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ABSTRACT 
 
 

 We compare two methods of predicting well-log porosity from seismic data.  The 
data consist of a suite of well logs and a full stack 3D seismic survey over Auger Field in 
the deepwater Gulf of Mexico.  The 3D seismic is transformed into a number of attribute 
volumes.  These attributes are combined in a nonlinear manner, via an Artificial Neural 
Network (ANN), or in a linear manner, via multilinear regression analysis, in order to 
predict the target porosity logs from the available suite of field data.   
 A feed-forward back propagation ANN is trained using the seismic attributes as 
an input set and with the porosity logs as the output set.  The linear mode uses the same 
training data, but derives a series of weights which when applied to the input set 
minimize the differences in a least-squares sense between the target and predicted 
outputs.   
 In order to measure the accuracy of the attribute to porosity transformation, cross-
well validation was performed.  In this procedure one well is removed from the training 
set and the transformation is re-derived.  The accuracy of the transformation in predicting 
the log from the removed well is then measured.  This is done to every well in the 
training set so that we may determine a reasonable expectation for the performance of the 
transformation.   
 We see a marked improvement of the performance of the ANN over that of the 
multilinear regression.  These results are evident not only in the training data but more 
importantly also in the testing data.   
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INTRODUCTION 

 Predicting subsurface properties, such as porosity, has always been a fundamental 

problem for geologists and geophysicists.  Seismic data are often used to delineate the 

structure of reservoir bodies, but are not often used to estimate the spatial distribution of 

reservoir and rock properties.  In this study, we compare two methods of predicting 

porosity from several 3D seismic attributes.   

 Schultz et. al., in 1994, were the first to propose the idea of using multiple seismic 

attributes to predict log properties away from well control [1].  Well-to-seismic ties are 

considered to be the training points for the method; both the seismic response and the 

well log property are known at the select well locations.  A statistical relationship, either 

linear or nonlinear, is developed at the well sites to relate the seismic response to the well 

log response.  We describe the use of an Artificial Neural Network (ANN) and 

Multivariate Linear Regression in determining these statistical relationships.    

 Geoscientists have been among the pioneers in developing uses for Artificial 

Neural Networks.  In many ways, neural networks are perfectly suited for geostatistical 

analysis.  Many geophysical measurements are related to rock properties in nonlinear 

ways and with no analytical relationships known as of yet.  As computers have increased 

in computational speed and power, large scale data processing with neural networks has 

become feasible.   

  Artificial Neural Networks (ANN) have been used to predict core properties from 

well logs [2], well log to well log transformations, and have used seismic properties to 

predict lithology [3-6], sonic logs and shale content [7], shale stringers in a heavy oil 
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reservoir [8], density and gamma ray logs [8, 9], spontaneous potential [10, 11], 

permeability [2, 12], and porosity [3, 5, 6, 9, 12-17].   

  

Table 1.  Results of Past Studies Using ANN to Predict Porosity from Seismic 
Attributes 

Author CC Test CC Training Mean Testing 
Error (V/V) 

Type of 
Network 

Used 
Pramanik [13] 0.86 0.95 0.037 PNN 
Hampson [18] 0.62 0.95 NA PNN 
Leiphardt [16] 0.62 0.82 0.026 PNN 

Dorrington [19] 0.57 0.86 NA MLFN 
 

Table 1.  Results from previous porosity prediction studies using ANN.  CC Test is the 

average cross correlation coefficient between the prediction and target sets in the test 

case.  CC Training is the cross correlation coefficient between the prediction and target 

sets in the training case.  The mean testing error documents the mean error between the 

prediction and target sets in the test case.  Two types of ANN have been used in these 

previous studies.  PNN refers to a Probabilistic Neural Network, while MLFN refers to a 

Multi-Layer Feed Forward Network.   

   

 Multivariate Linear Regression is a simple extension of the well-known univariate 

case.  In these circumstances, log properties are estimated from a linearly weighted sum 

of a number of seismic attributes.  This was first demonstrated to yield accurate results by 

Russell et. al., in 1997 [17].   
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Table 2.  Results of Past Studies Using Multilinear Regression to Predict Porosity 
from Seismic Attributes 

Author CC Test CC Training Mean Testing 
Error (V/V) 

Pramanik [13] 0.56 0.66 0.056 
Hampson [18] 0.60 0.69 NA 
Leiphardt [16] 0.63 0.74 0.026 

 

Table 2.  Results from previous porosity prediction studies using a  Multilinear 

Regression of Seismic Attributes.  CC Test is the average cross correlation coefficient 

between the prediction and target sets in the test case.  CC Training is the cross 

correlation coefficient between the prediction and target sets in the training case.  The 

mean testing error documents the mean error between the prediction and target sets in the 

test case. 

 

 There are several advantages of these new algorithms over the conventional 

inversion methods: they predict logs other than acoustic impedance; they may use seismic 

attributes other than the conventional post-stack volume; they do not rely on any 

particular forward model;  knowledge of the seismic wavelet is not required; they may 

enhance resolution; and they use testing and cross-validation as a measure of success [1, 

16-18].   
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Theoretical Background 
 

Feed Forward Back-Propagation Neural Network 
 
 An artificial neural network (ANN) creates a nonlinear mapping between a set of 

input data and target outputs.  The nature of this nonlinear mapping depends upon the 

type of artificial neural network used.  This thesis focuses on feed forward back 

propagation artificial neural networks.   

 A feed forward back-propagation neural network has an input layer, an output 

layer and a variable number of hidden layers (Figure 1) [20].  These layers are each 

composed of a number of neurons, which are each connected to every other neuron of the 

prior and next layers.   

