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Abstract 

 

Pore Pressure Prediction: From Vertical Stress to Mean Stress to the 

Full Stress Tensor 

 

Landon Paul Lockhart, M.S. Geo. Sci. 

The University of Texas at Austin, 2018 

 

Supervisor:  Peter B. Flemings 

Co-Supervisor:  Maria A. Nikolinakou 

 

My thesis focuses on evaluating the relative contribution of both mean stress and 

deviatoric (shear) stress and understanding how to incorporate their role in order to better 

predict pore pressure. In Chapter 1, I introduce my thesis by providing a brief background 

of pore pressure prediction, discussing the importance of using the full stress tensor 

(mean and shear stress) to predict stress and pressure, and summarizing the agenda of the 

following two Chapters. In Chapter 2, I predict pore pressure in the deepwater Gulf of 

Mexico Mad Dog Field, using three different methods that are based on (i) the vertical 

effective stress (VES), (ii) the mean effective stress (MES), and (iii) the full stress tensor 

(FES). The VES and MES methods are traditional workflows, whereas the FES method is 

a new technique. I use ultra-high resolution sonic velocity data, geomechanical modeling, 

and the Modified Cam Clay soil model. I compare the predicted pore pressures against 

those that were measured while drilling. I also evaluate the fraction of pore pressure 

induced by the mean stress and deviatoric (shear) stress. I show that the MES method can 
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account for the mean stress-induced pressure, but neither VES nor MES can account for 

the deviatoric (shear) stress-induced pressure. In Chapter 3, I present the new University 

of Texas Full Application of Stress Tensor to Predict Pore Pressure (UT-FAST-P3) online 

software that I developed to predict pore pressure. I created the software to be a learning 

tool to illustrate how pore pressure and stress interact in non-uniaxial settings. I wrote the 

program to predict pore pressure based on the VES, MES, and FES methods. I 

communicate the results in a velocity vs. mean effective stress plot, and a mean effective 

stress vs. deviatoric (shear) stress plot. This allows for a side-by-side comparison of each 

method, thus providing physical insight into the relative contribution of mean stress and 

deviatoric (shear) stress to compression and pore pressure development. Overall, my 

thesis contributes to our understanding of the interaction of pressure and stress in the 

subsurface, demonstrates the importance of using the full stress tensor to predict pore 

pressure, and explores a new technique (FES approach) that is applicable to a wide range 

of complex geological environments where the traditional VES and MES methods 

underperform. 
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Chapter 1:  Introduction 

Pore pressure prediction is a complex, evolving science. As geology, law, and an 

increase in global demand for energy continue to push exploration farther offshore into 

more complex geologic settings, progress in our ability to predict pore pressures must 

follow accordingly. 

Drilling into complex geologic environments often result in costly drilling 

problems because of the wide range of stresses and pore pressure perturbations 

encountered. Traditional pore pressure techniques assume the stress state is uniaxial. In 

these settings, changes in porosity (or some other geophysical measurement that is 

sensitive to changes in compaction, e.g., velocity) can be linked to changes in the vertical 

effective stress, because the horizontal effective stresses change as a function of the 

vertical. Therefore, in uniaxial settings, porosity can be correlated with the vertical 

effective stress. Indeed, traditional workflows to predict pore pressure establish 

relationships between porosity and the vertical effective stress (Bowers, 1995). However, 

in complex geologic settings, loading is non-uniaxial and, therefore, the horizontal 

stresses are independent of the vertical. As a result, all three stress components (σv, σh, 

and σH), as well as deviatoric (shear) stress, may contribute to changes in volume. 

Basins where the stress state varies locally are ubiquitous around the world (salt 

bodies, fault zones, anticlines, synclines, continental margins, fold-and-thrust belts, etc.). 

An example of such a complex geologic setting where the stress state is non-uniaxial is 

the deepwater Gulf of Mexico Mad Dog Field. The presence of an allochthonous salt 

sheet in the Mad Dog Field changes the stress regime due to lateral push from the salt. 

(Nikolinakou et al., 2013); this creates local changes in the horizontal and, in turn, mean 

and shear stresses. Consequently, the stress state in Mad Dog is not uniaxial. More recent 
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techniques attempt to incorporate the horizontal stresses to account for non-uniaxial 

stress state by using the mean effective stress to calculate pore pressure (Goulty, 1998; 

Harrold et al., 1999). Nevertheless, such attempts fail to account for the deviatoric (shear) 

stress component in the development of pore pressure, which can lead to either under- or 

over-prediction of pore pressures. 

My thesis evaluates the relative contribution of both mean stress and deviatoric 

(shear) stress to the development of pore pressure. I focus on the traditional vertical 

effective stress (VES) and mean effective stress (MES) methods to predict pore pressure, 

and the new full stress tensor (FES) approach. My methodology and results reveal that 

pore pressure is driven by a combination of both mean stress and deviatoric (shear) stress. 

In Chapter 2, I predict pore pressure in the deepwater Gulf of Mexico Mad Dog 

Field, using the VES, MES, and FES methods. I use ultra-high resolution sonic velocity 

data, geomechanical modeling, and the Modified Cam Clay soil model. I compare the 

predicted pore pressures against those that were measured while drilling. I show that the 

FES predicts pressures that more closely match those measured. 

In Chapter 2, I also provide a solution to quantify the fraction of pore pressure 

induced by the mean stress and the fraction of pore pressure induced by the shear stress. 

This is a key contribution of my thesis. By quantifying both, we are able to determine the 

amount of pore pressure that will be neglected if a vertical stress-based (VES) or a mean 

stress-based (MES) approach is used.  

In Chapter 3, I present the new University of Texas Full Application of Stress 

Tensor to Predict Pore Pressure (UT-FAST-P3) online software that I developed. I created 

the software to be a learning tool that predicts pore pressure based on the VES approach, 

the MES approach, and the FES approach. Specifically, I wrote the program to 

communicate how pore pressure and stress interact in non-uniaxial settings. My software 
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provides a step forward in communicating the importance of accounting for both mean 

stress and deviatoric (shear) stress when predicting pore pressure.  

In summary, my thesis contributes to our overall understanding of the interaction 

of pressure and stress in the subsurface. It employs an improved pore pressure prediction 

technique (FES method) that is applicable in a wide range of complex geological 

environments where the traditional VES and MES methods underperform. Therefore, it 

contributes to enhancing the safety and efficiency of drilling operations. 
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Chapter 2: Influence of Mean and Deviatoric (shear) Stress on Pore 
Pressure Prediction at the Mad Dog Field, Gulf of Mexico 

ABSTRACT 

We predict pore pressure at the Mad Dog Field, GoM, using three different 

approaches that are based on (i) vertical effective stress (VES), (ii) mean effective stress 

(MES), and (iii) the full stress tensor (FES). A large salt body within the Mad Dog Field 

creates non-uniaxial stress conditions; the ratio of horizontal to vertical effective stress 

(K0), which is constant in uniaxial basins, changes around the salt body. This leads to 

either an elevation or a reduction in mean and/or deviatoric (shear) stress. In order to 

account for this non-uniaxial stress state, we couple velocities with geomechanical 

modeling to incorporate the full stress tensor in our FES workflow. This provides a 

significant improvement over the traditional VES and MES approaches, which can only 

account for mean and deviatoric (shear) stresses proportional to the vertical stress 

(through K0). Moreover, our FES workflow closely predicts the measured pressures 

below salt, whereas the traditional method under-predicts pressures up to 0.6 ppg. We 

show that accounting for the deviatoric (shear) stress drives this improvement. We also 

closely predict pressure in front of the salt where deviatoric (shear) is elevated and the 

mean total stress is reduced; in contrast, the traditional VES method under-predicts by as 

much as 1.4 ppg. Overall, our FES methodology and results predict pressures that more 

closely match the observed, and reveal that pore pressure is driven by a combination of 

mean stress and deviatoric (shear) stress. Furthermore, the impact of our study extends 

beyond salt bodies; our methodology can improve pressure prediction in geological 

environments where the stress state is not uniaxial, such as anticlines, synclines, 

continental margins or fold-and-thrust belts. 
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2.1 INTRODUCTION 

Overpressure occurs when the pore pressure exceeds the hydrostatic pressure. The 

presence of overpressure drives fluid flow and impacts the stress state. This can lead to 

slope instability (Dugan and Flemings, 2002), creation of local fault networks 

(Cartwright, 1994), and sediments less compacted than those under hydrostatic conditions 

(Sangrey, 1977). In the oil and gas industry, overpressure is a key input into the 

exploration and production stages of operations, and special attention is required when 

drilling through overpressured zones (Fertl et al., 1994). Notable effects include blown 

reservoir seals, kicks, blowouts, loss of circulation, borehole collapse, and stuck pipe 

(Sweatman et al., 1999). 

The porosity of overpressured rocks is often observed to be higher than the 

porosity of normally pressured rocks at the same depth (Gibson, 1958; Rubey and 

Hubbert, 1959). This is commonly interpreted to be the result of sedimentation occurring 

so rapidly that it exceeds the ability of the pore fluids to escape, forcing the fluids to bear 

a portion of the overlying load (Gordon and Flemings, 1998; Hart et al., 1995; Rubey and 

Hubbert, 1959; Swarbrick et al., 2001). As a result, overpressure prevents the porosity 

from decreasing at the rate it would during burial under normal pressure conditions 

(Rubey and Hubbert, 1959).  

There are a variety of empirical ways to determine overpressure in the subsurface. 

It is empirically established that void ratio (e; Table 2.1) is proportional to the log of 

vertical effective stress (log(σ’v)) (e.g., Long et al., 2011): 

𝑒 = 𝑒0 − 𝐶𝑐log (𝜎𝑉′ )      (1) 

where e0 and Cc are lithology-dependent constants. Void ratio is a measure of the pore 

volume, and is related to porosity (n) through: 

𝑒 = 𝑛
1−𝑛

  (2) 
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The vertical effective stress is the difference between the vertical total stress (σv) and the 

pore pressure (u): 

𝜎𝑣′ = 𝜎𝑣 − 𝑢       (3) 

By combining equations 1 and 3, pore pressure can be solved for directly: 

𝑢 = 𝜎𝑣 − 𝜎𝑣′ = 𝜎𝑣 − 10�
𝑒0−𝑒
𝐶𝑐

�     (4) 

In the field, void ratio (or porosity) is seldom directly measured; therefore, other 

methods have been developed to estimate the degree of compaction, and thus pore 

pressure, using velocity (Bowers, 1995; Eaton, 1975; Flemings et al., 2002; Hart et al., 

1995), resistivity (Eaton, 1975), or density (Long et al., 2011).  

Velocity is commonly used in conventional drilling operations. It has the 

advantage of being acquired either above ground (seismic) or along the trajectory of a 

well (sonic), and is less impacted by borehole conditions than other logs. Hart et al. 

(1995) used the empirical relationship from Issler (1992) to map velocity to porosity (or 

void ratio): 

𝑛 = 𝑒
1+𝑒

= 1 − �𝛥𝑡𝑚𝑚
𝛥𝑡

�
1 𝑥�

     (5) 

where Δtma is the matrix travel time, Δt is the travel time, and x is an acoustic formation 

factor (all travel times measured in slowness, e.g., 𝜇𝜇 ∙ 𝑓𝑡−1), and then applied equation 4 

to predict pressure. Others have directly mapped velocity to effective stress. Bowers 

(1995) used a power law relationship to describe a velocity – effective stress relationship 

and predict pressure:  

𝑣 = 𝑣0 + 𝐴(𝜎′𝑣)𝐵      (6) 

where v is velocity, v0 is the velocity of seawater (velocity at zero effective stress), and A 

and B are lithology-dependent constants calibrated to existing data. 
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All of these approaches are grounded on the assumption that the vertical effective 

stress (σ’v) is the only independent stress component; therefore, volume changes are a 

function of the vertical effective stress. These methods work well as long as compaction 

is uniaxial across the field. However, in many locations around the world, local 

perturbations in the stress field mean that the horizontal stresses are decoupled from the 

vertical. For example, in salt systems, the emplacement of a salt body changes the stress 

state and creates nonvertical loading (Alberty and McLean, 2003; Nikolinakou et al., 

2012). In these cases, void ratio changes depend on vertical stress as well as non-vertical 

stress components. In other words, simple vertical effective stress models fail in any 

geological environment where the stress state is not uniaxial (i.e., anticlines, synclines, 

continental margins, or fold-and-thrust belts). 

To address locations where the stress state is not uniaxial, some techniques have 

been modified to use the mean effective stress (Alberty and McLean, 2003; Goulty, 1998; 

Harrold et al., 1999). Using poroelasticity theory, changes in porosity can be expressed as 

a function of the mean effective stress, not the vertical effective stress (Goulty, 1998). 

This theory, however, neglects to account for deviatoric (shear) induced stresses that also 

contribute to compaction (Nikolinakou et al., 2018).  

For these reasons, there is now a focus on new methods that incorporate the full 

stress state (mean and shear stress) to determine pore pressure (Flemings and Saffer, 

2018; Goulty, 2004; Hauser et al., 2014; Heidari et al., in press; Nikolinakou et al., 2018). 

The full stress tensor incorporates all stress components into pressure prediction by 

independently taking into account the contribution of both the mean effective stress and 

the deviatoric (shear) stress into compaction. 

In this study, we review soil compaction and stress states, the vertical effective 

stress (VES) and mean effective stress (MES) methods to predict pore pressure, we 
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present the full stress tensor (FES) method, and we apply each method in the deepwater 

Gulf of Mexico Mad Dog Field. We compare our prediction results against those 

measured while drilling from the Modular dynamic formation tester (MDT) tool. Overall, 

our methodology and results show that pore pressure is driven by a combination of mean 

stress and deviatoric (shear) stress, and highlight the importance of deviatoric (shear) 

stress-induced pressures. Furthermore, the impact of our study extends beyond salt 

bodies; the methodology used and insights gained are applicable to geological 

environments around the world where the stress state is non-uniaxial (fault zones, 

anticlines, synclines, continental margins, fold and-thrust-belts).  

