8  km and a thickness of 2  km. Deposition of the 
Upper Cretaceous (100–66 Ma; Figure 6e) buries the salt. 
However, the diapir keeps rising and thickening the salt sheet 
by depleting salt from the pedestals and thinning the dia-
pir stem (slender part of the salt diapir connecting its upper 
part with the pedestal; Jackson & Hudec, 2017). Further salt 
flow is facilitated by the regional shortening, which is ac-
tivated during the Late Cretaceous stage. This shortening, 
which remains active to the present day (Figure 6f,g), contin-
ues to narrow the diapir stem and to drive the salt upwards. 
In addition, it drives salt flow from the salt sheets towards 

F I G U R E  1 1   Comparison of horizontal salt pressure gradient 
between BC model (blue line) and MV4 model (green line). We define 
horizontal salt pressure gradient as the difference between the sediment 
overburden load on salt away from the diapir and the salt pressure 
inside the diapir at the same depth (inset). The higher sedimentation 
rates in model MV4 generate a consistently higher horizontal salt 
pressure gradient with time. The point in each line represents the time 
when the source layer welds.[Corrections updated on 25 July 2021, 
after initial online publication: Figure 11 caption has been corrected in 
this version.]

F I G U R E  1 2   Comparison of layer thickness predicted by 
the kinematic restoration model (Figure 3) and the evolutionary 
geomechanical model (Figure 6) at 2 locations: (a) far from the diapir 
above a salt high (Y vs. A in Figure 3 & 6; solid shapes); and (b) near 
the diapir, above a salt weld (X vs. C in Figure 3 & 6; empty shapes). 
Layers considered: Jurassic, Upper Cretaceous and Oligocene units 
(blue, green and orange colours, respectively). Comparison times: Late 
Cretaceous, Oligocene and present day (triangular, circle and square 
shapes, respectively). Points on the 1:1 dashed line indicate agreement 
between the two models. Points closer to the 1:1.2 dashed line indicate 
that the evolutionary geomechanical model predicts more compression.
[Corrections updated on 25 July 2021, after initial online publication: 
Figure 12 caption has been corrected in this version.]
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the centre of the diapir. As a result, the diapir crest bulges
upwards, despite the subsequent deposition of Paleocene to
Quaternary layers.

5.2 | MV1 results (Shortening rate)

There is evidence, in many salt basins, that salt flow can be 
driven by tectonic shortening (Brun & Fort, 2004; Dooley 
et al. 2009; Koyi, 1998; Nilsen et al., 1996; Vendeville & 
Nilsen,  1993). Shortening is documented for the Tarfaya 
basin (Michard et  al.  2008; Tari & Jabour,  2013; Wenke 
et  al.  2011), but the history and rate of deformation dur-
ing shortening are not confidently known. In this model 
variant, we use a sigmoidal shortening curve (dashed line, 
Figure 4c) instead of the exponential shortening curve used 
in BC (solid line, Figure 4c) while maintaining the same 
timing and total magnitude of shortening (5 km). This sig-
moidal shape does not greatly alter the kinematics of the 
salt diapir and its end geometry (Figure 7a,b), for the given 
shortening and deposition rates, and the timing of shorten-
ing application.

We do find, however, that the different shortening rates 
(Figure 4c) significantly impact the present- day stress state 
(Figure 8, also FigureC1, Appendix C). We use the horizontal-
to-vertical effective stress ratio K (colour contours, Figure 8) 
to illustrate how stresses change compared to the uniaxial 
state (K0 = 0.8, light blue colours, Figure 8). Effective stress 
ratio values lower than 0.8 (darker blue colours) indicate 
a decrease in horizontal effective stress (�

h

′ ) relative to the 
vertical effective stress (�

v

′). K = 1 (green colours, Figure 8) 
indicates a uniform stress state (�

h

′   = �
v

′). K higher than 1 
(warm colours, Figure 8) indicates that �

h

′  is higher than �
v

′ . 
In the BC model, the values of K are higher than 1.3 near the 
salt crest and around 1.2 at the salt flanks. Instead, in model 
VM1, the values of K near the salt crest are around 0.6 (below 
uniaxial), with uniaxial values at the salt flanks.