 

Figure 1.  Architecture of a simple Neural Network with one hidden layer.  In this scenario, the 

input layer is O1, the hidden layer is O2, and the output layer is O3.  Each circle represents a 

neuron.  The input layer has four neurons, the hidden layer three, and the output one.  This 

particular network would map four inputs to one output.   
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 The neurons in the input layer do not perform any computation, as they are simply 

the input gate.  The neurons in the hidden and output layers have weights and biases 

connecting them to the neurons in the previous layer [18, 20].  Each neuron sums the 

weighted and biased input from each neuron in the previous layer and then filters the sum 

with a transfer function.   We assume that the relationship between the inputs and target 

is nonlinear.  We therefore make use of a commonly employed nonlinear transfer 

function, the hyperbolic tangent sigmoid (Figure 2).  The hyperbolic tangent sigmoid 

transfer function is: 

                                                 
nn

nn

ee
een −

−

+
−

=)tanh(                                  (1) 

 

Figure 2. Graphic display of the hyperbolic tangent sigmoid transfer function.  Note how 

quickly the function saturates for values greater than five.  To make full use of the shape of this 

transfer function, the inputs are normalized to the range -1 to 1.   
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 The output layer is the weighted and biased sum from the output of the neurons in 

the last hidden layer.  This sum is not filtered, so the transfer function is described as 

linear with a slope of one.   

 If the output of layer m is denoted as Om, then the output of the input layer is just 

the input vector, I, of length k.   

                                                          IO =1                                 (2) 

For simplicity, and since this applies directly to the network that is to be used in this 

study, assume that there is only one hidden layer.  The output of the jth neuron in this 

hidden layer, with transfer function f2 is: 

                                        ⎟
⎠
⎞

⎜
⎝
⎛ += ∑
=

k

i
ijijij bwIfO

1
22           (3) 

Where wij and bij are the weights and biases, respectively, that connect the ith neuron in 

the input layer to the jth neuron in the hidden layer [20].   

 The final output layer has only one neuron, corresponding to one property 

prediction.  If there are n neurons in the hidden layer, then the final output, which is not 

filtered by a transfer function, is: 

                                                                          (4) jj
n

j
j bwOO += ∑

=1
23

Where, once again, wj and bj are the weights and biases which connect the jth neuron in 

the hidden layer to the single neuron in the output layer.   
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 In order to accurately map the inputs to the output, the network will continuously 

update the weights and biases which connect each of the neurons until some performance 

criterion is achieved.  This process is called training.  Many different training algorithms 

exist, but error backpropagation is the most popular learning algorithm for multi-layered 

neural networks [20, 21].  

 An ANN minimizes the difference between the prediction and targets in any 

number of specified ways.  In backpropagation it is usually the mean squared error 

between the network output and the targets that is used as the objective function, and is 

the quantity that is to be minimized.  In this case, however, it was demonstrated that 

using the mean absolute error as the performance criterion yielded much more accurate 

results [21].  We will now describe backpropagation using mean absolute error, and the 

gradient descent method with momentum and a variable learning rate is used to train the 

neural network.   

 For prediction-target pairs, (p1,L1),  (p2,L2), … (pN, LN), we want to minimize the 

mean absolute error: 

                                                  ∑
=

−=
N

j
jj pL

N
E

1

1
                                 (5) 

This can be accomplished by the gradient descent algorithm.  To descend towards the 

local minimum in a function, one can take steps in the direction of the negative gradient 

of the function at the current point.   

 For example, if γ is sufficiently small, then xn+1 will be closer to the local 

minimum in F then was xn
.  Note that the superscripts do not represent exponents.   

                                             )(1 nnn xFxx ∇−=+ γ                           (6) 
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This is an iterative process, which in many circumstances will converge towards the local 

minimum.   

 The objective, therefore, is to move towards the minimum in the mean absolute 

error surface, E.  Weights and biases, w and b, are iteratively updated until this minimum 

is reached.  This is done for all weights and biases in the network for a number of 

iterations until some stopping criterion is reached.  The gradient descent algorithm in this 

case becomes: 

                                           n
ij

n
ijn

ij
n
ij w

wE
ww

∂

∂
−=+ )(1 γ                        (7) 

                                              n
ij

n
ijn

ij
n
ij b

bE
bb

∂

∂
−=+ )(1 γ                         (8) 

The value of γ can change between successive iterations; this is called an adaptive 

learning rate.  Convergence can be sped up if the learning rate is increased on flat parts of 

the error surface, and decreased where the slope is steep. To implement this simply, the 

learning rate is increased if the error decreases, and is decreased if the error increases.   

 A momentum operator can also be used to stabilize the trajectory of the 

convergence.  This will essentially act as a low pass filter to smooth out any oscillations 

in the convergence trajectory.  To illustrate momentum learning, recall that the weight 

update at iteration n is: 

                                                  n
ij

n
ijn

ij w
wE

w
∂

∂
−=Δ

)(
γ                            (9) 

 8



With momentum learning, this becomes: 

                             n
ij

n
ijn

ij
n
ij w

wE
ww

∂

∂
−−Δ=Δ − )(

)1(1 γαα         (10) 

For some α that satisfies  

                                                          10 <<α                                                  (11) 

The value of α used in this study is 0.9. 

 Weights and biases will now converge quickly and stably towards the minimum 

in the mean absolute error surface [20].   In this way, neural networks can create a 

transformation that minimizes the error between the output of the network and the target 

mapping.   
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Multivariate Linear Regression 

 This method aims to combine many inputs, in this case many seismic attributes, in 

a linear manner to create a mapping to the target output [16-18].  It is a simple extension 

of conventional linear analysis.   

