
The Consolidation and Strength 
Behavior of Mechanically Compressed 

Fine-Grained Sediments 
A Ph.D. Defense 

by  
Brendan Casey 

 
Thesis Supervisor: Dr. Jack Germaine 

Committee Chair: Prof. Herbert Einstein 

Committee Members: Dr. Richard Plumb, Prof. Peter Flemings,  
Prof. Brian Evans & Prof. Charles Ladd 

 
Friday, April 25th 2014 

1 /49 



Outline 

• Motivation and Objectives 

• Resedimentation 

• Permeability Results 

• Triaxial Equipment and Procedures 

• Principle of Effective Stress 

• Shear Strength Behavior 

• Summary and Conclusions 

2 /49 



Outline 

• Motivation and Objectives 

• Resedimentation 

• Permeability Results 

• Triaxial Equipment and Procedures 

• Principle of Effective Stress 

• Shear Strength Behavior 

• Summary and Conclusions 

3 /49 



Motivation 

 

 composition (wL) 

 effective stress (σ’) 

 stress history (OCR) 

 mode of shear (b, α) 

 temperature (T) 

 strain rate (έ) 

 water saturation (Sw) 

 diagenesis 
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This work 

For soils and ‘soft’ rock, shear strength is complex a function of: 
 

τmax = f 
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• Majority of previous studies have involved testing intact samples  
 cannot isolate and quantify individual factors influencing behavior 
 disturbance and cost, particularly for deep or offshore samples 

 
• Resedimentation 

 Technical necessity! 
 Practical advantages 
 Compares well with  

intact behavior 
 

• Best data for resedimented clay behavior from Abdulhadi (2009) 
 tested RBBC for stresses from 0.1→ 10 MPa in triaxial compression 
 

• Very limited testing of resedimented soil over a wide stress range 
– Bishop et al. (1975); tested London Clay at Imperial College 
– Yassir (1989); tested mud volcano clay at UCL 
– Nüesch (1991); tested unsaturated Opalinus Shale 
– Berre (1992); tested a kaolinite – Moum clay mixture at NGI 
– William (2007); tested Bringelly Shale at University of Sydney 

 

Intact samples 
Resedimented samples 
Resedimented samples 
over wide stress range 
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Resedimentation 

3. Mix dry powder and 
water into slurry 

4. Vacuum the slurry 

5. Pour slurry into a 
consolidometer 

1. Obtain core material 2. Breakdown into 
powder and blend 
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Comparisons of resedimented  
vs. intact behavior: 
• Berman 1993 (BBC)  
• Mazzei 2008 (RGoM Ursa)  
• Casey 2011 (BBC) 
• House 2012 (BBC) 
• Betts 2014 (RGoM Eugene Is.) 

 



Resedimentation 

4. Load incrementally 
 Different consolidometers used depending on 

testing needs 
 Low stress triaxial: σ’p = 0.1 MPa 
 Medium stress triaxial: σ’p = 2 MPa 
 High stress triaxial: σ’p = 10 MPa 
 Time required for resedimentation strongly 

dependent on soil type (cv)   

5. Swell to OCR = 5 

6. Extrude and trim test specimen 
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What am I dealing with? 
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Contributing researchers: 
Grennan (2010) 
 
Abdulhadi (2009), Sheahan (1991) 
 
Jones (2010) 
Kontopoulos (2012) 
 
Betts (2014), Fahy (2014) 
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log(k0.5)= -7.55log(wL) – 3.4 
r2 = 0.90 

 

γ = 0.067(wL) + 5.1 
r2 = 0.75 

 

Nankai 

Cornwall 

log(k) = γ.(n – 0.5) + log(k0.5) 
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Permeability Model: Error Analysis 
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Permeability: Predicting In situ Behaviour 
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Permeability: Predicting In situ Behaviour 
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Typical Triaxial Test Procedure 

1. Setup and back-pressure saturation (1 day) 

2. KO-consolidation of specimens (3-10 days) 

 Important to mimic field conditions 

3. Secondary compression/creep (1 day) 

4. KO-swelling (1 – 2 days) 

5. Undrained shear in triaxial compression 

(1 day) 
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low pressure triaxial 
(σ’p < 2 MPa) 

high pressure triaxial 
(10 < σ’p < 100 MPa) 

medium pressure triaxial 
(2 < σ’p < 10 MPa) 
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Effective Stress 

• Effective Stress: Partial stress which controls changes  
in deformation and shear resistance of porous materials  
 

• Conventional Terzaghi (1923) definition for saturated soil: 
                                                 σ’ = σ – u  

– assumes particles are: 1) incompressible, and 2) have a constant yield strength 
 

• Some have proposed modified definitions, such as: 
–                                                ‘Intergranular stress’ 

