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SUMMARY1

Evidence of seismic anisotropy is widespread within the Earth, including from individual crys-2

tals, rocks, borehole measurements, active-source seismic data, and global seismic data. The3

seismic anisotropy of a material determines how wave speeds vary as a function of propaga-4

tion direction and polarization, and it is characterized by density and the elastic map, which5

relates strain and stress in the material. Associated with the elastic map is a symmetric 6 × 66

matrix, which therefore has 21 parameters. The 21-dimensional space of elastic maps is vast7

and poses challenges for both theoretical analysis and typical inverse problems. Most esti-8

mation approaches using a given set of directional wavespeed measurements assume a high-9

symmetry approximation, typically either in the form of isotropy (2 parameters), vertical trans-10

verse isotropy (radial anisotropy: 5 parameters), or horizontal transverse isotropy (azimuthal11
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anisotropy: 6 parameters). We offer a general approach to explore the space of elastic maps12

by starting with a given elastic map T. Using a combined minimization and projection pro-13

cedure, we calculate the closest Σ-maps to T, where Σ is one of the eight elastic symmetry14

classes: isotropic, cubic, transverse isotropic, trigonal, tetragonal, orthorhombic, monoclinic,15

and trivial. We apply this approach to 21-parameter elastic maps derived from laboratory mea-16

surements of minerals; the measurements include dependencies on pressure, temperature, and17

composition. We also examine global elasticity models derived from subduction flow mod-18

eling. Our approach offers a different perspective on seismic anisotropy and motivates new19

interpretations, such as for why elasticity varies as a function of pressure, temperature, and20

composition. The two primary advances of this study are 1) to provide visualization of elas-21

tic maps, including along specific pathways through the space of model parameters, and 2) to22

offer distinct options for reducing the complexity of a given elastic map by providing a higher-23

symmetry approximation or a lower-anisotropic version. This could contribute to improved24

imaging and interpretation of Earth structure and dynamics from seismic anisotropy.25

Key words: seismic anisotropy, elasticity, computational seismology26

1 INTRODUCTION27

Composition and elasticity are two fundamental properties of solid materials. These may be nat-28

ural materials—as in a mineral, rock, or continental-scale portion of the Earth—or they may be29

manmade, as in the case of concrete aggregates, alloys, or chemical structures generated in a lab-30

oratory. Generally speaking, elasticity characterizes how a solid material deforms under stresses.31

One type of applied stress is an elastic wave, which propagates as a compressional wave or a shear32

wave. The directional dependence of wave speeds is known as seismic anisotropy.33

The elasticity of a material is expressed by its elastic map—a function that relates stress to34

strain (Eq. 1). Associated with the elastic map is its 6 × 6 matrix representation. The matrix is35

symmetric and hence is determined by 21 parameters. A fundamental pursuit is to characterize36

the elastic symmetry of a material, so as, for example, to understand direction-dependent wave37

speed variations or infer past deformation conditions from crystallographic preferred orientation38

(CPO) anisotropy. The notion of elastic symmetry will play an important role. There are eight pos-39
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Navigating seismic anisotropy 3

sible elastic symmetry classes (Forte & Vianello 1996): isotropic (ISO), cubic (CUBE), transverse40

isotropic (XISO), trigonal (TRIG), tetragonal (TET), orthorhombic (ORTH), monoclinic (MONO),41

and trivial (TRIV). For an isotropic material, any rotation of the material leaves the elastic map42

unchanged. For a trivial material, no rotation—other than of course the identity—leaves the elastic43

map unchanged.44

Our motivation is to better understand the elasticity of natural materials, from a mm-scale min-45

eral (or crystal) measured in a lab to the entire Earth. Evidence of seismic anisotropy is widespread46

in Earth (e.g. Maupin & Park 2007; Mainprice 2007; Montagner 2007; Long & Becker 2010), in-47

cluding individual crystals (Angel et al. 2009; Almqvist & Mainprice 2017), rock samples (John-48

ston & Christensen 1995; Brownlee et al. 2017), borehole data (Okaya et al. 2004; Kästner et al.49

2020), active-source seismic data (Hess 1964; Helbig 1994), and global seismic data (Nataf et al.50

1984; Montagner & Tanimoto 1991). Even PREM, a 1D description of Earth, has radial anisotropy51

in the uppermost mantle to account for Rayleigh-Love wave speed discrepancies (Dziewonski &52

Anderson 1981). Anisotropy can arise from shape preferred orientation including the average ef-53

fect of layered, different speed isotropic materials (Backus 1962), crystallographic preferred orien-54

tation of instrinsically anisotropic crystals such as olivine under deformation (Karato et al. 2008),55

and dilational cracks in the crust (Crampin 1987).56

In a laboratory setting, one may have the benefit of excellent coverage of measurement direc-57

tions for a homogeneous material such as a mineral with known chemistry. Or instead of a mineral,58

the material may be a rock sample having multiple minerals that may or may not be aligned and59

may or may not have microcracks.60

The step in scale from a laboratory experiment to an active-source field experiment, such as61

for oil and gas exploration, involves an increase in heterogeneity, a reduction in the quality of62

measurement coverage of the target domain, and a diminished knowledge of the composition of63

the subsurface units. (A limited number of wells may provide rock samples for a small part of the64

target domain.)65

The step in scale from an active-source field experiment to a typical passive seismic imaging66

experiment using ambient noise and earthquakes involves further reduction of available informa-67

In press at GJI, April 2025.



4

tion, resulting in greater challenges. For example, the distribution of global seismometers at the68

surface is irregular and sparse, the subsurface heterogeneity is extreme in places (e.g., the cor-69

ner flow above a subducting slab), and there is no direct access to materials at depths of tens to70

thousands of km (though surface rocks originating from these depths provide insights).71

The different settings for laboratory, active-source, and global experiments lead to different ca-72

pabilities for estimating the elastic properties of homogeneous or heterogeneous media. At global73

and continental scales, studies and applications have considered parameterizations for complex74

anisotropy (Montagner & Nataf 1986; Montagner & Tanimoto 1991; Becker et al. 2006; Panning75

& Nolet 2008; Chen et al. 2007; Russell et al. 2022; Eddy et al. 2022), but sparse data coverage76

has limited most studies to assume isotropic or transverse isotropic properties. The most common77

assumption is that the axis of symmetry for the transversely isotropic (XISO) material is either78

vertical (VTI; radial anisotropy) or horizontal (HTI; azimuthal anisotropy), rather than the case79

of tilted transverse isotropy (TTI), which has been applied at regional scales (Abt et al. 2009;80

Monteiller & Chevrot 2011; Liu & Ritzwoller 2024).81

Active-source field experiments, targeting sedimentary units such as shale with dense surface82

coverage of sensors, have enabled the estimation of transversely isotropic and orthorhombic prop-83

erties (Operto et al. 2009; Fletcher et al. 2009; Bakulin et al. 2010; Alkhalifah & Plessix 2014;84

Hadden & Pratt 2017; Oh et al. 2020; Ye et al. 2023). These seismic imaging experiments benefit85

from direct measurements of wave speeds from rock samples collected at the surface or from well86

logs. At the laboratory scale, ultrasonic measurements have been used for decades to characterize87

elastic properties (Verma 1960; Birch 1961; Christensen 1966). One approach involves preparing88

spherical samples and measuring travel times for dozens of different paths through the material89

(Pros & Babuška 1968; Vestrum et al. 1996; Lokajı́ček & Svitek 2015; Lokajı́ček et al. 2021).90

This enables all 21 elastic parameters to be estimated, and, depending on the uncertainties, the91

material may or may not exhibit 21-parameter (TRIV) anisotropy.92

The geophysical estimation (or inverse) problem depends on the target material, the measure-93

ments, and the chosen parameterization of the material, both for the type of material (its elastic94

symmetry) and for how the material varies in the volume (e.g., a volumetric grid of cells or spher-95
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ical harmonic functions). These factors are interrelated. For example, at a laboratory scale, one96

might perform a limited number of ultrasonic measurements of a crystal. The choice of elastic97

parameters to estimate could be isotropic (two parameters), in which case the estimation problem98

may be stable, or it could be 21 parameters, in which case the estimation problem is highly under-99

determined and the solution is characterized by a large range of solutions. The choice of measure-100

ments and parameterization would likely be informed by the material, with more measurements101

and more parameters needed for feldspar crystals, which have low elastic symmetry (Brown et al.102

2016), and fewer measurements for garnets, which have high-elastic symmetry (Jiang et al. 2004).103