5.3 | MV2 results (Basal triangular feature)

Regional seismic interpretation and regional constraints 
(Le Roy & Piqué, 2001; Tari & Jabour, 2013) indicate that 
both the Sandia and the Western diapirs developed over the 
highest points of rotated fault blocks (Figure 3). However, 
seismic image quality below salt in this area is poor and the 
presence of this basal high cannot be confirmed. We inves-
tigate whether salt base highs have a notable effect on the 
evolution of the diapir by replacing the basal indentation 
present in the BC model (Figure 7a) with a flat salt base in 
MV2 model (Figure 7c). The general characteristics of the 
resulting diapir in MV2 are similar to the BC one: The diapir 
rises early during the deposition of Jurassic sediments, a salt

sheet develops downslope during the Early Cretaceous and 
the source layer welds at both sides of the diapir pedestal at 
the same interval. However, the diapir at MV2 reaches the 
surface earlier than the BC diapir and has a thicker upper part 
at the end of Jurassic. At Early Cretaceous time, the diapir ex-
pands and forms shorter salt sheets at both sides. The burial 
of the structure happens shortly after that time, contrary to 
the BC model, where the salt is completely buried at 101 Ma 
(beginning of Late Cretaceous). The final diapir geometry in 
MV2 is 400  m shorter and with a salt stem twice as thick 
compared to the BC diapir (Figure 7a,c).

5.4  |  MV3 results (Temperature)

The temperature gradient present in the basin affects the vis-
cosity of the salt. The 31°C/km gradient used in the BC model 
is a lower bound for the study area (Rimi, 2001; Zarhloule 
et al., 2010) based on an integrated 2D and 3D petroleum sys-
tem model for thermal maturity evaluation. We investigate 
the effect of increasing the temperature gradient to 36°C/
km on the evolution of the salt diapir and its final geometry 
(model MV3; Figure 7d). The resulting diapir rises during the 
Jurassic and generates a salt sheet during Early Cretaceous 
times, similar to the BC model. The source layer also welds 
during Early Cretaceous. The main effect of the higher tem-
perature gradient in model MV3 is that the diapir upbuilds 
to the surface before the end of Jurassic, faster than the BC 
diapir (Figure  6b), and has a wider upper half. This small 
increase in salt flow velocity results from the fact that the salt 
viscosity is at most an order of magnitude lower in the MV3 
compared to the BC model (1017 and 1018 Pa·s), because of 
the higher temperature. The lateral expansion of the upper 
half part of the diapir starts at 131 Ma (Early Cretaceous) and 
generates a shorter salt sheet at the NW side and a shorter 
overhang at the SE at 122 Ma (Early Cretaceous). The struc-
ture is buried by ongoing sedimentation just after the forma-
tion of the salt sheet and overhang. The final diapir geometry 
in model MV3 is 600 m shorter and with a salt stem twice as 
thick compared to the BC diapir (Figure 7a,d).

5.5  |  MV4 results (Western diapir)

According to the kinematic restoration model, Jurassic and 
Cretaceous times have a higher sedimentation rate at location 
Z (basinward part of the studied cross section; Figure 3), rela-
tive to location Y. These higher sedimentation rates imply 
a larger accommodation space, hence larger volume of salt 
withdrawal at the basinward end of the basin. To explore this, 
we build the evolutionary model MV4 using the burial his-
tory (Figure 5b) along location Z in the kinematic restoration 
model (Figure 3) with a thicker initial salt layer (Figure 9a).
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Similar to model BC, the deposition of the first Jurassic 
sediments in model MV4 results in a differential overbur-
den stress between the salt seed and the topographic lows 
on the salt top surface, initiating salt flow towards the diapir 
(Figure 9a,b). The subsequent deposition of Jurassic layers 
drives the salt from the source layer into the diapir. The fast 
deposition (Figure  5b) allows the diapir to upbuild to the 
surface at 158  Ma, before the end of Jurassic (Figure  9b). 
At this time, the upper diapir half is narrower than its lower 
half and pedestal. At 135 Ma (Early Cretaceous, Figure 9c), 
the salt source layer is significantly thinned at both sides of 
the diapir. The upper half of the salt structure remains at the 
surface and has grown wider and developed overhangs at 
both sides. The sedimentation of Early Cretaceous partially 
buries these overhangs, limiting their lateral extension. By 
100 Ma (Figure 9d), Lower Cretaceous sediments have bur-
ied the diapir. However, a significant volume of salt remains 
in the pedestals, and continues to drive salt flow to the upper 
parts of the diapir. As a result, the diapir crest inflates and the 
overhangs continue to grow. The onset of regional shorten-
ing (Figure 4c, solid curve) during Late Cretaceous (66 Ma; 
Figure 9e) both narrows the diapir stem and drives salt from 
the overhangs towards the upper diapir. This inward and up-
ward salt flow volume is sufficient to sustain a gradual rise 
of the diapir through the sedimentary roof. Salt eventually 
upbuilds to the present-day surface at 5 Ma (Figure 9g).