 Assume that there are m inputs each of length n, with the nth sample of the mth 

input denoted as Amn.  These inputs are to be mapped to an output log of length n, with 

the nth sample of the log denoted by Ln.     

The log prediction is represented by the linear equation: 

121211101 ... mm AwAwAwwL ++++=  

222212102 ... mm AwAwAwwL ++++=  

      M                                                       (12) 

mnmnnn AwAwAwwL ++++= ...22110  

This set of equations can be written in matrix form as: 

         (13) 
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     AWL =                                               (14) 
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The weights, w, in this equation may be derived by minimizing the difference between 

the prediction and the target log, in a least squares sense.  The mean squared prediction 

error is: 

 

) (15

 

2
22110

1

2 )...(1
mimii

n

i
i AwAwAwwL

n
E −−−−−= ∑

=

The minimum of this summation will occur where the first derivative with respect to the 

weights equals zero. 
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Once again, in matrix notation this becomes: 
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In order to solve this system for the weights, we must invert the coefficient matrix on the 

left.  The equation then becomes: 
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The coefficient matrix is square and is invertible numerically.  In this manner the weights 

which minimize the least squares prediction error can be determined.  While this 

computation is realizable, there is a short cut which is much less computationally 

expensive [16-18].   

Note that if 
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This matrix is equal to the coefficient matrix which must be inverted in equation 19. This 

matrix is also a very powerful tool used in data analysis, and is known as the covariance 

matrix.    

Also. note that the right hand side of Equation 19 is equal to: 
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So that starting from equation 13, 

 

                                                             LAW =                                               (23) 

this leads to 

                                                  LAAWA TT =                                          (24)                  

 which is equivalent to equation 18.   

ATA is a square symmetric matrix and so in many cases may be invertible.  To solve for 

W, we rearrange equation 24 to: 

                                                  ( ) LAAAW TT 1−
=                                      (25) 

These weights in vector W provide a mapping between the attributes in matrix A, and the 

target log, L.  The difference between the outputs of this mapping and the target log are 

minimized in a least squares sense.  
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Seismic Attributes 

 Seismic attributes are measures of dynamic, kinetic and statistical features of 

seismic data.  A seismic trace is the result of complicated interrelationships between bed 

thickness, porosity, fluid saturation, lithological boundaries, and other rock properties 

[15, 22, 23].  As such, a seismic trace can be transformed into an attribute which 

amplifies one, or many, of these properties.   

 Hundreds of seismic attributes have been developed; only some of these are well 

enough understood to be quantitative, and many are redundant.  We have chosen to use 

Instantaneous Attributes, so called because they are calculated at every time sample of 

the seismic trace.   A detailed list of the attributes used, and their potential geologic 

significance is shown in Table 3 [15, 24, 25].  

Table 3.  List of seismic attributes and their significance.   

Attribute Significance 

Amplitude Acoustic Impedance Contrast 

Instantaneous Phase Indicative of Lateral Continutity 

Instantaneous Frequency Bed Thickness Indicator; DHI 

Amplitude Envelope Reflection Strength 

First Derivative of the Amplitude Absorption Effects 

Second Derivative of the Amplitude Bed Thickness; Reflection Strength 

Integrated Absolute Amplitude Low Frequency Trends 

Sample Number Vertical Continuity 
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 The instantaneous phase, frequency, and envelope of the seismic traces is 

computed through complex trace analysis [26].  In complex trace analysis, a seismic 

trace, s(t), is viewed as the real part of an analytical trace, S(t), that is composed of both 

a real and imaginary part.   

 

                                                                                         (25) )()()( * tjststS +=

 

Where j equals the square root of negative one, s*(t) is the quadrature component of the 

trace, and is uniquely determined by the in-phase component, if there is adherence to a 

liberal set of assumptions.   If S(t) is described as the combination of a time varying 

amplitude, known as the amplitude envelope, A(t), and a time-varying phase, θ(t), then: 

 

                                  )(* )()()()( tietAtjststS θ=+=                           (26) 

  

Which leads to: 

 

                           { } ))(cos()()(Re)( )( ttAetAts ti θθ ==                    (27) 

 

                           { } ))(sin()()(Im)( )(* ttAetAts ti θθ ==                    (28) 

 

Solving for A(t): 
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                                         )()()( 2*2 tststA +=                                         (29) 

 

And θ(t), the instantaneous phase: 

                                             )
)(
)((tan)(

*
1

ts
tst −=θ                                             (30) 

The instantaneous frequency, f(t), is simply the time derivative of the instantaneous 

phase, divided by 2π: 

                                              
dt

tdtf )(
2
1)( θ
π

=                                                  (31) 
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Figure 3. a)  A seismic trace in blue with its amplitude envelope in red.  For every trace sample 

there is an attribute sample.  b)   The unwrapped instantaneous phase of the trace in a).   c) The 

 18



instantaneous frequency.  d) First Derivative of the original signal with time.  e) Second 

Derivative of the original signal with time. f) The integrated Absolute Amplitude is also used as 

an attribute.  It may highlight low frequency vertical trends in the data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19



Normalization and Principal Component Analysis  

 As discussed previously, the hyperbolic tangent sigmoid transfer function used in 

the neural network has a limited range.  The domain is effectively limited as well since 

the function saturates quickly for absolute input values greater than around five.  To 

overcome this, both the input and output data sets must be processed in order to take full 

advantage of the shape of the transfer function [27].   

