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ABSTRACT 

Compaction models simulate the rapid deposition of low permeability sediments in the 

Ursa Region and account for the significant overpressure in the Ursa Region of the Gulf 

of Mexico. The models indicate that overpressure developed in the last 30 ky during the 

rapid deposition of low permeability clays and muds 1000 mbsf and above. The models 

also illustrate the flow focusing effect of the wedge geometry of the Ursa sediments and 

suggest that the sandy Blue Unit acts as a permeable conduit for lateral flow.  
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Chapter 1 
 

Preface 

This thesis contains two chapters and two appendices. Chapter 2 discusses one-

dimensional modeling of sediment accumulation and consolidation in the upper 1000 

mbsf of the Ursa Region in the Gulf of Mexico. A numerical model is implemented to 

gain insight to the development of overpressure. The model is compared to two analytical 

solutions to test its validity before applying the model to the Ursa Region. A brief 

description of the geology and structure of the Ursa Region is included and the derivation 

of constants and variables used in the simulation is also presented.  

Chapter 3 describes the modeling results of 1- and 2-dimensional models of the 

Ursa Region using the numerical modeling application, Stellar™. This application makes 

use of seismic-based stratigraphic interpretations of the depositional history and 

illustrates how integrated modeling can provide additional validation of the depositional 

framework proposed by seismic stratigraphy. The modeling results predict the location 

and magnitude of overpressure development in the Ursa Region. 

The appendices present a more detailed description of the derivation and 

implementation of the finite-difference solution and matrix inversion of the diffusion 

equation used in the numerical model. Additionally, the Matlab® code used in the 

numerical model is presented as a reference. 
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Chapter 2 
 

1-D Compaction flow modeling of Ursa Region 

2.1 Abstract 

 Results from one-dimensional compaction models underpredict the estimated 

overpressure from the Integrated Ocean Drilling Program (IODP) Expedition 308 drill 

sites in the Ursa Region. The numerical models are used to illustrate how the regional 

overpressure is tied to the initial conditions of deposition, and more specifically, to 

porosity and permeability profiles of the sediments deposited. The forward models are 

implemented using a finite-difference approximation to the diffusion equation. They are 

tested by comparison with two analytical models, a diffusion solution by Turcotte and 

Schubert (2002) and the Gibson (1958) sedimentation model. The models are then 

populated with parameters to simulate the conditions in the Ursa Region. 
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2.2 Introduction 

Compaction modeling focuses on fluid behavior as sediments compact and has 

been studied extensively by civil and structural engineers, hydrogeologists, and industry 

geologists. Gibson (1958) provided an analytical solution that coupled sedimentation and 

flow in one dimension. Subsequent authors have explored numerical models to extend 

this work to two and three dimensions (Bredehoeft and Hanshaw, 1968; Bethke, 1985; 

Bethke and Corbet, 1988; Palciauskas and Domenico, 1989; Audet and Fowler, 1992; 

Fowler and Yang, 1998; Gordon and Flemings, 1998; Chen et al., 2002). Additionally, 

models seeking to quantify the effects of sediment loading versus alternative pressure 

generation sources, such as thermal effects and mineral diagenesis have indicated that 

sediment loading is the dominant source of overpressure where sedimentation is rapid 

(Bethke, 1986; Harrison and Summa, 1991; Luo and Vasseur, 1992; Gordon and 

Flemings, 1998).  

 The petroleum industry uses compaction models to predict pressure and reduce 

drilling risks. This study uses a numerical model developed in Matlab® (the Matlab® 

model) as a tool to characterize an overpressured system and documents the utility of the 

tool for enhancing the geological understanding obtained from regional seismic and 

boreholes drilled in the Ursa Region by the Integrated Ocean Drilling Program (IODP) 

Expedition 308.  The study focuses on  the depth of onset of pressure in excess of 

hydrostatic pressure or overpressure, and attempts to identify the source and timing of 

overpressure generation in the Ursa region.  
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2.3 Compaction Model 

The compaction model describes the behavior of pore fluids in a saturated column 

of sediment (Figure 2-1). Under hydrostatic conditions, fluid pressure, P, follows a 

pressure gradient with depth of approximately 9.5 kPa/m (0.45 psi/ft). Pore pressures can 

lie above hydrostatic pressure and this is termed overpressure, P* (Figure 2-2). The 

vertical effective stress, σv’, is the difference between the overburden stress and the fluid 

pressure in the pores.  

