
 

 

 

 

 

 

 

 

 

Copyright 

by 

David McLean Wiggs 

2021 

 

 



The Thesis Committee for David McLean Wiggs 
Certifies that this is the approved version of the following Thesis: 

 

 

A Generalized Model to Estimate the Elastic Stiffness Tensor of 

Mudrocks Based on the Full Strain Tensor  

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 
                                                                                     
Peter B. Flemings, Supervisor 
 
 
 
 
                                                                                   
Kyle T. Spikes 
 
 
 
 
                                                                                   
Maria A. Nikolinakou 

  



A Generalized Model to Estimate the Elastic Stiffness Tensor of 

Mudrocks Based on the Full Strain Tensor  

 

 

by 

David McLean Wiggs 

 

 

Thesis 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Geological Sciences 

 

 

The University of Texas at Austin 

May 2021  



 iv 

Acknowledgements 

 

First, I would like to thank my advisor, Peter Flemings. He pushed me to not be 

satisfied with a partial solution and made me a better scientist and person. Thank you for 

always expecting excellence. No matter my future endeavors, you have prepared me with 

the proper mindset. I would also like to thank my committee members, Kyle Spikes and 

Maria Nikolinakou. They have been heavily involved throughout my research and lent their 

hand at every challenge in my research. Thank you for taking the time to deal with my 

countless questions.  

I would also like to thank the entire GeoFluids group. Thank you, Dr. Germaine, 

for your lighthearted and unique problem-solving approach. Thank you, Felicia and Lynda, 

for constantly juggling my schedule and fitting me in for any reason.  I would also like to 

thank Philip Guerrero for his help in navigating my graduate degree. In addition, I would 

like to express gratitude provided the generous financial support of: the Geofluids 

Consortium and its sponsors Shell, Hess, Tufts, ConoccoPhillips, BP, Oxy, BHP, 

ExxonMobil, Chevron, Petrobras, and The University of Texas at Austin. 

Next, I would like to thank my parents, Brett and Alesia Wiggs. Thank you for 

supporting me in every pursuit and leading by example. I dream to follow in each of your 

steps and hope to obtain even a fraction of your accomplishments. I also would like to 

thank my roommates, Harry Hull, Jake Gearon, and John Franey. I am grateful to have 

lived with such exceptional geoscientists and can’t wait to see how our futures will align. 

Each of you was a constant source of ideas and brought my research to new heights. Finally, 

I would like to thank Jacqueline Fatjo. Thank you for cheering me on in all endeavors and 

lending an ear to me at all times.  



 v 

Abstract 

 

A Generalized Model to Estimate the Elastic Stiffness Tensor of 

Mudrocks Based on the Full Strain Tensor 

 

David McLean Wiggs, M.S. Geo. Sci. 

The University of Texas at Austin, 2021 

 

Supervisor:  Peter B. Flemings 

 
I develop a three-step framework to model the anisotropic elastic properties of a 

mechanically compacted mudrock based on the full strain tensor. I model the 

microstructure as an effective medium representative of locally aligned domains of clay 

grains and fluid filled porosity with isolated quartz. Then I predict the orientation of these 

building blocks due to the application of any strain field. Finally, the previous two steps 

are combined to determine an effective medium model for the entire mudrock that 

predicts the elastic stiffness matrix. I focus on the relationship of deformation to porosity 

reduction and grain alignment in mudrocks. My results show that the application of axial 

loading leads to the development of elastic anisotropy with stiffnesses increasing more 

rapidly in the direction perpendicular to loading. These stiffness predictions closely 

match experimental data on a mudrock specimen from Eugene Island – Gulf of Mexico. I 

further apply my three-step framework to predict elastic stiffnesses in a synthetic salt 

basin based on the full strain tensor predicted by an evolutionary poromechanical model. 
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This coupling allows us to predict elastic stiffnesses and anisotropy due to sediment 

deposition and non-uniaxial salt loading. Accurate estimation of elastic stiffnesses for 

mudrocks based on the full strain tensor holds immense potential to improve pressure 

prediction, seismic imaging in complex geologic environments, and prospect evaluation.  
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CHAPTER 1: INTRODUCTION 

1.1 OBJECTIVES 

Mudrocks have been understudied relative to sandstones and carbonates in the past 

despite comprising 75% of sedimentary fill of basins (Jones and Wang, 1981). Reasons for 

the lack of investigation include their inherent lithologic and mechanical variability along 

with their previously unrecoverable resources prior to the unconventional revolution (Jones 

and Wang, 1981; Pervukhina et al., 2015). Interest in mudrocks has increased due to their 

development as unconventional resource plays. 

The objective of this work is to predict the elastic stiffness matrix of a mudrock as 

a function of the deformation the rock has undergone based on grain reorientation and 

porosity reduction. The prediction of these properties provides the ability to enhance 

seismic imaging, to interpret deformation, and to identify potential hydrocarbon reservoirs. 

The result holds several specific potential applications. First, the combination of my 

workflow with a poromechanical model allows for an investigation of the impact of any 

deformation on the elastic properties of mudrocks. Second, the workflow combined with 

inverse methods could be used to assess stress and deformation in field data. Finally, my 

workflow along with tilted transverse isotropic (TTI) seismic processing techniques could 

provide for an improvement of seismic imaging methods. My workflow could improve 

seismic processing due to the integration of principal strain orientation versus the definition 

of the tilt angle according to dip. The workflow provided in this thesis gives a framework 

to investigate and predict the impact of any deformation on the elastic properties. 
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1.2 CHAPTER DESCRIPTIONS 

In Chapter 2, I present a rock-physics modeling approach to predict the full elastic 

stiffness matrix and anisotropy of mechanically compacted mudrocks based on the full 

strain tensor. First, I construct an effective medium of a constant volume composed of 

clay, quartz, and porosity through the combination of the anisotropic Self-Consistent 

Approximation (SCA) and Differential Effective medium (DEM). Next, I describe the 

alignment of building blocks as a function of deformation with the March Model (March, 

1932). I examine two types of deformation (uniaxial compaction and pure shear) to 

illustrate building block alignment. In uniaxial compaction, the vertical component of 

strain is nonzero, while all others are zero. In pure shear deformation, the vertical 

component of strain corresponds to an equal but opposite change in the horizontal 

component. The other horizontal axis remains equal to zero, and the third is zero. Finally, 

I combine the previous two steps through a Voigt approximation to determine the 

mudrock elastic stiffnesses. The uniaxial compaction results are compared to 

experimental results from Nihei et al. (2011) and Ranjpour (2020). Last, my work is 

combined with poromechanical model results from (Nikolinakou et al., 2016) to show a 

potential application of the workflow to large scale complex geologic systems. A portion 

of this work was presented in the Annual SEG Conference (Wiggs et al., 2020)  and 

Chapter 2 will be submitted as a publication to Geophysics. 

Appendices in Chapter 3 provide additional detail on how to replicate the workflow 

discussed in Chapter 2. The appendices include A) a derivation of the March-Owens ODF 
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to predict the alignment of grains from the full strain tensor and B) determination of the 

Legendre Coefficients to calculate the elastic properties of a mudrock.  
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CHAPTER 2: A GENERALIZED MODEL TO ESTIMATE THE 

ELASTIC STIFFNESS TENSOR OF MUDROCKS BASED ON THE 

FULL STRAIN TENSOR 

ABSTRACT 

I develop a three-step framework to model the anisotropic elastic properties of a 

mechanically compacted mudrock based on the full strain tensor. I model the 

microstructure as an effective medium representative of locally aligned domains of clay 

grains and fluid-filled porosity with isolated quartz. Then I predict the orientation of these 

building blocks due to the application of any strain field. Finally, the previous two steps 

are combined to determine an effective medium model for the entire mudrock that 

predicts the elastic stiffness matrix. I focus on the relationship of deformation to porosity 

reduction and grain alignment in mudrocks. My results show that the application of axial 

loading leads to the development of elastic anisotropy with stiffnesses increasing more 

rapidly in the direction perpendicular to loading. These stiffness predictions closely 

match experimental data on a mudrock specimen from Eugene Island – Gulf of Mexico. I 

further apply my three-step framework to predict elastic stiffnesses in a synthetic salt 

basin based on the full strain tensor predicted by an evolutionary poromechanical model. 

This coupling allows us to predict elastic stiffnesses and anisotropy due to sediment 

deposition and non-uniaxial salt loading. Accurate estimation of elastic stiffnesses for 
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mudrocks based on the full strain tensor holds immense potential to improve pressure 

prediction, seismic imaging in complex geologic environments, and prospect evaluation.  

2.1 INTRODUCTION 

Mudrocks experience complex strains during deformation. Platy grains within 

mudrocks become aligned during applied deformation and this results in the development 

of elastic anisotropy. For example, the velocity in the direction of alignment is greater 

than that normal to the alignment. This type of anisotropy, termed grain orientation-

induced, is different from other causes of elastic anisotropy such as that caused by 

layering of different isotropic materials (Backus, 1962) or the closing of cracks normal to 

the direction of applied stress (Nur and Simmons, 1969; Sayers et al., 2002).  