 This is accomplished by processing the training set of the network to give both the 

input and output sets a mean of zero and a standard deviation of one.  For example the 

normalized input set would be calculated as: 

 

)               (32

 

)(
)(_

InputSTD
InputmeanInputInputNormalized −

=

 The same transformation is applied to the output set.  This means that the network 

will be trained to yield outputs that have zero mean and unity standard deviation.  These 

normalized results are then transformed back by multiplying by the standard deviation 

and adding the mean of the training output set.   

 In addition to normalizing the input set, we have also chosen to subsequently 

transform it using principal component analysis.  While the input set may be large, many 

of the attributes may be highly correlated or redundant.  Principal Component Analysis 

has three effects: it orthogonalizes the input vectors so that they are uncorrelated, it 

orders the resulting orthogonalized components such that those with the largest variation 

come first, and it eliminates the components that add the least amount of variation to the 
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data set [28].  In this case, we have chosen to eliminate data that contributes less than five 

percent of the variation.   

 In using principal component analysis we calculate the covariance matrix of the 

normalized input set, find its unit eigenvectors, sort the eigenvectors in order from largest 

to smallest eigenvalue, and then eliminate the undesired components.  These remaining 

eigenvectors are now used as a transformation matrix, and essentially act as the axes in a 

new coordinate system.  
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The above equation shows the actual transformation matrix used in determining the 

principal components, pi, of the eight normalized seismic attributes, si, used in the study.   

 Since all of the eigenvectors are orthogonal, this is the most efficient way to 

represent the data.  This coordinate system now effectively communicates where along 

the trend line an individual data point sits.   
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CASE STUDY AND METHODOLOGY 

Auger Field – N Interval 

 This study makes use of data over Auger Field in the deepwater Gulf of Mexico 

(GB 426, 427, 470, 471).  Several studies of the geologic character of the field have been 

published [29-32].  Included in the Appendix of this thesis is “Characterization of the O 

and N Sands in Auger Field, Gulf of Mexico”, which lays the stratigraphic framework for 

this more detailed rock property analysis [33].   

 This study focuses on the shallowest reservoir in Auger Field, the N Interval.  

Hydrocarbons in this interval are trapped by a three-way closure against the Auger Salt 

Ridge and the East Auger Fault.  In the majority of the reservoir, the N Interval is 

composed of two massive sands, the NM
1, and the NM

2, termed the Lobe Facies by Bohn 

(2008).  Each of these is capped by a laminated member, the NL
1 and the NL

2, 

respectively, which are termed the Levee Facies [33].  Close to the salt dome, however, 

the N Interval is comprised mainly of the NM
1

 and NL
1 members, as the NM

2 and NL
2 

members have onlapped the Auger Salt Ridge and pinched out.   

 Throughout deposition of the N Interval, incision was occurring from a northern 

source. This incision and bypass to the neighboring Andros Basin created a valley which 

thickens and widens to the south towards the depocenter.  The evidence of this incision is 

seen downdip and to the west, where a third facies, the Incised Fill Facies, is present 

(Figure 14).  The seismic signature of the interval becomes more chaotic; this represents 

the character of the Incised Fill Facies, which is composed of a lower net-to-gross sand 

than is present in the Lobe Facies. The NL
1 and NL

2 members are also seen to thicken at 

the valley margin. This is most likely due to overbank deposition by the incision.  
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 There is log evidence that there is overall a lower average porosity in the incised 

valley fill than there is in the Lobe Facies.   

 

Figure 4.  Structure Map on top of the N interval, outlining the Lobe Facies, Incised Fill, and 

well penetrations.  Wells used in the training set are filled with red.  The wells penetrating the 

Incised Fill that are used in this study include the A02BP1, the A05, and 426STBP1.  The A01, 

A06, A07, and A09 penetrate the overbank deposition.   
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Figure 5. a) Structure map of the NM1 with a facies interpretation overlain.  The Incised Fill 

Facies is shown in green; it widens and thickens to the south.  b) Time slice showing lobate 

geometry and the basin axis channel.  c) Type well logs showing considerable change in facies 

character going from the Lobe Facies (A04BP1) to the Incised Fill Facies (A02BP1).   

 

 There is extensive 3D seismic coverage over the field.  The N Interval has 47 well 

penetrations, but only 14 wells were drilled before production began and have a suitable 

suite of well logs for analysis. 

 The seismic survey used was completed in 1990 before the field came on-line, 

and before the Tension Leg Platform was present.  The survey was shot in a North-South 

orientation with three 1545 cu. in. airguns, at 2000 PSI.  The far offset was 20000 feet, 
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with a CMP bin size of 100 ft. X 100 ft. giving a nominal fold of 30.  The data underwent 

pre-stack time migration before undergoing integration and stacking.   
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Well Log Pre-Processing 

 In order for the well logs to be directly compared to the seismic data, a 

considerable amount of pre-processing was necessary.  The primary processing steps are 

despiking and depth-to-time conversion.   

 The despiking and quality control of the well logs was accomplished by filtering 

the logs with a 35 point running mean filter.  Applying the running mean filter has 

striking results that are visually evident in the log character (Figure 6).  

 

Figure 6.  Comparison of the original, unedited porosity log from well A01 (in blue), and the log 

once it has been smoothed by a running mean filter (red).   

 

 The next pre-processing step is that of depth to time conversion.  While the 

seismic traces are sampled in units of time, the well logs are sampled in units of depth.  
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Since the goal is to create synthetic well logs based on the seismic data, it is prudent to 

reference the well logs in the time domain.   

 Generally, as is the case for the wells being studied here, the seismic transit time 

to certain depths along the wellbore is measured directly in what is known as a checkshot 

survey.  These data provides the most accurate transformation from depth to time.  The 

checkshot coverage along the wellbore is sparse, and must be upsampled.  The seismic 

survey being used has a sampling interval of 4 ms.  For twenty samples around the Nm
1, 

giving a 100 ms window, depths are interpolated to every 4 ms sample through spline 

interpolation from the checkshot (Figure 7).   

