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Fast Analytical Subduction Technique (FAST): Description and Evaluation

el. General overview

We use the approach of Royden and Husson (2006) to calculate the geometry of
subducting slabs and how it evolves over time, the velocity of the lithospheric plates
outside of the subduction zones, and all stresses acting on the surfaces of the slabs, on the
base of the plates, and transmitted along the slabs and plates. However, we use improved
approximations for viscous flow, especially on the large (regional) scale, and have added
frictional stress-coupling between the slabs and overriding plates. We refer to this method
as “FAST” (Fast Analytical Subduction Technique).

We calculate the forces related to slab buoyancy, lithostatic overburden, and viscous
flow in the asthenosphere analytically, and apply these at the slab surfaces. The slabs are
treated as thin viscous sheets and bending of the slab is calculated at each time-step using a
standard finite difference method. The bending deformation of the slab is the only
discretized numerical computation used besides simple numerical integration and
differentiation of the analytically-computed stresses on the slab surfaces.

As implemented, FAST consists of five sets of calculations that are repeated at each
time-step. We begin each time step with the velocities of the plates, the geometries of the
slabs, and the velocity of each point along the slabs as computed during the previous time-
step.

1) The first set of calculations at each time-step involves derivation of the large-
scale flow of asthenosphere that is driven by imposing the velocities and
geometries of multiple slabs and plates as computed in the previous time step
(Fig A1). We approximate large-scale flow in the asthenosphere as a Hele-Shaw
flow (e.g. Batchelor, 1970). From this, we derive an analytical expression for the
stresses on the base of the plates and the stresses that provide boundary
conditions on the local viscous flow (Fig. e1).

2) Second, we adjust the slab-parallel component of the down-going plate velocity
in order to maintain the desired configuration of the surface plates. The exact
criteria for resetting the velocities depend on the geometry of the slabs (i.e. how
many, what subduction polarity, etc.). The way in which the velocities are
adjusted at each time-step can be used for systems where the velocity of one or
more plates is prescribed in advance, or for free subduction where no a priori
velocities are prescribed and the net horizontal force on the entire system is
maintained at zero (or some other desired value).
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Figure el. Slab and plate geometry used for calculations described in the main text and in
this supplement. (Left) Geometry of the double subduction system as applied to the
convergence of India and Eurasia. The dashed line shows the location of the extinct spreading
ridge assumed to have existed north of India prior to 120 Ma. (Right). Red lines with arrows
illustrate the phenomenon of toroidal flow of asthenosphere around the moving slab,
which is approximated as a vertical boundary for computing the regional flow field.

3) We calculate and adjust the degree of plate coupling at lithospheric depths
through a combination of topographic loading at the subduction boundary and a
frictional criterion for shear coupling. In particular, we adjust the height and width
of the topographic load above each subduction boundary and a coefficient of
frictional sliding that acts between the overriding and down-going plates. For the
geometry used in this paper, this adjustment acts to maintain zero net horizontal
force on plate A and also on the combined plate B+C (Fig. e1). (The net vertical force
on each plate is always zero.)

4) We derive the local viscous flow in the asthenospheric wedges above and below the
slabs, and the associated stresses acting on the slabs (Fig. e2). This solution is
embedded within the previously computed solution for large-scale viscous flow. In
practice, only the viscous pressure to be applied to the open ends of the
asthenospheric wedges, adjacent to the slabs, is needed to compute the local viscous
flow and associated stresses on the slab. The method used is akin to that described
for calculating local flow in Royden and Husson (2006) except that we use a slightly
different analytical approximation for flow in the viscous wedges and include the
additional stresses due to the local development of topography and frictional
coupling between plates at lithospheric depths.

5) We derive the new slab geometry resulting from all sources of stress applied to the
slabs. These include slab buoyancy, viscous pressure, viscous shear stress, frictional
stress, and the pressure due to the overburden on the slab (Fig. e2). This is
accomplished by solving the fourth-order ordinary differential equation for bending
of a thin viscous or elastic sheet.
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Figure e2. Slab geometry used for calculations described in this supplement. Left panel
illustrates the location where pressure P, and Pp, computed in the large-scale flow solution
(supplement section e2), are applied to the local solution as boundary conditions. Right
panel shows the location of the rectangular topographic load that adds to the normal and
frictional shear stresses on the slab (supplement section e5). The orientation and sense of
the stress due to static sources (normal stress and frictional shear stress at lithospheric
depths and slab buoyancy) are shown in black, those due to viscous flow of the
asthenospheric are shown in red.

