Evaluating the Undrained Shear Iso-Velocity Hypothesis

Deniz Ranjpour, Tufts University, Medford MA

ABSTRACT

The Full Effective Stress (FES) method developed for pore pressure prediction assumes that compressional wave velocity is uniquely related to porosity. The Iso-Velocity hypothesis is evaluated in the laboratory during undrained shear triaxial tests. The effective stress paths followed during an undrained shear test is an iso-porosity contour. Having a proper understanding of wave velocity behavior during undrained shearing provides insight into the stiffness behavior and possibly the stress state relative to failure.

I have conducted undrained shearing tests on resedimented mudrock (GoM-EI) specimens and measured \(V_p \) and \(V_s \) throughout the shearing process. Test results show that \(V_p \) is mainly controlled by porosity and relatively insensitive to undrained shear. \(V_s \) reduces significantly with shear, suggesting a softening of the mudrock shear modulus. As a result, the velocity ratio \((V_p/V_s) \) and the poisson’s ratio are dependent on shear stress level. In the later stages of shearing, there seems to be a change in material behavior.

Fig 1: Normalized P and S velocities for GoM-EI plotted against normalized average stress during undrained shear

Fig 2: Undrained stress paths compared to Modified Cam Clay yield surfaces for three tests on GoM-EI. Compressional velocities are average values during shear
Fig. 1: Normalized P and S velocities during undrained shear
Fig. 2: Experimental effective stress paths compared to Modified Cam Clay curves