Or one might choose to make more measurements and consider a full parameterization, even if the104

sample is assumed to have higher symmetry, such as granite (Lokajı́ček et al. 2021); this results in105

a less-biased determination of elastic symmetry.106

For active-source or global settings, the inverse problem is far more extreme than the case107

of the laboratory setting, on account of heterogeneity, sparse data coverage, and unknown source108

parameters. One example of the complexities of global imaging is the trade off between estimating109

isotropic and anisotropic structures. This can be challenging even for radial anisotropy (VTI) for110

surface wave imaging (Laske & Masters 1998; Ekström 2011), and it is compounded by source111

parameter uncertainty (Ma & Masters 2015).112

Our study provides a framework for studying elastic materials (Section 4), with different ob-113

jectives for laboratory experimentalists and seismologists. The applications in Section 3 show how114

distances to symmetry classes provide a tool to guide fundamental interpretations, such as the as-115

sessment of elastic symmetry for a measured rock sample. In some cases, the framework will offer116

a simpler and more accurate interpretation. For seismologists, who face sparser data coverage and117

stronger heterogeneity compared with laboratory settings, the current choices of regularization118

to stabilize the seismic imaging inverse problem could be formalized to account for the choice of119

elastic symmetry parameterization, as we suggest in Section 5. Regularization may involve biasing120

models from the most complex (21 parameters) to the simplest (2 parameters), and these decisions121

require an understanding of the available pathways in between these endmembers in the space of122
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model parameters. Hence our focus is on the exploration of the 21-parameter space of elasticity,123

as well as the potential benefits to laboratory, field, and global settings.124

2 VISUALIZING ELASTIC MAPS AND THE DISTANCES AMONG THEM125

Linear elasticity is mathematically represented as an elastic map, that is, a self-adjoint linear map126

T(ε) = σ (1)

that transforms a 3× 3 strain matrix ε to a 3× 3 stress matrix σ. One can choose an orthonormal127

set of six 3× 3 symmetric matrices as a basis B for the space of all 3× 3 symmetric matrices (i.e.,128

strains or stresses). Then from Equation (1),129

[T]BB[ε]B = [σ]B, (2)

where [T]BB is the (6× 6) matrix of T with respect to B, and where [ε]B and [σ]B are the (6× 1)130

coordinate vectors of ϵ and σ with respect to B. The matrix [T]BB is symmetric since T is self-131

adjoint and since B is orthonormal. In this paper we use the basis B of Tape & Tape (2021, eq. 3).132

Appendix A explains why the resulting matrix [T]BB is preferable to the traditional Voigt matrix133

of T.134

For each elastic map T, we calculate its monoclinic angle function as (Tape & Tape 2024,135

eq. 22)136

αMONO(v) = αT
MONO(v) = ∠ (T,P (T, VMONO(v))) , (3)

where P(T, VMONO(v)) is the orthogonal projection of T to the subspace VMONO(v) of elastic137

maps having a 2-fold axis in the direction v. When feasible, we normally omit the superscript T138

in αT
MONO.139

Spherical plots of αMONO(v) provide a powerful visualizaton tool for understanding elastic140

maps. Versions of these plots, which we refer to as αMONO-spheres, have been used in François141

et al. (1998), Diner et al. (2010), and Tape & Tape (2022). A key feature of the αMONO-sphere for T142

is its zero-valued contour, which consists of the directions where the material described by T has143
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2-fold symmetry axes; those axes determine the elasticity symmetry of the material. In particular,144

if the zero-contour is empty, then the material has only trivial symmetry.145

αMONO-spheres are complementary to the wave-velocity-based view of elastic maps, which146

displays how three Christoffel phase velocities (typically for P , fast-S, and slow-S) vary as a147

function of direction. αMONO-spheres are better for determining elastic symmetry, while velocity148

spheres (Figure S2) are useful for interpreting traveltime-based measurements for low-anisotropy149

materials.150

A fundamental tool in our study is the calculation of closest Σ-maps for a given map T. They151

are given by152

KΣ = KT
Σ = P

(
T, VΣ(U

T
Σ )

)
(4)

where Σ is one of the eight symmetry classes (TRIV, MONO, . . . , ISO), P (T, VΣ(U)) is the or-153

thogonal projection of T onto the subspace VΣ(U) of Tape & Tape (2024, eq. 15), and UT
Σ is a154

3× 3 rotation matrix that minimizes the angular distance function155

αT
Σ(U) = ∠ (T,P (T, VΣ(U))) (5)

over all rotation matrices U (Tape & Tape 2022).156

The distance between two elastic maps TA and TB is ∥TB −TA∥, and the angular distance is157

∠(TA, TB). We are especially interested in the angle between T and KΣ, the closest Σ-map to T:158

βΣ = βT
Σ = ∠(T, KT

Σ). (6)

Our preferred measure of anisotropy is159

βISO = ∠(T, KISO). (7)

The closest isotropic-map KISO is analytically determined from T (Appendix B) and therefore βISO160

is a simple calculation from the entries of the matrix for T.161

An approximate relationship between βISO and traditional measures of percent anisotropy AV162

appears to be AV ≈ 2βISO, as shown in Figure S1 for the database of Brownlee et al. (2017).163
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2.1 An example164

Figures 1 and 2 illustrate the concepts in the previous section. The example elastic map T we165

use is for a feldspar crystal reported by Brown et al. (2016), who concluded that the measured166

laboratory sample had triclinic (or trivial) symmetry.167

Figure 1a displays the monoclinic angle function for T, Figure 1b does the same for the closest168

MONO-map (KMONO) to T, and Figure 1c does the same for the closest ORTH-map (KORTH) to T.169

Each of the elastic maps KMONO and KORTH is obtained by performing a minimization over all170

rotation matrices U .171

We plot green dots to depict the zero-contour, which provides a check in this example. Fig-172

ure 1a has empty zero-contour and therefore exhibits no symmetry (i.e., trivial symmetry). Fig-173

ure 1b has a zero-contour represented by the yellow arrow, representing a single 2-fold axis, which174

indicates MONO symmetry. Figure 1c has three perpendicular 2-fold axes represented by the col-175

ored arrows and coinciding green dots (6 total, 2 of which are visible); this represents ORTH sym-176

metry.177

Changing the viewpoint on the αMONO-spheres helps show the 2-fold axes (or lack thereof). The178

colored axes in Figures 1a and 1b are the columns of the matrix UT
MONO (i.e., UT

Σ with Σ = MONO).179

The perspective for Figure 1d and Figure 1e is one that is looking down the third column of UT
MONO.180

From this perspective (or any other), we do not see 2-fold symmetry in Figure 1d. Moreover, the181

minimum value of the plotted function is 3.8◦ (light blue at center), which is greater than 0◦ and182

therefore not a 2-fold axis. By comparison, Figure 1e is monoclinic: it has a 2-fold symmetry axis183

(dark blue at center), and it has visible 2-fold symmetry.184

The angular difference between the elastic maps T (Figure 1a) and KMONO (Figure 1b) is185

βMONO = 3.8◦, which is the minimum value of the monoclinic angular distance function displayed186

on the αMONO-sphere in Figure 1a. The 2-fold axis of KMONO in Figure 1b is where the minimum187

value of αMONO(v) occurs in Figure 1a.188

Next we examine the higher-symmetry map of KORTH (Figure 1c). Figure 1f is the perspec-189

tive looking down the yellow arrow (u3) in Figure 1c. The three 2-fold axes characteristic of190

In press at GJI, April 2025.