This scheme yields a new set of velocities for all the plates, a new set of velocities for
each point on the slabs, and a new value for the total horizontal component of force acting
on each of plate elements in the system (these elements are plate A, plate B+C, and plate D
in Fig. e1). These newly computed values are used to advance the model geometry to the
next timestep. Each of these five steps is described in more detail in the following sections.
At the end of this supplement, our results for double and single slab subduction are
compared to those derived from the fully numerical, finite element software, CitcomCU, for
a simple set of single and double subduction systems.

e2. Calculating large-scale viscous flow in the asthenosphere

We develop an analytical approximation for the large-scale flow and associated
stresses that result from a series of subduction zones, spreading ridges and transform
faults with a geometry similar to that shown in Fig. el. Here, a series of parallel subduction
boundaries (which may dip in either direction) and spreading ridges are assumed to have
the same length along strike, equal to 2A. These plate boundaries are confined laterally by
transform faults with the appropriate sense of motion. The plate velocities outside the
transform faults are constrained to be uniform throughout each plate (the velocities of the
side plates do not affect the results so long as there is only one side-plate on each side of
the system of subduction boundaries).
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For the purpose of approximating the large scale viscous flow, we treat each
subduction boundary as a vertical plane extending from the surface to the base of the
upper mantle (Fig. e1). Viscous flow at this scale is treated as a Hele-Shaw flow (Couette
flow that is irrotational in the x-y plane, see Batchelor, 1970) with a uniform Newtonian
viscosity, u. The horizontal velocity at the base of the upper mantle is set to zero
everywhere and all plate velocities, v, are calculated relative to the top of the lower
mantle (boldfaced symbols indicate vector quantities). If there are a total of / plates (not
including the plates outside the transform boundaries), we designate each plate by an
index j, and denote the velocity of each plate as v,;.

For Hele-Shaw flow, velocities in the asthenosphere are related to the lateral
pressure gradient by:

(z? — zh) (h—2)
=VP|——= — 1
V=V l 20 + v, A e
where Vand P are velocity and pressure, respectively. The vertically averaged flow velocity
is then:
_ h? v e2
=-vp|—|+2
%4 v < 1 2#) + >

Conservation of mass (assuming an incompressible fluid) requires V- V = 0, so that:

vep () = v 3
a = vp. €

Solving for the large-scale viscous flow is equivalent to finding a solution for P that
satisfies eq. (e3) everywhere except on the surfaces of the slabs; on each slab surface, P

must satisfy eq. (e2) for V equal to the horizontal velocity of that slab (relative to the top of
the lower mantle). This can be accomplished using a variety of techniques. Here we choose
a simple analytical solution that is applicable to the plate and slab geometries shown in Fig.
el.

For the plate system in Fig. el, the plate velocities have only a y-component and the
velocity is uniform over each plate. Let us denote the y-component of velocity of the jth
plate as v,,; and let the location of the plate boundary (whether divergent or convergent)

between plates j — 1 and j be located at y = y;. The Laplacian of P is then given by:

e4
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\

The solution for P that satisfies this equation is, to within an arbitrary constant:

J
_ . o . x—/l)_ _1(x+/l>l
P(x,y) ;A] {(y yJ) [tan (y — tan S

x—A 2 e5
+< 5 >ln[(x—/1)2 +(y—y;) ]
x+A 2
—( 5 >ln[(x+/1)2 +(y—yj) ]}
where the coefficients 4; are:
3u
4j = (W) (V-1 = v)- e6
The derivatives of pressure with respect to x and y are:
apP : A
ToND — /)2 —v.)*] = 2 —v.)?
ax—ZZ{ln[(x A) +(y y]) ] ln[(x+/1) +(y y]) ]} e7
]:
J
dopP [x—A [x+A
— = ZA]- tan™ — tan™ e8
Iy & Y=Y Y=Y