 
Symbol Description Dimension* Units 

TVDSS True vertical depth from sea surface L
1
 ft 

Zwd Water depth L
1
 ft 

Zbsf Depth beneath seafloor L
1
 ft 

Z Depth L
1
 ft 

n Porosity - - 

e Void ratio - - 

v  Velocity  L
-1

T
-1

 ft/s 

Δtma Matrix travel time L
-1

T
-1

 μs/ft 

Δt Travel time L
-1

T
-1

 μs/ft 

MDT Modular dynamic formation tester M
1
L

-1
T

-2
 psi 

uMDT MDT pore pressure measurement M
1
L

-1
T

-2
 psi 

uVES VES pore pressure M
1
L

-1
T

-2
 psi 

uMES MES pore pressure M
1
L

-1
T

-2
 psi 

Table 2.1: Nomenclature. *M = mass, L = Length, and T = time. 
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uFES FES pore pressure M
1
L

-1
T

-2
 psi 

A Velocity – vertical effective stress 
fitting parameter M

1
L

-1
T

-2
 psi 

B Velocity – vertical effective stress 
fitting parameter - - 

Ae 
Velocity – equivalent effective stress 

fitting parameter M
1
L

-1
T

-2
 psi 

Be 
Velocity – equivalent effective stress 

fitting parameter - - 

uh Hydrostatic pore pressure M
1
L

-1
T

-2
 psi 

ue Excess pore pressure M
1
L

-1
T

-2
 psi 

σ1 Maximum principal effective stress M
1
L

-1
T

-2
 psi 

σ2 Intermediate principal effective stress M
1
L

-1
T

-2
 psi 

σ3 Minimum principal effective stress M
1
L

-1
T

-2
 psi 

σ’1 Maximum principal total stress M
1
L

-1
T

-2
 psi 

σ’2 Intermediate principal total stress M
1
L

-1
T

-2
 psi 

σ’3 Minimum principal total stress M
1
L

-1
T

-2
 psi 

σv Vertical total stress M
1
L

-1
T

-2
 psi 

σ'v Vertical effective stress M
1
L

-1
T

-2
 psi 

σm Mean total stress M
1
L

-1
T

-2
 psi 

σm,K0 Mean total stress under uniaxial strain M
1
L

-1
T

-2
 psi 

σm,K Mean total stress (geomech. model) M
1
L

-1
T

-2
 psi 

σ'm Mean effective stress M
1
L

-1
T

-2
 psi 

σ′m,K0 Mean effective stress under uniaxial 
strain M

1
L

-1
T

-2
 psi 

σ'm,K Mean effective stress (geomech. 
model) M

1
L

-1
T

-2
 psi 

q Deviatoric (shear) stress M
1
L

-1
T

-2
 psi 

K0 Uniaxial effective stress ratio - - 

Table 2.1: (continued) 
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K Effective Stress ratio - - 

𝛥𝑢𝜎𝑚  Increment of pore pressure due to non-
K0 mean total stress M

1
L

-1
T

-2
 psi 

𝛥𝑢𝑞 Increment of pore pressure due to non-
K0 deviatoric (shear) stress M

1
L

-1
T

-2
 psi 

ρb Bulk density M
1
L

-3
T

0
 g/cm3 

ρsw Seawater density M
1
L

-3
T

0
 g/cm3 

g Acceleration of gravity L
1
T

-2
 ft/s2 

ϕ Friction angle degree ° 

λ Slope of elasto-plastic (loading) line M
0
L

0
T

0
 - 

κ Slope of elastic (unloading) line M
0
L

0
T

0
 - 

eλ 
Intercept of elasto-plastic (loading) 

line at unit mean effective stress M
0
L

0
T

0
 - 

eκ 
Intercept of elastic (unloading) line at 

unit mean effective stress M
0
L

0
T

0
 - 

PPG Pounds per gallon M1L-3 lbs/gal 

Table 2.1: (continued) 

2.2 SOIL COMPACTION AND STRESS STATES 

Void ratio (level of compaction) is a function of the full stress state: the mean 

effective stress and the deviatoric (shear) stress. The mean effective stress (σ’m) is the 

average of the principal effective stresses: 

𝜎𝑚′ = 𝜎1′+𝜎2′+𝜎3′

3
       (7) 

The deviatoric (shear) stress (q) is the difference between the principal total stresses: 

𝑞 = �(𝜎1−𝜎2)2+(𝜎1−𝜎3)2+(𝜎3−𝜎3)2

2
    (8) 

Critical state soil models capture the interrelation between mean effective stress, 

deviatoric (shear) stress, and void ratio. The Modified Cam Clay (MCC) is one widely 



 11 

used soil model (Wood, 1990) because of its relative simplicity and small number of 

input parameters (Hashash and Whittle, 1992).  

 The MCC model describes the, material compaction, stress states, and their 

interrelation in a mean effective stress vs. deviatoric (shear) stress (σ’m:q) plot (Figure 

2.1A), and a void ratio vs. mean effective stress (e:σ’m) plot (Figure 2.1B). The isotropic 

stress state represents a loading condition where all principal stress components are 

equal, and consequently, the deviatoric (shear) stress is (equation 8) zero. This is 

represented by the horizontal axis in the σ’m:q plot (Figure 2.1A) and by the dotted black 

line in (e:σ’m) plot (Figure 2.1B). The critical stress state (solid black paths in Figure 2.1 

A, B) defines the limiting strength of a material; a material subjected to stresses at critical 

state will experience failure. The uniaxial stress state (red paths in Figure 2.1 A, B) 

represents a loading condition where deformation is vertical (no lateral strain) and the 

ratio of maximum to minimum principal effective stress (K0) is constant: 
𝐾0 = 𝜎3′

𝜎1′
       (9) 

Any other stress sate (e.g., green paths in Figure 2.1 A, B) is defined by the ratio of 

minimum to maximum principal effective stress (K): 
𝐾 = 𝜎3′

𝜎1′
        (10) 

During consolidation, the void ratio (or porosity) of a material decreases as mean 

effective stress increases. This deformation is primarily plastic (Craig, 2004; Wood, 

1990). In e:σ’m space, individual stress states (with constant stress ratio, K) result in 

unique compression curves (Figure 2.1B), with the general equation for the loading 

(plastic) path given by: 

𝑒 = 𝑒𝜆 − 𝜆ln (𝜎′𝑚)      (11) 
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where eλ is the intercept at unit mean effective stress, and λ is the slope. The parameter eλ 

depends on the stress state (K). For a material undergoing isotropic compaction (K=1), 

the equation for the loading path is given by: 

𝑒 = 𝑒𝜆,𝑖𝑖𝑖 − 𝜆ln (𝜎′𝑒)      (12) 

where eλ,iso is the intercept of the isotropic loading path at unit mean effective stress, and 

σ’e is the equivalent effective stress. The equivalent effective stress represents the mean 

effective stress of a material undergoing isotropic compression. Hence, the equivalent 

effective stress is a uniform stress state (no shear). 

The general equation for the unloading (elastic) path is given by: 

𝑒 = 𝑒𝜅 − 𝜅ln (𝜎𝑚′ )      (13) 

where eκ is the intercept at unit mean effective stress, and κ is the slope. The loading and 

unloading paths are linear in e:ln(σ’m) space, and curved in e:σ’m space (Figure 2.1B). 
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Figure 2.1: Stress paths and volumetric responses of a material compacted with various 
stress ratios: isotropic (Iso.; K=1; dash-dot black path), critical state (C.s.; 
solid black path), uniaxial (K0; red path), and anything in between (K; green 
paths). A) In σ’m:q space, iso-porosity curve (iso-n; solid turquoise) captures 
relationship between mean effective stress and deviatoric (shear) stress for 
given porosity (horizontal turquoise line in (B)). Yield surface (Y.s.; bright 
blue) is shown for comparison. B) In σ’m:e space, compression curves 
capture relationship between void ratio (or porosity) and mean effective 
stress for different stress states. Same void ratio corresponds to different 
mean effective stresses, depending on stress ratio (K). 
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In σ’m:q space, compression with a constant stress ratio (equation 10) is 

represented with a line, the slope of which is defined by the ratio of deviatoric (shear) 

stress to mean effective stress (Figure 2.1A): 
𝜂 = 𝑞

𝜎𝑚′
        (14) 

where η=0 for the isotropic stress state, η=M for the critical stress state, η=ηK0 for the 

uniaxial stress state, and η=ηK for any other stress state. According to the MCC model, 

the slope M is a function of the friction angle (ϕ) in triaxial compression: 
𝑀 = 6𝑖𝑖𝑛𝑠

3−𝑖𝑖𝑛𝑠
       (15) 

and the slope ηK0 is solved for numerically: 
𝜂𝐾0�1+𝑣

′�(1−𝛬)
3(1−2𝑣′)

+
3𝜂𝐾0𝛬

𝑀2−𝜂𝐾0
2 = 1     (16) 

where v’ is Poisson’s ratio for soil in terms of effective stresses, and Λ=(λ-κ)/λ. In typical 

Gulf of Mexico mudrocks, plastic deformation is much larger than the elastic 

deformation (λ>>κ). Thus, the slope of the uniaxial compression line (equation 16) can 

be simplified to: 

𝜂𝐾0 =
−3+�9+4� 6𝑠𝑠𝑠𝑠3−𝑠𝑠𝑠𝑠�

2

2
     (17) 

Combining equations 9 and 14 provides the uniaxial stress ratio (K0) as a function of the 

uniaxial slope (ηK0): 
𝐾0 =

3−𝜂𝐾0
3+2𝜂𝐾0

       (18) 

Combining equations 17 and 18 allows the uniaxial stress ratio (K0) to be calculated as a 

function of the friction angle (ϕ). The slope ηK can be expressed as a function of the 

effective stress ratio (K; equation 10): 

𝜂𝐾 = 3(1−𝐾)
1+2𝐾

       (19) 

The yield surface (bright blue curve in Figure 2.1A) defines the stress level at 

which a material yields, and marks the limit of the elastic-plastic domain: 
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𝜎𝑚′

𝜎𝑒′
= � 𝑀2

𝑀2+𝜂2
�       (20) 

The equivalent effective stress controls the size of the yield surface and is found at the 

intersection of the yield surface with the isotropic axis. 

The iso-porosity surface (turquoise curve in Figure 2.1A) represents all 

combinations of mean effective stress and deviatoric (shear) stress that have the same 

porosity and is described by:  
𝜎𝑚′

𝜎𝑒′
= � 𝑀2

𝑀2+𝜂2
�
𝜆−𝜅
𝜆       (21) 

Given the assumption that the plastic deformation is much larger than the elastic 

deformation (λ>>κ), the equation for the iso-porosity surface (equation 21) can be 

simplified to: 
𝜎𝑚′

𝜎𝑒′
= � 𝑀2

𝑀2+𝜂2
�       (22) 

Equation 22 represents an ellipse, and coincides with the MCC description for a yield 

surface (bright blue curve in Figure 2.1A). The elliptical iso-porosity curve reveals that, 

for a given void ratio (or porosity), the mean effective stress can vary by up to a 

magnitude of two, depending on the level of deviatoric (shear) stress. 

In this study, we use the iso-porosity curves (equation 22) to provide the basic 

framework to present the full stress tensor (FES) method to predict pore pressure, 

compare with the vertical effective stress (VES) and mean effective stress (MES) 

methods, and quantify the relative contributions of mean effective stress and deviatoric 

(shear) stress to pore pressure. 

2.3 PORE PRESSURE METHODS: VES, MES, AND FES 

We next review the vertical effective stress (VES) and mean effective stress 

(MES) methods to predict pore pressure, and present the full stress tensor (FES) method. 
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2.3.1 Vertical Effective Stress (VES) Method 

The vertical effective stress (VES) method is based on the assumption that the 

stress state is uniaxial, with σ’h=σ’3 and σ’v=σ1. Under this assumption, both mean 

effective stress and deviatoric (shear) stresses are a function of the vertical effective 

stress (σ’v) and the uniaxial effective stress ration, (K0; equation 9): 

𝜎𝑚,𝐾0
′ = 𝜎𝑣′(1+2𝐾0)

3
      (23) 

and  

𝑞𝐾0 = 𝜎𝑣′(1 − 𝐾0)      (24) 

The vertical effective stress can be obtained from field measurements in uniaxial 

conditions. For example, at a calibration well, a relationship is established between void 

ratio  (or e.g., porosity, density, resistivity, or velocity) and the vertical effective stress to 

define the compaction trend (Bowers, 1995; Eaton, 1975; Flemings et al., 2002; Hart et 

al., 1995; Long et al., 2011). In the routine application of the VES method, pore pressure 

is then calculated as the difference between the vertical total and effective stresses: 

𝑢 = 𝜎𝑣 − 𝜎𝑣′        (25) 

where σv is the vertical total stress, which is calculated by integrating the weight of the 

water column with the weight of the overlying formation densities: 

𝜎𝑣 = 𝜌𝑖𝑠𝑔𝑍𝑠𝑤 + ∫ 𝜌𝑏𝑔𝑔𝑔
𝑍𝑏𝑠𝑏
𝑍𝑤𝑤

    (26) 

where ρsw is the density of seawater, g is the acceleration of gravity, Zwd is the water 

depth, Zbsf is the depth beneath the seafloor, ρb is the bulk density of the sediments, and z 

is the depth.  

In σ’m:q space (Figure 2.2), uniaxial compaction has a slope ηK0 (equation 17; red 

line in Figure 2.2). For a given field measurement (e.g., porosity or velocity), the mean 

effective stress under uniaxial strain (σm,K0
′ ) can be found from the intersection of the 
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uniaxial compaction line (equation 17; red line in Figure 2.2) and the iso-porosity curve 

(equation 22; black ellipse in Figure 2.2) corresponding to the field measurement: 

𝜎𝑚,𝐾0
′ = 𝜎𝑒′ �

𝑀2

𝑀2+𝜂𝐾0
2�      (27) 

We derive the mean total stress from the vertical total stress (equation 26), the 

mean effective stress under uniaxial strain (equation 27), and the uniaxial effective stress 

ratio (equation 18): 

𝜎𝑚,𝐾0 =  𝜎𝑣 −
2𝜎𝑚,𝐾0

′ (1−𝐾0)

1+2𝐾0
     (28) 

(see Appendix A for full derivation of σm,K0) 

In order to schematically compare the VES method with the MES and FES 

methods, pore pressure (uVES in Figure 2.2) is calculated as the difference between the 

mean total and effective stresses: 

𝑢𝑉𝑉𝑉 = 𝜎𝑚,𝐾0 − 𝜎𝑚,𝐾0
′   (29) 
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Figure 2.2: Schematic showing how pore pressure is calculated for the VES, MES, and 
FES methods. The VES and MES methods obtain mean effective stress 
froma a uniaxial porosity (velocity) vs. mean effective stress relationship. 
Both methods assume a unique relationship between porosity and mean 
effective stress (vertical end-cap (dashed red line)). The FES method obtains 
mean effective stress from porosity and deviatoric (shear) stress acquired 
from a geomechacnial model. The VES method derives the mean total stress 
from the overburden, whereas the MES and FES methods acquire the mean 
total stress from a geomechaincal model. 