Navigating seismic anisotropy 9

orthorhombic symmetry are in the direction of the red, blue, and yellow arrows. The elastic map191

KORTH is βORTH = 6.4◦ from T.192

We use the same elastic map T, along with its closest ISO-map KISO, to illustrate the notion193

of angles between elastic maps. The definition of βΣ (Eq. 6) relates distance and angular distance.194

As illustrated in Figure 2a with Σ = ISO,195

sin βISO = dISO/∥T∥. (8)

In this example, ∥T∥ = 294.8 GPa, dISO = 129.4 GPa, and βISO = 26.0◦. The advantage of using196

βISO rather than dISO is that βISO does not depend on the size (or units) for T. (In Figure 2, and197

elsewhere, the αMONO-spheres for KISO are solid blue, because every direction is a 2-fold axis for198

KISO, so that αKISO
MONO is identically zero.)199

Figure 2b depicts the direct path from T to KISO, which we will discuss in Section 4.2.200

2.2 Lattice diagrams of elastic maps, Part I201

The relationships among the eight symmetry classes can be depicted in a lattice diagram (François202

et al. 1998; Bóna et al. 2004; Tape & Tape 2022). We expand the lattice diagram concept by203

depicting an elastic map at each lattice node (or vertex) and by assigning the type—or mode204

(Section 4.5)—of the elastic map. An example is shown in Figure 3, which displays an αMONO-205

sphere at each node in the lattice; we refer to these plots as a lattice diagram of elastic maps.206

This representation, also displayed in Tape & Tape (2024), sets the stage for introducing several207

concepts. First, a lattice diagram conveys that there are eight elastic symmetry classes, as proven208

in various studies (Forte & Vianello 1996; Chadwick et al. 2001; Bóna et al. 2007; Tape & Tape209

2021). Second, it provides a visual check on the αMONO-sphere of the elastic map SΣ displayed at210

each node: 1) Does it exhibit the intended symmetry, as conveyed by its zero contour? 2) Does211

it look somewhat similar to the αMONO-sphere for the T map at the bottom? Third, the diagram212

offers a visual guide to the proximity of T to all the symmetry classes, which is a key question213

in many studies (see Section 3). While this assessment is quantified in terms of βΣ (ideally with214
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uncertainties), the αMONO-spheres offer a more intuitive view. We will return to these diagrams in215

Section 4.1.216

Fourth, the lattice diagram depicts the choice one has in reducing T toward a higher-symmetry217

map, as several model-parameter-space pathways toward KISO are possible, in addition to the direct218

path (Section 4.2). Lastly, there is a question of what type of map should be displayed at each lattice219

node (Section 4.5).220

3 APPLICATIONS TO PREVIOUS STUDIES221

Next we revisit four studies to illustrate how the approach in Section 2 can provide insights into222

elastic materials. Our emphasis is on calculating closest Σ-maps to the published results, and223

providing visualizations to guide interpretations of the elastic symmetry classes. The following224

examples in Sections 3.1 and 3.2 are based on measurements of common minerals and rocks:225

feldspars, amphiboles, granite, and gneiss. In Section 3.3 we examine the upper mantle elastic226

properties, as determined from ultramafic rocks and from a subduction flow model of the upper227

mantle.228

3.1 Composition dependence of elastic symmetry229

The study of Brown et al. (2016) estimated all 21 parameters, with uncertainties, of eight feldspar230

crystals having differing percentages of anorthite ranging from 0% (albite) to 96% (anorthite). The231

elastic map featured in Figures 1–3 is albite.232

Figure 4a is a depiction of the symmetry of the eight feldspar maps in Table 2 of Brown et al.233

(2016). For each map Ti (i = 1, . . . , 8) we calculate the closest Σ-map to Ti for seven Σ (MONO,234

. . . , ISO). These 56 minimizations provide βi
Σ ≡ βTi

Σ , which are depicted by the dots in Figure 4a.235

To plot the uncertainty bars, we calculate 1000 realizations of each of the eight elastic maps using236

the published uncertainties in each Cij . (Each map is generated in Voigt notation, then converted237

to [T]BB.) In total, 56,000 minimizations were performed to make Figure 4a.238

Figure 4a offers a compact view of the laboratory results from Brown et al. (2016). First, we239

can see that all feldspars exhibit clear trivial elastic symmetry, in that βi
MONO are all above 0◦, taking240
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into account the ±2σ uncertainties. Since all samples do not have monoclinic symmetry, they have241

only trivial symmetry. Second, βi
ISO decreases from 26.0± 0.4◦ for albite (An0) to 16.0± 0.6◦ for242

anorthite (An96). Bulk modulus κ and shear modulus µ can be directly obtained from each KTi
ISO243

(Appendix B). Variations in κ and µ (Figure S6) reveal that the decrease in βi
ISO with increasing244

anorthite percentage is due to an increase in κ, while µ remains stable. Interestingly, βMONO, βORTH,245

and βTET all increase for anorthite percentages increasing from 60% to 90%, suggesting some level246

of increasing anisotropy, even while βISO is decreasing.247

Figure 4b provides a representation of the monoclinic elastic maps for nine amphibole crystals248

in Table 3 of Brown & Abramson (2016), shown with respect to their total aluminum content.249

The flat curve for βMONO = 0◦ indicates that the elastic maps have monoclinic or higher sym-250

metry. The values of βORTH = 2.5◦–5.5◦ indicate that the amphiboles have monoclinic symmetry.251

The decreasing trend for all βΣ curves indicates decreasing anisotropy with increasing aluminum252

content. For example, the two highest-aluminum samples decrease from βORTH = 4.3◦ ± 0.2 to253

3.2◦±0.2. By comparison, the trends in Cij do not exhibit this: Brown & Abramson (2016) noted,254

“Five moduli (C33 C23 and the monoclinic moduli C15 C25 and C35) have no significant depen-255

dence on aluminum.” The aluminum replacement of cations—Si in plagioclase, Si and Mg/Fe in256

amphiboles—results in small changes in bond lengths and angles. This corresponds with decreas-257

ing anisotropy (βISO: Figure 4b), though a causal connection between the crystallographic change258

and the elasticity change remains unclear.259

3.2 Pressure and temperature dependence of elastic symmetry260

Figure 5 is a compilation of results from two studies that examined the dependence of elasticity261

on pressure and temperature for granite and gneiss (Lokajı́ček et al. 2021; Aminzadeh et al. 2022).262

Lokajı́ček et al. (2021) examined Westerly (Rhode Island, USA) granite and inferred orthorhombic263

elastic symmetry at low pressures. For the WG100 0.1 MPa elastic map in their Table 3, we cal-264

culate values of βMONO = 0.4◦, βORTH = 0.5◦, and βTET = 1.6◦. Assuming error-free measurements,265

one would conclude that the material has trivial symmetry, since βMONO > 0◦. However, allow-266

ing for uncertainties in measurements, one might adopt an uncertainty in β of, say, ±0.5◦, which267
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would imply that that material has orthorhombic symmetry (βORTH = 0.5◦±0.5) but not tetragonal268

symmetry (βTET = 1.6◦ ± 0.5). Uncertainty estimates would be needed to better determine the269

symmetry.270

Figure 5a provides visual support for the findings in Lokajı́ček et al. (2021): “. . . increase271

of preheating temperature enhances the anisotropy. . . ” Figure 5b and c convey the results from272

Aminzadeh et al. (2022) who examined how elasticity is influenced by changing pressure for two273

rock samples: Grimsel granite (b) and Bukov gneiss (c). The figures directly support the author’s274

conclusions: “While the Grimsel granite is very sensitive to pressure and becomes almost isotropic275

at high pressures, a great portion of anisotropy in the Bukov migmatized gneiss remains even under276

high pressures due to its texture.” In terms of Figure 5b and c, at 100 MPa, the Grimsel granite has277

βISO = 2.3◦ while the Bukov gneiss has βISO = 6.2◦.278

Aminzadeh et al. (2022) state: “We demonstrate that the Bukov migmatized gneiss is or-279

thorhombic, whereas the Grimsel granite is transversely isotropic under atmospheric pressure.”280

The leftmost dots in Figure 5b and c, for atmospheric pressure (0.1 MPa), would lead to a differ-281

ent assessment. Both samples have very similar βΣ values to each other for MONO, ORTH, TET,282

TRIG, and XISO, so any assignment of symmetry would be expected to be the same. Furthermore,283

any assignment would depend on uncertainties in Cij , which were not available. As displayed in284

Figure 5b and c, both samples have trivial elastic symmetry at 0.1 MPa, since βMONO > 2◦.285

3.3 Rocks and subduction flow models for the upper mantle286

We revisit two studies focusing on the upper mantle that include rock measurements (Ji et al. 1994)287

and crytallographic preferred orientation (CPO) anisotropy estimates for olivine from global man-288

tle flow models (Becker et al. 2008). Ji et al. (1994) performed petrofabric analyses of ultramafic289

xenolith samples from three localities of northwestern North America: Castle Rock (CR), Alliga-290

tor Lake (AL), and Nunivak Island (NI). For each locality, they determined an average elastic map291

based on 4-5 samples. Examining the seismic velocity patterns expected for these elastic maps, the292

authors noted “remarkably similar seismic properties” and also “quasi-orthorhombic geometry”.293

These inferences can be quantified with βΣ angles and with lattice diagrams (e.g., Figure 3),294
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which are provided in Tape & Gupta (2024). The βORTH angles are 0.2◦ (CR), 0.2◦ (AL), and 0.2◦295