Hydrostatic effective stress, σv’h, is the difference between the overburden stress 

and hydrostatic pressure, Ph, 

An overpressure ratio, λ*, gives the ratio of overpressure to hydrostatic effective 

stress and is a measure of how closely the overpressure approches the overburden stress. 

λ* varies from 0 (when P = Ph) to 1 (when P = σv). Low values of λ* record completely 

drained systems, while high values indicate an undrained system. Values very close to 1 

indicate that the fluid pressure is very close to the overburden stress and imply that the 

pore fluids are bearing all the load. An overpressure ratio of 0 indicates that there is no 

overpressure, or that the fluid pressure is hydrostatic.  

   

Pvv −=σσ ' . (2.1)

hvhv P−= σσ ' . (2.2)

hv

h

P
PP

−
−

=
σ

λ* . (2.3)
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Figure 2-1  

 

 

Figure 2-1:  A saturated sediment column is modeled with 5 layers above an impervious
base layer. Lateral no-flow boundaries restrict flow to the vertical direction.
Sedimentation drives compaction, and overpressure may develop if pore fluids are unable
to drain. Depth below the seafloor (Z) is measured to the top of the impermeable layer
and layer thickness is tracked as the column compacts. 
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Figure 2-2  

 

 
Figure 2-2:  A pressure-depth plot shows how fluid pressure, P, may vary between 
hydrostatic pressure, Ph, and overburden stress, σv. Fluid pressure is discussed in terms of 
overpressure, P*, or pressure in excess of hydrostatic. The load that the rock matrix bears
is called the effective stress, σv’. Effective stress divided by the hydrostatic effective
stress (σv’h) gives the overpressure ratio, λ*. Depth, Z, is measured from the sea floor. 
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The compaction model used here is based on the form of the diffusion equation as 

derived by Gordon and Flemings (1998):  

The first term on the right hand side models pressure diffusion. The controlling 

parameters for pressure diffusion are permeability (k), fluid viscosity (μ), and porosity 

(φη). St is a storage coefficient dependent on porosity and matrix compressibility (β). g is 

acceleration due to gravity, and ρf is fluid density.   

 The second term on the right hand side of Equation 2.4 is a source term due to 

sediment loading. This term is primarily controlled by the sedimentation rate. Additional 

source terms for thermal effects and diagenesis are ignored here.  

 The diffusive term and source terms are uncoupled and solved separately at each 

time step. The diffusive term is rewritten using a finite-difference approximation. The 

subscripts x, x-1 and x+1 indicate cell number and subscripts x+1, x or x, x-1 denotes that 

an average (harmonic) is used to represent the boundary between 2 adjacent cells. 

(Asterisk denoting overpressure is omitted for simplicity in equation below).  

Dt
D

StD
PD

gSt
k

Dt
DP v

f

σ
φ

φ
β

ηρμ
φ
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*22
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Equation 2.6 is solved by matrix inversion. All calculations and results are presented as at 

the grid cell centers. Details of the finite-difference implementation are presented in 

Appendix A.  

 Initial porosity, φ0, grain density, ρs, fluid density, ρf, viscosity, μ, and matrix 

compressibility, β, were assumed constant throughout the simulation (Table 2-1).  

 

Table 2-1  

 

2.4 Matlab® model Validation 

The numerical solution was validated using two analytical 1-D solutions: Turcotte 

and Schubert’s (2002) diffusion of heat through a finite column and Gibson’s (1958) 

sedimentation model. 

Table 2-1:  Simulation Constants 

Parameter Symbol Value (units) 

Fluid density ρf 1024 (kg/m3) 

Grain Density ρs 2720 (kg/m3) 

Gravitational acceleration g 9.81 (m/s2) 

Reference porosity φ0 0.61 (m3/m3) 

Matrix compressibility β 1.48 x 10-7 (Pa -1) 

Viscosity μ 1 (cp) 
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2.4.1 Diffusion within a sediment column (Turcotte and Schubert, 2002) 

Turcotte and Schubert’s analytical solution describes the diffusion of heat due to 

an imposed temperature change at one boundary through a sediment column of finite 

thickness (Figure 2-3). Their solution is equally applicable to the diffusion of 

overpressure, since the base equation (shown below) is mathematically equivalent.  

