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ABSTRACT

Pore fluid salinities in the Gulf of Mexico area can reach levels of 250 grams of salt per
liter of pore fluid (g/1). It is now necessary to determine the effect that this salinity level can play
on the mechanical behaviors of marine sediments.

An extensive laboratory testing program involving Constant Rate of Strain (CRS) and Ko
consolidated undrained shear in compression triaxial testing (CKoUC) was undertaken. Soil
specimens reached axial effective stresses of 10 MPa with a select few reaching 40 MPa in a
modified CRS device. All triaxial tests were performed in a low pressure triaxial apparatus. The
shear behavior of all soils was obtained in the normally consolidated region. Several reverse
leaching tests were performed in the CRS cell whereby high salinity pore water was flushed
through a low salinity soil while consolidation was halted.

The majority of testing was performed on resedimented specimens using several different
soils from around the world. These include Boston Blue Clay (BBC), London Clay, Gulf of
Mexico soil and sodium montmorillonite. Several derivatives of BBC were resedimented
including BBC which had some of its natural salt removed via leaching, and also BBC which
had its fabric completely dispersed using sodium hexametaphosphate. Pore fluid salinities
ranging from 0 (distilled water) to 256 g/l were used when resedimenting these soils. The
resedimented BBC test results were compared to intact BBC soil which was recovered from
below the MIT campus.

The results show that BBC and London Clay are relatively insensitive to increases in pore
fluid salinities up to 256 g/l. This sensitivity can be increased by leaching some of the natural salt
from the soil and then resedimenting to different pore fluid salinities. The strength characteristics
of BBC over this large salinity range also remain fairly constant with the only differences being
observed in leached BBC. It was also seen that the strain to failure for resedimented BBC is half
that which is required for intact soil with all other measured parameters being similar.

Interesting observations were seen in relation to how the fabric of BBC evolves with an
increase in stress level and a theory of how floc breakage occurs at a given stress level is
proposed. A potential crude method of quantifying the contribution of electro-chemical forces to
a soils strength is also suggested.

Thesis Supervisor: John T. Germaine
Title: Senior Research Associate and Senior Lecturer of Civil and Environmental Engineering
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1 INTRODUCTION
1.1 RESEARCH STATEMENT

Traditional Geotechnical Engineering pays very little attention to the effect of pore fluid

salinity on the behavior of a given soil. The only real acknowledgement that salt exists as part of

a soil matrix occurs when allowances are made for it in phase relation calculations. When

estimating the behavioral aspects of a soil mass consideration is usually not given to the salinity

of the soil in its present state, as opposed to when it was deposited. The exception to this occurs

when leaching of the soil has potentially occurred. Given that the pore fluid salinity may have

changed over time, it is wise to anticipate that the soil behavior will have changed also.

The Geotechnical Engineer frequently encounters marine deposited soils which were

formed in saline or brackish environments with pore fluid salinities in the order of 30 - 35 grams

of salt per liter of water (g/1). These soils exist today in coastal regions where the original sea bed

has undergone uplift and now provides a location for construction activities. The effects of how

the changes in soil salinity due to a reduction in pore fluid salinity have been well studied.

In the Gulf of Mexico, the reverse process to that previously described occurs whereby a

marine sediment deposited in a saltwater environment (-35 g/1), can undergo an increase in

salinity. Pore fluid salinities of up to 250 g/l are possible around salt domes (structures) which

exist on the sea floor in the Gulf Region. These salt domes are often located in areas of interest

for hydrocarbon exploration. It is therefore now necessary to study the effects, if any, which this

increase in salinity will produce in a given soil.

1.2 OBJECTIVES OF THE RESEARCH

Boston Blue Clay was chosen as the main testing material for this research because it is

relatively plentiful. It is desirable to study the effects on such an abundant source before moving

onto more relevant materials which have far greater retrieval costs and processing requirements.

The majority of specimens tested were derived from resedimented materials in which the pore

fluid salinity has been varied. Other soils were tested in order to see if some trends apply as to

what effects these variations in pore fluid salinity bring about.
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An extensive laboratory testing program was established in the form of a suite of

Constant Rate of Strain (CRS) and Ko consolidated, undrained shear in compression (CKoUC)

triaxial testing. These tests will help identify any changes in one dimensional and shear behavior

between soils at different pore fluid salinities.

1.3 ORGANIZATION OF THE THESIS

This thesis is organized into six chapters with the intention of conveying a complete and

thorough picture into the research performed, the results obtained and any observations noted.

Chapter 2 presents the background information on the research. Previous researchers

findings in relation to altering the salinity of a given soil are examined. This is done so in three

parts: i) research involving the leaching of salt from a soil; ii) research involving the addition of

salt to a soil (whereby the salinity is increased beyond depositional levels), and iii) research on

intact specimens of very high salinity soils. A background is also given into the normalized shear

behavior of RBBC, a method which has been utilized in this research.

Chapter 3 presents all of the different type of soils used in testing. A total of four

derivatives of BBC were used and these are described in detail. London Clay was resedimented

at MIT for the first time as part of this research and a description of how it was processed is

given. Gulf of Mexico soil from the Ursa Basin was resedimented as well as sodium

montmorillonite at different pore fluid salinities. Scanning Electron Microscope (SEM) images

taken on oven dried specimens are presented for various derivatives of BBC at different stress

levels and at different pore fluid salinities. Images are also shown for sodium montmorillonite.

Chapter 4 identifies the equipment, methods and procedures used throughout the

research. Thorough descriptions are given of the equipment as well as the ways in which this

equipment was used. This includes the Constant Rate of Strain (CRS) cell, the low pressure

triaxial apparatus and the control hardware and software and measurement instrumentation

associated with successful laboratory testing. Variations to traditional testing methodology are

also explained here.

Chapter 5 presents the results from all laboratory testing performed. A large bank of CRS

results are presented which include one dimensional compression data, hydraulic conductivity
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data and coefficient of consolidation data. These results are appraised against each other and

their behaviors compared for similar materials. Conclusions are drawn in relation to some

observed anomalies in the behavior or RBBC, and all RBBC specimens are compared against in-

situ BBC soil which was also tested as part of the research. A synthesis analysis is provided for

all soils used.

The results from Ko consolidated undrained shear tests are presented in detail for all types

of BBC tested. The specimens were generally consolidated to different stress levels and then

sheared in axial compression on normally consolidated soil. As with the CRS results, a synthesis

analysis of the triaxial data is given and conclusions drawn as to the observed behaviors.

Chapter 6 summarizes the results and conclusions from the research and presents

recommendations for future research.

Appendix A presents pore pressure ratio plots for all soils tested in the CRS device and

Appendix B gives example phase relation calculations to allow for the presence of such large salt

quantities in some of the soils tested.
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2 BACKGROUND

2.1 INTRODUCTION

This chapter presents the background information on how altering the salinity of a soil

affects its behavior as both a soil mass and as an individual soil particle. Although much research

has been performed into the effect of removing natural salt from a soil fabric, only a handful of

researchers have performed tests on what happens when additional salt in introduced to a soil

matrix.

Section 2.2 describes how either introducing or removing salt from the pore fluid changes

the behavior of individual soil particles. Depending on the type of minerals present in a soil,

different levels of behavioral change will be observed. More often than not, natural soils contain

a mixture of minerals, it is therefore not readily obvious what impact the introduction or removal

of salt to a soil-water system will have. The known effect of how changes in pore fluid salinity

can affect a pure clay mineral may be different to how the same changes in pore fluid salinity

will affect a soil mass containing a fraction of that same mineral.

Section 2.3 identifies previous research which has been performed in this area. It breaks

previous research into three areas: research where leaching salt from the soil was performed,

research where adding salt to soil was performed and finally research which was performed on

in-tact soil samples containing very high pore fluid salinities.

Section 2.4 reviews fundamental soil behavior aspects during undrained shear

deformation that are related to this research. It also discusses the concept of normalized behavior

and its application to the results presented in this research.
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2.2 ELECTRO-CHEMICAL EFFECTS ON SOIL BEHAVIOR

2.2.1 INTRODUCTION

The way in which the pore fluid salinity affects the soil behavior will be described for a

homogeneous mass. The discrete particles that make up soil are not strongly bonded in the way

that crystals of metal are, and hence they are relatively free to move with respect to one another.

The deformation of a soil mass is controlled by interactions between individual particles,

especially by sliding between particles. Because sliding is a nonlinear and irreversible

deformation, the stress-strain behavior of the soil is strongly nonlinear and irreversible. This

process describes the mechanical contact between particles (Labme & Whitman, 1969).

There is also a chemical interaction between particles. The space between particles are

called pore spaces and they are usually filled with air and/or water. The nature of the pore fluid

will influence the magnitude of the shear resistance existing between two particles by

introducing chemical matter to the surface of contact. In the case of very tiny soil particles, the

pore fluid may intrude between the particles meaning there is no mechanical contact and that

physio-chemical forces dominate the behavior of the soil mass. The spacing of these particles

will increase or decrease as the transmitted compressive forces decreases or increases. Therefore

soil is an inherently multiphase system consisting of a mineral phase called the mineral skeleton

and a fluid phase called the pore fluid. The constituents of the pore phase will influence the

nature of the mineral surfaces and hence affect the process of force transmission at the particle

contacts. This interaction between the phases is called chemical interaction (Lambe & Whitman,

1969).

The way in which a soil behaves in a given environment is a function of what the soil is

made of. Differences in particle size and shape are mainly due to differences in the types and

arrangements of elements in the crystalline structure which in effect defines the mineralogy of a

soil. A clay particle is a colloid, which is a term used to describe a particle whose behavior is

controlled by surface derived forces rather than mass derived forces. The size range of colloids

has been more or less arbitrarily set as 1 mp to 1 pt (10-9 - 10-6 M), (Labme & Whitman, 1969).
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2.2.2 SPECIFIC SURFACE

The smaller the particle size, the larger its specific surface. The specific surface is the

ratio of the surface area of a material to either its mass or its volume. In terms of mass:-

Specific surface = surface area / mass (2.1)

It is a common fact that larger particles, regardless of shape, have smaller surface areas per unit

of mass and therefore smaller specific surfaces than small particles. Specific surface is inversely

proportional to the grain size of a soil. A soil mass made up of many small particles will have, on

average, a larger specific surface than the same mass made up of larger particles. From the

concept of specific surface, a larger moisture content should be expected from a fine-grained soil

than a coarse grained soil and all other things such as void ratio and soil structure to be equal.

Figure 2.1 shows the average values of relative sizes, thicknesses and specific surface areas for

the most common clay minerals. It can be seen from this Figure that montmorillonite is the

smallest clay mineral that is encountered and it is also the most sensitive to water. Kaolinite on

the other hand, is one of the larger and less sensitive minerals to water encountered in clay (Holtz

& Kovacs, 1981).

For a typical sodium soil, a montmorillonite particle would carry 1.4x1 04 ions while the

kaolinite has 4x 106 ions. If the individual clay particles are now dropped into water, both the

mineral surfaces and the exchangeable ions pick up water i.e. hydrate. Upon hydration, the

sodium ion grows about sevenfold. These hydrated ions are too large to fit into a monoionic

layer on a mineral particle even if they wanted to, and the exchangeable ions with their shells of

water move away from the mineral surface to positions of equilibrium. The ions are attracted to

the mineral surface to satisfy the negative charge existing on the surface but they also desire to

move away from each other because of their thermal energies. In actual fact, the position which

they occupy is a compromise between these two types of forces. Therefore when the particles are

dropped into water, the ions move away from the surface to form what is termed the double layer

(Lambe & Whitman, 1969). It is at this juncture it should be noted that development of the

double layer on a clay particle will be controlled by the salinity of the pore fluid. Because an

increase in ionic concentration is noted with an increase in salinity, double layer growth will be

hindered with an increase in pore fluid ionic concentration (salinity). The maximum distance to
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which the double layer of a given soil will develop beyond the soil particle will only be realized

in distilled water. In saltwater, the double layer of a given soil will extend away from the particle

until the concentration of sodium ions in the double layer is equal to that of the pore water. It is

therefore stated that at some salinity there will be no double layer growth as the ionic

concentration of the pore fluid will be able to satisfy the ionic demand of the particle at the

particle surface. The double layer thickness is therefore the distance from the surface of a soil

particle over which there is an electric potential. This is best demonstrated in Figure 2.2 where a

simple sedimentation test is performed on hydrated sodium montmorillonite. Each tube contains

the same quantity of soil (1 g), but the pore fluid salinity increases from 1 g/l on the left to 256

g/l on the right. It can be seen that the ionic demand of the double layer for this soil is satisfied in

between salinities of 16 & 64 g/l as after 64 g/l there is no change in sedimentation height with

an increase in salinity. The Figure also shows proof that between the 1 & 16 g/l pore fluid

contents, when an increase in salinity is observed there is a corresponding decrease in double

layer growth - this is evident by the lower sedimentation height.

2.2.3 SOIL FORMATION

If two fully hydrated clay particles which exist in water are brought closer together, they

will reach an interparticle spacing at which they begin to exert forces on each other. Because

each particle carries a net negative charge, they tend to repel each other. Since this negative

charge on clay particles is balanced by the cations in the double layer, the two particles begin to

repel each other when their double layers overlap one another. This represents the repulsive force

which exists between soil particles and it is directly related to the size of the double layer

(Lambe & Whitman, 1969). By changing the pore water chemistry of a soil-water system, double

layer development will be either hindered or encouraged. Generally, as the pore fluid salinity

increases, the size of the double layer decreases.

An attractive force also exists between two soil particles. This attractive force is the van

der Waals' force, or secondary bonding force which acts between all adjacent pieces of matter

and it is essentially independent of the characteristics of the fluid between the particles. If the net

force between two clay particles is attractive then the two particles will move towards each other

and become attached - this is known as flocculation. If the net force between the two particles is
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repulsive then they will move away or disperse. When a suspension of clay particles flocculates,

three different modes of particle association may occur: face-to-face, edge-to-face and edge-to-

edge. Face-to-face association leads to thicker and possibly larger flakes whereas edge-to-face

and edge-to-edge associations will lead to three dimensional voluminous card house structures

(Van Olphen, 1977). The various modes of particle association are shown in Figure 2.3.

The structure of a soil once formed consists of interparticle forces and the fabric. The

interparticle forces describe how the shear and normal stresses are transmitted between soil

particles while the fabric of a soil is defined by the orientation and distribution of particles. The

clay mineral illite is distinguished from montmorillonite primarily by the absence of interlayer

swelling in the presence of water. Illite is also not as active as montmorillonite and therefore will

not be as susceptible to changes in pore fluid salinity as montmorillonite. Figure 2.4 shows a

graph of the forces which act on an illite particle in a low salinity environment. As the particles

move further away from each other, different repulsive and attractive forces act to cause either

flocculation or dispersion. It can also be seen from this Figure that illitic particles have very little

repulsive forces associated with them, even in a low salinity environment. This repulsive force is

present at a relatively short distance from the particle and can be easily overcome by the stronger

attractive forces. It is therefore very likely that marine deposits which contain illite as one of its

main minerals, will contain flocs as part of its structure.

2.3 LITERATURE REVIEW

2.3.1 INTRODUCTION

The research presented in this thesis involves both the addition and removal of salt from

soil. Although the effect of salt on soil behavior has been previously studied, the results from this

previous research will be described in three different Sections.

Firstly, the effect of leaching the salt from a soil fabric will be presented. This research

focuses on what happens to a soil in which the natural salts are removed thereby reducing the

electrolyte content of the soil. Extensive research has been performed in this area as it is a more

common issue which confronts Geotechnical Engineers. The issue arises in areas where a marine

soil has been uplifted and is undergoing the process described. The second Section will cover
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what happens when a soil undergoes the addition of a salt to the fabric after the soil has been

deposited. This is a less common scenario and exists in regions where the marine deposit has

undergone further or prolonged burial and now exist in regions where the salinity of the water is

higher than when the soil was deposited. The Gulf of Mexico is one such area and soils at the sea

floor in this location commonly encounter salinities much higher than those that existed when the

soil was originally deposited. Pore fluid salinities of 80 g/l are common but salinity can reach

levels of up to 250 g/l. The third and final section looks at in-situ soil which is naturally high in

salinity. Laboratory testing which was performed on recovered specimens will be examined and

information which is relevant to this research will be identified.

2.3.2 TRADITIONAL LEACHING OF SOIL

The effect of salt on a soil mass has been well studied and researched. This involves

removing (leaching) the existing salt from a marine soil to determine how the soil behavior

changes. One example is a marine clay which has been laid down in a marine environment with a

typical salinity of 35 g/l or less. Marine deposits frequently undergo uplift so that they rise above

the level of the sea. The result of fresh groundwater percolating through the clay serves to

gradually remove this natural salt from the clay. This process occurs over many thousands of

years. The pore fluid at which a soil exists today can be much different from that at the time of

deposition. This process also happens when artesian pressure is present in the groundwater such

as is the case in areas of Boston. This reduction in the electrolyte content of the water around the

soil particles can reduce the net attraction between them - in other words, leaching of the salt

from the pore fluid can cause a reduction in shear strength (Lambe & Whitman, 1969).

Laboratory experiments such as those described in Lambe & Whitman (1969) had previously

been performed by Bjerrum & Rosenqvist (1956) on artificially sedimented clays. Their

experiments proved that if a soil is sedimented in salt water and the soil is then later subjected to

a hydraulic gradient resulting in the leaching of salt, the undrained shear strength will be reduced

and its sensitivity increased. They also found that if the same clay is deposited in a fresh water,

the shear strength is two to three times as high as the one sedimented in the salt water. The clay

used in this research was an Asrum clay in which the salt had been leached from the soil

naturally in-situ. The clay fraction of the soil was approximately 60 % illite with the remainder

composed of quartz and feldspar. The soil is of very low plasticity and with a liquid limit (wi) of
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28 % and a plastic limit (wp) of 18.8 %. Some of the results from this research can be seen in

Figure 2.5. Their work shows that for an illitic clay, the addition of salt increases the undrained

shear strength whereby at a given stress, an increase in the shear strength is observed for an

increase in salt content.

Skempton & Northey (1952) also showed that a reduction in the salt concentration in the

pore fluid, caused by leaching clays of marine or estuarine origin, can result in high sensitivities

(or lower shear strength).

2.3.3 ADDING SALT TO SOILS

At MIT in 1961, William Bailey conducted research into the effects of salt on the shear

strength of Boston Blue Clay. He ran isotropically consolidated undrained triaxial tests on

resedimented Boston Blue Clay ranging in salt content from 3 - 35 g/l. As part of his research,

he also leached some Boston Blue Clay and strength tested this soil. In general, he found that soil

which contained more salt (35 g/l as opposed to 3 g/1) had a higher effective stress envelope at

maximum principle stress difference, and that leaching the salt from a normally consolidated salt

samples decreased the shear strength and the strain to failure and increased the excess Au at

maximum obliquity. He also found a 6.5' reduction in the effective stress envelope at maximum

principle stress difference for the leached soil. Again, for an illitic clay, the addition of salt has

been shown to increase the undrained shear strength.

Also in 1961 at MIT, Anwar Wissa performed research on the environmental changes on

the stress-strain properties of kaolinite. He ran a series of triaxial compression tests on

resedimented sodium kaolinite. In contrast to illitic soils, he showed that with an increase in

salinity, a corresponding reduction in undrained strength is observed. He links this change in

behavior with an increase in salinity to the fact that the positive and negative charge on the clay

particle will be reduced meaning that the degree of flocculation decreases as the pore fluid

salinity increases. In fact, Wissa found that kaolinite soils resedimented with distilled water as

the pore fluid were stronger than those resedimented with salt water as the pore fluid.

In 1985, A.S. Stipho conducted research on salt bearing soils from Saudi Arabia. He

conducted laboratory testing on sands and clays using various salt types, up to pore fluid
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concentrations of 200 g/l. Among his findings he found that the compressibility of a salt bearing

clay increased with an increase with salt content and also that with an increase in salt content, a

decrease in void ratio at a given stress was recorded. The salt used for the results quoted was

NaCl. The mineralogy of the soil being tested is not available, however, it has a low plasticity

index (wL = 29 % and wp = 22.5 %) indicating that the clay fraction consists mostly of silt and

large clay sized particles. The liquid limit was also found to drop with an increase in salt content

for all salt types but it is not described how the salt was accounted for in the phase relation

calculations. Another interesting finding of the research is that an increase in cohesion is noted

with an increase in salt contents.

2.3.4 RESULTS FROM IN-TACT MATERIAL

Laboratory tests were run on in-tact marine clay recovered at depths of up to 180 m

below the Caspian Sea in 1996 (Leon A. et. al, 2004). The salinity of the soil at the recovery

depths was around 250 g/l and the soil was described as high to extremely high plasticity clay.

They found the preconsolidation pressures of the soil they tested to be less than the calculated

overburden stress meaning that the soil is not normally consolidated, but is in fact

underconsolidated. Their results can be seen in Figure 2.6 and show clearly that the measured

preconsolidation pressure is much lower than the calculated overburden stress. Interestingly,

these low preconsolidation pressures were attributed to using fresh water as the surrounding fluid

in the oedometer cell. They believe that this in effect caused leaching of the salt from the soil

during the test. To prove this theory, several more oedometer tests were run on recovered

material with different cell fluid salinities and the results show that when the cell fluid salinity

closely matches the pore fluid salinity, a higher preconsolidation pressure is recorded than when

fresh water is used. The results of these tests are shown in Figure 2.7.

This is an important finding in relation to the research performed in this thesis as all one-

dimensional compression testing will be performed on soils with a large range of pore fluid

salinities. It is therefore essential to use cell fluid which matches the pore fluid salinity of the soil

being tested in order to ascertain the correct compression behavior.
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2.4 NORMALIZED BEHAVIOR OF BOSTON BLUE CLAY

The normalized soil parameter concept is based on the empirical observation that the

results of laboratory tests on clay samples having the same overconsolidation ratio, but different

consolidation stresses, and therefore different preconsolidation pressures, exhibit similar

properties (i.e. strength, stress-strain, pore pressure parameters, moduli etc.) when normalized

with respect to the consolidation stress (Ladd & Foott, 1974). This concept has a significant

practical value as it provides a useful framework for comparing and relating the behavioral

characteristics of different cohesive soils and has led to the development of the Stress History

and Normalized Soil Engineering Properties (SHANSEP) design method (Ladd & Foott, 1974).

Moreover, the normalized soil parameter is also the basis of other frameworks of soil behavior

such as Critical State Soil Mechanics (Schofield & Wroth, 1968) and the "simple" clay (Ladd,

1960) as well as analytical soil models such as the Modified Cam Clay (Roscoe & Burland,

1968) and MIT-E3 (Whittle & Kavvadas, 1994).

The SHANSEP method is applicable to uniform cohesive soils that have been

mechanically overconsolidated or are truly normally consolidated and maintain the same basic

structure during loading beyond the in-situ stresses and therefore exhibit behavior that can be

normalized by the preshear consolidation stress level. The method is not intended for use in

cemented, highly sensitive clays or in the drying crust of a soil deposit. The technique can be

used in either drained or undrained conditions but is more usually used to describe the undrained

shear in triaxial compression and extension, and in the direct simple shear tests. The premise of

this method is that the in-situ stress history can be simulated in the laboratory that will provide

accurate predictions of the in-situ soil behavior at different overconsolidation ratios. Therefore

while the actual stresses are different between the laboratory and the field, the SHANSEP

method is able to predict identical behavior for a given overconsolidation ratio. The new stress

history is achieved by one dimensional (Ko) consolidation well past the preconsoldaiton pressure

into the normally consolidated range to some new maximum state of stress - this is shown by

points A or B in Figure 2.8. For overconsolidation ratios greater than unity, the soil is

mechanically overconsolidated by Ko swelling (points C or D). It is assumed that regardless of

the physical mechanisms causing the in-situ overconsolidation, all overconsolidated soil will

behave in the same way.
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Figure 2.9 shows typical results of a SHANSEP test program for AGS plastic marine clay

with three modes of shearing (triaxial compression and extension and direct simple shear). The

results of this data can be represented by the equation:

SU = S(OCR)" (2.2)

where S is the undrained strength ratio for the normally consolidated clay, and m is the slope of

the regression line. The difference in behavior for the three modes of shearing is a reflection of

the anisotropic nature of soil. Given that all the strength testing performed for this research was

done on normally consolidated clay, the OCR value from Equation 2.2 will remain as 1. Note

that the axial stress in triaxial space now corresponds to vertical stress in the SHANSEP design

procedure.

2.4.1 EFFECT OF STRESS LEVEL ON NORMALIZED STRENGTH

The underlying assumption of the SHANSEP method is that the normalized behavior is

dependent only on the overconsolidation ratio. Therefore, while the preshear stresses used in the

laboratory testing program may be different to the field stresses, the method predicts identical

behavior for a given OCR. The results of work performed by Abdulhadi (2009) indicate that the

normalized properties can have a stress level dependence, at least for resedimented Boston Blue

Clay. Figure 2.10 illustrates the effect of stress level on the SHANSEP parameters S and m for

resedimented BBC in triaxial compression. It is shown that the S parameter decreases

consistently with increasing consolidation stress while the m parameter varies only slightly. A

corresponding decrease in the friction angle is observed with an increase in the consolidation

stress and this is shown in Figure 2.11.
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Figure 2.1 Average values of relative sizes, thicknesses and specific surface area of the most

common clay minerals (Yong & Warkentin, 1975)
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Figure 2.2 Sodium montmorillonite at different pore fluid salinities. Saltwater content L-R: 1, 4,

16, 64, 128 & 256 g/l NaCl. (1 g of soil used in each tube)
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Figure 2.3 Modes of particle association in clay suspensions and terminology (a) dispersed and

deflocculated (b) aggregated but deflocculated (c) edge to face flocculated but dispersed (d) edge

to edge flocculated but dispersed (e) edge to face flocculated and aggregated (f) edge to edge

flocculated and aggregated (g) edge to face and edge to edge flocculated and aggregated (Van

Olphen, 1977)
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Figure 2.4 Graph of attractive forces acting on illite soil particles in a low salinity environment

(Ladd & Kinner, 1967)

Figure 2.5 Comparison of the undrained shear strength of salt, leached and fresh-water clays

(Bjerrum & Rosenqvist, 1956)
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Figure 2.6 Soil profiles from the Caspian Sea: Atterberg limts on the left and measured

preconsolidation pressures on the right (van Paassen. et. al., 2004)
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Figure 2.8 Consolidation procedure for CKoU testing (Ladd, 1991)
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Figure 2.9 Normalized undrained shear strength versus OCR for AGS Plastic Marine Clay via

SHANSEP (Koutsoftas & Ladd, 1985)
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Figure 2.10 Normalized undrained shear strength versus OCR for RBBC from selected CKOUC

triaxial tests indicating the effect of stress level (Abdulhadi, 2009)
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3 MATERIALS USED IN TESTING
PROGRAM

3.1 INTRODUCTION

During the course of this research, a number of different soils were tested. These included

Boston Blue Clay (BBC), London Clay, several variations of Gulf of Mexico Clay and pure

sodium montmorillonite. Several derivatives of BBC were used and these will be described later

in this Chapter. Perhaps the most important distinction to be made in terms of the soils used is

the fact that BBC has been altered in several different ways for this research, therefore each

derivative has been given a different title and as such, will be treated as a different soil.

3.2 BOSTON BLUE CLAY

3.2.1 RESEDIMENTED BOSTON BLUE CLAY

Boston Blue Clay (BBC) is an illitic glacio-marine clay of low plasticity (CL) and

medium sensitivity. BBC was deposited in the Boston basin about 12,000 to 14,000 years ago

following the Wisconsin glacial period (Kenney, 1964). Natural BBC is present throughout the

Boston area and varies in thickness from 20 - 40 m. While the depositional history and general

characteristics of BBC are similar throughout the Boston area, some variability can be expected

in soil from different locations, and thus in the resedimented BBC specimens derived from these

natural sources. The properties of the clay depends on several factors, for example, the particle

size distribution, the chemistry of the pore fluid and the mineralogy.

The material used in this research is from Series IV which was obtained in 1992 from the

base of an excavation for MIT's Biology Building (Building #68). Approximately 2,500 kg of

soil was obtained at a depth of about 12 m. This soil had an OCR which varied between 1.3 &

4.3 (Berman, 1993). The processing of this soil is described in Cauble (1996).

Resedimentation of BBC at MIT has produced some 70 recorded batches of testing

material for a variety of projects. Table 3-1 summarizes the index properties reported for these
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batches used in research since 1961 (Series I, II and III). Table 3-2 summarizes research which

ha

was performed on RBBC at MIT since the 1960's.

3.2.2 BATCH DATA

The properties of BBC vary over the Boston area even though the basic mineralogy of the

clay is thought to be the same. Therefore, each time new material is obtained for

resedimentation, it is necessary to perform several index and engineering tests to verify that the

soil is reasonably similar to all prior source material. Another purpose of this testing is to obtain

basic engineering properties which are needed to characterize any cohesive soil. Table 3-3 lists

the index data for Series IV RBBC used in this research. In general, the index testing performed

is in agreement with previous determinations. The specific gravity, clay fraction and salinity of

the soil are all in agreement with previous researchers, however, in all determinations of the

Atterberg limits for this research, they were found to be consistently higher than previous values.

Figure 3.1 and Figure 3.2 shows the grain size distribution for Series IV BBC powder

obtained from the hydrometer test after Abdulhadi (2009) and Force (1998) respectively. In both

datasets, the soil has a fine fraction greater than 98 % passing the US #200. Abdulhadi

determined the clay fraction to be approximately 56 % while Force found it to be around 58 %.

In general, both distribution curves are in good agreement.

The Atterberg limits were determined a total of 5 times for this research; 3 times on

natural RBBC and twice on leached RBBC. The liquid limit for all soils tested was determined

using the fall cone in accordance with BS 1377-3. The plastic limit for all soils was determined

in accordance with ASTM D4318. The Atterberg limits tests were conducted with distilled

water, 1 g/l and 256 g/l pore fluid in order to ascertain whether the salinity would affect the

plastic or liquid limit. It was found that, despite the vast change in pore fluid salinity, the limit

values were not noticeably altered once allowance was made for the salt content. When allowing

for the salt content, it was assumed that salt has a specific gravity of 2.3 and that the mass of

water evaporated after oven drying is proportional to the mass of salt which remains -for

instance, if 10 g of water evaporates after oven drying in a 256 g/1 determination, it is assumed
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that 2.56 g of salt remains as a solid in the soil. This mass of salt would then be converted to a

volume which would then be added to the volume of water. An example of this calculation is

shown in Appendix B. A plot of the plasticity chart showing the results of these five

determinations can be seen in Figure 3.3. The limits recorded are slightly higher than those

observed by previous researchers. Figure 3.4 shows results obtained by Abdulhadi (2009) for

RBBC Series IV for comparison.

Measurement of the specific gravity Gs for series IV RBBC yielded an average value of

2.78 which is the same value obtained by Zriek (1994) and very similar to that obtained by

Sinfield (1994). The specific gravity value for Boston Blue Clay which was used in this research

was 2.78.

The natural salt content of RBBC Series IV was measured as described in Chapter 4 and

was found to be 10.7 grams of salt (NaCi) per liter (g/l) of pore fluid.

The test for organic content by loss on ignition was performed in accordance with ASTM

D2974 and was found to be 1.37 % after constant mass was achieved. This is lower than the

value obtained by Cauble (1996).

3.2.3 CONSOLIDATION BEHAVIOR DURING RESEDIMENTATION

When resedimenting BBC Series IV, the end of primary consolidation varies with the

drainage length of the soil in question. Given that drainage is provided at the top and bottom of

the consolidometer, the maximum drainage length will be half the axial length of the soil column

in question. In general, the time to reach end of primary is longer for the first few increments

while the soil still resembles a slurry. As the stress level increases and therefore the water

content of the soil decreases, the time to reach end of primary also drops. The axial displacement

also reduces as the stress increases and these observations are true for RBBC at all salinities.

Figure 3.6 and Figure 3.7 show these changes for a 64 g/l RBBC soil. These figures show that

the time to reach end of primary varies from around 24 hours when the soil is still a slurry to just

over 3 hours for the final increment. The decrease in time is due to both a reduction in the

drainage height and the coefficient of consolidation cv.
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3.2.4 ENGINEERING BEHAVIOR OF RBBC

This section presents a brief summary of the most important engineering properties of

RBBC available from previous research studies. The purpose of this section is to provide a clear

picture into the behavior of RBBC derived from previous laboratory testing. Only in previous

years has the consolidation behavior up to 10,000 kPa been investigated by Abdulhadi (2009)

and Casey (2011). Before this, previous studies were confined to relatively low stresses up to

1,000 kPa due to mechanical limitations of the testing equipment. This section will therefore

focus on the results from these two researchers for one-dimensional compression behavior, and

from other sources for lower stress triaxial testing.

3.2.4.1 ONE DIMENSIONAL CONSOLIDATION BEHAVIOR

Figure 3.8 from Abdulhadi (2009) shows compression curves for RBBC Series IV for

O'ac up to 10,000 kPa in conventional e-loga'ac space. These curves also demonstrate the

excellent repeatability which is available with RBBC when meticulous testing methods are

employed. The curves in this figure were obtained from the KO consolidation phase of triaxial

testing. The Ko algorithm used for the consolidation stage of triaxial testing at the MIT

Geotechnical Engineering Laboratory works by continually adjusting the cell pressure in order to

ensure zero radial strain as the specimen is being strained axially at a constant rate. The

compression curves are characterized by a well-defined yield close to the batch preconsolidation

pressure where the soil changes from overconsolidated to normally consolidated. In the

unloading portion, the slope of the curve is much steeper and becomes even steeper with

increasing OCR (reduction in axial effective stress).

The virgin consolidation line for RBBC is approximately linear with a somewhat constant

slope in the range of stress 200 - 10,000 kPa. At higher stresses the curve displays more of an S-

shape. The value of CR at low pressures is consistent with prior studies on RBBC, e.g. Ahmed

(1990), Sheahan (1991), Seah (1990) and Santagata (1994). The value of CR reported by

Abdulhadi at higher stresses is lower than any value previously quoted. The swelling ratio which

is defined as the average slope of the swelling line in Sa-logo'ac space, is approximately an order

of magnitude smaller than the CR value. As OCR increases from 1 to 4, the SR increases from

0.012 to 0.015.
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Figure 3.9 and Figure 3.10 show the variation in coefficient of consolidation reported by

two separate researchers. Although Force (1998) did not go to the same high stress levels as

Abdulhadi (2009), at low axial effective stresses the data compare well. The results in Figure 3.9

and Figure 3.10 were interpreted using the standard linear theory after Wissa et al., (1971). The

value of cv was computed from cv = kv/mvyw where kv and m, are directly measured from test

data. In general, cv decreases with an increase in axial effective stress in the recompression or

overconsolidated range and then drops abruptly at &'p. In the normally consolidated region, c

tends to increase with an increase in axial consolidation stress. Both datasets show c increasing

from a minimum of about cv = 20x10-4 cm2/sec at 'ac = 200 kPa (2 ksc) to cv = 40x10-4 cm2/sec

at a'ac =900 kPa (9 ksc).

Figure 3.11 and Figure 3.12 show the variation in axial hydraulic conductivity with void

ratio. The axial hydraulic conductivity decreases with a decrease in void ratio which represents

an increase in axial effective stress. Both researchers used Series IV RBBC and the testing was

performed more than a decade apart. The hydraulic conductivity curves presented by Force are

linear whereas the curves shown by Abdulhadi display a distinct change slope at a void ratio of

about 0.80. The reason these kinks are not present in Forces data is because she did not achieve

high enough stresses to realize such void ratios. There is, however, good agreement between the

data in the overlay range. The axial hydraulic conductivity reduces from approximately k=

2x10 7 cm/sec at &'ac = 200 kPa (2 ksc) to approximately 3x10-8 cm/sec at O'ac = 1,000 kPa.

The values of the coefficient of earth pressure at rest (Ko) can be obtained from feedback-

controlled 1 -D consolidation in the triaxial shear cell. Figure 3.13 and Figure 3.14 both show the

typical trend of Ko with axial effective stress during consolidation from two previous researchers.

These results show that the Ko value decreases during re-loading to the preconsolidation pressure

0'p and then increases slightly. Once the soil is consolidated well into the virgin compression

region, Ko = Konc remains fairly stable but there is a definite trend whereby the value increases

with an increase in stress level.

3.2.4.2 UNDRAINED SHEAR BEHAVIOR IN TRIAXIAL COMPRESSION

The undrained shear behavior of RBBC has been well studied by researchers at MIT

(refer to Table 3-2 Overview of previous studies performed using RBBC). The following
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Sections provide a brief overview into the general undrained shear behavior of the material in

one dimensional consolidated-undrained triaxial compression (CKoUC). The results are

presented in normalized form as this provides a very convenient format for presenting and

evaluating clay behavioral characteristics. The background into normalizing data has been

covered in Chapter 2. The following Figures will demonstrate the behavior of NC RBBC during

a CKOUC test and all plots are normalized. The results from these Figures have been verified by

many researchers such as Santagata (1998), Abdulhadi (2009) and Casey (2011).

Figure 3.15 shows the normalized shear stress-strain behavior for both normally

consolidated and overconsolidated RBBC (Series III) after Santagata (1994). It can be seen that

for a normally consolidated soil, there is a distinct peak corresponding to soil failure at very

small strains. A axial strain rate of 0.50 %/hr is used to produce the results in Figure 3.15 which

is the same rate that was used in this research.