(NI), while the βXISO angles are 0.7◦ (CR), 0.6◦ (AL), and 1.4◦ (NI). Lacking uncertainties on the296

published Cij entries, we cannot determine the uncertainties in βΣ that would be needed to assign297

a symmetry to each elastic map. If we adopt a threshold of 0.5◦ for this assignment, then we would298

assign ORTH to all three maps. If instead we adopted a threshold of 1◦, we would assign XISO to299

CR and AL and ORTH to NI.300

Mantle flow models can be used to infer three-dimensional variations in elasticity in the Earth’s301

mantle (Gaboret et al. 2003; Becker et al. 2003, 2006; Behn et al. 2004; Walker et al. 2011).302

Although global estimates of olivine CPO from flow provide all 21 elastic parameters, the elastic303

maps are not strongly anisotropic (βISO < 5◦) and are often approximated as XISO in order to304

visualize 3D variations in the elastic maps (Becker et al. 2006; VanderBeek & Faccenda 2021).305

Our approach provides an answer to the question, What is the global distribution of elastic306

symmetry for a given 3D model? Two subtle decisions are required. First, a node sequence (Sec-307

tion 4.6) needs to be assumed, since this specifies what is meant by a higher or lower symmetry308

class. Second, if no uncertainties are provided for the published Cij , then there are no uncertainties309

for βΣ, and therefore we need to choose a threshold value βtrsh.310

To illustrate our approach, we use a global model of elasticity at 200 km depth from Becker311

et al. (2008) (see Data Availability for link to data set). We choose the node sequence TRIV-MONO-312

ORTH-TET-XISO-ISO. Let T(r) represent one of the 14,512 elastic maps for direction r on Earth.313

For each T(r), we perform four minimizations to obtain the closest Σ-maps and their correspond-314

ing βMONO(r), βORTH(r), βTET(r), and βXISO(r); KISO and βISO(r) are determined analytically. An315

example global plot, for βXISO, is shown in Figure 6a, with others in Figure S7.316

From a set of βΣ global plots, we determine a spatial sigma plot, which assigns the elastic317

symmetry Σ(r) for each spatial location r. This is achieved by starting with βMONO for a given318

elastic map T. If βMONO > βtrsh, then T is assigned TRIV. If βMONO ≤ βtrsh, then T has MONO319

or higher symmetry and we check if βORTH > βtrsh; if it is, then we assign T MONO symmetry. If320

βORTH ≤ βtrsh, then T has ORTH or higher symmetry. This procedure is continued to TET, XISO,321

and ISO, until each T is assigned a Σ.322
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For the chosen node sequence and a chosen threshold of βtrsh = 1.0◦, the resulting spatial323

sigma plot is shown in Figure 6b, where 66.9% of the global points are assigned XISO, 23.1%324

ORTH, 8.5% ISO, and the remaining 1.5% TET or MONO. These percentages are strongly dependent325

on βtrsh, and ideally no choice would be needed if uncertainties in Cij (including covariances) were326

provided. Further analysis could explore the correspondence between ORTH regions and the age of327

oceanic plates, as well as the directional variations of the XISO symmetry axes (Figure S8), with328

near-vertical axes expressing VTI symmetry and near-horizontal axes expressing HTI symmetry.329

4 NAVIGATION WITHIN THE SPACE OF ELASTIC MAPS330

A laboratory experiment will collect a large number of measurements for an elastic material, with331

the goal of determining the set of 21 parameters of the matrix of the elastic map T0 that best fits the332

measurements. It may also be desirable to consider alternatives to T0 by favoring elastic maps that333

either have higher symmetry (e.g., TET instead of TRIV) or lower anisotropy (lower value of βISO).334

For these pursuits, we introduce a framework for navigating the 21-dimensional space of elastic335

maps. Our approach includes a combination of terminology and visualization. We will introduce336

several concepts and then illustrate them in figures. All examples are based on the feldspar elastic337

map introduced in Figure 1.338

4.1 Lattice diagrams of elastic maps, Part II339

A symmetry of a material is a rotation of the material that leaves its elastic map unchanged. The340

symmetry group of the material is the group of all such rotations. The 2-fold points of the group341

are the points where the 2-fold axes of the group intersect the unit sphere.342

The symmetry class of the material, informally, is its symmetry group but without its orien-343

tation information. Tape & Tape (2022, Section 2.8) has a precise definition of symmetry class,344

including an illustration.345

Figure 7a is an abridged version of the lattice diagram in Figure 3. For each Σ, all but the346

zero-contour has been removed from the contour plot of αKΣ
MONO in Figure 3. Since the zero-contour347

(blue) consists of the 2-fold points of the symmetry group of KΣ, and since the 2-fold points348
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determine the group, then the lattice in Figure 7a is a depiction of the symmetry group of KΣ for349

each Σ.350

The figure expresses a partial ordering of symmetry classes: For two nodes connected by an351

upward-trending path in the figure, the Σ class at the upper node has “higher symmetry” than that352

at the lower node. Thus each of Σ = XISO, CUBE, ISO is higher symmetry than TRIG, but neither353

of TRIG and ORTH is higher than the other.354

In general, each elastic symmetry group is determined by a rotation matrix U and one of the355

eight Σ. The choice of Σ determines the unoriented configuration of 2-fold points for the group,356

and U orients the configuration. Figure 7b shows the unoriented configuration for each Σ. The357

groups are the elastic symmetry “reference groups”, one for each Σ. For each Σ, the rotation UΣ358

in Figure 7a rotates the blue points at the Σ node in Figure 7b to the blue points at the Σ node in359

Figure 7a. For Σ = TET, for example, UΣ appears to be approximately a 90◦ rotation about the360

y-axis.361

The solid paths in the lattices indicate inclusions among the reference groups. They can be362

confirmed just by examining the blue dots in Figure 7b. Thus, for example, the TRIG reference363

group is contained in the XISO reference group (recognizing that the 3-fold TRIG axis aligns with364

the N-fold XISO axis), but not in the CUBE reference group, even though CUBE symmetry is higher365

than TRIG symmetry.366

In Section 2.2 we introduced lattice diagrams for the purpose of displaying the set of closest Σ-367

maps to T. The diagrams serve an additional purpose of depicting the choices one has in reducing368

T toward a higher-symmetry map, as several pathways toward KISO are possible, in addition to the369

direct path from T to KISO (Section 4.2). Furthermore, there is a question of what type of elastic370

map should occupy each lattice node (Section 4.5).371

4.2 Direct path between two elastic maps372

The direct path from elastic map TA to elastic map TB is parameterized by373

TB
A(t) = (1− t)TA + tTB. (9)
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For example, a map between T and its closest isotropic map KISO is374

T(t) = TKISO

T (t) = (1− t)T+ tKISO (10)

Figure 2b shows elastic maps T(t) for four values of t. As t increases from 0 to 1, the map T(t)375

transitions from T to KISO, while βISO decreases from 26.0◦ to 0◦.376

4.3 Base maps377

We refer to an ordered set of elastic maps Ti as base maps, with i being an index. One example378

of a set of base maps is the direct path. For example, using Equation (10) with ti ∈ [0, 1] and379

discretized in 0.2 spacing, we obtain six maps Ti = T(ti) that vary from TA (t1 = 0) to TB380

(t6 = 1). The set of base maps forms a pathway. The term base is chosen because these maps can381

be thought of as forming the base of beta curves, described next.382

4.4 Beta curves383

For any map T and any Σ we can calculate the closest Σ map KT
Σ to T and consider its angular384

distance βΣ from T (Eq. 6). A beta curve depicts a set of βΣ for an ordered set of elastic maps.385

Figure 8 provides an example of seven beta curves for the direct path from T to KISO, rep-386

resented in Equation (10) and discretized as before. For each of the six maps Ti = T(ti) (ti =387

0, 0.2, . . . , 1.0) and for each Σ, we calculate a closest Σ-map KTi
Σ and its corresponding βTi

Σ . This388

results in the seven beta curves in Figure 8, which conveys two main points. First, the first five389

maps Ti have trivial symmetry, as exhibited by βTi
MONO > 0. Second, for increasing t, the beta390

curves decrease steadily to zero. The t = 1 elastic map is KISO, which has ISO symmetry and391

therefore also all other symmetries, which is why all the βΣ curves decrease to 0◦. Lastly, note392

that negative values of t allow for elastic maps that are more anisotropic than T (i.e., farther from393

isotropic) while having the same closest ISO map. For the BrownAn0 elastic map, βISO = 26.0◦394

for t = 0 (see Figure 3), and negative values of t produce much more anisotropic elastic maps, all395

the way to t = −0.66, for which βISO = 39.0◦. For t ≤ −0.67, the elastic map T(t) has a negative396

eigenvalue and is therefore unphysical.397
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Figure 9 illustrates the direct path of elastic maps by displaying (a) αMONO-spheres and (b) syn-398

thetic seismograms computed for homogeneous media having these properties (see Appendix C).399