5.6  |  MV5 results (Plio-Quaternary 
sedimentation rates)

The sedimentation rates extracted from the kinematic resto-
ration model at location Y (Figure 3) present very high val-
ues of 620 and 700 m/Myr for the time intervals of Pliocene 
and Quaternary respectively (light yellow and grey blocks, 
Figure  10). We use the model MV5 to reduce the Plio-
Quaternary sedimentation rates to equal the value of the 
Miocene rate (61 m/Myr, yellow block, Figure 10). The re-
sulting present-day geometry of the basin in the model MV5 
is not notably different from the BC model. This is because 
the duration of the Plio-Quaternary interval is short (5.3 Myr). 
Despite the high sedimentation rates, the sediment layer thick-
nesses are small, and the additional overburden load does not 
produce any notable effect on the kinematics of the system.

6  |   DISCUSSION

6.1  |  The role of sedimentation rate on 
diapir evolution

Sedimentation rates of the Tarfaya basin are a key driver 
for the system evolution. The rapid sedimentation at the 

beginning of the simulation (Jurassic) mobilizes the salt from 
the source layer towards the central part of the basin. We 
quantify the effect of sedimentation on salt flow by plotting 
the salt horizontal pressure gradient (Figure 11). We calcu-
late this gradient by subtracting the sediment overburden load 
on salt away from the diapir from the salt pressure inside the 
diapir at the same depth (Figure 11-inset). The salt gradient 
increases rapidly during the Jurassic (blue line, Figure 11), 
illustrating the acceleration of salt flow towards the diapir. As 
a result, by the end of the Jurassic interval (at 145 Ma), the 
diapir has upbuilt to the sea floor and a significant volume of 
salt has accumulated in the salt pedestals (Figure 6b). Salt in 
this broad pedestal area further maintains the diapir rise dur-
ing the Cretaceous interval, despite decrease in sedimenta-
tion rates (87 m/Myr during Jurassic, blue block in Figure 10 
vs. 30 m/Myr during Cretaceous, dark and light green blocks 
in Figure 10).

The evolution of model MV4 (Figure 9) further illustrates 
the importance of the sedimentation rates in the diapir evo-
lution. In this model, the higher sedimentation rates during 
Jurassic result in a higher horizontal pressure gradient in the 
salt source layer (green vs. blue line, Figure 11). This pro-
motes a faster salt flow, and a greater amount of salt pumped 
into the MV4 diapir, despite the fact that the source layer in 
MV4 welds much earlier than the one in the BC model. As 
a result, salt in MV4 not only accumulates in the pedestals 
and upbuilds to the sea floor but also forms diapir overhangs 
(Figure 9d). This geometry allows additional salt volume to 
be stored in the diapir and be readily available to flow in re-
sponse to the later applied shortening. As a result, the system 
is able to sustain a second phase of diapir rise to the present-
day sea floor. Contrary to MV4 diapir, the BC diapir gets bur-
ied during Cretaceous times (Figure 6e) because a sufficient 
salt volume could not be mobilized.

6.2  |  Comparison of layer thicknesses 
estimated by kinematic restoration and 
predicted by evolutionary geomechanical model

Kinematically constrained geomechanical models, such as 
that presented here, incorporate the strength and deformation 
characteristics of sediments in the study of a salt basin evolu-
tion. We demonstrate this contribution by comparing the layer 
thicknesses from the BC model against the kinematic restora-
tion model at: (a) location close to the diapir, near the tip of 
the source layer weld (locations X and C, Figures 3 and 6 re-
spectively); (b) location far from the diapir, above a salt high, 
where the salt source layer is not depleted (locations Y and A, 
same as the location used to constrain the evolutionary model; 
Figures 3 and 6 respectively). Whereas both approaches pre-
dict the same thicknesses away from the diapir (solid shapes 
in Figure 12 fall on the 1:1 line), the geomechanical model 
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predicts 20% thicker layers closer to the diapir (empty shapes 
in Figure 12 fall around the 1:1.2 line).

