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I use forward geomechanical modeling to study the mechanical and fluid flow behaviors 

in compressional regions such as fold-and-thrust belts and accretionary wedges. Under 

drained conditions, lateral tectonic loading increases the mean effective stress and 

deviatoric stress and drives the sediments to shear-failure as the sediment approaches the 

deformation front (or trench location). The shear-induced porosity-loss accounts for about 

one third of the total porosity-loss during tectonic loading under drained conditions. There 

are four characteristic stress regions in my model: far-field, transition, critical state wedge, 

and footwall. In the transition zone, the shear-stress ratio varies significantly and the stress 

state changes from uniaxial-strain compression state to critical state. Increasing the basal 

friction coefficient leads to a higher surface slope angle and more porosity loss in the 

footwall whereas increasing the sediment internal strength leads to a lower surface angle 

and more porosity loss in the hanging wall. Fluid flow has a great impact on stress and 

compression in fold-and-thrust belts. My models show that the hanging-wall overpressure 

is greater than the footwall near trench but lower than the footwall overpressure towards 

the inner wedge. The high hanging-wall overpressure near trench is cause by the rapid 

increase of total mean and deviatoric stress. A significant finding is that the high 
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overpressure near trench reduces the vertical effective stress and causes the décollement to 

be weak near the frontal wedge. Low permeability and high convergence rate promote 

overpressure generation and enlarge the overpressure-weakened decollement region. This 

study has broad impacts on the earthquake studies, faults stability analysis, and topics 

associated fluid flow transport in compressional margins.  
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Chapter 1:  Introduction 

1.1 BACKGROUND 

Fold-and-thrust belts develop in the foreland of major orogenic belts (Jordan & 

Grotzinger, 2008). A fold-and-thrust belt is composed of a series of folds and thrust-faults 

that are produced by compressional tectonics (Allaby, 2013). An accretionary wedge (or 

prism) forms at the leading edge of the convergent boundary where the top sediment on 

the subduction plate is scrapped off and appended to the overriding plate (Steele et al., 

2009). The gliding interface between the overriding plate and the subducting plate is called 

the décollement and it separates the intensely deformed overlying rock and the much less 

deformed underlying rock. Because fold-and-thrust belts and accretionary wedges have 

similar structures (folds and faults) and are both formed in compressional tectonic 

environments, mechanisms associated with fold-and-thrust belts can also be applied to 

accretionary wedges.   

The development of a thin-skinned fold-and-thrust belt at convergent plate 

boundaries is analogous to snow piling up in front of a bulldozer (Davis et al., 1983; 

Dahlen, 1990).  Sediment deforms significantly above the décollement and gradually 

forms a wedge-shaped geometry due to a large amount of shortening and thickening 

(Chapple, 1978). In contrast, the sediment below the décollement experiences much less 

deformation. Critical taper theory assumes the entire wedge is at shear failure condition. 

The wedge geometry is controlled by the combined effects of sediment internal friction 
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coefficient, basal friction coefficient, and pore fluid pressure distribution (Dahlen, 1990; 

Dahlen & Suppe, 1988; Davis et al., 1983). 

Lateral tectonic loading alters mean effective stress and deviatoric stress and both 

of them contribute to sediment compression. Conventionally, sediment is assumed to 

deform only in the vertical direction during burial without lateral strain (uniaxial-strain 

compression) (e.g. (Hart et al., 1995; Stigall & Dugan, 2010)). Under this assumption, the 

horizontal effective stress ( ) is assumed to be proportional to the vertical effective stress 

