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S U M M A R Y 

To what extent mechanical anisotropy is required to explain the dynamics of the lithosphere 
is an important yet unresolved question. If anisotropy affects stress and deformation, and 

hence processes such as fault loading, how can we quantify its role from observations? Here, 
we deri ve anal ytical solutions and build a theoretical framework to explore how a shear 
zone with linear anisotropic viscosity can lead to deviatoric stress heterogeneity, strain-rate 
enhancement, as well as non-coaxial principal stress and strain rate. We develop an open-source 
finite-element software based on FEniCS for more complicated scenarios in both 2-D and 3-D. 
Mechanics of shear zones with transversely isotropic and orthorhombic anisotropy subjected 

to misoriented shortening and simple shearing are e xplored. A simple re gional e xample for 
potential non-coaxiality for the Leech River Schist above the Cascadia subduction zone is 
presented. Our findings and these tools may help to better understand, detect and e v aluate 
mechanical anisotropy in natural settings, with potential implications including the transfer of 
lithospheric stress and deformation through fault loading. 

Key wor ds: F inite element method; Numerical modelling; Dynamics and mechanics of 
faulting; Mechanics, theory, and modelling; Rheology: crust and lithosphere. 
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1  INTRODUCTION  

Mechanical anisotropy can refer to either elastic moduli (e.g. 
Babuska & Cara 1991 ), plastic dilatancy (e.g. Rawling et al. 2002 ) 
or creep viscosities (e.g. Vauchez et al. 1998 ) depending on the 
deformation mechanisms. Elastoplastic anisotropy is important for 
seismic wave propagation or damage/fracture development. The vis- 
cous, long-ter m defor mation type of mechanical anisotropy matters 
for flow, where examples include ice sheets and mantle convection 
including lithospheric deformation, on which we focus here. 

Viscous anisotropy of the crust and lithospheric mantle may be 
caused by the effects of melt (e.g. Takei & Katz 2013 ), embedded 
structural zones of weakness (shape preferred orientation, SPO; e.g. 
Mont ́esi 2013 ), superposition of different scales of asthenospheric, 
po wer la w flo w (Schmeling 1985 ), or may be due to cr ystallog raph- 
ically preferred orientation (CPO), for example, of intrinsically 
Now at: Seismological Laboratory, Division of Geological and Planetary 
Sciences, California Institute of Technology. 
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anisotropic olivine crystals (Tommasi et al. 2009 ; Hansen et al. 
2016 ). 

The resulting mechanical anisotropy can be preserved at dis- 
tributed lithospheric scale within presently inactive, formerly de- 
formed sutures, that is, tectonic inheritance, or concentrated into 
narrow shear zones within active plate boundaries (e.g. Vauchez 
et al. 1998 ; M ̈uhlhaus et al. 2004 ). Spatial variations in me- 
chanical anisotropy may result in strain localization in plate in- 
teriors that may affect flexural strength (e.g. Simons & van der 
Hilst 2003 ) or play a role for intraplate seismicity (Mameri et al. 
2021 ). 

Olivine-agg regate defor mation experiments show textures with 
significant viscous anisotropy (e.g. Hansen et al. 2016 ). Mechan- 
ical anisotropy is thus expected as a result of CPOs, and the de- 
velopment of the latter is explored widely in the context of con- 
necting mantle flow and seismic anisotropy (e.g. Becker et al. 
2006 ; Becker & Lebedev 2021 ). Any feedback between mechanical 
anisotropy and convection may then affect the predictions for seis- 
mic anisotropy, for example (e.g. Chastel et al. 1993 ; Blackman et al. 
2017 ). 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Ho wever , at least within an instantaneous mantle flow or litho-
pheric deformation scenario, mechanical anisotropy can be hard
o distinguish from isotropic weakening (Becker & Kawakatsu
011 ; Ghosh et al. 2013 ). Time-dependent scenarios of deforma-
ion are expected to be more affected by mechanical anisotropy
ompared to isotropic zones of weakness, for example, for litho-
pheric instabilities and shear zones (M ̈uhlhaus et al. 2004 ;
ev & Hager 2008 , 2011 ; Perry-Houts & Karlstrom 2019 ), for
ost-glacial rebound (Schmeling 1985 ; Han & Wahr 1997 ), or
n plate scales (Honda 1986 ; Christensen 1987 ; Kir ́aly et al.
020 ). 

It is thus important to further constrain the role of mechanical
nisotropy for the lithosphere, and observations from tectonically
ell-constrained regional settings provide an opportunity to explore
omplementary strain and stress sensitive data (e.g. Mameri et al.
021 ; Schulte-Pelkum et al. 2021 ). In turn, mechanical anisotropy
ay affect some of the methods used to infer stress or stressing

ate close to faults, such as inversion of focal mechanisms (e.g.
aven et al. 2011 ). In Souther n Califor nia, for example, inherited
POs and alignment of w eak la yers through SPO could both be a

ource of mechanical anisotropy. This could possibly explain some
f the mismatch between geodetically inferred strain rates and focal-
echanism-derived stress close to faults, and the re-activation of

re-existing fault structures may affect the tectonic deformation
esponse and local fault loading (Schulte-Pelkum et al. 2021 , and
eferences therein). 

Studies that explore the effects of mechanical anisotropy on re-
ional scales for Souther n Califor nia are, ho wever , still limited.
hosh et al. ( 2013 ) implemented an anisotropic San Andreas Fault

SAF) as a shear zone in a 3-D global, viscous deformation model
ut failed to identify robust indicators of mechanical anisotropy on
e gional scales. Howev er, if mechanical anisotropy is considered
n a regional scale model, it may be easier to assess the docu-
ented non-coaxiality between stress and strain (Schulte-Pelkum
t al. 2021 ), and to e ventuall y incorporate time dependence in a
eld-observ ation v alidated w ay. This suggests an opportunity to
e velop ne w methods for inferring mechanical anisotropy from
eld observations and further constrain fault loading. 
∇

igure 1. Schematic diagram of the 2-D layered model with a viscously anisotro
 ηweak ) direction. The viscosity of the strong direction in the anisotropic layer and 
s L by w with the anisotropic layer with a thickness of d . The angle θ is counted c
ero velocity. The top of the model shears horizontally with a velocity of v 0 x . Veloc
nalytical solution applies with thickness. 

it
In this study, we w ork to w ard a theoretical frame work and first
olve anal yticall y the deformation of a simple 2-D model with a
iscously anisotropic layer which highlights some of its fundamen-
al mechanical behaviour. The solution shows stress heterogeneity,
train-rate enhancement, and non-coaxial principal stress and strain
ates inside the anisotropic layer and reveals the mechanics behind
uch heterogeneity. We explore how the orientation and strength
f mechanical anisotropy affect the non-coaxiality, stress hetero-
eneity and strain-rate enhancement. Second, we present a new,
pen-source finite-element tool, its validation against the analytical
olution, and applications to more complex 3-D scenarios. Lastly,
e discuss the implications and potential applications of the method
nd tools. 