The corresponding normalized effective stress paths using MIT stress space are shown in

Figure 3.16. The Figure shows the change in pore pressure development during a test. There is

little pore pressure generation up to a yield point, followed by much greater development

thereafter. Peak shear conditions coincide with a yield condition but the peak point moves further

down the stress path as the consolidation stress increases.

The excess pore pressure and shear induced pore pressures which are generated during a

test are shown in Figure 3.17 and Figure 3.18. The plots show that for a normally consolidated

soil, both the excess pore pressures and shear induced pore pressures continually rise from a zero

value with an increase in axial strain. This indicates fully contractive behavior for an OCR = 1

soil.

Figure 3.19 shows curves of the undrained secant Young's modulus versus axial strain

for RBBC at various OCR values. As the measurements were performed using external LVDT's,

the estimates are considered reliable only above 0.01 % axial strain. This figure shows that the

soil exhibits strong non-linearity from the very beginning of shear and that the decrease in

stiffness is particularly marked once the soil reaches failure due to the large amount of post peak

strain softening.
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Because the purpose of this research is aimed at investigating the effect of pore fluid

salinity on the mechanical behavior of soil, a simple sedimentation test was performed on all

soils in the testing program whereby a specific quantity of soil was placed in a test tube with pore

fluids of different salinities. This was done to see how the soil would behave in different pore

fluid environments and to give an indication as to where the greatest effects lay in terms of

behavioral changes. Several methods of agitating the soil in the tubes were attempted but the best

results in terms of reaction to variations in salinity were produced when the tubes were mixed in

an ultrasonic bath. This method was employed for all subsequent sedimentation tests. The results

from once such test for natural BBC Series IV can be seen in Figure 3.20. The test shows that for

a wide range of pore fluid salinities, natural BBC Series IV displays little if any visible change in

behavior. The same amount of soil has been used in each tube (5 g) and the soil sediments to

almost the same height for all salinities. This simple test was also performed on leached BBC

and can be seen in Figure 3.21. In this test, an additional tube containing 0 g/l (distilled water)

was used. Again, 5 g of soil was used in all tubes but this time the sedimentation height is

roughly twice that which was observed for the natural BBC Series IV soil. With an increase in

pore fluid salinity, a very slight increase in sedimentation height is observed indicating a larger

void ratio with an increasing salt content. An interesting observation is that a portion of the fine

fraction in the distilled water tube has not settled out and continues to remain in suspension

occupying all the free water space in the tube. The coarse element of the leached BBC can be

seen at the bottom of the 0 g/l tube. It is believed that this fine faction which has not settled, was

produced when the soil was leached, which in turn deflocculated the soil. With the addition of

just 1 g of salt (per liter) to the pore fluid, the effect is no longer visible.

3.2.5 TERMINOLOGY OF BBC SERIES IV DERIVATIVES USED

Several derivatives of RBBC were used for testing purposes. The RBBC Series IV was

altered in numerous ways in order to derive changes in behavior. These alterations involved

removing the natural salt from RBBC Series IV powder in an attempt to deflocculate the natural

fabric, and also adding a dispersing chemical called sodium hexametaphosphate to a quantity of

RBBC Series IV. These alteration processes are described in Chapter 4. Because of this work, it

is necessary to establish terminology relating to each soil for clarity.
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The BBC powder contained in BBC Series IV will be called natural RBBC Series IV. It

still contains all the same elements as a powder, as it would if it were buried in the ground. The

only processing of this soil has been to air dry and grind it to a powder passing a US#100 sieve.

It was thought advantageous to remove as much of the natural salt from a quantity of

BBC Series IV powder to determine if the mechanical behavior would be altered. This was

performed by washing about 3.5 kg (dry mass) of soil with distilled water in a centrifuge. Each

run of the centrifuge could process 120 g of soil. It was therefore a laborious and time consuming

activity. After the soil was washed once, it was air dried and ground to a powder in order to pass

a US#100 sieve and then processed through the centrifuge a second time. After the second run,

the soil was once again air dried and ground to pass a US#100 sieve. The resulting powder was

then used for resedimentation. This soil will be termed leached RBBC.

Following on from the idea that leaching BBC Series IV powder would disperse the

fabric and structure of the soil, it was decided to completely obliterate any residual flocs for 300g

of BBC Series IV powder using sodium hexametaphosphate. This chemical is used in

Geotechnical laboratory testing as a dispersing agent when performing the particle size

distribution test by sedimentation. It is an established fact that the chemical completely disperses

all existing soil fabric and structure thereby reducing a soil to its rudimentary individual

elements. Because this chemical is detrimental to the behavior of all soils, it is to be used with

extreme caution in a Geotechnical laboratory. Particular care must be taken when testing a soil

which contains the chemical in its pore fluid, such was the case with this soil because of the

process used to create it. Because the name of the chemical is so long, the soil will be referred to

as sodium hex RBBC (sodium hexametaphosphate BBC).

3.2.6 KILLIAN COURT IN-SITU BBC

In June of 2010, samples of in-situ BBC were recovered from the MIT campus under the

Killian Court area. Figure 3.22 and Figure 3.23 identify this location relative to the MIT main

building. The samples were recovered in 7.2 cm (internal diameter) brass Shelby tubes. These

tubes were subsequently x-rayed by Dr. John Germaine at MIT prior to testing in order to

determine if any impurities were present and also to ensure uniform soil specimens are obtained

once the tubes are cut. A total of two tubes were used for this research and were identified as
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B10-T2PA S3 (51 - 53 ft deep) and B10-T2PA S2 (48 - 50 ft deep). A log of the borehole which

these samples were obtained from can be seen in Figure 3.24. This material will be referred to as

in-situ Killian Court BBC.

3.2.7 SCANNING ELECTRON MICROSCOPE IMAGES

Scanning Electron Microscope (SEM) images were taken of natural RBBC Series IV at

different salinities and at different stress levels. The images presented are done with thanks to the

Bureau of Economic Geology at the University of Texas at Austin. All images were taken on

oven dried specimens in the vertical plane - for clarity, this orientation is shown in Figure 3.25.

Figure 3.26 presents two images of natural RBBC Series IV at 4 g/l and at a maximum

confining stress of 100 kPa. The stress represents the soil after resedimentation in a

consolidometer which has been unloaded to an OCR of 4. Figure 3.27 shows natural RBBC

Series IV at the same stress level which was resedimented with 256 g/l pore fluid. At first glance,

it is not apparent what differences, if any exist between the structure or fabric of both specimens.

For this reason, a side by side analysis is conducted in Figure 3.28. In this figure, the 4 g/l

images are placed on the extreme left and extreme right of the page and are overlain by a 256 g/l

image. The images are demarked by a black border on the 256 g/l image. It can be seen from

these images that both fabrics are very similar despite the large difference in pore fluid salinity.

It is hypothesized that the fabric which is being observed at both salinities is not a function of

their resedimentation pore fluid salinity, but rather as a function of the remaining flocs in the soil

after processing. The fabric of both salinities is therefore said to be the same. This hypothesis

will be further developed in Chapter 5.

Figure 3.29 shows two images of leached RBBC at a pore fluid salinity of 1 g/l and at a

stress of 100 kPa. Figure 3.30 shows two images of the same salinity soil but this time at a stress

of 1,000 kPa. Despite the order of magnitude change in stress level, very little difference can be

seen in the fabric of the soil. Given that both sets of images are at different stress levels, the keen

reader would expect a denser packing of particles (given the associated reduction in void ratio),

as well as more particle orientation. Upon visual examination of both sets of images, this is not

the case. Figure 3.31 shows a side-by-side analysis of both sets of images. 1 g/l images at 100

kPa are placed on the extreme left and right and both are overlain by another image; 1 g/l at a
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stress level of 1,000 kPa. Without demarcation by the central image border, distinction between

all three photos would be very difficult. It is further hypothesized that despite the difference in

stress of one order of magnitude between both image sets, very little if any rearrangement of

particles has occurred. It is proposed that the flocs which are visible in both image sets are

accepting stress and deforming very little - similar to a steel truss and like a steel truss, failure

will occur at some load whereby particles will start rearranging. This stress level for failure to

occur at has been identified in Chapter 5.

Images of BBC which has been dispersed with sodium hexametaphosphate and

subsequently resedimented are shown at different stress levels in Figure 3.32 & Figure 3.33.

Both of these Figures contain images at two different magnifications so a comparison is drawn

between both stress levels in Figure 3.34 & Figure 3.35 at the same magnification. It is apparent

that there is now more of a reduction in void space between different stress levels, however,

images displaying such difference in stress level (100 vs. 10,000 kPa) have not been compared

up to now. Further analysis is performed on images of sodium hex BBC and natural RBBC series

IV in Figure 3.36. It is now evident that dispersion of the fabric has occurred as intended and that

a much denser (lower void ratio) soil is produced at the same stress level in the sodium hex BBC.

3.3 LONDON CLAY

3.3.1 INTRODUCTION

During this research, access was obtained to a batch of London Clay via a Civil

Engineering contractor whom the author previously worked with. Ward & Burke Construction

Ltd. were constructing a 1.20 m internal diameter open face tunnel in the Hendon area of

London, England during the summer of 2011. Approximately 300 kg of the material they

excavated during this work was shipped to the MIT Geotechnical laboratory for research

purposes. Because of the methods used to excavate this soil, it is not possible to test intact

samples and therefore the soil received at MIT was processed and used for resedimentation. This

is the first instance of London Clay being resedimented and tested at MIT. London Clay in a

similar fashion to Boston Blue Clay is a heavily researched soil insofar as both soil deposits are

home to leading Geotechnical research institutions. For this reason a large bank of data exists on

the properties of the soil. London Clay is, however, notorious for its variability from location to
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location. Although it is often treated as a uniform material, significant variations in strength,
stiffness and consolidation behavior within the London Clay formation are directly linked to a

variable depositional history (Pantelidou & Simpson, 2007). It is fortunate that an extensive and

relatively thorough site investigation program was undertaken for the project from which the soil

was received. Laboratory testing of intact samples was also performed. The results from this

report will be referenced as well as the already existing database of information on London Clay.

Figure 3.37, Figure 3.38 and Figure 3.39 identify the location of the project site. The site is

located off Rosemead and Cool Oak Lane, West Hendon, NW9 7QS. Figure 3.39 give GPS
coordinates which will pinpoint the site exactly.

3.3.2 LONDON CLAY CHARACTERISTICS

London Clay is a stiff heavily overconsolidated marine clay, deposited across the London

and Hampshire Basins of South-East England. It was deposited in the Eocene period around 30
million years ago. The soil is the principal geological formation in the London district and is of

considerable engineering importance to the area. London Clay provides the stratum on which

many large buildings and bridges are founded, and through which a great deal of the local

underground railways are driven. The commonly referenced point for this sedimentary deposit is

its base, the material was deposited from the base upwards, with erosion, re-deposition and other

events continually changing the top of the formation. In some localities the full thickness of the

bed is present and is found to be between 100 and 145 m thick. Under London itself, the

formation has undergone considerable erosion and is now only between 28 & 43 m thick. It

belongs to a type known as "stiff fissured" clay and is slightly laminated. Normally it has a dark

bluish-grey color but in the surface layers, oxidation of ferrous to ferric salts changes its color

from blue to brown. In some regions, this zone of oxidation has been proved to a depth of 13 m

(Cooling & Skempton, 1942). The London Clay retrieved from Hendon was of the oxidized type

and a photo showing the clay as extracted from the ground can be seen in Figure 3.40.

According to King (1981), five sedimentary cycles have been recognized within the

London Clay formation representing an initial marine transgression followed by a gradual

reduction in sea level. At the boundaries between subdivisions, there are abrupt changes in the

coarse-grained content and mineralogy. A typical cycle starts with a bed containing scattered

69



glauconitic grains and, in some cases, rounded flint pebbles. This is followed by a sequence of

clays which become progressively more silty and sandy upwards (Pantelidou & Simpson, 2007).

A stratigraphic diagram of what has been described is shown in Figure 3.41. The soil from the

Hendon project was excavated at a depth below ground surface of approximately 6 m. Although

the boreholes from this particular development did not reach bedrock, in a borehole obtained

from the British Geological Survey website which was drilled close by, chalk was encountered at

a depth of 63.1 m below ground surface. Assuming the ground level for this borehole is at a

similar level to the ground level at the tunnel location, this places the soil received to MIT in

Division C from Figure 3.41.

While handling the London Clay in the laboratory, pockets of "clear" sand, pockets of

white sandy areas as well as blue veins were visible to the naked eye. Upon further investigation,

it was determined that these inclusions were quartzI while the blue veiny areas were believed to

be flow channels for ground water through the soil. Figure 3.42, Figure 3.43, Figure 3.44 and

Figure 3.45 show the pictures of the London Clay in its natural state as received to the MIT

Geotechnical Laboratory. The mineralogy of the in-tact soil is shown in Figure 3.46. These data

are not available for the project location at Hendon. The figure shows that London Clay is

composed mostly of quartz and has a large clay fraction. The specific surface area of the London

Clay closest to the Hendon location is roughly 175 m2/g of soil. The particle size distribution

shown in Figure 3.47 is from site investigation (SI) information from the project and shows that

4 % of the soil is above sand size, with the largest particle recorded being 3.35 mm. The

coefficient of curvature and coefficient of uniformity are not available because the Dio and D30

particle sizes are not available. The site investigation curve shows that the soil has a 56 % clay

fraction and this agrees well with a particle size distribution by sedimentation performed at MIT

by Brendan Casey which is shown in figure Figure 3.48. Particle size analysis performed at MIT

does not show the sand fraction which was identified in the SI information because the soil used

at MIT had been ground prior to testing.

The Atterberg limits for London Clay were determined several times for the site

investigation and are shown in Figure 3.49. A plot of the Atterberg limits determined at the MIT

Geotechnical laboratory is shown in Figure 3.50. The liquid limit (wl) was found to be 73.8 %

while the plastic limit (wp) is 30.5 %. This gives a plasticity index of 43.3 %. The soil is classed
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as a clay of high plasticity (CH) using the Unified Soil Classification System (USCS). The soil

plots just above the A line as can be seen in Figure 3.49. As the soil was shipped to MIT in

sealed durable plastic bags, a water content determination was performed. The natural water

content was found to be 31.6 % and although it is acknowledged that this water content may

differ from the natural water content in the, it is in fact slightly higher than water content

determinations shown in Figure 3.52 performed on freshly excavated soil. Upon further

examination of the Atterberg limit data from several locations in London which are shown in

Figure 3.51, it can be seen that the soil received to the MIT Geotechnical laboratory is very

representative of the mechanical behavior exhibited by London Clay. The water content is just

above the plastic limit for the soil and gives a liquidity index (I) of 0.03. The activity of the soil

(A) is defined by Skempton (1953) as the plasticity index divided by the clay fraction (less than

2 pm). The activity for London Clay is therefore A = 0.77. Clays with an activity of 0.75 < A <

1.25 are classified as normal. A < 0.75 are inactive clays and A > 1.25 are active clays. It is

believed that the activity of a soil is only at best, a crude estimate of likeliness of a soil to prove

troublesome. It is more advantageous to determine the mineralogy of the clay fraction to

determine how a soil is likely to behave. Although a detailed mineralogy of the London Clay

from Hendon is not available, Figure 3.53 presents the mineralogy of London Clay from multiple

locations throughout the London Basin. In general, the dominant mineral is smectite followed by

an almost equal portion of illite and kaolinite with chlorite making up the smallest fraction.

The specific gravity, Gs, of the soil was found to have an average value of 2.80 from

three determinations performed at MIT. This value was used in all phase relation calculations for

London Clay. This value is higher than those obtained in the literature from previous studies on

London Clay such as Cooling & Skempton (1942), and Ward (1959).

The method in which the natural salt content of the soil is measured will be described in

Chapter 4 and was found to be 12 grams of salt (NaCl) per liter (g/l) of pore fluid at a water

content of 31 %.

The test for organic content by combustion was performed in accordance with ASTM

D2974 and was found to be 4.12 %. This is much lower than the loss on ignition tests performed

for the SI document. For the SI, the loss on ignition was found to be 7.9 - 9.2 %, however, after
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examining the appropriate British Standard (BS1377-3) which the SI tests were performed in

accordance with, it was found that the soil is to be initially dried at a temperature of 50'C as

opposed to 105'C for the ASTM standard. For a highly plastic soil such as London Clay, there

may still be moisture present in the fabric of the soil after oven drying to this temperature. It is

believed that remaining moisture has produced the higher numbers quoted in the SI document.

The effect of varying the pore fluid salinity for London Clay can be seen in Figure 3.54.

In this determination, the 128 g/l tube has been replaced with a 0 g/l (distilled water) tube. This

distilled water was used in an attempt to see the full potential of any double layer growth in the

natural soil. Unlike what was observed for the natural BBC Series IV, there is now a clear

difference in sedimentation heights dependent on the pore fluid salinity present. The 16 g/l tube

produces the largest sedimentation height of all salinities which is counter intuitive. One would

expect to see a higher sedimentation height as the salinity decreases. This is not so in the case of

the London Clay under scrutiny. The test was repeated several times changing out the soil and

pore fluid each time in order to eliminate the possibility of experimental error, and the same

results were obtained each time. It is believed that this is the actual response of the soil to

changes in salinity. If we examine the tubes on either side of the 16 g/l tube, it can be seen there

is a trend whereby as you move away from this salinity in either direction, a drop in

sedimentation height is observed. This is attributed to floc interaction. The distilled water tube

does not harbor full double layer development for this soil which indicates that with an

increasing ionic supply (up to a certain level), double layer development is promoted. It is

believed that processing some leached London Clay would indicate if this trend can be altered,

thereby indicating that flocs are indeed responsible for the observed behavior.

Previous published work on London Clay in the Hendon area include Marsland (1974),

Marsland (1977), Skempton (1959) and Tchalenko (1968).

3.3.2.1 CONSOLIDATION BEHAVIOR DURING RESEDIMENTATION

In a similar fashion to RBBC, the time to reach end of primary takes longer for the first

few increments while the soil still resembles a slurry. As the stress level increases and therefore

the water content of the soil decreases, the time to reach end of primary drops. In contrast to

RBBC, the axial displacement increases with increasing stress level as can be seen from Figure
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3.55 and Figure 3.56. These figures show that the time to reach end of primary varies from

around 38 hours when the soil is still a slurry to just over 23 hours for the final increment. It is

worth reiterating that these figures depend on the drainage length. The increase in deformation

with increase in stress level would suggest that there is not yet full particle to particle contact at

the given stress and that a strong double layer or some other chemical effect is partially

supporting the applied load. The fact that this is accompanied by a reduction in time to EOP also

suggests that less pore water is available to initially support the applied load. A theory can be

extracted from these data that even though particle to particle contact is not present, the double

layer of the soil is occupying an increasing volume of the void area thereby reducing the pore

fluid available to support load. It can therefore be assumed that the bound water in the double

layer is not contributing to the flow of water in the pore space. This assumption is in line with

what is stated in Robinson & Allam (1998).

3.3.3 ENGINEERING BEHAVIOR OF RESEDIMENTED LONDON CLAY

This section provides a brief summary of previous work on both intact and resedimented

London Clay. Because the research in this thesis examines the one dimensional behavior of

resedimented London Clay, reference to previous work will only include oedometer test results.

No instances of London Clay being tested via the CRS device were found during the literature

review.

3.3.3.1 ONE DIMENSIONAL CONSOLIDATION BEHAVIOR

The one dimensional consolidation behavior of London Clay has been studied by various

researchers in the past (Ward, 1959; Cooling & Skempton, 1942; Gasparre, 2005). All previous

one dimensional testing has been performed in an oedometer (with the exception of one

dimensional consolidation performed during triaxial testing). It is a typical trait of stiff intact

specimens tested in the oedometer that the preconsolidation pressure is hard to define. This is

because the slope of the reload and VCL are more similar than what is observed in other soils.

This leads to a more gradual change from overconsolidated to normally consolidated behavior.

This transition can span a large axial stress range despite extreme care being taken in sample

recovery. Such examples of this are shown in Figure 3.57, Figure 3.58 and Figure 3.59. Two of

these Figures are from the SI document from the Hendon development and show that the
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preconsolidation pressures for both tests will fall in the 200 - 500 kPa range. Both specimens

were recovered less than 10 m below ground level and are taken from an area which has

undergone extensive weathering and erosion. The soil tested in Figure 3.59 is from the Heathrow

Airport location where it is known that a greater thickness of the natural London Clay formation

still exists. This means the soil recovered will invariably have a larger preconsolidation pressure

given that it would have been closer to the applied load during glaciation of the area. This is

reflected in the preconsolidation pressure seen for the test - approximately 3,000 kPa. The void

ratios at a given stress are relatively small which is understandable given the millions of years of

secondary compression which the soil has undergone.

Figure 3.60 shows compression data from a resedimented London Clay specimen for

research performed at Imperial College in London. For tests performed on resedimented

material, there is a relatively large scatter in void ratio at a given stress level and there is no

apparent batch preconsolidation pressure. The results from Figure 3.60 give larger void ratios at

a given stress than in-tact material. Reasons for these variations are not immediately apparent,

however, the cause could be attributed to different soil mineralogy, different resedimentation

techniques or different testing procedures.

3.4 GULF OF MEXICO SOIL

3.4.1 GULF OF MEXICO - URSA

Resedimented Gulf of Mexico - Ursa (RGOM - Ursa) soil was recovered during the

Integrated Ocean Drilling Program (IODP) Expedition Leg 308. This expedition involved

drilling three cores in the Ursa Basin. The Ursa Basin is located approximately 100 miles south-

east of New Orleans. It is located on a continental slope. A location map of the Ursa Basin is

shown in Figure 3.62 while Figure 3.64 shows a more detailed map of the area where the borings

were performed. The soil used for this research was obtained from core U1322 which is

identified in the Figure. The main reasoning behind the exploration were to analyze slope

stability in the region which could trigger tsunamis and also to explore energy resources in the

area.
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Atterberg limits were performed in the MIT Geotechnical Laboratory by Brendan Casey.

The liquid limit (wi) was found to be 51.7 % and the plastic limit (wp) 23.7 % - the

corresponding plasticity index is therefore 28 %. The location where GOM-Ursa soil plots on the

plasticity chart is shown in Figure 3.64. The soil is classified as a clay of high plasticity (CH).

Figure 3.65 shows a particle size distribution curve for GOM-Ursa soil performed in the MIT

Geotechnical laboratory. It can be seen that the soil has a clay content of approximately 43 %.

The activity of GOM-Ursa is 0.65 rating it as an inactive clay. Compression data for RGOM-

Ursa were presented by Mazzei, (2007) but are not referenced here because it is believed they

produced abnormally high void ratios at a given stress value. A specific gravity (Gs) value of

2.667 was used in the phase relation calculations for GOM-Ursa soil.

3.5 SODIUM MONTMORILLONITE

Montmorillonite is an ideal medium for the theoretical investigation of how clay minerals

react to a change in salinity of the pore fluid. This fact can be seen in Figure 3.66. This Figure

demonstrates the effect of the pore fluid salinity on double layer growth. At low salinities such as

1 g/l, the ionic concentration in the pore fluid is low and therefore a large double layer develops

around the clay particle; there is very little if any particle to particle contact in the low salinity

tubes. With an increase in salt content, a corresponding reduction in sedimentation height is seen.

This demonstrates that double layer growth is reducing as the salinity increases. In high salinity

water, double layer growth is inhibited and the soil sediments to a much lower height given that

there is more particle to particle contact. At a salinity of 64 g/l, the double layer effect has been

eradicated and all salinities higher than this produce the same sedimentation heights regardless of

salt concentration. For this research, montmorillonite was resedimented to two pore fluid

salinities. These were 1 & 256 g/l. It is now acknowledged that the same results would most

likely have been obtained from a 64 g/l batch as a 256 g/l batch. Large differences in water

content were required for resedimentation at the two extremes. 1 g/l sodium montmorillonite

required a water content of 1,050 % while the 256 g/l soil required 100 % water content. This

represents more than an order of magnitude difference in required pore fluid based on how much

the double layer is allowed to develop.

75



3.5.1 ENGINEERING BEHAVIOR OF SODIUM MONTMORILLONITE

This section gives a brief description of the established engineering characteristics of

sodium montmorillonite. Several authors have previously studied the one dimensional behavior

of several types of montmorillonite and other pure clay minerals, however, only results relevant

to sodium montmorillonite tests will be shown here. The Atterberg limits were determined for

this soil. Both the Casagrande Cup (ASTM D2487) and Fall Cone (BS 1377 - 3) method were

used to determine the liquid limit. They gave a liquid limit of 634 % and 505 % respectively.

This is consistent with the trend that a higher liquid limit is observed with the Casagrande Cup

for soils of higher plasticity. Both methods typically agree well for soils with liquid limit values

between 10 and 100 % (Germaine & Germaine, 2009). The plastic limit was found to be 76 %.

3.5.1.1 ONE DIMENSIONAL CONSOLIDATION BEHAVIOR

Figure 3.67 shows one dimensional compression data obtained from previous tests by

Mesri & Olsen (1971a). They show that for tests with very low electrolyte concentration (low

salinity), the void ratios can be very large - up to 34 or 35. With an increase in electrolyte

concentration, a corresponding decrease in void ratio at a given stress is seen. As expected, for

an increase in axial consolidation stress, a decrease in void ratio is recorded. The compression

curves for all electrolyte concentrations reach a common void ratio at a stress level of around

2,800 kPa (60,000 lb/ft2). The void ratio quoted at this stress is approximately 1.0. The curves

display a definite yield point corresponding to a preconsolidation pressure which indicates that

the soil remembers its stress history upon unloading. There is a change of slope in the normally

consolidated range with an increase in stress, and this change is more pronounced for the lower

electrolyte soils. Upon unloading of the soil, the higher electrolyte soils exhibit less of a recovery

in void space than the lower electrolyte tests.

Previous authors who have studied the compression behavior of clay minerals and the

effect of clay mineralogy on compression characteristics have noted that for clays such as

montmorillonite, a decrease in cv is recorded with an increase in stress level. This is contrary to

kaolinite and illite whose c, values rise with an increase in stress level. Since this research

involved testing montmorillonite at two very different salinities, it is worth noting that the

compressibility of clays is influenced by mechanical and physicochemical effects depending on
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the type of pore fluid. The term mechanical is used to denote short range particle interactions

controlled by the physical properties of the mineral particles namely their strength, flexibility and

surface friction. The term physic-chemical signifies comparatively long-range interactions

between particles, especially through double layer interaction. The virgin compressibility of the

majority of minerals is primarily controlled by mechanical effects, whereas physicochemical

effects control the compressibility of montmorillonite. In very high salinity environments, the

double layer around the particles are suppressed and the compressibility of all clay minerals,

including montmorillonite will be influenced mainly by mechanical effects (Olson & Mesri,

1970a; Sridharan & Rao, 1976; Robinson and Allam, 1998).

As this research tests montmorillonite at salinities in which the double layer is no longer

present, and where it is almost fully present (ref Figure 3.66), it is anticipated that a large

difference will be observed in one dimensional compression behavior based on the differences of

mechanical compression of the grains and physicochemical compression of the matrix. This was

observed during the resedimentation process for montmorillonite at both salinities. High salinity

montmorillonite reached the end of primary consolidation very quickly. This time was very

comparable to most other soils being resedimented. Although the compression data obtained

during resedimentation was poor because of sidewall friction associated with the porous stones,

it was seen that the time to the end of primary consolidation did not change with an increase in

stress level and was almost constant at between 10-15 hours for every increment with no trend

versus stress level. This is further evidence that there was mechanical contact from a very low

stress and that any deformation of the soil is down to mechanical bending and breaking of the

particles. The low salinity montmorillonite provides a glaring contrast to this. The low salinity

montmorillonite was resedimented on the 2 0 th of December 2011, and end of primary

consolidation was not recorded until the middle of May 2012. Even though the end of primary

consolidation was not reached for each load increment, the next load was applied in an attempt to

keep the consolidation process moving. No end of primary event was recorded for any load

increment save the last one. A typical time displacement curve for one such increment can be

seen in Figure 3.71 and Figure 3.72. Figure 3.71 which is plotted in square root of time space

shows the line curving downward with increasing time (square root of time), this indicates a

reduction in the cv value and is consistent with the findings of Robinson & Allam (1998).
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Although data from previous one dimensional testing on montmorillonite was obtained from

oedometer testing, it is believed that the soil has not been tested in the Constant Rate of Strain

device previously as no data could be found in the literature to suggest so.

3.5.2 SCANNING ELECTRON MICROSCOPE IMAGES

Scanning Electron Microscope (SEM) images were taken of sodium montmorillonite at a

stress level of 200 kPa (after resedimentation). As with the BBC images presented in Section

3.2.7, all images were taken on oven dried specimens in the vertical plane.

Figure 3.73 presents images of sodium montmorillonite resedimented to a stress of 200

kPa with a pore fluid salinity of 256 g/l. At this pore fluid salinity it is thought that any double

layer effect has been eradicated by the ionic concentration, therefore purely mechanical contact

between soil grains dominate the soil behavior. Shrinkage cracking is evident in both images

presented in Figure 3.73. Even though the soil has had any double layer effect killed off and can

exist as a relatively stable soil while saturated (as a slurry), issues can still arise upon drying of

the soil. Figure 3.74 & Figure 3.75 show comparisons between the fabric of sodium

montmorillonite and RBBC at similar stress levels. Figure 3.74 presents a comparison with

natural RBBC Series IV while Figure 3.75 compares sodium montmorillonite with sodium hex

BBC. Both comparisons are made at the same magnification and despite what looks like a more

open fabric in both BBC soils, they exist at a lower void ratio than the sodium montmorillonite.
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Yew R intr Sais Sowcs G vi i y Ip Cay Frac. Sal

1 Baily a MAT 2.77 30.0 17.5 12.5 40 2-3
1139 34.7 17.7 17.0 35

1963 hks 36.2 195 16.7 16.7
1964 Vallyay S4 32.6 19.5 13.1

S3 33.3 20.4 12.9 35 16.8
-6 32.8 20.3 12.5 16.0

1965 LA R.S b 2.77 45 22 23 16
195 SI 2.77 4$.6 23.4 22.2 35 24
1966 be 2 2.77 45.4 23. 223 22
1967 - - 34.5 23.9 19.6
1970 Khmw 100 2.78 43.5 19.6 23.9 50

150 43.5 19.6 23.9
200 38.1 17.8 20.3 52 8
300 39.7 21.6 1.1 10
400 39.4 21.3 19.1 52 10
800 41.5 19.5 22.0 48 16
900 41.2 18.7 22.5 54 16
1000 41.1 19.5 22.6 58 16
1100 42.0 20.6 21.4 16
1200 40.2 18.6 21.6 48 16

MIN0 40.7 19.6 21.1 52
M104 40.3 19.6 20.7
M107 41.3 19.6 21.7
m 42.3 18.5 23.8 52

M400 39.8 18.9 20.9 47
1971 Lad et aL 160 2.78 381 17.8 20.3 8

1300 42.1 22.1 20.0 16
1500 43.8 206 23.2 16

1934 somnd a 105 2.75 47.6 23.3 243 16
111 2.75 47.1 24.9 22.2 16

195 ONeil 105-112 2.78 41.3 22.1 192 52 16
1939 Sub M0 200-207 2.78 45.2 21.7 23.5 538 16
1991 Shhan 210,214, 45.6 21.4 24.2

216
1993 CaMe 217-218 2.78 37.0 213 15.7
1994 SMM 1219-220 , 40.4 20.9 19.5 -

Table 3-1 Index properties of RBBC from Series I - III (after Cauble, 1996)
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Testing
Series Year Researcher Topic Performed

1 1961 Bailey Effect of salt concentration on undrained shear
strength

1963 Jackson Thixotropy Triaxial

1964 Varallyay Influence of stress system on undrained strength Triaxial

1965 Ladd Use of pressure transducers to measure soil pressure

1965 Preston Sample disturbance Triaxial

1966 Braathen Disturbance effects on undrained strength Triaxial

1967 Dickey Development of plane strain device Plane strain device

1967 Rixner Behavior in plane strain at OCR 1, 2 & 4 Plane strain device

1968 Bovee Behavior in plane strain at OCR 1, 2 & 4 Plane strain device

1970 Kinner Behavior of strip footings during undrained loading Model footing tests

II 1982 Germaine Cross-anisotropic behavior at OCR 4 DSC, Triaxial

1984 Bensari Stress-strain and yielding behavior Triaxial

1985 O'Neill Anisotropy of thixotropic clay DSC, Triaxial

1986 Fayad Volumetric and undrained behavior Triaxial

1987 Malek Behavior under cyclic loading DSS

III 1988 Walbaum Investigation of sample disturbance DSS

1988 Sheahan Modification of computer controlled triaxial Triaxial
apparatus

1989 DeGroot Behavior in undrained multidirectional DSS at OCR DSS
1

1990 Ahmed Normalized behavior in DSS DSS
1990 Seah Anisortopy at OCR 1 DSC
1991 Ting Performance of sand drains Model Testing

1991 Sheahan Time dependent materials Triaxial

1992 Ortega Computer automation of DSS DSS

1993 Cauble Cyclic and post cyclic behavior in simple shear DSS

1994 Santagata Simulation of sampling disturbance in soft clays Triaxialusing triaxial tests

IV 1994 Sinfield Simulation of sampling and effects on compression CRS, Triaxial
and shear

1996 Cauble Behavior of model suction caisson Model Caisson

1998 Santagata Pre-failure behavior Triaxial

1998 Force Strain rate selection in triaxial tests CRS

2000 Gonzalez Investigation of CRS consolidation CRS

2009 Abdulhadi Stability of Boreholes Triaxial, Model BH

2009 Moniz Normalized behavior in triaxial extension Triaxial

2011 Casey Significance of end restraint in triaxial testing Triaxial

2011 Adams Measurement of hydraulic conductivity in CRS CRS

2012 Marianovic Shear wave velocity Bender Element
Apparatus

2012 Horan Effect of salt on normally consolidated behavior CRS, Triaxial

Table 3-2 Overview of previous studies performed using RBBC
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W1 WP IPClay Salt
Year Researcher Batch Gs Fraction

1994 Zriek powder 46.4 22.5 23.9 2.78 60.1

1994 Sinfield powder 47 23.8 23.2 2.79

402 46.8 22.4 24.4

403 47.2 23.3 23.9

1996 Cauble powder 2.81

401 46.7 21.8 24.9

404 47.4 21.9 25.5 10.4

405 45.2 22.1 23.1 10

406 45 22.6 22.4 57.6 12.5

407 44.6 23 21.6 57.8 13.1

408 44.7 23.9 20.8 58.7 10.1

409 45.4 24 21.4 56.8 13

410 46.6 25 21.6 13.4

411 46.7 24.5 22.2 56.9 10.2

413 45.5 24.3 21.2 9.7

414 46.3 24.3 22 12

415 46.1 24.7 21.4 10.5

416 46.7 24 22.7 12.9

417 47.2 24.5 22.7 13.2

1998 Santagata 418

419 47.8 23.3 24.5

1998 Force 420 45.2 23.3 21.9

2009 Abdulhadi powder 46.5 23.5 23 2.81 56 11.1

2012 Horan powder 49.6 25.4 24.2 2.78 56 10.7

Ig/"pore 50.16 23.6 26.56water *

256 g/l
pore water 46.8 24.4 22.4

I g/ pore 49.3 24.7 24.6water #

256 g/l
pore water 47.4 25.6 21.8

1 - Atterberg limits performed with distilled water
* - Atterberg limits performed on Series IV BBC powder with pore fluid at the salinity shown
# - Atterberg limits performed on Series IV BBC which had been leached twice in a centrifuge, with pore
fluid at the salinity shown

Table 3-3 Index properties of BBC Series IV (extended from Santagata, 1998)
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Table 3-4 London Clay properties determined from laboratory testing from West Hendon

development (West Hendon development, SI document)
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Borehole Sample Depth
Number Number (M)

BH1 D3 1.50-1.95
BH1 D8 7.50- 7.95
B12 D4 3.00 - 3A5
B12 D9 7.50-7.95
61B2 D16 16.45-16.55
61B2 D20 22.45 - 22.55
B13 81 0.50
61B3 D8 4.50-4.95
BH3 D12 10.50 -10.95
B13 D13 12.00 - 12.45
B14 D3 1.50-1.95
B14 D7 6.00 - 6.45

Wet Moisture Dry Saturated Porosty
Densiy Content Density Moisture Content

Mghn % Mgrm % %
1.99 24.39 1.60 25.4 40.7
1.95 29.09 1.51 29.2 44.1
1.93 31.33 1A7 31.1 45.6
1.95 27.79 1.52 28.5 43.5
1.95 27.23 1.53 28.3 43.3
2.01 25.37 1.61 25.3 40.5

Test Caelled - Unsui matedal
1.90 28.68 1.48 30.6 45.2
1.98 27.82 1.55 27.6 42.7
1.94 30.00 149 30.0 44.7
1.95 28.85 1.51 29.2 44.1
1.98 27.47 1.55 27A 42.5
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Depth

(n)

1.00

1.0-1.956

3.00- 3A

4M-4.95

10.25-11.5

14.00 - 145

20.00-20A5

24.-24A5

27.5-27A5

239.50 - 300

1S00-15 

0.50

3.3-391

0.50

1.5

4.6-5.05

9.9-10.5

04-0.50

1M-120

04-sA5

1.0-1.20

7.7 0AN 0.24e 0.01 4.0 42.0 - - -

- - - - - - 1.0 7.0

- - - - - - - 02 7.9

7.3 0. 5. 0.29 s0 3.6 770 - -

7.9 0.2 2.3 0-57 4.0 2.0 - - -

7.6 0-19 1. 0.96 4.0 -2A - - -

7.5 0.17 1.7 0.37 46.0 42.0 - - -

7.9 0.14 1A 0A3 4.0 42. - - -

7.3 0.15 1-3 0.75 40 42.0 - - -

7.5 0.17 15 0.60 4.0 42.0 - - -

7.3 0.17 1.3 0A0 4.0 42.0 - - -

- - - - - - 3A 10

- - - - - - - 02 7.9

7.2 0274 0.076 0.37 4. 42.0 - - -

- - - - - - - 1.9 &9

7.6 12 5.8 041 64 2.3 M - -

74 12 62 1.1 5.9 42.0 700 - -

7.1 054 5.11 0.023 4.0 A 2.0 - - -

- - - - - - 0.6 9.2

7.9 027 0.3 5.012 46 42. - - -

7.3 041 0.35 5014 17 42.0 - - -
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Figure 3.1 Results of grain size analysis for series IV BBC powder (Abdulhadi, 2009)
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Figure 3.2 Results of grain size analysis for series IV BBC powder (Force, 1998)
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Figure 3.3 Plasticity chart for 5 determinations on natural and leached BBC (corrected for salt)
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Figure 3.4 Plasticity chart showing data for RBBC Series IV (Abdulhadi, 2009)
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Figure 3.5 Mineralogy of Boston Blue Clay - bulk sample on left, < 2 micron on right

E
0

E
4)0

CD

5
-i0

0.0

0.1

0.2

0.3

0.4

0.5

0.6
0 100 200 300 400 500 600 700 800

Square Root of Time (seconds)

Figure 3.6 Axial displacement versus root time for RBBC Series IV at different stress levels

(data from RS 175, RBBC at 64 g/l, consolidometer diameter 4.4 cm, initial height 12.9 cm, final

height 7.8 cm)
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Figure 3.8 1 -D compression behavior in e-log space for NC and OC RBBC from triaxial testing
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Triaxia IV-Cnsolidation

RBBC

Test No. O(MPa) OCR Line

724 0.333 1.00 -
727 0.964 1.00 ----
732 0.142 1.00 ----

741 0.478 1.00 -&-

748 0.817 1.00 -9-
757 0.670 1.00 -
762 0.189 1.00 -N--

- 793 5.870 1.00 -
798 1.954 1.00 -e-
803 3.908 1.00
811 7.822 1.00 -&--

829 9.743 1.00 -v-
831 1.429 4.08 --

840 2.398 4.06
843 0.469 4.13 -

846 4.846 2.01 -w-
849 0.958 2.02 ---

854 0.094 2.04 -

859 0.046 4.20 -+-
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Figure 3.9 Coefficient of consolidation versus stress level for RBBC from CRS testing

(Abdulhadi, 2009)
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Figure 3.10 Coefficient of consolidation versus stress level for RBBC from CRS testing - Note:

10 ksc ~ I MPa (Force, 1998)
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Figure 3.11 Void ratio versus hydraulic conductivity for RBBC Series IV

referenced to batch data (Abdulhadi, 2009)

from CRS tests

1.25

1.20

1.15

1.10

1.05

1.00

u 0.95

0.90

0.85

0.80

0.75

0.70

0.65
1

- .... ..-. ......-. .... ...--.. .-. .. ..... .....