2.3.2 Mean Effective Stress (MES) Method 

In locations where the stress state varies, the horizontal stresses are decoupled 

from the vertical (equation 10). Although there are various forms of the MES method 

(Alberty and McLean, 2003; Goulty, 1998; Harrold et al., 1999), the collective 

assumption is that porosity and mean effective stress share a unique relationship 

(poroelasticity theory). This means that the iso-porosity line is vertical in σ’m:q space 

(referred to as vertical end-cap; dashed red line in Figure 2.2). The mean total stress is 
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then modified to account for any non-uniaxial external loading; oftentimes a 

geomechanical model provides an estimate of the mean total stress.   

Here we assume that the unique relationship between velocity and mean effective 

stress is established under uniaxial conditions. Therefore, the mean effective stress in the 

MES method is the same as the mean effective stress in the VES method. Like the VES 

method, we use equation 27 to calculate the mean effective stress for the MES method. 

Graphically, this is the intersection of the uniaxial compaction line (equation 17; red line 

in Figure 2.2) and the iso-porosity surface (equation 22; black ellipse in Figure 2.2). 

The non-uniaxial external loading component is incorporated in the mean total 

stress. Any difference in the mean total stress from its uniaxial value (equation 28) drives 

the predicted pore pressure. Oftentimes, a geomechanical model provides an estimate of 

the mean total stress.  

We calculate MES pore pressure (uMES) as the difference between the mean total 

stress from the geomechanical model (σm,K) and the mean effective stress under uniaxial 

strain (σm,K0
′ ): 

𝑢𝑀𝑉𝑉 = 𝜎𝑚,𝐾 − 𝜎𝑚,𝐾0
′       (30) 

The difference between the VES and MES mean total stress is the difference in 

the predicted pressure (Figure 2.2). 

2.3.3 Full Stress Tensor (FES) Method 

The full stress tensor (FES) method incorporates all stress components into 

pressure prediction by taking into account the non-uniaxial (K) contribution of both the 

mean effective stress and the deviatoric (shear) stress into compression. Hence, the 

fundamental difference between the FES method and the VES/MES methods is that the 

FES method does not assume the relationship between void ratio and mean effective 
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stress is unique; rather, it incorporates the dependence of this relationship on the 

deviatoric (shear) stress. 

The FES method requires a geomechanical model to provide the total stress state: 

deviatoric (shear) stress and mean total stress. We couple the deviatoric (shear) stress 

with the iso-porosity surface (equation 22; Figure 2.2), and subtract the resulting mean 

effective stress (σ’m,K) from the mean total stress obtained from the geomechanical model 

to calculate pore pressure: 

𝑢𝐹𝑉𝑉 = 𝜎𝑚,𝐾 − 𝜎𝑚,𝐾
′       (31) 

MES and FES share the same mean total stress (σm,K), but have a different mean 

effective stress (σm,K0
′  vs. σm,K

′ ). Both the total and effectives stresses are different in 

VES. 

2.4 APPLICATION OF VES, MES, AND FES METHODS 

2.4.1 Data and Methods 

We apply the VES, MES, and FES approaches to predict pore pressure around the 

salt body at the Mad Dog Field (Figure 2.3). We use a combination of seismic, well log, 

and pressure data to characterize the stresses and predict pressure. The data include 

Modular Dynamics Tester (MDT) pore pressure measurements, gamma ray, resistivity, 

sonic velocities acquired during logging-while-drilling (LWD), and mean total and 

deviatoric (shear) stresses acquired from a series of static 2-D plane-strain drained 

geomechanical models (Figure 2.3C). Discovery well 826-1 (Figure 2.3B) outboard the 

Mad Dog salt body is used to develop a predictive relationship. We evaluate our 

prediction results in wells 826-1, 825-1, 826-5, and 782-1 (Figure 2.3B). 
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Figure 2.3: Location, salt thickness, and cross-sectional profiles of the Mad Dog Field, 
Gulf of Mexico. (A) The Mad Dog Field is located approximately 190 mi 
southwest of New Orleans and extends over the Green Canyon. (B) A large-
scale 3D wide-azimuth towed-streamer (WATS) survey is used to define the 
seafloor bathymetry and salt body (seismic data provided by BP and 
Partners). Pore pressure is predicted in four wells: 825-1, 826-1, 826-5, and 
782-1. The smaller red dots mark the surface well locations, and the large 
black dots mark the bottom hole locations. (C) Interpreted cross-sections A-
A’, B-B’, and C-C’ of the salt body (shown in red on B) are used to build 
the geomechanical models.  

2.4.2 Mad Dog Field 

The Mad Dog Field was discovered by BP in 1998. The field is located 

approximately 190 miles southwest of New Orleans (Figure 2.3A). Water depths range 

from 4000 feet to 7000 feet (Merrell, 2012). The major producing reservoir at Mad Dog 

consists of a large north-south trending compressional anticline with early Miocene sands 

interpreted to be turbidite deposits (Dias et al., 2009). The main structural feature is a 

large allochthonous salt body, with the top of the salt approximately 3280 feet below the 
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seafloor. The salt is part of the Sigsbee salt canopy, which comprises the Sigsbee 

Escarpment. 

 

Figure 2.4: Effective stress ratio (K) in sediments around Mad Dog salt along section B-
B’ (Figure3C). The stress ratio is higher than the uniaxial value, K0=0.8: 
K=1 in the minibasin (isotropic stress state) and K>1 in front of the salt, 
indicating elevated horizontal stresses (Heidari et al., in press). 

2.4.3 Geomechanical Model 

Because of loading from the Mad Dog salt body, the stress state is not uniaxial; 

the fraction of horizontal to vertical stress, which is constant in uniaxial basins (K0), 

changes around the salt body. This leads to either an elevation or a reduction in mean 

and/or deviatoric (shear) stress around the salt body. 

We develop static 2D plane-strain drained geomechanical models (Heidari et al., 

in press). These static models use the present-day geometry of salt to provide an estimate 

of the total stresses (mean total stress and deviatoric (shear) stress) around the Mad Dog 

salt body. The geometry of the salt body is defined using seismic data provided by BP & 

Partners (Figure 2.3). The salt is modeled as viscoelastic and the sediments as poro-

elastoplastic material, using MCC (Wood, 1990). Input parameters are calibrated based 

on experimental work on Gulf of Mexico mudrocks (Casey et al., 2015; Casey and 

Germaine, 2013, 2014). A summary of the input parameters for the geomechanical 

models is listed in Table 2. 
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Symbol Description Sediments Salt Units 
ϕ Sediment friction angle 20 - degrees 

λ Slope of elasto-plastic (loading) 
line 0.03 - - 

κ Slope of elastic (unloading) line 0.13 - - 

ρ Density  143.6 137.3 lb/ft3 

v' Poisson's ratio for soil in terms of 
effective stresses  0.46 0.25 - 

E Young's modulus - 4500 ksi 
η Viscosity - 1.4512 ksi 

Table 2.2: List of input parameters for the geomechanical models.  

2.4.4 Assumptions 

In our analyses we make the following assumptions: (1) We assume the material 

behavior of the mudrocks in the Mad Dog field is described by the MCC model and that 

the friction angle (ϕ) of the sediments is constant and equal to 20 degrees. (2) We assume 

elastic deformation is negligible compared to inelastic deformation (κ<<λ), thereby 

replacing equation 21 with equation 22. (3) We assume that velocity is directly related to 

porosity. (4) We assume plane-strain deformation. (5) We assume the sands measured for 

pressure at calibration well 826-1 to be in pressure equilibrium with the bounding 

mudrocks (Flemings et al., 2002; Merrell et al., 2014).  

2.4.5 Calibration 

We calibrate a predictive relationship between mudrock velocity and the 

equivalent effective stress using the equation proposed by Heidari et al. (in press): 

𝑣 = 𝑣0 + 𝐴𝑒(𝜎′𝑒)𝐵𝑒      (32) 

where Ae and Be are lithology-dependent constants calibrated to existing data at well 826-

1. This is based on the assumption that velocity is directly related to porosity (equation 
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5), and that porosity is a function of the equivalent effective stress (equations 2 and 12). 

Thus, equation 32 provides the predictive relationship to link measured mudrock 

velocities to the equivalent effective stress. 

To constrain this predictive relationship between mudrock velocity and the 

equivalent effective stress (equation 32), we first identify the mudrock layers at 

calibration well 826-1 using a combination of gamma-ray and resistivity logs and record 

their sonic velocities. We pick the nearest mudrock velocities above and below each sand 

measured for pressure. We assume the pressure of the bounding mudrocks to be equal to 

the pressure in the sands. At calibration well 826-1, twenty-nine MDT pressure 

measurements acquired during drilling were used and tied to corresponding mudrock 

velocities. 

For each MDT pressure measurement location, we acquire the mean total stress 

and the deviatoric (shear) stress from the geomechanical model. We calculate the mean 

effective stress (σ’m) as the difference between the mean total stress (σm) and the MDT 

pressure measurement (uMDT) (Figure 2.5): 

𝜎′𝑚 = 𝜎𝑚 − 𝑢𝑀𝑀𝑀      (33) 
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Figure 2.5: Calibration well 826-1. Gamma ray, resistivity and sonic logs acquired 
while drilling. Shear stress obtained from the geomechanical model. MDT 
measurements (black dots) and total mean stress, σm (less hydrostatic 
pressure) obtained from the geomechanical model (red line). The mean 
effective stress (σ’m) is calculated as the difference between the mean total 
stress and the MDT pressure measurements. 

We reduce each combination of mean effective stress and deviatoric (shear) stress 

into an equivalent effective stress using equation 22 (Figure 2.6 A, B). This 

transformation removes the effect of deviatoric (shear) stress while allowing the original 

level of compaction to be represented by the equivalent effective stress.  

Lastly, we apply equation 32 to correlate mudrock velocity to the equivalent 

effective stress (Figure 2.6C). We obtain an Ae value of 7.5, a Be value of 0.78, and 

achieve a coefficient of determination (R2) of 0.78 for the line of best fit. This 

relationship enables iso-porosity curves to be generated from the equivalent effective 

stress through equation 22 at any location where a velocity measurement is available. 

Figure 2.6D shows the final iso-porosity curves calibrated to the Mad Dog Field.  
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Figure 2.6: Diagram depicting relationship between velocity (v), original stress state 
(open circles), and equivalent effective stress (filled circles) used to develop 
a predictive relationship. Pressure measurements are acquired at calibration 
well 826-1. A) The mean effective stress-deviatoric (shear) stress 
combination (or original stress state, open circle) is transformed into an 
equivalent effective stress (filled circle) using equation 22 (graphically, the 
intersection of the iso-porosity curve with x-axis, where q = 0). B) The 
process described in (A) is repeated for the remainder of MDT locations 
where pressure measurements allowed for the calculation of mean effective 
stress (Figure 2.5). C) The equivalent effective stress and corresponding 
velocities are cross-correlated using linear regression analysis. D) Velocity 
values corresponding to iso-porosity curves in σ’m:q space; velocity values 
calculated from the equivalent effective stress using equation 32. 
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2.4.6 Prediction 

Having established a predictive relationship for the Mad Dog Field, we next 

demonstrate how to predict pore pressure using the VES, MES, and FES methods. We 

focus on predicting pressure along wells where wireline sonic velocity data is available. 

We first determine the velocities of the mudrock intervals along each well that will be 

used to predict pressure. We manually pick the wireline sonic velocities every 30-40 ft 

using gamma ray and resistivity logs to locate the mudrocks. Once the velocities are 

picked, we apply a smoothing average of 11 samples to reduce any noise or small 

changes in lithology. The smoothed sonic velocities are then used to calculate the 

equivalent effective stress for each point (equation 32; Figure 2.7A). Based on the 

equivalent effective stresses, the iso-porosity surfaces are constructed (equation 22; 

Figure 2.7B); the iso-porosity surfaces provide the framework to predict pore pressure for 

the VES, MES, and FES methods.  

To apply the VES workflow, we first calculate the mean effective stress under 

uniaxial strain from the equivalent stress, using equation 27. The slope ηK0is found as a 

function of the friction angle (equation 17; ϕ=20 deg.). This resulting mean effective 

stress is illustrated in Figure 2.7C as the intersection of the iso-porosity curve with the 

uniaxial compression line (ηK0). We obtain the vertical total stress from equation 26; we 

assume the seawater density to be constant (1.023g/cm3) and acquire the sediment 

densities from the wireline bulk density log. We apply equation 28 to calculate the mean 

total stress with the K0 ratio acquired from equation 18, and use equation 29 to calculate 

the VES pore pressure (uVES). 

To apply the MES workflow, we use the uniaxial compression line (ηK0; equation 

17) to obtain the mean effective stress under uniaxial strain (as in the VES method, 

Figure 2.7C). Both the VES and MES approaches assume that the unique relationship 
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between mean effective stress and velocity is established under uniaxial conditions; 

therefore, they share the same mean effective stress. The mean total stress is acquired 

from the geomechanical model (σm,K), and MES pore pressure (uMES) is calculated from 

equation 30. 