 THE  1 -D  ANALYTICAL  SOLUTION  OF  

 VISCOUSLY  ANISOTROP IC  LAYER  

UBJECTED  TO  S IMPLE  SHEARING  

oti v ated b y the not necessaril y intuiti ve solutions produced b y ear-
ier numerical tests for mechanical anisotropy, for example, based
n our implementations (Moresi et al. 2003 ; Becker & Kawakatsu
011 ), we proceed to solve anal yticall y the incompressible Stokes
ow equation for a layered model subjected to simple shearing over

he thickness, where a central viscously anisotropic layer is sand-
iched between two isotropic layers (Fig. 1 ). 

.1 Governing equations and rheology 

he general boundary-value problem of incompressible Stokes
ow equation is described by the force balance for a continuum
eq. 1) and the incompressible fluid assumption (eq. 2 ) at any point
n a domain �, 

 · σ + f = 0 , (1) 

 · v = 0 , (2) 
pic layer subjected to simple shearing. n is the ‘director’ of weak viscous 
the isotropic viscosity are ηstrong and ηiso , respecti vel y. The model domain 
ounterclockwise from the y axis to n . The bottom of the model is no slip, 
ity and pressure on the west and east boundaries are periodic, and the 1-D 
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where σ is the stress tensor, f is the body force and v is the velocity 
field. We use an incompressible, Newtonian flow constitutive law 

such that 

σ = −pI + τ, (3) 

τ = D ̇ε, (4) 

ε̇ = 

∇ v + ∇ v T 

2 
, (5) 

where p is pressure, τ the deviatoric stress tensor, D the fourth-order 
viscosity tensor, I the identity matrix and ε̇ the strain-rate tensor. 

For isotropic and anisotropic domains, the viscosity D will be 
D iso and D ani , respecti vel y. In the isotropic domains, 

τ = D iso ̇ε = 2 ηε̇ = η
(∇ v + ∇ v T 

)
(6) 

with scalar dynamic viscosity η. In the anisotropic domains, 

τ = D ani ̇ε. (7) 

The D ani tensor needs not have any symmetr y proper ties, but we 
start by analysing some simple cases. The highest non-isotropic 
symmetry case is transverse isotropy (TI), also called ‘hexagonal 
anisotropy’ in the seismic anisotropy context. A seismically radially 
or azimuthally anisotropic medium corresponds to TI with a sym- 
metry axis in the vertical or horizontal, respecti vel y. We expect most 
olivine-associated CPOs in the upper mantle to be predominantly 
of TI/hexagonal character, with secondary effects due to the lower 
symmetr y, or thorhombic contributions (Browaeys & Chevrot 2004 ; 
Becker et al. 2006 ). 

Here, we solve a system with linear, transversely anisotropic rhe- 
ology following formulations in M ̈uhlhaus et al. ( 2002 ) and Moresi 
& M ̈uhlhaus ( 2006 ) (MM TI anisotropy) with n the ‘director’ of the 
weak viscous direction. Following eq. (3) in M ̈uhlhaus et al. ( 2002 ), 

τi j = 2 ηε̇i j − 2 ( η − ηS ) � ijkl ̇εkl , (8a) 

� ijkl = 

(
1 

2 
( n i n k δl j + n j n k δil + n i n l δk j + n j n l δik ) − 2 n i n j n k n l 

)
, 

(8b) 

where in n i ( i = x, y ) is the components of the normal ‘director’, 
η is the ‘normal’ shear viscosity and ηS is the weak shear viscosity 
along the weak layer. i, j, k, l = x, y. As shown in Fig. 1 , θ is the
angle between n and axis y , and then n x = −sin ( θ ) , n y = cos ( θ ) 
(cf. Christensen 1985 ). 

A general set of boundary conditions on the boundary ∂� = 


 D 
 N is given by 

v = v 0 on 
 D , (9a) 

∇ v · n N + p n N = g on 
 N , (9b) 

where 
 D and 
 N stand for Dirichlet and Newmann boundaries, 
respecti vel y, and n N is the normal to 
 N . 

2.2 Solution specifics 

For our example problem, we choose as boundary conditions 

v x = v 0 x on 
 D | y= 0 , (10a) 

v x = 0 , v y = 0 on 
 D | y=−w , (10b) 

periodic on 
 D | x=±L/ 2 , (10c) 
−

where a horizontal velocity v 0 x is applied to the top side, no 
velocity at the bottom, and periodic velocity and pressure on 
the west and east sides. Given the symmetry of model geome- 
try and boundary conditions along x , the velocity, pressure, and 
stress are invariant along x , and v ertical v elocity is zero, which 
give 

v y = 0; v x,x = 0; σi j,x = 0; p ,x = 0 (11) 

where, for example, v x,x stands for ∂v x 
∂x , and i, j = x, y. Therefore, 

we solve the 1-D analytical solution of velocity, pressure and stress 
along the vertical thickness ( y axis). 

Substituting eq. ( 11 ) into eq. ( 5 ), we get 

ε̇xx = v x,x = 0 (12a) 

ε̇ yy = v y,y = 0 (12b) 

ε̇xy = 

v x,y + v y,x 

2 
= 

v x,y 

2 
. (12c) 

In the isotropic layer, the deviatoric stress components follow as 

τxx = τyy = 0 (13a) 

τxy = ηv x,y (13b) 

In the anisotropic layer , follo wing eq. (8), the deviatoric stress 
components are 

τxx = −2 ( η − ηS ) 
(
n x n y − 2 n 3 x n y 

)
v x,y (14a) 

τxy = ηv x,y − ( η − ηS ) 
(
1 − 4 n 2 x n 

2 
y 

)
v x,y (14b) 

τyy = −2 ( η − ηS ) 
(
n x n y − 2 n x n 

3 
y 

)
v x,y (14c) 

The task now is to find solutions of velocity gradients v x,y in the 
isotropic ( s 1 ) and anisotropic ( s 2 ) layers. Eq. (13) gives 

τxx = τyy = 0 , τxy = ηs 1 (15) 

and eq. (14) yields 

τxx = −2 ( η − ηS ) 
(
n x n y − 2 n 3 x n y 

)
s 2 (16a) 

τxy = ηs 2 − ( η − ηS ) 
(
1 − 4 n 2 x n 

2 
y 

)
s 2 (16b) 

τyy = −2 ( η − ηS ) 
(
n x n y − 2 n x n 

3 
y 

)
s 2 (16c) 

The continuity condition for shear stress τxy and normal stress 
τyy + p on the interfaces between the isotropic and anisotropic 
layers require 

ηs 1 = ηs 2 − ( η − ηS ) 
(
1 − 4 n 2 x n 

2 
y 

)
s 2 , (17) 

p iso = −2 ( η − ηS ) 
(
n x n y − 2 n x n 

3 
y 

)
s 2 + p aniso (18) 

where p iso and p aniso are pressures inside the isotropic and 
anisotropic layers, respecti vel y. 