Combining egs. (e2) and (e6-e8) yields the portion of the vertically-averaged velocity of the
asthenosphere that is driven by the motion of the plates. We denote this velocity field as

v,
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Fig. e3a shows the y-component of the vertically-averaged velocity that results from
a single divergent or convergent boundary over the domain |x| < A for several values of y.
For all values of y, the magnitude of the y-component of velocity at x = 0 is fairly
representative of its value over all |x| between 0 and A, particularly for |x| <€0.75A. Thus,
for ease of calculation, we use the vertically-averaged velocity at x = 0 as an approximation
for the y-component of velocity over the entire interval |x| < A, for all values of y.
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Figure e3. (a) The vertically-averaged velocity (y-component) that results from divergent
or convergent motion of the overlying plates at a single plate boundary. Velocity is
normalized to be one at the plate boundary. (b) The vertically-averaged velocity that
results from motion of a single vertical slab. The velocity is normalized to be one at the
plate boundary. x/A and y/A are normalized x- and y-components of distance from the
center of the plate boundary using the coordinate system of Fig. el.
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The next task is to determine the vertically averaged flow that is contributed to the
system by the horizontal velocity of each slab, which we approximate as a vertical
boundary extending from the surface to the base of the upper mantle (and which we will
refer to as a “slab” for the remainder of this section, Fig. e1). For K subduction systems, we

can denote the velocity of the k-th slab relative to the top of the lower mantle as V. We
define a residual velocity for each slab:

VRk = Vk - Vpk e9

where Vpk is the vertically-averaged velocity induced by the motion of the plates, as
measured in the center of the k-th slab.

We seek a velocity field that matches Vg, at each of K slabs and that satisfies
V2P = 0 elsewhere else. This is best accomplished in an elliptical coordinate system:

x = Acosh(4;) cos(ay), e10
(y — yx) = Asinh(4;,) sin(ay,) ell

with g, between -rand «and A; between 0 and +oo. We choose Px to be of the form:

P, = Z ABy,e ™ ksin(noy,) el2

n=1

where the By, are coefficients to be determined. This expression satisfies V2P = 0
everywhere except at 4, = 0, which corresponds to the surface of the slab.

We can prescribe any desired y-component of velocity on a single slab by setting 4,
= 0, taking the appropriate derivatives, and using Fourier decomposition to solve for
velocity. Although it is easiest to carry out calculations in elliptical coordinates, we use
Cartesian coordinates for the sake of presentation, where we invert to find:

1
cos?(0) = 5z {42 422+ =3 )?] =T+ 22 + & = yID? —4dPxP)  el3

sin?(0y) = 5z (47 = 2% = 0 =y 2l + P T 27+ O -9 —4%%7)  e1a

1
cosh?(4;) = 2 {[/12 +x2+ =y ]+ W2+ 22+ (y — y)D)? — 4A2x2} 15

1
sinh?(A) = 525 {[—/12 +x% + (7 =y + (A2 + 32+ (7 — yi)?)? — 4A2x2} 16
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The general expression for the pressure that results from imposing a uniform
velocity on a single slab surface can be obtained by substituting eqgs. (e13 - e16) into eq.
(e12). This expression is lengthy in Cartesian coordinates and we omit it here. The
corresponding y-component of the vertically-averaged velocity can be obtained by
differentiating the resulting expression and substituting into:

K

v Zapk h? el7
S dy \12u

k=1

where the lack of boldface indicates the y-component of velocity.

The solution that, for a single slab, yields a uniform velocity across the slab occurs
when all coefficients are zero except for n = 1. By inspection of eq. (e12), the n = 1 solution
produces a step-change in pressure across the slab that is greatest at the midpoint of the
slab (x = 0), zero at the edge of the slab (x = A), and varies as sin(mx). The subduction
velocity of the slab (as calculated in section e6) is highly sensitive to this step-change in
pressure across the slab, which is used as a boundary condition for calculating the local
viscous stresses (section e5). Because the pressure in the center of a slab is more important
in driving viscous flow than that near the edge of the slab, we use the viscous pressure
computed at x = 0 as the boundary condition for integration of eq. (e29), which is derived
later in this supplementary section. Arguably, one might wish to use the average pressure
across the slab instead, which is (2 /) times the pressure at x = 0.