( ) with a constant horizontal-to-vertical effective stress ratio of  ( ).  The 

maximum and minimum principal stress remain vertical and horizontal, respectively. Thus, 

under uniaxial-strain compression, the change of mean effective stress, deviatoric stress, 

and porosity depend only on the change of vertical effective stress. However, the uniaxial-

strain compression assumption does not apply in non-uniaxial deformation regions, such 

as fold-and-thrust belts and salt systems (Hauser et al., 2014; Nikolinakou et al., 2018). In 

a fold-and-thrust belt, tectonic loading increases the lateral stress independent from the 

vertical load. As a result, the horizontal effective stress no longer depends only on the 

vertical effective stress. Sediment that is initially outside the prism has an initial horizontal 

stress that is a fraction of the vertical effective stress. However, as this sediment passes into 

an accretionary prism, the horizontal effective stress increases, becoming equal to, and 

eventually greater, than the vertical effective stress. The increase in horizontal stress 

ultimately leads to an increase in deviatoric (differential) stress and results in shear failure 

when the deviatoric stress reaches the maximum deviatoric stress that the sediment can 
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withstand. The additional increase in mean effective stress and deviatoric stress caused by 

non-uniaxial strain compression results in additional porosity loss compared to uniaxial 

strain compression at equivalent depths (Chapter 2). Poroelastic models (e.g., Wang 

(2017)) can account for volumetric changes caused by the mean effective stress, however 

they do not incorporate porosity loss because of shear-induced compression.  

Critical state soil mechanics (Roscoe & Burland, 1968; Wood, 1990) provides a 

quantitative approach to account for the interrelationship of mean stress, shear stress and  

porosity under complex stress paths. Thus, this method is more appropriate than the 

uniaxial or poroelastic approach to study the compression in fold-and-thrust-belts. Karig 

(1986) first recognized that tectonic loading in fold-and-thrust belts leads to non-uniaxial 

stress paths and he introduced the concept of critical state soil mechanics in fold-and-thrust 

belt studies. More recently, Kitajima et al., (2017) and Flemings & Saffer (2018) applied 

critical state soil mechanics on experimental and field data to estimate material properties, 

stresses and pore pressures in fold-and-thrust belt systems. 

The pore pressure distribution in a fold-and-thrust belt is a result of the tectonic 

loading and fluid drainage processes. Tectonic loading provides the source of overpressure 

generation by increasing the total mean stress and deviatoric stress. The fluid drainage 

process depends on the drainage length, permeability, and compressibility. Long drainage 

path, low permeability, and high compressibility will limit the fluid drainage thus preserve 

high overpressure. When the fluid cannot be expelled from the pores efficiently during 

tectonic loading, part of the tectonic load is supported by the pore fluid, causing 
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overpressure; the rest of the load is supported by the sediment matrix, increasing effective 

stresses and decreasing porosity. 

The mechanical and hydrological properties of the sediment in fold-and-thrust belts 

significantly impact the fault strength, slip behavior, and are closely related to earthquake 

ruptures and tsunamis (Scholz, 2002; Saffer & Tobin, 2011). Thus, it is crucial to 

understand how stress and fluid flow evolve in fold-and-thrust belts. Several approaches 

have been developed to investigate the deformation, stresses and pore pressure in fold-and-

thrust belts. A few commonly used approaches are listed below with their capabilities and 

limitations:  

 Critical taper theory provides an analytical model based on force balance to 

understand the interrelationship between wedge geometry, basal friction, material 

strength, and pore pressure. (Davis et al., 1983).  However, critical taper theory 

cannot address the sediment compression behavior nor the pore pressure variation, 

because it assumes constant sediment density and a constant pore pressure ratio 

(pore pressure is proportional to overburden stress) throughout the wedge. In 

addition, critical taper theory does not address the footwall mechanics.  

 The steady state flow model (e.g (Saffer & Bekins, 2002)) is able to predict the pore 

pressure variation given a prescribed porosity distribution and a relationship 

between porosity and permeability. However, the sediment porosity in this model 

is not coupled to stress. As a result, the steady state flow model cannot predict the 

change of porosity and permeability caused by tectonic loading.  
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  Kinematics models (e.g. (Morgan & Karig, 1995)) can estimate the magnitude and 

orientation of principal strains in different locations of a fold-and-thrust belt. 