The boundary condition for v x ( y = 0 ) = v 0 x and v x ( y = −w ) = 

0 and the integration of v x,y over the entire thickness w can be 
expressed as 

0 ∫ 
w 

v x,y dy = v x | 0 − v x | −w = v 0 x , (19) 
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0 ∫ 
w 

v x,y dy = 

0 ∫ 
−d 

s 2 d y + 

−d ∫ 
−w 

s 1 d y = s 2 d + ( w − d ) s 1 = v 0 x . 

(20) 

Solving eqs ( 17 ) and ( 20 ), we get 

 1 = v 0 x 

1 −
(

1 − ηS 
η

) (
1 − 4 n 2 x n 

2 
y 

)
w −

(
1 − ηS 

η

) (
1 − 4 n 2 x n 

2 
y 

)
( w − d ) 

, (21a) 

 2 = 

v 0 x 

w −
(

1 − ηS 
η

) (
1 − 4 n 2 x n 

2 
y 

)
( w − d ) 

. (21b) 

Substituting s 1 and s 2 to eqs (15 ), (16) and ( 18 ), we get solutions
or velocities, stresses and pressure as a function of thickness y .
ubstituting s 1 and s 2 to eq. (12), we get the expressions for shear
train rate in the isotropic and anisotropic layers as 

˙ iso 
xy = v 0 x 

ηS 
η

(
1 − 4 n 2 x n 

2 
y 

) + 4 n 2 x n 
2 
y 

2 
[ 
w −

(
1 − ηS 

η

) (
1 − 4 n 2 x n 

2 
y 

)
( w − d ) 

] , (22a) 

˙ani 
xy = 

v 0 x 

2 
[ 
w −

(
1 − ηS 

η

) (
1 − 4 n 2 x n 

2 
y 

)
( w − d ) 

] . (22b) 

We use the square root of the J 2 , deviatoric invariant of strain-rate
ensor to measure the deformation, and in 2-D 

J 2 = 

1 

2 
I 2 1 − I 2 = 

1 

2 

(
ε̇2 
xx + ̇ε2 

yy + 2 ̇ε2 
xy 

) = ε̇2 
xy . (23) 

Then, in the isotropic and anisotropic layers, 
 

J iso 
2 = 

∣∣ε̇iso 
xy 

∣∣ , (24a) 

 

J ani 
2 = 

∣∣ε̇ani 
xy 

∣∣ . (24b) 

We define the ratio between square root of J 2 invariant of the
train-rate tensor in anisotropic and isotropic layers φ as strain-rate
nhancement to measure the heterogeneity of deformation caused
y mechanical anisotropy, and 

= 

η

ηS 

1 − 4 n 2 x n 
2 
y + 4 η

ηS 
n 2 x n 

2 
y 

. (25) 

If we further define viscosity contrast γ = 

η

ηS 
, 

φ = 

γ

1 − 4 n 2 x n 
2 
y + 4 γ n 2 x n 

2 
y 

. (26) 

The solutions of velocities, strain rates and amplitudes of stresses
nd pressure for cases with θ are identical to those with 180 ◦ − θ as
igure 2. Principal stress σ1 (longer, white bars), principal strain rate ̇ε 1 (shorter, 
s a function of θ with viscosity contrast of 10. The isotropic–anisotropic interfa
sotropic, as indicated by ‘ani’ and ‘iso’, respectively. 
hown in eqs (16), ( 18 ), (21) and (22), respecti vel y, gi ven the sym-
etric model geometry, transversely isotropic viscosity and load-

ng condition relative to the vertical axis. Results become more
omplex for 3-D and/or orthorhombic viscosity that is misori-
nted from the anisotropic layer and loading, as will be shown
ater. 

.3 The character of the analytical solution 

e compute a scenario with w = 1 , η = 1 , v 0 x = 1 and d = 0 . 4
thickness between −0.1 and −0.5) with variables defined as in
ig. 1 . We change the director n of the weak viscous direction by
arying θ from 0 ◦ to 90 ◦, and the viscosity contrast γ = η/ηS in the
nisotropic layer to explore their effects on stress and strain-rate.
e first set γ = 10 . 
Fig. 2 shows the maximum principal stress σ1 (white bars) and
aximum principal strain rate ε̇ 1 (red bars) between −0.45 and
0.55 thickness, and the maximum shear stress σ max 

xy (background)
etween −0.4 and −0.6 thickness, for various θs. Sharp changes
f physical quantities occur at the isotropic-anisotropic interface
t −0.5 thickness. In the anisotropic layer, principal stress axes
re mismatched at an angle α to the principal strain-rate axes,
hich are al wa ys at 45 ◦ to the horizontal axis. The mismatch oc-

urs for a wide range of θ and the magnitude of α depends on
. The maximum α is ∼27.45 ◦. With increasing θ from 0 ◦, α in-
reases from 0 ◦ to the peak of ∼27.45 ◦ when θ = 8 . 8 ◦, and then
ecreases to 0 ◦ when θ reaches 45 ◦. When θ further increases
rom 45 ◦, α increases from 0 ◦ again to ∼27.45 ◦ but with sign
eversed until θ = 81 . 2 ◦, then decreases to 0 ◦ when θ reaches
0 ◦. 

Fig. 3 (a) shows the angles between σ1 , ̇ε 1 and n as a function of θ
n the anisotropic layer for γ of 2, 10 and 100, respecti vel y. θ1 and

2 are angles between σ1 and n , and between ̇ε 1 and n , respecti vel y.
he mismatch α = θ1 − θ2 . For all γ s, α increases with increasing
starting from 0 ◦, reaches to a maximum, and then decreases to

 
◦ when θ reaches 45 ◦. The maximum α depends on viscosity
ontrast γ . With the larger γ of 100, the maximum α =∼ 38 ◦ at
=∼ 3 ◦. With the smaller γ of 2, the maximum α is ∼10 ◦ at
=∼ 18 ◦. 
The maximum α for a wider range of γ and the corresponding
that this maximum α is achieved is shown in Fig. 4 . If γ is

lose to 1, α will approach to zero and the model recovers the
sotropic scenario. If γ increases, α will increase to the maximum
5 ◦ when θ approaches to zero, akin to deformation along the
eak anisotropic direction being a stress-free boundary. For γ = 10 ,
erhaps appropriate for olivine CPOs (Hansen et al. 2012 ), the
aximum angular mismatch α could be as large as about 27.45 ◦

hen θ = 8 . 8 ◦. 
red bars) and maximum shear stress σmax 
xy (background with the colour bar) 

ce is at −0.5 thickness, and the domain above is anisotropic and below is 

eptem
ber 2024
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(a) (b)