 To apply the FES workflow, we use the geomechanical model to estimate the 

deviatoric (shear) stress and the mean total stress. The mean effective stress (σ’m,K) is 

calculated through equation 22 coupled with the deviatoric (shear) stress. This is 

illustrated in Figure 2.7C as the intersection of the iso-porosity curve with the deviatoric 

(shear) stress acquired from the geomechanical model (qGM). The MES and FES methods 

share the same mean total stress (σm,K). FES pore pressure (uFES) is calculated from 

equation 31.  
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Figure 2.7: Example VES, MES, and FES pore pressures prediction from a single 
velocity measurement. A) The equivalent effective stress (σ’e) is determined 
from the measured velocity using equation 32. B) An iso-porosity curve is 
generated from σ’e (equation 22). C) VES and MES methods: mean 
effective stress (σm,K0

′ ) is obtained from intersection of iso-porosity curve 
and uniaxial compression line (ηK0; equation 17); FES method: mean 
effective stress (σ’m,K) is obtained from intersection of iso-porosity curve 
with deviatoric (shear) stress (qGM) obtained from geomechanical model.  D) 
Mean total stress under uniaxial strain (σm,K0) for VES derived from vertical 
total stress and K0 (equation 28); Mean total stress (σm,K) for MES and FES 
obtained from geomechanical model. Pore pressure is calculated as 
difference between mean total stress and mean effective stress (VES: 
equation 29; MES: equation 30; FES: equation 31). 
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2.5 RESULTS 

We compare the predicted pore pressures from the VES, MES, and FES methods 

against those measured during drilling (MDT) at four wells in the Mad Dog Field. Three 

of the four wells we analyze penetrate the salt body. We quantify the increment of pore 

pressure due to non-K0 mean total stress and deviatoric (shear) stress, and report the 

resulting pore pressures in excess pressure, ue (pore pressure less the hydrostatic 

pressure).  

The increment of pore pressure due to non-K0 stress represents the amount of pore 

pressure induced by mean total stress and deviatoric (shear) stress that are different than 

those proportional to K0 (Figure 2.8). We calculate the increment of pore pressure due to 

non-K0 mean total stress as the difference between the non-uniaxial mean total stress 

(σm,K; obtained from geomechanical model) and the uniaxial mean total stress (σm,K0; 

equation 28): 

𝛥𝑢𝜎𝑚 = 𝜎𝑚_𝐾 − 𝜎𝑚_𝐾𝑖     (34) 

Similarly, we calculate the increment of pore pressure due to non-K0 deviatoric 

(shear) stress as the difference between the uniaxial mean effective stress (σm,K0
′ ; 

equation 27) and the non-uniaxial mean effective stress (σ’m,K; obtained from 

geomechanical model): 

𝛥𝑢𝑞 = 𝜎′𝑚,𝐾0 − 𝜎′𝑚,𝐾      (35) 
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Figure 2.8: Schematic showing how to quantify the increment of pore pressure due to 
non-K0 mean total stress and deviatoric (shear) stress. In this example, 
increment of pore pressure due to non-K0 mean total stress is negative, and 
deviatoric (shear) stress is positive.  
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Pressure Prediction along Calibration Well 826-1 
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Figure 2.9: Calibration well 826-1. A1) True vertical depth subsea (TVDSS). A2) 
Deviatoric (shear) stress from geomechanical model (Shear (K)) and 
proportional to K0 (Shear (K0)). A3) Increment of pore pressure due to 
geomechanical deviatoric (shear) stress greater than K0 deviatoric stress 
(positive Δuq; dark yellow) or lower than K0 (negative Δuq; light yellow) 
A4) Increment of pore pressure due to geomechanical mean total stress 
greater than K0 (positive Δuσm; dark purple) or lower than K0 (negative 
Δuσm; light purple); A5) Stress and pressure less hydrostatic value, uh: 
vertical total stress (σv; solid black line), mean total stress from 
geomechanical model (σm,K; solid red line), mean total stress proportional to 
K0 (σm,K0; dashed red line), MDT pressure measurements (black dots); pore 
pressures predicted by the FES (orange dots), MES (green dots) and VES 
approach (gray dots). B) Contours of deviatoric (shear) stresses from 
geomechanical model along section B-B’ (Figure 2.3). C) Contours of mean 
total stresses from geomechanical model along section B-B’ (Figure 2.3). 
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We first explore the predicted mudrock pore pressures at calibration well 826-1 

using the VES, MES, and FES approaches (Figure 2.9). Well 826-1 was drilled in front 

of the salt body in 6,734 ft of water. Above 9,000 ft TVDSS, all three methods predict 

pressure near or below the hydrostatic gradient. The negative pressures are the result of a 

poorly constrained velocity – effective stress relationship in the shallow depths where no 

MDT measurements were available for calibration purposes. 

From 9,500-15,000 ft TVDSS, the VES and MES methods predict nearly equal 

pressures (gray vs. green dots in Figure 2.9A5). This is because the geomechanical model 

is indicating the mean total stress is nearly uniaxial (K0) (solid red line vs. dashed red line 

in Figure 2.9A5); thus, the increment of pore pressure due to non-K0 mean total stress is 

negligible (Figure 2.9A4). However, the FES method is predicting higher pressures than 

VES and MES. This is because the geomechanical model is indicating an elevation in 

deviatoric (shear) stress (solid line vs. dashed line in Figure 2.9A2). Thus, the increment 

of pore pressure due to non-K0 deviatoric (shear) stress is positive (Figure 2.9A3). This 

positive increment of pressure drives the FES pore pressure up relative to the VES and 

MES methods, which are unable to account for the increase in non-K0 deviatoric (shear) 

stress. On average, the FES method is predicting pressures 235 psi (~0.38 ppg) higher 

than the MES and VES methods, and is more closely matching the measured (MDT) 

pressures. 

Along the long the interval 15,000-18,000 ft TVDSS, the increment of pore 

pressure due to non-K0 mean total stress is negative, which is driving the MES and FES 

pressures down relative to VES, and the increment of pore pressure due to non-K0 

deviatoric (shear) stress is positive, which is driving the FES pressure up relative to the 

VES and MES methods. Accordingly, the FES method predicts pressure considerably 

below the VES method and slightly higher than the MES method.  
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From 18,000 ft TVDSS to the bottom of the well, the increment of pore pressure 

due to non-K0 mean total stress is negative, whereas the increment of pre pressure due to 

non-K0 deviatoric (shear) stress is minor. Hence, the MES and FES methods predict 

similar pressures, which are significantly lower than those predicted by the VES method 

by an average of 650 psi (~0.65 ppg).  

For the majority of the well, the FES method predicts pressures that closely match 

those measured by the MDT tool (black dots in Figure 2.9A5). This is because well 826-1 

was used to calibrate a predictive relationship for the FES method, and extrapolated to 

predict pressures for the VES and MES methods. 
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Pressure Prediction along Well 825-1 
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Figure 2.10: Well 825-1 results. A1) True vertical depth subsea (TVDSS). A2) 
Deviatoric (shear) stress from geomechanical model (Shear (K)) and 
proportional to K0 (Shear (K0)). A3) Increment of pore pressure due to 
geomechanical deviatoric (shear) stress greater than K0 deviatoric stress 
(positive Δuq; dark yellow) or lower than K0 (negative Δuq; light yellow) 
A4) Increment of pore pressure due to geomechanical mean total stress 
greater than K0 (positive Δuσm; dark purple) or lower than K0 (negative 
Δuσm; light purple); A5) Stress and pressure less hydrostatic value, uh: 
vertical total stress (σv; solid black line), mean total stress from 
geomechanical model (σm,K; solid red line), mean total stress proportional to 
K0 (σm,K0; dashed red line), MDT pressure measurements (black dots); pore 
pressures predicted by the FES (orange dots), MES (green dots) and VES 
approach (gray dots). B) Contours of deviatoric (shear) stresses from 
geomechanical model along section A-A’ (Figure 2.3). C) Contours of mean 
total stresses from geomechanical model along section A-A’ (Figure 2.3). 
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We next study well 825-1 (Figure 2.10), which was drilled in 5,014 ft of water 

and penetrates 2,585 ft of salt. The base of the salt is located at a depth of 9,795 ft 

TVDSS. There is no record of pressure measurements in the upper section below the salt.  

For the majority of the well, the geomechanical model is indicating that both the 

mean total stress (Figure 2.10A5) and the deviatoric (shear) stress (Figure 2.10A2) are 

elevated relative to K0. Thus, the increment of pore pressure due to non-K0 mean total 

stress (Figure 2.10A4) and non-K0 deviatoric (shear) stress are positive (Figure 2.10A3). 

As a result, the MES predicts higher pressures than the VES (green vs. gray dots in 

Figure 2.10A5), and the FES predicts higher pressures than both the VES and MES 

(orange vs. gray. vs. green dots in Figure 2.10A5). 

From 16,000-18,000 ft TVDSS, the increment of pore pressure due to non-K0 

mean total stress is minor, whereas the increment of pore pressure due to non-K0 

deviatoric (shear) stress is positive, reaching a maximum value of nearly 500 psi. This 

results in FES predicting higher pressures than both the VES and MES methods. 

For the remainder of the well, the stress conditions are largely K0. Therefore, all 

three methods predict similar results. However, from 17,000-19,500 ft TVDSS, all three 

methods predict substantially higher pressures than those measured (black dots in Figure 

2.10A5). 
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Pressure Prediction along Well 826-5 
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Figure 2.11: Well 826-5 results. A1) True vertical depth subsea (TVDSS). A2) 
Deviatoric (shear) stress from geomechanical model (Shear (K)) and 
proportional to K0 (Shear (K0)). A3) Increment of pore pressure due to 
geomechanical deviatoric (shear) stress greater than K0 deviatoric stress 
(positive Δuq; dark yellow) or lower than K0 (negative Δuq; light yellow) 
A4) Increment of pore pressure due to geomechanical mean total stress 
greater than K0 (positive Δuσm; dark purple) or lower than K0 (negative 
Δuσm; light purple); A5) Stress and pressure less hydrostatic value, uh: 
vertical total stress (σv; solid black line), mean total stress from 
geomechanical model (σm,K; solid red line), mean total stress proportional to 
K0 (σm,K0; dashed red line), MDT pressure measurements (black dots); pore 
pressures predicted by the FES (orange dots), MES (green dots) and VES 
approach (gray dots). B) Contours of deviatoric (shear) stresses from 
geomechanical model along section A-A’ (Figure 2.3). C) Contours of mean 
total stresses from geomechanical model along section A-A’ (Figure 2.3). 
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Well 826-5 (Figure 2.11) was drilled in 5,092 ft of water and penetrates 2,711 ft 

of salt. There are no available pressure measurements for the upper subsalt section.  

For the majority of the well both the MES and FES predicted nearly equal pore 

pressures, which are lower than those predicted by the VES method (green vs. orange vs. 

gray dots in Figure 2.11A5). This is because the geomechanical model is indicating that 

the mean total stress is lower than uniaxial (K0) (solid red line vs. dashed red line in 

Figure 2.11A5), and the deviatoric (shear) stress is similar to uniaxial (K0) (solid line vs. 

dashed line in Figure 2.11A2). Therefore, the increment of pore pressure due to non-K0 

mean total stress is negative (Figure 2.11A4), and the increment of pore pressure due to 

non-K0 deviatoric (shear) stress is minor (Figure 2.11A3).  

From 17,500-18,000 ft TVDSS, the MES and FES methods predict pressures that 

match those measured (black dots in Figure 2.11A3). However, for the remained of the 

well where MDT pressure measurements are available, all three methods predict 

pressures significantly higher than those measured.  
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Pressure Prediction along Well 782-1 
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Figure 2.12: Well 782-1 results. A1) True vertical depth subsea (TVDSS). A2) 
Deviatoric (shear) stress from geomechanical model (Shear (K)) and 
proportional to K0 (Shear (K0)). A3) Increment of pore pressure due to 
geomechanical deviatoric (shear) stress greater than K0 deviatoric stress 
(positive Δuq; dark yellow) or lower than K0 (negative Δuq; light yellow) 
A4) Increment of pore pressure due to geomechanical mean total stress 
greater than K0 (positive Δuσm; dark purple) or lower than K0 (negative 
Δuσm; light purple); A5) Stress and pressure less hydrostatic value, uh: 
vertical total stress (σv; solid black line), mean total stress from 
geomechanical model (σm,K; solid red line), mean total stress proportional to 
K0 (σm,K0; dashed red line), MDT pressure measurements (black dots); pore 
pressures predicted by the FES (orange dots), MES (green dots) and VES 
approach (gray dots). B) Contours of deviatoric (shear) stresses from 
geomechanical model along section C-C’ (Figure 2.3). C) Contours of mean 
total stresses from geomechanical model along section C-C’ (Figure 2.3). 
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Lastly, well 782-1 (Figure 2.12) was drilled in 4,423 ft of water and penetrates a 

salt thickness of 5,000 ft, which is nearly double the thickness of salt any other well 

penetrates in this study.  

For the entirety of the well below the salt, the geomechanical model is indicating 

that the mean total stress is markedly lower than K0 (solid red line vs. dashed red line in 

Figure 2.12A5), whereas the deviatoric (shear) stress is markedly higher than K0 (solid 

line vs. dashed line in Figure 2.12A2). Hence, the increment of pore pressure due to non-

K0 mean total stress is negative (Figure 2.12A4), and the increment of pore pressure due 

to non-K0 deviatoric (shear) stress is positive (Figure 2.12A3). These induced pressures 

created a wide difference in predicted pressures by the VES, MES and FES methods 

(gray vs. green vs. orange dots in Figure 2.12A3). 

Within the first 300 ft directly below the salt, the FES method predicts pressures 

that match those measured, whereas the VES and MES methods predict pressures that are 

lower (black dots in Figure 2.12A5). At ~16,600 ft TVDSS, there is one MDT 

measurement that matches the MES pressure; however, there are three other MDT 

measurements that the VES and FES methods more closely match. For the remainder of 

the well, both the VES and FES methods consistently predict pressures higher than those 

measured, whereas the lower pressures predicted by the MES method are closer to those 

measured. 

2.6 DISCUSSION 

The contribution of mean and deviatoric (shear) stress is fundamentally important 

to the development of overpressure. At the Mad Dog Field, the stress state varies locally; 

therefore, the mean effective stress and deviatoric (shear) stress are not proportional to 

K0. Our study provides an approach to evaluate the margin of error if the traditional VES 

or MES approaches are applied through the calculation of non-K0 mean total tress and 
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deviatoric (shear) stress. The VES method assumes uniaxial stress conditions; therefore, 

any deviation from the K0 stress state will be reflected in the increment of pore pressure 

due to non-K0 mean total stress and deviatoric (shear) stress. The MES method assumes a 

unique relationship between porosity and mean effective stress that is independent of the 

deviatoric (shear) stress. Nevertheless, the MES method accounts for any non-K0 loading 

through the modification of the mean total stress using a geomechanical model; therefore, 

any deviation from the K0 stress state will be reflected in the increment of pore pressure 

due to non-K0 deviatoric (shear) stress. 

