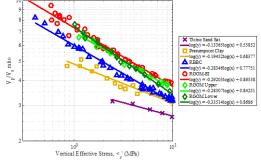
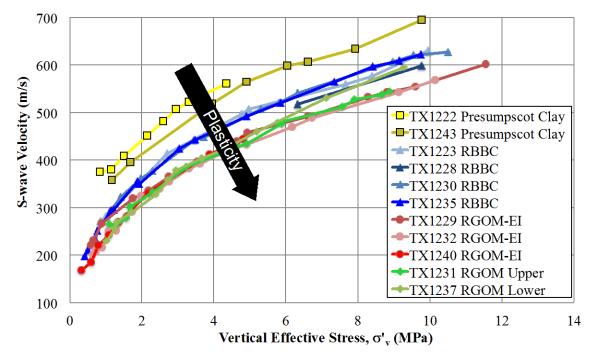

Plasticity Effects on Velocity Trends

Jana Marjanovic, Massachusetts Institute of Technology, Cambridge MA


ABSTRACT

Piezoelectric elements were used to transmit and receive compressional (P) and shear (S) wave signals through the specimens while they were being consolidated up to 10MPa. P and S-wave velocities were measured concurrently through a variety of clays with different plasticities in the vertical direction (C₃₃ and C₅₅, respectively). There was a lack of plasticity trend in the P-wave velocity results; however, the S-wave velocity showed a distinct increase in velocity with decreasing plasticity. The lowest plasticity material, Presumpscot Clay, has the highest V_s, while the lowest plasticity clay, RGOM-EI, has the lowest V_s, as seen in **Fig. 1**. When the results are plotted in terms of V_p/V_s ratio as a function of vertical effective stress (σ'_v) (**Fig. 2**), we observe a distinct ordering and slope of the different materials, following a plasticity trend. Based on the slope and intercept, a model is created that can predict the V_p/V_s ratio as a function of stress with a single input parameter: liquid limit (w_L).


CLICK ON IMAGE FOR LARGER VIEW

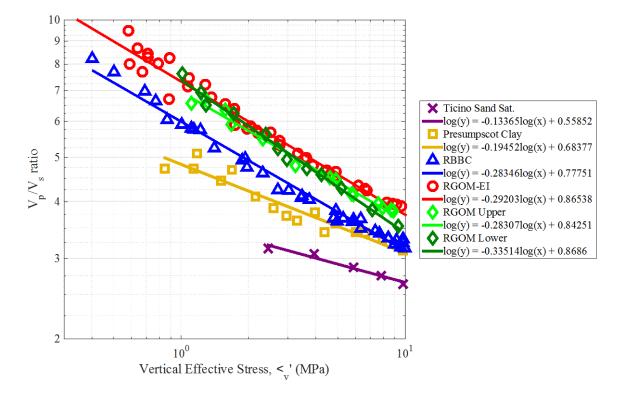

Fig. 1: The S-wave velocity results are shown to increase as a function of vertical effective stress. The lowest plasticity clay (Presumpscot Clay) and the highest plasticity clay (RGOM-EI) are the two extreme velocities, with the rest of the materials ordering themselves in between the two, following a plasticity trend.

Fig. 2: The V_p/V_s ratio, often used as an indicator of lithology, is plotted as a function of vertical effective stress, with all the data points from a variety of tests shown here. The slope and y-intercept of the best-fit lines are respectively α and β in the equation $\log(V_p/V_s) = \alpha \log(\sigma_v') + \beta$. A model is developed that can predict this graph based on a single input parameter, liquid limit (w_L), which is an indicator of plasticity.

Fig. 1: The S-wave velocity results are shown to increase as a function of vertical effective stress. The lowest plasticity clay (Presumpscot Clay) and the highest plasticity clay (RGOM-EI) are the two extreme velocities, with the rest of the materials ordering themselves in between the two, following a plasticity trend. Back

Fig. 2: The V_p/V_s ratio, often used as an indicator of lithology, is plotted as a function of vertical effective stress, with all the data points from a variety of tests shown here. The slope and y-intercept of the best-fit lines are respectively α and β in the equation $\log(V_p/V_s) = \alpha \log(\sigma_v') + \beta$. A model is developed that can predict this graph based on a single input parameter, liquid limit (w_L), which is an indicator of plasticity. Back