(c) (d)

Figure 3. (a) Angular relations between principal stress σ1 , principal strain rate ε̇ 1 and the normal director n of the weak anisotropic viscosity for three 
viscosity contrasts γ s. Maximum shear stress and pressure as a function of θ in the anisotropic (b) and isotropic layer (c) for three γ values. (d) The difference 
between (b) and (c). 
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Figs 3 (b) and (c) show the maximum shear stress σ max 
xy and pres- 

sure p in the anisotropic layer and the isotropic layer, respecti vel y, 
as a function of θ and γ . Fig. 3 (d) shows the difference between 
Figs 3 (b) and (c), and the difference shows similar trends as to the 
mismatch α that increases to a maximum and then decreases to zero 
when θ varies from 0 ◦ to 45 ◦. For γ = 2 , 10 and 100, the difference 
of σ max 

xy is 0.05, 0.31 and 0.45, which occur when θ = 18 . 8 ◦, 13 . 5 ◦

and 11 . 6 ◦, respecti vel y. 
The weak viscous anisotropy enhances strain rate in the 

anisotropic layer. The enhancement can be measured by φ, the 
strain-rate enhancement as defined in eq. ( 26 ). Fig. 5 shows the nor- 
malized strain-rate enhancement φ/γ , caused b y v arious viscosity 
contrast γ s as a function of θ . The maximum strain-rate enhance- 
ment occurs when θ = 0 ◦ with a normalized value of unity, that 
is, the enhancement φ = γ . The strain-rate enhancement decreases 
with increasing θ until there is no strain-rate enhancement with 
φ = 1 when θ = 45 ◦. 
3  NUMERICAL  SOLUTIONS  FOR  2 -D  

AND  3 -D  PROBLEMS  

3.1 Overview of the finite-element method and 

f orm ulations of various viscous anisotropy 

For increased transparency, accessibility and expandability for more 
complicated 2-D and 3-D scenarios, including for regional set- 
tings, we develop a new finite-element code using the open-source 
computing platform FEniCS with a user-friendly Python interface 
(Logg & Wells 2010 ; Logg et al. 2012 , https://fenicsproject.org/ ) 
to simulate incompressible Stokes flow with viscous anisotropy. 
The finite-element implementation follows the FEniCS Stokes tu- 
torial (link provided in the Data and Software Statement). The ma- 
terial matrix for viscous anisotropy is fully expressed by fourth- 
order tensors through a set of Python functions, which cur- 
rentl y support transversel y isotropic and orthorhombic anisotropy, 

art/ggae296_f3.eps
https://fenicsproject.org/
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Figure 4. Maximum angular mismatch α between principal stress σ1 and 
principal strain rate ε̇ 1 as a function of viscosity contrast γ . For each γ , 
θ defines the normal vector of weak anisotropic direction at which the 
maximum α occurs. 

Figure 5. Normalized strain-rate enhancement φ/γ as a function of θ and 
for a range of viscosity contrasts γ . Strain-rate enhancement φ and γ are 
defined in eq. ( 26 ). 
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nd can be readily expanded to anisotropy with more general
ymmetries. 

For the choices of function spaces, we use second-order Contin-
ous Galerkin (CG2) elements for velocity, and first-order Continu-
us Galerkin (CG1) elements for pressure in 2-D. For 3-D problems,
e use third-order Continuous Galerkin (CG3) elements for ve-

ocity, and second-order Discontinuous Galerkin (DG2) elements
or pressure. The choices of the function space pairs satisfy the
adyzhenskaya–Babu ̌ska–Brezzi (or inf-sup) compatibility condi-

ion (see Brezzi & Fortin 1991 , for more details). The theoretical
onsiderations behind the choices are described in Logg et al. ( 2011 ,
hap. 20), and references therein. We use built-in mesh generator
f FEniCS with triangles in 2-D and tetrahedrals in 3-D for sim-
le model geometries, and the open-source mesh generator Gmsh
Geuzaine & Remacle 2009 , https://gmsh.info/ ) for more compli-
ated model geometries. FEniCS provides API to Gmsh for a seam-
ess integration of the two tools. 

We solve the system of linear equations assembled from
he finite-element system with the open-source solution PETSc
 https://petsc.org/release/ ), which is integrated with FEniCS. Di-
ect solver MUMPS and preconditioned iterative Krylov solvers
hat come with PETCs are used. In FEniCS , 2-D and 3-D, and
erial and parallel versions of the code share similar syntax with
inimal changes, which greatly reduces the cost of development
hen scaling to large problems is required. The finite-element code

nd associated post-processing tools are available publicly via the
itHub repository (link provided in the Data and Software Avail-

bility Statement). 
Here, we present the weak form of the Stokes equations and

athematical formulations for various anisotropy that are imple-
ented. From the strong form of the incompressible Stokes flow eqs

1)–(3), and the boundary condition eq. (9), the weak form of
he Stokes equations are formulated in a mixed variational form
ith two variables, the velocity v and pressure p, that are approx-

mated simultaneously, after multiplying test functions u and q,
nte grating ov er the domain, and inte g rating the g radient ter ms
y parts, 

 ( ( v , p ) , ( u , q ) ) = L ( ( u , q ) ) , (27a) 

 ( ( v , p ) , ( u , q ) ) = 

∫ 
( ∇ v · ∇ u + ∇ · u p + ∇ · v q ) dx, (27b) 

L ( ( u , q ) ) = ∫ f · u dx + 

∫ 
g · u ds, (27c) 

here a and L are bilinear and linear terms of the variational for-
ulation, g is the flux on the Newmann boundary. 
Following the Stokes tutorial, the sign of pressure is flipped from

he strong form given above. The purpose is to have a symmetric
ut not positive-definite system of equations in the finite-element
mplementation, which can be solved iterati vel y after properl y pre-
onditioning of the system. We pre-condition the linear system of
quations with the pre-conditioner defined as 

 ( ( v , p ) , ( u , q ) ) = 

∫ 
( ∇ v · ∇ u + pq ) dx . (28) 

Viscous anisotropy can be decomposed into components with
ifferent symmetries, for example, similarly to what was explored
 y Brow aeys & Che vrot ( 2004 ) for elastic anisotropy in the Voigt
pproximation. Here, we derive and compare 3-D mathematical
ormulations of transversely isotropic anisotropy, which describe
hysical structures with a weak plane as shown in MM TI anisotropy,
nd orthorhombic anisotropy, which is a closer approximation to full
r ystal str ucture of olivine, here modelled under the incompressible
uid assumption. 
We define local material coordinate system with axes 1, 2, 3,

nd finite-element coordinate system with axes x, y, z. To sim-
lify the structure of the fourth-order viscosity tensor expressed
s a 6 × 6 Voigt matrix form, axes to symmetry planes in vis-
osity are aligned with axes 1, 2 and 3. Different formulations
or transversely isotropic viscous anisotropy are in use. With
he deviatoric stress vector and strain-rate tensor defined as σ =
 σ11 , σ22 , σ33 , σ23 , σ13 , σ12 ) and ε̇ = ( ̇ε 11 , ̇ε 22 , ̇ε 33 , 2 ̇ε 23 , 2 ̇ε 13 , 2 ̇ε 12 ) ,
ollowing eq. (8), the Voigt form viscosity matrix V 

MM of MM TI
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anisotropy is 

V 
MM = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 η 0 0 
0 2 η 0 
0 0 2 η

0 

0 
ηS 0 0 
0 η 0 
0 0 ηS 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (29) 

where η is a reference shear viscosity and ηS is the weak anisotropic 
viscosity. 

