The Consolidation and Strength Behavior of Mechanically Compressed Fine-Grained Sediments

A Ph.D. Defense

by

Brendan Casey

Thesis Supervisor: Dr. Jack Germaine

Committee Chair: Prof. Herbert Einstein

Committee Members: Dr. Richard Plumb, Prof. Peter Flemings, Prof. Brian Evans & Prof. Charles Ladd

Friday, April 25th 2014

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Motivation

For soils and 'soft' rock, shear strength is complex a function of:

- Majority of previous studies have involved testing <u>intact</u> samples
 - cannot isolate and quantify individual factors influencing behavior
 - disturbance and cost, particularly for deep or offshore samples
- Resedimentation
 - <u>Technical necessity!</u>
 - Practical advantages
 - Compares well with intact behavior

Intact samples
Resedimented samples
Resedimented samples over wide stress range

- Best data for resedimented clay behavior from Abdulhadi (2009)
 - ▶ tested RBBC for stresses from $0.1 \rightarrow 10$ MPa in triaxial compression
- Very limited testing of resedimented soil over a wide stress range
 - Bishop et al. (1975); tested London Clay at Imperial College
 - Yassir (1989); tested mud volcano clay at UCL
 - Nüesch (1991); tested unsaturated Opalinus Shale
 - Berre (1992); tested a kaolinite Moum clay mixture at NGI
 - William (2007); tested Bringelly Shale at University of Sydney

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Resedimentation

1. Obtain core material

2. Breakdown into powder and blend

3. Mix dry powder and water into slurry

5. Pour slurry into a consolidometer

4. Vacuum the slurry

<u>Comparisons of resedimented</u> <u>vs. intact behavior:</u>

- Berman 1993 (BBC)
- Mazzei 2008 (RGoM Ursa)
- Casey 2011 (BBC)
- House 2012 (BBC)
- Betts 2014 (RGoM Eugene Is.)

Resedimentation

- 4. Load incrementally
 - Different consolidometers used depending on testing needs
 - > Low stress triaxial: $\sigma'_p = 0.1$ MPa
 - > Medium stress triaxial: $\sigma'_p = 2$ MPa
 - > High stress triaxial: $\sigma'_p = 10$ MPa
 - Time required for resedimentation strongly dependent on soil type (c_v)
- 5. Swell to OCR = 5
- 6. Extrude and trim test specimen

What am I dealing with?

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Permeability

Permeability

Permeability Correlations

Permeability Model: Error Analysis

Permeability: Predicting In situ Behaviour

Permeability: Predicting In situ Behaviour

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Typical Triaxial Test Procedure

- 1. Setup and back-pressure saturation (1 day)
- 2. K_o-consolidation of specimens (3-10 days)
 - Important to mimic field conditions
- 3. Secondary compression/creep (1 day)
- 4. K_0 -swelling (1 2 days)
- 5. Undrained shear in triaxial compression(1 day)

low pressure triaxial $(\sigma'_p < 2 MPa)$


```
high pressure triaxial (10 < \sigma'_p < 100 MPa)
```

medium pressure triaxial $(2 < \sigma'_p < 10 MPa)$

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Effective Stress

- <u>Effective Stress:</u> Partial stress which controls changes in deformation and shear resistance of porous materials
- Conventional Terzaghi (1923) definition for saturated soil: $\sigma' = \sigma - u$
 - assumes particles are: 1) incompressible, and 2) have a constant yield strength
- Some have proposed modified definitions, such as:
 - $\sigma' = (\sigma u) + au + (R A)$ 'Intergranular stress' - $\sigma' = \sigma - \left(1 - a \frac{\tan\psi}{\tan\varphi'}\right) u$ (Skempton 1960) (a = contact area between particles per unit area)
- At high stresses the contact area can become significant; can true effective stress deviate from Terzaghi definition? ...literature typically assumes no

Tests of Bishop and Skinner (1977)

- Most significant testing program to examine effective stress in relation to shear resistance
- Drained triaxial compression tests involving large changes in backpressure but keeping (σ₃ – u_b) constant during shearing
- Significance of interparticle contact area determined from discontinuities in shear stress-strain curve
- Tested sand, silt, crushed marble, lead shot for pore pressures up to 40 MPa

Tests of Bishop and Skinner (1977)

Results and conclusions:

- Terzaghi definition applicable for full range of stresses tested with no observable change in shear resistance
- Intergranular stress equation not valid
- Inconclusive re. Skempton's (1960) equation

However....