 Now that the depth at which each seismic sample occurs is estimated, we must 

now be certain that a well log sample also occurs at that depth.  For the most part, this is 

not the case, and we must interpolate the well log to give us a sample at that depth 

(Figure 8). The extent of these points on the well log corresponds to a 100 ms seismic 

window around the interval of interest, in this case the Nm
1.   
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Figure 7.  Example of the interpolation used to calculate the depth at which each seismic sample 

of interest occurs.  This is data from the checkshot from well A01.  At this well, the Nm1 occurs at 

4.580 seconds two-way-time.  The depths are calculated for every 4 ms in a 100 ms window 

around the sample of interest.   

 

 28



 

Figure 8.  Porosity values that have been calculated via a spline interpolation for each of the 

depth points corresponding to Figure 7.   

 

 

Figure 9.  Flow Chart describing the methodology used to convert the well logs from being 

sampled in depth to being sampled in time.  
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Porosity Calculation from Density Logs 

 Although neutron porosity logs were available for analysis, it was uncertain 

whether each logging tool had been calibrated to the same fluid and rock type, and no 

information was available that described the overall calibration technique.  Besides, it is 

generally accepted that porosity calculation from bulk density logs is more accurate[34].    

 To calculate porosity, φ, we use the rock matrix density, ρm, the fluid density, ρf, 

and the bulk density well log, ρb. The average rock density in the sandstones from core 

reports from four exploration wells is 2.66 g/cm3.  The average rock density in the shales 

is assumed to be 2.65 g/cm3 [34].   

 The fluid density depends on whether the well encountered water or 

hydrocarbons.  This was determined by the electrical resistivity log.  If the resistivity was 

above an interpreted threshold value, than the hydrocarbon value was used; if below the 

threshold, the water value was used.  The hydrocarbon density calculated from 

composition and phase considerations is 0.42 g/cc at 10,500 PSI, which is roughly the in 

situ reservoir pressure. The water density used was 1.1 g/cc.  The calculation is then: 

 

                                                      

fm

bm

ρρ
ρρφ

−
−

=                                            (23) 
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Figure 10.  An example of the calculation of the Porosity Logs used in the training of the neural 

network and multilinear regression analysis.  If the Gamma Ray (a) value is below a threshold 

value, in this case 63 GAPI, the lithology is interpreted to be sandstone.  This is shown by shading 

yellow.  Above 63 GAPI, the rock is interpreted to be shale.  The fluid type, either water or gas, 

saturating the rock is determined from the resistivity log (b).  In this well, if the resistivity is 

above 2 OHMM, shaded red, the fluid is interpreted to be gas, with a density of 0.42 g/cc.  If the 

resistivity is below the threshold, the fluid saturant is interpreted to be water, with density of 1.1 

g/cc.  For each sample, this information is combined with the density log (c) to create the 

porosity log (d).  We determined that the predictive power of the methods being studied is 

greatly enhanced if a constant porosity value of 0.17 (e) is used wherever it a shale has been 

interpreted to be the rock type.  The smoothed log in each case is shown in red.  The porosity logs 

were calculated using the unfiltered logs, however.   

 

 

 

 

 31



Porosity Prediction with an Artificial Neural Network 

 Once the well logs and seismic attributes had been processed as described in 

Chapter 2, an ANN could be suitably trained to generate a suite synthetic well logs from 

volumes of seismic attributes.    

 The selection of an appropriate neural network is heuristic in nature.  Before an 

appropriate architecture was found, dozens of networks were designed, tested, and 

ultimately rejected.  These networks varied in the number of hidden layers, the number of 

neurons in each of those hidden layers, training algorithms, transfer functions, and 

optimization criteria.  Among the many networks tested, the most accurate and well-

generalized network encountered was a feed-forward back-propagation network 

consisting of one hidden layer of 22 neurons with tangent sigmoid transfer functions that 

used a gradient-descent with momentum and adaptive learning rate training algorithm.  

The performance criterion was set to minimize the mean absolute error, in contrast to the 

more standard mean square error.  This choice was once again heuristic; the network was 

simply more accurate and generalized better.   
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Figure 11.  Architecture of the Feed Forward Network.  Seven normalized input attributes are 

fed into twenty-two neurons in the hidden layer.  The one output represents a porosity sample. 

 

 All of the logs and the corresponding seismic data were compiled into one set.  

The seismic attributes were normalized and underwent principal component analysis 

which reduced the number of inputs from eight to seven.  The porosity targets were also 

normalized to a mean of zero.  The training set consisted of the well log and seismic data 

from all but one well, which was separated as the test set.   
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Figure 12.  These attributes (a-g), also listed on page 18, are combined in order to create a 

synthetic porosity log that resembles as closely as possible the target log at right (h).   