 The non-K0 contribution of mean and deviatoric (shear) stress in the development 

of pore pressure is best illustrated directly below the salt in well 782-1 (Figure 2.12). The 

available MDT pressure measurements provide a unique opportunity to compare the 

predicted pressures against those observed. At the base of the salt, the geomechanical 

model indicates that the increment of pore pressure due to non-K0 mean total stress is 

minor (Figure 2.12A4), whereas the deviatoric (shear) stress is significant (Figure 

2.12A3). As a result, both the VES and MES underpredict pressure by as much as 1,000 

psi; in contrast, pore pressures predicted by the FES method closely match the observed 

pressures. This is important, because drilling through the base of salt is a hazardous and 

expensive challenge (Sweatman et al., 1999). In fact, a report in 2006 found that nearly 

half of the wells in the deepwater Gulf of Mexico have experienced problems exiting the 

base of salt (Viceer et al., 2006). By capturing the non-K0 increase in deviatoric (shear) 

stress below salt, the FES method improves pore pressure prediction.  

The importance of incorporating the effect of deviatoric (shear) stress in pore 

pressure prediction is illustrated along a “hypothetical” well in front of the Mad Dog salt 

body (Figure 2.13), where elevated horizontal stresses (Figure 2.4) result in high 

deviatoric (shear) stress (Figure 2.13B). Along this well, the geomechanical mean total 
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stress (solid red line in Figure 2.13A5) is lower than the uniaxial one (dashed red line in 

Figure 2.13A5); however, the geomechanical deviatoric (shear) stress is higher than K0 

(Figure 2.13A3). As a result, the VES method overpredicts pressure by 1.4 ppg compared 

to the FES method (gray vs. orange dots in Figure 2.13A5). This presents a serious threat 

to drilling operators who must maintain an appropriate mud weight window to avoid 

dangerous blowouts or, in this case, prevent fracturing the formation and losing mud 

(Bruce and Bowers, 2002). 
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Figure 2.13: Hypothetical well in front of salt body, in area of elevated deviatoric (shear) 
stress (Figure 2.4). A1) True vertical depth subsea (TVDSS). A2) Deviatoric 
(shear) stress from geomechanical model (Shear (K)) and proportional to K0 
(Shear (K0)). A3) Increment of pore pressure due to geomechanical 
deviatoric (shear) stress greater than K0 deviatoric stress (positive Δuq; dark 
yellow) or lower than K0 (negative Δuq; light yellow) A4) Increment of pore 
pressure due to geomechanical mean total stress greater than K0 (positive 
Δuσm; dark purple) or lower than K0 (negative Δuσm; light purple); A5) 
Stress and pressure less hydrostatic value, uh: vertical total stress (σv; solid 
black line), mean total stress from geomechanical model (σm,K; solid red 
line), mean total stress proportional to K0 (σm,K0; dashed red line), MDT 
pressure measurements (black dots); pore pressures predicted by the FES 
(orange dots), MES (green dots) and VES approach (gray dots). B) Contours 
of deviatoric (shear) stresses from geomechanical model along section B-B’ 
(Figure 2.3). C) Contours of mean total stresses from geomechanical model 
along section B-B’ (Figure 2.3). 
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Despite the fact that the FES method accounts for the independent contribution of 

both mean and deviatoric (shear) stress to pore pressure, there still remain intervals where 

the predicted pressures do not match those observed. We propose three reasons for these 

potential discrepancies, which we believe to be most significant: (1) calibration 

limitations; (2) stress dependency; and (3) centroid effects. 

 First, the success of the FES pressure prediction method declines in sections that 

are farther away from the calibration well. Changes in lithology will result in a different 

relationship between velocity and equivalent effective stress than the one we used (Figure 

2.6C). Although we only used well 826-1 for calibration purposes, an alternative would 

be to incorporate the MDT pressure measurements available at every well to calibrate a 

more robust relationship between velocity and the equivalent effective stress. 

Second, we assume the friction angle throughout our field to be constant. In their 

study of resedimented Gulf of Mexico mudrock, Casey et al. (2016) document that the 

friction angle can decrease by a factor of 4 over stresses ranging from 1-10,000 psi. This 

variation is significant and suggests our results may be more accurate if we were to 

account for a friction angle that changes with stress. A future approach would be to 

incorporate a friction angle dependent of the stresses into the MCC to determine its effect 

on pore pressure prediction. 

 A third reason for the discrepancy between those measured (MDT) and those 

predicted could be due to centroid effects. Pore pressure prediction is carried out on 

mudrocks because they provide consistent indicators of fluid pressures (Athy, 1930; 

Dutta, 2002), whereas MDT pressure measurements are carried out on sands because of 

their high permeability. Interpreting differences in predicted mudrock pressures and 

measured sand pressures is a common challenge in pressure analysis; such differences do 

not necessarily reflect a deficiency in the pore pressure prediction model. 
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 The pressures within a rotated sand body will follow the hydrostatic gradient, 

whereas the pressures of the bounding mudrocks will approximately follow the lithostatic 

pressure gradient (Flemings and Lupa, 2004; Flemings et al., 2002; Stump et al., 1998). 

Depending on the degree of rotation, the pressures at the peak of a rotated sand body can 

be significantly greater than the bounding mudrock, and the pressures at the base can be 

significantly lower (Flemings et al., 2002).  

The geologic cross section in Figure 2.14 illustrates the overall structural 

geometry of the Mad Dog Field. The structure is primarily horizontal far field where the 

calibration well 826-1 is located. Therefore, we remain confident in our assumption that 

the pressures measured in the permeable sands are equal to the bounding mudrocks and 

are appropriate for calibration purposes at this location. Directly below the salt, however, 

there is indication of structural disturbance. This suggest there may be rotation of the 

sand bodies in the wells that penetrate the salt (wells 825-1, 826-5, and 782-1), and may 

provide a reasonable defense for the pressures differences due to centroid effects. 

 

Figure 2.14: Geologic cross section of Mad Dog Field. Figure modified from Merrell et 
al. (2014). 
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2.7 CONCLUSIONS 

We present an improved (FES) method to predict pore pressure in complex stress 

settings and analyze our results against the VES and MES methods at the Mad Dog Field. 

We show the following: 

1. Compaction and, therefore, pore pressure is driven by a combination of mean and 

deviatoric (shear) stresses. 

2. Geomechanical modeling coupled with velocities improves prediction of pore 

pressures. 

3. The FES method accounts for any stress state and significantly improves upon the 

traditional VES method, which is limited to uniaxial stress states, and the MES 

method, which neglects to account for local variations of deviatoric (shear) stress. 

A workflow that can account for any stress state is especially important directly 

below and to the sides of salt where the majority of drilling problems occur, 

because the variations in deviatoric (shear) stress and mean total stress result in a 

stress state considerably different than the stress conditions at far-field calibration 

wells. 

4. At the Mad Dog wells we studied, the increment of pore pressure due to non-K0 

total mean stress can reach up to1.5 ppg (Figure 2.13A4). Similarly, the increment 

of pore pressure due to non-K0 deviatoric (shear) stress can reach up to 1 ppg 

(Figure 2.12A3) 
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Chapter 3:  UT-FAST-P3 GeoFluids Software 

ABSTRACT 

I have developed the University of Texas Full Application of Stress Tensor to 

Predict Pore Pressure (UT-FAST-P3) software as learning tool to illustrate how pore 

pressure and stress interact in non-uniaxial settings. I present pore pressure prediction 

concepts based on the vertical effective stress (VES) method, the mean effective stress 

(MES) method, and the full stress tensor (FES) method. I employ the Modified Cam Clay 

model to link volumetric deformation to mean and deviatoric (shear) stress. I designed 

the program to be calibrated from a (i) power-law relationship between velocity and 

vertical effective stress under uniaxial strain conditions and (ii) a frictional strength 

value; stress conditions are changed through the effective stress ratio when predicting 

pore pressure. I communicate the results in a velocity vs. mean effective stress plot and a 

mean stress vs. deviatoric (shear) stress plot. Overall, I built the program to explicitly 

show how various stress states can correspond to a single measured velocity, and to 

provide insight into the contribution of mean and deviatoric (shear) stress to compression 

and pore pressure development.  

3.1 INTRODUCTION 

 The University of Texas Full Application of Stress Tensor to Predict Pore 

Pressure (UT-FAST-P3) is a MATLAB-based pore pressure prediction software. The 

software calculates pore pressure from velocity using the vertical effective stress (VES) 

approach, the mean effective stress (MES) approach, and the full stress tensor (FES) 

approach, and allows for a side-by-side comparison of each method. The software 

outputs: 

• Compaction curves in velocity vs. mean effective space for difference stress states 

(isotropic, critical state, uniaxial (K0), and any stress ratio, K) 
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• Mean total and effective stresses 

• Pore pressures 

• Variation of pore pressures as a function of effective stress ratio (ranging from 

extensional failure to compressional failure) 

The user calibrates the software with i) a power-law relationship between velocity 

and vertical effective stress (Bowers, 1995) under uniaxial strain conditions, and ii) a 

frictional strength value (ϕ). The user then enters a measured velocity and overburden 

value, as well as an effective stress ratio (K) at the target location to predict pore 

pressure. The program is designed to allow users to explore the influence of mean and 

deviatoric (shear) stress on predicted pore pressure for the three approaches by changing 

the effective stress ratio at the target location. The program illustrates how various stress 

states can correspond to a single measured velocity, and allows the user to examine the 

relative contributions of mean and deviatoric (shear) stresses to pore pressure for a range 

of effective stress ratios (K). 

 In this chapter I first present the assumptions, the material model, and the 

equations to predict pore pressure; I then present three simulations to demonstrate how 

the three methods predict different pressures based on a single velocity when stress 

conditions are varied; I conclude by discussing the differences between the three 

methods. 

3.2 MATERIAL MODEL SET-UP AND ASSUMPTIONS 

1. I assume the vertical stress is principal, and the two horizontal stresses are equal 

(σ’H=σ’h; triaxial conditions). 

2. I assume the friction angle is constant (model input value). 

3. I assume the material stress-strain behavior is described by the Modified Cam 

Clay (MCC) model (Wood, 1990). This is a model from the family of critical state 



 55 

soil mechanics that accounts for the contribution of both mean and deviatoric 

(shear) stress to compression and pore pressure generation. Under triaxial 

conditions, the mean effective stress (σ’m) is defined as: 

𝜎𝑚′ = 𝜎𝑣′+2𝜎ℎ
′

3
       (1) 

and the deviatoric (shear) stress (q) as: 

𝑞 = 𝜎𝑣′ − 𝜎ℎ′        (2) 

The MCC model describes the material stress-strain behavior of each stress state 

in void ratio vs. mean effective stress (e:σ’m) space and mean effective stress vs. 

deviatoric (shear) stress (σ’m:q) space. The isotropic stress state represents a 

loading condition where all principal stress components are equal and, 

consequently, the deviatoric (shear) stress (equation 2) is zero. The critical stress 

state defines the limiting strength of a material; a material subjected to stresses at 

critical state will experience failure. The uniaxial stress state represents a loading 

condition where deformation is vertical (zero lateral strain) and the ratio of 

horizontal to vertical effective stress (K0) is constant: 
𝐾0 = 𝜎ℎ

′

𝜎𝑣′
       (3) 

(K0 is assumed to be less than 1). Any other stress state is defined by the ratio of 

horizontal to vertical effective stress (K): 
𝐾 = 𝜎ℎ

′

𝜎𝑣′
        (4) 

In e:σ’m space (Figure 3.B), a given stress state with constant stress ratio (K) 

corresponds to a unique compression curve described by: 

𝑒 = 𝑛
1−𝑛

= 𝑒𝜆 − 𝜆ln (𝜎𝑚′ )     (5) 

where n is porosity, e is the void ratio, eλ is the intercept at unit mean effective 

stress, and λ is the slope. The parameter  eλ depends on the stress state (stress 
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ratio, K). The void ratio is a measurement of the pore volume, and is related to 

porosity. The general equation for the unloading (elastic) path is given by: 

𝑒 = 𝑛
1−𝑛

= 𝑒𝜅 − 𝜅ln (𝜎𝑚′ )     (6) 

where eκ is the intercept at unit mean effective stress, and κ is the slope. The 

loading and unloading paths are linear in e:ln(σ’m) space, and curved in e:σ’m 

space (Figure 3.B). 

In σ’m:q space (Figure 3.A), compression with a constant stress ratio (equation 4) 

is represented with a line, the slope of which is defined by the ratio of deviatoric 

(shear) stress to mean effective stress: 
𝜂 = 𝑞

𝜎𝑚′
        (7) 

For the isotropic stress state, η=0. For the critical stress state, η=M; the slope M is 

a function of the friction angle (ϕ): above the x axis (K<1), M=MExt.: 
𝑀𝑉𝑥𝑡. = 6𝑖𝑖𝑛𝑠

3−𝑖𝑖𝑛𝑠
      (8) 

Below the x axis (K>1), M=MComp.: 
𝑀𝐶𝑖𝑚𝐶. = − 6𝑖𝑖𝑛𝑠

3+𝑖𝑖𝑛𝑠
      (9) 

For the uniaxial stress state, η=ηK0; according to the MCC model, ηK0is expressed 

as: 
𝜂𝐾0�1+𝑣

′�(1−𝛬)
3(1−2𝑣′)

+
3𝜂𝐾0𝛬

𝑀𝐸𝐸𝐸.
2−𝜂𝐾0

2 = 1    (10) 

where v’ is Poisson’s ratio for soil in terms of effective stresses, and Λ=(λ-κ)/λ. 

For any other stress state, η=ηK; the slope ηK is a function of the effective stress 

ratio (K; equation 4): 

𝜂𝐾 = 3(1−𝐾)
1+2𝐾

       (11) 
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Figure 3.1:  Volumetric responses of a material for various stress state: isotropic (Iso.), 
critical state (C.s.), uniaxial (K0), and arbitrary (K). A) In mean effective 
stress vs. deviatoric (shear) stress (σ’m:q) space, yield surface (Y.s.; dashed 
blue) describes elasto-plastic behavior of material. Iso-porosity surface (iso-
n; solid blue) captures relationship between mean effective stress and 
deviatoric (shear) stress for given porosity. B) In mean effective stress vs. 
void ratio (σ’m:e) space, compression curves capture relationship between 
porosity and mean effective stress for different stress states. 