We perform this comparison for the Jurassic, Cretaceous 
and Oligocene sediments (colours blue, green and orange 
in Figure 12 respectively) and for the time intervals of Late 
Cretaceous, Oligocene and present day (triangle, circle and 
square shapes in Figure 12 respectively). Consider, for exam-
ple, the Jurassic sediments (blue shapes). Near the salt struc-
ture (empty shapes), at the end of Late Cretaceous (empty blue 
triangle, Figure 12), the restoration model provides a thickness 
of 4,300 m, whereas the evolutionary model predicts 5,000 m. 
The same is true for the Upper Cretaceous and Oligocene 
sediments (empty green and orange markers, respectively, 
Figure 12). These differences are associated with the depletion 
of the salt source layer and the formation of a salt weld during 
Cretaceous and highlight the importance of modelling the vis-
cous salt flow and its response to sediment loading.

In addition, the geomechanical model predicts a nota-
bly higher compaction of the Jurassic layer between Late 
Cretaceous and present day (empty blue square, Figure 12). 
The final evolutionary model thickness is 4,600 m (8% com-
paction), compared to 4,200 m (2.3% compaction) in the res-
toration model. The source layer weld generates higher mean 
stresses near the tip and a zone of higher shear stress that 
radiates upwards from the weld (Heidari et  al.  2016). The 
geomechanical model captures this contribution of mean and 
shear stress to compression, because it simulates sediments 
as porous elasto-plastic material. This additional sediment 
compaction cannot be accounted for in the restoration model.

6.3  |  Influence of shortening rates on stress 
distribution

The geomechanical model provides the stress distribution 
around the salt structures resulting from the system evolution. 
This allows us to study the influence of shortening rates on 
the present-day stress state near the Sandia diapir (Figure 8).

The exponential shortening curve (solid black line, 
Figure 4c) applied in the BC model (Figure 8a) results in an 
active regional compressive load at present day, which pres-
surizes the diapir salt. Because of the overburden thickness, 
the crest cannot expand, and instead loads the sediments 
around it. As a result, the stress ratio increases to values near 
1 at the salt flanks (green/yellow contour colours, Figure 8a), 
and to K  =  1.4 around the crest (orange contour colours, 
Figure 8a), illustrating increase in horizontal stress compared 
to its uniaxial value (K0 = 0.8).

In contrast, the sigmoidal shortening curve (dashed black 
line, Figure  4c) applied in model MV1 (Figure  8b) results 
in decreasing shortening rates towards the end of the sim-
ulation and termination of shortening 2  Myr before pres-
ent day. Because there is no active tectonic load, the diapir 

deforms downward and outward to achieve a uniform stress 
state (Hooghvorst et al. 2020). Consequently, the stress ratio 
at the crest decreases to values of K near 0.65, indicating de-
crease in horizontal stress (Figure 8b). Measurements in the 
Sandia-1 exploratory well (black circle, Figure 1) drilled in 
2015 (Fernandez et  al.,  2015) show stress reduction above 
the Sandia diapir, indicating that a sigmoidal curve is more 
appropriate for this basin.

6.4  |  Parameters with minor influence 
on the Tarfaya basin evolution

Despite the importance of shortening rates on the final 
stress state, they have minor effect on the final salt geom-
etry (Figure  8 BC vs. MV1 models; solid vs. dashed line, 
Figure 4c). This is because shortening begins during the Late 
Cretaceous, whereas the salt system mainly develops between 
Jurassic and Late Cretaceous. The role of shortening is better 
highlighted in the Western diapir (MV4) model. In this case, 
because of the higher salt volume accumulated in the diapir, 
overhang and pedestal areas, the application of shortening is 
able to drive the salt to the present-day seafloor. The timing 
of shortening application, as well as the relative deposition 
and shortening rates affect the role of shortening in basin and 
diapir evolution.