Fig. e3b shows the y-component of the vertically-averaged velocity that results from
solutions to eqs. (e12) and (e17) for n = 1. For all values of y, the magnitude of the y-
component of the vertically-averaged velocity at x = 0 is representative of its value for |x|
between 0 and 0.754, especially for (y — y,) > A/2. For ease of calculation, we again use
the vertically-averaged velocity at x = 0 as representative of the y-component of velocity
over the interval |x| < A, for all values of y.

Considering only velocities that lie along the midline of the slabs and the plates, we
can write the greatly simplified expression for pressure at x = 0:

Pe(0,7) = B (VAZ+ &= y07 = Iy = ) (%) e

(Note that this has a step change value across the slab at y = yx). Taking the corresponding
derivative with respect to y yields:

aP,
dy

3 ( ly — vl )
— k - .
x=0 \//12 + v — yi)? el9
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Lastly, the vertically-averaged y-component of velocity that results from the motion
of all K slabs, calculated along the midline at x = 0, is:

K

- B h? ly—wl
Vs(0,y) = Z By <12u> NIRRT 1] : e20

k=1

The coefficients By are obtained by setting V equal to Vg, at the position of all K slabs:

K
— — — h? |Vier — Vil
Vir = Vo + Vs (0, y5) = Vi + Z By, < > < -1 e2l
k=1 12u) \J 22 + s — y1)?

where the lack of boldface indicates the y-component of velocity. The appropriate values of
By can be found by matrix inversion for multiple slabs (and are trivial to calculate for one or
two slab systems such as those considered in this paper).

Once the Brare obtained, the vertically-averaged velocity and the pressure at any
point in the system can be found by combining the foregoing equations. Along the midline
of the slab, the total pressure from all sources is:

0= Y |2 - ()| -+ -]

j=1 e22
K
ly — vl
+ ) B (VA2 + = y)? = |y = i <—>
; "( " ") v — i)

Eq. (e22) gives the total pressure field into which we imbed our solution for the local
viscous flow in the mantle wedges above and below the slab.

In choosing the precise pressure boundary conditions for the open ends of the
mantle wedges above and below slab k, we identify the points where, (a), the slab descends
beneath the overriding lithosphere (typically 80-100 km depth) and, (b), the end of the slab
where it nears the base of the upper mantle (Figs. el and e2; see also Royden and Husson,
2006, for discussion of how the slab end is defined). The location of yx is defined at the
midway point between (a) and (b). The pressure that is used as a boundary condition for
the open end of the mantle wedge above the slab is that calculated at location (a); the
pressure that is used as a boundary condition for the open end of mantle wedge below the
slab is the pressure calculated at location (b). In general, it is only the pressure difference
between (a) and (b) that is significant.

Outside of each subduction boundary, the y-compnent of shear stress on the base of
each plate, integrated from positions y; to y», is:
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2 P(y1) —P(y2)  vpu
Tyzdxz k 2 : + I;l (yl_yZ)-

e23

e3. Adjustment of slab-parallel velocities

For the two-slab system used in this paper, we are concerned with a coupled system
of two synthetic (i.e. dipping in the same direction) subduction boundaries. The plate that
corresponds to Eurasia (plate D in Fig. e1) needs to be held fixed with respect to the top of
the lower mantle at all times. The velocities of the intermediate plates, between the two
subduction boundaries (plates B and C), need to be kept equal, effectively merging them
into a single plate, BC. The magnitude and sign of their joint velocity is not known a priori.

In the method used to calculate the bending deformation of each slab (described in
section e6), we cannot prescribe the velocities of the overriding (non-subducting) plates.
Instead, we calculate the new slab geometry and the velocity of the overriding plate
simultaneously from a set of criteria that include the slab-parallel velocity of the down-
going plate. Thus, for the two-plate system described in this paper, we can only specify the
velocities of plates A and plate C at each time step.

In order to maintain the desired velocities of plates B (equal to that of plate C) and D
(equal to zero) we must adjust the slab-parallel component of velocity for plates A and C
appropriately at each time-step. For example, for the plate system used in this paper, if the
computed velocity of plate D is greater than zero in the previous time-step, we adjust the
slab-parallel velocity of plate C downward; if the computed velocity of plate D is greater
than zero in the previous time-step, we adjust the slab-parallel velocity of plate C upward.
Typically we adjust the velocity by 1/4 or 1/8 of the difference between the computed and
the desired velocity of plate B at each time-step. We perform a similar adjustment for plate
A velocities to keep the velocity of plates B and C equal.