At the base of a sediment column, a constant overpressure is assumed, and overpressure 

diffuses to the surface. Mathematically, these boundary conditions are expressed as:  

(i) P* = 0 at all x, for t = 0-, 

(ii) P* = P*2 at x = Z for t >0+,  and  

(iii) P* = 0 at x = 0 for t >0+.  

Turcotte and Schubert’s (2002) solution is expressed as:   

(The asterisk is omitted for simplicity.) The subscript, x, indicates location. Diffusivity, 

K, is calculated as follows: 
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Figure 2-3  

  

  

 
Figure 2-3:  A column that is initially at zero overpressure experiences an instantaneous
and constant increase in overpressure at the base. The base overpressure (P2) diffuses 
through the column over time. The overpressure profile at time, T, can be calculated
using an analytical solution (Adapted from Turcotte and Schubert, 2002). 

x x x 
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Note that the analytical solution requires a constant diffusivity (K). The model 

assumes that strain is minor. 

 The Matlab® model is tested using 3 different values of diffusivity, which are 

calculated by varying permeability while values of porosity, viscosity and matrix 

compressibility from Table 2-1 are used. Initially, overpressure is zero throughout the 

column. At t = 0, an overpressure of 6 MPa is prescribed at the base and held constant. 

Results are obtained after a period of 80 ky.  

 The numerical solution in Matlab® slightly overpredicts the analytical solution. 

Percentage error in the Matlab® model is calculated using the difference between the 

analytical solution and the numerical model, relative to the analytical solution.  

 The average error between the Matlab® model and analytical solution is less than 

15 %. The Matlab® model performed best with low permeability runs, where the average 

error was less than 7 % of the analytical solution. The percentage error was greatest at 

points farthest from the prescribed overpressure boundary at the base. Figure 2-4 shows 

comparison overpressure profiles after a time of 80 ky has elapsed with the different 

diffusivities indicated.  
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Figure 2-4  
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Figure 2-4:  Comparison of analytical solution with a Matlab® model of the diffusion of a 
6 MPa overpressure imposed and held constant at the base of a sediment column that has 
no overpressure initially. Profile is shown for results after 80 ky, with 1200 m of
accumulated sediment. Diffusivity values for different runs are indicated on the graph.
Model inputs are described in Section 2.4.1. 
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2.4.2 Gibson (1958) sedimentation model 

 The Gibson sedimentation model tracks the pressure of fluid within a saturated 

column of low permeability sediment that receives additional sedimentation at the surface 

(Figure 2-1). The Gibson equation solves:    

x is depth within the sediment column and h is the total height of the sediment column at 

any time. Boundary conditions for this model are: 

(i) P* = 0   at x = 0, and 

(ii) dP*/dx = 0  at x = Z.  

Gibson’s analytical solution for these boundary conditions is:  

ρb is bulk density,  m is sedimentation rate, and t is time. Gibson’s coefficients, cv and γ’, 

are modified below to match the Gordon and Flemings’ formulation. Gibson assumes that 

diffusivity (cv) is constant.  

dt
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Results are plotted in units of dimensionless overpressure and dimensionless depth for  

several different ‘time factors’. Dimensionless overpressure, Pd, is the ratio of 

overpressure to the hydrostatic effective stress. This is equivalent to λ*. 

Dimensionless depth, Dd, is a ratio of column height, x, to final column height, Z.  

The time factor, tf, is a dimensionless ratio of sedimentation rate (m) to system 

compressibility (cv): 

A larger time factor represents a sedimentation rate that exceeds the ability of the 

sediments to drain. Large time factors occur with rapid sedimentation or low permeability 

sediments.  

 For all time factors, the Matlab® model gives slightly larger overpressures than 

the Gibson formulation (Figure 2-5). Percentage error in the Matlab® model is calculated 

using the difference between Gibson and numerical model, relative to the Gibson result. 

The percentage error is calculated at specific depth points, and an average error as well as 

the maximum error is recorded.  

 The percentage error varies from less than 2 % to 48 % difference between the 

two models (Table 2-2). The largest errors were recorded near the base of the sediment 

column. When very small time factors ( tf < 0.1 ) are modeled, simulation results for both 

h
PPd '

*
γ

= . (2.13)

Z
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tmtf
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models are hydrostatic. Generally, closest agreement between the models occurs with 

large time factors. 

 

 

Table 2-2:  Percentage error between Matlab® model and Gibson solution for different 
time factors. Error is calculated relative to the Gibson result. 