Understanding how elastic stiffnesses evolve as a function deformation is 

important because stiffnesses are a fundamental input to seismic imaging. Conventional 

seismic processing typically assumes either that the symmetry axis varies with depth and 

is vertical (transverse isotropic) or perpendicular to the direction of dip (tilted transverse 

isotropic (TTI) (Alkhalifah, 2000). This approach does not incorporate the anisotropy that 

can result from a complex stress field where the symmetry axis is not perpendicular to 

bedding and might not vary only as a function of depth.  This situation can lead to errors 

in normal moveout correction, dip moveout correction, seismic migration, and amplitude 

with variation offset analyses in geologic areas of high deformation due to rotation of the 

symmetry axis based on the full strain tensor. The error propagates into normal-moveout 

correction, seismic migration, and amplitude preservation. Proper consideration of the 
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impact of deformation on seismic anisotropy may improve seismic imaging. Furthermore, 

analysis of seismic velocity anisotropy from seismic data might allow us to invert the 

state of pressure, stress and deformation from seismic data.  

Mudrocks are primarily composed of connected pores filled with fluid, platy clay 

minerals, and quasi-spherical silt grains (commonly quartz). In Figure 1, platy clay grains 

have a range of orientations. However, locally, there are clusters of aligned clay grains. 

Previous studies refer to these local parallel alignment of clay particles as a domain (Red 

box in Figure 1; Figure 2) (Aylmore and Quirk, 1959).  

Multiple studies have modeled the elastic stiffness matrix of domains that include 

aligned platy particles, pores and grains (Bayuk et al., 2007; Hornby et al., 1994; Sayers, 

2005; Vasin et al., 2013). The elastic properties, volume fraction, shape, orientation, and 

connection of each constituent controls the effective properties of the composite solid 

(Hornby et al., 1994).  

 When mudrocks are deposited, the domains containing aligned platy minerals are 

generally randomly aligned. As the mudrock undergoes uniaxial strain, the domains align 

(compare Fig. 1a to 1b). Bandyopadhyay (2009) and Johansen et al. (2004) have 

developed models to describe the elastic stiffness and the anisotropy for a distribution of 

differently aligned domains due to uniaxial compaction.  

I introduce an approach to compute the elastic stiffness of a mudrock for any 

strain imposed subsequent to deposition. I first compute the elastic stiffness matrix of a 

building block of aligned grains, porosity, and spherical silt. I next compute the 

distribution of the alignment of these building blocks for a given deformation. I then 
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compute the elastic stiffness matrix of the aggregate of these building blocks based on the 

alignment due to deformation. I apply this approach to describe the elastic stiffness 

matrix across a model of a salt basin. The input is the full strain tensor from a 

poromechanical model. The output is a complex tilted transversely isotropic (TTI) 

medium where the orientation aligns to the principal strain tensor not bedding and does 

not increase systematically with depth. 
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Figure 1: Back scattered electron microscopy (BSEM) images of Resedimented Boston 
Blue Clay loaded to a vertical effective stress of (A) 0.1 MPa and (B) 10.0 
MPa (Emmanuel and Day-Stirrat, 2012). (A) Platy clay grains are 
approximately randomly oriented with a porosity (n) equal to .57 (Adams et 
al., 2013). (B) At higher vertical effective stress porosity has decreased 
following uniaxial compaction and there is alignment of the platy clay 
grains parallel to the horizontal axis. In this paper, I refer to domains as 
regions of locally aligned platy clay grains and pores such as are illustrated 
with the red box. Both images are of a vertical plane parallel to the axial 
loading direction. 
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2.2 METHODS AND RESULTS 

I assume an initially isotropic medium composed of randomly oriented building 

blocks. The blocks are composed of a domain of aligned platy clay grains and water-

filled pores along with isolated spherical quartz grains (Figure 1 and 2). I model the 

elastic stiffness tensor of these building blocks for any porosity (Figure 3 and 4). I then 

assume a statistical distribution of the orientation of these building blocks, impose a 

strain history, and predict the evolution of the orientation of the domains by using the 

March Model (Figure 6 and 7) (March, 1932). I then combine the building blocks 

according to the predicted distribution and describe the elastic stiffness behavior with an 

effective medium model for a mudrock that has undergone any strain history (Figure 8, 9, 

10, and 11). The workflow is then applied to generate elastic stiffness matrices across a 

salt basin based on the full strain tensor from a poromechanical model (Figure 13). 

2.2.1 Building Block Creation 

 I model the elastic stiffness tensor for a constant volume element (which I term a 

building block) composed of water (pore space), clay, and quartz. In successive steps, I 

add water, silt, or clay while simultaneously removing an equivalent volume of the host 

medium to arrive at an approximation of the elastic stiffnesses for a mixture a clay and 

quartz at a particular porosity. I do this in a stepwise fashion. First, I create an effective 

medium for a building block composed of equal fractions of biconnected aligned platy 

clay grains and water filled pore space (Figure 2A). Second, I adjust the porosity of the 

building block while maintaining connectivity of the clay and porosity. (Figure 2B). 
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Third, I add isolated quartz to the building block (Figure 2C). I then describe the entire 

building block as an equivalent homogenous effective medium. 

 

Figure 2: Cartoon depictions of each step to create the building block for my model of a 
domain with isolated quartz. (A) Initial equal concentration (50% porosity 
and 50% clay) domain (B) domain at any porosity with additional inclusions 
and (C) domain at the any porosity with isolated quartz.  

 The initial building block is assumed to be composed only of equal fractions of 

clay and porosity that are biconnected. This bi-connectivity allows flow through 

connected pores, while allowing the solid phase to form a load-bearing skeleton 

(Jakobsen et al., 2000). This initial building block is described as an effective medium 

with the anisotropic Self-Consistent Approximation (SCA) (Hornby et al., 1994) (Figure 

2A). In the anisotropic SCA, both clay and fluid-filled porosity are introduced together to 

compute the properties of the effective medium. The effective elastic stiffness tensor 

(csca) for the initial domain is: 

 

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = [. 5𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + .5𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓][.5𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + .5𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓]−1        (1) 

    

where 
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𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝐼𝐼 + 𝐺𝐺(𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠)�𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠��
−1

    (2) 

and 

𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �𝐼𝐼 + 𝐺𝐺(𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠)�𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠��
−1

.     (3) 

 

Equation 1 was developed by Willis (1977). 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  are the elastic stiffness 

matrices of the clay and porosity, respectively, I is the identity matrix, 

 𝐼𝐼 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 ,     (4) 

and G is the calculated geometric strain concentration factor for an ellipsoidal inclusion. 

Appendix 2 presents the solution of G following Bandyopadhyay (2009). G depends upon 

the input elastic stiffness matrix (in this case my original guess at csca) and the 

dimensions of the spheroidal inclusion. In my work I assume an aspect ratio of 1/10 

because the clay and fluid-filled porosity are thin and elongated.  The term 0.5 in Eq. 1 

reflects the porosity of the initial medium (n=0.5). Equation 1 is solved iteratively with 

an initial guess for csca. I initially set each matrix value to the average of the 

corresponding clay and fluid-filled porosity values and compute G. The procedure is 

repeated until csca converges to a fixed value.   

The effective medium that describes the initial building block is next adjusted to 

reflect elastic properties at any porosity. I use the anisotropic Differential Effective 

Medium (DEM) (Bandyopadhyay, 2009; Jakobsen et al., 2000) (Figure 2B). The DEM 
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preserves connectivity of any phase that is connected in the initial host medium. The 

effective elastic stiffness matrix (cdem) for any porosity is computed by successively 

removing an infinitesimal subvolume of host material (composed of clay and pores) and 

replacing it with a corresponding subvolume of either solely clay (to reduce porosity) or 

solely fluid (to increase porosity). The replacement of the host material maintains the 

original volume of the element. The change in stiffness dcdem due to an increase in clay 

volume (and decrease in porosity) is:  

 

𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖+1) − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1−𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)�𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .  (5) 

 

Qclay is given by equation 2 and vclayadd is the amount of the host medium replaced by 

clay. The replacement of the host medium by clay means that the total volume will 

always stay the same, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜 . Any addition of clay, 

vclayadd, corresponds to an equal removal of original host medium, vhost, leaving the 

volume of host remaining, vhostrem.  In the initial calculation of equation 5, cdem(i) equals 

csca as derived from equation 1. The step prior to each calculation will become the host 
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medium for every step after the initial calculation. The porosity of the effective medium 

that results from equation 5 is: 

𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 = .5 ∗ �1 − 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� = .5 ∗ 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜     (6) 

 

The change in stiffness dcdem due to an increase in the porosity is: 

  

𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖+1) − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑑𝑑𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
1−𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)�𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,  (7) 

 

where Qfluid is given by equation 3 and vfluid is the amount of host medium replaced by 

fluid filled porosity. The replacement of the host medium by porosity means that the total 

volume will always stay the same, 𝑣𝑣𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜 . Any addition 

of porosity, vfluidadd, corresponds to an equal removal of original host medium, vhost, 

leaving the volume of host remaining, vhostrem. The porosity of the effective medium that 

results from equation 7 is: 