Empirically, for elastic map T, the maximum value of its αMONO-sphere is strongly correlated with400

its βISO, so from inspection of the six αMONO-spheres, we can infer from the red colors of T (t = 0)401

that it has the highest level of anisotropy among the displayed spheres. Towards t = 1 (KISO),402

the αMONO-spheres grade to uniform blue, representing isotropy. The changes in seismograms are403

dramatic though (Figure 9): for the isotropic case (t = 1: top), we see only a P wave and S404

wave, as expected. For all other cases, we see more than two arrivals, and we do not see a smooth405

transition in seismograms for varying t, as we did in the case of the αMONO-spheres. The types of406

phases, the arrival times, and the amplitudes all change significantly for each elastic map. This407

reveals that linear changes in anisotropy (here, parameterized by t) can result in nonlinear changes408

in the seismic waveforms, even for a homogeneous material. By comparison, in classical travel-409

time tomography, a linear change in slowness (1/V ) results in a linear change in arrival time (Liu410

& Gu 2012). The occurrence of more than three waveform arrivals for a homogeneous material411

(Figure 9) is consistent with theoretical predictions from Christoffel group (not phase) velocities412

(Červený 2001), as shown in Figures S10 and S11 and as demonstrated in previous studies (Igel413

et al. 1995; Komatitsch et al. 2000).414

4.5 Node modes415

The node mode describes how the elastic maps are determined at the nodes of the lattice diagram.416

We introduce three different node modes. For each mode the elastic map SΣ at the lattice node Σ417

is the orthogonal projection of T onto the Σ subspace VΣ(U) (Tape & Tape 2024, eq. 15). The418

node mode determines U as follows: For node mode 1, U is chosen by the user and is the same419

for all Σ. For node mode 2 the matrix U is UT
Σ as described in connection with Equation (5). The420

elastic map SΣ is therefore the closest Σ-map to T. For node mode 3, the elastic map SΣ is the421

closest Σ-map to the previous map within a particular node sequence. Our main results feature422

node mode 2, and we provide additional comparisons with node modes 1 and 3 in Figures S3–S4.423
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4.6 Node sequences424

A node sequence is a special pathway. It is a sequence of elastic maps defined on the nodes of a425

lattice and having the same node mode. Of particular interest are the four sequences between TRIV426

and ISO that follow increasing symmetry: TRIV-MONO-ORTH-TET-XISO-ISO, TRIV-MONO-ORTH-427

TET-CUBE-ISO, TRIV-MONO-TRIG-CUBE-ISO, and TRIV-MONO-TRIG-XISO-ISO. Removing any428

of the nodes within these four node sequences results in a new node sequence. For example,429

ORTH-XISO-ISO and TRIV-MONO-ISO are node sequences. Technically, the direct paths such as430

TRIV-ISO or MONO-ORTHare also node sequences.431

4.7 Cumulative internodal angle curves432

A cumulative internodal angle curve, which we will shorten to cumulative curves, is a sum of433

internodal angles for a given node sequence and node mode in a lattice. It provides a measure of434

the angular distance traversed by the node sequence, and it can be compared with the direct-path435

distance between the first and last node in the sequence.436

Figure 10a displays a cumulative curve for an example node sequence and node mode. The437

direct path from T to KISO is 26.0◦, while the cumulative angular distance through the node se-438

quence is 50.3◦. The matrix of internodal angles in Figure 10b conveys the possible pathways for439

a given node sequence, as described next. The default path for the cumulative curve is the one440

that passes through all listed symmetry classes; the internodal angles follow the first off-diagonal441

and have values of 3.8◦ (TRIV-MONO), 5.2◦ (MONO-ORTH), 4.8◦ (ORTH-TET), 17.9◦ (TET-XISO),442

and 18.5◦ (XISO-ISO), resulting in a cumulative angular distance of 50.3◦. Intermediate nodes can443

be omitted, resulting in a different node sequence and a different cumulative distance. If all four444

intermediate nodes are omitted, then the node sequence becomes the direct path from TRIV to ISO,445

represented by the upper right entry in Figure 10b (26.0◦).446

Given a TRIV elastic map estimated from measurements, it may be desirable to bias the esti-447

mation procedure toward an elastic map having lower anisotropy (smaller βISO) or a map having448

higher symmetry than TRIV. This distinction is a choice between the direct path and a node se-449

quence having at least three nodes. The direct path is the shortest, and all intermediate maps450
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between T and KISO have TRIV symmetry. The node sequence is a longer path (Figure 10a) and451

includes maps having higher symmetry. A longer path will generally involve a greater exploration452

of model parameter space and be associated with increased computational cost. This choice il-453

lustrates the tradeoff between seeking higher-symmetry possibilities at the expense of a longer454

pathway. We revisit this topic of regularization in Section 5.455

4.8 Visual guide to navigating the space of elastic maps456

We are now equipped to review a full set of figures (Figures 3 and 8–12) which use the BrownAn0457

map as an example. Figure 3 features node mode 2, meaning that the maps at each lattice node are458

a closest Σ-map to T, denoted KΣ or KT
Σ . This means that the orientation UΣ for each KΣ may be459

very different, as shown by the set of tri-colored axes in Figure 3. For example, from inspection of460

the αMONO-spheres (and U -axes) of KXISO and KTET, we see that the 4-fold TET axis (yellow arrow)461

is not aligned with the N-fold XISO axis (yellow arrow).462

With the given node mode and T in Figure 3, there are multiple paths—node sequences—from463

T to KISO, one of which is TRIV-MONO-ORTH-TET-XISO-ISO and featured in Figure 10a. Between464

any pair of lattice nodes we can discretize a path using Equation (9). For example, the 11 maps465

displayed in Figure 11 include the nodes TRIV-MONO-ORTH-TET-XISO-ISO, as well as one addi-466

tional elastic map between each pair of nodes. The seismogram differences—notably between T467

and KMONO—imply that, given suitable coverage of seismic stations, it should be possible to use468

recordings to estimate the full elastic map (i.e., 21 parameters) for a relatively homogeneous ma-469

terial. The estimation problem would require having volumetric sensitivities of seismic waveform470

differences for each of the 21 parameters; components of this procedure can be found in Sieminski471

et al. (2007), Köhn et al. (2015), and Beller & Chevrot (2020).472

The beta curves in Figure 12 are constructed starting with a choice of node mode and node473

sequence. The node sequence contains six of the eight elastic maps in Figure 3. As it turns out,474

beta curves are generally nonlinear between nodes and therefore we need more maps than the475

nodes in order to show how symmetry varies along the path. In Figure 12, we use four maps476
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between each pair of adjacent nodes in the sequence, resulting in a total of 26 maps from T to477

KISO.478

The beta curves in Figure 12 depend on the elastic map T and on the choices of node sequence,479

node mode, and discretization interval between nodes. In many investigations, a material measured480

to have TRIV symmetry will be assumed to have higher symmetry. Analogs of Figure 12, perhaps481

with other choices of node sequence, node mode, and discretization interval, may provide a more482

informed and less arbitrary basis for assigning a particular symmetry to the material.483

5 DISCUSSION484

5.1 Laboratory measurements of minerals and rocks485

Any laboratory experiment seeking to estimate the 21 elastic parameters for a homogeneous mate-486

rial is apt to obtain an elastic map that has trivial symmetry, no matter what the material is. Even a487

single crystal such as garnet, which might be expected to have cubic elastic symmetry (Jiang et al.488

2004; Almqvist & Mainprice 2017), would have trivial symmetry if all 21 parameters were esti-489

mated and if uncertainties were not considered. This leads to two future-looking points. First, it is490

helpful to perform measurements that enable the estimation of as many elastic parameters as possi-491

ble. Second, no matter how many elastic parameters are listed, they should ideally be accompanied492

by uncertainties.493

Compilations of elastic parameters contain assumptions about the materials. For example, the494

expansive Table 2 of Almqvist & Mainprice (2017) categorizes materials by crystal system, and495

almost all materials are represented with a subset of 21 Cij values. However, the link between crys-496

tallographic symmetry and elastic symmetry is tenuous, as articulated by Forte & Vianello (1996).497