In σ’m:q space, the yield surface (elastoplastic behavior) is described as: 
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𝜎𝑚′

𝜎𝑒′
= 𝑀2

𝑀2+𝜂2
       (12) 

where σ’e is the equivalent effective stress (controls the size of the yield surface). 

The equivalent effective stress represents a uniform stress state (no shear) and is 

found at the intersection of the yield surface with the isotropic axis (Figure 3.A). 

Stress states corresponding to the same porosity form an iso-porosity surface 

(turquoise curve in Figure 3.A) with equation: 
𝜎𝑚′

𝜎𝑒′
= � 𝑀2

𝑀2+𝜂2
�
𝜆−𝜅
𝜆       (13) 

4. I assume that the elastic deformation is negligible relative to the plastic 

deformation (i.e., κ<<λ). As a result, equation 10 simplifies to: 

𝜂𝐾0 =
−3+�9+4� 6𝑠𝑠𝑠𝑠3−𝑠𝑠𝑠𝑠�

2

2
  (14) 

equation 3 becomes a function of the friction angle: 
𝐾0 = 𝜎ℎ

′

𝜎𝑣′
=

3−𝜂𝐾0
3+2𝜂𝐾0

      (15) 

and equation 13 simplifies to: 
𝜎𝑚′

𝜎𝑒′
= 𝑀2

𝑀2+𝜂2
       (16) 

 The iso-porosity surface provided by equation 16 plots as an elliptical curve and 

coincides with the yield surface (red curve in Figure 3.A). The critical state line 

(M) intersects the iso-porosity curve at the crest of the ellipse (the point where the 

maximum value of deviatoric (shear) stress is attained). 

5. I assume a power-law relationship between velocity and vertical effective stress 

under uniaxial strain (Bowers, 1995): 

𝑣 = 𝑣0 + 𝐴𝜎𝑣′
𝐵      (17) 

where v0 is the velocity of seawater, and A and B are fitting parameters (v0, A, 

and B are model input parameters). Because this relationship is assumed to be 
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established under uniaxial strain, the vertical effective stress can be expressed as a 

function of the mean effective stress under uniaxial strain (σm,K0
′ ) by combining 

equation 1 with equation 15: 

𝜎𝑣′ =
3𝜎𝑚,𝐾0

′

(1+2𝐾0)
       (18) 

I then relate velocity to the mean effective stress under uniaxial strain by 

combining equation 17 with equation 18: 

𝑣 = 𝑣0 + 𝐴 �
3𝜎𝑚,𝐾0

′

1+2𝐾0
�
𝐵

      (19) 

In velocity vs. σ’m space, this is the uniaxial compression curve (Figure 3.2B). 

Furthermore, any point along the uniaxial compression line (ηK0; Figure 3.2B) in 

σ’m:q space can be linked to a velocity value through equation 19. 

6. I assume a 1:1 relationship between porosity and velocity. This enables iso-

porosity surfaces (equation 16) to be linked to a measured velocity value through 

equation 19. For any given velocity, I anchor the shape of the MCC iso-porosity 

surface (equation 16) to the mean effective stress along the uniaxial compression 

line (equation 19). This is illustrated in Figure 3.2C. This iso-porosity surface 

enables me to link the corresponding velocity to the mean effective stress for the 

isotropic stress state, critical stress state, and any stress state in between defined 

by K (Figure 3.2D). 

7. I assume that the vertical total stress (overburden) is known (model input value) 
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Figure 3.2:  Generation of iso-porosity curve. A) The velocity – vertical effective stress 
relationship (equation 17) is mapped to velocity – mean effective stress 
assuming uniaxial strain (equation 19). B) Velocity is related to any mean 
effective stress along the uniaxial compression line C) Shape of iso-porosity 
surface (equation 13) is anchored to the mean effective stress along the 
uniaxial (K0) compression line calculated from velocity. D) The iso-porosity 
(iso-velocity) line is used to relate velocity to mean effective stress for the 
isotropic stress state, critical stress state and any stress state in between (K). 
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3.3 DISPLAY OF RESULTS IN MEAN EFFECTIVE STRESS – DEVIATORIC (SHEAR) STRESS 

SPACE 

 I define deformation in terms of geological conditions: an effective stress ratio (K; 

equation 4) less than 1 represents extensional loading; a K ratio equal to 1 represents 

isotropic (uniform) loading; K greater than 1 represents compressional loading. K 

increases non-linearly from extensional failure to compressional failure. This is 

illustrated in Figure 3.3 by the colored contours and the loading cartoons. The warmer 

colored contours represent K ratios with higher levels of deviatoric (shear) stress; the 

cooler colored contours represent K ratios with lower levels of deviatoric (shear) stress. 

The loading cartoons represent the different stress states. From extensional failure (top) 

to compressional failure, the vertical stress is held constant while the horizontal stresses 

are increased.  



 63 

 

Figure 3.3:  Radial compression curves corresponding to effective stress ratio (K) 
varying from extensional to compressional failure. The region above the x-
axis represents extensional loading in terms of geological conditions; the 
region below the y-axis represents compressional loading in terms of 
geological conditions. In this example, ϕ=30 deg. The slope of M in the 
extensional region is defined by equation 8; the slope of M in the 
compressional region is defined by equation 9. The loading cartoons 
illustrate the effective stress ratio from extensional failure (top), to uniaxial 
compression (K0), to isostatic compression (iso.), to compressional failure 
(bottom). For each of the stress states, the vertical stress is held constant 
while the horizontal stress is changed.  
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3.4 LIST OF INPUTS 

 The following list contains the inputs to calibrate the material model and predict 

pore pressure (Figure 3.4). 

• Velocity model fitting parameter (A) 

• Velocity model fitting parameter (B) 

• Water velocity (v0) 

• Friction angle (ϕ) 

• Expected effective stress ratio (Kexp.) 

• Minimum effective stress ratio (Kmin.) 

• Maximum effective stress ratio (Kmax.) 

• Velocity (v) 

• Vertical total stress or overburden (σv) 

• True vertical depth (TVD; for plotting purposes) 
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Figure 3.4:  Default inputs for UT-FAST-P3 software found on home page (Link). 

3.5 MATERIAL MODEL CALIBRATION 

Fitting parameters A and B, a water velocity (v0), and a friction angle (ϕ) are 

entered into the program (Figure 3.4) to calibrate the material model. A and B are 

typically determined at a calibration well through a least square fit approach of velocity 

versus vertical effective stress (Merrell et al., 2014). 

The friction angle is used to calculate the uniaxial effective stress ratio (K0; 

equation 15). The K0 ratio is used to map the vertical effective stress to mean effective 

stress (equation 18); this enables the relationship between velocity and vertical effective 

stress (equation 17) to be mapped to velocity and mean effective stress under uniaxial 

strain (equation 19). In v:σ’m space, this is the uniaxial compression curve (Figure 3.2A). 

http://www-udc.ig.utexas.edu/geofluids/g4/software.php


 66 

In σ’m:q space, this allows velocity values to be linked to stress states along the uniaxial 

compression line (ηK0; Figure 3.2B).  

With the material model calibrated, an iso-porosity surface can be generated from 

any given velocity. The velocity provides a mean effective stress along the uniaxial 

compression line (equation 19), and the resulting mean effective stress is then used as an 

anchor point to attach the shape of the iso-porosity surface (equation 16). 

To predict pore pressure for the VES, MES, and FES methods, an effective stress 

ratio (K=Kexp.), velocity (v), vertical total stress (σv), and depth (TVD) are entered into 

the program (Figure 3.4).  

3.6 PORE PRESSURE FROM VES METHOD 

The VES method (Figure 3.5) is grounded on the assumption that the stress state 

is uniaxial; therefore, there is a direct link between the vertical effective stress and 

compression because all of the stress components (mean effective stress and deviatoric 

(shear) stress) are proportional to the vertical effective stress.  

In practice, the VES method uses only the vertical stresses to calculate pore 

pressure. The vertical effective stress is obtained from the velocity vs. vertical effective 

stress relationship (equation 17), and the pore pressure is calculated as the difference 

between the vertical total stress and the vertical effective stress. However, because I 

display the results on in σ’m:q space, I map the vertical stresses to mean stresses to 

calculate pore pressure. 

The velocity input (Figure 3.4) is used to calculate the mean effective stress under 

uniaxial strain (equation 19). Graphically, the mean effective stress under uniaxial strain 

is located along the uniaxial compression line in σ’m:q space (ηK0; equation 14; Figure 

3.5B).  
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The vertical total stress (model input) is coupled with the uniaxial effective stress 

ratio (equation 15) and the mean effective stress under uniaxial strain (equation 18) to 

calculate the mean total stress under uniaxial strain (σm,K0): 

 

𝜎𝑚,𝐾0 =  𝜎𝑣 −
2𝜎𝑚,𝐾0

′ (1−𝐾0)

1+2𝐾0
     (20) 

 The VES pore pressure (uVES) is calculated as the difference between the mean 

total stress under uniaxial strain (σm,K0) and the mean effective stress under uniaxial 

strain (σ′m,K0): 

𝑢𝑉𝑉𝑉 = 𝜎𝑚,𝐾0 − 𝜎′𝑚,𝐾0     (21) 

A key assumption of the VES method is that deformation is uniaxial (only in the 

vertical direction). Because the uniaxial effective stress ratio (K0) is used to calculate the 

mean effective stress directly from velocity (equation 19), the compaction trend is 

defined by a 1:1 relationship between velocity and mean effective stress, and is 

independent of the deviatoric (shear) stress. 
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Figure 3.5:  Pore pressure and stress prediction based on VES method (diamond). 
Results shown use default input parameters (Figure 3.4). A) Compression 
curves for isotropic stress state (black dash-dot curve), uniaxial stress state 
(gray dashed curve), and critical state state (black dashed curve). B) 
Compression lines for the isotropic stress state (x-axis), uniaxial stress state 
(dashed gray line), and critical stress state (black line); pore pressure is the 
difference between mean total and effective stress (uVES; gray arrow). C) 
Mean total stress. 
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3.7 PORE PRESSURE FROM MES METHOD 

 The Mean Effective Stress (MES) method (Figure 3.6) predicts pore pressure 

based on the poroelasticity theory. According to the poroelasticity theory, changes in 

porosity depend on the mean effective stress (Goulty, 1998; Harrold et al., 1999). 

Therefore, the MES method assumes the compaction trend is defined by a unique 1:1 

relationship between velocity (assuming porosity maps 1:1 with velocity) and mean 

effective stress (equation 19). This relationship is usually calibrated assuming uniaxial 

conditions. This unique relationship means that an iso-porosity line is vertical in the mean 

effective stress vs. deviatoric (shear) stress space (often referred to as vertical end-cap; 

dashed red line in Figure 3.6B). Therefore, the VES and MES methods share the same 

mean effective stress, which is obtained from velocity (σ′m,K0; equation 19; Figure 3.6B).  

The MES method, however, allows the user to apply a correction to account for a 

stress state that may be different than the one used to calibrate the K0 velocity model. 

This is achieved through the user-defined effective stress ratio (K; Figure 3.4). The mean 

total stress is calculated for the MES method (σm,MES) as: 
𝜎𝑚,𝑀𝑉𝑉 = 𝜎𝑣 + 2𝜎𝑣′(−1+𝐾−2𝐾0+2𝐾0𝐾)

3(1+2𝐾)
    (22) 

(see Appendix B for full derivation of σm,MES) 

The MES pore pressure (uMES) is taken as the difference between the mean total 

stress that has been modified by K (σm,MES) and the mean effective stress under uniaxial 

strain (σm,K0
′ ): 

𝑢𝑀𝑉𝑉 = 𝜎𝑚,𝑀𝑉𝑉 − 𝜎′𝑚,𝐾0     (23) 

The fundamental difference between the VES and MES methods is the 

modification of the mean total stress as a function of K. Any change in K (K≠K0) will 

provide the MES method with a different mean total stress, and therefore a different pore 

pressure than the VES method. The relationship between K and the mean total stress is 
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illustrated in Figure 3.7. For a given velocity and vertical total stress, an increase in K 

will result in an increase in the mean total stress relative to K0 conditions. This is due to 

an increase in the horizontal stresses. Similarly, the relationship between K and the 

predicted pore pressure is illustrated in (Figure 3.8). For a given velocity and vertical 

total stress, an increase in K will result in a monotonic increase in the predicted pore 

pressure relative to K0 conditions.  

Many of the basins located in the Gulf of Mexico are characterized by 

compressional loading where the effective stress ratio is higher than uniaxial (K>K0). By 

failing to account for the horizontal stresses, pore pressures predicted by the VES method 

will underpredict in such locations. Other basins around the world are characterized by 

extensional loading where the effective stress ratio is lower than uniaxial (K<K0). In 

these areas the VES method will overpredict.  



 72  



 73 

Figure 3.6:  Pore pressure and stress prediction based on MES method (square). Results 
shown use default input parameters (Figure 3.4). A) Compression curves for 
isotropic stress state (black dash-dot curve), uniaxial stress state (gray 
dashed curve), user-defined stress state (green dashed curve), and critical 
stress state (black dashed curve). B) Compression lines for the isotropic 
stress state (x-axis), uniaxial stress state (dashed gray line), user-defined 
stress state (green dashed line), and critical stress state (black line). MES 
method assumes a 1:1 relationship between velocity and mean effective 
stress that is independent of deviatoric (shear) stress; therefore, the iso-
porosity line is vertical in σ’m:q space (red dashed line). Pore pressure is the 
difference between mean total and effective stress (uMES; green arrow). C) 
Mean total stress. 
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Figure 3.7:  A) Radial compression curves corresponding to effective stress ratio (K) 
varying from extensional to compressional failure. MES method assumes a 
1:1 relationship between velocity and mean effective stress that is 
independent of deviatoric (shear) stress; therefore, the iso-porosity line is 
vertical in σ’m:q space (black dashed line). B) Change in mean total stress 
(green line) and therefore pore pressure (black arrows between A and B 
figures) as a function of K (from extensional failure to compressional 
failure). 
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Figure 3.8: A) Radial compression curves corresponding to effective stress ratio (K) 
varying from extensional to compressional failure. MES method assumes a 
1:1 relationship between velocity and mean effective stress that is 
independent of deviatoric (shear) stress; therefore, the iso-porosity line is 
vertical in σ’m:q space (black dashed line). B) Change in pore pressure 
predicted by the MES method (green curve) as a function of stress ratio K 
(from extensional to compressional failure). 