 
      Time factor  Average Error  Max. Error 
          0.025                    4 %      23 % 
          0.25        44 %      48 % 
          2.5        21 %      22 % 
          25        2 %       4 % 
          250        1.6 %      3 % 
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Figure 2-5  

 

Figure 2-5:  Comparison of Gibson solution and Matlab® model show disparity on a 
dimensionless overpressure – dimensionless depth plot. Dimensionless overpressure is
overpressure divided by lithostatic stress and dimensionless length is depth at any point
divided by total column depth. Labels show the time factor, a ratio of sedimentation rate
to system compressibility. Model inputs are described in Section 2.4.2. 
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2.5 Ursa Region Geology 

The Ursa Region is located 200 km southeast of New Orleans on the continental 

slope of the Gulf of Mexico (Figure 2-6).  It is a salt-withdrawal mini-basin in 800-1400 

meters of water, with sediments derived from late Pleistocene deposition by the 

Mississippi River system. The seafloor dips to the southeast and a zone of slope failures 

is present to the east of the Mars-Ursa region (Figure 2-6). This study focuses on the 

shallow sections of Ursa Region above 1000 meters below seafloor (mbsf), over an area 

of approximately 900 square kilometers (Figure 2-7). This depth interval includes the 

thick sandy package, called the Blue Unit, and the sediments that overlie it (Figure 2-8). 

A summary of Ursa basin geology follows but the basin is well described in the following 

papers: Eaton (1999); Winker and Booth (2000); Winker and Shipp (2002); Expedition 

308 scientists (2005); Sawyer et al. (in press). We adopt their naming convention for 

major sediment packages. 

The Blue Unit is a unit of interbedded sand and mud which extends over 150 km 

(Figure 2-9). It is thickest in the western part of the study area and thins to the east. The 

base of the Blue Unit is flat while the top reflects post-depositional erosion. It is incised 

by two channel levee systems, the Ursa Canyon and the Southwest Pass Canyon. The 

Southwest Pass Canyon lies to the west of the Ursa Canyon and is younger. These 

systems have mud rich levees with sandy channel fill (Figure 2-10). They cut through the 

Blue Unit in an approximately north-south orientation.  

Above the channel levee systems, several mass transport complexes (MTCs) are 

observed in seismic data. These mass transport complexes are identified in this study as 
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Failure 1 and Failure 2 and are highlighted on the interpreted seismic cross-section. These 

are capped by 50-100 meters of hemipelagic drape. 

The Ursa Region system is of particular interest as an overpressured system, 

which has been extensively mapped and drilled. Overpressure at Ursa is attributed to 

rapid deposition of the shallow sediments during the late Pleistocene. Average 

sedimentation rate for Ursa was calculated to be 0.015 m/yr using age data from three 

surfaces at Ursa (Sawyer et al, in press).  The presence of the foraminifera Globorotalia 

flexuosa at the Base Blue puts this datum at approximately 70 thousand years ago (kya) 

(Sawyer et al, in press; Winker and Booth, 2000). Seismic surface S60 is dated to be 

approximately 60 kya, while surface S30 is dated at 25 kya. 

Overpressure is present within 50 mbsf and approaches 70 % of the hydrostatic 

effective stress (Expedition 308 Scientists, 2005). This overpressure distribution has 

made drilling through the Blue Unit difficult and costly (Eaton, 1999). This study seeks 

to further characterize the overpressure field of the Ursa Basin by multi-dimensional 

modeling to identify the extent and impact of connectivity of the Blue Unit sands on 

overpressure, and identify potential bypass zones for safer drilling. 
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Figure 2-6  

Figure 2-6:  A: Base map showing Gulf of Mexico bathymetry and location of Ursa Region. B: Close up of Ursa
Region showing the Mississippi Canyon and a submarine slope failure (From Sawyer et al, in press). 
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Figure 2-7  

 

Figure 2-7:  Ursa region study area, with survey limits (red lines), reference well 810-3, 
location of IODP drill sites U1324 and U324, and seismic cross-section A-A’ indicated 
(From Expedition 308 Scientists, 2005). 
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Figure 2-8  

 

 
Figure 2-8:  Seismic cross-section of Ursa Region showing interpreted sediment facies
and major packages simulated in consolidation model. The 1-D Ursa model approximates 
a vertical section along U1324 (From Expedition 308 Scientists, 2005). 
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Figure 2-9  