 

 We rotated through the wells, successively taking one aside for the test set and 

training a new network with the same network architecture in order to appropriately 

gauge the predictive power of this network architecture.  Training commenced with both 

validation stopping and with stopping after 1000 epochs.  When validation stopping was 

used, every sixth sample of the training set was set aside for validation.  Results for each 

training cycle are shown in Table 3, where the well indicated is the well used in the test 

set.   
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Figure 13.  Flow Chart Describing Training Method.  
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RESULTS 

ANN Predictions Using a Constant Shale Porosity  

Well Name Max Error Mean Error CC Test CC Training 
A01 0.107 0.039 0.537 0.871
A02BP1 0.095 0.034 0.437 0.879
A04BP1 0.101 0.020 0.825 0.872
A05 0.125 0.047 0.618 0.895
A06 0.057 0.026 0.952 0.899
A07 0.102 0.034 0.835 0.895
A08 0.141 0.070 0.450 0.892
A09 0.086 0.025 0.886 0.889
A13 0.071 0.021 0.865 0.880
A14 0.098 0.030 0.565 0.872
A19 0.106 0.030 0.658 0.890
426STBP1 0.082 0.016 0.896 0.852
427 0.057 0.026 0.833 0.872
470 0.116 0.033 0.825 0.874
AVERAGES 0.096 0.032 0.728 0.881

 

Table 4.  Results of porosity prediction after 1000 epochs of training.  All wells except the one 

indicated were used in the training set.  For example, the second row of the table contains the 

data for the A01.  All of the wells except for the A01 were used to train the network; A01 was left 

out of the training as the test case.  The maximum and average errors are in units of porosity 

(V/V).  CC Test and CC Training are the normalized cross correlation coefficients between the 

prediction and the targets for the test and training sets, respectively.  

 

 The performance of the ANN was analyzed by keeping one well aside as a test 

case, and training the network on the remaining thirteen wells.  This procedure was 

performed fourteen times, each time testing the network on a new well.   

 The testing results demonstrate that the network generalizes well, and has 

impressive predictive powers.  With an average cross correlation coefficient of 0.72 for 
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the test case, this network outperforms many of those from previous studies (see Intro) 

[16, 18, 19].   The mean error is on the order of 3% porosity which is much lower than 

the range predicted which was between 16% and 33%.   

 This was accomplished without the use of an inverted acoustic impedance volume 

as input, which has been demonstrated to have the highest correlation with porosity of 

any single attribute [19].  We attribute this success to the quality control of the well logs 

and well-ties, the preprocessing of the input seismic attributes and output porosity logs 

which includes normalization and principal component analysis, and the choice of 

training algorithm.   

 The Hinton Plot below shows that the normalized inputs are given roughly equal 

weighting when estimating the porosity log.  This suggests that all of the attributes used 

in the input set have a functional relationship with porosity, and that that relationship may 

be nonlinear in nature.   
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Figure 14.  Hinton plot that shows the strength of the weights between the input layer and the 

hidden layer.  The area of the box corresponds to the amplitude of the weight, while the color 

indicates polarity.  A red weight is negative, and a green weight is positive.  The seven inputs 

being weighted are the principal components of the original, normalized seismic 

attributes.   
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Figure 15. Test wells from the training sequence of the Neural Network with 1000 Epochs of 

Training.   The CC value indicates the normalized cross-correlation coefficient between the neural 

network output and the target values.   

 

 We also performed an additional test of the predictive capabilities of the ANN.  

Instead of removing only one well as the test case, we successively removed additional 

wells until only one well served as the training case.   As expected, the predictive power 

of the ANN grew as the number of training wells increased. Both absolute error, as well 

as error percent decreased, while the testing cross correlation coefficient increased.  In 

Figure 16 a) the decrease in error percent appears to be asymptotic.  The benefits of 

adding more training wells diminish rapidly.   
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Figure 16. Performance of ANN as a function of the number of wells used in the training set.  a)  

Maximum error percentage in the test case.  Note the asymptotic appearance of the curve.  Error 
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does decrease with an increasing number of wells, but the returns are diminishing.  b) The mean 

testing error shows the same trend as in part a).  c)  The cross correlation coefficient of the test set 

increases substantially with the number of wells in the training set.  As the network is exposed to 

a greater variety of input-output pairs, it has more experience on which to call in order to make a 

predictive decision.          
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Figure 17.  Results of ANN porosity prediction from a Seismic Line passing through well 

A04BP1 at Trace 2206. a)  InLine showing the Structure of the Nm1. b)  InLine flattened on the Nm1 

horizon.  Time "0" corresponds to the peak trough amplitude picked in the seismic volume which 

was interpreted to represent the N sand.   

 

Mapped Results 

 Porosity was predicted in a 100 ms interval surrounding the Nm
1.  Since the 

sampling rate is 4 ms, there are 25 porosity samples generated for each trace.  One can 

then construct 25 maps connecting corresponding porosity samples.  Those results are 

shown below for predictions from both the ANN and the multilinear regression.  The 

network and weights that were used came from the training sequence that used the 

constant value of porosity of 0.17 for shales, since this method was deemed to be more 

accurate by the sensitivity tests. 
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 Note that labels of negative times show a map above the interval of maximum 

seismic amplitude corresponding to the Nm
1

, while positive numbers refer to maps 

showing porosity values below the time of maximum amplitude in the seismic trace.   

 Both methods show clear indications of fan lobes.  (See the two figures 

immediately below)  The results may even suggest a fining upward facies, as the coarsest 

and most porous part of the sand package occurs at the bottom of the Nm
1 (+8-12 ms). 

This fining upward characteristic is noticed in the well logs, and is indicative of turbiditic 

origins.   

 The maps generally show an area of high porosity to the southwest of the salt 

diapir.  This corresponds to the thickness area of the sand, as indicated by both an 

isochron map and well penetrations.  Directly to the northeast of that, the sand thins and 

onlaps the salt, and the porosity decreases. We believe that these results are geologically 

feasible and accurate.   