For example, even though a garnet has cubic crystallographic symmetry, it would be preferable to498

estimate as many Cij as possible, rather than assume cubic elastic symmetry and list only three499

unique Cij .500

There are few studies listing 21 elastic parameters and fewer that also list uncertainties. Almqvist501

& Mainprice (2017) listed two studies: Militzer et al. (2011) and Brown et al. (2016). Vestrum et al.502

(1996) and Brown et al. (2016) listed uncertainties for all 21 parameters. Uncertainty estimates are503
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especially important for assessing the elastic symmetry class of a material, as we saw in Sec-504

tion 3.2 for the granite and gneiss samples analyzed by Aminzadeh et al. (2022). Looking toward505

the future, it should be possible to estimate covariances among the 21 elastic parameters, leading506

to a 6 × 6 data covariance matrix CD. This would improve the error propagation procedures in507

calculating quantities such as the uncertainties in βΣ angles (e.g., Figure 4), which are needed to508

infer the elastic symmetry of a material.509

5.2 Estimation at the laboratory scale510

Elastic parameters are estimated from laboratory measurements (Angel et al. 2009). For the sake511

of discussion, we will represent the parameter estimation problem with the function512

f(T) = ∥g(T)− d∥, (11)

where d is a set of three-component seismograms from receivers surrounding the material for a513

given set of sources, and g(T) is the corresponding set of synthetic seismograms for the same514

sources and receivers, given an elastic map T. We seek the T that minimizes f(T).515

Let’s assume we have estimated 21 Tij for a material. From the estimated T0, we can calculate516

closest Σ maps (KΣ), along with their corresponding βΣ angles. For example, βISO provides a517

measure of overall anisotropy, while βMONO > 0◦ would indicate trivial elastic symmetry. We518

may wish to bias our estimated T0 toward having either lower anisotropy (lower βISO) or higher-519

symmetry representations (MONO, ORTH, etc). This biased elastic map will be denoted by Tk.520

Next we discuss four possibilities for obtaining Tk; some of these are already undertaken with521

laboratory data, while others are an opportunity for future research.522

First, we can consider distinct pathways between T0 and KISO, such as the direct path or a523

path that traverses a sequence of nodes to the closest isotropic map (Section 4). We can then524

directly evaluate the waveform misfit f(T) for all the elastic maps along this pathway. Assuming525

that T0 is the global best-fitting elastic map, then all other maps—including along the pathway—526

will have higher misfit with recorded waveforms. Nevertheless, they may be more desirable for527

interpretation purposes, especially when considering uncertainties in Tij .528
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A second approach is to re-estimate Tij for a fixed symmetry class. For example, restrict the529

estimation problem by constraining T to have MONO, ORTH, . . . , ISO elastic symmetry. This530

would produce a set of best-fitting maps, with higher misfit expected for higher-symmetry (lower-531

parameter) Σ.532

A third approach is to estimate Tij using a modified misfit function (see Eq. 11)533

fΣk(T) = ∥g(T)− d∥+ kβT
Σ (12)

where k ≥ 0 is a user-chosen weight and Σ is a user-chosen symmetry class. This will result in a534

TRIV Tk that is close to having Σ (or higher) elastic symmetry while also producing higher misfits535

with observations (f(Tk) > f(T0)). For example, rather than allowing only ORTH elastic symme-536

try, as in the second approach, one could bias (trivial) T toward ORTH symmetry by minimizing537

Equation (12).538

A fourth approach is a special case of the third approach: choose Σ = ISO and estimate Tij .539

This is perhaps the most natural and efficient approach, since βISO represents the magnitude of540

anisotropy and since it is analytical (Appendix B) and does not require numerical minimization.541

Choices of large k will bias Tk toward more isotropic materials, while k = 0 would result in T0542

via Equation (11).543

5.3 Prospects for seismic imaging544

Seismic imaging of Earth’s interior brings three compounding challenges: 1) sparse, irregular sta-545

tion coverage at the surface; 2) strong heterogeneity in the form of varying material properties546

with space and also varying complexity of interfaces between materials (such as the topographic547

surface); and 3) the presence of anisotropic materials at a large range of scales. We focus on two548

forms of complexity: spatial heterogeneity and materials with up to 21 elastic parameters.549

These two complexities are typically handled with two forms of regularization. The first is to550

impose a constraint on the estimation problem, by penalizing models that exhibit strong spatial551

variations in elastic properties. This can also be achieved by modifying the misfit function or by552
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assuming coarse cells in the volume, which guarantee uniform properties across portions of the553

estimated subsurface model.554

The second form of regularization is to impose a constraint on the elastic symmetry (approach 2555

in Section 5.2), which is the current practice in seismic tomography. The most common choices556

are isotropy (e.g., VP and VS) and transverse isotropy. Transverse isotropy is defined by 7 parame-557

ters in general (TTI: tilted transverse isotropy), 6 parameters if the (main, i.e., regular) symmetry558

axis is horizontal (HTI: horizontal transverse isotropy), and 5 parameters if the symmetry axis559

is vertical (VTI: vertical transverse isotropy). In these cases, the 21-D model parameter space is560

massively reduced by the choice of XISO symmetry class and then further reduced by restrictions561

on the orientation of the XISO axis. (Analogous reductions for other symmetries can be obtained562

by imposing restrictions on UΣ.)563

An alternative is to incorporate a penalty function into the misfit function, such as in Eq. 12,564

where minimization will favor spatial models with 21-parameter materials having lower anisotropy565

(lower βΣ). With a large choice of k and with Σ = ISO, the estimation problem will produce a566

nearly-isotropic model that best fits the data: in other words, a traditional VP and VS tomogra-567

phy approach. Further work is needed to explore the application of the framework presented in568

Section 4 to seismic imaging.569

Finally, we acknowledge that the distinction between laboratory and field scales is also one of570

length scale of seismic waves that are probing the materials. For example, a 5-cm rock sample in571

Section 3.2 may appear homogeneous to certain low-frequency (long-wavelength) waves, while572

exhibiting extreme heterogenitiy to high-frequency waves. Characterization of elastic properties is573

inherently scale-dependent, a topic in the realm of homogenization (Capdeville et al. 2010).574

6 CONCLUSION575

Materials measured in the lab are apt to exhibit trivial elastic symmetry, with all 21 parameters576

needed in order to fit the measurements. In some cases, the estimated uncertainties of elastic pa-577

rameters will demonstrate that the material—say, a feldspar crystal—indeed has trivial elastic578

symmetry. In other cases, the uncertainties will indicate that higher-symmetry representations—579
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perhaps even isotropic—are possible. We provide strategies for understanding elastic maps, as580

well as their possible reductions toward lower-parameter (higher-symmetry) or lower-anisotropy581

versions. The demonstrations in Section 3 suggest that additional insights may be gained with582

modest effort.583

It remains to be seen how seismic imaging problems—where data coverage is sparse and het-584

erogenity is high—can be generalized to consider 21-parameter materials while accommodating585

regularization favoring isotropic elastic maps. If a 21-dimensional model parameter space seems586

daunting for a homogeneous material in the lab, a heterogenous subsurface region may seem im-587

possible (and even unsensible) to characterize in terms of its spatial variations. Nevertheless, there588

is value in considering these extreme possibilities and establishing strategies that can be employed589

to handle measurement uncertainties, quantify model uncertainties, and incorporate prior infor-590

mation (or bias) in the estimation problem. The framework in Sections 2 and 4 helps one operate591

within—and comprehend—the 21-dimensional space of elastic maps, which is an essential com-592

ponent of the pursuit to characterize Earth materials.593
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DATA AVAILABILITY606

The elastic maps featured in Section 3 are available from the cited publications. The global set of607

elastic maps featured in Figure 6 is available at https://www-udc.ig.utexas.edu/external/608

becker/anisotropy_model.html. The database of elastic maps of Brownlee et al. (2017) (Fig-609

ure S1) was provided to C. Tape by S. Brownlee.610

Calculations and figures were done using open-source software in Python (https://github.611

com/uafgeotools/elasticmapper) and using Mathematica (https://community.wolfram.612

com/groups/-/m/t/3180725 and https://github.com/carltape/mtbeach). Details and ex-613

amples of lattice diagrams like Figure 3 are available in Tape & Gupta (2024) for 28 example elas-614

tic maps. A large set of synthetic seismograms, including the ones displayed in Figures 9 and 11,615

is available in Gupta (2025).616
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APPENDIX A: ONE CANNOT CALCULATE DIRECTLY WITH THE VOIGT MATRIX797