Han & Wahr ( 1997 ) derive a transversely isotropic viscous 
anisotropy from a different method, and the Voigt form viscosity 
matrix V 

HW is 

V 
HW = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

η1 + 2 ν1 0 η1 

0 η2 + 2 ν2 0 0 
η1 0 η1 + 2 ν1 

ν2 0 0 
0 0 ν1 0 

0 0 ν2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (30) 

where ν1 and ν2 are isotropic shear and weak shear anisotropic 
viscosities, respecti vel y. And η1 (or η2 ) corresponds to ‘normal’ 
anisotropic viscosity (see e.g. Christensen 1987 ). Not all four non- 
zero parameters are independent. Following the deri v ations in Han 
& Wahr ( 1997 ), σ = V 

HW ε̇ gives 

σ11 = ( η1 + 2 ν1 ) ̇ε11 + η1 ̇ε33 , (31a) 

σ22 = ( η2 + 2 ν2 ) ̇ε22 (31b) 

σ33 = η1 ̇ε11 + ( η1 + 2 ν1 ) ̇ε33 (31c) 

The incompressible fluid assumption is, 

ε̇11 + ̇ε22 + ̇ε33 = 0 (32) 

and zero of the trace of deviatoric stress tensor gives 

σ11 + σ22 + σ33 = 0 . (33) 

Substituting eqs (31) to eq. (33), we get 

( 2 η1 + 2 ν1 ) ̇ε11 + ( η2 + 2 ν2 ) ̇ε22 + ( 2 η1 + 2 ν1 ) ̇ε33 = 0 . (34) 

To ensure eq. ( 32 ) is satisfied for any strain-rate tensor, eq. ( 34 ) 
gives 

2 η1 + 2 ν1 = η2 + 2 ν2 . (35) 

The difference between V 
MM and V 

HW are the off-diagonal terms 
V HW 

13 and V HW 

31 . If η1 = 0 , V 
HW collapses to V 

MM , that is MM 

TI anisotropy is a simplified version of HW transversely isotropic 
without the correlation of deformation of normal strain rates inside 
the weak plane. 

For orthorhombic anisotropy, we add on top of V 
HW an additional 

orthorhombic component inferred from analogy to the orthorhom- 
bic elastic tensor in Browaeys & Chevrot ( 2004 ), which we 
define as 

δV 
ORTHOR = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−a b 0 
b 0 c 
0 c a 

0 

0 
−d 0 0 
0 0 0 
0 0 d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (36) 

where a, b, c and d are non-zero parameters. 
Then, the orthorhombic viscosity matrix V 

ORTHOR is 
V 
ORTHOR = V 

HW + δV 
ORTHOR , (37a) 

V 
ORTHOR 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

η1 + 2 ν1 − a b η1 
b η2 + 2 ν2 c 
η1 c η1 + 2 ν1 + a 

0 

0 
ν2 − d 0 0 

0 ν1 0 
0 0 ν2 + d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

(37b) 

The four non-zero parameters are not all independent given the 
incompressible fluid assumption. Following the same method above, 
σ = V 

ORTHO ε̇ gives 

σ11 = ( η1 + 2 ν1 − a ) ̇ε11 + b ̇ε22 + η1 ̇ε33 , (38a) 

σ22 = b ̇ε11 + ( η2 + 2 ν2 ) ̇ε22 + c ̇ε33 , (38b) 

σ33 = η1 ̇ε11 + c ̇ε22 + ( η1 + 2 ν1 + a ) ̇ε33 . (38c) 

Substituting eqs (38) into eq. (33), we get 

( 2 η1 + 2 ν1 − a + b ) ̇ε11 + ( b + c + η2 + 2 ν2 ) ̇ε22 

+ ( 2 η1 + 2 ν1 + a + c ) ̇ε33 = 0 . (39) 

To ensure eq. ( 32 ) is satisfied for any strain-rate tensor, and 
combining eq. (35), a = b = −c. Therefore, of the four non-zero 
parameters, only a and d are independent. 

Rotations of fourth-order viscosity tensor are required to trans- 
late viscosity matrix from the material coordinate system to the 
finite-element one, and vice versa. In later 3-D scenarios with the 
anisotropic shear zone under simple shearing, we consider two el- 
ementary rotations of material coordinate system relative to the 
finite-element coordinate system, as shown in Fig. 9 . Axes 1, 2 and 3 
are originally aligned with axes x, y and z . For transversely isotropic 
anisotropy, axis 2 is the normal director to the weak viscosity plane. 
For the first elementary rotation, axis 2 is rotated counterclockwise 
away from axis y around axis z( 3 ) for an angle of θ . This rotation 
is like the rotation of n in the 2-D analytical model. For the second 
elementary rotation, axes 1 and 3 are further rotated around axis 2 
counterclockwise for an angle of β. 

In the following sections, we first verify the finite-element im- 
plementation against the analytical solution by modelling the same 
problem presented in Section 2 . We then increase the complexity 
slightl y b y introducing a Gaussian distribution of weak anisotropy 
across the thickness of the anisotropic layer. We next simulate a 
set of 2-D models inspired by a vertical fossil shear zone subjected 
to misoriented shortening to explore the strain-rate enhancement 
caused by the mechanical anisotropy. Then, 3-D shear zones with 
orthorhombic and two forms of transversely isotropic anisotropy 
subjected to simple shearing are simulated. Lastly, we present re- 
sults from a 3-D model inspired by the Leech River Schist (LRS) 
above the Cascadia subduction zone (Bostock & Christensen 2012 , 
and references therein) under convergent margin loading conditions. 

3.2 Verification of the FEniCS code against the analytical 
solution 

We simulate the 2-D model in Fig. 1 with our FEniCS code and 
verify the implementation against analytical solutions derived in 
Section 2 . Fig. 6 shows matching FEniCS and analytical solutions 
for velocity, strain-rate enhancement, ef fecti ve stress and pressure 
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Figure 6. Verification of FEniCS finite-element solution against and analytical solution for horizontal velocity, v x , strain-rate enhancement, ef fecti ve stress 
σxx + p and pressure p, over thickness. Results with weak anisotropy following a Gaussian distribution in the anisotropic layer are in red lines. θ denotes the 
orientation of weak anisotropy director defined in Fig. 1 . 
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ver the whole thickness of the model, indicating that the code
orrectly implements this case of anisotropy. 