Figure 2-9:  A representative well-log showing the gamma-ray (GR) and resistivity (RES) 
profiles with depth at Well 810-3 in the Ursa Region. The Blue Unit is identified by a
significant decrease in the GR and resistivity logs and shows layers of interbedded sand
and shales  (From Sawyer et al, in press). 
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 Figure 2-10  

 

Figure 2-10: Well log from Site U1324 showing gamma ray, resistivity and porosity data
for the 600 m of sediment above the Blue Unit at Ursa. A lithology key and seismic line 
is shown to identify key units (From Expedition 308 Scientists, 2005). 
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Figure 2-11  

 
Figure 2-11:  Well log from Site U1322 showing gamma ray, resistivity and porosity data
for the 240 m of sediment above the Blue Unit at Ursa. An interpreted section of a
seismic line is shown to identify key units (From Expedition 308 Scientists, 2005). 
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2.6 1-D Simulation parameters and Results  

Two one-dimensional models of the Ursa Region are constructed as representative 

vertical sections based on the seismic cross-section and wells U1324 (Figure 2-10) and 

U1322 (Figure 2-11). The sections consist of four major litho-stratigraphic layers: base 

shale, Blue Unit, Subunit I and Subunit II. Subunit I (0 – 340 mbsf at Site U1324) is 

characterized by predominantly mud with some evidence of mass transport deposits. 

Subunit II is composed of interbedded silt, sand and mud with more frequent traces of 

mass transport deposits. This lithofacies describes the sediments from 340 mbsf to the top 

of the Blue Unit at Site U1324.  

Simulation constants such as fluid density, viscosity and acceleration due to 

gravity were listed in Table 2-1. An average grain density of 2.72 g/cc was calculated 

from the grain density measured at Site U1324.   

Layer thicknesses were defined based on the depths measured at Site U1324 

(Figure 2-12) and Site U1322 (Figure 2-13). For layers not penetrated by the IODP well, 

layer thicknesses were estimated from seismic data. The base shale was assigned a 

thickness of 150 m, which corresponds to 10 ky of sediments accumulating at the 

sedimentation rate of 0.015 m/yr. As an initial test boundary condition, the base of the 

model was defined as a no-flow boundary. Fluid flow is laterally restricted in the model 

by imposing no-flow boundaries on the sides.  

Approximate ages for the base of the Blue Unit (70 kya), surface S60 (60 kya) 

and surface S30 (25 kya), given in the IODP preliminary report, were used to calculate 
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the sedimentation rates required to produce the existing sediment thicknesses (Table 2-3). 

The rates are based on the assumption that no significant erosion or compaction occurred. 

Total simulation time was 80 ky to include deposition of the shale layer below the Blue 

Unit. 
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Table 2-3: The Ursa Region models are comprised of multiple layers with varying 
thicknesses, sedimentation rates and timing of deposition. 

Site U1324 

Layer Thickness Sedimentation Rate Timing of deposition

Subunit I :    

Seafloor to S20 100 m 0.007 m/yr 0 – 15 kya 

S20 – S30 60 m 0.006 m/yr 15 – 25 kya 

S30 – S40 180 m 0.014 m/yr 25 – 38 kya 

Subunit II :    

S40 – S60 300 m 0.014 m/yr 38 – 60 kya 

S60 – S80 30 m 0.006 m/yr 60 – 65 kya 

Blue Unit 150 m 0.015 m/yr 60 –70 kya 

Base Shale 150 m 0.015 m/yr 70 – 80 kya 

Site U1322 

Layer Thickness Sedimentation Rate Timing of deposition

Subunit I :    

Seafloor to S20 90 m 0.006 m/yr 0 – 15 kya 

S20 – S30 40 m 0.004 m/yr 15 – 25 kya 

S30 – S40 20 m 0.002 m/yr 25 – 38 kya 

Subunit II :    

S40 – S60 90 m 0.004 m/yr 38 – 60 kya 

S60 – S80 10 m 0.002 m/yr 60 – 65 kya 

Blue Unit 150 m 0.015 m/yr 60 – 70 kya 

Base Shale 150 m 0.015 m/yr 70 – 80 kya 
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Figure 2-12  

 

 