 

𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 = .5 ∗ �1 − 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� + 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  .5 ∗ 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . (8) 

 

 Once the elastic properties for all clay to fluid filled porosity fractions are 

computed, quartz is added to the biconnected medium through the anisotropic DEM 

(Figure 2C). I model the quartz as isolated, isotropic quartz grains. To introduce the 

quartz as isolated grains I take advantage of the fact that any inclusion not represented in 
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the original host will not become connected even if added to high concentrations. When I 

add quartz, I remove an equivalent volume of the host medium composed of porosity and 

clay. The change in stiffness dcdem due to an increase in volume of quartz, dvquartzadd is:  

 

𝑑𝑑𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖+1) − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑑𝑑𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
1−𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

�𝑐𝑐𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 − 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)�𝑄𝑄𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 . (9) 

 

Where,  

 

𝑄𝑄𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = �𝐼𝐼 + 𝐺𝐺(𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠)�𝑐𝑐𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠��
−1

,    (10) 

 

the initial 𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 is equal to the result from equations 5 and 7 and vquartzadd is the amount of 

the effective medium (both porosity and clay) replaced by quartz. The replacement of the 

host medium by quartz means that the total volume will always stay the same, 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = 𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜 . Any addition of quartz, vquartzadd, corresponds to an equal 

removal of original host medium, vhost, leaving the volume of host remaining, vhostrem. 

The effective medium porosity after the introduction of quartz is: 

 

𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 ∗ �1 − 𝑣𝑣𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞� = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.  (11) 

 

The elastic properties of the building block are dependent upon the fraction of 

clay, quartz, and fluid-filled porosity. The building block is transversely isotropic (TI) 
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with aligned platy clay grains and pores along with isolated quartz. The resulting elastic 

stiffness matrix is related to the deformation undergone by a mudrock through porosity 

reduction. 

2.2.2 Building Block Elastic Stiffnesses 

I next illustrate how the elastic stiffnesses of a building block changes as a 

function of porosity and lithologic composition. The elastic properties for each 

constituent are taken from (Mavko et al., 2009) (Table 2).  All 5 terms of the TI elastic 

stiffness matrix (𝑐𝑐11, 𝑐𝑐33, 𝑐𝑐44, 𝑐𝑐66, 𝑐𝑐13)  increase as porosity reduces (Figure 3a and 4a).  

The three Thomsen (1986) parameters are: 

ϵ = 𝑐𝑐11−𝑐𝑐33
2𝑐𝑐33

     (12) 

γ = 𝑐𝑐66−𝑐𝑐44
2𝑐𝑐44

     (13) 

𝛿𝛿 =  (𝑐𝑐13+𝑐𝑐44)2−(𝑐𝑐33−𝑐𝑐44)2

2𝑐𝑐33(𝑐𝑐33−𝑐𝑐44)
.     (14) 

 

ϵ  is a measure of the anisotropy in the compressional stiffness whereas γ is a 

measure of the anisotropy in shear stiffness. ϵ begins at nearly isotropic conditions at the 

initial porosity (n = .57). γ  is large (γ =~3.5, Fig. 3B) because c44 (the vertical elastic 

stiffness) is very small (c44= ~.1) relative to the horizontal elastic stiffness (c66 =~1 to 4) 

(Figure 3A). The vertical stiffness is small because horizontally aligned ellipsoidal are 

very weak (Figure 3B and 4B). As porosity decreases (moving from left to right in Figure 

3B and 4B), both the compressional and shear stiffnesses develop anisotropy as seen by 
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the corresponding rise in ϵ and γ. γ increases until it reaches as maximum value of 4.5 at 

42% porosity. Continued porosity reduction leads to higher fractions of bulk rock that 

reduce the impact of pore shape on the shear anisotropy, γ. 𝛿𝛿 remains near zero at all 

porosities. 

 I also examine the impact of changing the volume fraction of clay and quartz 

from 65% and 35% (Figure 3) to 25% and 75% (Figure 4). The difference between the 

two lithologies elastic stiffness matrices and associated elastic anisotropy is plotted in 

Figure 5. The largest differences between any elastic stiffness occurs at n = .45 with a 1 

GPa difference in  𝑐𝑐11 (Figure 5). Comparing this to the impact of changing porosity, I 

see a 9 GPa change of, 𝑐𝑐11, from n = .57 to n = .3 (Figure 3). The porosity of the building 

block dominates the change in magnitude of the elastic stiffness matrix because the pores 

are the easiest to deform due to their elongate shape and the large difference in elastic 

properties of the fluid filled porosity vs either clay or quartz (Table 2). For Thomsen’s 

parameters, ϵ remains within 0.1 between the quartz fractions (Figure 5B). However, γ is 

almost double for the higher clay fraction case vs the higher quartz fraction case at all 

porosities. The higher shear anisotropy in the higher clay fraction is explained as follows. 

c44, the minimum shear stiffness approaches zero because of the thin ellipsoidal shape of 

the clay grains vs the circular shape of quartz grains. The introduction of quartz reduces 

the shear anisotropy of the building block because it has isotropic characteristics and a 

shear modulus that is an order of magnitude higher then clay or fluid-filled porosity.  
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Figure 3: Transversely Isotropic (TI) effective elastic stiffness matrix of a building block 
vs porosity. The bulk rock composition is 65% clay and 35% quartz.  



 18 

 

Figure 4: (A) Transversely Isotropic (TI) effective elastic stiffness matrix of a building 
block (B) Thomsen’ parameters vs porosity. The bulk rock composition is 
25% clay and 75% quartz.  
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Figure 5: Difference in (A) elastic stiffness matrix and (B) Thomsen parameters of a 
building block for lithology of 65 % Clay and 35 % Quartz to 25% Clay and 
75% Quartz vs porosity.  
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2.2.3 Determination of Building Block Alignments due to Deformation 

 I now describe the distribution of orientations of building blocks due to any strain. 

I first establish a local coordinate system for the building blocks (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) and a global 

coordinate system aligned to the principal strain axes (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3). The orientation of any 

building block is described by the Euler angles (Figure 6C) 𝜃𝜃 (the angle between 𝑥𝑥1 and 

the 𝑋𝑋1 axes),𝜓𝜓 (the rotation about the vertical, X1, axis), and 𝜙𝜙 (rotation about the local, 

x1, axis). The orientation distribution function (ODF) then is 𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙), where 𝜉𝜉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(Sayers, 1994).  

 March (1932) derived an expression that gives the directional distribution 

function (DDF) to describe the density of poles to the building blocks, f, as a function of 

strain (Figure 6B), assuming that the building blocks are initially randomly oriented 

(Figure 6A). Owens (1973) extended this model to include the effects of volume change 

and for any initial distribution. His general relationship is, 

𝑓𝑓𝑓𝑓(𝜉𝜉,𝜓𝜓) =
1

1 − 𝜖𝜖𝑣𝑣𝑣𝑣𝑣𝑣
�
𝐷𝐷𝑓𝑓
𝐷𝐷𝑖𝑖
�
3

𝑓𝑓𝑖𝑖(𝜉𝜉,𝜓𝜓) 

=
�𝐷𝐷11𝑓𝑓

2 𝜉𝜉2 +𝐷𝐷22𝑓𝑓
2 (1−𝜉𝜉)2 sin2 𝜓𝜓+𝐷𝐷22𝑓𝑓

2 (1−𝜉𝜉)2 cos2 𝜓𝜓�
3
2 

𝐷𝐷11𝑓𝑓𝐷𝐷22𝑓𝑓𝐷𝐷33𝑓𝑓
𝑓𝑓𝑖𝑖(𝜉𝜉,𝜓𝜓).  (15) 

 

f is the angular density of poles at 𝜉𝜉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝜓𝜓, D is the principal deformation matrix 

(Baker et al., 1993). The principal deformation matrix is, 

𝐷𝐷 =  �
𝐷𝐷11 0 0

0 𝐷𝐷22 0
0 0 𝐷𝐷33

�,     (16) 
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where, the matrix defines the shape and orientation of the strain ellipsoid. The diagonals 

(D11,D22,D33) describe the length of its principal axes (Fossen, 2016). 𝜖𝜖𝑣𝑣𝑣𝑣𝑣𝑣, the volumetric 

deformation is equal to the difference between the initial and final multiplications of the 

principal deformation axes – D11*D22*D33. 

The expression derived by Owens (1973) is independent of 𝜙𝜙, the angle of 

rotation around the local z-axis of each individual domain. In order to use the DDF, f, as 

an ODF (equation 15) I introduce 𝜙𝜙 with the addition of a scaling factor of 2π (Johansen 

et al., 2004), 

 

𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙) = 1
2𝜋𝜋
𝑓𝑓(𝜉𝜉,𝜓𝜓)  =  1

2𝜋𝜋
1

1−𝜖𝜖𝑣𝑣𝑣𝑣𝑣𝑣
�𝐷𝐷𝑓𝑓
𝐷𝐷𝑖𝑖
�
3
𝑓𝑓𝑖𝑖(𝜉𝜉,𝜓𝜓) .  (17) 

 

Equation 17 allows for the computation of the probability density of building blocks at all 

orientations (Figure 6B) with only the principal deformation tensor, initial distribution 

(Figure 6A), and corresponding volumetric deformation. The construction of Equation 17 

is further detailed in appendix A. 