Morgan (1994) uses the seismic profile and available porosity distribution to 

constrain the strain field in a deformed regime. However this type of model does 

not predict stresses or pore pressures.  

None of these traditional models can reveal the coupled behavior of stress, strain, porosity, 

and pore pressure in fold-and-thrust belts.  

Transient evolutionary geomechanical models provide a way to explore how 

stresses, porosity, and pore pressure change as the sediment deforms. Transient 

evolutionary models have been applied in anticlines, faults, and salt systems (Crook et al., 

2006; Heidari et al., 2016; Nikolinakou et al., 2018). Recently, they have been applied to 

study fold-and-thrust belts. For example, Rowe et al. (2012) use a transient evolutionary 

model to simulate the stress and deformation of the frontal thrust in Nankai accretionary 

wedge. Obradors-Prats et al. (2017) simulate the Borne fold-and-thrust belt. These 

published models limit the displacement in the hanging-wall to only a few kilometers. In 

addition, they prescribe the initial wedge geometry; as a result, they cannot capture how 

stress and porosity change with time from the onset of tectonic loading to shear failure. 

Finally, none of the existing models incorporates the role of shear stress on porosity loss 

and pore pressure generation.   

The purpose of my dissertation is to study the poro-mechanical behavior of 

sediments in fold-and-thrust belts using large-strain forward geomechanical models 
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(Figure 1.1). I describe the sediments using the SR3 material model  (Rockfield, 2017). 

SR3 is a poro-elastoplastic formulation from the critical sate soil mechanics family of 

models (Wood, 1990). This material model is able to take into account the effect of shear 

on compression, hence, to couple sediment porosity loss with the full stress tensor. I capture 

the evolution and distribution of stress, strain, porosity, and pore pressure in fold-and-thrust 

belts systems. I also study the impact of sediment internal friction, basal friction, rock 

permeability, and convergence rate on stress and compression.   

The major findings of my study are as follows: 

 Hanging-wall sediment has a much higher mean effective stress and 

deviatoric stress than the footwall and this stress contrast results in a sudden 

porosity change at the décollement.   

 Shear induced porosity loss accounts for about 35% of total porosity loss 

during tectonic loading in drained conditions. The fraction of shear-induced 

compression is even higher for the compression under transient conditions. 

 Near the trench, hanging-wall overpressure is greater than footwall 

overpressure because of high mean and shear stresses. 

 High overpressure generated by tectonic loading significantly reduces the 

basal friction resistance and leads to weak décollement conditions. 

 Low permeability and fast convergence rate further reduce the basal friction 

resistance and broaden the region of weak décollement    

 The coupled model suggests the persistence of a low friction zone along the 
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décollement near the wedge tip.  

 

 

Figure 1.1: Overpressure distribution from one of the transient geomechanical models in 
my work 

1.2 THIS DISSERTATION 
In Chapter 2, I built a drained geomechanical model to examine the mechanical 

behavior and the evolution of sediment porosity and strength in fold-and-thrust belts. I 

explain that the observation of porosity offset at the décollement is due to the fact that both 

mean effective stress and deviatoric stress in the hanging-wall are much greater than in the 

footwall. I quantify that shear stress accounts for about 35% of the total porosity loss during 

tectonic loading. I find a transition zone in which the stress ratios and compression curves 

vary rapidly from uniaxial to their critical state values. I investigate the impact of basal 

friction and sediment internal strength on both hanging-wall and footwall. High basal 

frictional resistance results in higher porosity loss in the footwall but it does not impact the 

hanging-wall porosity. High sediment internal strength results in higher porosity loss in the 
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hanging-wall but it has little impact on the footwall porosity. Finally, I demonstrate how 

the strain ellipse evolves as a sediment is consumed into the critical wedge.   