These analytical solutions were also reproduced by our ear-
ier numerical implementations of MM TI anisotropy in the Cit-
omCU (Moresi & Solomatov 1995 ; Zhong et al. 1998 ) and Cit-
omS (Zhong et al. 2000 ; Tan et al. 2006 ) convection code base
Becker & Kawakatsu 2011 ), as was used by Ghosh et al. ( 2013 ),
or example. 

Fig. 6 also shows results of a scenario with Gaussian distri-

ution of weak anisotropy where ηS = 1 − ( 1 − 1 
γ

) exp ( −( y−y c 
T h ) 

2 
) ,
erhaps closer to what might be expected in a natural shear zone.
ere, y c = −0 . 7 is the thickness at the centre of the anisotropic

ayer, Th = 0 . 1 , and γ is 10. ηS is 
1 
γ

= 0 . 1 at y c , and about unity,
hat is, the isotropic shear viscosity, when y approaches the edges
f the anisotropic layer ( y = −0 . 5 and −0.9). The ηS in the Gaus-
ian scenario is mostly larger than the constant 0.1 in the analytical
olution over the anisotropic layer. Therefore, amplitudes of het-
rogeneities of strain-rate enhancement, stress and pressure are less
ronounced compared to the analytical solution and the peaks occur

art/ggae296_f6.eps
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Figure 7. (a) Schematic diagram of 2-D shear zone subjected to misoriented 
shortening. The west side has a unit shortening of v x = 1 and the east side 
is free slip. The north and south sides are either free or extruding at a fixed 
velocity. The shear zone is at an angle of δ to the unit shortening. n , the 
normal director to the weak anisotropy, is always normal to the shear zone 
strike. 

Figure 8. Strain-rate enhancement caused by 2-D weak viscous shear zone 
subjected to misoriented shortening. 
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3.2 ‘Fossil mantle’ shear zone subjected to misoriented 

shortening 

We now consider strain-rate enhancements from a set of models 
with anisotropic shear zones subjected to misoriented shortening, 
partially inspired by the work of Mameri et al. ( 2021 ) and our 
earlier exploration of potential signals of mechanical anisotropy in 
souther n Califor nia (Schulte-Pelkum et al. 2021 ). 

The anisotropic shear zone is characterized by MM TI anisotropy 
with the weak plane aligned with the strike of the shear zone. We 
simulate the deformation and stress/pressure from 2-D models of 2.5 
by 1 along x- and y-directions, respecti vel y, with viscosity contrast 
γ = 10 . The shear zone width is 0.1 and it is striking at an angle of 
δ to the unit shortening ( v x = 1 ) along x on the west side (Fig. 7 a). 
The east side is free slip. 

For the north and south sides, two scenarios are considered. In the 
Free Sides scenario, both sides are free, which simulates the extreme 
condition that the interacting blocks outside of the north and south 
of the domain are extremely weak. In the Pure Shear scenario, the 
north and south sides extrude at absolute velocities of | v y | = 0 . 2 , 
simulating the other extreme condition that the interacting blocks 
are suf ficientl y strong compared to the simulated domain. Because 
we are solving incompressible Stokes flow, the extruding velocity 
of 0.2 is calculated by conserving the total volume. We vary δ from 

5 ◦ to 65 ◦ in 5 ◦ step size. We also consider scenarios with the shear 
zone to be isotropic but with weaker viscosity 1 

γ
= 0 . 1 than the 

surroundings. 
The weak viscosity in the shear zone enhances strain-rates. The 

enhancement depends on the style of rheology and boundary con- 
ditions. Fig. 8 shows strain-rate enhancement caused by the weak 
shear zone for various δs, the angle between the normal to the shear 
zone strike and the horizontal shortening. The strain-rate enhance- 
ment is calculated by the average of square root of J 2 invariant 
of the strain-rate tensor in the shear zone divided the average out- 
side of the shear zone along a horizontal profile. For Free Sides 
scenarios, if the shear zone is MM TI anisotropy, the maximum 

strain-rate enhancement reaches 10, the same as the viscosity con- 
trast γ = 10 given, when δ = 45 ◦. If the shear zone is isotropic weak 
ηiso = 0 . 1 , the maximum strain-rate enhancement is ∼5.4. Either by 
increasing or decreasing δ away from 45 ◦, strain-rate enhancement 
decreases. 

The maximum strain-rate enhancement with the isotropic weak 
shear zone is lower than for the MM TI anisotropy due to lower shear 
stress along the inclined shear zone. The driving force is normal 
stress τxx , which mainl y af fects flow ̇εxx through the corresponding 
normal viscosity. In the isotropic weak shear zone, not only the shear 
viscosity is lower than the isotropic surrounding, as in the MM TI 
anisotropic shear zone, but also the normal viscosities are lower 
than those in both the isotropic surrounding and MM shear zone. 
As a result, stresses and pressure are heterogeneous across the shear 
zone in the isotropic weak scenario, while they are homogenous for 
MM scenario. In particular, τxx is lower inside the isotropic shear 
zone, which leads to lower shear stress along the inclined shear 
zone. 

The boundary conditions also matter. Mameri et al. ( 2021 ) dis- 
cussed the effect of boundary conditions with free slip/lithospheric 
pressure conditions given their viscoelastic rheology. In our mod- 
els, the north and south sides in Pure Shear scenarios are 
more restricted compared to Free Sides scenarios where mate- 
rial is free to flow along the shear zone and outwards the north 
and south sides. As shown in Fig. 8 , for either anisotropic or 
isotropic weak shear zone, Pure Shear scenarios give less strain- 
rate enhancement compared to Free Sides scenarios. The max- 
imum strain-rate enhancement occurs when δ = 65 ◦ and it de- 
creases with decreasing δ. Pure Shear isotropic weak shear zone 
produces less strain-rate enhancement compared to anisotropic 
scenarios. 

3.3 3-D shear zone with transversely isotropic and 

orthorhombic anisotropy under simple shearing 

We simulate 3-D shear zones with MM and HW transversely 
isotropic anisotropy and orthorhombic anisotropy under simple 
shearing. Fig. 9 shows the unit box that has the anisotropic zone 
enclosed by isotropic layers. The north side has a unit velocity 
along x . The top, bottom and south sides are free slip, and the east 
and west sides are periodic for both velocity and pressure. The vol- 
ume of the model does not change, compatible to the incompressible 
fluid assumption. 