3.8 PORE PRESSURE FROM FES METHOD 

 The Full Stress Tensor (FES) method (Figure 3.9) incorporates all stress 

components into pressure prediction by taking into account the non-uniaxial (K) 

contribution of both the mean effective stress and the deviatoric (shear) stress into 

compression. The relationship between porosity and mean effective stress is non-unique 

because it depends on the deviatoric (shear) stress. This is illustrated in Figure 3.2: For a 

given velocity, as the stress state is changed from K0 (dashed gray line in Figure 3.2C) to 
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K (dashed green line in Figure 3.2C), the increase in deviatoric (shear) stress reduces the 

mean effective stress (Figure 3.2C). This is because both mean effective stress and 

deviatoric (shear) stress contribute to compaction. Therefore, higher deviatoric (shear) 

stress means that less mean effective stress is needed to compact to the observed porosity. 

The relationship between mean effective stress and deviatoric (shear) stress for a given 

velocity (porosity) is defined by the shape of the iso-porosity surface, according to the 

MCC model. 

 Graphically, the mean effective stress for the FES method is found by the 

intersection of the iso-porosity curve (red curve in Figure 3.9B) with the slope of the 

defined stress state (dashed green line in Figure 3.9B). Mathematically, this is found by 

first using the velocity (model input) to solve for the mean effective stress along the 

uniaxial compression line (σmK0
′ ; equation 19). The mean effective stress is then used to 

anchor the iso-porosity surface (equation 16) at this location along the uniaxial 

compression line (where σ’m=σmK0
′ ; M=MExt.; η=ηK0) and then solve for the equivalent 

effective stress: 

𝜎𝑒′ = 𝜎𝑚,𝐾0
′ �

𝑀𝐸𝐸𝐸.
2+𝜂𝐾0

2

𝑀𝐸𝐸𝐸.
2 �     (24) 

Finally, the equation for the equivalent effective stress (equation 24) is combined with the 

equation for the iso-porosity surface (equation 16) to solve for the mean effective stress 

for the FES method (σ’m,FES) as a function of the vertical effective stress  (obtained from 

velocity (model input; equation 17)) and the user-defined stress ratio (ηK, where ηK is a 

function of K (model input; equation 11)): 

𝜎𝑚,𝐹𝑉𝑉
′ = 𝜎𝑣′ �

1+2𝐾0
3

� �
𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
�   (25) 

The mean total stress for the FES method (σm,FES) is calculated as: 

𝜎𝑚,𝐹𝑉𝑉 = 𝜎𝑣 +
2𝜎𝑣′𝑀2(𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2)(1+2𝐾0)(𝐾−1)

3𝑀𝐸𝐸𝐸.
2(1+2𝐾)(𝑀2+𝜂𝐾2)

  (26) 
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(see Appendix C for full derivation of σm,FES). 

The FES pore pressure is calculated as the difference between the mean total 

stress (σm,FES) and the mean effective stress (σ’m,FES): 

𝑢𝐹𝑉𝑉 = 𝜎𝑚,𝐹𝑉𝑉 − 𝜎′𝑚,𝐹𝑉𝑉     (27) 

The fundamental difference between the FES method and the VES and MES 

methods is that it does not assume a unique relationship between porosity and mean 

effective stress; rather, it assumes a relationship between porosity, mean effective stress, 

and deviatoric (shear) stress. Any change in K (K≠K0) will provide the FES method with 

a different mean total stress and a different mean effective stress (Figure 3.10), and 

therefore a different pore pressure (Figure 3.11) than the VES and MES methods. The 

FES method will always predict a pore pressure greater than or equal to the VES method. 
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Figure 3.9: Pore pressure and stress prediction based on FES method (circle). Results 
shown use default input parameters (Figure 3.4). A) Compression curves for 
isotropic stress (black dash-dot curve), uniaxial stress (gray dashed curve), 
user-defined stress state (green dashed curve), and critical state (black 
dashed curve). B) Compression lines for the isotropic stress state (x-axis), 
uniaxial stress state (dashed gray line), user-defined stress state (green 
dashed line), and critical stress state (black line). For a given velocity, 
changes in mean effective stress and deviatoric (shear) stress follow curved 
iso-porosity path. Pore pressure is the difference between mean total and 
effective stress (uFES; dash-dot green arrow). C) Mean total stress. 
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Figure 3.10: A) Radial compression curves corresponding to effective stress ratio (K) 
varying from extensional to compressional failure. For a given velocity, 
changes in mean effective stress and deviatoric (shear) stress follow curved 
iso-porosity path. B) Change in mean total stress (green line) and therefore 
pore pressure (black arrows between A and B figures) as a function of K 
(from extensional failure to compressional failure). 
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Figure 3.11:  A) Radial compression curves corresponding to effective stress ratio (K) 
varying from extensional to compressional failure. For a given velocity, 
changes in mean effective stress and deviatoric (shear) stress follow curved 
iso-porosity path. B) Change in pore pressure predicted by the FES method 
(green dash-dot curve) as a function of stress ratio K (from extensional to 
compressional failure). 

3.9 SIMULATIONS 

 I next present three different simulations to examine how pore pressure and stress 

interact in different stress settings: (1) uniaxial compression, (2) isotropic compression 

(shear lower than uniaxial), and (3) shear higher than uniaxial. In each of the simulations 

presented below, the material model is calibrated using the following parameters: 

• A = 28.3 

• B = 0.59 

• Friction angle (ϕ) = 30 deg. 
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• Velocity (v) = 10,350 ft/s 

• Vertical total stress (σv) = 15,010 

• True vertical depth (TVD) = 10,000 ft 

3.9.1 Simulation 1: Uniaxial Compression 

 In the first simulation, stresses are assumed to be uniaxial (K=K0). As previously 

established, according to the MCC model the uniaxial effective stress ratio (K0) is a 

function of the friction angle (equation 15). For a friction angle of 30 deg., K0 = 0.67. 

Therefore, the expected effective stress ratio (Kexpected) is set to 0.67 and the program is 

run. In addition, the minimum and maximum K ratios are included to incorporate a 

degree of uncertainty in the expected K value. In this example, Kmin. is set to 0.3 and 

Kmax. is set to 1 (Figure 3.12).  

 

Figure 3.12:  Input table for uniaxial compaction (K=K0). 
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Because we assume uniaxial conditions, the VES, MES, and FES will predict the 

same pore pressure. The physical meaning of K=K0 is that the compression paths (Figure 

3.13 A, B) and the mean total stress (Figure 3.13C) are the same in all three methods; 

hence, the VES, MES, and FES share the same mean effective stress, and the same mean 

total stress. Therefore all three methods predict the same pore pressure (Figure 3.14). 
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Figure 3.13:  Pore pressure and stress prediction based on VES (diamond), MES (square), 
and FES (circle) methods. A) Compression curves for isotropic stress state 
(black dash-dot curve), uniaxial stress state (gray dashed curve), user-
defined stress state (dashed green curve) and critical stress state (black 
dashed curve). B) Compression lines for the isotropic stress state (x-axis), 
uniaxial stress state (dashed gray line), user-defined stress state (green 
dashed line), and critical stress state (black line). C) Mean total stress. B, C) 
uVES pore pressure (gray arrows); uMES pore pressure (green arrows); uFES 
pore pressure (green dash-dot arrows). 

 

 

 

 

 



 86 

 

Figure 3.14:  Predicted pore pressures in pressure & stress – depth plot. uVES pore 
pressure (diamond); uMES pore pressure (square); uFES pore pressure (circle); 
hydrostatic gradient (blue dashed line); lithostatic gradient (red dashed line). 
The lithostatic gradient is derived from vertical total stress and user-defined 
input depth.  

3.9.2 Simulation 2: Isotropic Compaction (shear lower than uniaxial) 

In the second simulation, the stress state is isotropic. For an isotropic stress state, 

the vertical and horizontal stresses are equal and, consequently, the shear stress is zero. 

To simulate this, the expected effective stress ratio is set to 1 (Kexp.=1), with Kmin.=0.67 

and Kmax.=1.1 (Figure 3.15). 
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Figure 3.15:  Input table for isotropic compaction (K=1). 

VES vs. MES: The MES approach calculates a higher pore pressure than the VES 

approach (gray arrows (VES) vs. green arrows (MES) in Figure 3.17 B, C). Both the VES 

and MES approaches assume a unique relationship between velocity and mean effective 

stress; therefore, they share the same mean effective stress (square (MES) and diamond 

(VES) in Figure 3.17 B). Thus, the difference in pressure is driven by the difference in 

mean total stress; the VES method calculates the mean total stress from equation 20 

(diamond in Figure 3.16C); the MES method calculates the mean total stress from 

equation 22 (square in Figure 3.16C). As K is increased from K0 to isotropic, the mean 

total stress also increases (Figure 3.7). The MES method accounts for this increase in the 

mean total stress; therefore, the MES method has a higher mean total stress (Figure 

3.17C), and thus a higher pore pressure. 
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VES vs. FES: The FES approach calculates a higher pore pressure than the VES 

approach (gray arrows (VES) vs. dash-dot green arrows (FES) in Figure 3.17 B, C). 

Because K>K0, the FES approach has a different mean effective stress and a different 

mean total stress than the VES method (diamond (VES) vs. circle (FES) in Figure 3.16 B, 

C). According to the FES method, as K is increased from K0 to isotropic, both the mean 

effective stress and the mean total stress increase (Figure 3.10). Only the FES method is 

able to account for both of these changes. Here, the FES approach predicts a higher pore 

pressure than the VES approach, because the increase in mean total stress is more 

pronounced than the increase in mean effective strss. 

MES vs. FES: The FES approach calculates a lower pore pressure than the MES 

approach (green arrows (FES) vs. dash-dot green arrows (FES) in Figure 3.17 B, C). At 

isotropic conditions, the MES and FES share the same mean total stress (square (MES) 

and circle (FES) in Figure 3.16 B, C); therefore, the difference in pore pressure is the 

result of a difference in mean effective stress. Because the MES method shares a 1:1 

relationship between velocity and mean effective stress, it cannot account for the 

reduction in decrease in deviatoric (shear) stress as the effective stress ratio is increased 

from K0 to K=1 (Figure 3.10). Therefore, the FES approach predicts a lower pore 

pressure. 

In Figure 3.17A, the predicted pore pressures for VES, MES, and FES are 

bounded by the lithostatic and hydrostatic gradients. If the expected effective stress ratio 

(Kexp.) was varied from extensional to compressional failure, the VES pressure would 

remain constant, while the MES pressure would increase monotonically; the FES 

pressure would decrease to the VES value as K varies from extensional failure to K0, and 

then would increase for K>K0. This is shown in Figure 3.17B. 
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The margin of error set by the minimum and maximum expected effective stress 

ratios (Kmin. & Kmax.) for the three methods is displayed in a pressure and stress vs. depth 

plot (Figure 3.18A), and a pressure vs. method plot (Figure 3.18B). At Kmin., all three 

methods predict the same pore pressure, because Kmin.=K0. At Kmax., the FES method 

predicts the highest pore pressure. 
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Figure 3.16: Pore pressure and stress prediction based on VES (diamond), MES (square), 
and FES (circle) methods. A) Compression curves for isotropic stress state 
(black dash-dot curve), uniaxial stress state (gray dashed curve), user-
defined stress state (dashed green curve) and critical stress state (black 
dashed curve). B) Compression lines for the isotropic stress state (x-axis), 
uniaxial stress state (dashed gray line), user-defined stress state (green 
dashed line), and critical stress state (black line). C) Mean total stress. B, C) 
uVES pore pressure (gray arrows); uMES pore pressure (green arrows); uFES 
pore pressure (green dash-dot arrows). 
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Figure 3.17:  Predicted pore pressures: uES (diamond); uMES (square); uFES (circle) A) 
Predicted pore pressures in pressure & stress – depth plot: hydrostatic 
gradient (blue dashed line); lithostatic gradient (red dashed line). The 
lithostatic gradient is derived from vertical total stress and user-defined 
depth. B) Change in pore pressure predicted by MES (green solid curve) and 
FES (green dash-dot curve) as a function of stress ratio K (from extensional 
to compressional failure).  
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Figure 3.18:  Predicted pore pressure error range: uVES (diamond); uMES (square); uFES 
(circle); capped lines represent predicted pore pressure based on minimum 
and maximum K values (Kmin. & Kmax.). A) Pressure & stress – depth plot. 
Depth is the same but shown graphically as different to improve clarity. B) 
Error range for VES, MES, and FES methods.  

3.9.3 Simulation 3: Shear Higher than Uniaxial 

In the final simulation, the deviatoric (shear) stress is higher than K0. This is 

achieved by setting Kexp.<K0. For this simulation, Kexp. is set to 0.4, Kmin. is set to 0.3, and 

Kmax. is set to 0.67 (Figure 3.19).  
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Figure 3.19: Input table for shear higher than uniaxial (K<K0). 

VES vs. MES: The MES approach calculates a lower pore pressure than the VES 

approach (gray arrows (VES) vs. green arrows (MES) in Figure 3.20 B, C). Given they 

share the same mean effective stress (Figure 3.20A), the difference in pressure is driven 

by the difference in mean total stress. According to the MES method, a decrease in K 

with respect to K0 results in a decrease in the mean total stress (Figure 3.7). Because only 

the MES method accounts for the decrease in mean total stress (square in Figure 3.20C), 

the MES predicts a lower pore pressure than VES (green arrows (MES) vs. gray arrows 

(VES) in Figure 3.20 B, C). 

VES vs. FES: The FES approach calculates a higher pore pressure than the VES 

approach (gray arrows (VES) vs. dash-dot green arrows (FES) in Figure 3.20 B, C). 

Because K<K0, the FES approach has a different mean effective stress (circle in Figure 

3.20C) and a different mean total stress (circle in Figure 3.20C) than the VES method 
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(diamond in Figure 3.20 B, C). According to the FES method, a decrease in K with 

respect to K0 results in a change in both the mean effective stress and the mean total 

stress (Figure 3.10). Only the FES method is able to account for both of these changes. 