The presence or absence of the salt base high does not 
greatly impact the evolution or final geometry of the diapir 
(BC model, Figure 7a vs. MV2 model, Figure 7c). However, 
salt flows easier into the MV2 diapir in the absence of a ro-
tated fault block feature at the salt base (Figure 7c), causing 
an earlier maturation of the structure. In addition, the salt 
source layer welds at an earlier time (nearly 20 Myr earlier 
than BC model), preventing the diapir to rise further and gen-
erating a shorter, wider structure. In contrast, the presence of 
a salt base high (BC model, Figure 7a) delays the diapir rise. 
It should be noted that a salt base high may play a key role in 
focusing salt flow into a structure, whereas in both models, 
the diapir location is predefined with a seed in the initial ge-
ometry (Figure 4a).

Increase in temperature gradient in the salt does not 
greatly change the overall evolution or the final diapir 
geometry either (BC model, Figure  7a vs. MV3 model, 
Figure  7d). The temperature increase causes the salt vis-
cosity to decrease, which facilitates salt flow into the dia-
pir during Jurassic. This causes the diapir at MV3 to evolve 
faster, reaching the surface and welding the salt source layer 
at earlier times compared to the BC model. The resulting 
salt structure matures earlier, being buried by sediments 
during the Early Cretaceous, compared to the BC diapir that 
is buried during the Late Cretaceous. The final MV3 diapir 
geometry (Figure 7d) is shorter and wider compared to the 
BC structure (Figure 7a).
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7  |   MODELLING UNCERTAINTIES 
AND LIMITATIONS

The evolutionary models built in this study simplify the Atlas 
inversion and shortening into a continuous curve that ex-
tends from Late Cretaceous until the present day (Figure 4c). 
However, Atlasic shortening most probably happened in dis-
tinct pulses (El Harfi et al. 1996, 2001; Fraissinet et al. 1988; 
Frizon de Lamotte et al. 2000; Görler & Helmdach, 1988).

The simulations in this study are two-dimensional plane-
strain models. They cannot account for any out-of-plane salt 
flow and require a wider source layer for the interpreted ini-
tial salt thickness. Hence, they overestimate the lateral extent 
of source layer withdrawal during the diapir rise. The mod-
els also simulate a salt wall, whereas Sandia diapir geometry 
is closer to a dome (Hooghvorst et  al.  2020). Evolutionary 
3D models would represent more accurately the Tarfaya salt 
basin—but they are difficult to constrain and expensive to 
run.

Model input for the sediments has not been calibrated spe-
cifically for the study area, but it provides a good approxima-
tion of compressibility and strength for marine deposits (e.g. 
Heidari et al. 2019; Nikolinakou, Flemings, et al., 2018). The 
constitutive formulation does not account for strain softening 
of faulting. As a result, differential stresses may be unrealis-
tically high in locations where faults would otherwise form.

Sediment geology has been simplified to a single shale li-
thology. Data from wells drilled on the continental shelf Cap 
Juby-1 well (black triangle, Figure 1) indicate the presence 
of carbonates between the Jurassic sediments; however, it is 
not clear whether such layers exist in the basinward location 
of the study area.

All models in this study are drained and do not model the 
generation of overpressures. Overpressures would prevent 
compression and reduce the accommodation space for each 
deposition stage (Heidari et al. 2019; Nikolinakou, Heidari, 
et al., 2018; Swarbrick et al. 2002). In addition, overpressures 
would decrease the strength of mudrocks by keeping the ef-
fective stress low, hence play a key role in the kinematics of 
the salt flow (Nikolinakou, Heidari, et al., 2018).

Despite these limitations, this study is one of the first ef-
forts to incorporate the geologic constraints provided by a 
sequential kinematic restoration model into an evolutionary 
geomechanical model of a salt basin.

8  |   CONCLUSIONS

We use burial history, sea floor geometry and tectonic load-
ing extracted from a sequential kinematic restoration model to 
constrain a 2D geomechanical forward model and reproduce 
the evolution of the Sandia diapir (Tarfaya basin, NW African 
coast). The resulting final geometry of the geomechanical 

model is comparable with the present-day interpretation of the 
Sandia diapir. We find that sedimentation rates are a key driver 
for the halokinetic evolution of the system: higher rates at the 
early stages of the salt diapir formation affect whether the dia-
pir will get buried or upbuild to the sea floor, when the Atlas 
shortening is introduced later in the basin history. We also find 
that shortening rate histories significantly affect the present-
day stress state above the Sandia diapir: a sigmoidal shorten-
ing curve leads to a decrease in horizontal stresses above the 
crest of the structure, which is in agreement with field observa-
tions from an exploratory well.