Following the decomposition method in Browaeys & Chevrot 
( 2004 ), we can compute the contributions to viscosity from 

isotropic, transversely isotropic and orthorhombic symmetries. 
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Figure 9. Diagram of 3-D anisotropic shear zone under simple shearing. Two elementary rotations from local material coordinate system 1, 2 and 3 that define 
the Voigt form of viscosity matrix, to finite-element coordinate system x, y, z are shown. 
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etragonal and other lower symmetries such triclinic and mono-
linic in the viscosity are not included in this study. As a demon-
tration, we choose η = 1 , ηS = 0 . 1 , η1 = 0 . 3 , a = 0 . 6 and d = 0 ,
hich parameters give ∼76 per cent isotropic and ∼24 per cent

ransversely isotropic component weights for MM TI anisotropy,
nd ∼70 per cent isotropic and ∼21 per cent transversely isotropic
nd 9 per cent orthorhombic component weights for ORTHOR
nisotropy, analogous to the composition of elasticity tensor of
livine. 

We simulate models with θ from 0 ◦ to 90 ◦ at 10 ◦ step size, and β
rom 0 ◦ to 90 ◦ at 15 ◦ step size. Figs 10 (a) and (b) show the mismatch
f principal stress and strain-rate axes at the centre ( x = 0.5, y = 0.5
nd z = 0.5) of the anisotropic zone for ORTHOR and MM TI
nisotropy, respecti vel y. For θ = 0 ◦ or 90 ◦, the mismatch is zero for
oth ORTHO and MM TI anisotropy, consistent with results from
-D models. For other θs but same β, mismatch peaks at θ = 10 ◦

r 80 ◦ and decreases when θ changes toward 45 ◦. The mismatch
or MM TI anisotropy does not depend on β, as expected from
he fact that transversely isotropic anisotropy is isotropic inside the
(a) (b

igure 10. Angular mismatch of principal stress and strain-rate axes for (a) orth
nisotropy at the centre of the anisotropic zone in the 3-D model subjected to simp
eak plane. The mismatch angles are the same as the 1-D analyt-
cal solutions for same θs in Fig. 3 (a). In contrast, the mismatch
or ORTHOR anisotropy depends on β and increases when β in-
reases from 0 ◦ to 90 ◦ ( V ORTHOR 

33 < V ORTHOR 
22 < V ORTHOR 

11 ) for most
s except for θ = 40 ◦ or 50 ◦. For one θ , the spread of mismatch for
ifferent βs ranges from ∼5 ◦ ( θ = 10 ◦ or 80 ◦) to ∼2 ◦. HW trans-
ersely isotropic anisotropy gives the same mismatch angle results
o MM anisotropy. 

In addition to the β-dependence of mismatch for ORTHOR
nisotropy, it tilts the principal stress and strain-rate axes out of
he horizontal x –y plane. Figs 11 (a) and (b) show the dip angles of
xes of (a) principal stress and (b) strain rate at the centre of the OR-
HOR anisotropic zone for θs and βs. The axes of principal stress
o not dip much. Larger dips occur with θ > 40 ◦. The peak dip is
2 ◦ when θ = 80 ◦ and β = 30 ◦/ 45 ◦ (Fig 12 a). The dips of axes of

rincipal strain-rates show higher values when θ < 60 ◦ with peak
alue at ∼7 ◦ when θ = 20 ◦ and β = 45 ◦ (Fig 12 b). For transversely
sotropic anisotropy, the principal axes all stay inside the horizontal
–y plane. 
)

orhombic and (b) M ̈uhlhaus and Moresi transversely isotropic (MM TI) 
le shearing. 

s at Austin user on 19 Septem
ber 2024
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(a) (b)

Figure 11. Dips of axes of (a) principal stress and (b) strain rate at the centre of the orthorhombic anisotropic zone for different θs and βs. 

(b)(a)

Figure 12. (a) Finite-element model of the LRS model. The schist is at the centre of the model with west–east trending and vertically dipping schistosity. East is 
indicated. Dashed lines show the subducting of the Juan de Fuca plate. Except for the free surface, other boundaries are free slip. (b) Tetrahedral finite-element 
mesh generated by the open-source mesh generator Gmsh with refined mesh inside the schist. 
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3.4 Leech River Schist above the Cascadia subduction 

zone 

We expect that viscous anisotropy may arise from structural 
anisotropy like schist, rocks that has highly developed layered tex- 
tures, which are generally exposed and associated with subduction 
zone environments (e.g. Chapman et al. 2010 ; Bostock & Chris- 
tensen 2012 ; Chapman 2016 ; Xia & Platt 2017 ). It appears the 
schist may overlap on top of the subducting oceanic plate as recon- 
structed geolo gicall y in the souther n Califor nia case (Xia & Platt 
2017 ), though the schists were transferred to shallow depth in sub- 
sequent geologic episodes. If viscous anisotropy may cause non- 
coaxial stress/strain-rate axes and significant stress heterogeneity 
and enhance strain rates as we demonstrate in previous theoretical 
setups, the migration of schist and its close relation to subduction 
zones ma y pla y an important role in the tectonic deformation of 
the lithosphere. Here, we focus our attention to the non-coaxially of 
stress strain-rate axes from a regional wedge-shaped schist structure 
subjected to subducting loading. 

In Cascadia between southern Puget Sound and central Vancou- 
ver Island, the LRS, which is bounded by two north dipping thrusts 
forming a wedge (Bostock & Christensen 2012 , and references 
therein). The LRS rides on top of the subducting Juan de Fuca plate 
relative to North America. The schistosity, which is the parallel 
alignment of platy mineral constituents that reflects a considerable 
intensity of metamorphism, is generally west–east and vertically 
dipping and the relative plate motion direction is N56 ◦ E (Bostock 
& Christensen 2012 ). Fig. 12 shows a finite-element model and 
boundary conditions inspired by the LRS. The model domain is 
dimensionless and 10 by 10 by 3 along x , y and z , respecti vel y. The 
grid size inside the schist wedge is 0.1, which gradually increases 
to 1 near the model boundaries. The schist wedge is 2 by 1 on the 
free surface and vanishes at depth of −1. The schist is assumed to 
be with MM TI anisotropy and the weak viscosity is aligned with 
the general strike of the schist, which is ∼60 ◦ relative to the y -axis. 
The viscosity contrast is 10. 

Fig. 13 presents the principal stress and strain-rate axes on three 
orthogonal cross-sections, x–y plane at z = −0.5, y–z plane at x = 5, 
and x–z plane at y = 5, that cut through the schist, respecti vel y. The 
subducting loading and the wedge shape of the anisotropic regime 
are different from previous models and produce different stress and 
strain-rate axes patterns. 