 

Figure 18. In a 100 ms interval around the N sand, 25 porosity values were predicted by 

multivariate linear regression  that correspond to the 25 seismic samples in the interval.  a)  The 

maximum predicted porosity at each trace location is mapped and overlain onto the structure 

contours of the Nm1.  b)  Porosity map at twelve ms, or 3 seismic samples, above the trough 

corresponding to the Nm1.  c)  Porosity map at eight ms, or 2 seismic samples, above the trough 

corresponding to the Nm1. d) Porosity map at four ms, or one seismic sample, above the trough 

corresponding to the Nm1. e) Porosity map at the trough corresponding to the Nm1. f) Porosity 

map at four ms, or one seismic sample, below the trough corresponding to the Nm1. g) Porosity 

map at eight ms, or 2 seismic samples, below the trough corresponding to the Nm1. h) Porosity 

map at twelve ms, or 3 seismic samples, below the trough corresponding to the Nm1.   
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Multivariate Linear Regression Results with Constant Shale Porosity 

Well Name Max Error Mean Error CC Test CC Training 
A01 0.091 0.028 0.800 0.601
A02BP1 0.105 0.034 0.388 0.622
A04BP1 0.108 0.033 0.697 0.602
A05 0.099 0.049 0.405 0.642
A06 0.095 0.026 0.766 0.599
A07 0.098 0.041 0.734 0.595
A08 0.085 0.038 0.746 0.606
A09 0.107 0.031 0.682 0.605
A13 0.087 0.029 0.564 0.611
A14 0.076 0.029 0.373 0.622
A19 0.112 0.038 0.411 0.630
426STBP1 0.056 0.019 0.864 0.595
427 0.087 0.028 0.540 0.612
470 0.132 0.041 0.757 0.605
Averages 0.096 0.033 0.623 0.610

 

Table 5.  Results of porosity prediction from multivariate linear regression.  All wells except the 

one indicated were used in the training set.  For example, the second row of the table contains the 

data for the A01.  All of the wells except for the A01 were used to train the network; A01 was left 

out of the training as the test case.  The maximum and average errors are in units of porosity 

(V/V).  CC Test and CC Training are the normalized cross correlation coefficients between the 

prediction and the targets for the test and training sets, respectively.   

 

 The results of this analysis are in inline with past studies [16-18].  The test sets 

had on average a cross correlation with the target sets of around 0.62.  This is 

considerably lower than the results from the ANN.  Although the number is low, there is 

still good visual agreement between the estimates and targets.  The average error is also 

quite low at 0.033 porosity units.   
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 The weights derived through analysis are: 
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Keep in mind that these weights operate on normalized and transformed inputs. 

 

 With these weights having been derived, they were used to transform the 

entire seismic volume into a porosity volume 100 ms, or 25 samples, in length around the 

Nm
1 horizon.   

 The first map shows the maximum porosity value at each trace position.  

Although it predicts lower porosity values than the ANN, both methods show the same 

trends.  Namely, that porosity is highest in a northwest-southeast trending belt just to the 

southwest of the salt diapir.    
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Figure 19. Test wells from the training sequence of the Multivariate Linear Regression.  The CC 

value indicates the normalized cross-correlation coefficient between the neural network output 

and the target values. 
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Figure 20.  Results of the Regression porosity prediction from a Seismic Line passing through 

well A04BP1 at Trace 2206. a)  InLine showing the Structure of the Nm1.  

 
 
 
 
 
 
 
 
 
 
 
Figure 21, Pages 60 -67.  In a 100 ms interval around the N sand, 25 porosity values were 
predicted by multivariate linear regression  that correspond to the 25 seismic samples in the 
interval.  a)  The maximum predicted porosity at each trace location is mapped and overlain onto 
the structure contours of the Nm1.  b)  Porosity map at twelve ms, or 3 seismic samples, above the 
trough corresponding to the Nm1.  c)  Porosity map at eight ms, or 2 seismic samples, above the 
trough corresponding to the Nm1. d) Porosity map at four ms, or one seismic sample, above the 
trough corresponding to the Nm1. e) Porosity map at the trough corresponding to the Nm1. f) 
Porosity map at four ms, or one seismic sample, below the trough corresponding to the Nm1. g) 
Porosity map at eight ms, or 2 seismic samples, below the trough corresponding to the Nm1. h) 
Porosity map at twelve ms, or 3 seismic samples, below the trough corresponding to the Nm1. 
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CONCLUSIONS 

 Prediction of seismic porosity from seismic data improves reservoir 

characterization by estimating the rock property away from well control.  This improved 

image of the reservoir allows for more advanced and accurate reservoir models, 

performance prediction, and eventually to more advantageous placement of future 

production wells.   

 We have investigated two methods for the prediction of porosity from multiple 

3D seismic attributes:  Artificial Neural Network estimation, and Multivariate Linear 

Regression.  The valor of these two methods has been demonstrated on a data set from an 

amalgamated turbidite gas reservoir in the deepwater of the Gulf of Mexico.   

 Overall, the ANN predicted a greater range of porosity values than did multilinear 

regression (Figure 22).   The ANN also outperformed the regression analysis 

considerably, both in average error, but also in the test cross correlation coefficient 

values.  Although more computationally expensive, the ANN prediction was on average 

10.4% more similar to the target than was the regression prediction.   
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Figure 22.  a)  Histogram showing the distribution of porosity values in the training set.  Note 

the range of values extends to the upper limit of 0.33. b) Histograms showing the distribution of 

predicted porosity values in maps shown above, which are correspond to Figures 18e and 22e.  

The results given by the neural network demonstrate roughly the same distribution as the 

porosity training set.  The results from regression analysis, however, lack the high-porosity 

information.   

 

 The several advantages of these new algorithms over the conventional inversion 

methods are that: they predict logs other than acoustic impedance; they may use seismic 

attributes other than the conventional post-stack volume; they do not rely on any 
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particular forward model;  knowledge of the seismic wavelet is not required; they may 

enhance resolution; and they use testing and cross-validation as a measure of success [1, 

16-18].   