--. ... ..- .--. -...-. .-. .-. ..-

-. ... ..-. .... .. .. ..-. ..... .-. ... . .?. ..-. .. .. ?.

- .....-. .... --.. . -... -. ....... -.. ...

--.. ... .-.. -.. . ........... .. . . ... . . . . . .. ..

-... . -.. .. -.. .. -.. ....... ...... .. ... .... .. .

- - - .... -. ... -. ..... ..... .......
Shaedara.. dia.s.rng.o.cR.rsu..

le-7 le-6

K (cm/s)
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Figure 3.19 Normalized undrained secant modulus versus axial strain for RBBC Series III in

triaxial compression (Santagata, 1994)

Figure 3.20 Sedimentation test performed on natural BBC Series IV powder. Salinities from L-

R: 1, 4, 16, 64, 128 & 256 g/l NaCl. 5 grams of soil used in each tube
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Figure 3.21 Sedimentation test performed on leached BBC powder. Salinities from L-R: 0

(distilled water) 1, 4, 16, 64, 128 & 256 g/l NaCl. 5 grams of soil used in each tube

Figure 3.22 Location from where undisturbed samples were obtained on MIT campus (Google

Earth)
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Figure 3.23 Site plan identifying actual location of boreholes (The T2P Project)
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Figure 3.25 Orientation of all imaging presented
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Figure 3.26 SEM images of natural RBBC Series IV at a pore fluid salinity of 4 g/l and a stress

level of 100 kPa (corresponding void ratio ~ 1.22)
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Figure 3.27 SEM images of natural RBBC Series IV at a pore fluid salinity of 256 g/l and a

stress level of 100 kPa (corresponding void ratio ~ 1.22)
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Figure 3.28 Analysis of RBBC Series IV at 2 different salinities but same stress level (100 kPa).

Image on outer left and outer right are 4 g/l, image in the center is at 256 g/l (void ratio for all images ~ 1.22)
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Figure 3.29 SEM images of leached RBBC at a pore fluid salinity of 1 g/l and a stress level of

100 kPa (corresponding void ratio ~ 1.14)
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Figure 3.30 SEM images of leached RBBC at a pore fluid salinity of 1 g/l and a stress level of

1,000 kPa (corresponding void ratio ~ 0.775)

103



Figure 3.31 Analysis of leached RBBC at the same salinity (1 g/1) but different stress level.

Image on outer left and outer right are 100 kPa (corresponding void ratio - 1.14), image in the center is at 1,000 kPa (corresponding

void ratio - 0.775)
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Figure 3.32 SEM images of sodium hex RBBC at a pore fluid salinity of 0 g/l and a stress level

of 100 kPa. Note: different magnifications (corresponding void ratio = 1.01)
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Figure 3.33 SEM images of sodium hex RBBC at a pore fluid salinity of 0 g/l and a stress level

of 10,000 kPa. Note: different magnifications (corresponding void ratio = 0.48)
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Figure 3.34 SEM images of sodium hex RBBC at a pore fluid salinity of 0 g/l and a stress level

of 100 kPa (top) and 10,000 kPa (bottom) at same magnification. (corresponding void ratio top

image ~ 1.01, bottom image ~ 0.48)
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Figure 3.35 SEM images of sodium hex RBBC at a pore fluid salinity of 0 g/l and a stress level

of 100 kPa (top) and 10,000 kPa (bottom) at same magnification. (corresponding void ratio top

image ~ 1.01, bottom image ~ 0.48)
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Figure 3.36 SEM images of sodium hex RBBC at a pore fluid salinity of 0 g/l and a stress level

of 100 kPa on top, and natural RBBC Series IV at a salinity of 4 g/l and a stress of 100 kPa on

bottom (corresponding void ratios, ~ 1.01 top image, ~ 1.26 on bottom)

109



Figure 3.37 Location of London (Google Earth)
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Figure 3.38 Location of Hendon relative to Greater London (Google Earth)

Figure 3.39 Location of source in Hendon, actual site identified with red circle, site coordinates:

Latitude - 51034'31.94"N Longitude - 0*14'30.83"W (Google Earth)
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Figure 3.40 Brown firm weathered London Clay as recovered from the ground at project

location (West Hendon development, SI document)
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Figure 3.42 Photograph of a typical chunk of London Clay with inclusions visible on a surface

cut with a razor blade
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Figure 3.43 Quartz inclusions visible in London Clay as received to MIT Geotechnical

Laboratory (magnification x2)

Figure 3.44 White quartz inclusions in London Clay as received to MIT Geotechnical

Laboratory (magnification x1, bottom right x2)
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Figure 3.45 Blue staining visible as veins on the surface of London Clay received to the MIT

Geotechnical Laboratory (magnification xl)
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Figure 3.46 Whole rock mineralogy and corresponding surface area for London Clay from

multiple locations - location closest to Hendon has been identified (British Geological Survey,

2006)
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Figure 3.47 Particle size distribution by sedimentation test performed on London Clay at a

similar depth to soil which was shipped to MIT (West Hendon development, SI document)
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Figure 3.48 Particle size distribution performed on ground London Clay powder in the MIT

Geotechnical Laboratory (tested by Brendan Casey)
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Figure 3.49 Atterberg limits performed on London Clay from project location. Note: testing

depths uncertain (West Hendon development, SI document)
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Figure 3.50 Atterberg limits performed at MIT on London Clay from Hendon
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Figure 3.51 Plasticity results for specimens from multiple locations in London (Pantelidou &

Simpson, 2007)
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Figure 3.52 Moisture content versus depth for London Clay at project location (West Hendon

development, SI document)
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Figure 3.53 Mineralogy of London Clay - location closest to Hendon has been identified (British

Geological Survey, 2006)

Figure 3.54 Sedimentation test performed on natural London Clay powder. Salinities from L-R:

0 (distilled water), 1, 4, 16, 64 & 256 g/l NaCl. 5 grams of soil used in each tube
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Figure 3.55 Axial displacement versus root time for London Clay at different stress levels (data

from RS232, London Clay at 44 g/l)
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Figure 3.56 Axial displacement versus log time for London Clay at different stress levels (data

from RS232, London Clay at 4 g/l)
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Borehole No: BH2 Descripdion:
Sample No: US
Depth (m): 5.00 -ra5s Stiff brown slightly sandy CLAY with rare grey veins

cOrientation: Vertical
Specimen preparation: Undisturbed

CIS

10
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Dry Density (Win)

lain1ion iMID

Log of Pressure (kPa)
Final Condlm
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1.90
1.54 Laboratory Temperatum (C) 19.5
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50- 100 ____i___ iim .744

Figure 3.57 Oedometer test results on intact London Clay from West Hendon development

recovered at 5.04 m depth (West Hendon development, SI document)
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Borehole No: BH4 Description:
Samue No- U10
Opth (M): 9.50 - 9.95 Stiff buwn sli1y sandy CLAY
Dept of test specimen (m): 9.53
Otientation: Vertical
Specirm prpaon: Undisturbed
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Figure 3.58 Oedometer test results on intact London Clay from West Hendon development

recovered at 9.53 m depth (West Hendon development, SI document)
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Figure 3.59 Compression data from natural in-tact specimens of London Clay tested in the

oedometer. Specimen A3 recovered between 45-48 m deep, specimen A2 recovered between 48-

52 m deep (Gasparre, 2005)

2-

1.5 -

.9
E
0

N

0.5 -

0-

10 100 1000
o', IkPaI

10000

Figure 3.60 Compression data from reconstituted specimens

oedometer (Gasparre, 2005)
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Figure 3.61 Location map of Ursa Basin where IODP Leg 308 performed exploratory borings.

Small box represents exploration area (IODP Expedition 308 Report, 2006)
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Figure 3.62 Map showing borings performed as part of IODP - Leg 308. Soil tested obtained

from Site U 1322 (IODP Expedition 308 Report, 2006)

Figure 3.63 Sedimentation test performed on RGOM - Ursa. Salinities from L-R 0, 1, 4, 16, 64

& 256 g/l NaCl. Note: 5 g of soil used in each tube
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Figure 3.64 Plasticity chart showing where GOM-Ursa soil plots
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Figure 3.65 Particle size distribution for GOM-Ursa performed by Brendan Casey
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Figure 3.66 Sedimentation test performed on sodium montmorillonite. Salinities from L-R 1, 4,

16, 64, 128 & 256 g/l NaCl. Note: 1 g of soil used in each tube
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Figure 3.67 One dimensional consolidation curves for sodium montmorillonite

Note: 10 lb/ft 2 = 0.479 kPa (Mesri & Olsen, 1971a)
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Figure 3.68 Hydraulic Conductivity versus void ratio curves for sodium montmorillonite (Mesri

& Olsen, 1971 a)
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Figure 3.69 Hydraulic conductivity versus void ratio for all three sodium clays in water (Mesri

& Olsen, 19 7 1b)
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Figure 3.70 Variation in coefficient of consolidation, c, with axial consolidation stress for clay

minerals with water as the pore fluid on left, and with CCL4 (carbon tetrachloride, which negates

the double layer) on the right (Robinson & Allam, 1998)
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Figure 3.71 Square root of time versus axial displacement for 1 g/l montmorillonite (data from

RS245 - target stress level 50 kPa)
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Figure 3.72 Log of time versus axial displacement for 1 g/l montmorillonite (data from RS245 -

target stress level 50 kPa)
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Figure 3.73 Images of sodium montmorilonite resedimented with 256 g/1 pore water at a stress

level of 200 kPa. Note: different magnification. (corresponding void ratio 1.58)
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Figure 3.74 Comparison between sodium motmorillonite and natural RBBC Series IV at similar

stress levels and at the same pore fluid salinity. Sodium montmorillonite (top) at 200 kPa BBC

(bottom) at 100 kPa. Corresponding void ratios 1.58 (SM) and 1.16 (RBBC).
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Figure 3.75 Comparison between sodium motmorillonite and sodium hex BBC at similar stress

levels at the same magnification. Sodium montmorillonite (top) at 200 kPa, sodium hex BBC

(bottom) at 100 kPa. Corresponding void ratios 1.58 (SM) and 0.98 (RBBC)
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4 MATERIAL PROCESSING,
EQUIPMENT AND TESTING
PROCEDURES

4.1 INTRODUCTION

This chapter describes the equipment and procedures used in the testing program. The

1-D compression and permeability data for resedimented Boston Blue Clay Series IV, leached

Boston Blue Clay, in-situ Boston Blue Clay, sodium hex Boston Blue Clay, Gulf of Mexico soil,

London Clay and sodium montmorillonite were obtained using a modified Trautwein Constant

Rate of Strain (CRS) cell. This CRS cell was also used to perform reverse leaching tests on

leached Boston Blue Clay. This test will be described in the latter part of this chapter. Strength

testing was performed on resedimented Boston Blue Clay Series IV, leached Boston Blue Clay

and in-situ Killian Court Boston Blue Clay using a low pressure automated stress path triaxial

apparatus originally developed in the MIT geotechnical laboratory by Sheahan (1991).

The one dimensional CRS consolidation tests were performed on small diameter

specimens which were resedimented to a axial effective stress of 100 kPa and then tested in the

CRS device to a axial effective stress of 10,000 kPa. Selected London Clay and Gulf of Mexico

specimens were stressed to an axial effective stress of 40,000 kPa. All Boston Blue Clay

specimens were consolidated at a strain rate of 2 %/hour, London Clay specimens were strained

at a strain rate of 0.5 %/hour, Sodium Montmorillonite was strained at a strain rate of 1 %/hr and

Gulf of Mexico-Ursa clay was strained at a strain rate of 1 %/hour. The results were interpreted

using standard linear theory (Wissa et al., 1971). The strain rates were selected to produce a pore

pressure ratio that is between 3 % and 15 % at the end of the loading phase and all tests were run

in general accordance with the guidelines laid down in ASTM D4186. A table of the soils tested

their properties and associated strain rates can be seen in Table 4-1. An overview of the CRS

testing equipment employed to perform the experimental program is presented in Section 4.4.5.

Automated triaxial tests consisted of Ko consolidated undrained shearing tests (CKoUC).

This automated system provides high quality results and eliminates many man-hours of time
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which would otherwise be required. The type of triaxial cell used was a low pressure triaxial cell

with a plexiglass chamber. The maximum confining pressure that the low pressure apparatus can

sustain is about 1,500 kPa. The specimen dimensions for the triaxial testing program had a

diameter of 3.55 cm and a height of 7.55 cm. An overview of the triaxial testing equipment

employed to perform the experimental program is presented in Section 4.4.6.

4.2 MATERIAL PROCESSING

4.2.1 INTRODUCTION

This Section describes the methods used to process both London Clay and leached BBC.

It was not necessary to determine the in-situ properties of London Clay as the soil which was

received to MIT was only to be used for resedimentation purposes. Approximately 300 kg of

London Clay was shipped to the MIT Geotechnical Laboratory in a wooden crate. The soil had

been hand excavated from a tunneling project in the greater London area, and its origin has

already been described in Chapter 3. The soil was subdivided in six sealed plastic bags each

containing approximately 50 kg of material inside the crate. Because the bags were sealed, a

water content was taken for the soil once it arrived. It was found that this water content closely

resembled the in-situ water content.

Section 4.2.3 describes the processing of leached BBC. Leached BBC is a derivative of

Series IV BBC and has had a portion of its in-situ salts removed by flushing through distilled

water in a centrifuge. The quantities in which soil could be spun in a centrifuge were small (120

g per run). The testing program required approximately 3.5 kg (dry mass) to satisfy all planned

testing.

4.2.2 PROCESSING OF LONDON CLAY

The London Clay which was received at the MIT Geotechnical Laboratory in August of

2011 was recovered from between 5-6 m deep. The soil was sealed in large durable plastic bags.

In total six bags containing approximately 50 kg each were delivered. Assuming that the

maximum particle size which exists in London Clay is 0.1 cm, to get to a precision of 0.1 % in

the results, a dry mass of approximately 1.5 kg would be required (Germaine & Germaine,

2009). Given that the quantity delivered to MIT exceeds this quantity, representative samples
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should be readily obtainable. It is worth pointing out that this rule may be violated by the

grinding process described later.

Because no intact samples were taken at the development location, all the material which

arrived at the MIT Geotechnical Laboratory was processed for use in resedimentation. The bulk

soil consisted of 10-15 kg solid lumps of soil placed directly into the plastic bags. Each bag

contained several of these chunks. A typical chunk of London Clay soil as received can be seen

in Figure 4.1, and a close up shot is shown in Figure 4.2. It was decided to delay blending the

soil in order to achieve a homogeneous material until after it had been processed to a powder. In

order to process the soil to a state where it is suitable for resedimentation, a powder must be

produced which will pass a US#100 sieve. This procedure consists of:-

e The material was received in a moist state. It was therefore necessary to remove this

moisture to facilitate further processing. The soil was air dried in a large room by

positioning a large fan such that it was circulating air over the top of the soil as can be

seen in Figure 4.3. Larger chunks were broken into smaller and smaller pieces until they

measured approximately 3 cm in their longest dimension. This 3 cm size is dictated by

the opening size of the soil grinder which is used in a later stage. If the soil had been oven

dried, the natural fabric and possibly even the individual soil particles may have been

damaged by the high temperatures and shrinkage of the soil matrix.

e Once all moisture had been removed and all soil chunks were a manageable size, it could

then be ground down to a fine powder. Traditionally when dealing with large quantities

of soil which required processing, a third party external company would be employed to

fulfill this task. The London Clay was to be processed in-house and therefore, a grinding

machine was purchased. This machine was a GPX Disc-Style Grinder acquired from

Modern Process Equipment, Chicago, IL. Several photos of the device can be seen in

Figure 4.4. This grinder has the ability to grind material so that 100 % of the resultant

powder will pass a US#100 sieve. The discs which perform the grinding are wear parts

and once they are no longer able to reduce the soil to an appropriate size, they can be

replaced. The machine also has the ability to grind the soil to different sizes via control of

an adjusting screw which moves the discs closer together or further apart. For processing

of the London Clay, the best results were obtained when the soil was run through once on
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a coarse setting to produce a sandy type material, and then a second time on the finest

setting to produce the final powder. Although this method produces an acceptable

material for resedimenting, it must be acknowledged that any constituents of the soil that

are naturally larger than the final powder, will be ground to a smaller size than what they

exist at naturally. While processing the London Clay, dense pockets of quartz were

visible to the naked eye and could easily be seen with a X2 times microscope. This quartz

was sandy in size and could readily be felt between the fingers. Such an area is shown in

Figure 4.5. This quartz, once processed did not alter the particle size distribution of the

soil appreciably. This was demonstrated in Chapter 3. The throughput of the grinder

depends on the size of the bulk material being ground. For the coarse raw soil chunks (3

cm elements), one can process approximately 15 kg/hour when the output soil is set to

coarse. For the second run when the sand from the first process is being fed back into the

hopper, it is important not to "choke" the grinding discs. Therefore, a slow feed rate is

required. The output soil from the second run will be fine enough so that 100 % will pass

a US#100 sieve. It can take approximately 1 hour to process 10 kg of fine material.

Because of the vast range of soils which are tested at the MIT Geotechnical Laboratory, it

is essential that the grinder be thoroughly cleaned after each use to avoid cross

contamination. A combination of compressed air and soft wire brushes are found to

adequately clean all areas exposed to soil.

Blending of the soil was done in accordance with guidelines given in Germaine &

Germaine (2009). Blending produces a homogeneous material which will give systematic

results. The blending was performed on material which could pass a US# 100 sieve, with

the appropriate respect being paid to dust control. The blending process involves dividing

the parent sample into four portions labeled 1, 2, 3 & 4. Each of these portions is then

split into equal quarters labeled a, b, c & d. The four "a" portions are then combined

together and blended in a second operation. Each of the four second blends will now be

uniform and equal. A diagram of this operation is shown in Figure 4.6.

* Once a uniform material is produced via the blending operation, masses must be obtained

which are easy to work with. This is done by splitting the material. Splitting of the soil is

the process of reducing the sample size while maintaining uniformity and was done in
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accordance with guidelines given by Germaine & Germaine (2009). Quartering is a

systematic splitting process, and is the method used to split the London Clay into

manageable quantities for working with. Each quartering operation reduces the sample

mass by one half. The soil is placed in a pile and then split into two portions which are

spread apart. These portions are then further split in half and then spread apart. Finally,

opposite quarter portions are combined to provide a representative half of the original

sample. This method can be repeated several times to sequentially reduce a sample to the

required size. A diagram of this operation is shown in Figure 4.7.

e Once workable masses of material have been obtained, it can then be stored in sealed 10

gallon buckets while it awaits testing. A picture of the finely ground soil being prepared

for storage can be seen in Figure 4.8.

4.2.3 PROCESSING OF LEACHED BOSTON BLUE CLAY

Series IV BBC contains approximately 2.65 g of salt for every 1 kg of dry soil powder.

For research purposes, it was necessary to remove some of this salt from the soil fabric. In order

to do this, distilled water must be flushed through the soil in a centrifuge. 3.50 kg of leached

BBC was required in order to satisfy the quantity required for CRS and triaxial resedimentation.

BBC was leached twice in the centrifuge in order to remove as much of the soil as possible given

the effort involved in the process.

The process of leaching the in-situ salt from BBC is similar to the process used in salinity

testing which is described in Section 4.5.2.5. When leaching large quantities of soil, efficiency is

the key to reducing the time taken to produce the final quantity of soil. Normally, 15 g of BBC

Series IV powder is mixed with 30 g of distilled water (200 % water content) in a test tube and

this mixture is allowed to hydrate for 24 hours. The centrifuge in which the leaching was done, a

Damon/IEC HT Centrifuge, has the ability to hold eight test tubes per run which means 120 g of

soil can be processed per run. In order to increase the throughput of the centrifuge, it was

necessary to develop new procedures to hydrate large quantities of slurry without occupying the

test tubes for this task. Plastic containers were used to hydrate large quantities of BBC to a water

content of 200 %, meaning that the custom centrifuge tubes, which were in short supply, could

be used exclusively to leach soil in a repetitive manner. Once the supernatant was decanted from
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the test tubes, the BBC was extracted from the base of the tube and air dried with the assistance

of a standard desk fan. The end product from this stage was small "nuggets" of solidified soil.

The process used to leach soil in bulk quantities is described below:-

1. Mix 2 liters of distilled water with 1 kg of BBC Series IV and allow to hydrate for 24

hours, or any desired quantity of BBC to a water content of 200 % (assuming 1 g distilled

water equals 1 cm 3)

2. After 24 hours hydration time it is important to thoroughly agitate the slurry. This is

necessary because any coarse material present in the soil may have settled to the bottom

of the container. It is desirable to have a uniform slurry when filling the centrifuge tubes.

3. Add 45 g of uniform slurry to each of the tubes. This slurry consists of 15 g soil and 30 g

of distilled water.

4. Place tubes in the centrifuge and spin for 30 minutes at between 10-15,000 rpm

5. Once the cycle is complete, remove tubes and dispose of supernatant. Carefully extract

the soil from the base of the tubes and place it in an open bowl for air drying. Position the

bowl under a standard desk fan and allow to dry. Note: for salinity testing which will be

described later, the supernatant is of primary importance, however, in this process it is a

byproduct which can be discarded.

6. Clean the centrifuge tubes using a water jet and dry them using a paper towel.

7. Repeat process from step 2 until the desired quantity of soil has been obtained. Note that

there will be an amount of soil lost on every run because of the inability to extract all soil

from the tube, these losses should be built into the calculations. The amount of soil lost

represents approximately 5 % of the starting mass.

Because the soil had to be run through the centrifuge twice, it was necessary to reprocess

these soil "nuggets". This was necessary in order to obtain a material which could be mixed with

distilled water again in order to produce a slurry for further washing in the centrifuge. Because

BBC Series IV has already undergone blending and splitting, it was unnecessary to perform the

same processes on the final leached material. Once the required quantity of soil had been
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obtained from the first round of leaching, the soil was ground to a powder using the same method

described in Section 4.2.2 for London Clay with the disc grinder. When the soil is ground to a

powder which passes a US#100 sieve, it can then be leached for a second time using the same

method already described. Finally, once the soil has been run through the centrifuge, extracted

from the test tubes and air dried, it must again be ground to a powder once more. After grinding

the soil for a second time, the soil is now ready to be used for research purposes. Although the

soil was run through the centrifuge twice for this research, there is no upper limit as to how many

runs will produce changes in behavior. Given time constraints, two washings in the centrifuge

were deemed acceptable.

4.3 RESEDIMENTATION

4.3.1 INTRODUCTION

Numerous types of resedimented soil were used in the testing program. These included

Boston Blue Clay (Series IV), London Clay, Gulf of Mexico clay, Sodium Montmorillonite and

derivatives of Boston Blue Clay. These derivatives included Boston Blue Clay which has had its

salt removed by leaching with distilled water, and also Boston Blue Clay which has had its fabric

completely dispersed by mixing a quantity with sodium hexametaphosphate. A list of all samples

prepared via the resedimentation technique is shown in Table 4-2.

The most commonly used soil in the testing program was traditional Boston Blue Clay

(Series IV). BBC has been studied at MIT since 1961 and an extensive database on the

engineering properties now exists. This database is for natural BBC as excavated from the

ground and then processed to form the powder that passes a US#100 sieve. This powder is then

tested in the laboratory as required. BBC is an excellent research material because:-

a) a good supply exists

b) it produces consistent and repeatable results

c) uniform samples can be created

d) it has typical consolidation characteristics and it is a fairly insensitive soil
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Different resedimentation techniques were required for the BBC which has been altered,

and therefore different results can be expected. An up to date reference on the research which has

been performed on Boston Blue Clay is given in Chapter 3.

Gulf of Mexico soil, London Clay and sodium montmorillonite have higher plasticities

than BBC and will therefore require modifications to the established resedimentation techniques.

As London Clay had never been resedimented at MIT prior to this research, it was necessary to

determine the water content at which it would exist as a stable slurry. Although Gulf of Mexico

soil has been tested at MIT in recent years, (Mazzei, 2008), it was again necessary to determine

the water content at which Gulf of Mexico soil should be resedimented to. This is mainly

because the resedimentation which was performed for this research was done so with high

salinity saltwater. When resedimenting with high salinity saltwater, the mass of fluid added to a

soil powder does not resemble the mass of water available to wet the soil particles. A large

fraction of the mass of fluid now comprises sea salt (up to 25 %). It is for this reason that greater

masses of high salinity fluid are required to achieve the same stable slurry as with say a 16 g/l

saltwater where the effect of the salt fraction in the fluid is not so pronounced.

The resedimentation procedure which was developed at MIT in the 1960's has been

refined throughout the years. The most significant improvements were made by Germaine (1982)

who refined the resedimentation technique to produce fully saturated and uniform samples of

resedimented BBC. This process has since been extrapolated to other soils with a great deal of

success.

The various types of soil which have been successfully resedimented as part of this

research are described in the following Sections. These Sections detail what areas of the

resedimentation procedure have to be altered to suit each individual soil type.

4.3.2 RESEDIMENTATION PROCEDURE

4.3.2.1 WORKING WITH NEW SOILS

In the process of implementing research with soils that are new to a given laboratory, it is

important in terms of resedimentation, to determine the water which will produce an ideal slurry

for resedimentation. This is done by placing known masses of soil in several clear test tubes with
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varying water contents. It is important that the fluid used in this test is the same fluid that the soil

will eventually be resedimented with. The reason for doing so is because in a high salinity

resedimentation procedure, the mass of the fluid may not be the mass of water which is available

to wet the soil due the large salt mass occupancy. Normally in the lab, we assume that 1 g of

water is equal to 1 cm3. If we are dealing with a 200 g/l saltwater fluid and we add 1 g of fluid to

a soil, only 0.833 g of water is actually being added to the soil. Although we say the saltwater is

200 g/l, which would mean we add 200 g of sea salt to 1,000 g of distilled water, the salt

concentration by volume is 167 g/l after dilution.

When a stable slurry is produced in the lab, no free water appears on the surface of the

slurry after being allowed to sit for a time. This is the essence of the test which is performed to

determine the correct resedimenting water content. The test tubes which contain the different

water contents should be left to sit for at least 24 hours (or longer for extremely plastic soils such

as sodium montmorillonite), and then examined. It is important that the test tubes are not shaken

because visual examination of the surface is required. Tubes in which clear water is present on

top of the soil may produce slurry which can potentially segregate during consolidation. It is

necessary to find the highest water content that will not produce this free water on top of the soil.

This water content should then be used for resedimenting. Figure 4.9 shows the result of such a

test that has been performed on leached BBC.

In order to determine a range of water contents to test, it is helpful to perform Atterberg

limit tests of the soil. Once the liquid limit is determined, a good starting point will be double

this value. Say for instance a soil has a liquid limit of 65 %, a good range of water contents to

test initially may be 120, 125, 130, 135 and 140 %. It is useful to further refine the required

water content over a smaller target range once it apparent where the water content of interest

falls.

4.3.2.2 PROCEDURE

Only the procedures currently used will be covered in this Section. For details on

previous resedimentation techniques, reference should be made to Ladd & Varallay (1965). The

modem day techniques follow the methods set forward by Germaine (1982) and Seah (1990).
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This resedimentation procedure can produce individual test specimens, or a column of soil from

which multiple test specimens can be trimmed.

The tube in which the soil is resedimented in is called a consolidometer. These

consolidometers retain the soil throughout all load increments from when the soil is a flowable

slurry, to when it has achieved the desired resedimentation stress level. In this research, two

types of consolidometers were used - one for triaxial samples and one for CRS samples. The

triaxial consolidometer has an internal diameter equal to that which is required for a triaxial

testing meaning that only the ends of the soil require trimming after extrusion. Consolidometers

for CRS testing produce samples with diameters that are larger than the diameter required for

testing. The tube diameters used for resedimenting for CRS testing were 4.15 and 4.4 cm. This is

done to facilitate trimming of the soil into a cutting ring. Both consolidometers are clear

plexiglass tubes. A photo of these consolidometers can be seen in Figure 4.10. This Figure also

shows smaller height consolidometers were used when small quantities of soil needed to be

resedimented for CRS testing.

The method of how the BBC was processed from its natural water content, or as it was

excavated from the ground will not be covered here. However, a similar method has already been

described for how the London Clay was processed (Section 4.2.2). For details on how BBC was

processed, reference should be made to Cauble (1996). The following describes the

resedimentation procedure for BBC Series IV from when a processed powder exists (at least 95

% passing a US#100 sieve).

HYDRATION

The desired quantity of dry soil powder should be carefully estimated in order to

eliminate waste. This powder is then added to a predetermined quantity of saltwater and allowed

to hydrate. Depending on the soil type and mineralogy, hydration can take several days. It is

advantageous to allow the soil to hydrate in the desired fluid. Mechanically agitating the slurry

alone may not guarantee full hydration prior to placement in the consolidometer. As a reference,

it was found that natural BBC powder is hydrated fully after 24 hours while for sodium

montmorillonite, hydration can take up to a week depending on the pore fluid chemistry and the

quantity under consideration. For sodium montmorillonite, the quantity of soil which was added
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to a low salinity pore fluid was observed to slowly expand to occupy the free water space over

time. Once the montmorillonite had stopped "growing" it was deemed to be hydrated. This

observation is not so evident in other soils.

MECHANICAL AGITATION

Once the slurry has fully hydrated, it is necessary to mechanically agitate it to help ensure

a uniform paste. This is done in the MIT Geotechnical Laboratory with a Kitchen Aid mixer

which is shown in Figure 4.11. This mixer is fitted with a flat beater attachment. The slurry is

mixed for approximately 30 minutes in this manner, with the sides of the bowl being cleaned

down with a soft spoon occasionally to ensure thorough mixing.

DEAIRING SLURRY

Once the slurry is adequately mixed, a partial vacuum is applied to remove any entrapped

air from the slurry matrix. The setup for vacuuming is shown in Figure 4.12. A vacuum flask is

connected to a vacuum pump which applies approximately 25 inches of Mercury (in Hg) vacuum

to the slurry. The soil enters the flask under vacuum and is allowed to free-fall a distance inside

the container as shown in Figure 4.13. This helps free any entrapped air. Once all the slurry is

inside the vacuum flask, a stopper is used to isolate the soil from atmospheric pressure. The time

required for vacuuming depends on the size of the vacuum flask, quantity of soil, mineralogy and

atterberg limits of the soil. For small quantities of BBC (say 250 g of powder), 30 minutes of

vacuuming is adequate to remove the entrapped air, while for montmorillonite (both calcium and

sodium), Mesri & Olsen (1970) required a two week vacuuming period to ensure full saturation

of the soil. Although montmorillonite was also resedimented as part of this research, vacuum

times were in the order of 2 hours given the much smaller quantities. It is important not to leave

the slurry under vacuum for too long because water will evaporate. This causes a reduction in the

water content, potentially leading to thickening of the slurry which will have knock on effects

when pouring the soil into the consolidometer.

POURING

When the slurry has been de-aired, it is then poured into the consolidometer. The slurry is

poured directly from the vacuum flask into a funnel with a long flexible tube which discharges
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into the consolidometer as shown in Figure 4.14. The tip of the funnel should be kept just above

the top of the rising soil column to prevent any air being introduced to the soil.

CONSOLIDATION

The slurry can be poured into any size consolidometer. A photo of the consolidometers

used in this research has already been shown in Figure 4.10. These consolidometers have rigid

walls and openings at the top and bottom. A picture of a typical consolidometer setup can be

seen in Figure 4.15. Once the slurry is poured, it is consolidated between two porous stones, one

top and bottom. These porous stones transfer the applied stress to the soil and also provide a

drainage path through which excess pore pressure can escape. The soil is loaded incrementally

with a load increment ratio Aayv/a, = 1 to a prescribed maximum axial effective stress. This

maximum stress level is dictated in part by the type of test the batch is being created for. For

CRS testing, the soil is taken to an axial effective stress (O'ac) of 100 kPa. Soil used in triaxial

testing was taken to an axial effective stress of 200 kPa. The increase in stress for triaxial

specimens makes interaction with the soil easier because they require more intense handling than

the CRS specimens.

Once the soil has reached its target axial effective stress, it is unloaded to a prescribed

overconsolidation ratio (OCR). It was shown by Ladd (1965) that at and OCR of 4, the soil is

close to hydrostatic stress conditions, meaning the lateral stress ratio Ko is close to 1. Therefore,

shear strains due to soil extrusion from the consolidometer are minimal and it can be assumed

that BBC possesses no sample disturbance once extruded. This OCR value was also used for

London Clay, GOM soil and sodium montmorillonite pending further research.

Given that the maximum axial effective stresses which the soils were resedimented to

were small, all loading increments were done using dead weights. In the very low stress range

(up to 10 kPa), weights can be placed directly on top of the consolidometer. In the higher stress

range, the weights are hung from a frame as shown in Figure 4.16. Throughout each

consolidation phase, the axial deformation of the slurry column is measured using an LVDT.

Each load increment is maintained until the End of Primary (EOP) consolidation, which is the

time taken for all excess pore pressures to dissipate and secondary compression to commence.

By monitoring the axial deformation versus the square root of time, we can estimate this time to
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EOP. A sample graph that is produced from a typical load increment can be seen in Figure 4.17.

An exception to this rule was made when resedimenting montmorillonite. Given the fact that

EOP for the initial increments could take months, additional axial stress was added before EOP

was reached. Care should be taken not to overload the slurry when it is in a weak state. This may

cause large quantities of soil to be extruded between the stone and the consolidometer wall

EXTRUSION

After consolidation is complete, the soil is ready for testing. Given that the soil is

resedimented to a relatively low stress, extrusion can be done by applying a downward force to

the plexiglass tube (usually by hand), while sitting the interior porous stones on a platform which

will cause the interior soil column to move relative to the outer plexiglass tubing. A photograph

of this process is shown in Figure 4.18. If it is not possible to extrude the soil in this way, a

hydraulic hand-jack can be used to apply the necessary force. Once the soil is extruded, it is

trimmed to the required dimensions for testing. The trimming process is covered in the

respective test method (CRS & triaxial), as the techniques used are specific to the test type.

4.3.3 RESEDIMENTING BOSTON BLUE CLAY

4.3.3.1 INTRODUCTION

BBC has been resedimented at MIT since the 1960's (Abdulhadi 2009). Resedimented

BBC is done using BBC powder which passes a US#100 sieve. This powder is taken as natural

soil from the Boston area and processed to create a series which is then used for laboratory

testing purposes. The current batch of BBC powder that is used in the MIT Geotechnical

Laboratory is called Series IV and was obtained in 1992 from the base of an excavation for

MIT's Biology Building (building #68). Prior to 1992, previous series of BBC were tested.