The initial distribution is input into the calculation of the final alignment. Multiple 

theories have been proposed to explain the orientation of clay particles upon deposition. 

Three primary theories have gained popularity: ‘Honeycomb’ structure (Morris and Żbik, 

2009; O’Brien, 1971), ‘Cardhouse’ structure (Van Olphen, 1964), and a randomly 

distributed structure (Deirieh et al., 2018).  In my work, I use a random distribution of 

clay particles to represent the initially deposited clay particle alignment based on analysis 
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of micro-scale images (Figure 1A, Figure 6C) (Adams et al., 2013) and experiments on 

frozen, high-pressure clay slurries (Deirieh et al., 2018).  

 

Figure 6: 2-D Cartoon depictions of a mudrock at (A) unstrained and (B) 33 % uniaxially 
strained conditions. Uniaxial compaction leads to porosity loss within the 
blocks (noted by the change in pore sizes) and the collapse of building 
blocks to preferential alignment perpendicular to the loading direction as 
seen in the changes between images A and B. Images are of a vertical plane 
parallel to the axial loading direction. The orientation of each building block 
relative to the principal strain axes is described through the Euler angles (C). 
(C) depicts point of view (POV) of stereogram. 

2.2.4 Alignment due to Deformation 

I use Equation 17 to describe the evolution of alignment under uniaxial strain and 

pure shear. To apply Equation 17, I need to determine the change in the principal 

deformation axes, volumetric strain, and initial distribution. Under uniaxial strain (Figure 

7B), one principal strain axis undergoes contraction without any change in length along the 

other two (Fossen, 2016). This is described by a decrease in the principal deformation axis; 

D11.  D22 and D33 remain equal to one. The volumetric strain corresponds to the change in 

the final volume equal of D11*D22*D33. The initial distribution, 𝑓𝑓𝑖𝑖(𝜉𝜉,𝜓𝜓), is assumed to be 

random (Figure 7A) (Deirieh et al., 2018).  
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The alignment is described by plotting the poles to the building blocks in a 

stereogram (Figure 7B). These poles are perpendicular to the plane of the building block 

Originally, the poles are randomly distributed and thus no contours are present (Figure 

7A). However, after a distortion ratio of 40 %, there is considerable alignment with the 

density of poles clustered along the vertical in the stereogram increased (Figure 7B, 

Darker red). The distortion ratio is the ratio of the maximum principal deformation axis 

to the minimum principal deformation axis. In the case of uniaxial strain, the distortion is 

equivalent to the vertical strain. The poles to the building blocks show a mean of 0 

degrees and standard deviation of ± 33.5 degrees to the vertical axis when fit with a 

normal distribution. 

Under pure shear, there is an equal amount of shortening along one principal axis 

and extension along the other while the third axis remains constant (Fossen, 2016). To 

determine the final alignment from pure shear, I need to define the change in the principal 

deformation axes, the volumetric strain, and the initial distribution. The deformation leads 

to a shortening in the length of the principal deformation axes, D11, while corresponding to 

an equal lengthening in D22, while D33 remains equal to one. The initial distribution is 

assumed to be random.  

Under pure shear, the density of poles to building blocks increases aligned to the 

vertical (Figure 7C). The poles to the building blocks show a mean of 0 degrees and 

standard deviation of ± 45 degrees to the vertical axis when fit with a normal distribution. 

This means pure shear deformation leads to an increased density of building blocks 

perpendicular to the shortening direction.  

There is an increase in alignment with increased distortion under both uniaxial 

strain and pure shear (Figure 7). However, for the same amount of distortion, there is a 

greater degree of alignment under uniaxial strain relative to pure shear shown by the 
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smaller standard deviation in uniaxial strain (33.5 degrees) to pure shear (45 degrees) and 

increased density of poles clustered near the vertical (darker red contours). Conceptually, 

the volume of the element of mudrock decreases in the uniaxial strain case, whereas there 

is no volume change under pure shear. The platy particles are forced to align more due to 

the smaller volume they must fit into.   
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Figure 7: Stereograms of the density of poles to building blocks from (A) an initially 
random distribution, (B) uniaxial compaction, and (C) pure shear 
deformation. The standard deviation of alignment of poles away from the 
vertical are 33.5 degrees in uniaxial compaction vs 45 degrees in pure shear. 
Comparison of (B) and (C) shows a larger alignment due to uniaxial 
compaction versus pure shear deformation. Distortion ratio represents the 
ratio of the maximum principal deformation axis to the minimum principal 
deformation axis. Contours every .0002 increase in density. 
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2.2.5 Combination of Elastic Stiffnesses and Alignments 

I obtain the final elastic stiffness matrix representative of a mudrock with a Voigt 

approximation over all orientations of building block effective elastic stiffnesses (Sayers, 

1994). The function is evaluated by expanding the ODF, 𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙) into generalized 

spherical harmonics (Morris, 1969; Roe, 1965), 

 

𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙) = ∑ ∑ ∑ 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙(𝜉𝜉)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙
𝑘𝑘=−𝑙𝑙

𝑙𝑙
𝑚𝑚=−𝑙𝑙

∞ 
𝑙𝑙=0 ,  (18) 

 

where 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙(𝜉𝜉) are generalized Legendre functions and 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙  are Legendre coefficients 

(Johansen et al., 2004). I use a limited number of Legendre coefficients, 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 , to 

combine the building block elastic stiffnesses and ODF. The limited number of 

coefficients represent the maximum possible amount of information obtainable for the 

ODF using elastic waves with wavelengths large compared to the particle size (Sayers, 

2005). The only coefficients, 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 , of the expansion of  𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙) considered are for 

𝑙𝑙 ≤ 4 because the elastic stiffness tensor is of fourth rank.  

To apply equation 18 the components must be transversely isotropic (TI) and the 

orientation distribution must be orthotropic (Sayers, 1994) with symmetry axes aligned 

along the principal strain axes (𝑋𝑋1,𝑌𝑌1,𝑍𝑍1). Orthotropic materials have material properties 

that differ along three orthogonal axes. The building block is constructed as a TI medium 

and the Owens-March function based on the principal deformation matrix results in an 

orthotropic distribution (Sayers, 1994). The nonzero 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙  are then all real and vanish 
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unless 1 and m are even and k = 0 because my effective medium is orthotropic and 

building blocks are a TI medium (Sayers, 1994). The elastic stiffnesses are therefore 

determined in this case by five coefficients (𝑊𝑊200, 𝑊𝑊220, 𝑊𝑊400, 𝑊𝑊420, 𝑊𝑊440) (Sayers, 

1994). Appendix 1 contains the equations to determine the orthotropic elastic stiffness 

matrix of the mechanically compacted mudrock based on the five Legendre coefficients 

and the building block elastic stiffness matrix from Sayers (1994). 

In the case of a TI distribution of building blocks with symmetry axis along the 

principal axes, 𝑋𝑋1, 𝑊𝑊220 = 𝑊𝑊420 =  𝑊𝑊440 = 0, then two expansion coefficients of the 

ODF determine the elastic stiffnesses (𝑊𝑊200  𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊400). If the building blocks have a 

completely random orientation, i.e., 𝑊𝑊200 = 𝑊𝑊400 = 0, the mudrock is an isotropic 

medium (Johansen et al., 2004; Sayers, 1994).  

2.2.6 Mudrock Elastic Stiffnesses 

Results for the cases of uniaxial compaction and pure shear deformation are 

displayed in Figures 8 and 9 (Uniaxial Compaction) and 10 and 11 (Pure Shear 

Deformation). In both cases I assume an initial porosity as .57 (Figure 1A) from low 

stress (.1 MPa) measurements and the lithology fractions (65% Clay and 35% Quartz) 

based on core measurements of Gulf of Mexico – Eugene Island (GOM-EI) (Ranjpour, 

2020) and elastic properties for constituents from (Mavko et al., 2009) (Table 3).  

Figure 8A shows the TI elastic stiffness matrix for a mudrock during uniaxial 

compaction (dashed lines) along with the elastic stiffness of an individual building block 

(solid lines) versus porosity. At the initial porosity of 0.57, the random distribution of 
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building blocks creates isotropic elastic properties and effectively averages the building 

compressional and shear elastic properties (Figure 1A, 8A). Porosity reduction increases 

each elastic stiffness matrix value. The introduction of a distribution reduces the 

compressional and shear anisotropy at all porosities (Figure 8B)   

Figure 9A shows the corresponding Thomsen (1986) parameters versus porosity. 

The initial isotropic distribution has Thomsen’s parameters equal to zero (Figure 9A) due 

to the random distribution of building blocks. Seismic anisotropy increase as the mudrock 

undergoes uniaxial compaction, and the mudrock experiences porosity loss and domain 

alignment (Figure 1B, 8A). The elastic anisotropy of the mudrock is significantly reduced 

compared to a single building block due to the distribution of building blocks versus 

purely aligned ellipsoidal inclusions (Figure 9B). 