–                                                 (Skempton 1960)                           
         (a = contact area between particles per unit area) 
 

• At high stresses the contact area can become significant; can true effective 
stress deviate from Terzaghi definition? ...literature typically assumes no 
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σ’ = (σ – u) + au + (R – A) 



Tests of Bishop and Skinner (1977) 

22 

• Most significant testing program to 
examine effective stress in relation 
to shear resistance 
 

• Drained triaxial compression tests 
involving large changes in back-
pressure but keeping (σ3 – ub) 
constant during shearing 
 

• Significance of interparticle 
contact area determined from 
discontinuities in shear stress-
strain curve 
 

• Tested sand, silt, crushed marble, 
lead shot for pore pressures up to 
40 MPa 
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Tests of Bishop and Skinner (1977) 

Results and conclusions: 
• Terzaghi definition applicable for full range of stresses tested with 

no observable change in shear resistance  
• Intergranular stress equation not valid  
• Inconclusive re. Skempton’s (1960) equation 
 
However…. 
• No clays were tested 
• Nature of inter-particle contacts is potentially different for clays 
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Effective Stress Tests 
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Overconsolidated Behavior 

/49 30 

OCR = 4 

OCR = 1 

OCR = 8 

OCR = 2 

σ‘vc = 0.6 MPa 
σ‘vc = 40 MPa 

R. Boston Blue Clay 



Increase in Ductility with Stress 
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R. Boston Blue Clay 



Undrained Strength: Overconsolidated Soil 
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Undrained Strength: Overconsolidated Soil 
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S1(OC) = 0.368(OCR)0.73, r2 = 0.9999 

approx. constant for 
fine-grained soils 

R. Boston Blue Clay 
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Summary of Strength Equations 

• Undrained triaxial compressive strength: 
 

  S1 = 0.86log(wL) – 1.04 
  T = -0.46log(wL) + 0.73 
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su/σ’vc = S1(1000σ’p [MPa])T(OCR)0.73 



Effect of KO on Undrained Strength @ OCR=1 

σ'H 

σ'V 

KO = σ’H/σ’V 
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A B 

φ
 

σ‘p 

φ = A(0.001σ’p [MPa])B 
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Summary of Strength Equations 

• Undrained triaxial compressive strength: 
 

  S1 = 0.86log(wL) – 1.04 
  T = -0.46log(wL) + 0.73 

 

• Drained triaxial compressive strength: 
 

  A = -75log(wL) + 148 
  B = -0.39log(wL) + 0.59 
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φ‘cs = A(0.001σ’p [MPa])B 

su/σ’vc = S1(1000σ’p [MPa])T(OCR)0.73 



Effect of OCR on φ’cs 
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(assuming drained conditions and no surcharge) 

– a change in friction angle from 40° to 35° reduces bearing 
capacity by 56 % 

– a change in friction angle from 40° to 30° reduces bearing 
capacity by 80 % ! 

 
 

Example: Bearing Capacity 



Particle Reorientation 
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Adams (2014), Ph.D.  

Compression 

….but failure in 
triaxial compression 
occurs at ~ 50˚→65˚ 

50˚- 65˚ 
→  Particle reorientation with stress 
cannot explain strength behavior 

Courtesy of Taylor Nordquist 



At very high stresses… 
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from Skempton (1960) 

tests on marble by Von Karman 
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• Porous materials will ultimately reach the friction 

angle of the solid material, referred to as the 

intrinsic friction angle ψ (Skempton 1960) 

• Tests on marble, metals, quartz and limestone 

Material Ψ (°) 
Limestone 8 

Calcite 8 
Quartz 16 

Clay minerals  ~ 5–10  
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(23) 

(37) 

(55) 

(54) 

(16) 

(51) 

(% clay minerals) 

(37) 



Yield Surface Evolution 
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R. Boston Blue Clay 

   



Yield Surface Evolution 
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0.15 MPa 

11.8 MPa 

R. London Clay 



Conclusions 
• Resedimentation is a technical necessity and practically 

advantageous to study the behavior of soils systematically 

• Correlations developed from resedimented soil using liquid 
limit can predict intact permeability, a robust indicator of 
composition 

• Conventional Terzaghi definition of effetive stress is valid for 
fine-grained soils at high in situ pore pressures 

• Shear strength properties vary consistently with stress level 
and are closely linked to composition/plasticity 

• Variations in strength properties with stress reflect an evolving 
yield surface  
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Motivation 

 

 composition (wL) 

 effective stress (σ’) 

 stress history (OCR) 

 mode of shear (b, α) 

 temperature (T) 

 strain rate (έ) 

 water saturation (Sw) 

 diagenesis 
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This work 

For soils and ‘soft’ rock, shear strength is complex a function of: 
 

τmax = f 

           

Future Work 
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