In Chapter 3, I built coupled geomechanical models to investigate the interaction 

of mechanical and fluid-flow behavior in a fold-and-thrust belt. Because I model sediments 

with a critical state formulation, porosity, stress, and pore pressure are interrelated to each 

other. The fluid flow is simulated by Darcy’s law and the permeability is updated as a 

function of porosity. I find the hanging-wall overpressure is greater than the footwall 

overpressure near trench whereas lower than the footwall overpressure toward the inner 

wedge. The great hanging-wall overpressure near trench is caused by the rapid increase of 

total mean stress and deviatoric stress. This high overpressure, both within the hanging and 

in the footwall sediments results in less porosity loss compared to fully drained conditions. 

Subsequently, the porosity offset at the décollement is less pronounced.  

In Chapter 4, I focus on studying the hydro-mechanical conditions along the 

décollement and its implications on slip behavior and earthquake events. I find that lateral 

tectonic loading causes rapid change of stresses and overpressure near the trench. Both 

total mean stress and deviatoric stress contribute to overpressure generation. The rapid 

increase of overpressure reduces the normal effective stress at the frontal wedge and thus 

decreases the frictional resistance at the décollement. A higher convergence rate or lower 

permeability further reduce the décollement frictional resistance and cause a broader zone 

of weak décollement. These results suggest that the highly overpressured wedges are more 

prone to develop aseismic slip. 
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1.3 FUTURE RESEARCH 
This study provides the ground work for further research. Here, I propose three 

potential future advancements.  

My first suggestion is to simulate faults in fold-and-thrust belt models. Faults are 

commonly found in these systems and significantly impact the stress states and fluid flow 

field. The current model suggests that the wedge has reached shear failure but does not 

simulate the formation of individual faults.  

My second suggestion is to assign high permeability in the décollement zone. In 

the field, the fractured décollement zone may have a much higher permeability than the 

sediment above and below it. The current models only consider the permeability change 

due to sediment compression (porosity loss).  

Another suggestion is to include interbedded sand layers into the models. Sandstone 

strata is commonly found in fold-and-thrust belt and it has very different rock strength and 

permeability properties compared to mudrocks. Incorporating sand layers into the 

geomechanical modeling will help us understand how stronger and more permeable layers 

can influence the stresses, fluid flow, and structure styles in fold-and-thrust belts.  
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Chapter 2:  Mechanics of Fold-and-Thrust Belts Based on 
Geomechanical Modeling 

ABSTRACT 

We use a large strain geomechanical model and critical state soil mechanics to study the 

evolution of stress and deformation in an evolving fold-and-thrust belt and its underlying 

footwall sediments. Both mean effective stress and deviatoric stress contribute to porosity 

loss within the wedge with 35% of the porosity loss resulting from increased shear. As a 

result, porosity increases abruptly across the décollement because both mean-effective and 

shear stresses are much higher inside the wedge than in the footwall. As the basal friction 

coefficient (μୠ) increases, more shear stress is transmitted across the décollement, resulting 

in additional compaction of the footwall sediment and decrease in the porosity contrast 

across the décollement. As the internal friction coefficient (μୱሻ  increases, the wedge 

sediment is more compacted because it can withstand higher mean-effective and deviatoric 

stresses. Inside the wedge, the sediment experiences sub-horizontal shortening strain and 

sub-vertical elongation strain. We predict a 10-30-km-wide “transition zone” in which the 

shear-stress ratios and compaction curves change rapidly between compressional critical 

state failure and uniaxial strain (K଴) state. Our model results agree with the taper angles 

and the stress orientations predicted by critical taper theory. This large-strain drained 

modeling approach provides first order insights into the mechanical processes of loading 

and compaction in fold-and-thrust belts and a foundation for understanding field 

observations of pressure, stress, and deformation in thrust belt systems.  

  











































2.3.3.1 Impact of Basal Friction Coefficient  



2.3.3.2 Impact of Sediment Internal Friction Coefficient  
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