In my second endmember—pure shear (Figure 10 and 11)— the mudrock again 

begins at isotropic conditions (dashed lines) compared to the initial anisotropic properties 

of the building block (solid lines). The magnitude of the average of the compressional 

(𝑐𝑐11, 𝑐𝑐33) and shear (𝑐𝑐44, 𝑐𝑐66) stiffnesses remains the same as the initial conditions 

because the initial porosity of 0.57 is maintained throughout deformation. However, pure 

shear deformation aligns building blocks, and as a result elastic anisotropy develops 

(Figure 11A). The introduction of an aligned distribution of building blocks reduces the 

difference between the mudrock and building block elastic stiffnesses with increased 

distortion (Figure 10B). 

Finally, I compare the variation of elastic properties with porosity predicted by 

my workflow (Figure 12) to experimental results of mudrocks undergoing uniaxial 
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compaction (Ranjpour, 2020) (Open circles; Figure 12) (Nihei et al., 2011) (Closed 

circles; Figure 12). The modeled results match results shown in Figure 8 and 9. These 

properties include bulk rock fractions from Gulf of Mexico – Eugene Island Samples 

(GOM-EI) (Ranjpour, 2020), 65% Clay and 35% Quartz, and elastic properties from 

Mavko et al. (2009) (Table 2). The samples from Nihei et al. (2011) are intact samples 

with a similar lithology to the GOM-EI samples (Ranjpour, 2020). The modeled 

compressional elastic stiffnesses match experimental data within 10% (Figure 12; Data 

points plot within 10% of c11 and c33). The results fail to properly match the shear elastic 

stiffnesses within 10 % error (Figure 12; Data points fail to fall within 10% of c44 and 

c66).  
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Figure 8: (A) Comparison of Building Block (Solid Lines) and mudrock undergoing 
uniaxial strain (dashed lines) TI elastic stiffness matrix and (B) change in 
elastic stiffnesses between building block and mudrock vs porosity. The 
bulk rock composition is 65% clay and 35% quartz.  
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Figure 9: (A) Thomsen’ parameters of a mudrock undergoing uniaxial strain (dashed 
lines) and (B) Thomsen’ parameters of a mudrock undergoing uniaxial 
strain (dashed lines) and building block (solid lines) vs porosity. Note 
change in y axis scale between (A) and (B). The bulk rock composition is 
65% clay and 35% quartz.  
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Figure 10: (A) Comparison of Building Block (Solid Lines) and mudrock undergoing 
pure shear deformation (dashed lines) TI elastic stiffness matrix and (B) 
change in elastic stiffnesses between building block and mudrock vs 
porosity. The bulk rock composition is 65% clay and 35% quartz.  
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Figure 11: (A) Thomsen’ parameters of a mudrock undergoing pure shear (dashed lines) 
and (B) Thomsen’ parameters of a mudrock undergoing pure shear (dashed 
lines) and building block (solid lines) vs porosity. Note change in y axis 
scale between (A) and (B). The bulk rock composition is 65% clay and 35% 
quartz. 
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Figure 12: Prediction of (A) TI elastic stiffness matrix and (B) Thomsen’ parameters for a 
mudrock undergoing uniaxial compaction vs porosity. The bulk rock 
composition is 65% clay and 35% quartz. Modeled results match Figure 9 
and 10. Previously modeled results are overlain by experimental data from 
Nihei et al. (2011) and Ranjpour (2020). Shading represents 10% error of 
the model results.  
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2.2.7 Case Study 

 The workflow described holds several practical applications. Here I combine the 

workflow with a poromechanical model to investigate the impact of the full strain tensor 

on elastic stiffnesses. I apply my workflow to the outputs of the full strain tensor and 

porosity from a poromechanical model of a salt diapir rising through sediment 

(Nikolinakou et al., 2016) to predict elastic stiffnesses in the synthetic basin.  

The evolutionary poromechanical model starts with an initially flat layer of salt 

which is then incrementally loaded with sediment. The salt upbuilds to the basin surface 

along the left edge of the modeled cross section (Figure 13). The final porosity 

distribution (Figure 13A) and deformation tensor components (overlying crosses) result 

from burial as well as loading from the growing salt diapir. The overlying crosses located 

at selected elements across the basin (Figure 13A) represent the maximum, 𝐷𝐷11(blue), 

and minimum, 𝐷𝐷33(black), principal deformation axes and are initially equal in length 

and oriented vertical/horizontal.  Subsequent deformation is illustrated by the rotation and 

relative magnitude change of the two axes.  

Two areas within Figure 13A illustrate examples of deformation. First, away from 

salt, both axes shorten with depth. This records the large reduction in porosity (color 

contours). Below the salt sheet, the maximum deformation axis rotates to be 

perpendicular to the salt-sediment interface. There is significant shortening in the 

direction normal to salt, and significant extension in the direction parallel to salt. As a 

result, porosity remains high despite the increase in overburden.  
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 I use the deformation tensor at each element at the end of the simulation as input 

to my model. Other inputs for the effective medium model follow the properties defined 

earlier in the workflow (Table 2). These properties include bulk rock fractions from Gulf 

of Mexico – Eugene Island Samples (GOM-EI) (Ranjpour, 2020), 65% Clay and 35% 

Quartz, and elastic properties from Mavko et al. (2009) (Table 2).  

With these inputs, I calculate the elastic stiffnesses at each location in the 

modeled cross section (Figure 13B). The angle defining the axis of symmetry for the TTI 

matrix is equal to the angle from the horizontal to the orientation of the minimum 

deformation axis. 𝜖𝜖 (equation 15) represents the fractional difference between the 

horizontal and vertical elastic stiffnesses (Thomsen, 1986). The overlying crosses show 

the maximum, 𝑐𝑐11, and minimum, 𝑐𝑐33, elastic stiffnesses.  

Examining the same two areas in Figure 13B as 13A I see three key details. First 

along the right side of the image, where large porosity reduction occurred, both elastic 

stiffnesses greatly increase in magnitude and very little anisotropy is introduced. The 

equal shortening of both axes increased the elastic stiffnesses, but with no distortion of 

the axes lengths there is no introduction of anisotropy. Second, in proximity to salt higher 

values of anisotropy are introduced with a large difference between the two 

compressional elastic stiffness and the axis of symmetry of the elastic stiffness matrix 

rotates significantly.  
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Figure 13: Cross-Section of the last time step of a poromechanical model of sediment 
deformed by deposition and a rising salt diapir. In (A), color contours 
represent porosity; bars illustrate the orientation and relative magnitude of 
the maximum, 𝐷𝐷11(blue), and minimum, 𝐷𝐷33(black), principal deformation 
axes. In (B), color contours represent the Thomsen’ parameter epsilon, ϵ; 
bars illustrate the orientation and relative magnitude of the maximum, c11, 
(blue) and minimum, c33, (red) in-plane elastic stiffnesses.  
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2.3 DISCUSSION 

The scientific contribution of this work is two-fold: (1) I successfully modeled the 

impact of deformation on elastic stiffnesses and (2) I illustrated two key sources of 

seismic anisotropy in compacted mudrocks: porosity reduction and grain reorientation. 

The anisotropy introduced through porosity reduction is seen in the modeling of building 

blocks (Figure 3 and 4). The elastic anisotropy introduced by grain alignment is seen in 

the modeling of the entire mudrock (Figure 9 and 11). My workflow provides a novel 

method for the prediction of the elastic stiffness matrix from any strain tensor and 

constituent properties (fractions and elastic properties).  

Porosity reduction and building block reorientation separately impact the 

mudrock elastic stiffnesses. The overall magnitude of the building block elastic 

stiffnesses and seismic anisotropy increase with porosity reduction (Figure 3 and 4). The 

lithology of the building lock has very little impact on the elastic stiffness matrix but does 

impact the level of shear anisotropy (Figure 3 – 65% Clay and 35% Quartz vs Figure 4 

25% Clay and 75% Quartz). The high shear anisotropy in the building blocks is due to 

c44, the minimum shear stiffness, which approaches zero because of the thin ellipsoidal 

shape of the clay grains vs the circular shape of quartz grains. The introduction of 

misaligned building blocks lowers the shear anisotropy to a more reasonable level. 

Increased alignment of building blocks without porosity reduction increases the 

elastic anisotropy of the mudrock but has no impact on the magnitude of the average of 

the compressional (𝑐𝑐11, 𝑐𝑐33) and shear (𝑐𝑐44, 𝑐𝑐66) stiffnesses (Pure shear; Figure 10 and 
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11). Uniaxial compaction shows the increase in elastic stiffnesses and anisotropy from 

the combined impact of porosity reduction and building block alignment (Figure 8 and 9). 