Series IV BBC was used for this thesis. Chapter 3 gives an up to date summary on the research

which has been performed on resedimented BBC since the 1960's.

4.3.3.2 RESEDIMENTING BOSTON BLUE CLAY TO DIFFERENT SALINITIES

Recent work at MIT has involved resedimenting BBC to 16 g/l (e.g. Adams, 2011;

Abdulhadi, 2009). With the exception of Casey (2011), and Bailey (1961), very few laboratory

tests had been performed on resedimented BBC at various pore fluid salinities. Casey (2011),
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resedimented BBC with pore fluid salinities ranging from 2.65 g/l to 24 g/l, while Bailey

resedimented BBC at pore fluid salinities of 2-3 g/l and 35 g/l.

Throughout this research, natural BBC Series IV was resedimented to salinities of 4, 16,

64, 128 and 256 g/l. BBC has been traditionally resedimented to a water content of 100 % with a

salt concentration of 16 g/l. The natural BBC used in this research was also resedimented to a

water content of 100 % for salinities of 4, 16, 64 and 128 g/. Natural BBC which was

resedimented to a salinity of 256 g/1 required a water content of 110 % in order to achieve a

workable slurry.

The saltwater used for resedimentation was prepared prior to use and stored in labeled

plastic containers in the laboratory. Ordinary sea salt (NaCl) was used in the preparation of the

saltwater and natural BBC was resedimented to 4, 16, 64, 128 & 256 g/1l for CRS testing, and to

4 & 256 g/l for triaxial testing.

4.3.3.3 RESEDIMENTING LEACHED BOSTON BLUE CLAY

BBC which was leached as described in Section 4.2.3, was resedimented to salt contents

of 1, 16, 64 & 256 g/l for CRS testing, and to I and 256 g/I for triaxial testing. One batch of

leached BBC soil was also resedimented with distilled water (0 g/) for CRS testing. One

observation which was noted was that when the BBC was leached, its sensitivity to water

increased. This means that each individual salt concentration now requires its own unique

resedimenting water content. The lowest water content used for natural BBC Series IV (Section

4.3.3.2) was 100 %, however, the lowest water content required for leached BBC is now 62 %

when using distilled water. When using 1 g/l saltwater, the water content required rises to 80 %.

At the other end of the scale, a water content of 120 % is needed to resediment with 256 g/

saltwater. This is in stark contrast to resedimenting with natural BBC where all resedimentation

water contents were the same except for 256 g/l batches. A list of required water contents versus

pore fluid salinity can be seen in Table 4-3.

It is believed that when the natural BBC is leached of its salt, the clay fabric is

deflocculated. This has already been discussed in Chapter 3.
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4.3.3.4 RESEDIMENTING BOSTON BLUE CLAY WHICH HAS BEEN DISPERSED WITH SODIUM

HEXAMETAPHOSPHATE

Sodium hexametaphosphate (sodium hex) is a dispersing agent which has traditionally

been used in Soil Mechanics for the hydrometer test. This dispersant neutralizes the surface

charge on the individual soil particles for an inorganic soil, which is a primary cause of floc

formation (Germaine & Germaine, 2009). Essentially, the dispersant will de-flocculate all soil

elements which were agglomerated when the soil was deposited. It breaks down the soil to its

basic components. It is believed that once this dispersed soil was resedimented, similarities in

fabric and mechanical behavior with traditional RBBC would no longer be evident. In effect,

particles on the micro scale now have little surface charge, therefore flocculation during

resedimentation is unlikely. The dispersed soil was resedimented with distilled water, and the

water content required to produce a stable slurry was 56 %.

4.3.3.4.1 OBSERVATIONS

Even though the dispersed soil has the same constituents and elements as the BBC Series

IV soil, a much lower water content is now required to resediment these same minerals to a

similar slurry state. This lends evidence to the theory that flocs exist in the natural BBC powder

which are not broken down through processing. These flocs still exist in the material which is

used for laboratory testing at MIT, namely BBC Series IV. It is also here the first similarities

with leached BBC are observed whereby a lower resedimentation water content was required for

leached BBC particularly in the lower salinity range and especially for distilled water.

Once the dispersed soil had been resedimented with distilled water, small deflocculated

particles can remain in suspension for many months (up to 9 months as witnessed by the author).

Owing to the fact that sodium hex can have such a profoundly negative effect on soil behavior,

this soil was among the last to be tested in the program. It is for this reason the prolonged

suspension of soil particles in the water baths at the bottom of a consolidometer setup was

noticed. This same effect is not evident if BBC Series IV powder is placed into distilled water.
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4.3.4 RESEDIMENTING LONDON CLAY

The effect of pore fluid salinity on natural London Clay was also investigated as part of

this research. The origins of this London Clay are described in Chapter 3. Resedimentation was

performed on natural London Clay powder which had undergone grinding as described in

Section 4.2.2. After performing sieve analysis on the ground powder, it was found that 100 %

passed a US#100 sieve and was therefore deemed acceptable for resedimenting.

Given time constraints, salinities of 4, 16 & 256 g/l were investigated for natural London

Clay in an attempt to determine the effect at both ends of the salinity range in question. The three

salinities mentioned were successfully resedimented without any issues. As London Clay was a

new material to the MIT Geotechnical Laboratory, its resedimentation water content had to be

determined for all target salinities. This was done in a similar fashion to the method described in

Section 4.3.2.1. For salinities of 4 & 16 g/l, the water content used for resedimentation was 130

%, while for salinities of 256 g/l, the water content was 140 %. From this research, it is apparent

that London Clay is an acceptable candidate for use in resedimentation.

4.3.5 RESEDIMENTING GULF OF MEXICO SOIL

Gulf of Mexico (GOM) soil has been resedimented at MIT in recent years by Mazzei

(2008), and although this research also involved resedimenting and testing GOM soil, it must be

appreciated that the GOM region spans a vast area and soils obtained from different locations

will almost certainly have differing mineralogy, gradation curves and mechanical behaviors. The

same is true of BBC samples taken from a far smaller catchment area.

RGOM-Ursa was tested as part of this research. This RGOM-Ursa soil was resedimented

with distilled water (0 g/1) and tested in the CRS device in order to compliment other work

ongoing in the MIT Geotechnical Laboratory, and also to establish a bank of test results for this

material. RGOM Ursa soil required a water content of 100 % when resedimented with distilled

water.

4.3.6 RESEDIMENTING SODIUM MONTMORILLONITE

The effect of salt on a clay mineral is displayed excellently within the montmorillonite

family of soils. This is shown in Figure 4.19. Montmorillonite forms an ideal medium for the
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theoretical investigation of clay minerals. While it is not thought that pure montmorillonite has

been resedimented at the MIT Geotechnical Laboratory in the past, montmorillonite has been

resedimented for research purposes by others such as Mesri & Olsen (1970). Their observations

were taken into account while performing this research.

Sodium montmorillonite was resedimented to 1 & 256 g/l for this research and large

differences were found in the water contents required to produce a stable slurry. When

resedimenting to a pore fluid salinity of 1 g/l a water content of 1050 % was required. When the

pore fluid salinity was 256 g/l, a water content of 100 % was adequate. This represents more than

an order of magnitude difference in required water contents, to produce the same viscosity slurry

for resedimentation. This is in contrast to other soils such as BBC and London Clay where an

increase in water content was required for the higher salinities.

It is important, especially when dealing with highly expansive soils such as

montmorillonite, that the soil be afforded adequate time to hydrate. It was discovered that for

low salinity montmorillonite such as 1 g/l, this took up to one week. For the high salinity 256 g/l

soil, hydration times were very short and no volume change of the soil was observed. The

standard 24 hours hydration time was given to high salinity montmorillonite.

The sodium montmorillonite slurry at 1 g/l was resedimented in the MIT Geotechnical

Laboratory on the 2 0 1h of December 2011, and eventually reached end of primary consolidation

on in the middle of May, 2012.

4.3.7 RESEDIMENTATION ISSUES

The saturation point for salt (NaCl) in water is approximately 360 g/l at 20' C. Early in

the testing program when working with 256 g/l saltwater, it was noticed that after approximately

one day, salt began to precipitate out of solution and settle to the bottom of the storage container.

Although the salt content was a long way from the saturation limit, it was never discovered

exactly why the salt was falling out of solution. This issue was resolved by mixing the salt into

the water after it was heated to approximately 50' C. This was done on a hotplate with built in

magnetic stirrer. Once this procedure was followed, further precipitation of the salt was not

witnessed. It is now standard practice to mix all saltwater, regardless of salt content in this

fashion.
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When resedimenting with salinities above 64 g/l, a cake of salt grows on the water bath

and consolidometer a few days after the slurry has been poured. This salt originated from the

saltwater bath which is charged with keeping the slurry saturated at the correct salinity during

resedimentation. If salt is being lost from this water, then the water will no longer be at the

required salinity. A photo of this occurring while resedimenting sodium montmorillonite to 256

g/l, is shown in Figure 4.20. The salt was found mostly around the rim of the water bath. This is

because the water bath has a relatively large surface area available for evaporation. Very little if

any salt was found on top of the consolidometer. It can be assumed that the fluid permeates from

top to bottom during the consolidation process, so because the salinity on the top reservoir is not

as affected by water evaporation as the salinity on the bottom reservoir, a substantial change in

target pore fluid salinity should not be expected.

When dealing with thin slurries, it is possible for large quantities of slurry to extrude

under the fluids own hydrostatic pressure, through any gap between the porous stone and the

consolidometer wall. This can lead to an unacceptable loss of slurry into the water bath,

effectively reducing the quantity remaining in the consolidometer. This quantity may therefore

fall below what is necessary to produce a test specimen. To overcome this, a method was devised

to seal the gaps between the porous stone and consolidometer wall. Commercially available

PolyTetraFluoroEthylene (PTFE) tape was used circumferentially around the porous stone to

produce a flexible seal between the two rigid surfaces. The PTFE tape allows for small

irregularities in the stones circumference to be masked and sealed. This method produced very

satisfactory results when dealing with troublesome slurries and a photo of the method can be

seen in Figure 4.21. Because the tape was placed circumferentially on the stone, the middle area

was still available to allow fluid flow to and from the soil. The only apparent drawback to this

method is that large friction forces can now be generated between the stone and the

consolidometer. These friction forces can be negated by stacking weights in a methodical manner

onto a piston which transfers force to the stone until movement is observed. Once axial

movement of the stone has been noted, the mass causing this movement should be added to each

load increment. This can prove to be a troublesome and delicate operation in the low stress range

say for instance when trying to apply a force of 0.40 kg to a slurry through a porous stone which

requires 1.50 kg to overcome the friction. The 0.40 kg force may also be absorbed by the friction
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of the stone owing to the "stick-slip" nature of this type of movement. In the high stress range,

the issue is not so pronounced.

An additional method to overcome extrusion around the base stone is shown in Figure

4.22. The bottom internal porous stone is placed flush with the base of the consolidometer, and

this in turn is placed on a larger diameter porous stone with a filter screen separating the large

porous stone and the consolidometer. This method reduced extrusion to zero on each instance of

its use and it does not suffer from the same frictional issues as the previous method. At some

stress level, the large diameter stone on the base can be removed and the floating tube

consolidation process can be used as normal. This method will only work for the base of a

consolidometer.

4.3.8 MEASURING PORE PRESSURES DURING RESEDIMENTATION

During the resedimentation program, an attempt was made to measure the pore pressures

generated, and associated rate of dissipation throughout consolidation of a soil. This was done in

response to the length of time the sodium montmorillonite was taking to consolidate. A curiosity

existed as to if excess pore pressures were present in the soil a long time after loading, or if

secondary compression was in fact occurring.

The transducer was not originally placed on tube when the slurry was poured, but was

attached some months after consolidation was initiated. A photograph of the resultant pore

pressure measuring device is shown in Figure 4.23. As can be seen from this Figure, the

transducer was attached retrospectively by attaching a collar to the outside of the consolidometer.

This collar was sealed to the consolidometer with an 0-ring. A Swagelok fitting was attached to

the collar, which would act as the connection between the collar and the transducer. A 2 mm

diameter hole was then drilled through this Swagelok fitting until the consolidometer wall was

pierced. In a timely manner, all connections were made between the Swagelok fitting and the

transducer. Every effort was made to ensure saturation of the system prior to fixing the

connections permanently. A 350 kPa pressure transducer was used. This transducer was installed

prior to the application of the final stress increment to the soil (to bring the soil to a stress of 100

kPa).
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Owing to the fact that the pore pressures (in the immediate vicinity of the piercing) would

have instantaneously dropped to atmospheric levels once the drill penetrated the consolidometer,

the tube was given two weeks for pore pressures to equilibrate and establish a zero or base

reference pressure. Upon application of the next loading increment, the channel recording the

pore pressure transducer was monitored in conjunction with the LVDT recording axial

movement. The resulting plots from the axial deformation and normalized pore pressures can be

seen in Figure 4.24, Figure 4.25 and Figure 4.26. It should be noted from Figure 4.24, when the

pore pressures are approaching zero, an upward concave shape is forming in the displacement

versus square root of time data. This is the first such instance of resedimentation time-

displacement data for sodium montmorillonite plotting in the traditional "upward" direction. This

"upward" plot usually signifies that the transition is occurring between primary consolidation

and secondary compression.

Although the pore pressure measuring method employed here is primitive and crude, the

technique can be built on and expanded. It is possible to apply this technique to other soils which

are not as notoriously problematic as montmorillonite. Several pore pressure transducers can be

used in a column to determine how the pore pressures behave at different heights in the soil

column as the end of primary consolidation is reached.

4.4 EQUIPMENT

4.4.1 INTRODUCTION

This Section describes the testing equipment used for the testing program. Constant Rate

of Strain (CRS) and triaxial devices were used in this research to investigate the one dimensional

and undrained shear properties.

Throughout the course of this research, many types of transducers were used to collect

data. These transducers measure the physical quantities which can change throughout a test such

as axial movements, volume changes, pressure increases and changes in stress. Section 4.4.2

describes these transducers and indicates under what circumstances a given type would be used.
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The data from these transducers is then collected in a central location in the MIT

Geotechnical Laboratory. Section 4.4.3 describes the system which exists to facilitate the

collection and storage of this data.

Section 4.4.4 describes the computer controlled triaxial testing system which is used at

MIT and outlines the advantages of computer control over traditional methods.

The CRS equipment used is described in Section 4.4.5. Descriptions of the cell as well as

the load frame are given, along with modifications to the load cell which had to be made as part

of this research.

The triaxial testing equipment is covered in Section 4.4.6 and describes the triaxial cell,

load frame and the Pressure Volume Actuators (PVA's) used to control the cell and pore

pressures.

4.4.2 MEASUREMENT INSTRUMENTATION

4.4.2.1 INTRODUCTION

Various types of transducers are used to digitally record the physical quantities that are

measurable during a test. All of these require a common excitation of approximately 5.5 volts

Direct Current (DC) from a regulated power supply. Because the output voltage is dependent on

the input voltage, the input voltage must also be recorded. When processing data and

determining calibration factors for transducers, the output voltage must be normalized to the

input voltage in order to eliminate any errors which may be present due to slight fluctuations in

the input voltage. The transducers which were used in this study can be summarized into four

categories: axial transducers, volume change transducers, load cells and pressure transducers.

Details of the transducers used for CRS and triaxial testing are given in Table 4-4, Table 4-5,

Table 4-6 and Table 4-7. These tables correspond to CRS cell TR4, and triaxial apparatus

MITO1, MIT02 and MIT04 respectively. The tables also include a summary of the calibration

factors as well as the achievable resolutions and stability of the output signal as measured by the

central data acquisition.

157



4.4.2.2 AXIAL DISPLACEMENT TRANSDUCERS

Axial displacement for the CRS and triaxial tests were measured externally. CRS testing used

two transducers positioned at 1800 to each other, with the average of the two being taken as true

displacement. Axial movement during triaxial testing depended on one transducer. Two

transducers were used for the CRS test owing to the small specimen size and a belief that any

lateral movement of the piston, however small, may adversely affect the results. The transducers

used were Linear Variable Differential Transformers (LVDT) manufactured by Trans-Tek Inc.

(series 240). Depending on the actual model number, these transducers can produce linear results

over ranges of movement from as small as approximately 0.10 cm, up to 10 cm. The LVDT tube

generates a magnetic field through which a ferromagnetic core moves. When the core, which is

not mechanically attached to the casing in any way, displaces axially through the LVDT tube, an

output voltage is produced which is directly proportional to the position of the core in the tube. A

picture of two LVDT's can be seen in Figure 4.27.

4.4.2.3 VOLUME CHANGE TRANSDUCERS

Changes in volume of a specimen during a triaxial test, and determining the quantity of

fluid which has passed through a specimen during a reverse leaching test are determined by

measuring the displacement of a piston in a Pressure Volume Actuator (PVA). A typical PVA

for the CRS test is shown in Figure 4.28 and PVA's used for triaxial testing are shown in Figure

4.29. The cross sectional area of the piston is calculated and the axial movement of this piston

during a test is recorded using either an LVDT or a string pot. The LVDT used in a standard

PVA is a Trans-Tek Series 240 displacement transducer with linear range of approximately 10

cm. The string pot (linear position transducer) is manufactured by Celesco (SP1 type). When

axial movement occurs, the extension of the wire rope rotates an internal capstan and sensing

device (precision potentiometer) to produce an electrical output signal proportional to the wire

rope extension. The range of this device is approximately 30 cm.

4.4.2.4 LOAD CELLS

The load cells used for triaxial testing are data instruments JP type shear beam load cells

with a 500 lb (2.2 kN) capacity. The load cell used for CRS testing was manufactured by Toledo

Transducers Inc. and has a 10,000 lb (44.5 kN) capacity. All load cells used an S-shaped steel
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section instrumented with strain gages. A photo of a 500 lb capacity load cell can be seen in

Figure 4.27 while a picture of the 10,000 lb load cell is shown in Figure 4.30.

The load cells for triaxial testing were placed internally in the cell, while the load cell for

CRS testing was mounted externally.

4.4.2.5 PRESSURE TRANSDUCERS

Pressure transducers are used in the triaxial test to monitor and control the cell pressure,

and the back (pore water) pressure. They are used in the CRS test to measure the cell pressure,
and record the base excess pore water pressure generated by the consolidation process. The

pressure transducers in use in the MIT Geotechnical Laboratory are manufactured by Data

Instruments and are of the AB/HP type. These transducers measure the absolute pressure by

deflection of a thin steel diaphragm that is instrumented with strain gages. The triaxial test and

the CRS test both use two 200 psi (1,400 kPa) pressure transducers. A photo of a 200 psi (1,400

kPa) pressure transducer can be seen in Figure 4.28. This Figure also shows a section through a

pressure transducer for reference.

4.4.3 DATA ACQUISITION

4.4.3.1 INTRODUCTION

Modern day testing requires many readings to be taken simultaneously. These readings can

include time, axial stress, axial strain, pore water pressures, radial strain and specimen volume

change to name but a few. Traditionally, these readings were taken manually using timers, data

sheets and dial gages which can prove to be a laborious task, particularly for lengthy tests. Here

the advantages of electronic instrumentation become apparent whereby force, displacement and

volumes can be converted to an electronic signal which can be then recorded automatically using

a data acquisition system. This reduces the man-hours required per test and leads to an increase

in quality control. For CRS, triaxial testing and soil batching performed in this study, all data

was collected utilizing the central data acquisition system in the Geotechnical Laboratory.
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4.4.3.2 CENTRAL DATA ACQUISITION SYSTEM

The central data acquisition system in the MIT Geotechnical Laboratory provides a single

location from where multiple readings can be taken simultaneously. The method allows for

complex recording schedules which will be defined by the operator. Once a set of readings are

taken, they are written to a text file (.dat) and stored on a computer until the operator retrieves it.

The system will continue to record data until either the number of prescribed readings specified

by the operator has been reached, or the test is stopped. Abdulhadi (2009) describes the system in

detail.

The Central Data Acquisition System (CDAQ) is based on a 486 microprocessor PC

driven by a Windows based operating system, with an expanded channel Hewlett Packard

HP3497A data acquisition unit which uses very low noise integrating analog to digital converter.

The system has a 5.5 digit integrating analog to digital converter with auto-ranging amplification

to four voltage scales namely 0.1, 1, 10 & 100 V. The system is configured to monitor 140

channels simultaneously while providing analog to digital conversion and data storage at rates up

to 1 Hz. This high quality low noise system makes it possible to directly measure laboratory

transducers without any signal amplification. The resolution and stability of transducers used in

the testing program as measured by the CDAQ are given in Section 4.4.2.1.

A schematic diagram of the central data acquisition system is shown in Figure 4.31. The

data acquisition system can be broken down into the following basic components:

- The laboratory device which contains the transducers, power supply, junction box,

voltmeter and ground

- A switching mechanism which allows the data acquisition computer to select a

particular transducer to measure

- An analog to digital converter then changes the voltages to digital word. This device

is critical to the precision of the final measurement

- A computer which orchestrates the components and performs the administrative and

computational tasks
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4.4.4 COMPUTER CONTROL SYSTEM FOR TRIAXIAL TESTING

The modification of existing manual system components to permit automation was first

conducted in the MIT Geotechnical Laboratory in the early 1990's by Sheahan (1991). He

developed an automated stress path triaxial cell for testing. The addition of innovative new

components to complete the system automation, increase flexibility and quality control has

continued ever since. The main advantages of automation are the huge reduction in man hours

and increased accuracy.

Automation is controlled by a closed feedback loop for the driving systems of the

apparatus. It works under the following principles:

- The transducers measure the actual specimen stress-strain state

- The transducer signals are sent to the computer and converted to engineering units

- Software compares these engineering units with a prescheduled time history of

specimen state

- A control algorithm computes what action needs to be taken by the electric motors to

keep the stress-strain state on schedule

- Signals are then sent to the electric motors to carry out the required action

Sheahan (1991) describes closed loop feedback control as direct measurements in an

iterative system to maintain specific time histories of the parameters being measured.

The hardware to convey electronic information along the digital feedback control loop is

shown in Figure 4.32. The output from the transducers is sent to an analog to digital (A/D)

converter which translates the analog signal in volts to digital signal in bit counts. Multichannel

A/D converter devices (MADC) are used. They provide high precision with a minimum 18 bit

resolution. The key component of the MADC is the Analog Devices AD 1170 A/D convertor. A

computer processes the incoming signals and determines the new command signal to be sent to

the testing device. The command signal generated is then converted back into an analog signal

through a digital to analog (D/A) converter board that is located within the computer. The D/A

converter is a commercial board manufactured by Strawberry Tree Inc. with a 12 bit resolution

and a ±5 volt range. The analog signals are sent via a motor driver from the D/A converter to the

electric motor. The electric motor then drives the required components such as the piston of the
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PVA to adjust pressures or the load frame to control axial stress. Electro-craft motors Model

E286 are used in the majority of MIT load frames, while Electro-craft motors Model E372/352

drive 0.5 Tonne actuators in the PVA's.

Automated control is carried out using a control program written in the QBASIC

programming language. The program allows the user to set up the system for testing and also to

allow for test control. The software was originally developed for automated triaxial testing but

has been constantly updated. It is now task specific, allowing functions such as initial pressure

up, saturation, consolidation and shear phases. Despite this local computer control, the central

data acquisition is still used for recording data.

4.4.5 CONSTANT RATE OF STRAIN TESTING EQUIPMENT

4.4.5.1 TRAUTWEIN CELL

A modified Trautwein CRS cell (known locally in the MIT Geotechnical Laboratory as

TR4), was used for all CRS tests performed. This cell has been modified from a standard CRS

Trautwein cell insofar as the specimen being tested is smaller than standard and two LVDT's are

now used to measure axial deformation instead of one. The piston plunger also required

downsizing owing to the smaller specimen size. A photo of the CRS ring used in the testing can

be seen alongside a standard CRS ring in Figure 4.33. The entire CRS cell can be seen

disassembled in Figure 4.34, and assembled while running a test in Figure 4.35.

An additional modification was required to the cell half during the testing program. The

piston seal which isolates the cell pressure from atmospheric pressure around the seal can be

seen in Figure 4.36. Occasionally, this seal would leak. Once the water passed the seal and

existed on the atmospheric side of the cell, the first exit point was at the top of the opening for

the piston lock through which the water would weep. Housed in this column which the cell water

permeates up through are a series of roller bearings that facilitates axial movement of the piston

while loading and unloading. After this occurred several times with high salinity water, rust was

noticed on the piston upon retraction. Small rust particles also got wedged between the seal and

the piston leading to further leakage. The saltwater had corroded the roller bearings and the

piston was beginning to seize. The issue was resolved by drilling a 3 mm diameter hole at a low
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level on the column to intercept any leaking water which exits the cell. This hole is shown in

Figure 4.37 and eliminated any water rising through the roller bearing area.

4.4.5.2 LOAD FRAME

All constant rate of strain testing was performed in a Wykeham Farrance Model T-57,
screw-driven loading frame with a 10,000 lb (44.4 kN) axial capacity. This particular load frame has

30 displacement rates ranging from 0.0037 to 46 cm/hour. The main strain rates used were 2 %/hour

for BBC in all states and 0.5 %/hour for London Clay. A photo of this load frame can be seen in

Figure 4.38. The rate at which data is collected using the central data acquisition system while

performing a CRS test is vital. If there are too many readings, the data may be difficult to interpret

and may require extensive analysis as the MIT produced QBASIC reduction program can only deal

with 1,000 data points at a time. If there are too few data points, the data may be jagged when

plotted, and important information such as the preconsolidation pressure may not be captured

accurately. A good rule of thumb employed during this research was that when the strain rate was 2

%, readings would be taken at 2 minute intervals meaning that 33.3 hours of data could be recorded.

If the strain rate was halved, the recording rate would be doubled due to the longer test time and so

on. It may also be advantageous to set the data acquisition system recording at a faster rate in order to

define the preconsolidation pressure very well, and then at greater intervals in the normally

consolidated range where change in behavior is not as frequent.

There are two main drawbacks when using this load frame. The first is that the frame is a

purely mechanical device with no electronic interaction. This requires the operator to continually

check on the progress of the test and manually determine the current stress level. There is no

computer readout, and no computer control to halt the device once a certain stress is achieved - it is

entirely operator dependent and must be operated by an on/off switch. The second drawback is that it

can only apply a constant rate of strain and not a constant level of stress. This means that it is not

possible to allow secondary compression at the end of a loading phase. Once the target stress level is

achieved and consolidation halted, the soil will naturally relax and the stress level drop. This is a

deviation from ASTM D4186 which requires secondary compression as part of a standard test. In

order to obtain an unload curve for a soil, the frame must be set to unload once a prescribed

stress level is achieved.
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All in all, the Wykeham Farrance load frame used was an extremely robust and user-friendly

piece of equipment to work with. It provided systematic and consistent strain rates and never posed

one issue throughout the some 90 CRS tests performed for this research.

4.4.6 TRIAXIAL TESTING EQUIPMENT

4.4.6.1 Low PRESSURE TRIAXIAL CELL

The triaxial apparatus has a clear plexiglass chamber with an internal pressure capacity of

1,500 kPa. The specimen is housed inside this chamber and is seated on a base pedestal. A fixed

cap confines the top of the specimen and drainage is provided to the soil via the base pedestal

and the fixed top cap. A compact shear beam load cell is also located within the chamber for

direct measurement of the axial deviator force. The placement of the load cell inside the chamber

eliminates the effect of piston seal friction on the load measurements. The soil specimen is sealed

using two thin impermeable membranes (un-lubricated latex Trojan brand condoms), and these

are sealed to the base pedestal and top cap using 4 0-rings at each location (8 in total). Owing to

the existence of an internal load cell in the chamber, internal connections are required to supply

power to, and take readings from this load cell. These electrical connections are supplied through

the base of the cell, whereby a male plug exists on the interior and exterior of the base from

which connections can be made. The internal load cell is connected to the loading piston which

rides through a low friction, linear bearing with an O-ring seal. Axial movement of this piston is

monitored externally with an LVDT. Figure 4.39 shows a schematic of the chamber with the

main items identified and Figure 4.40 shows a picture of the apparatus (MITO4). For clarity,

Figure 4.41 shows the sealing arrangement between the top and bottom caps and the membranes

for reference.

During triaxial testing, the chamber is filled with Dow-Corning "200 fluid", 20

centistokes silicone oil. This silicone oil exhibits extremely low viscosity over a wide range of

temperatures, is optically transparent and does not degrade the seals or the latex membranes used

in the testing procedures. This oil also has the benefit of being nonconductive which is

convenient when locating electronic devices inside the chamber. The alternative would be to use

sealed connections in the cell.
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4.4.6.2 TRIAXIAL LOAD FRAME

The system is axially loaded through the use of a 1 Tonne (9.8 kN) capacity bench top

Wykeham Farrance screw driven loading frame. The load frame has been modified to respond to

computer control and can be set to halt axial movement when either a prescribed stress or strain

level has been achieved. A photo of the load frame can be seen in Figure 4.42.

4.4.6.3 ANCILLARY TRIAXIAL EQUIPMENT

Pressure-Volume Actuators (PVA; see Section 4.4.2.3) are used to control the cell and

back (pore water) pressures. Volume changes in the specimen are computed from an LVDT

monitoring the motion of the back pressure PVA which will have a piston of known area. Cell

and back pressures are monitored and controlled with high performance diaphragm type (200 psi

[1,400 kPa] capacity) pressure transducers that are located on the base of the cell. The enclosure

and the rest of the apparatus are located inside an air-conditioned laboratory. A photo of the

complete triaxial setup showing cell, load frame, both PVA's and the computer control is shown

in Figure 4.43. The load frame and both PVA's have been modified so they operate under

computer control. This has been described in Section 4.4.4.

4.5 TESTING PROCEDURES

4.5.1 INTRODUCTION

This section describes the various test procedures employed for CRS testing, reverse

leaching tests performed in the CRS cell and triaxial compression tests. Issues which required

addressing during the testing program will also be described, along with tactics employed to

overcome these issues. Also covered in this section are ancillary tests such as salinity testing,

index testing and organic content testing.
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4.5.2 CHARACTERIZATION

4.5.2.1 INTRODUCTION

This section describes the test procedures used to characterize the various soils. Not all

characterization tests mentioned below were performed on all soils, but specific tests were

performed on individual soils.

4.5.2.2 GRAIN SIZE ANALYSIS

As most of the soils used throughout the testing program were predominantly clay and

silt sized, the Hydrometer was used as the main method to determine the grain size distribution.

All Hydrometer tests were conducted in accordance with ASTM - D422 Particle Size Analysis of

Soils. The results for the tests performed can be seen in Chapter 3.

4.5.2.3 ATTERBERG LIMITS

The Atterberg Limit tests provide methods to determine in which state a soil exists, and

therefore basic judgments can be made as to the likely properties the soil will display. The water

contents of most importance are the Plastic Limit and the Liquid Limit. The Plastic Limit is the

theoretical water content where the soil transitions between brittle and plastic behavior, while the

Liquid Limit defines the theoretical water content at which the soil changes from a plastic to a

liquid behavior.

The Plastic Limit test was run in accordance with ASTM D4318 using the rolling test.

The Liquid Limit test was performed in accordance with BS 1377 - 2 which describes the Fall

Cone method. The fall cone method was preferred over the Casagrande Cup method due to the

fact that results are very repeatable and the risk of operator error is reduced. For some soils such

as sodium montmorillonite, both the Casagrande Cup method and fall cone method were used to

estimate the liquid limit. Both the Casagrande Cup method and Fall Cone method were used on

sodium montmorillonite.

4.5.2.4 SPECIFIC GRAVITY

Specific Gravity (Gs) is the ratio of the density of a substance to the density of a water at

20' C. The test is highly dependent on ambient temperature due to the contraction and expansion
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of water, and therefore careful control of the test is required in this regard. All Gs tests were

performed in a polystyrene box in the MIT Geotechnical Laboratory to allow time for

temperature equilibrium. Testing was performed in accordance with ASTM - D854.

4.5.2.5 SALINITY TESTING OF SOIL

Salinity is reported in grams of salt per liter of fluid. Almost all natural soils have some

fraction of salt included in their pore fluid. When these soils are brought into the laboratory for

testing, the natural water is removed for processing prior to resedimentation. The salt which was

present in this water is now left behind as a solid in the soil. This quantity of salt which exists

naturally must be determined. The rationale behind this is when a soil is resedimented, it is

usually do so to a certain salinity. If salt exists naturally in the processed powder, this must be

allowed for when determining the quantity of salt to be added to the resedimented material in

order to obtain the target salt concentration. For example if it was determined a soil had a natural

salt content of 6 g/l (after allowing for the in-situ water content) and is then due to be

resedimented to 16 g/l, a pore fluid containing 10 g/l would need to be added in order to get to

the target value. The salinity test is used to quantify the salt existing naturally in a soil.

Measurement of the salinity was done with a trace portable conductivity meter, model

23226 - 505 from VWR International. This meter has been previously calibrated by Grennan

(2009). There is no standard test method for measuring the salinity of a soil. The following

procedure was adapted from Germaine & Germaine (2009), Grennan (2009), and Martin (1982).

" Before testing, create a I g/l saltwater reference fluid taking extreme care with the quantities

used. Subsequent readings taken from soil will be normalized to the readings taken from the

reference fluid

" Obtain eight centrifuge tubes, clean thoroughly and dry using paper towels. Slight impurities

present in the tubes may alter the readings significantly

e Once dry, pair a tube with a lid. These will remain together for the duration of the test

e Record the mass of each centrifuge tube on its own first, and then with its cap

" Placing one centrifuge tube on a digital scale at a time (tare the scale to allow for the stand

holing the tube), and add 30 g of distilled water to each tube. If too much water is added, it

can be removed using a paper towel. Do this for four tubes only
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e Repeat the process of placing each tube on the scale, but this time add 15 g of the desired

soil.

" Fill the remaining four tubes with 40 g of the reference 1 g/l saltwater solution. There should

be four tubes containing the reference solution and four tubes containing the soil to undergo

testing

" Leave for one hour, then shake each tube to agitate the mixture

e Regardless of soil type, allow to hydrate for 24 hours

e Before placing tubes in the centrifuge, shake vigorously once more to ensure the soil is

dispersed uniformly throughout the liquid. It is important to place similar tubes opposite each

other in the centrifuge so their masses will be cancelled out due to the high centrifugal force

which will be generated at high RPM e.g. soil tubes opposite soil tubes, reference tubes

opposite reference tubes

* Run the centrifuge at between 10-15,000 RPM for 30 minutes. A Damon/IEC HT Centrifuge

was used in this testing program

* Once the centrifuge has stopped spinning, remove the tubes and allow them to sit in a holder

* The tubes are noticeably warmer upon removal from the centrifuge. The spinning of the

tubes in the centrifuge generates heat, which in turn heats the liquid in the tubes. Because the

conductivity of water increases with an increase in temperature, it is highly recommended to

allow the tubes to equilibrate to room temperature before pouring out the supernatant to test.

3 hours was usually allowed for this equilibration

* Each soil laden tube should be paired with a tube containing the reference saltwater

* Unpack the conductivity meter and clean all glassware to be used for testing. The probe

should also be cleaned with distilled water and allowed to dry

e Decant the supernatant from a given soil laden tube into a 10 ml glass beaker and measure its

conductivity. Remove the probe and wash with distilled water. Dry carefully using a paper

towel. Take a total of 4 readings in this manner

" Pour the reference saltwater into a separate 10 ml glass beaker and measure its conductivity.

Again, repeat the process to obtain a total of 4 readings

e It is important to move the probe through the fluid while taking readings. This helps prevent

polarization, ensures the solution is will mixed and helps maintain a uniform temperature

within the solution
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e Clean and store the probe

Using the conversion factor generated from the calibration, the salinity of the supernatant can be

estimated. The salinity of the test specimen can be then calculated by multiplying this Figure by

the testing water content and dividing it by the natural water content. The equation for this is

given in Equation 4.1:

RSS = SS x ' (4.1)

Where:

RSS = salinity of the test specimen (g/1)

SS = Salinity of the liquid supernatant (g/1)

wc = water content of soil after centrifuging (%)

wn = natural water content of the specimen (%)

4.5.2.6 ORGANIC CONTENT

Organic matter exists in soil as vegetation roots, microbes and other organisms. In order

to determine how much of these organics are present, the loss on ignition test is performed. This

test will also evaporate any bound water from the soil at temperatures up to 440 C. The test is

described in ASTM D2974 and its guidelines were followed when determining the organic

content. The material to be tested was originally placed in a standard laboratory oven at 105' C

until constant mass was achieved. This process removed any free moisture which may exist in

the soil. The soil was then transferred to a muffle furnace whose temperature was 440' C. Again,

the soil was left in this furnace until constant mass was achieved. The organic content test was

performed on London Clay and BBC Series IV.

4.5.3 CONSTANT RATE OF STRAIN TESTS

4.5.3.1 INTRODUCTION

The history and development of the CRS testing method is described in Force (1998) and

Gonzalez (2000). The CRS cell used in this testing program was a modified Trautwein CRS

apparatus. Modifications to the standard Trautwein cell include a reduction of the normal plunger

size, the custom manufacture of a smaller specimen ring to test smaller quantities of soil and the
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use of two LVDT's to measure axial displacement. These modifications were necessary owing to

the fact that some of the material in the testing program originated in the Gulf of Mexico, and

due to high retrieval costs and limited availability of material, smaller specimens are required.