 Despite these advantages, these techniques, like any statistical rock property 

estimation, may not always work well.  Like any data driven techniques, the quality, 

uniformity, and processing of the data set will determine the effectiveness of both ANN 

prediction and Multivariate Linear Regression.   

 

Future Directions 

 While the accuracy of both the neural network and the regression analysis has 

been demonstrated through error testing and correlation studies, it is important to exercise 

prudence if allowing these results to influence capital expenditure.  As noted in the 

introduction, other methods of predicting reservoir porosity exist that are independent of 

seismic data.   Well testing and reservoir simulation may serve as verification for a 

seismic-based porosity model.   

 Spatial interpolation of the well log porosity can be very accurate in close 

proximity to the well data.  Further from well control, however, the accuracy can quickly 

deteriorate.   In future studies, it may be worthwhile to devise a scheme whereby spatially 

based prediction techniques could be married with seismic based prediction techniques.  

Spatial data were not used in this study because of the strong correlation between lateral 

position and porosity.  When included in the ANN analysis, spatial data were over 

emphasized by the network, ignoring needed information in the seismic data.    Since this 
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study was designed to examine the possibility of using seismic data in porosity 

prediction, any spatial data were ignored.   

 The number of seismic attributes used in porosity prediction need not be limited 

to the eight used here.  Hundreds of seismic attributes are known, and new ones could be 

invented solely for rock property prediction.  A neural network may very well prove to be 

the quickest way to determine which of the hundreds of seismic attributes correlate most 

strongly with rock properties, including porosity.   

 As shown in Figure 22, the two types of analysis yielded different porosity 

“spectra”.   The two methods attempt to minimize two different types of statistical 

dispersion, namely mean squared error in the regression case, and mean absolute error in 

the network case.  This may account for some of the dissimilarity.  It should be possible 

to find appropriate linear weights which minimize mean absolute error, and therefore 

may provide for a more direct comparison between the results given by the neural 

network and the regression.  This however, may not account for the difference in the 

shape of the porosity spectra.  When a completely random array of data is fed into the 

neural network, for example, the output is strongly centered around the peak of 25% (see 

Figure 22), but there is virtually no spread in the results whatsoever.  This is an intriguing 

area of study, which could be a focus of future efforts.   
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Table 6. Variable Definitions 
Variable Description 
tanh Hyperbolic Tangent Sigmoid Transfer 

Function 
Ii ith Sample of the input vector, I  
O1 Output of the Input Layer of ANN 
O2j Output of the jth neuron in the 2nd, or 

hidden, layer of the ANN 
f2 Transfer function associated with the 2nd, 

or hidden, layer of ANN 
wij Weight connecting the ith neuron in the 

input layer to the jth neuron in the hidden 
layer  

bij Bias connecting the ith neuron in the input 
layer to the jth neuron in the hidden layer 

E Mean Absolute Error between target and 
prediction  

pj jth sample of the predicted log 
Lj jth sample of target Log 
γ Adaptive Learning Rate constant 
α Constant used in Momentum Learning 
wi Weight multiplied by the ith attribute input 

in regression analysis 
W Vector composed of weights wi
A Matrix of Input Attributes 
E2 Mean Squared Prediction Error 
AT Transpose of matrix A 
S(t) Analytical Trace 
s(t) Seismic Trace, the real part of S(t) 
s*(t) Quadrature component of the Analytical 

Trace 
A(t) Amplitude Envelope of Analytical Trace 
θ(t) Instantaneous Phase 
f(t) Instantaneous Frequency 
zi Depth to log sample i 
vi Wave Velocity in interval i 
ti Cumulative Transit Time to depth, zi
φ  Porosity 
ρm Matrix Density 
ρf Fluid Density 
ρb Bulk Density 
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APPENDIX  
 

Results from Validation Training with ANN 
 

 In order to demonstrate that using a fixed number of training epochs was justified, 
included below are the testing results from a neural network with the same architecture 
used in Chapter 3, but trained using validation training.   
 In all measures of success, the validation trained network performed more poorly 
than the network that was simply trained for 1000 epochs.  The results below, in Table 7, 
can be compared to the results in Table 5.   
 

Table 7.   Prediction results of an ANN trained with validation training.  In all cases, it performed more 
poorly than a network with the same architecture but trained for 1000 epochs.   

Well Name Max Error Mean Error 
Max Error 
Percent CC Test CC Training 

A02BP1 0.119183655 45.45776074 0.035007468 0.489084205 0.571225
A04BP1 0.126220945 43.74880299 0.047002472 0.263560985 0.638067575
A05 0.145012221 85.30130652 0.03960731 0.457423974 0.669981543
A06 0.106158558 60.23677415 0.037137763 0.631343879 0.587573059
A07 0.076808279 45.176815 0.030712686 0.876160938 0.576227064
A08 0.117827823 69.31048433 0.034462862 0.763788719 0.614099391
A09 0.115866659 68.15685804 0.030843336 0.60888349 0.628635092
A13 0.101556141 59.7388582 0.028509361 0.60487601 0.612899496
A14 0.100966756 59.39220951 0.032074924 0.437389553 0.592034589
A19 0.137616819 80.95106995 0.038444913 0.344678982 0.573031905
426STBP1 0.126965017 74.68530394 0.04363576 0.8539127 0.49864843
427 0.092790164 54.58244966 0.030825303 0.462827272 0.617828737
470 0.130205815 76.59165575 0.03879009 0.654684162 0.616431442
AVERAGES 0.115167604 63.33310375 0.03592725 0.502597455 0.599744871
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