Here, the FES predicts a higher pore pressure than the VES approach, because the 

decrease in mean effective stress is more pronounced than the decrease in mean total 

stress. 

MES vs. FES: The FES approach calculates a higher pore pressure than the MES 

approach (green arrows (MES) vs. dash-dot green arrows (FES) in Figure 3.20 B, C). 

Because K<K0, the FES method has a different mean effective stress (circle in Figure 

3.20B) and a different mean total stress (circle in Figure 3.20C) than MES (square in 

Figure 3.20 B, C). A decrease in K with respect to K0 results in a decrease in both the 

mean effective stress and the mean total stress. Only the FES method is able to account 

for both of these changes. Because of the large decrease in mean effective stress, the FES 

predicts a higher pore pressure than the MES approach.  

In Figure 3.21A, the predicted pore pressures for VES, MES, and FES are 

bounded by the lithostatic and hydrostatic gradients. If the expected effective stress ratio 

(Kexp.) was varied from extensional to compressional failure, the VES pressure would 

remain constant, while the MES pressure would increase monotonically; the FES 

pressure would decrease to the VES value as K varies from extensional failure to K0, and 

then would increase for K>K0. This is shown in Figure 3.21B. 

The margin of error set by the minimum and maximum expected effective stress 

ratios (Kmin. & Kmax.) for the three methods is displayed in a pressure and stress vs. depth 

plot (Figure 3.18A), and a pressure vs. method plot (Figure 3.18B). At Kmin., the FES 

method predicts the highest pore pressure. At Kmax, all three methods predict the same 

pore pressure, because Kmax.=K0. 
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Figure 3.20:  Pore pressure and stress prediction based on VES (diamond), MES (square), 
and FES (circle) methods. A) Compression curves for isotropic stress state 
(black dash-dot curve), uniaxial stress state (gray dashed curve), user-
defined stress state (dashed green curve) and critical stress state (black 
dashed curve). B) Compression lines for the isotropic stress state (x-axis), 
uniaxial stress state (dashed gray line), user-defined stress state (green 
dashed line), and critical stress state (black line). C) Mean total stress. B, C) 
uVES pore pressure (gray arrows); uMES pore pressure (green arrows); uFES 
pore pressure (green dash-dot arrows). 
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Figure 3.21:  Predicted pore pressures: uES (diamond); uMES (square); uFES (circle) A) 
Predicted pore pressures in pressure & stress – depth plot: hydrostatic 
gradient (blue dashed line); lithostatic gradient (red dashed line). The 
lithostatic gradient is derived from vertical total stress and user-defined 
depth. B) Change in pore pressure predicted by MES (green solid curve) and 
FES (green dash-dot curve) as a function of stress ratio K (from extensional 
to compressional failure). 
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Figure 3.22:  Predicted pore pressure error range: uVES (diamond); uMES (square); uFES 
(circle); capped lines represent predicted pore pressure based on minimum 
and maximum K values (Kmin. & Kmax.). A) Pressure & stress – depth plot. 
Depth is the same but shown graphically as different to improve clarity. B) 
Error range for VES, MES, and FES methods. 

3.10 CONCLUSIONS AND DISCUSSION 

I have developed UT-FAST-P3 to allow users to evaluate how pore pressure and 

stress interact in non-uniaxial settings. This is achieved by calibrating the software with a 

uniaxial velocity model, where the horizontal stresses are a function of the vertical, and 

changing the stress conditions (K) at the target location to calculate pore pressure.  

The software illustrates that both mean and deviatoric (shear) stress contribute to 

the development of pore pressure. Often times in industry, either only the vertical stresses 

(i.e., VES approach) or the mean stresses (i.e., MES approach) are used to predict pore 
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pressure. In reality, both the mean and shear stresses contribute to the development of 

pore pressure, and must be independently accounted for if the stress conditions locally 

vary away from the calibration well. A traditional vertical stress-based approach is only 

able to account for the mean and shear stress proportional to the vertical stresses through 

K0. As a consequence, a vertical stress-based method is physically limited to geological 

environments where the stress state is uniaxial; rarely are basins truly uniaxial. Many of 

the most prolific hydrocarbon reserves are located in geological environments where the 

stress state is not uniaxial (salt canopies, fault zones, anticlines, synclines, continental 

margins, etc.). 

A mean stress-based approach allows for a correction to be applied if stress 

conditions vary away from the calibration well; this is carried out by obtaining a better 

estimate the mean total stress; oftentimes the mean total stress is acquired from a 

geomechanical model. However, because a mean stress-based approach assumes a 1:1 

relationship between velocity and mean effective stress, this technique fails to account for 

the contribution of non-K0 deviatoric (shear) stress to compression and pressure 

development. By examining the software, it becomes obvious that, from a single velocity, 

the mean effective stress can vary up to a magnitude of two, depending on the level of 

deviatoric (shear) stress (through K). Therefore, by failing to account for local non-K0 

variations in deviatoric (shear) stress, the mean effective stress (and hence the predicted 

pore pressure) can be grossly miscalculated.   

 The FES method is formulated to account for non-K0 stress states. In this 

software, I used iso-porosity curves based on the MCC model (Wood, 1990). The FES 

method is not restricted to a single compression curve; rather, the FES method 

interrelates velocity with both mean and deviatoric (shear) stress. The mean effective 

stress is calculated as a function of the deviatoric (shear) stress through the iso-porosity 
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surface. As a result, both the mean effective stress and mean total stress are modified to 

account for non-K0 stress conditions. 

 In summary, the UT-FAST-P3 software is a learning tool to illustrate how pore 

pressure and stress interact in non-K0 settings. It allows users to examine the relative 

contributions of non-K0 mean and deviatoric (shear) stress to pore pressure development, 

and provides a way to analyze the margin of error resulting from their omission.  
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Appendix A: Derivation of Mean Total Stress for VES Method 

This appendix summarizes the steps I use to derive the mean total stress for the 

VES method in Chapter 2 (equation 28) and Chapter 3 (equation 20). I derive the mean 

total stress for the VES method in terms of the vertical total stress (Chapter 2, equation 

26; Chapter 3, model input), the uniaxial effective stress ratio (Chapter 2, equation 17; 

Chapter 3, equation 14), and the mean effective stress under uniaxial strain (Chapter 2, 

equation 27; Chapter 3, equation 14). 

With the mean total stress for the VES method (σm,K0) equal to: 

𝜎𝑚,𝐾0 = 𝜎𝑚,𝐾0
′ + 𝑢𝑉𝑉𝑉      (A.1) 

I first solve for σ′m,K0 in terms of the known inputs. I write σ′m,K0 in terms of the vertical 

effective stress using Chapter 2, equation 23, and Chapter 2, equation 18: 

𝜎𝑚,𝐾0
′ = 𝜎𝑣′(1+2𝐾0)

3
      (A.2) 

I next solve for uVES in terms of the known inputs. With uVES written as a function 

of the vertical stresses: 

𝑢𝑉𝑉𝑉 = 𝜎𝑣 − 𝜎𝑣′       (A.3) 

I start by expressing σ’v in terms of  σ′m,K0 using Chapter 2, equation 23, and Chapter 2, 

equation 18: 

𝜎𝑣′ =
3𝜎𝑚,𝐾0

′

(1+2𝐾0)
       (A.4) 

Equation A.4 allows for equation A.3 to be written in terms of the known inputs: 

𝑢𝑉𝑉𝑉 = 𝜎𝑣 −
3𝜎𝑚,𝐾0

′

(1+2𝐾0)
      (A.5) 

 Finally, the equation for σm,K0 (equation A.1) can be written in terms of the 

known inputs by combining equation A.2 with equation A.5: 

𝜎𝑚,𝐾0 = 𝜎𝑣′(1+2𝐾0)
3

+ 𝜎𝑣 −
3𝜎𝑚,𝐾0

′

(1+2𝐾0)
    (A.6) 
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By reducing equation A.6, I arrive at the final equation for σm,K0 used in Chapter 

2 (equation 28) and Chapter 3 (equation 20): 

𝜎𝑚,𝐾0 =  𝜎𝑣 −
2𝜎𝑚,𝐾0

′ (1−𝐾0)

1+2𝐾0
     (…) 
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Appendix B: Derivation of Mean Total Stress for MES Method 

This appendix summarizes the steps I use to derive the mean total stress for the 

MES method in Chapter 3 (equation 22). I derive the mean total stress for the MES 

method in terms of the known inputs: σ’v (function of velocity; Chapter 3, equation 17), 

K0 (function of friction angle; Chapter 3, equation 15), and K (model input). 

With the mean total stress for the MES method (σm,MES) equal to: 

𝜎𝑚,𝑀𝑉𝑉 = 𝜎𝑚,𝑀𝑉𝑉
′ + 𝑢𝑀𝑉𝑉     (B.1) 

I first solve for σ’m,MES in terms of the known inputs. Given the VES and MES methods 

share the same mean effective stress (σm,MES
′ =σm,K0

′ ), I write σ’m,MES in terms of the 

vertical effective stress using Chapter 3, equation 18: 

𝜎𝑚,𝑀𝑉𝑉
′ = 𝜎𝑣′(1+2𝐾0)

3
      (B.2) 

I next solve for uMES in terms of the known inputs. With uMES written as a function 

of the vertical stresses: 

𝑢𝑀𝑉𝑉 = 𝜎𝑣 − 𝜎𝑣,𝑀𝑉𝑉
′       (B.3) 

I start by expressing σ’m,MES in terms σ’v,MES: 

𝜎𝑚,𝑀𝑉𝑉
′ = 𝜎𝑣,𝑀𝐸𝑀

′ (1+2𝐾)
3

      (B.4) 

I combine equation B.2 with equation B.3: 
𝜎𝑣′(1+2𝐾0)

3
= 𝜎𝑣,𝑀𝐸𝑀

′ (1+2𝐾)
3

     (B.5) 

I rearrange equation B.5 to be in terms of σ’v,MES: 

𝜎𝑣,𝑀𝑉𝑉
′ = 𝜎𝑣′(1+2𝐾0)

1+2𝐾
      (B.6) 

Equation B.6 allows for equation B.3 to be written in terms of the known inputs: 

𝑢𝑀𝑉𝑉 = 𝜎𝑣 −
𝜎𝑣′(1+2𝐾0)
1+2𝐾

     (B.7) 

 Finally, the equation for σm,MES (equation B.1) can be written in terms of the 

known inputs by combining equation B.2 with equation B.7: 
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𝜎𝑚,𝑀𝑉𝑉 = 𝜎𝑣′(1+2𝐾0)
3

+ 𝜎𝑣 −
𝜎𝑣′(1+2𝐾0)
1+2𝐾

    (B.8) 

By reducing equation B.8, I arrive at the final equation for σm,MES used in Chapter 

3 (equation 22): 
 𝜎𝑚,𝑀𝑉𝑉 = 𝜎𝑣 + 2𝜎𝑣′(−1+𝐾−2𝐾0+2𝐾0𝐾)

3(1+2𝐾)
    (…) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 106 

Appendix C: Derivation of Mean Total Stress for FES Method 

This appendix summarizes the steps I use to derive the mean total stress for the 

FES method in Chapter 3 (equation 26). I derive the mean total stress for the FES method 

in terms of the known inputs: σ’v (function of velocity; Chapter 3, equation 17), K0 

(function of friction angle; Chapter 3, equation 15), K (model input), ηK0 (function of 

friction angle; Chapter 3, equation 14) , ηK (function of K; Chapter 3, equation 11), M 

(function of friction angle; if K≤1, Chapter 3, equation 8; if K>1, Chapter 3, equation 9), 

and MExt. (function of friction angle; Chapter 3, equation 8). 

With the mean total stress for the FES method (σm,FES) equal to:  

𝜎𝑚,𝐹𝑉𝑉 = 𝜎𝑚,𝐹𝑉𝑉
′ + 𝑢𝐹𝑉𝑉     (C.1) 

I first write σ’m,FES (Chapter 3, equation  25) in terms of the known inputs: 

𝜎𝑚,𝐹𝑉𝑉
′ = 𝜎𝑣′ �

1+2𝐾0
3

� �
𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
�   (C.2) 

I next solve for uFES (Chapter 3, equation 27) in terms of the known inputs. With 

uFES written as a function of the vertical stresses: 

𝑢𝐹𝑉𝑉 = 𝜎𝑣 − 𝜎𝑣,𝐹𝑉𝑉
′       (C.3) 

I start by expressing σ’v,FES in terms of σ’m,FES: 

𝜎𝑣,𝐹𝑉𝑉
′ = 3𝜎𝑚,𝐹𝐸𝑀

′

1+2𝐾
      (C.4) 

I then combine equation C.2 with equation C.4: 

𝜎𝑣,𝐹𝑉𝑉
′ = 3

1+2𝐾
∗ 𝜎𝑣′ �

1+2𝐾0
3

� �
𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
�  (C.5) 

Next, I combine equation C.3 with equation C.5: 

𝑢𝐹𝑉𝑉 = 𝜎𝑣 −
3

1+2𝐾
∗ 𝜎𝑣′ �

1+2𝐾0
3

� �
𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
� (C.6) 

Finally, the equation for σm,FES (equation C.1) can be written in terms of the 

known inputs by combining equation C.2 with equation C.6: 
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𝜎𝑣′ �
1+2𝐾0

3
� �

𝑀𝐸𝐸𝐸.
2+𝜂𝐾0

2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
� +

 𝜎𝑣 −
3

1+2𝐾
∗ 𝜎𝑣′ �

1+2𝐾0
3

� �
𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2

𝑀𝐸𝐸𝐸.
2 � � 𝑀2

𝑀2+𝜂𝐾2
�  (C.7) 

By reducing equation C.7, I arrive at the final derivation for the mean total stress 

for the FES method used in Chapter 3 (equation 26): 

𝜎𝑚,𝐹𝑉𝑉 = 𝜎𝑣 +
2𝜎𝑣′𝑀2(𝑀𝐸𝐸𝐸.

2+𝜂𝐾0
2)(1+2𝐾0)(𝐾−1)

3𝑀𝐸𝐸𝐸.
2(1+2𝐾)(𝑀2+𝜂𝐾2)

  (26) 
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