The modifications also allow soil to be tested to much higher stress levels. All CRS testing was

therefore performed in this reduced sized ring in order to eliminate any size effects which may

exist die to different specimen sized and also to directly compare the results from several soil

types. Additional valves were also added to the pore pressure line in order to facilitate the

reverse leaching tests which were performed. A schematic of the Trautwein cell is shown in

Figure 4.36 with the main components identified.

The testing strain rate is of primary importance. The selected strain rate must produce

pore pressure ratios, which is the base excess pressure divided by the total axial stress, between 3

and 15 %. ASTM D4186 gives guidelines on selecting a strain rate which will satisfy these

requirements based on the soils atterberg limits. They recommend a strain rate of 10 %/h for MH

materials, 1 %/h for a CL material and 0.1%/h for a CH material (note material definitions based

on USCS classification system, ASTM D2487).

Two types of test were performed in the CRS device: standard one dimensional CRS

loading tests, and reverse leaching tests which involved replacing the pore fluid in a low salinity

BBC leached soil specimen with high salinity saltwater during a test.

Given the range of salinities used throughout the testing program (1 to 256 g/1), the cell

fluid for all CRS tests mimicked the pore fluid salinity. The only exception to this rule was when

the reverse leaching tests occurred. In this instance, 256 g/l saltwater was used as the cell fluid

for a 1 g/l leached BBC specimen.

4.5.3.2 STANDARD 1-D CONSTANT RATE OF STRAIN TESTING

4.5.3.2.1 INTRODUCTION

The standard CRS test was performed in general accordance with ASTM D4186. The

specimen is incrementally back pressured using a PVA capable of maintaining and controlling

the back pressure to within ±2 % of the target back pressure throughout the test. A graph of the

back pressure stability as a function of time can be seen in Figure 4.44. Both the cell pressure
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and the excess pore pressure were measured using a pressure transducer, axial deformation was

measured using two LVDT's with true axial deformation taken as the average of the two. The

load was measured with an external load cell. Deformation of the soil specimen was corrected

for apparatus compressibility.

In this test method, the specimen is constrained axially between two parallel, rigid platens

and laterally such that the cross sectional area remains constant. For this series of testing, a

Trautwein CRS cell was used. This device provides more flexibility in testing than the

conventional incremental oedometer test. With the Trautwein apparatus, the specimens can be

saturated under a back pressure, initially with drainage allowed from top and bottom, then loaded

with no lateral strains, at a constant rate of strain. The main features of this equipment are

presented here. For a more detailed description of CRS testing and procedures, refer to Force

(1998) and Gonzalez (2000).

Drainage is provided along the top boundary and the pore pressure is measured at the

bottom boundary. The specimen is deformed axially at a constant rate while measuring time,

axial deformation, load required to produce the axial deformation and excess pore pressure.

Strain rates are limited in the test method by specification of the pore water pressure ratio which

is the base excess pressure divided by the total axial stress. This ratio must not drop below 3 %

or rise above 15 % in order to produce successful results. This criterion is not always achievable

when testing to high stresses. A full description of the test requirements can be found in ASTM

D4186 - 06.

The Trautwein cell has a clear plexiglass chamber which fixes onto a metal base. A

recess in the metal base accommodates a porous stone, which in turn provides access to a base

drainage line from where excess pore pressures are measured during consolidation. A confining

ring containing the test specimen sits above this porous stone. The consolidation stress is applied

to the specimen via a piston which loads the soil from the top. A schematic diagram of the CRS

cell is shown in Figure 4.36.

The CRS tests were performed on small diameter specimens (diameter = 3.55 cm, height

= 1.264 cm). The specimen is protected top and bottom with filter screen discs and porous
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stones. Once assembled, the cell pressure will be isolated from the base pressure to facilitate the

measurement of the excess pore pressure.

Owing to the fact that the testing program involved testing soils to a very high stress,

compressibility of the apparatus must therefore be taken into account when reducing the data to

separate compression of the apparatus from axial strain in the soil. Two determinations of the

apparatus compressibility were performed for the stress range up to 40,000 kPa (based on the

specimen diameter) and these plots can be seen in Figure 4.45.

4.5.3.2.2 PROCEDURE

Reference should be made to Figure 4.36 while reading the following in an attempt to

follow what is being described. Many different soils were tested in the CRS device throughout

this testing program. These ranged from in-situ BBC Shelby tube samples taken from underneath

Killian Court, MIT during the summer of 2010 to resedimented soils. Regardless of the soil to be

tested, the test preparation procedure remains very similar. All mass measurements should be

done on a scale which can read to 0.01 g.

1. Clean the cutter-ring so that it is free from surface dirt and any residues. Obtain the mass

of the ring and one filter screen. Clean the recess tool in a similar fashion and obtain its

mass. The inside of the cutter ring is then greased to aid in trimming.

2. Square the ends of the soil to be trimmed into the cutting ring using a squaring block.

Take at least 2 water contents of the trimmed soil for reference. If the soil is from a

Shelby Tube, obtain three Torvane readings on the freshly exposed face of the parent

sample. These are to be noted on the data sheet, as well as the location the specimen was

taken from along the tubes length. If the soil to be tested is taken from a consolidometer,

the resedimentation number is to be noted on the data sheet, as well as the specimens

location within the column i.e. 4-6 cm of soil taken from the base of the tube. It is

important to keep the same datum within the tube as unlike the Shelby Tube specimens,

resedimented soil is extruded from the column. Resedimented soils for CRS testing

purposes was generally resedimented to a stress of 100 kPa and rebound to an Over

Consolidation Ratio (OCR) of 4.
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3. Place the soil to be trimmed below the cutting ring carefully so that soil occupies the

entire area of the ring. This is shown in Figure 4.46. Carefully trim the specimen into the

cutting ring using the trimming tool. It is important to ensure that the cutting ring is

orthogonal to the turntable on which the soil being trimmed sits. A picture of this stage is

shown in Figure 4.47. Continue trimming soil into the cutting ring until it contains

enough soil to satisfy the requirements of the test (1.264 cm high in this study). Once this

has been accomplished, remove the cutting ring from the trimming device. Trim the soil

at the end of the ring initially using a wire saw, and then with a straight edge to remove

any soil left behind due to the deflection of the wire. A photograph of this stage is shown

in Figure 4.48. Clean the area surrounding the freshly trimmed surface and apply a filter

screen to the surface of the soil. It is important that the filter screen is the exact same size

as the interior of the cutting ring. The recess tool is machined so accurately that there is

no room between the cutting ring and the recess tool to accommodate the folding of the

filter screen. If this occurs, the recess tool may become jammed in the ring possibly

leading to damage of the specimen. Once the recess tool has been pushed as far as it can

go into the ring, the required height of soil now exists inside the ring by default. The soil

protruding from the opposite side of the ring must now also be trimmed to form a smooth

surface in a similar fashion to the method already described. This step is shown in Figure

4.49.

4. The cutting ring now contains soil with the correct dimensions for testing, a filter screen

and also a recess tool. The mass of all items must now be taken as one. The mass of the

soil can then be found by subtracting the masses obtained from stage 1. The soil is ready

to be tested.

5. Before testing, allow all transducers at least 15 minutes to "warm up" before recording

their zero values. The cell should be assembled as shown in Figure 4.36. It was noted

during the testing program that a square O-ring provided a better seal between the base

porous stone and the cell pressure than the previously used double O-ring system. Once

the cell is assembled, lower the piston so that it rests on the soil, apply a very small

pressure to the piston to ensure the soil is seated on the base porous disc but be careful

not to overstress the specimen. The piston is then locked in place and the cell placed into

173



the load frame. Affix the bracket which holds both LVDT's to the load button and ensure

the LVDT's will be in an acceptable voltage range for the duration of the test. Place the

load button in contact with the load cell while monitoring the voltage of the load cell to

determine when contact is made. Apply a seating load of approximately 2 kgf to the

specimen. Ensure that there is pure axial load transfer from load cell to piston, and finally

to the loading table. Any eccentricity introduced to the test may introduce errors in the

recorded stresses.

6. The cell can now be filled with the appropriate fluid. This is dependent on the soil being

tested. The cell was normally filled using a syphon through the cell pressure line. The

valve on the cell pressure line which accesses the base pressure was opened for the filling

sequence so as to ensure saturation of all test lines. The pore pressure transducer was not

attached until the housing into which it fits was overflowing with cell fluid. This ensured

saturation of the line from the base of the specimen to the pore pressure transducer. Once

the cell was filled, the syphon was disconnected. The connection to the PVA was quickly

made, with the pipe coming from the PVA being allowed to drip under a slight pressure

while it was connected into the cell, again to ensure saturation of all lines.

7. The cell has now been filled and is connected to the external ancillary plumbing such as

the PVA and water supply. Back pressure saturate the specimen in accordance with

ASTM D4186 to pressures of 35, 70, 150, 300 and finally 396 kPa. All CRS tests in this

research were run at a back pressure of 396 kPa. Depending on the plasticity and

hydraulic conductivity of the soil, the time required between these increases in back

pressure will change. Generally as the plasticity increases, so does the time between back

pressure increments. Throughout this research, it was found that for BBC, a minimum of

15 minutes is required between pressure increments, while for more plastic soils such as

London Clay, 40 minutes was a good equalization time. It is important that the specimen

be back pressure saturated from both the cell and the base at the same time.

8. Once the specimen is back pressure saturated, the specimen is almost ready to be tested.

Two very important steps must be completed prior to testing 1) the piston which is still in

the locked position must be unlocked 2) the valve on the cell pressure line must now be

closed, if it remains open then no excess pore pressures at the base will be produced.
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Once these steps are complete, loading of the specimen can commence at the desired

strain rate.

9. The maximum stress level the specimens were tested to in this research was 40,000 kPa.

Given that the cross sectional area of the specimen is 9.886 cm 2, this represents an axial

force on the load frame of approximately 4,000 kg. Once the maximum stress was

realized, the load frame used was unable to perform secondary compression so the test

was either concluded or the specimen unloaded.

10. Once the test is completed, the cell pressure was reduced gradually. This can be done

over a period of roughly 30 seconds rather than simply allowing all pressure to evacuate

at once. Remove the CRS cell and extrude the soil from the confinement ring taking care

to note any extrusion on the interior of the cutting ring which may have occurred. If

extrusion has occurred, scrape the extruded soil into a tare in order to obtain the dry mass.

With the main test specimen, obtain the final wet mass and then place in an oven at 105

C until constant mass has been reached.

4.5.3.3 REVERSE LEACHING TESTING IN THE CRS CELL

4.5.3.3.1 INTRODUCTION

For the reverse leaching test, an additional Pressure Volume Actuator similar to the one

shown in Figure 4.28 was required in order to keep the base pressure of the specimen at a

pressure greater than atmospheric, but less than the cell pressure in order to maintain an

acceptable pressure differential across the specimen. Because of the small height of the specimen

(1.26 cm), accurate control on the base pressure was required. Any increase or decrease in

pressure would adversely affect the hydraulic gradient across the specimen. Too low of a

gradient and flow would not take place, and too high of a gradient and risk of the soil blowing

out was increased. For this test, the cell pressure was maintained with a PVA at 396 kPa, while

the base pressure was maintained with a separate PVA at 386 kPa.

4.5.3.3.2 PROCEDURE

Reverse leaching tests were performed on leached BBC. This leached BBC was

resedimented to a salinity of 1 g/l, an axial stress of 100 kPa. The soil was rebound to an OCR of
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4. The cell fluid used in the test was 256 g/l saltwater. The procedure for setting up the test is

identical to the method described in 4.1.1.1.1 up to point 8. The following procedure will

continue from point 8 with the additional steps which were performed for the reverse leaching

test:

a. Consolidate the specimen until it lies on the virgin compression line. It is advantageous to

stress the specimen well past the preconsolidation pressure to ensure that the recorded

data will plot in a true log-linear way. It will be easier to detect any differences in

behavior if this is the case.

b. Once the conditions of "a" are satisfied, the consolidation process can be halted - the

piston is not locked so that the relaxation of the soil can be measured. Figure 4.36 should

be referenced while reading the following as it will help explain the process. The valve

on the cell side of the pore pressure transducer can be closed so that an additional PVA

can be connected to the valve on the atmospheric side of the transducer. The valve can

then be opened to allow the pore pressure transducer to read the pressure which is present

in the PVA. The pressure in the PVA is adjusted until the transducer records a pressure of

390 kPa. Allow the PVA to equilibrate for 1 hour before commencing leaching. Once the

base pressure has stabilized at 390 kPa, record the zero value of the LVDT attached to the

PVA. The valve on the cell side of the pore pressure transducer can now be opened. Flow

should now occur through the specimen.

c. Depending on the cell fluid and the hydraulic conductivity of the soil, the test may take

several weeks to complete. It was found for BBC that the pore volume could be replaced

2.11 times in approximately 2.5 weeks. The volume of fluid which has passed through

the soil can be monitored by recording the voltage of the LVDT attached to the PVA.

d. Once an adequate quantity of fluid has passed through the soil (which would be a test

dependent decision), the valve to the PVA is closed. The pore pressure transducer should

now be given adequate time to equilibrate with the cell pressure before consolidation

recommences. Given the small pressure gradient which existed initially, this takes a

matter of minutes for BBC.
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e. Consolidation of the soil can now recommence to the desired stress level. It is important

to note that actual consolidation of the soil will proceed at the same rate as in a standard

test, the time is lost by performing the reverse leaching on the soil.

4.5.4 TRIAXIAL TESTING

4.5.4.1 INTRODUCTION

Triaxial testing was performed using the existing triaxial apparatus in the MIT

Geotechnical Laboratory. The main features of this apparatus are presented here. For a more

complete description of the MIT stress path triaxial apparatus, Sheahan (1991), Sheahan &

Germaine (1992) and Santagata (1998) provide more detailed information.

4.5.4.2 TRIAXIAL COMPRESSION TEST PROCEDURE

A typical triaxial test can be broken into five stages.

1) cell and apparatus preparation

2) specimen trimming and measuring

3) Specimen saturation

4) Consolidation

5) Specimen shearing

In order to minimize setup time and help ensure the test runs smoothly, extra emphasis

should be placed on proper setup and preparation as corners cut at this stage may show up in the

form of leaks, incorrect transducer readings (or zero values) and/or poor phase relation

calculations after some time has been invested in the test. Corners cut in the setup phase will be

paid for one way or another. In general, procedures developed by Dr. John Germaine for the

Graduate Laboratory class at MIT (class number 1.37) were followed when preparing for, and

conducting triaxial testing. These notes give a step by step approach to what must be done in

order to realize a successful test.
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4.5.4.3 OBSERVATIONS

Although the same procedures were employed when testing all soils, some notable

differences in soil behavior during testing can be identified. When back pressure saturating

specimens, a B value greater than 0.98 was desired prior to advancing the test. When

resedimented material had been back pressure saturated with a cell pressure of ~300 kPa and a

pore pressure of 280 kPa, the required B value was achieved in the vast majority of cases. As the

triaxial testing program also involved in-tact material (Killian Court BBC), differences were

noted in the amount of cell pressure and pore pressure required to achieve the same degree of

saturation. In-situ material usually required cell pressures of 4 - 450 kPa with corresponding pore

pressure values of 380 - 430 kPa respectively.
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Soil Liquid Plastic Plasticity Fracton Clay uscs Strain

SoilLimit ( ) Limit ( ) Index (%)tio Classmeiation ( / R)

Boston Blue Clay 48 25 23 56 CL 2
Series IV

Leached BBC 48 25 23 56 CL 2

Sodium Hex BBC 48 25 23 56 CL 2

Killian Court In-Situ 48* 25* 23* 56* CL 2
BBC

London Clay 73.8 30.5 43.3 63 CH 0.5

Sodium 634' 5581 13
Montmorillonite 5052 76 4292 100* C1

GOM - Ursa 51.7 23.7 28 54 CH 1

GOM - Soil 1 70 29 41 59.2 CH 0.6

Notes: *Assumed values
1 - Determined using the
2 - determined using the fall cone method
3 - The sodium montmorillonite quoted in this table was tested with 256 g/l saltwater as the pore fluid for
CRS testing. The pore fluid used to obtain the atterberg limits for sodium montmorillonite was distilled
water.

Casagrande cup method

Table 4-1 Details of soils tested in CRS testing program
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RESEDIMENTATION DATA

# Sample Start Date SucMaeil Salinity Pore Flui'd Tse i ts ubr
Number (dd/mm/yyyy) Source Material (gl) Cotn ( Tested via (test number)

1 RS165 * 20/2/2011 Kaolinite 0 100 CRS (1214, 1213, 1211)

2 RS174 27/2/2011 Natural BBC Series IV 64 100 CRS (1218,1216,1217)

3 RS175 27/2/2011 Natural BBC Series IV 16 100 CRS (1222,1221, 1220,1219)

4 RS178 12/4/2011 Natural BBC Series IV 4 100 CRS (1231, 1230, 1229)

5 RS179 14/4/2011 Natural BBC Series IV 128 100 CRS (1223, 1224, 1225)

6 RS184 10/5/2011 Natural BBC Series IV 256 110 CRS (1228, 1227, 1226)

7 RS190 1/6/2011 Natural BBC Series IV 4 100 CKoUC (TX1068)

8 RS192 2/6/2011 RGOM - Ursa 0 100 CRS (1309, 1308, 1307)

9 RS193 2/6/2011 Natural BBC Series IV 256 110 CKoUC (TX1069)

10 RS194 6/6/2011 Natural BBC Series IV 4 100 CKoUC (TX1074)

11 RS195 6/6/2011 Natural BBC Series IV 4 100 CKo)UC (TX1078)

12 RS197 13/6/2011 Natural BBC Series IV 256 110 CKoUC (TX1075)

13 RS199 17/6/2011 Natural BBC Series IV 64 100 CRS (1234, 1233, 1232)

14 RS200 20/6/2011 Natural BBC Series IV 256 110 CKoUC (TX1081)

15 RS201 20/6/2011 Natural BBC Series IV 4 100 CRS (1252,1251)

16 RS202 28/6/2011 Leached RBBC 1 80 CRS (1238, 1237, 1236, 1235)

17 RS205 6/7/2011 Leached RBBC 256 120 CRS (1239, 1240, 1241)

18 RS206 7/7/2011 Leached RBBC 64 95 CRS (1245, 1246, 1247)

19 RS207 9/7/2011 Leached RBBC 16 90 CRS (1242, 1243, 1244)

20 RS209 29/7/2011 Leached RBBC 1 80 CKOUC (TX1084) / CRS (1250)

21 RS210 29/7/2011 Leached RBBC 1 80 CKoUC (TX1082) / CRS (1248, 1249)

22 RS211 5/8/2011 Leached RBBC 256 120 CKoUC (TX1086)

23 RS212 5/8/2011 Leached RBBC 256 120 CRS (1254, 1253)

24 RS216 16/8/2011 Sodium Hex BBC 0 56 CRS (1314, 1313)

25 RS219 8/9/2011 Leached RBBC 64 90 CRS (1290, 1271)

26 RS222 12/9/2011 London Clay 16 130 CRS(1303,1294,1291)

27 RS229 15/9/2011 Leached RBBC 256 120 CKoUC (TX1094)

28 RS230 5/10/2011 London Clay 256 140 CRS (1306)

29 RS232 15/10/2011 London Clay 4 130 CRS (1305, 1304)

30 RS234 * 26/10/2011 Natural BBC Series IV 4 100 CKoUE (TX1 104-A)

31 RS237 * 29/10/2011 Natural BBC Series IV 4 100 CKoUE (TX1103)

32 RS238 * 11/11/2011 Natural BBC Series IV 256 120 CKoUE (TX1107)

33 RS240 * 15/11/2011 Natural BBC Series IV 256 120 CKoUE (TX1104-B)

34 RS245 * 20/12/201 1 Sodium Montmorillonite 1 1050 CRS

35 RS246 * 20/12/201 1 Sodium Montmorillonite 1 1050 CRS

36 RS250 24/1/2012 Sodium Montmorillonite 256 100 CRS (1322, 1318,1316)

37 RS251 * 29/1/2012 RGOM - Soil 2 100 138 CRS

38 RS252 * 2/2/2012 RGOM - Soil 1 100 138 CRS (1312)

39 RS255 25/2/2012 Leached RBBC 0 62 CRS (1328, 1327, 1324, 1323)

40 RS262 * 24/3/2012 RGOM - Soil 1 200 - CRS (1329)

41 RS266 * 23/4/2012 RGOM - Soil 2 200 - CRS

* indicates sample whose results are not included in this thesis
Right hand column shows how specimen was tested with the corresponding test number in parentheses

Table 4-2 List of all resedimentation batches produced for this research
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Salt Fluid

Soil Type Content Content (%) Comments
Soil ype j (g/l)

BBC Series IV 4 100

16 100

64 100 Not much change in required fluid content over
a large range of salinity

128 100

256 110

Leached BBC 0 62 Produces a very thin slurry

1 80

16 90
Increase in fluid content with an increase in

64 95 salinity - contrast to natural BBC Series IV

256 120

Sodium Hex BBC 0 56 Produces a very thin slurry, required we almost half that
required for BBC Series IV

London Clay 4 130

Similar observations to BBC Series IV, not
16 130 much change in required fluid content over a

large salinity range

256 140

Sodium Montmorillonite I 105
Sodium ____________ite 1 __1050_ Produces a very thin slurry at low salinity. Huge

256 100 variation in required water content

GOM Ursa 0 100 Resedimented with distilled water only

Note: All soils resedimented with sea salt (NaCl). The salt concentrations shown indicate the mass of salt added
to 1 litre of distilled water

Table 4-3 List of soils resedimented during the course of this research and the required mass of

fluid required to bring the soil to a stable slurry at the salt concentrations indicated
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Data Calibration
Device Acquisition Measurement Device Factor (v/v) Range Resolution Stability

Channel

TR4 41 Def ation External LVDT -2.535 cm 2.50 cm 0. 0002 % 0.002 %

Specimen Volume Strain 71.19 cm3 45 cm3 0.00048 % ±0.000048 %
Volume LVDT (0.1 mV) (1 mV)

44 Input Voltage - - - - -

72 Axial Force ExternlLoad 14798.2 kN 44.5 kN 0.0017my) (0.017 mV)

73 Axial ±External LVDT 2.571 cm 2.50 cm 0.000379 % ±0.00379 %
Deformation (0.1 mV) (1 mV)

74 Cell Pressure Trasucer 69.25 MPa 1.4 MPa 0.01 ) (0.01 m)

75 Pore Pressure ansducer 68.65 MPa 1.4 MPa 005 kPa 05 kPa

76 Input Voltage - - - - -

Table 4-4 Characteristics of instruments used in CRS TR4 apparatus Note: Resolution and

stability based on central data acquisition system, calculations based on specific dimensions

Data Calibration
Device Acquisition Measurement Device Factor (v/v) Range Resolution Stability

Channel

MIT01 10 Speecimen Volume Strain -96.26 cm
3  45 cm

3  ±0.0006 % ±0.006 %
Volume LVDT (0.1 mV) (1 mV)

S1I Pore Pressure Trasucer 68.68 MPa 1.4 MPa 0.001 my) 0.01 mV)

12 Axial Force Internal Load 68.44 kN 2.22 kN 0.77 N 7.7 N
Cell (0.001 mv) (0.01 mV)

13 Cell Pressure Transducer 68.74 MPa 1.4 MPa 0051 ) (0.01 m)

14 Defoation External LVDT -2.08 cm 2.50 cm (0.007 ±0.00 %

15 Input Voltage - - - - -

Table 4-5 Characteristics of instruments used in triaxial MITO1 apparatus Note: Resolution and

stability based on central data acquisition system, calculations based on specific dimensions
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T Data CalibrationDevice Acquisition Measurement Device Factor (vv) Range Resolution Stability
Channel

MIT02 30 Specimen Volume Strain 23.23 cm±3 45 cm3 0.0003 % ±0.003 %
Volume LVDT (0.1 mV) (1 mV)

31 Axial ±External LVDT 2.48 cm 2.50 cm 0.004 % ±0.004 %
Deformation (0.1 mV) (I mv)

32 Input Voltage - - - - -

33 Cell Pressure Transducer -68.52 MPa 1.4 MPa 0.01 my) 0.1 mV)

34 Axial Force InterCelload 65.84 kN 2.22 kN (0.001 my) (0.01 mV)

137 Pore Pressure Trasucer 68.82 MPa 1.4 MPa 0.001 my) 0.01 mV)

Table 4-6 Characteristics of instruments used in triaxial MITO2 apparatus Note: Resolution and

stability based on central data acquisition system, calculations based on specific dimensions

Data Calibration
Device Acquisition Measurement Device 1 a a n Range Resolution Stability

Channel

MITO4 108 Deformation External LVDT 2.08 cm 2.50 cm (0.0018 % 00018 %

109 Cell Pressure Pressure 69.1 Mpa 1.4 Mpa 0.027 kPa 0.27 kPa
Transducer (0.001 mv) (0.01 mV)

110 Axial Load Internal Load 64.49 kN 2.22 kN (0.001 mv) (0.01 mV)

111 Pore Pressure Pressure 68.68 Mpa 1.4 mPa 0.011 On 0.11 kPaTransducer (0.001 my) (0.01 mV)

Specimen Volume Strain 22.60 cm3 45 cm3 ±0.0002 % ±0.002 %
Volume LVDT (0.1 mV) (1 mV)

113 Input Voltage - - -

Table 4-7 Characteristics of instruments used in triaxial MITO2 apparatus Note: Resolution and

stability based on central data acquisition system, calculations based on specific dimensions
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Figure 4.1 Bulk London Clay as received to the MIT Geotechnical Laboratory

Figure 4.2 Close up of bulk London Clay soil with blue flow channel areas and pockets of quartz

visible
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Figure 4.3 Air Drying of London Clay using industrial fan (performed in MIT basement,

building 1)
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Figure 4.4 GPX Disc Grinder Used in Processing London Clay and Leached

BBC
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Figure 4.5 Quartz crystals visible in bulk London Clay visible at X2 magnification
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Figure 4.6 Schematic of the blending procedure for large samples (Germaine & Germaine,

2009)

Figure 4.7 Schematic of the sequential quartering procedure (Germaine & Germaine, 2009)
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Figure 4.8 Finely ground London Clay being prepared for storage in 10 gallon plastic containers
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Figure 4.9 Test for determining ideal water content for resedimenting an

unfamiliar soil. Top: test tubes showing water contents which were tested

Bottom: close up showing free water existing on top of tubes containing too much

water (soil being tested BBC which has been leached twice)
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Figure 4.10 Consolidometers used for this research. Left: consolidometer for triaxial testing,

Middle: consolidometer for CRS testing, Right: consolidometer for CRS testing when very small

quantities of soil were resedimented

Figure 4.11 Kitchen Aid mixer which is used in the laboratory to mechanically agitate slurry
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Figure 4.12 Vacuuming arrangement for slurry. Process starts on left with mixed slurry then

proceeds into vacuum flask. Vacuum pump on right creates vacuum which de-airs slurry

Figure 4.13 Vacuum flask ready to de-air soil on left, and de-airing soil on right

where soil is allowed to free fall into the vacuum flask
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Figure 4.14 Pouring slurry into consolidometer with funnel and flexible tube. Note the discharge

is kept slightly over the rising soil surface (soil being poured is BBC leached twice which was

resedimented with distilled water)
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Figure 4.15 Consolidometer which is set up ready to receive slurry. Note that the water bath has

been filled with the required fluid half way up the porous stone

Figure 4.16 Resedimentation set-up at high stress with hanger weights applying stress for safety

194



Root Time Method
a-a-,-~! II f i ll-,,,r 1a - a--1--

f i l l i t e i a a a a a a a
a ~B i l f i l l a a a a a a a a

a 1 .1 I ' llaa a a a a a a
1 a 1 i t s a a a a a a

I t o l o l la a a a a a a a

I t, a a a a I I
a a a a a a a a a

I o f f;aa a a a a a a
a a a a a aol la a a

a a aa1\\a a a a a

a l a# f ia a at a a a
a : 1 a1 af f a a a a a a a
a ' a1 : ao ffa:a a a a
i t a ai l ao t al ! af ia al l a a

-1- 4-1- -~t-I4l -414----44

200 400 600
Root Time (seconds)

800 1000

Log Time Method

1 10 100 1000

Log Time (seconds)

10000 100000 1000000

Figure 4.17 Top: Root time method for determining time to end of primary

consolidation. Bottom: The same data plotted in log time to determine the time to

end of primary (graph for London Clay resedimented to 4 g/l - the stress level at

EOP is 100 kPa)
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Figure 4.18 Extruding London Clay soil from consolidometer. Approximately 2 cm of soil is

required per CRS test with careful trimming (soil being extruded is London Clay at 256 g/l)

Figure 4.19 Sedimentation test showing the variation in sedimentation height with different

quantities of pore fluid salinity (1 g of sodium montmorillontie in each tube. Pore fluid salinities

L-R: 1, 4, 16, 64, 128 & 256 g/l NaCl)
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Figure 4.20 Issue of salt precipitating out of solution in high salinity resedimentation (soil

shown is sodium montmorillonite being resedimented to 256 g/1)
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Figure 4.21 New method of wrapping porous stone in PTFE tape to help prevent extrusion,

close-up shown on right (soil being consolidated is sodium montmorillonite at 1 g/1)
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Figure 4.22 Method to help reduce extrusion from base stone in thin slurries (internal porous

stone placed flush with the base of the consolidometer; this in turn is placed on top of a larger

diameter porous stone and filter screen as shown)

Figure 4.23 Basic method of measuring pore pressures during resedimentation (soil is sodium

montmorillonite at 1 g/1)
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Figure 4.24 Plot of axial deformation and normalized pore pressures versus the square root of

time (soil is sodium montmorillonite at 1 g/l - target stress level is 100 kPa)
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Figure 4.25 Plot of axial deformation and normalized pore pressures versus the log of time (soil

is sodium montmorillonite at 1 g/l - target stress level is 100 kPa)
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Figure 4.26 Plot of axial deformation and normalized pore pressures versus time (soil is sodium

montmorillonite at I g/l - target stress level is 100 kPa)
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Figure 4.27 Electronic transducers used throughout the testing program. Top Left: Trans-Tek

LVDTS, 0243-0000 D-90 LVDT (large LVDT), 0240-0000 H-8 (small LVDT), Top Right:

Pressure Transducer, Bottom Left: 500 lb Load Cell, Bottom Right: Close up of pressure

transducer and also a section through a pressure transducer to help demonstrate its operation
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Figure 4.28 Pressure Volume Actuator for CRS testing (calibration factor on tag)

Figure 4.29 Pressure Volume Actuators for pore pressures (left), and cell pressure (right) used in

triaxial testing. Copper tubing exiting from top is attached into triaxial cell
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Figure 4.30 10,000 lb capacity load cell used for CRS testing

Figure 4.31 Schematic diagram of a central data acquisition system (Germaine & Germaine,

2009)
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4,

Figure 4.32 Schematic diagram of the control system hardware components

Figure 4.33 CRS trimming ring used for research on right, and standard CRS Trimming ring on

left
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Figure 4.34 Items required for CRS testing. Items include porous stones kept saturated in

distilled water, cutting ring with square seal, recess tool and data sheet

Figure 4.35 CRS Cell TR4 set-up and running a test
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button

Figure 4.36 Schematic diagram of Trautwein CRS cell (TR4)
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Figure 4.37 Trautwein CRS cell showing overflow hole which allows any water passing the seal

to exit the apparatus before it damages the roller bearings housed higher in the column

Figure 4.38 Wykeham Farrance load frame used for CRS testing
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Figure 4.39 Schematic of low pressure triaxial cell (Santagata 1998)

Figure 4.40 MITO4 triaxial cell
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Figure 4.41 Low presssure triaxial pedistal & topcap O-ring sealing arrangement with 2 rubber

membranes (spacing's exaggerated for clarity)

Figure 4.42 MITO4 triaxial cell in 1 Tonne (9.8 kN) Wykeham Farrance screw driven loading

frame with adjustable gears
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Figure 4.43 Entire triaxial testing apparatus. Cell, load frame and PVA's on right of photo;

computer control on left (PVA's are masked behind cell, PC controlling testing is visible on

bottom left of photo under the table)
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Figure 4.44 Plot of cell pressure stability for a typical CRS test
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Figure 4.46 Positioning cutting edge of CRS ring onto London Clay sample taking care to

ensure there is soil available to be cut all the way around (soil being trimmed is London Clay at

256 g/l)

Figure 4.47 Trimming London Clay sample into small diameter CRS ring (soil being trimmed is

London Clay at 256 g/l)
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Figure 4.48 Small diameter CRS ring with perfectly squared end of London Clay soil (soil being

trimmed is London Clay at 256 g/1)

Figure 4.49 Opposite side of cutting ring to Figure 4.48 where soil has been pushed through with

recess tool to leave correct height of soil inside ring for testing (soil in ring is London Clay at

256 g/1)
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5 RESULTS

5.1 INTRODUCTION

The index properties of the soil have previously been discussed in Chapter 3 and will not

be covered further here. The mechanical behavior of the various soils tested were evaluated

using Constant Rate of Strain (CRS) tests and Ko consolidated undrained (CKoU) triaxial tests on

resedimented and in-tact specimens. This chapter presents the one dimensional consolidation

behavior, hydraulic conductivities of the soils derived from excess pore pressures generated

during one dimensional consolidation behavior, as well as the normally consolidated shear

behavior.

The CRS results for the various soils are presented and discussed in Section 5.2. One

dimensional consolidation data as well as the hydraulic conductivity in the vertical direction are

presented here. The majority of resedimented soils tested were initially consolidated to stresses

of 100 kPa, then CRS tested to 10,000 kPa, with a select few tests stressing the soil to 40,000

kPa. All CRS tests were run on soil specimens that are smaller than the standard ring. This was

discussed earlier in Chapter 4. A list of all tests performed on Boston Blue Clay derivatives can

be seen in Table 5-1. Table 5-2 presents a list of CRS tests performed on other soils. Although

results are presented here from just 25 CRS tests, these tests have been extracted from a bank of

some 90 test results and can therefore be considered as representative.

An experimental triaxial testing program was performed on natural Boston Blue Clay

(BBC) Series IV, Leached BBC and BBC recovered from Killian Court under the MIT campus.

Natural BBC Series IV was resedimented to a stress level of 200 kPa at salt concentrations of 4

& 256 g/l. The leached BBC samples were also resedimented to a stress level of 200 kPa, but to

salt concentrations of 1 & 256 g/l. The in-situ BBC was taken from Shelby Tube samples

recovered from depths of 50-55 feet below ground surface. Ko consolidated undrained triaxial

compression tests (CKoUC) were performed on all three soil types. The results from the CKOUC

tests are presented in Section 5.3.2. All the specimens were sheared in the normally consolidated

range for all test types. The stress-strain and effective stress behavior are analyzed along with

other testing parameters. The undrained shear strength, friction angle and axial strain at failure
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are also reviewed. A list of the testing performed is given in Table 5-3 which also presents some

of the important stress-strain-strength parameters.

5.2 CONSTANT RATE OF STRAIN TESTING

5.2.1 INTRODUCTION

An extensive CRS program was undertaken in order to determine the one dimensional

consolidation properties and vertical hydraulic conductivities of the many soils in the testing

program. In total, some 90 CRS tests were performed. An evaluation on the suitability of the new

smaller sized CRS testing ring can also be drawn from this large bank of test data. The one

dimensional consolidation behavior and vertical hydraulic conductivity will be examined in this

Section.

Each soil type tested had a unique strain rate associated with it. The strain rates used for

each respective soil are stated in their relevant subsection in this Chapter. The strain rates were

chosen such that an excess base pore pressure would result from the axial consolidation loading,

which in turn would provide the hydraulic conductivity information for the soil. All BBC

specimens were stressed in the CRS device to an axial effective stress of 10,000 kPa while

selected London Clay salt contents and every GOM soil was stressed to 40,000 kPa. At the end

of consolidation, it is not possible to obtain the secondary compression characteristics with the

load frame used, therefore the soil was either unloaded to obtain the unload curve, or removed

from the test apparatus. The main items associated with each graph presented for every soil will

be discussed in detail for natural BBC, and thereafter reference will be made to only the most

important items for each soil dataset presented.

5.2.2 BOSTON BLUE CLAY

5.2.2.1 INTRODUCTION

A total of four derivatives of BBC were tested for this research. Their differences have

been explained in Chapter 3. Chapter 4 described how some of these derivatives were processed.

All BBC specimens were strained at a rate of 2 %/hour to a maximum axial effective stress of

10,000 kPa. All resedimented BBC specimens were stressed to a batch preconsolidation pressure

of 100 kPa and then rebound to an OCR = 4 before CRS testing.
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Reverse leaching tests were performed on previously leached BBC soil. This test has

already been described in Chapter 4, however, the essence of the test involved flowing high

salinity water through a low salinity leached BBC specimen in the CRS cell. The pore volumes

of the specimen were replaced several times in an attempt to determine if the change in salinity

would cause a subsequent change in the mechanical behavior. The results from two of these tests

will also be presented in this Section.

5.2.2.2 NATURAL RESEDIMENTED BOSTON BLUE CLAY (SERIES IV)

A significant quantity of CRS testing was performed on resedimented natural BBC to

demonstrate repeatability and consistency in the results. For clarity, only a handful of these

results will be presented but they can be taken as representative of RBBC behavior. Table 5-1

gives a list of the CRS tests which will be presented for natural BBC. Results which are not

presented here include the pore-pressure ratio data which will be presented in Appendix A.