We can adopt a similar procedure when the subduction system is “free”, i.e. there
are no prescribed velocities on any plate in the system. In this case, we wish to keep the net
horizontal force on the entire system equal to zero. By way of example, in a system with a
single subduction boundary, we would derive the pressure that acts on both sides of the
vertical slab boundary and the shear stresses that act on the base of both plates from our
regional-scale calculations (section e2). We then sum the pressure on each vertical “slab”
surface, multiplied by the height of this vertical “ slab”, and the shear stress integrated over
the base of both plates. If this sum is greater than zero, we decrease the velocity of the
foreland lithosphere going into the next time-step (typically by 1 mm/yr for each .01 m.y.
timestep) or vice versa. This method of force balance was not needed in this paper because
the velocity of the Eurasian plate (D) was fixed at zero regardless of the net horizontal force
acting on it.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience n

© 2015 Macmillan Publishers Limited. All rights reserved


http://dx.doi.org/10.1038/ngeo2418

SUPPLEMENTARY INFORMATION DOI: 101038/ NGEO2418

e4. Plate coupling

We adjust the degree of plate coupling at lithospheric depths through a combination
of topographic loading at each subduction boundary and a frictional criterion for shear
coupling. An increase in topographic elevation over the down-going slab is applied as an
additional normal stress on the subducting plate. This additional normal stress is T(0c-pw)g
whenever the “topography” is below sea level and Tp.g for topography above sea level. (T
is topography, p. is crustal density, pw is water density and g is acceleration due to gravity.)
The topographic load is applied over a specified width and extends from the position where
the down-going plate passes beneath the overriding plate toward the trench. Shear stress is
set equal to a coefficient A times the normal stress acting at each point along the plate
interface.

The goal of this exercise is to maintain zero net horizontal force on plate A and on
the combined plate BC. At each time-step, the topographic load and the coefficient of shear
coupling are adjusted independently for each subduction boundary in order to maintain
the desired force balance.

We begin at time zero with no topographic load and a frictional shear coefficient
A=0.3. Subsequently, if the net horizontal force acting on plate A is computed to be less than
zero in the previous time-step, we adjust the topographic elevation, the width of the
topographic load and the coefficient of shear coupling upwards for the next time-step
(typically by 50 m, 5 km, and .001 respectively). We do the opposite if the net horizontal
force acting on plate A is computed to be greater than zero in the previous time-step. We
limit the width of the topographic load to a maximum of 400 km and constrain A to be
greater than or equal to zero. In this paper, during double subduction, the boundary
between plates A and B (Trans-Tethyan subduction system) typically developed T~2.5 km
with a width of ~250 km and A~0.5. The boundary between plates C and D (Andean margin
of southern Eurasia) typically developed T~4 km with a width of ~400 km and A~0.8. Note
that these are heights above the incoming sea floor, not height above sea-level.

e5. Calculating local viscous flow in the asthenospheric wedges

The system that we use for calculating viscous flow and stresses in the mantle
wedges above and below the slab is similar to that described by Royden and Husson (2006)
except that we use a uniform viscosity (instead of their more complex two-layer viscosity)
and assume a slightly different mathematical form to approximate flow within the wedge.
We treat the local viscous flow in the mantle wedges as invariant in the trench-parallel (x)
direction, so that we need only concern ourselves only with flow in the y-z plane. This is a
reasonable approximation provided we are not concerned with flow close to the lateral
boundaries of the slabs and that the trench-parallel width of the slab is not too narrow (see
Royden and Husson, 2006, for discussion).

Consider the stream function:

Y = r[E cos(0) + F sin(0) + GO cos(0) + HO sin(0)]. e24
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For constant E-H, this is the exact solution for viscous flow in an infinite, uniform-geometry
wedge with uniform velocities applied along the radial boundaries of the wedge. To
compute flow in the somewhat non-uniformly shaped viscous wedge that lies above the
slab, we treat the upper surface of the wedge (defined as 6=0) as a horizontal boundary
coincident with the base of the overriding plate (Fig. e2). The lower surface of the wedge is
coincident with the upper surface of the slab and may be gently undulating; locally this we
assign this surface a slope 6,(r) where, if d is the vertical thickness of the wedge at any
point, r is defined as r=dsin(6,).