Voigt notation is standard in the literature for representing elastic materials derived from labora-798

tory measurements (Almqvist & Mainprice 2017; Brownlee et al. 2017); this includes all of the799

examples in our Section 3. The Voigt matrix of an elastic map T is the matrix representation [T]ΣΥ800

of T with respect to the two different bases Σ and Υ (Tape & Tape 2021, Sections S5.1, S5.4).801

(They are bases for the space M of 3× 3 symmetric matrices—stresses and strains. Here the nota-802

tion Σ has nothing to do with symmetry classes.) If Σ and Υ had been the same and orthonormal,803

then inner products (hence distances and angles) of Voigt matrices would have been the same as804

the inner products of their elastic maps. That is, the mapping T → [T]ΣΥ would have preserved805

inner products. Of course the fact that Σ ̸= Υ and that neither is orthonormal does not in itself806

mean that inner products are not preserved. We find, however, from examining hundreds of pairs807

of measured elastic maps, that the angles between the Voigt matrices range from 30% lower to808

5% higher than the angles between the corresponding elastic maps. The Voigt matrix has other809

disadvantages as well. The eigenvalues of the Voigt matrix, for example, need not be the same as810

those of its elastic map. Appendix B1 has an example.811

Several authors have recognized the inadequacy of the Voigt matrix. Thus Mehrabadi & Cowin812

(1990); Bóna et al. (2007); Diner et al. (2010) instead used the representation [T]ΦΦ, where the813

orthonormal basis Φ (our notation) for M is that of (Mehrabadi & Cowin 1990, eq. 3.2) or (Tape &814

Tape 2021, eq. S23). Our representation [T]BB in this paper is slightly preferable to [T]ΦΦ in that815

it gives simpler expressions for the reference matrices (Table S1) and for the associated projection816

formulas (Tape & Tape 2024, eq. 84). For example, the diagonal forms for the ISO and CUBE817

reference matrices mean that the diagonal entries are eigenvalues.818

Eqs. S28 and S29 of Tape & Tape (2021) convert [T]BB to [T]ΣΥ and vice versa.819

APPENDIX B: CLOSEST ISOTROPIC MAP TO T820

The closest isotropic map to T plays a central role in our approach, because it is at the end of821

most pathways considered (irrespective of node sequence and node mode) and because it provides822

a primary measure of anisotropy βISO via Equation (6) with Σ = ISO.823
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Let T ′ = [KISO]BB be the matrix of KISO with respect to the basis B. Its (normally) non-zero824

entries T ′
ij are (Tape & Tape 2024, eq. 84a):825

T ′
11 = T ′

22 = T ′
33 = T ′

44 = T ′
55 = 1

5
(T11 + T22 + T33 + T44 + T55)

T ′
66 = T66.

Thus there are six non-zero entries, of which at most two are distinct. The matrix is diagonal, so826

the eigenvalues are obvious:827

λ1 = T ′
11

λ6 = T ′
66

Eigenvalue λ1 = 2µ, where µ is the shear modulus, and eigenvalue λ6 = 3κ, where κ is the bulk828

modulus. Then one can directly obtain µ = T ′
11/2 and κ = T ′

66/3 from the entries of a general829

T = [T]BB.830

B1 The equivalent in Voigt notation831

As mentioned in Appendix A, the Voigt matrix of KISO is the matrix C ′ = [KISO]ΣΥ; it is the 6× 6832

matrix that maps the strain vector [ϵ]Υ to the stress vector [σ]Σ. The non-zero entries C ′
ij are833

C ′
11 = C ′

22 = C ′
33 = (f + 2a)/3

C ′
12 = C ′

13 = C ′
23 = (f − a)/3

C ′
44 = C ′

55 = C ′
66 = a/2,

where C ′
ij = C ′

ji and834

a = λ1 = 2
15
(C11 − C12 − C13 + C22 − C23 + C33 + 3(C44 + C55 + C66))

f = λ6 = 1
3
(C11 + 2C12 + 2C13 + C22 + 2C23 + C33) ,

and where the Cij (unprimed) are the entries of the Voigt matrix of T.835

Thus there are twelve (normally) non-zero entries of C ′, of which at most three are dis-836

tinct. The entries of C ′ are unwieldy in terms of the Cij . Also, the six eigenvalues of C ′ are837

{λ1, λ1, λ1/2, λ1/2, λ1/2, λ6}, which are not the eigenvalues {λ1, λ1, λ1, λ1, λ1, λ6} of the closest838

isotropic map to T.839
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APPENDIX C: WAVEFIELD SIMULATIONS IN ANISOTROPIC MODELS840

Estimation of elastic parameters from laboratory samples or portions of the Earth generally require841

measurements of seismic waves. We perform 3D wavefield simulations using two different sets of842

homogeneous anisotropic models, shown in Figures 9 and 11. Our choice of domain is motivated843

by modeling crustal and uppermost mantle properties in subduction zones, and therefore we place844

the earthquake hypocenter at 75 km depth (such as within a subducting slab) and consider stations845

at the surface. For the homogeneous properties, we assume variations on the An0 albite feldspar846

crystal analyzed in Brown et al. (2016). This material has trivial symmetry (βMONO = 3.8◦, as in847

Figure 3) and therefore requires all 21 parameters to be specified, no matter how the material is848

oriented. The feldspar density is 2623 kg/m3 Brown et al. (2016). We model the entire domain as849

homogeneous feldspar, which is appropriate for the laboratory scale but unrealistic for representing850

the Earth structure. Alternatively we could have scaled the dimensions to laboratory scales, in851

which case the seismograms in Figures 9 and 11 would have similar shapes but a much shorter852

time scale (and therefore higher frequencies).853

We use Specfem3D to perform the seismic wavefield simulations (Komatitsch et al. 2000,854

2004; Peter et al. 2011). In order to avoid any late-arriving, spurious reflections from the bound-855

aries, we use a large computational domain. Our domain is 624×624 km at the surface and 312 km856

in depth. The mesh contains 121.5 million brick-like elements and 1.042 billion global gridpoints.857

Each simulation takes about 180 minutes on 1872 computing cores. The simulations are accurate858

down to periods of about 1.0 s. The source is a vertically oriented CLVD, which has the advantage859

of azimuthal symmetry while generating both P and S waves. (A vertical point force would be a860

suitable alternative.) The grid of stations is displayed in Figure S9.861
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Figure 1. Visualization of elastic maps using the monoclinic angular distance function αMONO. For each

point v on the sphere, αT
MONO(v) is the angle between the elastic map T and the closest elastic map to T

having a 2-fold symmetry axis at v. (a) αMONO-sphere for the An0 elastic map T of Brown et al. (2016),

which has trivial symmetry. This map, which we refer to as BrownAn0, is featured in Figures 2, 3, and

Figures 7–12. (b) αMONO-sphere for the closest monoclinic map KMONO to T. The angle from T is βMONO =

∠(T,KMONO) = 3.8◦. (c) αMONO-sphere for the closest orthorhombic map KORTH to T. The angle from T

is βORTH = ∠(T,KORTH) = 6.4◦. In each of (a)-(c) the gray arrows are the coordinate axis vectors e1 (left),

e2 (right), and e3 (up). The red, blue, and yellow arrows are the columns u1, u2, and u3 of a rotation matrix

U = UT
Σ as described in connection with Eq. 5; in diagrams (a) and (b) the matrix U is UT

MONO and in (c) it is

UT
ORTH. (d)-(f) Same elastic maps as in (a)-(c), but seen from viewpoints that better display their symmetry.