Figure 5.1 shows the compression curves in Ea-log'ac space for five CRS tests performed

on natural BBC resedimented to different pore fluid salinities. The salinities tested include 4, 16,
64, 128 and 256 g/l. Despite the major differences in salinity, the Figure is an example of the

excellent repeatability which can be obtained from RBBC when meticulous testing procedures

are employed. The shape of the compression curve is characterized by a well-defined break

corresponding to a value below the target batch preconsolidation pressure (G'p for natural RBBC

was 100 kPa). Up to an axial strain value of approximately 2.5 %, the soil behaves as an

overconsolidated soil, this represents axial movement of 0.032 cm in the specimens. Beyond this

level of axial strain, the soil is in the normally consolidated range.

The reason that the preconsolidation pressure for the resedimented specimens fall below

the target batch preconsolidation pressure, is due to side-wall friction which exists between the

soil and the consolidometer. As the diameter of the consolidometers employed was relatively

small (- 4 cm on average), the friction can be substantial. The preconsolidation pressure for the

tests shown in Figure 5.1 falls between 70 and 80 kPa which represents a 70 - 80 % efficiency in

terms of stress application during resedimentation. Even though lubrication is used internally on

the consolidometer tubes prior to the placement of the slurry, the friction effect is still profound.
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The same effect is seen in all soil types resedimented in small diameter consolidometers

throughout this research.

All CRS tests for natural BBC were terminated at or just over 10,000 kPa which

represents an average axial strain of 33 % for all specimens. This compares well with results

presented in Abdulhadi, 2009. When the required axial strain to 10,000 kPa is plotted against

pore fluid salinity as is done in Figure 5.6, a slight trend can be observed whereby more axial

strain is required to the target axial stress level with an increase in salt content. From the data

presented in Figure 5.1, it can be seen that by altering the pore fluid salinity during the

resedimentation process for natural BBC, the mechanical behavior changes marginally.

Figure 5.2 shows the compression curves in e-loga'ac space. The initial void ratio for all

tests fall between 1.24 and 1.30. There is no trend in the initial void ratio versus the salt content

for natural BBC as can be seen from Figure 5.7. The discrepancies in the initial void ratio can be

attributed to working with such a small specimen. Any error in recording masses will be

amplified in the phase relations. Once the preconsolidation pressure is passed for all specimens,

very comparable compression behavior in the normally consolidated range is observed. The

compression index, cc value for all specimens is ~ 0.32 (taken between 1,000 and 10,000 kPa).

All specimens were axially stressed to 10,000 kPa where the void ratios range between 0.50 and

0.54. Figure 5.8 shows the void ratio at a'ac = 10,000 kPa and again, no trend is apparent for a

given void ratio at differing pore fluid salinities. These differences in void ratio at 10,000 kPa

can be attributed to the initial differences in void ratio calculation. It is worthwhile noting that

the virgin consolidation line for natural RBBC is not perfectly linear in either strain or void ratio

space i.e. the slope of the normally consolidated line changes slightly with stress.

Figure 5.3 presents the hydraulic conductivities for all natural RBBC Series IV

specimens tested. The results are presented in void ratio space. The dataset shows the vertical

hydraulic conductivity (ky) reducing with a decrease in void ratio which represents an increase in

axial consolidation stress. The hydraulic conductivities are very comparable at all stress levels

and again, there is no trend in hydraulic conductivity at a given void ratio for a given salinity.

The hydraulic conductivities for all soils tend to converge at a void ratio of ~ 0.76 (kv = 1.62x10-

8 cm/sec; G'ac ~ 1,850 kPa. Also, after a void ratio of 0.76, the slope of all datasets change. This

kink in the hydraulic conductivity behavior has also been observed in natural RBBC Series IV by
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recent researchers (Abdulhadi, 2009). The cause of this kink is not immediately apparent,

however, it has also been noted that the c value of all soils in this dataset change at around this

stress level. The cv parameter is highly dependent on the kv value. It was initially thought that

these kinks could be attributed to temperature effects while testing. The possibility that each test

suffered from temperature effects at exactly the same stress level and produced subsequently

similar data is highly unlikely. A reason for this behavior is postulated in Section 5.2.2.4. All test

results were corrected for the differences in viscosity of the water due to the salinity. This was

done because the hydraulic conductivity in the CRS test is calculated from the base excess pore

pressure, which in turn is a function of the rate at which fluid can escape through the specimen.

Different viscosities will allow water to dissipate at different rates. The hydraulic conductivities

range from a value of 1.45x10~7 cm/sec at a void ratio of 1.25 (&'ac = 60 kPa), to 1.54x10-9

cm/sec at a void ratio of 0.52 (a'ac = 10,000 kPa), just under two orders of magnitude.

The coefficient of consolidation in the vertical direction (c,) lumps the hydraulic

conductivity in the vertical direction (ky) and the coefficient of compressibility in the vertical

direction (my) into one parameter. Figure 5.4 presents coefficient of consolidation data obtained

during the CRS testing of the natural BBC specimens at differing salinities. Data obtained before

the preconsolidation pressure was reached produced highly erratic data points and are not shown

in the plot. In general, cv increases once the preconsolidation pressure is passed until a stress

level of - 1950 kPa where it reaches a peak value for most soils, then gradually drops for the

remainder of the test. This change in c, value cannot be attributed to equipment issues. There is a

noticeable kink in the hydraulic conductivities of the soil at around this stress level also which is

visible in Figure 5.3. At no point over the stress range tested does the cv value reach a steady

number. With the exception of CRS1252, the remainder of the tests show the c, value rise from

an initial value of 3.0x10-3 cm 2/sec just past the preconsolidation pressure, peak at a value of

4.5x10-3 cm 2/sec at a'ac equal to around 2,000 kPa and then taper off to a value of 2.8x10-3

cm 2/sec at &'ac equal to 10,000 kPa. The cv value continues to fall in the tests which went past

beyond this stress. This, however, is a relatively small change in c, over such a wide range of

consolidation stresses. A plot of how the hydraulic conductivity and coefficient of consolidation

data changes with stress level is shown in Figure 5.5. This Figure shows that both datasets

display changes in behavior at similar stress levels.
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5.2.2.3 LEACHED BBC

As with natural BBC, an extensive suite of CRS tests were performed on leached BBC.

For clarity, only five of them will be presented here. Table 5-1 gives a list of the CRS tests which

will be presented for leached BBC. Pore pressure versus axial effective stress will be presented

later in Appendix A.

Figure 5.9 presents compression data for leached BBC in Ea-lOgG'ac space for four CRS

tests performed on leached BBC resedimented to different pore fluid salinities. The salinities

tested include 0 (distilled water), 1, 16, 64 and 256 g/l. Only five salinities were chosen for

testing given that leached BBC was difficult to process large quantities of. A lower bound

salinity of 0 g/l was used for the leached BBC in order to determine how the deflocculated

elements would behave when full double layer growth was permitted. Given that the fabric of the

soil being used has been notably altered (as shown in Chapter 3), divergences in behavior are

now apparent. Again the compression curve is characterized by a well-defined break

corresponding to a value below the target batch preconsolidation pressure. All leached BBC

specimens were tested to a stress of 10,000 kPa. The axial strain required to reach the actual

batching preconsolidation pressure is now 2 % (as opposed to 2.50 % for natural RBBC). This

suggests that leached BBC is not as prone to swelling as natural BBC. After 2 % strain, the soil

acts normally consolidated. A similarity which leached BBC shares with natural BBC is that the

slope of the normally consolidated line is not straight for any salinity but changes with stress

level. This is, however, where the similarities end. The required strain to 10,000 kPa for 0 g/l soil

is 27.2 %. The virgin compression lines for 1 and 16 g/l are almost identical, but when the stress

level is 10,000 kPa, the strain for these two soils is 31.3 % (as opposed to 33 % for natural BBC).

The strain for 64 g/l soil is 32.8 % and for 256 g/l soil it is 35.8 %. This represents a trend of

increasing compressibility at a given stress for an increase in salt content. The trend is shown in

Figure 5.13 and is consistent with the findings of Stipho (1985). None of these tests suffered

from extrusion issues. The 64 g/l test initially follows the 1 and 16 g/l lines up to a stress of 170

kPa, but then dips below the two lower salinities as shown in Figure 5.9. It is also interesting to

point out that a similar difference in strain to a given stress is seen between salinities of 1 & 256

g/l, as is witnessed between 0 & 1 g/l.
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Figure 5.10 shows the compression behavior for the leached BBC in e-logo'ac space. The

initial void ratios cover a larger range than those observed in the natural BBC Series IV, and this

time there is a trend of higher initial void ratio with an increase in salinity as shown by Figure

5.14. If it is assumed that the void ratio of 1.26 is correct and the same logic is applied to this

dataset as the natural BBC Series IV insofar as there is an initial error band in the void ratio, it

can be seen that both the high and low recorded initial void ratios fall outside this band and can

be therefore taken as accurate representations. The 1 g/l data does not follow the same normally

consolidated path as the other four tests which can be attributed to the lower salinity. It does in

fact have stiffer behavior in the normally consolidated range. This is seen by the lower cc value

of 0.27 for 1 g/l as opposed to 0.32 for 256 g/l (taken between 1,000 and 10,000 kPa). The cc

value for 16 and 64 g/l soil is 0.29 and 0.30 respectively hence further proof of the increasing

soil stiffness with a decrease in salt content. 0 g/l soil displays even stiffer behavior than 1 g/l

soil in the normally consolidated range. This lends further evidence to the argument taken from

Figure 5.9 that as the salinity increases, a more compressible soil is observed for leached BBC.

Figure 5.15 shows the void ratio at an axial effective stress 'ac = 10,000 kPa for all salinities and

there is no apparent trend from this data, hence all salinities converge at high stress.

Figure 5.11 shows the hydraulic conductivity data obtained from the leached BBC CRS

testing. The starting hydraulic conductivities for all soils are slightly lower than those for natural

BBC at 1.21xl 0-7 cm/sec at a void ratio of 1.25 (with the exception of 1 g/l which does not exist

at a void ratio of 1.25). The 4 and 16 g/l data crisscross several times over the stress range, but

the 1 and 256 g/l are always at different hydraulic conductivities for a given void ratio. In the

void ratio range of between 0.65 and 0.75 (O'ac = 1,650 - 3,400 kPa), distinct and erratic kinks

are seen in the data. Some of these kinks cause datasets to cross over one another and the data

becomes chaotic past this point. These kinks occur at void ratios slightly lower (higher stress

level) than the kinks observed in Figure 5.3 for natural RBBC Series IV. The kinks can therefore

be attributed to actual soil behavior, however, the data past these kinks are considered variable.

Figure 5.12 shows the variation in the vertical coefficient of consolidation (cv) obtained

from the CRS tests. The same general trend is observed in leached BBC as was seen in natural

RBBC whereby the cv value rises after the preconsolidation pressure is passed, peaks at some

stress level and then tapers off with a further increase in stress. The peaks in the c value
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observed in Figure 5.12 occur at slightly different stresses for each soil as opposed to in the

natural RBBC Series IV results where all the peaks were localized in a similar stress range. The

peaks in c for leached soil range from G'ac = 1,500 kPa for 64 g/l soil to a'ac = 3,500 kPa for 256

g/l. No trend is apparent in where the peaks in c, occur in relation to salt concentration. With the

exception of the 0 & 1 g/1 curve, all other tests taper to a similar c, value at a'ac = 10,000 kPa.

Assuming that the erratic differences which were seen in the hydraulic conductivity data is not so

pronounced in the c, plots, slightly lower c, values are observed in leached BBC at O'ac = 10,000

kPa where the value is approximately 0.0021 cm2/sec as opposed to 0.0028 cm 2/sec for natural

RBBC.

5.2.2.4 IN-SITU BBC

Several in-tact Shelby tube samples of BBC were taken from the Killian Court area of

MIT in the summer of 2010. This recovery work was supervised by Dr. Germaine of MIT and

the recovery location has been described in Chapter 3. The tube samples used for CRS testing

were taken from boring B 10-TP2A, sample S3 and recovered from a depth of 51-53 feet below

ground surface. The water table around the MIT campus is known to be 8 feet below ground

surface (ground surface is +26.1 ft. relative to CCB). In-situ BBC was tested in order to provide

a benchmark against which to measure the accuracy of the resedimentation process being used in

this research. The specimens were extracted from their Shelby tubes in accordance with

guidelines given in Germaine & Germaine, (2009) so as to minimize sample disturbance due to

handling. For consistency, CRS testing was also performed on this soil in the smaller diameter

ring as described in Chapter 4.

Figure 5.16 presents compression data in ca-log'ac space for three CRS tests performed

on Killian Court in-situ BBC. Again the compression curve is characterized by a well-defined

break corresponding to the preconsolidation pressure for the recovered soil. The preconsolidation

pressure was reached at 2.5 % axial strain which is the same strain needed for natural BBC

Series IV to reach its preconsolidation pressure. All of the specimens were stressed to just past

10,000 kPa. Two of the specimens (CRS1269 & CRS1270) have very similar strain requirements

to get to a given stress state. At 10,000 kPa the axial strain is 23 %. The third test, CRS1268

shows different behavior insofar as it is more compressible than the other two specimens. At a

stress of 10,000 kPa, the strain for this test is 26 % and it also has different normally
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consolidated behavior than the other two tests. One possible reason for the differences in results

could be the fact that it is a natural material and specimen variability may exist. Extrusion of soil

during CRS testing was not an issue for any of these tests. Also, CRS1269 & CRS1270 were

taken from adjacent slices in the tube while CRS1268 was obtained from a different location in

the same tube. As with all previous BBC testing, the slope of the normally consolidated line

changes with stress level. Perhaps the most important fact is that the strains required to a stress of

10,000 kPa for in-situ BBC (24.5 % on average) is much less than the strain required for natural

RBBC Series IV and leached BBC (33 % on average for both soils). This means that RBBC in

any form is more compressible than in-situ material. One possible explanation for this could be

due to the existence of both chemical and mechanical bonds which have developed over

centuries in the in-situ material, which cannot be replicated in the resedimented soil. These bonds

may give the in-situ extra load carrying capacity.

The same compression data in e-loga'ac space is shown in Figure 5.17. There are very

similar initial starting void ratios for all three specimens ranging from 1.01 to 1.05. All three

tests have very similar preconsolidation pressures. When the Casagrande construction was

performed on these curves, the preconsolidation pressure (a'p) for the Killian Court BBC was

found to be ~ 400 kPa for CRS1269 & CRS1270, and 320 kPa for CRS1268. The void ratios

compare well to those observed in natural RBBC Series IV at similar stress levels. The cc value

for all soil tested is shown in Table 5-4. The coefficient of swelling (cs) for CRS1268 is also

greater than the other two tests meaning that more voids are opening upon unload and therefore

the volume of the soil is growing. The void ratio for CRS1269 & CRS1270 are 0.55 at a'ac =

10,000 kPa while it is 0.52 for CRS1268 at the same stress level. The void ratio for natural

RBBC ranged between 0.5 and 0.54 for all tests which compare well to the in-situ void ratios

recorded.

Figure 5.18 presents the hydraulic conductivity for the Killian Court in-situ BBC

specimens tested in the CRS device. It is shown that for a decrease in void ratio, a decrease in

permeability is observed. The three tests start at different hydraulic conductivities ranging from

8x10~8 cm/sec to 2.2xl0-8 cm/sec at the same void ratio of 1.06. This void ratio represents the

soils when they are still in an overconsolidated state. As the void ratio decreases, meaning the

stress level is increasing, a convergence of the data is observed. At a void ratio of 0.54, the
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hydraulic conductivity is about 2.09x10-9 cm/sec. Lower hydraulic conductivities are seen in the

in-situ Killian Court BBC at higher void ratios than those for natural RBBC, but the in-situ and

resedimented material tend to converge to similar values at lower void ratios (higher stress

levels). At a void ratio of 1.06 for natural BBC Series IV, the hydraulic conductivity is 6.7x10-8

cm/sec which is higher than that quoted above for Killian Court in-situ material. At a void ratio

of 0.54 the corresponding hydraulic conductivity for natural RBBC Series IV is 2.1x10-9 cm/sec

which is almost identical to that reported for Killian Court in-situ material. The kinks in the

permeability curves which were observed in the natural RBBC Series IV are not visible in the in-

situ test results. This indicates that the kinks are a product of either the resedimentation process

or the grinding process used to obtain dry powder for use in resedimentation. A possible

hypothesis which will now be proposed is that the grinding process used to obtain dry powder

used in resedimentation, which was described in Chapter 4 does indeed break some but not all of

the floes at the minute scale which were naturally created during the soils formation. These

broken floes now allow more fluid flow through the soil, hence the initially higher permeability

for the resedimented material. The resedimented material acts like a concrete aggregate

consisting of coarse and fine particles (coarse flocs, fine floes and individual soil particles).

Upon application of stress to the soil, as in concrete, the load is distributed throughout the matrix

until at some load the weakest element begins to fail whereby the large flocs remaining get

"shock" loaded and begin to rearrange themselves. It is thought that this is what is being

observed in Figure 5.3 and Figure 5.4 when the changes in behavior were noted in Section

5.2.2.2. These subtle changes in loading of the matrix at micro level may not be pronounced

enough to show up in the recorded compression data, hence we do not see a corresponding

change in the compression curves. In contrast, when an in-situ material is loaded, the entire soil

matrix is continually rearranging and breaking the natural flocs once the preconsolidation

pressure is passed, this is why we do not see any kink in the behavior. The reason both hydraulic

conductivities are almost identical at G'ac = 10,000 kPa is because the microstructure has been

broken to similar levels. Natural RBBC Series IV appears to be behaving as if it has "two soil

memories", the preconsolidation memory and the floc strength memory.

The coefficient of consolidation for Killian Court in-situ BBC is shown in Figure 5.19. In

contrast to natural RBBC Series IV, the c, of the in-situ soil drops until the preconsolidation

pressure is reached and then rises with increasing stress level in the normally consolidated
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region. Once the preconsolidation pressure is reached for Killian Court in-situ material, no

further drop in c, is noted as is the case for natural RBBC Series IV and leached BBC. All three

tests reach minimum values of cv ranging from 0.0032 cm 2/sec to 0.0011 cm 2/sec at stresses in

the range of the preconsolidation pressure. The cv values for natural RBBC Series IV initially

rose until a stress level of approximately 1,950 kPa and then dropped gradually. The final cv

values for Killian Court in-situ BBC range from 0.0040 cm2/sec to 0.0026 cm 2/sec. The range

which natural RBBC tapered to was slightly lower at a'ac = 10,000 kPa. The lowest values

observed in cv for Killian Court BBC shown in Figure 5.19 occur when the preconsolidation

pressure is passed for each soil. Therefore we can relate the known fact that the cv changes when

the soils enters a new stress state, to the passing of the preconsolidation pressure. The peaks

witnessed in Figure 5.4 where the c, value changes slope happens at 1,950 kPa which is far

beyond the batch preconsolidation pressure. Given that the cv value begins to change at this

stress level, it is hypothesized that the soil fabric is changing. This further adds evidence to the

theory that flocs are breaking within the matrix once a certain stress level is reached.

The process described is also visible in the leached BBC tests but the stresses at which a

change in the cv occurs, are more spread out and erratic. The reason for the higher stress is

because by placing the soil in the centrifuge twice, the flocs have begun degrading and

disaggregating due to the removal of the natural salt. Rather than all flocs being degraded at the

same rate, some may have degraded more than others which is why we see such variations in

stress levels where cv changes. The fact that the stresses at which the c values change are higher

than those for natural BBC may be due to a size effect - smaller flocs require a larger stress to

break them.

5.2.2.5 BBC DISPERSED WITH SODIUM HEXAMETAPHOSPHATE

Sodium hexametaphosphate (sodium hex) is commonly used in laboratory Geotechnical

testing in the particle size distribution by sedimentation test. It is known to completely disperse

any flocs which exist in order to deflocculate the soil to its basic constituents. After a soil has

been treated with sodium hex., the soil-water slurry contains only individual soil particles and no

floc formations. A more accurate particle size distribution can be achieved using this method.

SEM images were taken on oven dried specimens and are presented in Chapter 3.
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The process mentioned above was applied to BBC that was to be resedimented and then

CRS tested. This had the advantage of resedimenting a rudimentary BBC soil for the first time

which contained no flocs and therefore no "memory" or stress level at which it could change

behavior. The soil which was subsequently resedimented was BBC in its most basic of forms.

Figure 5.20 shows the compression curves for two tests on dispersed BBC in Ea-lOgGY'ac

space. The preconsolidation pressure for both of these tests have exceeded the target batch

preconsolidation pressure (cY'p) of 100 kPa. This is because the soil was sitting at an

overconsolidation ratio of 4 for nine months allowing secondary compression to occur in the soil.

The reason the soil was idle for this amount of time is because of the presence of the sodium hex

which is a detrimental chemical to soils. If this chemical was allowed to contaminate the testing

equipment, it could have unfavorable implications for future tests. For this reason, testing of the

dispersed BBC was left until the end of the testing program. The strain required to bring the

dispersed BBC to its new preconsolidation pressure was approximately 2.4 % which is slightly

less than the strain required for natural RBBC Series IV and Killian Court in-situ BBC. The

behavior in the normally consolidated range differs slightly for both tests with CRS 1313 taking a

more linear path than CRS1314. At a stress of 10,000 kPa, the strains range from 26.4 % to 28.4

%. These strains are lower than those recorded at the same stress level for natural RBBC Series

IV and leached BBC (-33 %) and are now closer to those required for Killian Court in-situ BBC

(23 - 26 %). This means that even though the BBC used in these tests has been dispersed and

contains no flocs, it is still more compressible than in-situ material. This further indicates that

there are either mechanical or chemical bonds present in Killian Court in-situ material which

have a large load carrying capacity, even at high stresses. These bonds prevent the structure

being deformed to the same extent as the dispersed BBC or any of the other RBBC derivative

throughout loading.

The compression data is presented in e-loga'ac space in Figure 5.21. The starting void

ratios for both tests are similar and fall between 1.01 and 1.03 which is lower than for natural

RBBC Series IV at the same stress level. This is consistent with the theory that we now have no

flocs and a tighter structure at low stress. Similarly to the Ea-logo'ac plot, the behavior for both

tests differ in the normally consolidated range with CRS1313 being slightly more compressible

than CRS1314. The reason for the preconsolidation pressures being larger than the target batch
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preconsolidation pressure has already been explained, however, after performing the Casagrande

plot on both curves, the new preconsolidation pressure was found to be 110 kPa for CRS 1313

and 130 kPa for CRS 1314. Despite the differences in compression behavior, the cc value for both

tests are the same at 0.28 (taken between a'ac = 1,000 and 10,000 kPa). The most comparable cc

value for BBC that has been reported previously in this thesis was for leached BBC at 1 g/l

which had a cc value of 0.27. At a stress of 10,000 kPa, the void ratios differ slightly between

values of 0.48 and 0.46. These are the lowest void ratios recorded at 'ac = 10,000 kPa for any

BBC tested indicating the most deformable structure of all BBC derivatives.

The hydraulic conductivity data versus void ratio is shown in Figure 5.22. Owing to

experimental error, the hydraulic conductivity data for CRS1313 is not available. The results

from CRS 1314 must therefore be relied upon as being representative. The hydraulic conductivity

at a void ratio of 0.95 is 2.93x10~8 cm/sec. The hydraulic conductivities for natural RBBC,

leached BBC and in-situ BBC are 4.91x10-8, 4.0x10-8 , and 2.45x10-8 cm/sec respectively at the

same void ratio. This lower hydraulic conductivity at the start indicates a more compact

structure. In this regard the dispersed BBC has a hydraulic conductivity closest to Killian Court

in-situ material at low stress. In natural RBBC Series IV, a break in slope was observed in the

data generally between void ratios of 0.70 and 0.80. A similar break in slope is observed in

Figure 5.22, however, it is not so pronounced as that witnessed for natural RBBC Series IV.

Traditionally for the particle size distribution test by sedimentation test, 5 g of sodium hex is

used for 50 g of soil. For this research, the same quantity of sodium hex was used (5 g), but this

time for 350 g of soil. The stress at which the break in slope is visible in the sodium hex plots is

different than the stress where the break in slope occurs for the natural RBBC Series IV - 'ac=

1,400 kPa for the dispersed soil as opposed to 2,000 kPa on average for the natural RBBC. Given

that all other BBC soil derivatives did not achieve the same low void ratios as the dispersed soil,

comparisons will be drawn in their hydraulic conductivities at a void ratio of 0.55. At this void

ratio, the dispersed BBC has a hydraulic conductivity of 4.30x10-9 cm/sec. The hydraulic

conductivities for natural RBBC Series IV, leached BBC and Killian Court in-situ BBC are

2.28x10-9, 3.43x10-9 and 2.24x10~9 cm/sec respectively. The dispersed BBC therefore has a

higher hydraulic conductivity than all other BBC derivatives at a void ratio of 0.55. When

compared alongside the curves for natural RBBC Series IV and leached RBBC, it is obvious that
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the change in slope for dispersed BBC is insignificant. This will be discussed more in Section

5.2.2.7.

The coefficient of consolidation versus axial stress for dispersed BBC is shown in Figure

5.23. A reversal in trend is now observed compared to other resedimented BBC derivatives

insofar as the c, value reaches a minimum at or close to the actual preconsolidation pressure and

then gradually rises thereafter. This behavior is more closely related to Killian Court in-situ

material. The one difference between the dispersed BBC cv value and the Killian Court in-situ cv

value is that the in-situ value tends to taper off to a constant level with an increase in stress. It

can be seen from Figure 5.23 that the cv value continually rises for dispersed soil and is still

rising when the test is terminated. The c value for the dispersed soil at high stress is not

comparable with any other BBC derivative at high stress but in the low stress range (y'ac up to

2,000 kPa), the c, value for the dispersed soil and Killian Court in-situ material are very similar.

The cv for the dispersed soil at &'ac = 10,000 kPa is 0.0056 cm 2/sec.

5.2.2.6 REVERSE LEACHING TESTS PERFORMED ON LEACHED BBC

Reverse leaching tests were performed on leached BBC via the procedure described in

Chapter 4. The reason leached BBC was chosen is because it is more reactive to different pore

fluid salinities than natural RBBC Series IV as shown by Figure 5.10. Traditional leaching tests

involve flushing distilled or freshwater through a soil known to contain salts, and then loading

the soil. The result of a traditional leaching test is that the void ratio drops suddenly with very

little increase in stress. The soil after leaching is in a metastable form meaning it can exist at a

lower energy state that it currently does. It was hypothesized that the reverse could also hold true

for a sensitive soil such as leached BBC and hence the tests were undertaken.

Leached BBC resedimented to a pore fluid salinity of 1 g/l was CRS tested. The cell

contained 256 g/l saltwater. A standard CRS test was performed until the soil was in the

normally consolidated range and then consolidation was halted. A hydraulic gradient was placed

across the specimen causing the cell fluid (256 g/1 saltwater) to flow through the soil (top to

bottom) until the pore volume was replaced several times.

Figure 5.24 and Figure 5.29 present the results for two such tests in sa-loga'ac space. As

can be seen from the Figures, the soil was consolidated until it lies in the normally consolidated
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region, consolidation was halted and then the pore fluid was replaced more than twice for both

tests. During the hold strain portion of the test, an average stress reduction of 41.6 % was

recorded on the load cell due to relaxation of the soil. This is shown by the data trace moving to

the left horizontally with no change in strain but registering a change in stress. Upon

recommencement of consolidation, there is a noticeable increase in the preconsolidation pressure

of 28.5 % on average from where the consolidation was initially halted prior to replacement of

the pore volumes. This is visible in both tests, therefore the procedure is repeatable. The increase

in strength of the soil is not maintained down through the normally consolidated range of either

test. The slope of the normally consolidated line after reverse leaching changes with an increase

in stress level and eventually the normally consolidated line from after reverse leaching, rejoins

the normally consolidated line of the initial section of the CRS test tangentially. This would

indicate that the saltwater flowing through the soil has altered the chemical bond between

particles thereby making them stronger. Owing to the fact that it took several weeks to replace

the pore fluid in these specimens, the influence of aging of the soil cannot be ruled out as having

an effect and therefore there may also be a mechanical aspect to the increase in strength. The

piston on the soil was not placed on "hold stress" which would have maintained a constant total

stress (similar to what happens during secondary compression) on the soil during flow through,

but was simply halted. This places the soil under a constant level of strain.

Figure 5.25 and Figure 5.30 show the compressions data for both reverse leaching tests in

e-logo'ac space. Both reverse leaching tests were taken to a maximum stress of 10,000 kPa. For

CRS 1248 the consolidation was halted at a'ac = 640 kPa and when consolidation was

recommenced, the preconsolidation noted from performing the Casagrande construction was c'ac

= 820 kPa which represents a 28 % increase in strength. During the reverse leaching procedure,

the stress level relaxed to o'ac = 370 kPa (a 42.2 % decrease). For CRS1235 the axial

consolidation was halted at 'ac = 890 kPa and once consolidation was restarted, the

preconsolidation pressure recorded was &'ac = 1,150 kPa - a 29 % increase in strength. During

the reverse leaching procedure, the stress level relaxed to &'ac = 526 kPa (a 40.9 % decrease).

Both tests show very similar levels of strength gain even though they were axially loaded to

different stresses. Both tests also show similar levels of stress relaxation once consolidation is

halted. A very slight decrease in void ratio is also recorded in both tests once axial consolation is

halted. The void ratio for CRS 1248 was 0.947 when consolidation was halted, and this void ratio
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decreased to 0.942 while stress relief occurred in the soil. The void ratio for CRS1235 was 0.835

before consolidation was halted and this decreased to 0.834 during stress reduction. It is not

entirely apparent at this stage what percentage of the strength increase can be attributed to

chemical effects on the soil due to changing the pore fluid environment, and what percentage can

be put down to mechanical effects. Figure 5.26 and Figure 5.31 show a close up of the area

where axial consolidation was halted and an increase in the preconsolidation pressure was noted.

The hydraulic conductivity data versus void ratio for both tests are shown in Figure 5.27

and Figure 5.32. A noticeable change in hydraulic conductivity is visible in Figure 5.27 after the

reverse leaching process. It is interesting to note that the same kink in hydraulic conductivity

which was referred to in Section 5.2.2.4, is also visible in both these Figures at comparable stress

levels. The hydraulic conductivity for the start and end of both tests are comparable with those

shown in Figure 5.11. Although the mechanical behavior has been affected by the reverse

leaching process, the hydraulic conductivity of the soil has remained comparable.

The coefficient of consolidation for both tests are shown in Figure 5.28 and Figure 5.33.

There is a noticeable drop in c, from before and after the reverse leaching process. Before

reverse leaching, the c value is 0.0044 cm 2/sec and immediately after the process the value has

dropped to 0.0027 cm 2/sec. This could be due to changes in the hydraulic conductivity. After

this drop, the c, value again rises gradually until it reaches a maximum of 0.0038 cm2/sec at 'ac

= 2,450 kPa. After this peak, the c, value begins to drop gradually throughout the remainder of

the test and is still falling when the test is terminated. The final cv value recorded was 0.002

cm2/sec which is very similar to c, for leached BBC shown in Figure 5.12. The peak at C'ac =

2,450 kPa is in a similar region to where the peaks were recorded in Figure 5.12 for leached

BBC. This lends further evidence to the claim in Section 5.2.2.4 that something is happening at

this stress in order to cause a change in the e values.

5.2.2.7 SYNTHESIS ANALYSIS OF VARIOUS TYPES OF BBC

A complete picture can be presented on the behavior of several types of RBBC using

Killian Court in-situ material as benchmark. In total, 3 derivatives of RBBC were tested and each

displayed varying levels of behavioral change depending on what had been done to the soil prior

to resedimentation.
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Figure 5.34 shows the compression behavior of 4 types of BBC in ca-logo'ac space. A
pore fluid salinity of 16 g/l was chosen for natural RBBC Series IV and leached BBC so as to

compare them on a level playing field to the Killian Court material. A salinity of 16 g/l is the

closest salinity used in the testing program to that of in-sit material (10.7 g/l). The sodium hex

BBC was resedimented with distilled water. The first observation to be made from Figure 5.34 is
that there is a difference of just under 10 % in the axial strain required for the specimens to reach

the same stress level (a'ac= 10,000 kPa). The strongest soil is Killian Court in-situ BBC with the

most compressible soil being natural RBBC Series IV resedimented to a pore fluid salinity of 16

g/l. Both the natural RBBC Series IV and the leached RBBC display similar compression

behavior with the natural RBBC Series IV being slightly more compressible than the leached

RBBC. The sodium hex BBC is a stronger soil than both other types of resedimented material.

This stiffness can be attributed to the denser packing of the soil due to the dispersion of the flocs.

Figure 5.38 presents the axial strain required for all BBC derivatives to achieve an axial effective

stress of 10,000 kPa. A loose trend is observed that more strain is required for an increase in salt

content. In the low salinity range, namely 0 - 1 g/l, comparatively lower strains are required to

achieve maximum stress. Every resedimented BBC soil takes more strain to achieve a stress of

10,000 kPa than Killian Court in-situ material again indicating it is a stronger soil than any

resedimented derivative.

The same compression data is shown in e-loga'ac space in Figure 5.35. A point worth

bearing in mind while studying this Figure is that the natural RBBC Series IV, leached RBBC

and sodium hex BBC curve are all born of the same soil powder. A large difference is seen in

resedimented void ratio for the sodium hex BBC as opposed to the other resedimented material

despite being composed of the same constituents. This shows that the sodium hex has performed

the dispersion which it was intended for. The Killian Court in-situ BBC exists at a lower void

ratio because it would have been taken to a higher stress state naturally in the ground. It also has

a higher preconsolidation pressure. The normally consolidated range for all soils in this Figure

show that natural RBBC Series IV is the most compressible material with a cc value of 0.307.

The leached BBC is the next most compressible with a cc of 0.294 followed by Killian Court in-

situ BBC with a cc value of 0.285. The sodium hex BBC is the stiffest soil with a cc value of

0.277 but it does require more axial strain to achieve a given stress. Extrusion of the soil during

CRS testing was not an issue for any of these tests. Figure 5.39 shows the void ratio for all soils
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at an axial stress of 10,000 kPa. There is no apparent trend from these data, however, Killian

Court BBC maintains the highest void ratio on average than any other soil. The lowest void

ratios are observed in the low salinity soils (0 - 1 g/1) yet these soils still took more strain to

achieve this void ratio at the reference stress. Another evident fact from Figure 5.35 is that the

sodium hex BBC holds far less stress at a given void ratio that all other soils. Looking at a void

ratio of say 0.6, sodium hex BBC is carrying is approximately 3,780 kPa, some 3,300 kPa less

than Killian Court in-situ material at the same void ratio. Given that the flocs have been

dispersed in the sodium hex BBC it is reasonable to assume that the load carrying capacity of the

soil is mostly down to mechanical contact between grains. However, some double layer effects

still exist but not enough to contribute significantly to the strength of the soil. Killian Court in-

situ material on the other hand possesses its mechanical and electro-chemical bonds from nature

and therefore its load carrying capacity is down to a combination of both. It is therefore

postulated that this difference in load carrying abilities of both soil be attributed to the electro-

chemical bond existing between adjacent soil grains in the matrix. The difference could possibly

be taken as a rough first estimate for the electro-chemical contribution of a given soil to its

ability to carry load. This can be a significant value.

The corresponding hydraulic conductivities for these soils can be seen in Figure 5.36. As

mentioned in Sections 5.2.2.2, 5.2.2.3 and 5.2.2.4, a kink in the hydraulic conductivity curves for

natural RBBC Series IV and leached RBBC can be seen at comparable void ratios and stress

levels. These kinks are now more obvious when viewed against a soil displaying true log-linear

hydraulic conductivity behavior such as Killian Court in-situ soil. The kink mentioned is not

present in sodium hex BBC further indicating that the mechanism causing these breaks in slope

is not present in the soil. This can be attributed to the presence of the sodium

Hexametaphosphate. At relatively higher void ratios between 0.9 and 1.0, sodium hex BBC has a

comparable hydraulic conductivity to Killian Court in-situ BBC but as the stress level increases

(represented by a decrease in void ratio), divergence in the recorded conductivities can be seen.

The sodium hex BBC shows higher hydraulic conductivities at any void ratio than Killian Court

in-situ BBC. Despite the denser packing of sodium hex BBC (as shown by Table 5-1), more flow

channels or paths exist for fluid to pass through the soil. Perhaps the pore water undergoes less

tortuosity due to the dispersion of the flocs thereby creating shorter paths for water to flow

through the soil. Towards the end of loading (represented at a void ratio of 0.54) for Killian
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Court BBC and natural RBBC Series IV, similarities are seen in the hydraulic conductivities for

both soils. It is thought that the fabric of both soils have undergone similar levels of fatigue and

irrespective of their initial fabric, now have a more similar structure at high stress. This is not so

for the leached RBBC as it has already undergone some induced floc breakage and dispersion

from centrifuging the soil twice. The wet and dry densities for all types of BBC are shown in

Figure 5.40 and Figure 5.41 respectively.

The coefficient of consolidation c, for all BBC derivatives is presented in Figure 5.37. It

should be pointed out that all RBBC soils in this Figure are born from the same natural dry

powder. Similarities exist between the natural RBBC Series IV and leached BBC curves insofar

as they both rise once the preconsolidation pressure is passed and then drop once more when a

certain stress level is achieved. Possible reasons for this have been given in 5.2.2.4. In contrast to

both curves mentioned, the c, value for sodium hex BBC rises for the duration of the test. In fact,

up to an axial stress of 3,000 kPa, sodium hex BBC displays very similar cy values to Killian

Court BBC but begins to diverge to higher values with an increase in axial stress.