Because the lower surface of the wedge is not exactly planar and the velocities on
that surface are not completely uniform, we allow the coefficients E-H to be functions of r
but consider their derivatives with respect to r to be negligible. Neglecting all terms that
involve differentiation of velocity with respect to r, we obtain:

Y

Vg = ar e25

b _10¥

10v, vy
o * M\ %50 ~ 7 e27
Trr = —Tgg = 0

e28

0P 16‘[7«9
or 1 06 e29

The boundary conditions that we apply at =0 are a uniform radial (horizontal)
velocity, v, and zero tangential (vertical) velocity. The boundary conditions along the base
of the wedge are a radial velocity v- and a tangential velocity vy, both of which may vary
along the lower surface of the wedge. For these boundary conditions and under the
assumption that derivatives of E-H with respect to r are negligible, we obtain £=0 and:
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0052~ o, sin(0) — (£ ,) [sin(6,) + 0, cos(6,)]

F= 30
6, — sin? (6,) ¢
v, sin?(6,) + vy,0, sin(6,) + (% 1,[10) [sin(6,) + 6, cos(6,)]
G = 31
6,% — sin? (6,) ¢
. . 1 .
u v.[6, — cos(8,) sin(8,)] + v,,[sin(8,) — 6,cos(6,)] + (Fwo) 6, sin(6,) e32
B 6,% — sin? (6,)
where:
.
Y, =f Vg, OT. e33
T,

o

The corresponding velocities, shear stresses and dP/dr on the upper and lower
boundaries of the wedge can be found by substituting these expressions into eqs. (e25-
e29). The viscous pressure on the slab can be found by requiring that the viscous pressure
at the open end of the wedge be equal to that obtained from the calculation of large-scale
flow (section e2 and Figs. el and e2), and by integration of eq. (e29) over r. An equivalent
calculation can be made for the mantle wedge beneath the slab.

The shear stress and the normal stress due to viscous flow in the wedge vary
approximately as 1/d, being largest (in magnitude) at the narrow end of the wedge. The
termination of the viscous wedge at its narrow end is described by Royden and
Husson (2006), and is the region where the pressure required to flux asthenosphere into
and the narrow end of the wedge is equal to the lithostatic pressure at the back end of the
static frontal wedge (Fig. e2). In essence, the applied pressure boundary conditions at the
open end of the mantle wedge affect the local solution such that: when the pressure above
the slab decreases, there is an increase in the upward force acting along the slab surface,
inhibiting subduction, and vice versa. The converse is the case for the pressure boundary
condition applied to the mantle wedge below the slab.

In this manner, the viscous pressures due to large-scale flow are carried into the
local flow solutions and affect the pressure at every point on the slab. Embedded in the
pressure boundary conditions on local flow are the effects of the large-scale geometries
and velocities of all plates and slabs. Thus the local flow calculations are always conducted
within the stress field generated by the large-scale flow.
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e6. Calculating flexural bending of the slab

In the last step we compute the flexural bending of the slab in response to all the
applied loads. The slab is not allowed to stretch in a direction parallel to the down-dip
direction. We use a thin-sheet approximation for bending of a viscous slab that is correct
for all slab dips (unlike the standard expression for flexural bending, which is a small-angle
approximation). We choose to use a variable, H, defined as:

H(s) = j 6, 3s ¢34
S

where s is the up-dip distance from the end of the slab. Although closely related to the
vertical deflection of the slab, H has the advantage that it is numerically more tractable at
dips near vertical. H has units of length and, where the slab dip is small, is effectively equal
to the vertical deflection of the slab through the small angle approximation for sin(8,).