More broadly, we show that incorporation of burial and 
tectonic histories from a sequential kinematic restoration 
leads to more realistic evolutionary geomechanical models 
that predict interpreted present-day geometries of geologic 
structures and help illuminate the key drivers of their struc-
tural evolution. In turn, geomechanical models incorporate 
the mechanical interaction between salt and sediments and 
can provide valuable information on the evolution of stress, 
porosity and potentially pore pressure with time, ultimately 
providing a more complete picture of the basin history.
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APPENDIX A
Material laws and input properties
The salt creep behaviour is described by the following equa-
tions (Munson, 1997). The transient term of the formulation 
is omitted, considered negligible over geological timescales. 
The list of parameters used is listed in Table A1.

where �̇c is the salt viscosity, q is the shear stress, T is the 
temperature, R is the universal gas constant, μ is the shear 
modulus and A1, A2 n1, n2 are material constants.

The sediment behaviour is represented by the constitutive 
SR3 model (Crook et al. 2006) that assumes an homogene-
ous, isotropic and porous elastoplastic material. At a high 
level, at each mechanical calculation step, the overall strain 
increment:

is coupled to the effective stress increment with the stiffness 
tensor DT:

where σ’ is the effective stress tensor , εe the elastic strain 
tensor and εp the plastic strain tensor.

(A1)�̇c = A
1

[
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�

]n
1

e−Q
1
∕RT
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2
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�
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2
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2
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−

d�

dT
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0

)

(A3)Δ� = Δ�e +Δ�p

(A4)Δ�
�
= DTΔ�

T A B L E  A 1   Material properties for salt (Fredrich, Fossum, 
et al., 2007; Munson, 1997)

Parameter Units Value

E MPa 10,000

ν 0.35

ρ kg/m3 2,100

A1 1/Myr 1.89E + 39

n1 5.5

Q1 cal/mol 25,000

A2 1/Myr 2.17E + 29

n2 5

Q2 cal/mol 10,000

R cal/°K/mol 1.987

T0 °K 10

Tconst °K 273

μ0 MPa 12,400

dμ/dT MPa/°K 10

F I G U R E  A 1   Hardening parameters for SR3 material model used 
for the sediments (Rockfield 2017).[Corrections updated on 25 July 
2021, after initial online publication: Figure A1 and caption has been 
corrected in this version.]
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APPENDIX B

Nomenclature

APPENDIX C
Stress profiles at diapir crest.

T A B L E  B 1   Nomenclature

Symbol Name Dimensions

�
′

v
Vertical effective stress L−1M1T−2

�
′

h
Horizontal effective stress L−1M1T−2

uh Hydrostatic pore pressure L−1M1T−2

K Horizontal-to-vertical effective stress 
ratio

L0M0T−0

F I G U R E  A 2   Compaction curve used for SR3 material model used 
for the sediments and assuming uniaxial conditions.[Corrections updated 
on 25 July 2021, after initial online publication: Figure A2 and caption 
has been corrected in this version.]

T A B L E  A 2   Material properties for sediments (Nygard 
et al. 2006; Rockfield, 2017)

Parameter Units Value

Eref MPa 40
ν 0.25
rw kg/m3 1,000
rs kg/m3 2,700
k 0.01
pt,0 MPa 0.085
pc,0 MPa −1
b ° 60
θ ° 51
b0 0.6
b1 1/Mpa 0.725
a 0.25
N 1.3
n0 0.38
Hardening properties Figure A1

F I G U R E  C 1   Stress profiles at vertical section along the 
sedimentary roof at present-day for a) BC model and b) model MV4. 
See Appendix B for figure nomenclature.[Corrections updated on 25 
July 2021, after initial online publication: Figure C1 caption has been 
corrected in this version.] 
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Annex 4: Sandia-1 well log data and CBIL data 
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164 
 

 

Figure A4.2: CBIL image logs acquired during the Sandia-1 well drilling between depths 2670 mTVD and 
2760 mTVD (a) to establish the cause of mud losses. The zoom-in images in (b) and (c) show the pre-
existing natural fractures in pink and drilling related tensile fractures in blue and green. 
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