The Figures presented in this Section compare the behavior of several types of RBBC to

that of in-situ material. It has been shown that at some stress level, internal structural changes

occur in the soil thereby affecting the coefficient of consolidation c, and the hydraulic

conductivity kv. These changes in behavior, which were firstly thought to be anomalous, appear

to represent changes in how the load is distributed throughout the soil at a micro scale. These

changes are attributed to the breaking of flocs which still exist after a soil has been ground to a

powder and air dried. These tiny flocs act like coarse aggregate in a set concrete whereby at

some stress, the flocs will break and redistribution of the load will occur. It is therefore proposed

that soil has a dual memory - that of the preconsolidation pressure and that of the floc strength.

This assumption appears to be corroborated by examining data from the preceding Sections side

by side.

5.2.3 NATURAL LONDON CLAY

5.2.3.1 INTRODUCTION

The origins of the London Clay used in this research have already been discussed in

Chapter 3. The use of London Clay is relevant because it is also a marine clay and its
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depositional regime was influenced by salinity. The time available for this research was not

sufficient to subject London Clay to the same rigors as BBC insofar as leaching the soil or

resedimenting London Clay which had been dispersed with sodium hexametaphosphate did not

occur. The same terminology will be used here for the London Clay as BBC where natural

London Clay which was resedimented as received into the lab will be termed natural RLC. This

is the only derivative of London Clay which will be covered here. Natural RLC was

resedimented to pore fluid salinities of 4, 16 and 256 g/l. Two CRS tests stressed the soil to

10,000 kPa while CRS1305 stressed the soil to 40,000 kPa. London Clay CRS tests were

performed at a strain rate of 0.5 %/hr.

5.2.3.2 RESULTS FOR NATURAL RESEDIMENTED LONDON CLAY

Figure 5.42 presents the compression data in Ca-lOgG'ac space. In a similar fashion to

resedimented BBC, the preconsolidation pressure (Y'p) for all London Clay tests fall below the

target batch preconsolidation pressure of 100 kPa. Reasons for this have been given in Section

5.2.2.3. The axial strain required to bring the soil from overconsolidated to normally

consolidated is approximately 2.60 %. This holds true for all salinities. The normally

consolidated line for natural RLC is visibly more curved than for any type of BBC. Figure 5.47

shows the required axial strain to achieve a stress of 10,000 kPa. The strain to 40,000 kPa for

CRS1305 is 48.4 %. Axial strain requirements for RLC to achieve a stress of 10,000 kPa are

greater than axial strains for BBC at similar stress levels. This means that London Clay is more

compressible than BBC. Given that three different strains are required to reach 10,000 kPa in

Figure 5.42 for the three different salt contents, it should be noted that there is no trend in the

strain requirement versus salt content. The compression behavior in the normally consolidated

range is not linear and changes slope with an increase in stress level. Beyond 10,000 kPa, there is

a reversal in slope change. Further tests to high stress are required in order to demonstrate that

this is in fact actual soil behavior and not some anomaly which occurred for this test.

Figure 5.43 presents the compression results in e-logo'ac space. All three salt

concentrations start at an initial void ratio of between 1.57 and 1.62. The 4 g/l soil has the lowest

initial void ratio while the 16 and 256 g/1 soils start at very similar initial void ratio. Again, the

normally consolidated lines for all three specimens are curved and change with an increase in

stress. The same slope change is seen beyond a stress of 10,000 kPa for CRS1305 that was
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evident in strain space. The void ratios for all three soils range from 0.51 to 0.55 at 10,000 kPa.

At an axial stress of 40,000 kPa, the void ratio for CRS 1305 is 0.31. Figure 5.48 and Figure 5.49

show the initial void ratios and void ratios at 10,000 kPa as a function of pore fluid salinity. No

trend is evident in the high stress Figure but for the initial void ratio, with an increase in salinity,

an increase in void ratio is observed. Because the preconsolidation pressure is reached so early in

loading, it is now possible to obtain the cc value over two orders of magnitude. Starting with the

256 g/l soil, the cc value between 'ac = 100 and 1,000 kPa is 0.52, while between 'ac= 1,000

and 10,000 kPa the cc value is 0.39. Note that CRS 1306 was not fully stressed to 10,000 kPa so

the data has been extrapolated to the 10,000 kPa value and it is estimated the void ratio will be

0.55 for the soil at this stress level. Immediately upon application of stress, the 16 g/l specimen

diverges from the 256 g/l line and joins the 4 g/l line just before the preconsolidation pressure.

Thereafter, the 4 and 16 g/l tests have very similar compression behavior in the normally

consolidated region. The cc value for these two tests between 'ac = 100 and 1,000 kPa is 0.52.

After a'ac = 1,000 kPa, the 4 g/l soil becomes stiffer than the 16 g/l soil and a change in cc value

is observed. The cc value between 'ac = 1,000 and 10,000 kPa is 0.36 and 0.37 for the 4 and 16

g/l soils respectively. All three soils have the same compression behavior between a'ac = 100 and

1,000 kPa, but after that the 4 and 16 g/l soils become stiffer than the 256 g/l soil. This is

reflected in the cc values. None of the tests suffered from extrusion issues. All tests show a

reduction in compressibility between U'ac = 1,000 and 10,000 kPa. Given that the 256 g/l curve is

offset to the right of the 4 and 16 g/l tests, this indicates that the 256 g/l soil is stronger. The 256

g/l soil can hold more stress at a given void ratio than the 4 and 16 g/l soils but this difference

diminishes as the stresses approach 10,000 kPa. This shows the first evidence that natural RLC is

influenced by salt in terms of compression behavior at least. The fact that the 16 g/l curve starts

in almost an identical location to the 256 g/l, and the jumps to the 4 g/l line would indicate that

there were chemical bonds formed with the addition of more salt (in terms of the 4 g/l compared

to the 16 g/l), which were not strong enough to be sustained upon the application of stress to the

soil. This is why the 16 g/l bisects the 4 and 256 g/l curves in the overconsolidated range and

then reverts to low salinity behavior. In general, RLC is resedimented to a much higher void ratio

at 100 kPa than any BBC yet compresses to similar void ratios at 'ac = 10,000 kPa. The RLC

results presented also give higher void ratios at a given stress than those previously presented for

RLC in Chapter 3 by Gasparre (2005).
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The hydraulic conductivity versus void ratio plots for all three RLC salinities are shown

in Figure 5.44. The hydraulic conductivities span more than three orders of magnitude and start

out at 2.17x 10-7 to 3.38x10-8 cm/sec at a void ratio of 1.55. The curves tend to converge with the

application of stress and at a void ratio of 0.5 a representative hydraulic conductivity of 7.89x10-
" cm/sec can be seen. There is no trend with the hydraulic conductivity at a given void ratio

versus salt content. The break in slope which was observed in natural RBBC Series IV hydraulic

conductivity data is not evident in RLC.

The coefficient of consolidation for all RLC tests is shown in Figure 5.45 and Figure

5.46. This Figure shows that for two of the three tests, the cv value flattens out with an increase

in stress. The only test that does not obey this is CRS 1305 which has a gap in the data in the low

stress range which represents a pause in the test. The cv values for 16 and 256 g/l RLC are

1.5x10-4 and 1.7x10-4 cm 2/sec respectively at 8,000 kPa. When CRS1305 reached 40,000 kPa,

the cv value is 1.4x 104 cm2/sec and still dropping. Figure 5.45 shows the plot of cv versus axial

effective stress for all three tests up to 10,000 kPa while Figure 5.46 presents data up to 40,000

kPa. Interestingly, CRS1305 shows a change in cv value at stress levels close to, or just past

10,000 kPa. After this stress level, the c value begins to drop and is still dropping when the test

finishes. It is not certain that this is the same effect witnessed in RBBC where floc breakage was

observed at certain stress levels. More tests are required to confirm that this result is

representative of what happens at stress levels beyond 10,000 kPa. The hydraulic conductivity

plot shown in Figure 5.44 does not indicate any change in behavior in the same way the

hydraulic conductivity plots complimented the coefficient of consolidation plots for BBC in

terms of behavioral change.

5.2.4 RESEDIMENTED GULF OF MEXICO - URSA CLAY

The results presented here are in general agreement with one dimensional compression

curves obtained during the consolidation phase of CKOUC testing by Brendan Casey in the MIT

Geotechnical Laboratory. A comparison of these curves is shown in Figure 5.50.

RGOM - Ursa was tested to high stress as part of this research and although only one

pore fluid salinity of 0 g/l (distilled water) was used, comparisons will be drawn between it and
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other soils later in this Chapter. The compression data in Figure 5.51 & Figure 5.52 show that the

slope of the normally consolidated region changes with an increase in stress.

The hydraulic conductivity plots shown in Figure 5.53 for RGOM-Ursa display true log-

linear behavior for all three tests. The hydraulic conductivity spans roughly 2.5 orders of

magnitude over the void ratio range 1.10 to 0.28. No changes in slope can be seen from these

data.

The coefficient of consolidation c for RGOM-Ursa is shown in Figure 5.54 & Figure

5.55. All three tests show remarkably constant c, values throughout a vast stress range. Such

levels of consistency in the cv value are only matched by London Clay. All cv values are in good

agreement throughout loading. Figure 5.54 presents the data up to 40,000 kPa while Figure 5.55

shows values up to 10,000 kPa. At a stress of - 28,000 kPa, a rise in c, value is seen in all three

tests. The cause of this rise in c, is not yet clear but it can be taken as the true soil behavior given

that it is present in all three tests. There is no apparent change in hydraulic conductivity at this

stress; however, the stress range 28,000 - 40,000 kPa is responsible for reducing the void ratio

only a small amount so any changes in behavior may not be obvious.

5.2.5 SODIUM MONTMORILLONITE

Given that more of a reaction to pore fluid salinity is seen in soils containing a large

percentage of expanding clays, it was decided to test sodium montmorillonite at two different

pore fluid salinities, namely 1 & 256 g/1. Both of these salinities were resedimented in the same

manner as all other soils in the testing program. A batch of 256 g/l sodium montmorillonite was

resedimented in less than 1 month and CRS tested, the results of which are presented in this

Section. 1 g/l sodium montmorillonite was also resedimented in the hope of testing via CRS in

order to provide data at both ends of the salinity spectrum. This 1 g/l soil batch was initiated on

the 2 0th of December 2011 and did not reach end of primary consolidation until the middle of

May 2012. It was therefore not possible to test the soil and present its results as part of this

research. It is not yet a certainty that 1 g/l sodium montmorillonite can be tested via the CRS

apparatus as the strain rate needed to satisfy test requirements may not be achievable. That is to

say, the strain rate may be so slow that current laboratory equipment may not be able to satisfy

this requirement. This is a parameter which has yet to be determined.
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When the pore fluid salinity is 256 g/l for sodium montmorillonite, all double layer effect

has been eliminated and the soil structure consists of predominantly mechanical contact between

grains. This was shown in Chapter 3. SEM images were taken from oven dried specimens at an

axial effective stress of 200 kPa.

Figure 5.56 presents the compression data for 256 g/l sodium montmorillonite in 6a-

loga'ac space. Two successful tests were performed on the soil and the results show very

comparable behavior in the normally consolidated range. The normally consolidated line is non-

linear and changes constantly with an increase in stress. The axial strain required to achieve a

stress of 10,000 kPa is 36.2 %. CRS1322 was stressed to 2,000 kPa while CRS1318 was stressed

to 27,600 kPa. The break in data at a stress of 17,300 kPa can be attributed to a relaxation test

performed on the soil. Consolidation was halted at this stress, yet despite the load frame being

turned off, almost 0.60 % axial strain is recorded due to relaxation of the soil over time.

The compression data from both tests is presented in e-loga'ac space in Figure 5.57. The

initial void ratios for both tests are similar and range from 1.69 to 1.71. The cc value obtained

between 1,000 and 10,000 kPa is 0.38 indicating a very compressible soil. At an axial effective

stress of 10,000 kPa, the void ratio is 0.735 - the largest void ratio at the reference stress of any

soil in the testing program. The void ratio at an axial effective stress of 27,600 kPa is 0.59.

The corresponding hydraulic conductivity plots are shown in Figure 5.58 in void ratio

space. The data for the specimen tested to high stress (CRS 1318) does not go past a void ratio of

0.858 owing to a leak in the base excess pressure during the test. Good hydraulic conductivity

data is obtained up to this point. In general, both curves agree well and the hydraulic

conductivity of the soil is log-linear without any drastic changes in slope. The data covers over

two orders of magnitude and would possibly cover a third were it not for the leak.

The coefficient of consolidation data is presented in Figure 5.59. Once the

preconsolidation pressure is passed, the cv value drops and continues to do so with an increase in

stress level. For CRS1322 which was stressed to 2,000 kPa, the cv value never rises. For CRS

1318, the cv value drops, tapers off and then rises slightly until the data is cropped where the leak

occurred. Further testing needs to be performed to determine if this is actually an increase in the

c, value or if it associated with the early stages of a leak in the test. At an axial effective stress of
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1,000 kPa, both c, values are comparable with an average value of 0.000429 cm 2/sec. These

results represent what is believed to be the first instance of sodium montmorillonite being tested

in the CRS apparatus.

5.2.6 COMPARISON OF DIFFERENT SOIL TYPES

Figure 5.60 presents a synthesis plot of the compression data for all soils used in the

testing program in Ea-loga'ac space. Of these soils, all but one was resedimented. All

resedimented soils were stressed to a target batch preconsolidation pressure of 100 kPa, however,

the BBC sodium hex and RGOM-Ursa show preconsolidation pressures past this stress level.

This is because both soils have undergone significant secondary compression while they were

waiting to be tested. It can be seen from Figure 5.60 that there is a large variation in terms of

required strain to reach 10,000 kPa. The soil with the lowest strain requirement to reach this

stress is the only soil to possess a natural fabric, namely Killian Court in-situ BBC, hence

indicating it is a much stiffer soil than the equivalent resedimented soils. This can be attributed to

the natural bonds which have developed between particles over thousands of years. These bonds

will also give the effect of a higher preconsolidation pressure. The axial strain required to bring

the Killian Court BBC to 10,000 kPa is around 22.7 %. An analysis has already been performed

on the BBC soils in Section 5.2.2.7. Of the remaining 3 soils presented, 2 are taken from

different areas of the world while the last soil is a pure clay mineral. It is fortunate that there

were so many soils with such differing mineralogy available for testing during this research. The

London Clay is the most compressible soil of the set requiring a strain of 42.6 % 10,000 kPa.

The slopes of the virgin compression line for London Clay and sodium montmorillonite change

markedly more than the other soils with an increase in stress. This is shown by the distinct

nonlinearity of the data. RGOM-Ursa requires a similar strain to 10,000 kPa as RBBC (Series IV

& leached).

Figure 5.61 presents a synthesis plot of the compression results in e-loga'ac space. Even

though RLC starts out a relatively high void ratio, at an axial effective stress of 10,000 kPa its

void ratio is comparable to other soils tested. This is in contrast to sodium montmorillonite which

also starts out at a high void ratio, and maintains its stiffness throughout loading up to 10,000

kPa. Table 5-4 shows the cc value for all soils tested.
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The hydraulic conductivity versus void ratio plots for all soils in the testing program are

shown in Figure 5.62. The most striking observation to make from the Figure is that RLC and

sodium montmorillonite at 256 g/l have similar hydraulic conductivities which are more than one

order of magnitude smaller at a given void ratio than all other soils tested. The majority of soils

display log-linear hydraulic conductivities in void ratio space, the exception being natural RBBC

Series IV and leached RBBC for reasons already explained in Section 5.2.2.7. Hydraulic

conductivities for the soils tested span more than three orders on magnitude.

The coefficient of consolidation versus axial consolidation stress synthesis plot is shown

on two different scales in Figure 5.63 and Figure 5.64. These Figures show that the cv value for

RGOM-Ursa, sodium montmorillonite and London Clay have much lower values than any of the

BBC soils tested. The soil with the lowest c, is RLC. As RGOM-Ursa was the only soil stressed

to 40,000 kPa, an additional plot showing the c, values up to 10,000 kPa is shown in Figure 5.64.

It can be seen from these plots that the cv value for RGOM-Ursa does not change much over a

large stress range, the same is true for London Clay but this is over a smaller stress window. The

cv values for all types of BBC do not show any sign of achieving constant values even at stresses

up to 10,000 kPa.

5.2.7 EVALUATION OF CRS TESTING PROGRAM

The CRS test is relatively simple to perform and a great deal of useful data can be

extrapolated from high quality test results. It is fortunate that so many soils were available for

testing throughout the course of this research. The extensive CRS testing program employed

generated a substantial bank of reference data which can now be used for future research in the

area of salinity effects as well as to compliment other research ongoing in the MIT Geotechnical

Laboratory.

The altering of BBC in several ways has produced a great deal of useful data on how the

fabric and structure of the soil behaves and evolves with change in stress level. Some previously

unknown information on how flocs break at certain stress levels is now available showing that

for BBC at least, changes in mechanical behavior occur at two stress levels, namely the

preconsolidation pressure and at the limit of the floc strength.
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The point has also been proven that chemical and mechanical bonds can support a

significant portion of the stress applied to a soil. This is demonstrated by the fact that an in-situ

soil is capable of sustaining a larger stress than a completely dispersed soil comprised of the

same basic minerals, which has a greater density.

5.3 TRiAxiAL TESTS

5.3.1 INTRODUCTION

A series of strength tests were performed on three BBC derivatives in order to determine

the effect of the pore fluid salinity on the strength characteristics of the soil. The soils tested were

natural RBBC Series IV at pore fluid salinities of 4 and 256 g/l, leached RBBC at pore fluid

salinities of 1 and 256 g/l and Killian Court in-situ BBC to serve as a reference for the triaxial

testing program. All tests were Ko consolidated at a rate of 0.15 %/hr and sheared in compression

(CKoUC) in the normally consolidated range after roughly 24 hours of secondary compression

was allowed on the specimen. The Ko consolidation ensures zero lateral strain by adjusting the

cell pressure to keep the axial and volume strains equal. All resedimented BBC used in the

triaxial testing program were resedimented to a maximum axial stress of 200 kPa in the

consolidometer. All triaxial testing was performed in a low pressure triaxial apparatus.

Data on the coefficient of earth pressure at rest (Ko) can be obtained from feedback

controlled one dimensional consolidation in the triaxial cell. These Ko values will be presented

for each soil in their relevant sub Section. The general trend of Ko decreasing during the initial

loading within the overconsolidated region until the preconsolidation pressure is reached and

then plateaus at some constant value is observed in all soils. Once the soil is in the normally

consolidated region, the Ko value remains relatively stable. The value of Ko in the normally

consolidated region is referred to as KONC. As was observed in Santagata (1994), the Ko value

decreases during reloading to a value lower than the KONC and then increases to a constant value

once the preconsolidation pressure is passed. All triaxial specimens were Ko consolidated so that

the strain was greater than 10 % in accordance with SHANSEP recommendations. A list of all

triaxial tests presented here is shown in Table 5-3.
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5.3.2 TRIAXIAL RESULTS

This section presents results from triaxial tests in which NC specimens were sheared

undrained in compression at a constant axial strain rate of 0.5 %/hr after Ko consolidation to their

respective final axial consolidation effective stresses. The results from 12 successful tests will be

presented across all soil types. The testing of these soils was performed in three separate low

pressure triaxial devices. These devices are known locally in the MIT Geotechnical Laboratory

as MITO1, MIT02 and MIT04. In general, MITO1 was used for low salinity testing while MITO2

was used for high salinity testing. MITO4 was used for any salinity in order to advance the

testing program in a timely manner.

Table 5-3 lists the test number and type, the apparatus, soil type and salinity, the preshear

consolidation conditions and the pertinent stress-strain-strength parameters at peak shear stress

and at maximum obliquity. Note that the friction angle (q>') represents a measure of the strain

rate at peak maximum obliquity.

5.3.2.1 BEHAVIOR OF NC NATURAL RBBC

5.3.2.1.1 SHEAR STRESS-STRAIN BEHAVIOR

Figure 5.65 shows the normalized stress-strain behavior (q/a'ac versus ca, where q = (a-

03)/2) with the axial strain shown on a linear scale. The maximum axial consolidation stress

('an) for each test is stated in the legend. This Figure illustrates that the effect of the preshear

consolidation stress level has little influence on the normalized strength. In general, the peak

undrained strength ratio (USR = su/0'ac) decreases with an increase in axial consolidation

effective stress. Figure 5.75 shows the axial strain to failure as a function of pore fluid salinity

while Figure 5.76 shows the relationship between axial strain to failure and the normalized shear

stress as a function of pore fluid salinity. The strength ratio decreases from 0.303 at low stress to

0.283 at higher stresses. Given that range of axial consolidation effective stresses is small (920 -

452 kPa), it cannot be stated for certain that these are the effects of the stress level and not

salinity. Upon further examination of Figure 5.65, it can be seen that TX1081 and TX1069 which

are both 256 g/l specimens have almost identical strength ratios even though TX1069 has been

consolidated to a lower stress. 4 g/l specimens which have been consolidated to similar stresses

as TX1069 show higher strength ratios. It is therefore stated that the reduction in strength ratios
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for the two high salinity tests are as a result of the salt content and not because of the

consolidation stress level. Previous research in which the consolidation stress level effect was

evident presented data over a much greater stress range, for example Abdulhadi (2009). The

stress-strain data (Figure 5.65, Figure 5.66 and Figure 5.67) also show that the behavior becomes

more ductile as salinity increases. Larger strains are required to mobilize the peak resistance for

high salt content soil. The salinity also tends to affect the post peak portion of the stress-strain

curves. Higher salinity soils tend to have more residual strength than the low salinity soils. The

degree of strain softening can be represented by the brittleness, which is the ratio of the

undrained strength to the large strain shear resistance of the soil. For consistency, the shear

resistance at Ea = 10 % was taken as the large strain resistance. Figure 5.77 summarizes the

brittleness versus stress level while Figure 5.80 shows the relationship between axial strain at

maximum obliquity as a function of pore fluid salinity.

5.3.2.1.2 STIFFNESS

Figure 5.68 shows curves of the undrained secant Young's modulus normalized to the

axial consolidation stress (Eu/'ac) versus axial strain on a log-log scale for the NC natural

RBBC. As the measurements were performed employing external LVDT's, the estimates of the

stiffness are considered reliable only above 0.01 - 0.05 % axial strain. In general, the Figure

shows that the soil displays strong non linearity and that yielding occurs at small strains. The

decrease in stiffness is particularly marked once the soil reaches failure due to the large amount

of post peak strain softening. The maximum value of the normalized stiffness (Eumax/ O'ac) shows

no trend with salt content. The results suggest a salt level effect at larger strains as the higher

salinity curves tend to require a larger strain to achieve a given modulus than the lower salinity

ones. This, however, is only evident when the modulus values are extremely low.

5.3.2.1.3 EFFECTIVE STRESS BEHAVIOR

Figure 5.69 and Figure 5.70 shows the normalized effective stress paths using the MIT

stress space (q/ 'ac versus q/ G'ac where q = (ai- 03)/2 versus p' = (O'l- U'3)/2) from the triaxial

compression test series on NC natural RBBC. Pore pressure measurements were made at the

base of the specimen in all cases. The Figures show the change in pore pressure development

during the test where there is little pore pressure generation up to a yield point followed by much
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greater development thereafter. Peak shear conditions coincide with a yield condition but the

peak point moves further down the stress path as the consolidation stress increases. The peak

strength is linked in this case to the salt content of the soil. At large strains there is little

difference in the stress obliquity (q/p') and a common linear failure envelope is reached. Table

5-3 lists the values of effective stress parameters at peak and maximum obliquity.

The corresponding variation in friction angle versus axial strain is shown in Figure 5.71.

Except for TX1068, all tests reach maximum obliquity (*'mo) at strains of approximately 11 %.

TX1068 reached *'mo at much smaller strains for reasons which are not apparent. The friction

angle ranges from *'mo 31.4 to 32.5' along the failure envelope. The results suggest that a larger

friction angle is observed at maximum obliquity for higher salinity soils. Figure 5.78 & Figure

5.79 show the friction angle as a function of pore fluid salinity at peak shear stress and at

maximum obliquity respectively.

Figure 5.72 shows the excess pore pressure (ue = Au-AG3) generated during undrained

shear normalized to the axial effective consolidation stress ('ac). The results show that the pore

pressures rise continuously to some axial strain and then taper off. Some of the data presented in

Figure 5.72 show pore pressures continually rising throughout the entire test. Both high salinity

tests demonstrate similar behavior insofar as a plateau value of excess pore pressure ratio is

achieved, and then they both begin to rise at high strains for reasons which are not yet apparent.

The corresponding normalized shear induced pore pressures (us = Au-AGect, where Aaoct

= (01+02)/3). The method isolates the pore pressure change due to shear stress alone, removing

the effect of the total stress path. The shear induced pore pressures versus axial strain are shown

in Figure 5.73. The plot essentially removes the effect of the starting Ko value. The results differ

from the excess pore pressures presented in Figure 5.72 whereby there is no distinct plateau in

pore pressures, they are continually rising throughout the test. The positive pore pressures

generated throughout shearing indicate a contractive behavior. This continues for the entire

shearing process and the values are still rising when the test is terminated. The magnitude of the

shear induced pore pressures are similar to the excess pore pressures towards the end of shearing.

The Skempton parameter A = ((Au-Aa 3 )/(Aai-Aa)) versus strain is shown in Figure 5.74.

The results are plotted for the small strain region up to 2 % axial strain. All tests show a starting
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A parameter value of about 0.50. There is no trend in the pore pressures generated versus salinity

of the soil. No peak is observed in the A parameter as it will continually rise and approach

infinity at some strain. Figure 5.81 shows the A parameter at peak shear stress as a function of

pore fluid salinity.

5.3.2.2 BEHAVIOR OF LEACHED RBBC

5.3.2.2.1 SHEAR STRESS-STRAIN BEHAVIOR

Figure 5.82 shows the normalized stress-strain behavior (q/cy'ac versus Sa, where q = (c1 -

03)/2) with the axial strain shown on a linear scale. The maximum axial consolidation stress

('am) for each test is stated in the legend. The effect of preshear consolidation stress will not be

evident in this Figure because all tests have been consolidated to similar stress levels. The

strength ratio for leached RBBC ranges from 0.30 to 0.319 and there is no trend in strength ratio

versus salt content. Figure 5.92 shows the axial strain to failure as a function of pore fluid

salinity while Figure 5.93 shows the required axial strain to peak shear stress as a function of

pore fluid salinity. TX1084 which is a 1 g/l soil, has its maximum undrained strength ratio fall

between the two high salinity tests thereby removing any trend from the dataset. Figure 5.83 and

Figure 5.84 show the stress-strain data in a close up view (up to 3 % strain) and in log space

respectively. Figure 5.84 shows that the ductility of the soil is not affected with the level of

salinity. Similar strains are required to mobilize the peak resistance for all salt contents. From

Figure 5.82 it can be seen that the high salinity soils retain more residual load carrying capacity

once the peak strength is passed. This is similar to what was observed for natural RBBC Series

IV. The degree of strain softening is again represented by the brittleness, which is the ratio of the

undrained strength to the large strain shear resistance of the soil. For consistency, the shear

resistance at Ea = 10 % was taken as the large strain resistance. Figure 5.94 summarizes the

brittleness versus stress level for leached RBBC.

5.3.2.2.2 STIFFNESS

Figure 5.85 shows curves of the undrained secant Young's modulus normalized to the

axial consolidation stress (Eu/a'am) versus axial strain on a log-log scale for leached RBBC. In

general, the Figure shows that the soil displays strong non linearity and that yielding occurs at

small strains. The decrease in stiffness is particularly marked once the soil reaches failure due to
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the large amount of post peak strain softening. The maximum value of the normalized stiffness

(Eumax/O'ac) shows no trend with salt content at any strain level.

5.3.2.2.3 EFFECTIVE STRESS BEHAVIOR

Figure 5.86 and Figure 5.87 show the normalized effective stress paths using the MIT

stress space (q/o'ac versus p/a'ac where q = (1- 03 )/2 versus p' = (a'- '3)/2) from the triaxial

compression test series on NC leached RBBC. Pore pressure measurements were made at the

base of the specimen in all cases. The Figures show the change in pore pressure development

during the test where there is little pore pressure generation up to a yield point followed by much

greater development thereafter of pore pressures. Peak shear conditions coincide with a yield

condition but the peak point moves further down the stress path as the consolidation stress

increases. At large strains there is more of a difference in the stress obliquity (q/p') than was

observed with the natural RBBC and a common linear failure envelope is not reached. Table 5-3

lists the values of the effective stress parameters at peak and maximum obliquity.

The corresponding variation in friction angle versus axial strain is shown in Figure 5.88.

The low salinity tests show very similar variations in friction angle versus axial strain, however,

the high salinity results differ by over 2 at maximum obliquity (0'mo). Nonetheless there is a

definite trend insofar as a higher friction angle is observed with a higher salinity soil than for a

low salinity soil. Figure 5.95 & Figure 5.96 give the friction angle at failure and maximum

obliquity respectively as a function of pore fluid salinity. Similarly to the natural RBBC, the

maximum obliquity is reached at strains of approximately 11 % for all tests. Figure 5.97 gives

the axial strain required to maximum obliquity. The friction angle ranges from $'mo 29.2* for the

low salinity BBC to 33.80 for the high salinity soil along the failure envelope. This represents a

maximum difference of 4.600 between the two salinities as opposed to a difference of 1.10' for

natural RBBC at different salinities. The results suggest that the soil has become more sensitive

with the removal of natural salts and this is reflected in the low friction angle observed in the 1

g/l tests. Even the high salinity test which produced the lowest friction angle values (TX1094)

still has a 0'mo equal to 31.70 which is still 2.50' greater than the 1 g/l tests.

Figure 5.89 shows the excess pore pressure (ue = Au-ACY3) generated during undrained

shear normalized to the axial effective consolidation stress (G'am). The results show that the pore
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pressures rise continuously to some axial strain and then taper off. There is no trend in the

magnitude of pore pressures generated versus the pore fluid salinity. The 1 g/l tests show more

similar behavior to each other than the high salinity tests.

The corresponding normalized shear induced pore pressures (us = Au-Aaoct, where Aaoct

= (1+2)/3) are shown in Figure 5.90. The method isolates the pore pressure change due to shear

stress alone, removing the effect of the total stress path. The plot essentially removes the effect

of the starting Ko value. The results differ from the excess pore pressures presented in Figure

5.89 whereby there is no distinct plateau in pore pressures, they are continually rising throughout

the test. The positive pore pressures generated throughout shearing indicate a contractive

behavior. This continues for the entire shearing process. The values are still rising when the test

is terminated. The magnitude of the shear induced pore pressures are similar to the excess pore

pressures towards the end of shearing.

The Skempton parameter A = ((Au-A3)/(Aal -Au)) versus strain is shown in Figure 5.91.

The results are plotted for the small strain region up to 2 % axial strain. All but one of the

specimens show a starting A value of around 0.30 with the remaining test starting at 0.44. These

values are lower than those recorded for natural RBBC Series IV and there is no trend in the pore

pressures generated versus salinity of the soil. A plot of the A parameter at failure as a function

of pore fluid salinity is shown in Figure 5.98.

5.3.2.3 BEHAVIOR OF KILLIAN COURT IN-SITU BBC

5.3.2.3.1 SHEAR STRESS-STRAIN BEHAVIOR

Figure 5.99, Figure 5.100 and Figure 5.101 show the normalized stress strain behavior of

Killian Court BBC. The maximum consolidation stress for each test is stated in the legend and in

general, Killian Court material had to be consolidated to a higher stress state than resedimented

material. This is partly because when the material was being back pressure saturated in the

triaxial cell, it took higher pressures to achieve a B value greater than 0.98 for in-tact material

than for resedimented soil. The Ko consolidation process therefore started from a higher total

state of stress. The range of consolidation stresses to bring the soil to the normally consolidated

region varied for in-situ material between a'ac = 1,000 and 1,950 kPa. It is important to note that

for the shearing portion of TX 1110, the drain line valves were open but because the back
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pressure system is stiff enough to prevent appreciable volume change, the test is effectively an

undrained one. The strength ratio for Killian Court BBC ranges from 0.293 to 0.307. These peak

strength ratios are achieved at strains of approximately 0.66 % for TX1091 and TX 1108 while

TX1 110 reaches its peak strength ratio at a strain of 0.71 %. The peak strength ratio of natural

RBBC Series IV were achieved at strains of between 0.22 % and 0.34 % while for leached

RBBC they were between 0.13 and 0.16 %. It is therefore obvious that strains required to fail

resedimented specimens are at least half those required to fail in-tact material. The undrained

strength ratio for all BBC derivatives are comparable lying generally between values of 0.282

and 0.32. It can be seen that the post-shear behavior of TX1 108 and TX1091 are very similar

while for TX1 110, more residual strength is available. This may be because TX1 108 and

TX1091 were obtained from the same Shelby tube while TX1 110 was taken from a different

tube meaning natural soil variation may play a part in the results.

5.3.2.3.2 STIFFNESS

Figure 5.102 shows curves of the undrained secant Young's modulus normalized to the axial

consolidation stress (Eu/a'am) versus axial strain on a log-log scale for the Killian Court BBC. In

general, the Figure shows that the soil displays strong non linearity and that yielding occurs at

small strains. The decrease in stiffness is particularly marked once the soil reaches failure due to

the large amount of post peak strain softening. The moduli observed compare well with those

observed for resedimented material.

5.3.2.3.3 EFFECTIVE STRESS BEHAVIOR

Figure 5.103 and Figure 5.104 show the normalized effective stress path using the MIT

stress space from the triaxial compression test series on NC Killian Court in-situ BBC. The

Figures show the change in pore pressure development during the test where there is little pore

pressure generation up to a yield point followed by much greater development thereafter of pore

pressures. Peak shear conditions coincide with a yield condition but the peak point moves further

down the stress path as the shear stress increases. The peak shear stress for Killian Court BBC is

not as well defined as it is for resedimented material. At large strains there is a difference in the

stress obliquity (q/p') and a common linear failure envelope is not reached for all tests. Table 5-3

lists the values of the effective stress parameters at peak and maximum obliquity.
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The corresponding variation in friction angle versus axial strain is shown in Figure 5.105.

There is a 1.4* variation in friction angle at 0'm.. TX 1110 does not reach maximum obliquity as

the test was terminated before this stage. For Killian Court material, maximum obliquity is

reached at strains of about 9.5 % which are smaller strains than that required for resedimented

material to reach maximum obliquity. The friction angle ranges from #'mo 30.4 to 31.8* along

the failure envelope. Although TX 1110 did not reach $'mo, the results are broadly similar to

TX1 108. It is therefore assumed that TX1 108 is representative of both tests in terms of friction

angle values at least.

Figure 5.106 shows the excess pore pressure generated during undrained shear

normalized to the axial effective consolidation stress. The results show that the excess pore

pressures continually rise throughout the test. This observation is different to resedimented

material insofar as the excess pore pressures taper off to some constant value at a given strain.

The corresponding normalized shear induced pore pressures are shown in Figure 5.107.

Again it is seen that the shear induced pore pressures continually rise throughout the test in a

similar fashion to what was observed in resedimented material and that the shear induced pore

pressures are of a similar magnitude as the excess pore pressures. The shear induces pore

pressure curves rise with a steeper slope than the excess pore pressure curves. The positive pore

pressures generated throughout shearing indicate a contractive behavior.

The Skempton parameter A = ((Au-AG 3)/(AC1-AC)) versus strain is shown in Figure

5.108. The results are plotted for the small strain region up to 2 % axial strain. The starting A

value for the tests range from 0.28 to 0.5. These values are in general agreement with those

observed for natural RBBC.

5.3.2.4 SYNTHESIS PLOT OF BBC CKOUC TRIAXIAL RESULTS

Only when all results are appraised side by side can true similarities and differences in

soil behavior be seen. The purpose of this Section is to see where similarities lie between tests

run on resedimented material, and those run on in-situ material. Results from a total of 12 triaxial

tests (CKoUC) will be plotted alongside each other and these consist of 3 Killian Court in-situ

BBC tests, 5 tests on natural RBBC Series IV and 4 tests on leached RBBC. The Ko values for

all soils from the consolidation phase at shown plotted against the normalized shear stress of the
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soil in Figure 5.120. A slight decrease in Ko value can be observed with an increase in

normalized shear stress.

5.3.2.4.1 SHEAR STRESS-STRAIN BEHAVIOR

Figure 5.109, Figure 5.110 and Figure 5.111 show synthesis plots of the normalized

stress strain behavior for all types of BBC used in the testing program. The maximum

consolidation stress for each test is stated in the legend. One of the main differences to note from

these Figures is that the Killian Court in-situ material has different strains to failure than

resedimented soil. For all three Killian Court tests, the post peak behavior is much more linear

insofar as it drops with a constant slope with an increase in strain as opposed to the resedimented

BBC. With an increase in strain, RBBC tends to taper off and the slope of the stress-strain curve

flattens out. From Figure 5.110, it can be seen that the undrained strength ratio for all tests range

from 0.282 to 0.32. It also evident from the same Figure that the Killian Court tests require larger

strains to failure, but this point is better demonstrated in Figure 5.111. On a log scale, the

differences in strain to failure for all tests are clearly shown. In general, all RBBC tests fail at

strains ranging from 0.12 to 0.34 % while Killian Court BBC specimens fail at strains ranging

from 0.66 to 0.71 %. It can be stated that lower strains are required to fail resedimented material

as opposed to in-tact soil. Despite the lower strain requirement for failure, the stress ratios are all

very comparable.