In map view (Fig. 13 a), the whole schist shows non-coaxial stress 
and strain-rate axes with mismatch angles about 27 ◦ − 30 ◦. Strain- 
rate axes inside the anisotropic zone are largely aligned with those 
in the isotropic regime. The stress axes, on the other hand, are 
rotated away from those in the isotropic regime. The side view 
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(a)

(c)

(b)

Figure 13. Principal stress (black, longer bar) and principal strain-rate (red, shorter bar) axes of a horizontal cross-section (a) at z = −0.5, of two vertical 
cross-sections (b) at x = 5 and (c) at y = 5 that cut through the LRS. 
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n the yz plane (Fig. 13 b) also shows significant stress and strain-
ate non-coaxiality with mismatch angles increase with depth. The
ismatch could reach a notable 90 ◦ near the sharp wedge bottom.
he other side view on xz plane (Fig. 13 c) shows very limited
ngular mismatch of just a few degrees, when the subduction is near
arallel to the weak direction of the anisotropy. In addition, the stress
nd strain-rate axes dip out of the horizontal plane. The implication
s that loading style and the shape of anisotropic structure could
e important in producing mismatch between principal stress and
train-rate axes, and dipping principal axes. 

The results assume that the schist can be approximated with
ransversely isotropic viscous anisotropy and the deformation and
tress features reflect the current loading condition. The schist may,
f course, carry stress and strain signatures inherited from previous
ectonic episodes and is subjected to temporal change depending
n the viscosity of the structure and the time length-scale of in-
erest. Further exploration of observations of stress and strain-rate
rientations associated with the structure and a suite of models that
ave various viscosity contrasts would be helpful to differentiate
ignatures from present and inherited. 

 AN  APPR  O  ACH  TO  CONSTRAIN  

I SCOUS  ANISOTROPY  

he difference of stress and pressure between the isotropic and
nisotropic layers could influence mechanical processes in such a
ystem like a fault zone (e.g. Hardebeck & Michael 2004 ; Hirano
 Yamashita 2011 ). Non-coaxiality between principal stress and

train-rate axes from viscous anisotropy, such as due to SPOs and
POs, could be assessed quantitati vel y, and they can infer stress and
ressure heterogeneity. This motivates reassessment of independent
easures for inferring stress or stressing rates (e.g. Michael 1984 )

nd strain rates derived from geodetic constraints (e.g. Smith-Konter
 Sandwell 2009 ). Close to faults in southern California, the two
elds match in their alignment on broad scales, but there are also
ignificant local deviations (Becker et al. 2005 ; Yang & Hauksson
 h  
013 ; Schulte-Pelkum et al. 2021 ; Johnson 2024 ) which are ex-
ected to be of rele v ance for long-term tectonics as well as setting
ocal stress conditions for earthquake rupture. 

Schulte-Pelkum et al. ( 2021 ) discussed a wider range of de-
ormation indicators for southern California from the surface to
he asthenosphere mantle. They found general consistency with
-S compression and E-W extension near the surface and in

he asthenospheric mantle, but all lithospheric anisotropy indi-
ators deviate from such patterns. One interpretation was de-
or mation memor y from the Farallon subduction and subsequent
xtension. 

Notably, a comparison of focal mechanism-based principal stress
xes (Yang & Hauksson 2013 ) with GNSS-derived principal strain
ates (Sandwell et al. 2016 ) shows an angular mismatch with a
eaked distribution centred on an azimuth (CW from N) of −6 ◦ with
 standard deviation of 19 ◦ (Schulte-Pelkum et al. 2021 ). Based on
ur results (Fig. 3 a), the observations may indicate mild mechani-
al anisotropy of viscosity contrast of 2–10 in the region for nearly
ll the θ if we assume the weak anisotropy were parallel to the
imple shearing loading. The higher viscosity contrast of 100 is
lso possible if 20 ◦ < θ < 70 ◦. It could be also possible that the
nisotropic structure is subjected to misoriented shortening or addi-
ional factors should be considered such as more complex loading
onditions, special shapes of structures, inheritance from previous
eodynamical processes, and combinations of any few. For mis-
riented orthorhombic anisotropy or the case of LRS where the
oading is oblique to anisotropic regime with special shape, dips of
rincipal axes could be used to infer mechanical anisotropy if they
ere measurable. Alternative sources that can help narrow down
andidate scenarios are helpful. 

The non-coaxiality of principal stress and strain-rate is more visi-
le if the loading direction is misoriented from the weak anisotropic
irection (cf. Ghosh et al. 2013 ). The case of LRS and the structure
n southern California illustrate that the combining condition of
isoriented loading and weak anisotropy (such as schistosity) may

e common in nature. In addition to non-coaxial principal axes,
eterogeneity of stress and pressure, and enhanced strain rate may
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occur as well. For example, using teleseismic receiver functions, 
Audet ( 2015 ) finds that the plane of fast velocity strikes parallel 
to the SAF, while dipping mildly throughout the crust near Park- 
field. He interprets the mid-crustal anisotropy as fossilized fabric 
within fluid-rich foliated mica schists. Our results suggest that het- 
erogeneity of stress and pressure might indeed be induced by the 
mechanical anisotropy of the schist, which could influence the stress 
distribution in the region and nearby earthquakes. 

5  CONCLUS ION  

We present a 1-D analytical solution to a viscously anisotropic layer 
subjected to simple shearing which predicts significant stress het- 
erogeneity and non-coaxial stress and strain rates. Observations of 
the non-coaxiality and dips of principal axes could give us con- 
straints on mechanical anisotropy in nature. Such analysis may be 
possible, for example, by comparing stress inversions from focal 
mechanisms, surface strain rates from geodetic measurements and 
integrated strain from seismic anisotropy (Schulte-Pelkum et al. 
2021 , and references therein). 

To accelerate such studies, we develop an open-source finite- 
element code using FEniCS , verify the 2-D version of the code 
against the analytical solution, and explore several 2-D and 3-D 

illustrative cases with various loading styles, transversely isotropic 
and orthorhombic anisotropy, and the wedged shape LRS above 
the Cascadia subduction zone. We hope that this exploration of 
mechanical anisotropy for tectonic problems and our new imple- 
mentation will help advance model and verification of mechani- 
cally anisotropic lithospheric models, and their implications, from 

long-ter m plate boundar y evolution to fault loading and rupture 
propagation. 

DATA  AND  SOFTWARE  AVAILAB IL ITY  

STATEMENT  

The FEniCS codes, the MATLAB code for the analytical solution, 
and MATLAB post-processing scripts for the figures, simulation re- 
sults, and documentation are hosted in the GitHub repository https:// 
github.com/dunyuliu/Toolset for Mechanical Anisotropy . FEniCS 
is available via https://fenicsproject.org/ . We use the latest stable 
release of le gac y FEniCS v ersion 2019.1.0. The link to Stokes tuto- 
rial is https://fenicsproject.org/olddocs/dolfin/1.3.0/python/demo/ 
documented/stokes-iterative/python/documentation.html MATLAB 

is available via https://www.mathworks.com/ . Academic Li- 
cense is used in this work. Gmsh is available via 
https://gmsh.info/ . Fabio Crameri’s colour maps are used 
(Crameri 2018a , 2018b ). 
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