Each view is down the (yellow) u3 axis, but the yellow arrow has been removed in order to see the contour

details. It follows from Tape & Tape (2024, Table 2) that the antipodal points ±u3 = ±UT
MONOe3 are 2-fold

points of KMONO. The monoclinic symmetry of KMONO is best seen in (e). Likewise, ±ui = ±UORTHei,

i = 1, 2, 3, are 2-fold points of KORTH (green dots in (c)). The elastic maps T, KMONO, and KORTH have zero

(d), one (e), and three (f) 2-fold axes, as expected for TRIV, MONO, and ORTH symmetry.
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(a) (b)

Figure 2. (a) The relation between the angle βISO = ∠(T, KISO) and the distance dISO = ∥T−KISO∥ for

an elastic map T and its closest ISO map KISO. The horizontal axis represents all isotropic maps. The elastic

map T is BrownAn0, for which βISO = 26.0◦. (b) Parameterization T(t) (Eq. 10) of the direct path from T

to KISO. The four spheres (elastic maps) shown on the path are for t = 0 (T: top), t = 1/3, t = 2/3, and

t = 1 (KISO: bottom). The corresponding values of βISO(t) are 26.0◦, 18.0◦, 9.2◦, and 0◦. As t tends to 1,

both dISO(t) and βISO(t) tend to zero, and T(t) tends to KISO (solid blue). Angles in these 2D diagrams are

in fact angles between elastic maps and hence are calculated as angles between 6× 6 symmetric matrices.
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Figure 3. Lattice diagram of elastic maps: Visualization of an elastic map T, at bottom, and the closest

elastic map KΣ to it having symmetry (at least) Σ: monoclinic (MONO), orthorhombic (ORTH), tetragonal

(TET), trigonal (TRIG), transverse isotropic (XISO), cubic (CUBE), isotropic (ISO). On the sphere for KΣ,

the green dots make up the zero-contour, which consists of the 2-fold symmetry axes of KΣ and therefore

determines its symmetry group. The spheres for T, KMONO, and KORTH are the same as in Figure 1a,b,c.

The angle βΣ next to each sphere is the angular distance from T to KΣ. Each angle listed below βΣ is

∠(KISO,KΣ). The angle listed between spheres is the angular distance between the corresponding maps.
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(a) (b)

Figure 4. Two examples of the dependence of anisotropy on the chemical composition of crystals. For

each elastic map, we calculate 1000 realizations using the published uncertainties for the Cij . For each set

of 1000 maps, we determine the closest Σ-maps for MONO, ORTH, TET, TRIG, XISO, CUBE, and ISO, and

then calculate the corresponding βΣ. The vertical uncertainty estimates are ±2σ. (a) Representation of the

8 elastic maps of Table 2 of Brown et al. (2016). Each map has 21 parameters and is for a feldspar crystal

having a different percentage of anorthite. (b) Representation of the 9 monoclinic elastic maps from Table 3

of Brown & Abramson (2016). Each map has 13 parameters (monoclinic) and is for a different amphibole

crystal.
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(a) (b) (c)

Figure 5. Dependence of elastic symmetry on temperature and pressure, represented by βΣ angles.

(a) Westerly granite dependence on temperature for a fixed pressure of 5 MPa; data from the published sup-

plement of Lokajı́ček et al. (2021). The results—especially βISO (red)—depict increasing anisotropy with

temperature. (b) Grimsel granite dependence on pressure; data from Table 4 of Aminzadeh et al. (2022).

(c) Bukov migmatized gneiss dependence on pressure; data from Table 3 of Aminzadeh et al. (2022).
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(a) (b)

Figure 6. (a) Global plot of βXISO for the global flow model safs417nc3 er at 200 km depth (Becker et al.

2008). The global flow model is provided as a set of 14,512 elastic maps. For each map we calculate its

closest XISO-map and βXISO. Figure S7 shows other βΣ global plots. (b) Global plot of the symmetry class

assigned to each elastic map. This procedure assumes a node sequence (see legend: TRIV-MONO-ORTH-

TET-XISO-ISO) and a threshold value of βtrsh = 1.0◦.
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(a) (b)

Figure 7. Two sets of eight elastic symmetry groups. Each group is determined by a rotation matrix U and

one of the eight Σ; see Section 4.1 for more on U . On each sphere the blue dots are the 2-fold points—

the points where the 2-fold axes of the symmetry group intersect the sphere. The red dots are likewise the

3-fold points, and the white-inside-blue dots are the 4-fold points. The configuration of the 2-fold points

(blue) determines the symmetry group and thus can be regarded as a picture of it. The gray arrows are the

coordinate axis vectors for e1 (left), e2 (right), and e3 (up). The colored arrows are the columns of U : u1

(red), u2 (blue), and u3 (yellow). (a) Like Figure 3, hence U = UΣ, but here only the zero-contour of αKΣ
MONO

is shown—the 2-fold points of the symmetry group. (b) Same as (a) but with U = I for each node of the

lattice. See Section 4.1 for details.
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Figure 8. Beta curves for the direct path from T to KT
ISO, the closest isotropic map to T. The plots are of the

function β
T(t)
Σ = ∠

(
T(t), K

T(t)
Σ

)
, where T(t) is as in Eq. 10. The map T(0) = T is BrownAn0, featured

in Figures 1–3. For each Σ, values of βT(t)
Σ (colored dots) were plotted for t = 0, 0.2, 0.4, . . . , 1.0. With

six values of t and seven Σ, a total of 42 calculated dots appear, with each dot obtained via minimization to

find K
T(t)
Σ . The seven values of βT

Σ (far left) are displayed next to the spheres in Figure 3; they range from

βT
MONO = 3.8◦ to βT

ISO = 26.0◦.
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Figure 9. Influence of decreasing anisotropy on a synthetic seismogram computed in a three-dimensional

model of a homogeneous anisotropic medium (Appendix C). Six simulations are performed, one for each

homogeneous medium. (Left) αMONO-spheres depicting the elastic maps for the homogeneous media. The

six elastic maps T(t) are those used in Figure 8; they are on the direct path from T to KISO, so again the

t = 0 map is BrownAn0 (bottom), and the t = 1 map is the closest isotropic map to it (top). (Right) Ver-

tical component of ground velocity for an example station at the surface (epicentral distance 83 km and

azimuth 25◦) for a source at 75 km depth. The seismograms are normalized by the absolute maximum am-

plitude of all displayed seismograms. Choosing a different station may result in very different seismograms,

since the waves will propagate in a different direction through the homogeneous anisotropic medium.
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Figure 10. Cumulative internodal angle curves illustrated for one example node sequence. The example

map T is BrownAn0 (Figures 1–3). (a) Cumulative curves for node mode nm2 (gray) in comparison with

the direct path (black). The cumulative curve has an angular length of 50.3◦, while the direct path is 26.0◦.

The sequence of lattice nodes from TRIV to ISO is shown on the x-axis and depicted in the inset lattice

diagram; see also Figure 3. Figure S3 displays three other node sequences and two additional node modes

for comparison. (b) Corresponding matrix of internodal angles for node mode 2. The five values in the first

off-diagonal are internodal angles displayed in Figure 3. The five non-zero values in the top row are βΣ

angles in Figure 3. See Section 4.7 for details.
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Figure 11. Influence of decreasing anisotropy on a synthetic seismogram—similar to Figure 9—but,

whereas in Figure 9 the path from T (BrownAn0) to KT
ISO was direct, here the path follows a lattice node

sequence. (Left) Chosen lattice node sequence, with one elastic map between each pair of adjacent nodes.

The 11 dots represent 11 elastic maps. (Center) αMONO-spheres for the 11 elastic maps. Six of these (KT
Σ )

are also displayed in Figure 3, which also shows the color scale. (Right) Vertical component of ground

velocity for the same station and source as in Figure 9. Each seismogram is computed in a homogeneous

halfspace represented by the αMONO-sphere to the left. The synthetic seismograms are normalized by the

absolute maximum amplitude of all displayed seismograms.

In press at GJI, April 2025.



(a) (b)

TRIV

MONO

ORTH

TET

XISO

ISO

TRIG

CUBE

Figure 12. Beta curves with base maps varying from T (BrownAn0) to KT
ISO, the closest isotropic map to

T. The node sequence is shown in (a), and the node mode is 2, meaning that at each node Σ the elastic map

is KT
Σ . For any elastic map S, the angle βS

Σ = ∠
(
S,KS

Σ

)
is a measure of how far S is from having (at least)

symmetry Σ. The angle βTi
Σ was calculated for the 26 maps Ti shown as dots on the path in (a) and for seven

Σ (not shown is βTi
TRIV = 0◦). Specifically, T1 = T, T6 = KT

MONO, . . . , T26 = KT
ISO. The horizontal axis

in (b) should be regarded as the same as the path in (a), but straightened out. Although most of the behavior

in the figure is not guessable initially, one feature is easily understood: Since, for example, T11 = KT
ORTH

itself has ORTH symmetry, then βT11
ORTH = 0◦. Likewise, βT16

TET = 0◦, etc. Compare the seemingly exotic beta

curves here with those in Figure 8, which was for the direct path from T to KT
ISO; how one gets from one

point to another in the space of elastic maps matters hugely. With 26 maps Ti and seven Σ, a total of 182

minimizations were required to calculate all of the KTi
Σ . Other choices of node modes (Figure S4) and node

sequences (Figure S5) are possible.

In press at GJI, April 2025.