- No clays were tested
- Nature of inter-particle contacts is potentially different for clays

Effective Stress Tests

Outline

- Motivation and Objectives
- Resedimentation
- Permeability Results
- Triaxial Equipment and Procedures
- Principle of Effective Stress
- Shear Strength Behavior
- Summary and Conclusions

Stress-Strain Response during Shearing

Undrained Strength @ OCR = 1

Undrained Strength @ OCR = 1

Undrained Strength - Liquid Limit Correlations

Overconsolidated Behavior

Increase in Ductility with Stress

Undrained Strength: Overconsolidated Soil

Undrained Strength: Overconsolidated Soil

Summary of Strength Equations

• Undrained triaxial compressive strength:

$$s_u / \sigma'_{vc} = S_1 (1000 \sigma'_{p [MPa]})^T (OCR)^{0.73}$$

> $S_I = 0.86\log(w_L) - 1.04$ > $T = -0.46\log(w_L) + 0.73$

Effect of K_O on Undrained Strength @ OCR=1

Pre-shear K_{ONC}

Friction Angle

Friction Angle

37/49

Friction Angle - Liquid Limit Correlations

Summary of Strength Equations

• Undrained triaxial compressive strength:

$$s_u / \sigma'_{vc} = S_1 (1000 \sigma'_{p [MPa]})^T (OCR)^{0.73}$$

>
$$S_I = 0.86\log(w_L) - 1.04$$

> $T = -0.46\log(w_L) + 0.73$

• Drained triaxial compressive strength:

$$\varphi'_{cs} = \mathbf{A} (0.001 \sigma'_{p \,[\text{MPa}]})^{\mathbf{B}}$$

$$\blacktriangleright$$
 A = -75log(w_L) + 148

$$\blacktriangleright$$
 B = -0.39log(w_L) + 0.59

Effect of OCR on φ'_{cs}

Example: Bearing Capacity

(assuming drained conditions and no surcharge)

- a change in friction angle from 40° to 35° reduces bearing capacity by 56 %
- a change in friction angle from 40° to 30° reduces bearing capacity by 80 % !

Particle Reorientation

50

45

40

35

30

25

20

0.1

Mean Particle Orientation, θ ([°])

Courtesy of Taylor Nordquist

....but failure in triaxial compression occurs at ~ $50^{\circ} \rightarrow 65^{\circ}$

R. Boston Blue Clay

→ Particle reorientation with stress cannot explain strength behavior

100

Adams (2014), Ph.D.

10

Vertical Effective Stress, σ'_{ve} (MPa)

At very high stresses...

- Porous materials will ultimately reach the friction angle of the solid material, referred to as the *intrinsic friction angle* ψ (Skempton 1960)
- Tests on marble, metals, quartz and limestone

Ψ (°)
8
8
16
~ 5–10

from Skempton (1960)

Preconsolidation Stress, σ'_{p} (MPa)

Yield Surface Evolution

Yield Surface Evolution

Conclusions

- Resedimentation is a technical necessity and practically advantageous to study the behavior of soils systematically
- Correlations developed from resedimented soil using liquid limit can predict intact permeability, a robust indicator of composition
- Conventional Terzaghi definition of effetive stress is valid for fine-grained soils at high in situ pore pressures
- Shear strength properties vary consistently with stress level and are closely linked to composition/plasticity
- Variations in strength properties with stress reflect an evolving yield surface

Motivation

For soils and 'soft' rock, shear strength is complex a function of:

Publications

- Casey, B. and Germaine, J.T. (2013). "The Stress Dependence of Shear Strength in Fine-Grained Soils and Correlations with Liquid Limit", *Journal* of Geotechnical and Geoenvironmental Engineering, 139 (10), 1709-1717. doi: 10.1061/(ASCE)GT.1943-5606.0000896
- Casey, B., Germaine, J.T., Flemings, P.B., Reece, J.S., Gao, B., and Betts, W. (2013). "Liquid Limit as a Predictor of Mudrock Permeability", *Journal of Marine and Petroleum Geology*, 44, 256-263. http://dx.doi.org/10.1016/j.marpetgeo.2013.04.008
- Casey, B. & Germaine, J.T. (2013). "Variation of Cohesive Sediment Strength with Stress Level", Advances in Multiphysical Testing of Soils and Shales, Springer Series in Geomechanics
- Casey, B., Fahy, B.P., Flemings, P.B. & Germaine, J.T. (2014). Shear Strength of Two Gulf of Mexico Mudrocks and a Comparison with Other Sediments, *Fourth EAGE Shale Workshop*, 6-9 April 2014, Porto
- Casey, B. & Germaine, J.T. (2014). "An Evaluation of Three Triaxial Systems with Results from 0.1 to 100 MPa" *Geotechnical Testing Journal*, in review