5.3.2.4.2 STIFFNESS

Figure 5.112 shows a synthesis plot of the undrained secant Young's modulus normalized

to the axial consolidation stress (Eu/'amn) versus axial strain on a log-log scale for all types of

BBC. In general, the Figure shows that all BBC soil derivatives display strong non linearity and

that yielding occurs at small strains. The decrease in stiffness is particularly marked once the soil

reaches failure due to the large amount of post peak strain softening. The moduli observed

compare well with those observed for resedimented material. The Eu/'am values at a strain of

0.01 % range from 257 to 420 and these values rapidly diminish with an increase in strain.
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5.3.2.4.3 EFFECTIVE STRESS BEHAVIOR

Figure 5.113 and Figure 5.113 show the normalized effective stress path using the MIT

stress space. These Figures present synthesis plots from the triaxial compression test series on

NC BBC of all types. The Figures show the change in pore pressure development during the test

where there is little pore pressure generation up to a yield point followed by much greater

development thereafter of pore pressures. Peak shear conditions coincide with a yield condition

but the peak point moves further down the stress path as the consolidation stress increases. As

previously mentioned in Section 5.3.2.3.3, the occurrence of the peak for Killian Court BBC is

not as well defined as it is for resedimented material. At large strains it can be argued that for

some tests a common failure envelope is reached. This was true for natural RBBC Series IV, but

now that all tests have been plotted together it is clear that more curves fall on the common

failure envelope. Table 5-3 lists the values of the effective stress parameters at peak and

maximum obliquity for all BBC derivatives.

The corresponding variation in friction angle versus axial strain is shown in Figure 5.115.

There is a 4.50* variation in friction angle at 4 and maximum obliquity occurs for different

soils at different strains. Figure 5.121 shows the axial strain to failure versus the normalized

shear stress. The friction angles at failure and maximum obliquity are shown in Figure 5.122 &

Figure 5.123 respectively. The maximum friction angle observed was $'mo = 33.80 and the

minimum #'mo was 29.20. It has been shown already that maximum obliquity for resedimented

material is achieved around a strain of 11 % while for in-situ material it is achieved at a strain of

9.5 %. Abdulhadi (2009) presented data showing a correlation of reducing friction angle with

increasing axial consolidation stress. This correlation is shown in Figure 5.116. For the stress

range in which all the results in the synthesis plot were sheared (a-'ac = 452 - 1,950 kPa), the

expected friction angle at maximum obliquity is in the range of 30.9 to 33*. All but four tests

fall within this range, the outliers consisting of high and low salinity soils. It has not yet been

established if this observed trend is true for in-situ material as the correlation was derived from

resedimented BBC.

Figure 5.117 shows the synthesis plot for the excess pore pressure generated during

undrained shear normalized to the axial effective consolidation stress. The results show that the

excess pore pressures continually rise throughout the test for some soils while for others, a

251



plateau is reached at a given strain level which is maintained until a higher strain is reached, and

then an increase in excess pore pressure is recorded once more. Killian Court in-situ material

shows a constant rise in excess pore pressure throughout a test while some RBBC specimens

have the described plateau effect.

The corresponding normalized shear induced pore pressures are shown in Figure 5.118.

The shear induced pore pressures continually rise throughout the test for all BBC derivatives and

are of a similar magnitude as the excess pore pressures. The shear induced pore pressure curves

rise with a steeper slope than the excess pore pressure curves. The positive pore pressures

generated throughout shearing indicate a contractive behavior for all soils in the testing program.

The Skempton parameter A = ((Au-Aa 3)/(Aai-Aa)) versus strain is shown in Figure

5.119. The results are plotted for the small strain region up to 1 % axial strain. The A parameter

is shown in a linear scale and axial strains are shown on a log scale for clarity. Two distinct

clusters of initial A value are now visible from the data and these clusters have average A values

of 0.32 and 0.46. The three Killian Court in-situ tests fall into the lower initial A value band. The

upper initial A value cluster is composed entirely of resedimented material. The A value for all

BBC derivatives changes abruptly once the strain corresponding to the peak stress is achieved. In

this plot, there is no trend with how the A values evolve for a given salt content in the small

strain region.
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Initial Conditions At 'ac = 10 MPa @ Max Stress

Test No. Soil Type Salt wo Yd __ Ea c, am E c
(%) % (cm/sec) (MPa) (cm /sec)

CRS1252 RBBC Series IV 4 46.71 1.267 1.225 1.799 32.5 0.54 5.07x10' 10.65 32.8 0.534 4.96x10

CRS1219 RBBC Series IV 16 45.42 1.261 1.232 1.798 32.9 0.516 2.73x10' 10.5 33.2 0.509 NA

CRS1252 RBBC Series IV 64 45.04 1.237 1.259 1.854 32.9 0.499 2.72xlO 10.6 33.3 0.492 NA

CRS1252 RBBC Series IV 128 43.3 1.299 1.243 1.836 33.9 0.521 2.64x10-3 10.6 34.3 0.512 NA

CRS1252 RBBC Series IV 256 39.27 1.304 1.269 1.304 1.269 1.884 2.81x10& 11.3 34.2 0.517 2.34x1O3

CRS1323 Leached BBC 0 38.72 1.075 1.337 1.855 27.1 0.513 3.16x10- 12.2 28.3 0.489 2.66x10'

CRS1236 Leached BBC 1 44.67 1.177 1.275 1.845 31.3 0.495 3.48x1O4 10.5 31.8 0.485 NA
CRS1242 Leached BBC 16 46.04 1.259 1.233 1.807 31.6 0.545 2.50x1O4 11.05 32.2 0.532 2.15x1O-'

CRS1246 Leached BBC 64 44.08 1.264 1.245 1.819 32.6 0.525 1.93x10- 10 32.6 0.525 1.93x1o-

CRS1239 Leached BBC 256 39.52 1.332 1.251 1.865 35.6 0.5 2.07x10- 11.4 36.5 0.481 2.07x10-

CRS1313 Sodium Hex BBC 0 37.19 1.037 1.362 1.869 28.4 0.46 NA 11.15 29 0.446 NA

CRS1239 Sodium Hex BBC 0 36.42 1.017 1.376 1.877 26.5 0.483 5.62x1O4 11.7 27.4 0.464 5.87x10-

CRS1248 BBL ahinegrse Varies 35.45 1.021 1.374 1.861 27.6 0.576 2.03x10- 10.5 28 0.567 NA

CRS1235 BBL ahverse Varies 36.58 1.034 1.364 1.864 30.8 0.514 2.26x10-3 10.8 31.3 0.502 NA

KLiacout 
_in-

CRS1269 KillianCourtin- 11.3 35.95 1.001 1.388 1.888 22.8 0.555 3.77x10-3 11.9 23.9 0.534 3.75x10'
_______ situ BBC ___ ______

CRS1270 Killian Court in- 11.3 37.02 1.013 1.38 1.892 23.3 0.554 3.93x10- 14.76 26 0.5 4.02x104
_______ situ BBC ___ ______

CRS1268 Killian Court in- 11.3 37.61 1.032 1.367 1.882 25.8 0.517 .58x1O4 12.35 27.3 0.387 2.21x1O4situ BBC

Table 5-1 List of Constant Rate of Strain (CRS) tests performed on several derivatives of Boston Blue Clay
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Table 5-2 List of Constant Rate of Strain (CRS) tests performed on other soils in testing program
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TX1081 CKoUC MIT02 256 920 1 0.566 0.4 0.28 0.72 0.95 23 11 0.246 0.464 31.96 Natural BBC IV

TX1069 CKt)UC MIT02 256 622 1 0.534 0.35 0.28 0.718 0.99 23.2 10.9 0.252 0.47 32.4 Natural BBC IV

TX1078 CKoUC MITO1 4 523 1 0.52 0.19 0.29 0.75 0.61 23 NA NA Natural BBC IV

TX1074 CKoUC MITOI 4 655 1 0.534 0.26 0.3 0.74 0.68 23.6 11.3 0.233 0.446 31.5 Natural BBC IV

TX1068 CKOUC MITOI 4 452 1 0.23 0.3 0.735 0.63 24.2 8.8 0.252 0.473 32.2 Natural BBC IV

TX1086 CKoUC MIT02 256 584 1 NA 0.18 0.31 0.74 0.665 24.9 9.3 0.265 0.477 33.7 Leached BBC

TX1094 CKOUC MITO1 256 479 1 0.475 0.14 0.319 0.741 0.396 25.5 9.1 0.26 0.494 31.7 Leached BBC

TX1082 CKoUC MITOI 1 485 1 0.519 0.17 0.3 0.762 0.475 23.2 11.4 0.225 0.462 29.2 Leached BBC

TX1084 CKoUC MITOl 1 565 1 0.524 0.196 0.315 0.778 0.41 23.9 10.1 0.232 0.474 29.3 Leached BBC

TX1108 CKoUC MITOI 11.3 1950 1 0.543 0.63 0.293 0.702 0.998 20.6 9.37 0.243 0.461 31.8 Killian Court

TX1091 CKoUC MITOl 11.3 1000 1 NA 0.63 0.294 0.748 0.818 23.1 9.35 0.238 0.472 30.3 Ban Court

TX110 CKoUC MITOI 11.3 1575 1 0.537 0.7 0.308 0.722 1 24.1 NA NA NA NA an Court

- _ - _ __ _ - __ - _ _ _BC
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Soil Type Stress Range cc
(kPa) Value

Killian Court in-situ BBC 1,000 - 10,000 0.285

Natural RBBC Series IV 1,000 - 10,000 0.307

Leached RBBC 1,000 - 10,000 0.294

Sodium Hex BBC 1,000 - 10,000 0.277

Sodium Montmorillonite 1,000 - 10,000 0.38

RGOM - Ursa 1,000 - 10,000 0.316

London Clay 100-1,000 0.52

London Clay 1,000 - 10,000 0.365

Table 5-4 List of cc values for all soils tested in the CRS device
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Figure 5.1 Compression behavior in Ea-lOg' ac space for RBBC Series IV at various pore fluid

salt concentrations
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Figure 5.2 Compression behavior in e-loga'ac space for RBBC Series IV at various pore fluid

salt concentrations
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Figure 5.4 Coefficient of consolidation versus axial effective stress for RBBC Series IV at

various pore fluid salinities
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Figure 5.5 Plot of hydraulic conductivity and coefficient of consolidation data versus stress level

for CRS 1219 (RBBC Series IV @ 16 g/1). Note that changes in behavior for both datasets occur

at same stress levels
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Figure 5.7 Relationship between pore fluid salinity and initial void ratio for RBBC Series IV
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Figure 5.8 Relationship between pore fluid salinity and void ratio at an axial effective stress

(a'a) of 10 MPa for RBBC Series IV
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Figure 5.9 Compression behavior in Ca-logo'a, space for leached BBC at various pore fluid salt
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Figure 5.16 Compression behavior in sa-log'ac space for Killian Court in-situ BBC
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Figure 5.17 Compression behavior in e-loga'ac space for Killian Court in-situ BBC
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Figure 5.20 Compression behavior in Ea-loga'ac space for BBC dispersed with sodium
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Figure 5.21 Compression behavior in e-loga'ac space for BBC dispersed with sodium
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Figure 5.24 Compression behavior in Ea-loga'ac space reverse leaching test performed on
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Figure 5.25 Compression behavior in e-logG'ac space for reverse leaching test performed on
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Figure 5.27 Hydraulic conductivity in void ratio space for reverse leaching test performed on
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Figure 5.30 Compression behavior in e-loga'ac space for reverse leaching test performed on
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Figure 5.42 Compression behavior in ea-logo'ac space for R.London Clay at various pore fluid

salinities
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Figure 5.51 Compression behavior in ca-loga'ac space for RGOM-Ursa
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pore fluid
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Figure 5.57 Compression behavior in e-logo'ac space for sodium montmorillonite with 256 g/1

pore fluid
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Figure 5.58 Hydraulic conductivity in void ratio space for sodium montmorillonite with 256 g/l

pore fluid
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Figure 5.59 Coefficient of consolidation versus axial effective stress for sodium montmorillonite

with 256 g/l pore fluid
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Figure 5.65 Normalized stress-strain curve for NC natural RBBC Series IV at different pore

fluid salinities from CKOUC triaxial tests
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Figure 5.66 Normalized stress-strain curves (small strains) for NC RBBC Series IV at different

pore fluid salinities from CKOUC triaxial tests
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Figure 5.67 Normalized stress-(log) strain curves for NC natural RBBC Series IV from CKOUC
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Figure 5.68 Normalized undrained secant modulus versus axial strain for NC RBBC Series IV at

different pore fluid salinities from CKoUC triaxial tests
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Figure 5.69 Normalized effective stress path for NC natural RBBC Series IV at different pore

fluid salinities from CKOUC triaxial testing
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Figure 5.70 Normalized effective stress path (close up view) for NC natural RBBC Series IV at

different pore fluid salinities from CKOUC triaxial testing
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Figure 5.71 Friction angle versus axial strain for NC RBBC Series IV at different pore fluid

salinities from CKoUC triaxial tests
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Figure 5.73 Normalized shear induced pore pressure versus axial strain for NC natural RBBC

Series IV from CKOUC triaxial tests
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Figure 5.74 A parameter versus axial strain (small strains) for NC RBBC Series IV at different

pore fluid salinities from CKOUC triaxial testing
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CKOUC triaxial testing
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Figure 5.79 Relationship between salinity and friction angle at maximum obliquity for RBBC
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Series IV from CKOUC triaxial testing
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Figure 5.81 Relationship between A parameter at failure and salt concentration for natural

RBBC Series IV from CKOUC testing
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Figure 5.82 Normalized stress-strain curve for NC leached BBC at different pore fluid salinities

from CKOUC triaxial tests
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Figure 5.83 Normalized stress-strain curves (small strains) for NC leached BBC at different pore

fluid salinities from CKOUC triaxial tests
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Figure 5.84 Normalized stress-(log)strain curves for NC leached BBC at different pore fluid

salinities from CKOUC triaxial tests
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Figure 5.85 Normalized undrained secant modulus versus axial strain for NC leached BBC at

different pore fluid salinities from CKOUC triaxial tests
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Figure 5.86 Normalized effective stress path for NC leached BBC at different pore fluid

salinities from CKOUC triaxial testing

308

E
M~

:P.
a'

0

VC
U,

zM



E 0.40 -

-- TX1086 - Leached BBC @ 256 g/
.5 -- TX1094 - Leached BBC @ 256 g/I0.3

TX1082 - Leached BBC @ 1 g/l
TX1084 - Leached BBC @ 1 g/l

0.30 -

0.250,0

z 0.20
0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Normalized Effective Stress, p'Ia'am

Figure 5.87 Normalized effective stress path (close up view) for NC leached BBC at different

pore fluid salinities from CKOUC triaxial testing
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Figure 5.88 Friction angle versus axial strain for NC leached BBC at different pore fluid

salinities from CKOUC triaxial tests
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Figure 5.89 Normalized excess pore pressure versus axial strain for NC leached RBBC from

CKOUC triaxial tests
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Figure 5.90 Normalized shear induced pore pressure versus axial strain for NC leached RBBC

from CKOUC triaxial tests

310

E

cc

0

a-

.

U)

w

0z

0.4

0.3

0.2

0.1

0.0

Ecc
It)

0

.

w

0

z

0.4

0.3

0.2

0.1

0.0
0 5 25



E

CU

3.0

2.5

2.0

1.5

1.0

0.5 -- TX1082 - Leached BBC @ I gl
TX1084 - Leached BBC @ 1 g/l

0.0
0.0 0.5 1.0 1.5 2.0

Axial Strain, Ea (%)

Figure 5.91 A parameter versus axial strain (small strains) for NC leached BBC at different pore

fluid salinities from CKOUC triaxial testing
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Figure 5.92 Relationship between axial strain to failure and salt concentration for natural

leached BBC from CKOUC triaxial testing
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Figure 5.93 Relationship between normalized shear stress and axial strain failure for leached

BBC from CKOUC triaxial testing
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Figure 5.94 Plot of soil brittleness at an axial strain of 10 % as a function of pore fluid salinity

for leached RBBC
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Figure 5.99 Normalized stress-strain curve for NC Killian Court in-situ BBC from CKOUC

triaxial tests

U

U

E
I-

0
z

0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18 ___~

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Axial Strain, ea (%)

Figure 5.100 Normalized stress-strain curves (small strains) for NC Killian Court in-situ BBC

from CKOUC triaxial tests

315



E
'U

zO

0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18

0.16
0.01 0.1 1 10

Axial Strain, ea (%)

Figure 5.101 Normalized stress-strain curves (log strain) for NC Killian Court in-situ BBC from
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Figure 5.102 Normalized undrained secant modulus versus axial strain for NC Killian Court in-
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Figure 5.106 Normalized excess pore pressure versus axial strain for Killian Court in-situ BBC

from CKOUC triaxial tests
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Figure 5.107 Normalized shear induced pore pressure versus axial strain for Killian Court in-situ
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from CKOUC triaxial testing
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Figure 5.116 Friction angle at peak and maximum obliquity versus stress level for NC RBBC

from CKOUC triaxial tests (Abdulhadi, 2009)
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Figure 5.117 Normalized excess pore pressure versus axial strain synthesis plot for all types of

NC BBC from CKOUC triaxial tests
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Figure 5.118 Normalized shear induced pore pressure versus axial strain synthesis plot for all
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6 REVIEW & CONCLUSIONS

6.1 INTRODUCTION

Pore fluid salinities in the Gulf of Mexico region can reach levels of 250 g/l after a soil

has been deposited in a less saline environment. It was uncertain what effect, if any, this increase

in salinity would have on the mechanical behavior of the soils which were subjected to it.

Research in this area was therefore performed in order to determine what changes should be

anticipated. The research involved analyzing a large bank of results obtained from several

experimental procedures as well as images taken of the fabric at different stress and salinity

levels, and drawing conclusions.

6.2 REVIEW OF RESEARCH UNDERTAKEN

The research involved varying the pore fluid salinity of several types of natural soils, as

well as a pure clay mineral in order to determine the resulting effects on the mechanical

behavior. In addition to varying the salinity, the fabric of Boston Blue Clay was also altered in an

attempt to enhance the observed effects. This fabric was altered by leaching some of the natural

salt from the batch of BBC Series IV, and also by deflocculating the existing fabric with sodium

hexametaphosphate. In total, four derivatives of Boston Blue Clay were used in the testing

program. Intact Killian Court BBC was also tested as part of the research in order to provide a

benchmark against which other BBC derivatives would be measured. The majority of the testing

was performed on BBC for this thesis.

Other soils tested include resedimented London Clay, Gulf of Mexico soil from the Ursa

Basin and sodium montmorillonite. London Clay and sodium montmorillonite were

resedimented with different pore fluid salinities ranging from 1-256 g/l. RGOM-Ursa soil was

resedimented with 0 g/l pore fluid (distilled water).

An extensive testing program was undertaken whereby the one dimensional consolidation

behavior of all soils was tested using a modified Constant Rate of Strain (CRS) device. These

tests also produced hydraulic conductivity (ky) and coefficient of consolidation (cv) data for the
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given soils. An analysis was then performed comparing the behavior of all soils given different

pore fluid environments. Triaxial testing (CKoUC) was also performed on three derivatives of

BBC in order to determine the strength characteristics of the soil and how they changed with a

corresponding change in salinity. The soils tested were natural RBBC Series IV, leached RBBC

and Killian Court in-situ material.

Scanning Electron Microscope (SEM) images were taken from several oven dried

specimens in the vertical plane. These images represent different soil types resedimented to

different pore fluid salinities and taken at different stress levels. An extensive analysis was

performed on these images and conclusions were drawn as to how the fabric of the soil evolves

as the stress level changes.

6.3 RESULTS AND CONCLUSIONS

Although the primary focus of this research was based on the effects of pore fluid salinity

on the mechanical behavior of normally consolidated soils, interesting side observations have

been recorded in relation to how the fabric of a given soil evolves as the stress level changes.

6.3.1 OBSERVED EFFECTS ON MECHANICAL PROPERTIES

6.3.1.1 ONE DIMENSIONAL CONSOLIDATION BEHAVIOR

It was shown for natural RBBC Series IV, pore fluid salinity is not a factor when it comes

to the one dimensional consolidation behavior and hydraulic conductivity. Similar strains to a

given axial effective stress are required. Very comparable void ratios are also produced at given

axial effective stress state for all salinities tested. In the pore fluid salinity range 4-256 g/l, very

little change was observed in the behavior of resedimented BBC Series IV. Any change which

was recorded cannot be correlated to the changing salinity. It was noted that at some stress level

for RBBC Series IV, a change in the slope of the hydraulic conductivity line in void ratio space

can be correlated to a change in the coefficient of consolidation value. This behavior was

observed across all salinities and the change was noted at an axial effective stress level of ~

2,000 kPa. It was postulated that this behavior is in fact breaking of reminiscent flocs in the soil

fabric which have begun collapsing, therefore rearranging the soil fabric at the micro level.
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When some of the natural salt was leached from RBBC Series IV and the resultant

powder resedimented to different pore fluid salinities, changes in behavior were recorded. It was

shown that when working with resedimented leached BBC, a larger void ratio was observed for

an increase in pore fluid salinity. The leaching process increased the sensitivity of the resultant

BBC powder to the presence of salt. It was observed in the compression behavior that with an

increase in salinity, an increase in strain was required to a given axial effective stress. Despite the

differences in initial void ratio for the different salinities, all soils tested had similar compression

behavior in void ratio space. In the lower stress region (o'ac = 1,000 kPa), the lower salinity

specimens give a lower void ratio at a given axial effective stress, however, given the more

compressible nature of the high salinity soils, this trend shows signs of reversal at an axial

effective stress of 10,000 kPa. Similar "kinks" to those observed in the natural RBBC Series IV

are seen in the cv and kv data for leached soil, but this time at higher stress levels indicating that

flocs still exist in the matrix after the leaching process.

In an attempt to disperse flocs in the soil, sodium Hexametaphosphate was used on a

quantity of natural BBC Series IV powder. The resultant power was resedimented to a pore fluid

salinity of 0 g/l and then CRS tested. The results show that although the sodium hex BBC is born

of the same "raw materials" as both natural RBBC Series IV and leached RBBC, a much lower

initial void ratio (~20 % lower) is seen. It is further postulated that the difference in load carrying

capacity of sodium hex BBC as opposed to Killian Court in-situ BBC at a given void ratio be

taken as a crude first estimate as to the electro-chemical forces which exist in the soil and aid

stress transfer through the matrix. Sodium hex BBC is the stiffest derivative of all BBC soils

tested with the lowest cc value. This demonstrates that the sodium hex derivative is a more-dense

soil than other BBC types as less of a reduction in void ratio is recorded for a given increase in

axial effective stress. Unlike the prior two RBBC derivatives, the c, and kv curves for sodium

hex do not display the same changes in behavior. The c, curve now resembles what would be

considered a more traditional path with an increase in stress level. Once the preconsolidation

pressure is passed, a gradual and continuous rise in c, is noted throughout the test. This shows

that the cause of the change in behavior at a given stress level for natural RBBC Series IV and

leached RBBC has been eliminated by dispersing the flocs with sodium hex therefore lending

weight to the theory that floc breakage is responsible for changes in c, and kv.
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The effectiveness of the resedimentation procedure was analyzed against tests performed

on intact BBC recovered from the Killian Court area on the MIT campus. The results show that

Killian Court in-situ material requires much less axial strain to a given axial effective stress (up

to 10,000 kPa). This suggests that intact material is stronger and has a greater load carrying

capacity than any derivative of RBBC presented for analysis. Even the sodium hex BBC which

was the densest material tested, required more axial strain to a given stress level than Killian

Court BBC. The void ratios in the normally consolidated region for natural RBBC Series IV and

leached RBBC compare well to those for Killian Court in-situ material up to an axial effective

stress of 10,000 kPa. Given that both natural RBBC Series IV and leached BBC are more

compressible, it is anticipated the behaviors may diverge further from Killian Court in-situ BBC

beyond this stress level. The kv data for three Killian Court BBC tests presented show log-linear

behavior with no visible changes in slope. In a similar fashion to sodium hex BBC, once the

preconsolidation pressure is passed, the c, value rises continually and gradually throughout the

test.

This is the first instance of London Clay being resedimented at MIT. The soils suitability

as a candidate for the resedimentation procedure has been proven. Resedimented London Clay

was tested at three pore fluid salinities in order to gauge its reactivity to changes in salinity. The

results show a weak trend whereby an increase in pore fluid salinity gives a slight increase in

initial void ratio. All three tests presented show different strains to a given stress level, however,

these differences cannot be correlated to a corresponding change in salinity. Log-linear kv data

was recorded for all tests and the c, value shows relatively stable behavior. RLC gives by far the

lowest c, value of all soils tested. It is therefore assumed that; a) either the same floc breaking

mechanism witnessed in RBBC is not occurring; b) high enough stresses have not been achieved

to break any remaining flocs; c) continuous breakage of the flocs is ongoing through the test.

Gulf of Mexico soil recovered from the Ursa Basin was tested to a high axial effective

stress. The soil was only resedimented with one pore fluid derivative of 0 g/l (distilled water).

The slope of the normally consolidated line changes with an increase in stress level. The kv data

displays log-linear behavior up to very high stress levels for all tests, however, a rise in cv is

noted in the data around a stress of 27,000 kPa. It is unclear at this time whether this is due to

structural changes in the soil fabric or some other anomaly.
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Resedimented sodium montmorillonite was successfully tested in the CRS device as part

of this research. Batches with pore fluid salinities of 1 & 256 g/l were prepared for testing and

although good data was obtained from the 256 g/l batch, the 1 g/l soil was unavailable for testing

and inclusion in this thesis due to the amount of time taken to resediment the soil at low

salinities. The 256 g/l batch produced high initial void ratios, the highest of all soils in the testing

program despite the belief that in the presence of 256 g/l pore fluid, particle to particle contact

dominates the fabric makeup. In a similar fashion to other soils, the slope of the normally

consolidated line changes with an increase in stress. This is true in both strain and void ratio

space. Log-linear kv data was obtained, but not over void ratios representing the entire stress

range. The cv value recorded in the normally consolidated stress range drops with an increase in

stress which is in contrast to all other soils tested. Sodium montmorillonite gives the lowest

hydraulic conductivity recorded for this work, however, its cv value is four times greater than the

lowest cv value recorded for London Clay.

Scanning Electron Microscope (SEM) images of different types of BBC were analyzed at

different pore fluid salinities and at various stress levels in tandem with laboratory results in

order to compare the findings. It was shown that not much change in fabric is visible in the stress

range 100-1,000 kPa or with large variations in pore fluid salinity which would support the

theory that flocs in the soil start to break at and axial stress of around 2,000 kPa. A persistent

arrangement of particles can be seen at various stress levels across a number of images analyzed.

It is only when the fabric of the soil is altered in some fashion that changes in particle orientation

and structure are evident. It is thought the complex fabric of BBC provides a "truss" like support

mechanism for the applied stress which will break at a given load.

6.3.1.2 STRENGTH CHARACTERISTICS

Natural RBBC Series IV, leached RBBC and Killian Court in-situ material were tested in

order to determine the effect, if any, the pore fluid salinity would play on the strength of the soil.

For a salinity increase in Natural RBBC Series IV (from 4 & 256 g/1), larger axial strains to

failure are seen, but a lower shear stresses is required to produce this failure. A less brittle soil is

evident at high strains (Fa = 10 %) for high salinity natural RBBC Series IV. A non-linear

decrease in shear strength is seen with an increase in axial strain. A weak trend exists whereby a
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lower friction angle at failure is seen in high salinity soil, however this trend is reversed for the

friction angle at maximum obliquity. The A Parameter at failure for both soils also differs

whereby a lower A Parameter is seen in the lower salinity soil than in the high salinity soil.

The salinities for leached RBBC are slightly different (1 & 256 g/1). Similar strains to

failure are seen for both salinities and no trend is evident in the required stress to produce failure

of the soil. A less brittle soil is evident at high strains (ca = 10 %) for high salinity leached RBBC

in a similar fashion to natural RBBC Series IV, however, the brittleness of both salt

concentrations increases in the leached soil. A non-linear decrease in shear strength is seen with

an increase in axial strain. The trends in the friction angle at failure are now more pronounced. A

higher friction angle at failure is seen in the high salinity soil, and this trend holds true for

maximum obliquity. Higher axial strains are required in the low salinity soils to achieve

maximum obliquity. No trend is apparent in the A Parameter to failure for both salinities.

In a similar fashion to the compression data, the RBBC data was compared to tests run on

Killian Court in-situ material. For intact material, a linear decrease in shear strength is seen with

an increase in axial strain. This is in contrast to the resedimented material. Approximately twice

the axial strain is required to fail Killian Court in-situ material as opposed to both RBBC types.

This indicates a much stronger matrix in the in-situ material than can be replicated in the

resedimentation process. The friction angles at failure are comparable across all material types

and the friction angles at maximum obliquity demonstrate very comparable results. In general,

the A Parameter at failure is closer to unity than most other soils with the exception of natural

RBBC Series IV at 256 g/l which also gives values close to unity.

The resedimented material compares well with the Killian Court in-situ soil in most areas

examined. The main differences between resedimented and intact material from a triaxial testing

point of view are the required strains to failure and the A Parameter at failure.

6.4 RECOMMENDATIONS FOR FUTURE RESEARCH

Given that differences in mechanical behavior can be extracted from a relatively

insensitive soil such as Boston Blue Clay, it is believed that these differences will be amplified
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further when other more reactive soils such as Gulf of Mexico clay are used as the testing

medium.

Throughout the course of this research, just as much of a difference in behavior was seen

between salinities of 0-1 g/l as was observed between 1-256 g/l. It would be of academic interest

to perform a testing program on soils between 0 & 1 g/l with differences in salinities in the range

of orders of magnitude. Although the leached BBC used was run through the centrifuge twice, a

quantity of salt still existed in the matrix. With more and more salt being removed, a greater

reaction to pore fluid salinity will be observed. Leaching of the BBC powder should take place

until no changes in the behavior of cv or kv are noted. Another option is to create several batches

of soil which are all leached a different number of times say 4, 6 & 8 times. These soils can be

then resedimented and tested in order to trace how the structural changes occur in relation to the

degree of leaching. It is anticipated that the peak in the c, value would move to higher stresses as

the amount of leaching increases, this would correspond the "kink" in k, moving to lower void

ratios. Interesting observations could be made in relation to how the flocs control the behavior of

the soil, such as what degree of leaching is required in order for changes in cv & kv to extend

beyond the range of testing, or eliminate them completely.

The observation of floc breakage during testing was an interesting one. It is not yet clear

if this behavior is limited to BBC or will exist in other soil types, and if so, at what stress is floc

breakage mobilized. Reports from other researchers have indicated that the behavior outlined in

this thesis has been observed in soils from other parts of the world. The idea that soils can have a

dual memory is relevant to geologic stress levels only. The stress level at which floc breakage

was recorded for natural RBBC Series IV represents ~100 m burial under hydrostatic conditions.

Soils which undergo much deeper burial than this should be tested to see if similar changes in

behavior are noted as there would be practical implications in terms of changing k, & cv. This

would be relevant to the energy industry as energy reserves often have sediments in the order of

km's overlaying them.

Using sodium Hexametaphosphate to disperse the fabric of a soil, resediment it and then

test it provided and interesting twist to the research. It was proposed that the difference in stress

at a given void ratio between sodium hex BBC and Killian Court in-situ BBC be attributed to the
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electro-chemical forces which have developed in the Killian Court material. This is an interesting

theory which may for the first time give a quantifiable value as to the load carrying capacity of

the electro-chemical bonds in a soil. A possible future standard practice for soils of interest may

include testing in-situ material to identify the compression behavior, process some of this in-situ

material with sodium hex and resediment it. Tests can then be run on the resedimented material

in order to determine the load carrying ability of the soil with no electro-chemical forces present.

The difference in stress at a given void ratio could possibly be taken as the contribution of the

electro-chemical forces in the intact soil. Further research should be conducted on this simple

method in order to ascertain its true value in determining forces other than mechanical ones

which serve to distribute stress through a soil matrix.

A final recommendation would be to revisit one of the testing criterions laid out in the

current ASTM standard on CRS testing (ASTM D4186). The standard requires a pore pressure

ratio of between 3 & 15 % for the test to be considered valid. Given that higher axial effective

stresses are now achievable when testing (up to 40,000 kPa for this research), it is difficult to

fulfill the requirement in the high stress range. Pore pressure ratios of between 1 - 2 % were

normal beyond stress levels of ~ 4,000 kPa for tests run during this research. Pore pressure ratios

as low as 0.0023 % were recorded on some tests while still producing excellent hydraulic

conductivity and coefficient of consolidation information. Perhaps a dual system of pore pressure

ratio requirements could be proposed whereby the required pore pressure ratio up to a certain

effective stress level would be X, and beyond that stress level it would be Y. An alternative

method would be to specify a minimum requirement for pore pressure transducer resolution so

that very small excess base pressures can be accurately measured.
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Figure 1 Pore pressure ratio for natural RBBC Series IV from CRS testing
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Figure 2 Pore pressure ratio for leached RBBC from CRS testing
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Figure 3 Pore pressure ratio for sodium Hexametaphosphate RBBC from CRS testing
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Figure 4 Pore pressure ratio for Killian Court in-situ BBC from CRS testing
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Figure 5 Pore pressure ratio for natural RLC up to 40,000 kPa from CRS testing
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Figure 6 Pore pressure ratio for natural RLC up to 10,000 kPa from CRS testing
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Figure 7 Pore pressure ratio for natural RGOM - Ursa Soil up to 40,000 kPa from CRS testing
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Figure 8 Pore pressure ratio for natural RGOM - Ursa Soil up to 10,000 kPa from CRS testing
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Figure 9 Pore pressure ratio for sodium montmorillonite up to 4,000 kPa from CRS testing
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APPENDIX B

EXAMPLE PHASE RELATION
CALCULATIONS ALLOWING FOR

PORE FLUID SALINITY
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EXAMPLE 1
The following data was taken from CRS1306 - London Clay tested with a pore fluid salinity of
256 g/l.

Initial wet mass

Initial volume

Wet mass of final specimen

Dry mass of final specimen

Specigic gravity of solids

Mass density of water at 20 C

Mass density of 256 g/1 saltwater

22.23 g

12.495 cm3

17.39 g

13.86 g

2.80

0.9982 g/cm3

1.1742 g/cm3

Final water content =
3.54

13.86 x 100 = 25.54 %

(13.86 x 25.54)( 100 )_Final fluid volume 17 - 3.015 cm 3
1.1742

Final mass of Salt ((3.015 x 256)
1000

= 0.7718 g

Final mass of soil grains = 13.86 - 0.7718 = 13.088 g

Volume of soilds =
13.088/ /

0.92 2.80 = 4.6827 cm 3

Initial fluid mass = 22.23 - 13.088 = 9.142 g

9.142
Initial f luid volume = 1.1742 = 7.786 cm 3

(7.786 x 256)-193g
Initial mass of salt = 100 = 1.993 g

Initial water content =
(22.23 - 13.088 - 1.993)

(13.09 + 1.993)
x 100 = 47.40 %

Initial void ratio = (12.495 - 4.6827) = 1.668

(7.786)
Initial degree of saturation (. 6) x 100 = 99.66 %

(12.495 - 4.6827)

Wet density =

Dry density =

22.23
12.495 - 1.779 g/cm3

13.86
12.495

1.109 g/Cm 3
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EXAMPLE 2
The following data was taken from CRS 1331 - Killian Court in-situ material which has a natural
pore fluid salinity of 11.3 g/l.

Initial wet mass

Initial volume

Wet mass of final specimen

Dry mass of final specimen

Specific gravity of solids

Mass density of water at 20 ' C

Mass density of 11.3 g/l saltwater

23.32 g

12.495 cm3

21.33 g

17.04 g

2.78

0.9982 g/cm 3

1.00291 g/cm 3

Final water content =
4.29
1.04 x 100 = 25.17 %

(17.04 x 25.17))

Final f luid volume ( 1009 4.277 cm 3

1.00291

((4.277 x 11.3)
Final mass of Salt = 1000 = 0.0483 g

Final mass of soil grains = 17.04 - 00.0483 = 16.99 g

Volume of soilds =
16.99/.78 = 6.1225 cm 3

Initial fluid mass = 23.32 - 16.99 = 6.33 g

6.33
Initial fluid volume = 1.02 6.3116 cm 3

1.00291

(6.3116 x 11.3)
Initial mass of salt 1000 0.0713 g

Initial water content =
(23.32 - 16.99 - 0.0713)

(16.99 + 0.0713)
x 100 = 36.68 %

(12.495 - 6.1225)
Initial void ratio = 6.1225 = 1.041

6.1225

degre of aturtion (6.3 116)Initial degree of saturation (12.495 - 6 1 2 2 5 )x 100 = 99.04 %

Wet density =

Dry density =

23.32
12.495
17.04

12.495

1.866 g/cm3

1.364 g/cm3
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EXAMPLE 3
Allowance of salt in calculation of Atterberg Limits

Data will be given for 1 determination from the Liquid Limit test via the Fall Cone method:

Pore Fluid Salinity:

Penetration (mm):

Mass Tare & wet soil (g):

Mass Tare & Dry soil (g):

Mass of Tare (g):

Mass of Dry Solids (g):

Mass of Water (g):

Mass of Salt (g):

Volume of Salt (cm 3):

Total Mass of Water (g):

Water Content (%):

256 grams of NaCl per liter of water (g/l)

30/29.8

26.91

21.47

10.62

10.85 (21.47 - 10.85)

5.44 (26.91 - 21.47)

1.393 (5.44 x 0.256)

0.6055 (1.393/2.3)

6.045 (5.44 + 0.6055)

55.7 (6.045/10.85) x 100
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