 Ultimately the model must be compared to experimental results to demonstrate its 

usefulness. Uniaxial compaction laboratory measurements on mudrocks show increasing 

elastic stiffnesses and the development of seismic anisotropy at higher stresses (Figure 

12). I interpret these characteristics to be due to both the alignment of domains and the 

decline in porosity. The modeled compressional elastic stiffnesses match experimental 

data within 10 %. However, the error in predicting the shear elastic stiffnesses is larger 

than 10 %. A possible reason for this discrepancy is the March (1932) model overpredicts 

the reorientation of grains leading to higher shear elastic stiffnesses with greater 

alignment. Nonetheless, my results generate a close prediction to both the magnitude of 

compressional elastic stiffnesses (Figure 11) and values of 𝜖𝜖, compressional elastic 

anisotropy (Figure 11).  

 The elastic properties assumed for clay minerals are highly uncertain due to an 

inability to measure individual clay crystals (Katahara, 1996). I assumed the constituent 

elastic properties for quartz and clay from Han et al. (1986) due to the similarity in 

lithology to our core measurements. Any change in the clay elastic properties impacts the 

building block elastic properties and final results. I also assumed that pores and clay 

aggregates can be described as ellipsoidal inclusions with a length to width ratio of 10 to 

1. The aspect ratio will impact the degree of anisotropy.   

Further, I assumed that domains of locally aligned clay and pore are approximated 

as aligned thin ellipsoidal inclusions. In fact, these domains do not appear to be perfectly 
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aligned (e.g., Figure 1). Finally, the re-orientation of domains is approximated by a linear 

or planar element that behaves as a passive, geometrical element (Owens, 1973). It is 

possible that at small strains, grains get locked into their positions and the March model 

overpredicts further reorientation (Adams et al., 2013). In my work, these assumptions 

create a simplified model of a mudrock, which, admittedly, sacrifices some aspects of 

accuracy but allows for the direct examination of the impact of deformation on elastic 

stiffnesses and anisotropy. 

In the case study I predict the elastic stiffness matrix of mudrocks based on the 

full strain tensor through the combination of my workflow with a poromechanical model. 

This example clearly shows that anisotropy is not a simple function of depth or bedding 

orientation. The results illustrate the increase of elastic stiffnesses in areas of large 

porosity reduction from compaction. Additionally, I observe that sediment in close 

proximity to salt undergoes almost pure shear deformation with a rotation of the principal 

strain axes toward perpendicular to salt. This results in increased values of compressional 

anisotropy, with large differences between the maximum, 𝑐𝑐11, and minimum, 𝑐𝑐33, 

compressional elastic stiffnesses and a rotation of the axis of symmetry (Figure 13B). My 

work provides a framework to estimate the TTI elastic stiffness matrix as a function of 

the stress state and cumulative deformation undergone by a mudrock.  

In addition to the combination with a poromechanical model, two additional 

potential applications include: 1) The prediction of a TTI elastic stiffness matrix from 

stress and associated strain models could be combined with seismic processing methods 

to improve imaging in areas of complex deformation. 2) The workflow could be used 
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with inverted elastic stiffnesses to extract stress state and deformation information along 

with the axis of symmetry from field data. In conventional seismic processing of 

anisotropic media, the axis of symmetry is oriented either vertically (TI) or perpendicular 

to dip (TTI). My approach considers the rotation of the axis of symmetry due to angle of 

the principal strain tensor. These considerations provide the potential to improve seismic 

imaging in highly deformed geologic environments.  

2.4 CONCLUSIONS 

I have introduced a novel workflow to compute the full elastic stiffness matrix of a 

mechanically compacted mudrock based on its full strain tensor.  The elastic stiffness 

matrix is modeled in three primary steps. (1) I initially compute an effective medium 

model representative of locally aligned clay particles and pores (‘a domain’) with isolated 

isotropic quartz grains. The combined SCA/DEM formulation creates the building block 

for the computation of the bulk mudrock elastic stiffnesses. (2) I predict the alignment of 

multiple building blocks due to any strain case through the Owens-March ODF. (3) The 

single building block effective elastic stiffness matrix and ODF are combined to compute 

an effective elastic stiffness matrix representative of a mechanically compacted mudrock 

which has undergone any deformation.  

My model allows for the prediction of the full elastic stiffness matrix and seismic 

anisotropy for a mudrock based on the full strain tensor and constituent properties 

(fractions and elastic properties). The compressional results from my forward model 

strongly correlate with the experimental data seen in both Nihei et al. (2011) and 
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Ranjpour (2020).  I constrain two key relationships between deformation and elastic 

stiffnesses. First, porosity loss increases the overall magnitudes of the entire matrix and 

seismic anisotropy. Second, building block alignment leads to significant increases in 

elastic anisotropy.  

 The workflow outlined has multiple practical applications including the 

integration with poromechanical model outputs highlighted in the case study. The 

combination allows for investigation of the impact of complex strains on mudrock elastic 

properties. The workflow has two more potential applications. first, the elastic stiffness 

matrix and principal angle may be combined with TTI seismic processing to improve 

imaging of the subsurface. Second, it can be used with inverse methods to examine 

deformation from field data based on inverted elastic stiffnesses. Overall, I produce a 

workflow to estimate the elastic stiffness matrix of mudrock based on the full strain 

tensor which matches experimental data. 
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2.5 APPENDIX 1: FULL ELASTIC STIFFNESS MATRIX CALCULATION 

The elastic stiffnesses are computed from all non-zero Legendre coefficients 

(𝑊𝑊200, 𝑊𝑊220 , 𝑊𝑊400 ,𝑊𝑊420  and 𝑊𝑊440) and the three anisotropy factors 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 

defined below. I assume the building block elastic stiffness matrix is transverse isotropic 

(TI) and the mudrock exhibits orthotropic symmetry (Sayers, 1994). In Sayers (1994) the 

equations to describe effective elastic stiffnesses from aligned elastic stiffnesses and an 

ODF are formulated as follows: 

𝑐𝑐11 = 𝜆𝜆 + 2𝜇𝜇 +
8√10
105 𝜋𝜋2𝑎𝑎3�𝑊𝑊200 − √6𝑊𝑊220� +

4√2
35 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 −

2√10
3 𝑊𝑊420 +

√70
3 𝑊𝑊440� , (19) 

𝑐𝑐22 = 𝜆𝜆 + 2𝜇𝜇 +
8√10
105 𝜋𝜋2𝑎𝑎3�𝑊𝑊200 + √6𝑊𝑊220� +

4√2
35 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 +

2√10
3 𝑊𝑊420 +

√70
3 𝑊𝑊440� , (20) 

𝑐𝑐33 = 𝜆𝜆 + 2𝜇𝜇 −
16√2
105 𝜋𝜋2�√5𝑎𝑎3𝑊𝑊200 − 2𝑎𝑎1𝑊𝑊400�, (21) 

𝑐𝑐12 = 𝜆𝜆 −
8√10
315 𝜋𝜋2(7𝑎𝑎2 − 𝑎𝑎3)𝑊𝑊200 +

4√2
105 𝜋𝜋

2𝑎𝑎1�𝑊𝑊400 − √70𝑊𝑊440�, (22) 

𝑐𝑐13 = 𝜆𝜆 +
4√10
315 𝜋𝜋2(7𝑎𝑎2 − 𝑎𝑎3)�𝑊𝑊200 + √6𝑊𝑊220� −

16√2
105 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 − �5

2𝑊𝑊420� , (23) 

𝑐𝑐23 = 𝜆𝜆 +
4√10
315 𝜋𝜋2(7𝑎𝑎2 − 𝑎𝑎3)�𝑊𝑊200 − √6𝑊𝑊220� −

16√2
105 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 + �5

2𝑊𝑊420� , (24) 

𝑐𝑐44 = 𝜇𝜇 −
2√10
315 𝜋𝜋2(7𝑎𝑎2 + 2𝑎𝑎3)�𝑊𝑊200 − √6𝑊𝑊220� −

16√2
105 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 + �5

2𝑊𝑊420� , (25) 
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𝑐𝑐55 = 𝜇𝜇 −
2√10
315 𝜋𝜋2(7𝑎𝑎2 + 2𝑎𝑎3)�𝑊𝑊200 + √6𝑊𝑊220� −

16√2
105 𝜋𝜋2𝑎𝑎1 �𝑊𝑊400 − �5

2𝑊𝑊420� , (26) 

𝑐𝑐66 = 𝜇𝜇 +
4√10
315 𝜋𝜋2(7𝑎𝑎2 + 2𝑎𝑎3)𝑊𝑊200 +

4√2
105 𝜋𝜋

2𝑎𝑎1�𝑊𝑊400 − √70𝑊𝑊440�. (27) 

Where 𝜆𝜆 𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇 are given by: 

15𝜆𝜆 = 𝑐𝑐11𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐33𝑑𝑑𝑑𝑑𝑑𝑑 + 5𝑐𝑐12𝑑𝑑𝑑𝑑𝑑𝑑 + 8𝑐𝑐13𝑑𝑑𝑑𝑑𝑑𝑑 − 4𝑐𝑐44𝑑𝑑𝑑𝑑𝑑𝑑 , (28) 