The flexural equation for bending of a thin viscous sheet is:
02 02H 02H
352\ gz |t e 57 = Z on(s) e35

all
sources

where D, is the viscous flexural rigidity of the slab and H indicates the derivative of H
with respect to time. The g,, are the normal stresses, including the appropriate component
of slab buoyancy, that act on the slab at s, and c(s) is the compressional force along the slab.
D, is related to the slab viscosity, ug, and slab thickness, L, by:

L3
Dy =15 m e36
and c(s) can be computed from:
N S
c(s) = cos(@o)j 0,(s) s — sin (Bo)j 0,(s) ds e37
0 0

where o, and o, are the horizontal and vertical (including slab buoyancy) components of
stress on the slab.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience 15

© 2015 Macmillan Publishers Limited. All rights reserved


http://dx.doi.org/10.1038/ngeo2418

SUPPLEMENTARY INFORMATION DOI: 101038/ NGEO2418

16

Eq. (e35) is not stable for numerical solution by finite differences. We define o, as
the viscous stresses that act normal to the upper and lower surface of the slab. We also
define p;, as the density of infilling material above the subducting plate in each location; it
is equal to the density of the asthenosphere, p,, where the subducting plate is overlain
directly by asthenosphere. Letting Ap = (p, — pin), and noting that c(s) is generally
negative, we transform (e35) for negative a,,:

9% [ 0°H 2% [lopnl  ApgWe] -
—<Dv—>+c(s)At 4 (Ll | 200 "ldl}fz

ds? 0s? 0s?  |H,yg Howa
929¢ A e38
ld PIWoia| -
—c(s) aS;’ + oyl + Tz:] Hoq + Z on(s)

all
sources

where the subscript “old” refers to values from the previous timestep. We solve this
differential equation for H through a decomposition technique for inverting 5-band
matrices.

Written in Fortran and compiled, this technique typically produces 3D subduction
results in a matter of seconds on a typical laptop computer. Results for the two-slab case
shown in Supplement B were computed in approximately one second, while results for the
Himalayan case computed in the main text were computed in approximately 15 seconds.

e7: Evaluating the Fast Analytical Subduction Technique (FAST)

A complete evaluation of the subduction model presented here is beyond the scope
of this supplementary section, but we include a short section comparing semi-analytical
model results of FAST to those generated by the fully numerical code CitcomCU for single
and double subduction, section B1. All parameters used in FAST in this supplementary
section are identical to those used to generate the results in the main text, except for plate
length and width and slab buoyancy, and are given in Table el. In particular, the viscosity
and density of the asthenosphere, the thickness and viscosity of the lithosphere, and the
loading and plate loading and coupling mechanisms are identical, with the identical
parameter values.

The finite-element code CitcomCU (Moresi & Gurnis, 1996; Zhong, 2006) solves the
equations governing convection in an incompressible viscous fluid without inertia, in the
Boussinesq approximation, and, in our case, zero internal heating. In this section,
subduction is modeled in a 3-D box with a dimensional height of 660 km, length of 5280
km, and width of 5280 km (symmetry about the midline allows a width of 2640 km to be
used for the computations). The lithospheric plates have an initial uniform thickness of 80
km and uniform initial temperature of 273 K. The lithosphere is initially 85 kg/m?3 denser,
and a factor of 500 more viscous than the surrounding mantle, which has a density and
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viscosity of 3300 kg/m3 and 1.4-1020 Pa s. Density is a linear function of temperature, and
viscosity has a Frank-Kamenetskii (1969) temperature dependence.

Subduction is initiated by prescribing an asymmetric lithospheric geometry in the
trench region of the subducting plate, in the form of a quarter-circle notch, which extends
to a depth, and has a radius of curvature, of 150 km (e.g. Enns et al., 2005). To decouple the
subducting plates from the upper plates, we insert a 15 km thick, weak crustal layer within
the subducting plate (e.g. Béhounkova & Cizkova, 2008). The crust extends along the length
of the subducting plates and has a constant viscosity of half that of the mantle, and no
additional density component. The crust is defined using compositional tracers, which are
advected in the flow field. In order to accurately resolve the 15 km thick crust at the plate
boundaries, we locally refine the fixed mesh: In close proximity to plate boundaries,
elements have dimensions of 6.5 km and elsewhere they are 13 km wide. 40 compositional
markers are initially contained within each of the elements. Regarding boundary
conditions, the upper boundary has a constant temperature of 273 K and the base and sides
have zero heat flux. Mechanically, all boundaries are free slip.