& 

30𝜇𝜇 = 7𝑐𝑐11𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑐𝑐33𝑑𝑑𝑑𝑑𝑑𝑑 − 5𝑐𝑐12𝑑𝑑𝑑𝑑𝑑𝑑 − 4𝑐𝑐13𝑑𝑑𝑑𝑑𝑑𝑑 + 12𝑐𝑐44𝑑𝑑𝑑𝑑𝑑𝑑 , (29) 

and 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 are given by: 

𝑎𝑎1 = 𝑐𝑐11𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐33𝑑𝑑𝑑𝑑𝑑𝑑 − 2𝑐𝑐13𝑑𝑑𝑑𝑑𝑑𝑑 − 4𝑐𝑐44𝑑𝑑𝑑𝑑𝑑𝑑 , (30) 

𝑎𝑎2 = 𝑐𝑐11𝑑𝑑𝑑𝑑𝑑𝑑 − 3𝑐𝑐12𝑑𝑑𝑑𝑑𝑑𝑑 + 2𝑐𝑐13𝑑𝑑𝑑𝑑𝑑𝑑 − 2𝑐𝑐44𝑑𝑑𝑑𝑑𝑑𝑑 , (31) 

𝑎𝑎3 = 4𝑐𝑐11𝑑𝑑𝑑𝑑𝑑𝑑 − 3𝑐𝑐33𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑐𝑐13𝑑𝑑𝑑𝑑𝑑𝑑 − 2𝑐𝑐44𝑑𝑑𝑑𝑑𝑑𝑑 . (32) 

𝐺𝐺 =  1/8π[𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺̅𝐺𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗],     (33) 

2.6 APPENDIX 2: SOLUTION OF G 

G is a fourth rank tensor calculated from the response of an unbounded matrix of 

the effective medium (Bandyopadhyay, 2009). I initially set each matrix value of csca to 

the average of the corresponding clay and fluid-filled porosity values and compute G. 

The inputs to solve for G are the estimated csca and the chosen aspect ratio of the 
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spheroidal inclusion, 𝛾𝛾 (equation 52). For my model I set the aspect ratio, 𝛾𝛾, to be 1/10. 

The procedure is repeated until csca converges to a fixed value. 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  = 1
8𝜋𝜋

[𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺̅𝐺𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗],    (34) 

where, 

𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  = (𝛼𝛼1𝛼𝛼2𝛼𝛼3)∫ 𝑁𝑁𝑖𝑖𝑗𝑗(𝑆𝑆 𝜉𝜉)𝐷𝐷−1𝜉𝜉𝜉𝜉𝑙𝑙𝜉𝜉𝑘𝑘Ϛ−3𝑑𝑑𝑑𝑑(𝜉𝜉),    (35) 

Ϛ = (𝛼𝛼12𝜉𝜉12 + 𝛼𝛼22𝜉𝜉22 + 𝛼𝛼32𝜉𝜉32)1/2,     (36) 

𝐷𝐷(𝜉𝜉)  =  det (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉𝑗𝑗𝜉𝜉𝑙𝑙),     (37) 

𝑁𝑁𝑖𝑖𝑖𝑖  = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉𝑗𝑗𝜉𝜉𝑙𝑙).     (38) 

S is the unit sphere, 𝜉𝜉 is the unit vector forming S, and ds is the differential of the surface 

area on the unit sphere, and 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3 are the three principal half axes of the ellipsoidal 

inclusion. 

If the axes of the effective medium coincide with the principal axes of a 

spheroidal inclusion, 

𝑥𝑥12

𝛼𝛼12
+ 𝑥𝑥22

𝛼𝛼22
+ 𝑥𝑥32

𝛼𝛼32
≤ 1,     (39) 

and the non-zero coefficients of the 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 matrix are, 

𝐺̅𝐺1111 =  𝐺̅𝐺2222  = 𝜋𝜋
2 ∫ ∆(1− 𝑥𝑥2)�[𝑓𝑓(1 − 𝑥𝑥2) + ℎ𝛾𝛾2𝑥𝑥2][(3𝑒𝑒 + 𝑑𝑑)(1− 𝑥𝑥2) +1

0

4𝑓𝑓𝛾𝛾2𝑥𝑥2] − 𝑔𝑔2𝛾𝛾2𝑥𝑥2(1 − 𝑥𝑥2)�𝑑𝑑𝑑𝑑,     (40) 

𝐺̅𝐺3333 =  4𝜋𝜋 ∫ ∆𝛾𝛾2𝑥𝑥2[𝑑𝑑(1− 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2][𝑒𝑒(1 − 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2]𝑑𝑑𝑑𝑑1
0 , (41) 
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𝐺̅𝐺1122 =  𝐺̅𝐺2211  = 𝜋𝜋
2 ∫ ∆(1− 𝑥𝑥2)�[𝑓𝑓(1 − 𝑥𝑥2) + ℎ𝛾𝛾2𝑥𝑥2][(𝑒𝑒 + 3𝑑𝑑)(1− 𝑥𝑥2) +1

0

4𝑓𝑓𝛾𝛾2𝑥𝑥2] − 3𝑔𝑔2𝛾𝛾2𝑥𝑥2(1− 𝑥𝑥2)�𝑑𝑑𝑑𝑑,     (42) 

𝐺̅𝐺1133 =  𝐺̅𝐺2233  = 2𝜋𝜋 ∫ ∆𝛾𝛾2𝑥𝑥2�[(𝑑𝑑 + 𝑒𝑒)(1− 𝑥𝑥2) + 2𝑓𝑓𝛾𝛾2𝑥𝑥2] ∗ [𝑓𝑓(1 − 𝑥𝑥2) + ℎ𝛾𝛾2𝑥𝑥2]−1
0

𝑔𝑔2𝛾𝛾2𝑥𝑥2(1− 𝑥𝑥2)�𝑑𝑑𝑑𝑑,    (43) 

𝐺̅𝐺3311 =  𝐺̅𝐺3322  = 2𝜋𝜋 ∫ ∆(1 − 𝑥𝑥21
0 )[𝑑𝑑(1− 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2][𝑒𝑒(1− 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2]𝑑𝑑𝑑𝑑 

 (44) 

𝐺̅𝐺1122 = 𝜋𝜋
2 ∫ ∆(1− 𝑥𝑥2)2�𝑔𝑔2𝛾𝛾2𝑥𝑥2 − (𝑑𝑑 − 𝑒𝑒)[𝑓𝑓(1− 𝑥𝑥2) + ℎ𝛾𝛾2𝑥𝑥2]�𝑑𝑑𝑑𝑑1

0 , (45) 

𝐺̅𝐺1313 =  𝐺̅𝐺2323  =  −2𝜋𝜋∫ ∆𝑔𝑔𝛾𝛾2𝑥𝑥2(1− 𝑥𝑥2)[𝑒𝑒(1− 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2]𝑑𝑑𝑑𝑑1
0 , (46) 

where 

∆−1= [𝑒𝑒(1− 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2]([𝑑𝑑(1 − 𝑥𝑥2) + 𝑓𝑓𝛾𝛾2𝑥𝑥2][𝑓𝑓(1− 𝑥𝑥2) + ℎ𝛾𝛾2𝑥𝑥2] −

𝑔𝑔2𝛾𝛾2𝑥𝑥2(1− 𝑥𝑥2)),      (47) 

𝑑𝑑 = 𝑐𝑐11      (48) 

𝑒𝑒 = (𝑐𝑐11 − 𝑐𝑐12)/2       (49) 

𝑓𝑓 = 𝑐𝑐44      (50) 

𝑔𝑔 = 𝑐𝑐13 + 𝑐𝑐44      (51) 

ℎ = 𝑐𝑐33      (52) 

𝛾𝛾 = 𝛼𝛼1
𝛼𝛼3

       (53) 

The fourth rank tensor, 𝐺̅𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, is represented in two-index notation as, 
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𝐺𝐺𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐺𝐺1111 𝐺𝐺1122 𝐺𝐺1133 0 0 0
𝐺𝐺1122 𝐺𝐺2222 𝐺𝐺1133 0 0 0
𝐺𝐺3311 𝐺𝐺3311 𝐺𝐺3333 0 0 0

0 0 0 2𝐺𝐺1313 0 0
0 0 0 0 2𝐺𝐺1313 0
0 0 0 0 0 2𝐺𝐺1212⎦

⎥
⎥
⎥
⎥
⎤

    (54) 

Symbol Name Dimensions 
𝐜𝐜𝐢𝐢𝐢𝐢 Elastic Stiffness Matrix M/(LT2) 
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 Clay Elastic Stiffness Matrix M/(LT2) 
𝐜𝐜𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 Fluid Elastic Stiffness Matrix M/(LT2) 
𝐜𝐜𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪  Quartz Elastic Stiffness Matrix M/(LT2) 
𝐜𝐜𝐬𝐬𝐬𝐬𝐬𝐬 Self-Consistent Approximation Elastic Stiffness Matrix M/(LT2) 
𝐜𝐜𝐝𝐝𝐝𝐝𝐝𝐝 Differential Effective Medium Elastic Stiffness Matrix M/(LT2) 
𝐧𝐧 Porosity Dimensionless 
𝐧𝐧𝐬𝐬𝐬𝐬𝐬𝐬 Self-Consistent Matrix Porosity Dimensionless 
𝐧𝐧𝐝𝐝𝐝𝐝𝐝𝐝 Differential Effective Medium Porosity Dimensionless 