The geometry used for comparison between CitcomCU and FAST is identical to that
shown in Fig. e1, and consists of lithospheric plates with a trench-parallel width of 2000
km (and side plates) with a total, trench-perpendicular plate length is 3960 km. Three
subduction geometries were analysed. First, a double subduction system where all three
plates are 1320 km in length and both slabs dip in the same direction. Second, a single plate
subducting in two geometric configurations, but with an equivalent total plate length of
3960 km: a), a short subducting plate (1320 km) beneath a long overriding plate (2640 km)
and, b), a long plate (2640 km) subducting beneath a short plate (1320 km).

In comparing FAST to CitcomCU, we matched as many parameters as possible. Plate
thickness, buoyancy, viscosity, and the density of the mantle and of the asthenosphere were
identical. However, there are differences between the two models that cannot be easily
removed. These include differences in the normal and shear stress conditions used in plate
coupling; FAST uses a frictional stress criteria with the development of topography while
CitcomCU uses a weak viscous interface. In FAST, the plates are not allowed to stretch in a
down-dip direction, while there is significant stretching of slabs and plates in the numerical
model results. In CitcomCU, the deep end of the slab remains at the base of the upper
mantle following subduction while it is removed from the model in FAST. Lastly, FAST is
not specifically designed for situations where the slab does not extend to the base of the
upper mantle because the large-scale flow calculations assume that asthenosphere cannot
flow under the end of the slab. Nevertheless, we show results from FAST from times before
the slab end reaches the base of the upper mantle.
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Despite the differences between various aspects mechanical aspects of the semi-
analytical and numerical models, the results of both models are very similar for all three
subduction geometries (Fig. e4). Most importantly, the absolute and relative plate
velocities are very similar for all three subduction geometries after the ends of all slabs
have reached the base of the upper mantle (after about 6 m.y.). Surprisingly, the “ramp up”
portion of the subduction process, before the slabs reach the base of the upper mantle,
were also in good agreement. Experimentation with the semi-analytic modeling indicates
that many of the small differences in rates between the two models can be attributed to
plate stretching in the numerical modeling runs.

250

Fixed Upper Plate

200
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100
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50

time (my)

Figure e4. Comparison of CitcomCU (dashed lines) and FAST (solid lines) for single
subduction (green and blue lines) and double subduction (red lines) systems, the latter
with the geometry shown in Fig. e1l. The double subduction system is initiated with three
plates of length 1320 km while the single subduction systems are initiated with a
downgoing plate length of 1320 km and an overriding plate length of 2640 km (green lines)

or a downgoing plate length of 2640 km and an overriding plate length of 1320 km (blue
lines).
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Table el. Values and Parameters Used in FAST Subduction Calculations in Main Text

Time step 10,000 yrs
Node spacing 5 km

Depth to base of upper mantle 660 km
Asthenosphere viscosity 1.410° Pas
Slab viscosity 7.010” Pa s
Lithospheric thickness 80 km
Asthenosphere density 3300 kg/m’
Static frontal wedge, infilling density 3000 kg/m’
Initial coefficient of friction at plate interface' 0.3

Slab width (trench parallel) before 85 Ma 10,000 km
Slab width (trench parallel) after 70 Ma 3000 km
Buoyancy of old oceanic lithosphere, equivalent water depth 6000 m
Buoyancy of oceanic lithosphere with age, equivalent water depth” | 2500 m + 350 m m
Buoyancy, continent, equivalent water depth 0m
Kshiroda plus Indian plate lengths at 120 Ma 9300 km
Indian plate length at 120 Ma’ 5900 km
Indian plate, oceanic part, (neo-Tethys) length at 120 Ma’ 2400 km
Indian passive margin length (north side)’ 500 km
Indian continent length (without northern passive margin) 3000 km
Indian plate oceanic (Neo-Tethys) depth at 120 Ma’ 40 mm/yr spreading at ridge
Kshiroda plate length at 120 Ma’ 3150 km
Kshiroda plate water depth (all times) 6 km
Kohistan arc width 250 km

'varies through time reaching ~.05 for the southern system and ~.08 for the northern subduction

system
“not to exceed 6 km depth

*not including lithosphere that has already entered the subduction systems

*buoyancy varies linearly with distance across the margin

>full spreading rate; ridge located 1800 km north of the Indian margin; spreading ends at 120 Ma
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