𝐧𝐧𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  Final Building Block Porosity Dimensionless 
𝐯𝐯𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜  Volume of clay replacing host medium L3 

𝐯𝐯𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟  Volume of fluid-filled porosity replacing host medium L3 

𝐯𝐯𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪  Volume of quartz replacing host medium L3 

𝒗𝒗 Volume Concentration L3 

𝐟𝐟 Angular Density Function Dimensionless 
𝐃𝐃𝐢𝐢𝐢𝐢 Deformation Matrix L 
𝐟𝐟 Directional Distribution Function Dimensionless 
𝐖𝐖 Orientation Distribution Function Dimensionless 

𝐱𝐱𝟏𝟏,𝐱𝐱𝟐𝟐, 𝐱𝐱𝟑𝟑 Building Block Axes Dimensionless 
𝐗𝐗𝟏𝟏,𝐗𝐗𝟐𝟐,𝐗𝐗𝟑𝟑 Principal Strain Axes Dimensionless 

𝐙𝐙lmk Generalized Legendre Function Dimensionless 
𝐐𝐐𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 Clay Inclusion Shape Factor M/(LT2) 
𝐐𝐐𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 Fluid Shape Inclusion Factor M/(LT2) 
𝐐𝐐𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪  Quartz Shape Inclusion Factor M/(LT2) 
𝐆𝐆 Geometric Strain Concentration factors Dimensionless 
𝐈𝐈 Identity Matrix M/(LT2) 
𝐥𝐥,𝐦𝐦 Degree, Order Dimensionless 

S Unit Sphere Dimensionless 

Table 1. Nomenclature. *M = mass, L = length, and T = time. 
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Symbol Name Dimensions 
𝛜𝛜 Compressional Anisotropy Dimensionless 
𝛄𝛄 Shear Anisotropy Dimensionless 
𝛅𝛅 Short Offset Anisotropy Dimensionless 

𝛏𝛏,𝛙𝛙,𝛟𝛟 Euler Angles L/L 
𝛌𝛌 Lame’s first parameter M/(LT2) 
𝛍𝛍 Lame’s second parameter / Shear Modulus M/(LT2) 
K Bulk Modulus M/(LT2) 
𝛒𝛒 Bulk Density M/L3 
𝝃𝝃 Unit Vector Forming S Length 

𝜶𝜶𝟏𝟏,𝜶𝜶𝟐𝟐,𝜶𝜶𝟑𝟑 three principal half axes of the ellipsoidal inclusion Length 
𝛜𝛜𝐯𝐯𝐯𝐯𝐯𝐯 Volumetric Strain Dimensionless 

Table 2. Greek Letters Nomenclature. *M = mass, L = length, and T = time. 

 
 Quartz Clay Brine 
𝑲𝑲 (𝑮𝑮𝑮𝑮𝑮𝑮) 36 21 2.2 
𝝁𝝁 (𝑮𝑮𝑮𝑮𝑮𝑮) 45 7 0 
𝝆𝝆 (g/cm3) 2.65 2.85 1.05 

𝒗𝒗 (1-n)*.35 (1-n)*.65 n 

Table 3. Constituent Properties. Moduli based on Mavko et al. (2009) and volume 
concentration of each constituent match experimental sample of Gulf of 
Mexico – Eugene Island (GOM-EI) (Ranjpour, 2020). 
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CHAPTER 3: APPENDICES 

APPENDIX A. DERIVATION OF MARCH-OWENS ORIENTATION DISTRIBUTION FUNCTION 

This appendix summarized the derivation of the Owens-March Orientation 

Distribution Function to describe the alignment of grains due to any deformation case. 

March (1932) derived an expression that gives the density of poles to platy grains as a 

function of deformation, assuming that the poles initially had a random distribution. 

Owens (1973) expanded upon the derivation with the inclusion of volume change and 

any initial distribution of pole densities.  

The derivation of the change in pole density due to strain requires the explanation 

of the term solid angle. A solid angle is a measure of the amount of the field of view from 

some particular point that a given object covers. With this definition, the key is that the 

number of lines within a material cone, defining an element of solid angle, remains 

constant throughout deformation. Therefore, the density of poles at any angle will only 

change equal to the change in the solid angle. To complete this derivation, consider an 

initially undeformed element of solid angle, 𝛿𝛿𝜔𝜔𝑖𝑖. For a material cone of length, D, the 

volume of the cone is 𝐷𝐷3δω/3. The volume of the material cone can only change equal 

to the volumetric strain. This gives the relationship between initial and final volume to be 

equal to: 

1
3
𝐷𝐷𝑖𝑖3𝛿𝛿𝜔𝜔𝑓𝑓 = 1−𝜖𝜖𝑣𝑣𝑣𝑣𝑣𝑣

3
𝐷𝐷𝑖𝑖3𝛿𝛿𝜔𝜔𝑓𝑓      (22) 
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Now with the assumption of a constant number of elements in the material cone, 

𝑓𝑓𝑖𝑖𝛿𝛿𝜔𝜔𝑖𝑖 = 𝑓𝑓𝑓𝑓𝛿𝛿𝜔𝜔𝑓𝑓 , where 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑓𝑓  are the initial and final angular densities. The final 

angular density becomes, 

𝑓𝑓𝑓𝑓 = 1
1−𝜖𝜖𝑣𝑣𝑣𝑣𝑣𝑣

�𝐷𝐷𝑓𝑓
𝐷𝐷𝑖𝑖
�
3
2 𝑓𝑓𝑖𝑖 .      (23) 

 

This equation states that if I know the angular density, 𝑓𝑓𝑖𝑖, in a direction 𝜃𝜃𝑖𝑖before 

strain and if, under strain, a vector oriented along 𝜃𝜃𝑖𝑖 moved to 𝜃𝜃𝑓𝑓  then I can calculate the 

angular density after strain in the direction, 𝜃𝜃𝑓𝑓 . 

APPENDIX B. DETERMINATION OF LEGENDRE COEFFICIENTS 
 This appendix describes the Legendre Coefficients to incorporate the alignment of 

grains from any strain case in the elastic stiffness prediction. The Legendre coefficients 

are stated as, 

 

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 = 1
4𝜋𝜋2 ∫ ∫ ∫ 𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙)𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙(2𝜋𝜋

0
2𝜋𝜋
0

2𝜋𝜋
0 𝜉𝜉)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.   (24) 

 

Where 𝑊𝑊(𝜉𝜉,𝜓𝜓,𝜙𝜙) is the generalized spherical harmonics and 𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙(𝜉𝜉) are the 

generalized Legendre functions. The limited number of coefficients needed to combine 

the domain elastic stiffnesses and orientation distribution function (ODF) include 

𝑊𝑊200, 𝑊𝑊220, 𝑊𝑊400, 𝑊𝑊420, 𝑊𝑊440. The generalized Legendre functions are given as (Roe, 

1965): 
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𝑍𝑍𝑙𝑙𝑙𝑙0(𝜉𝜉) = �2𝑙𝑙+1
2

(𝑙𝑙−𝑚𝑚)!
(𝑙𝑙+𝑚𝑚)!

𝑃𝑃𝑙𝑙𝑚𝑚(𝜉𝜉),    (25) 

 

Where 𝑃𝑃𝑙𝑙𝑚𝑚(𝜉𝜉) is the Legendre polynomial of order 𝑙𝑙 and degree 𝑚𝑚. The 

coefficients of interest are therefore,   

 

𝑊𝑊200 = �5
2∫ 𝑊𝑊(𝜉𝜉)𝑃𝑃20(𝜉𝜉)𝑑𝑑𝑑𝑑1

−1 ,    (26) 

𝑊𝑊220 = �5
2∫ 𝑊𝑊(𝜉𝜉)𝑃𝑃22(𝜉𝜉)𝑑𝑑𝑑𝑑,1

−1      (27) 

𝑊𝑊400 = �9
2 ∫ 𝑊𝑊(𝜉𝜉)𝑃𝑃40(𝜉𝜉)𝑑𝑑𝑑𝑑1

−1 ,    (28) 

𝑊𝑊420 = �9
2 ∫ 𝑊𝑊(𝜉𝜉)𝑃𝑃42(𝜉𝜉)𝑑𝑑𝑑𝑑1

−1 ,    (29) 

𝑊𝑊440 = �9
2 ∫ 𝑊𝑊(𝜉𝜉)𝑃𝑃44(𝜉𝜉)𝑑𝑑𝑑𝑑1

−1 ,    (30) 

With the polynomials of interest equal to, 

P20 = 1
2

(3𝜉𝜉2 − 1)     (31) 

P22 = 3 (1− 𝜉𝜉2)     (32) 

P40 = 1
8

 (35𝜉𝜉4 − 30𝜉𝜉2 + 3)      (33) 

P42 = 15
2

 (7𝜉𝜉2 − 1)(1− 𝜉𝜉2)     (34) 

P44 = 105 (1− 𝜉𝜉2)2.       (35) 
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