Seafloor    

Figure 2-12:  A 1-D version of the Ursa Region at Site U1324 is simulated by modeling 
layers identified from seismic and well-log ties. The seismic surfaces are identified and 
age dates are given as appropriate. The representative lithofacies used to model the layers 
are identified at left.  Flow is laterally restricted and a no-flow boundary is imposed at the 
base. 
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Figure 2-13  

 

 
  

Figure 2-13: A 1-D version of the Ursa Region at Site U1322 is simulated by modeling 
layers identified from seismic and well-log ties. The seismic surfaces are identified and 
age dates are given as appropriate. The representative lithofacies used to model the layers 
are identified at left.  Flow is laterally restricted and a no-flow boundary is imposed at the 
base. 
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2.6.1 Porosity-Effective Stress Relationship  

 To determine a porosity-effective stress relationship for the Ursa Region, data 

from IODP Expedition 308 well U1324 was used. Porosity was determined from 

moisture and density testing on 10 cc core plugs (Expedition 308 Scientists, 2005). Bulk 

density was measured at Site U1324 using a wireline logging tool. The overburden stress 

is calculated by integration of the bulk density log. The shallow section (35 – 105 mbsf) 

is assumed to be hydrostatically pressured and the (hydrostatic) effective stress is 

calculated by subtracting hydrostatic pressure from the overburden stress. Following the 

method of Hart et al (1995), a plot of log porosity against hydrostatic effective stress is 

used to constrain the values of initial porosity and bulk compressibility (Figure 2-14).  A 

least squares regression is used to determine the equation that best fits the data. The slope 

of the line provides the bulk compressibility, while the intercept gives the value of initial 

porosity. By this method, we obtain a bulk compressibility value of 1.48 x 10-7 Pa-1, and 

an initial porosity value of 0.61. 
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Figure 2-14  

 

Figure 2-14: Least squares fit of effective stress versus log porosity of sediments in the
shallow (35 – 105 mbsf) hydrostatically pressured region of U1324 is used to determine
sediment properties.  The slope of the line provides the estimate of matrix compressibility, 
and intercept gives initial porosity for the Ursa Region. 

0.5 0.55 0.60

0

100

200

300

400

500

600

700

(phi)

E
ffe

ct
iv

e 
S

tre
ss

 (k
P

a)
Regression

data
Regression

phi = 0.61 exp(1.48 x 10-7 sigv)



32 

 

2.6.2 Permeability Models 

 The lithology and permeability of the Ursa Basin was characterized using 

representative permeability-porosity functions for the lithological layers defined from 

seismic and core descriptions. Consolidation experiments on saturated core samples from 

several depths at Site U1324 were performed to determine the relationship between 

hydraulic conductivity and porosity for the Ursa sediments (Long, 2006). These 

relationships are listed in Table 2-4. Hydraulic conductivity, Ks, is calculated as the 

intrinsic permeability of the sediments divided by the dynamic viscosity of the fluid. 

The relationships between hydraulic conductivity and porosity were used to determine 

representative porosity-permeability relationships for the Ursa Region sediments. These 

relationships were used to approximate Subunit I and Subunit II lithofacies (Figure 2-15). 

The base shale layer was modeled using the Subunit I function. 

 For the Blue Unit, a permeability function derived by Flemings et al. (2001) for 

the Bullwinkle sands was adopted. This permeability relationship, given below, applies 

when permeability is measured in darcies. (A conversion factor of 1 mD = 9.869 x 10-16 

m2 is used). 

  

 

μ
kK s = . (2.16)

Log k = 10.8φ- 0.7. (2.17)
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Table 2-4:  Hydraulic conductivity relationships determined from consolidation
experiments on Ursa sediments at different depths from Site U1324 (Long, 2006). 

Core Depth 

(mbsf) 

Stratigraphic 

layer 

Hydraulic Conductivity 

Function 
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Figure 2-15  
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Figure 2-15: Permeability functions used in the simulation of Ursa Region sediments in 
Subunit I (purple line) and Subunit II (orange line) are shown on a semi-log plot. The 
functions are derived from data from consolidation experiments on 2 Ursa core samples –
CRS003 and CRS006 (Long, 2006) shown using symbols. The Blue Unit (blue line) is 
simulated using a permeability function developed for the Bullwinkle sand (Flemings et
al., 2001). 
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2.6.3 Results 

 The model reports onset of overpressure within 50 mbsf. This shallow 

overpressure overpredicts IODP estimates above 200 mbsf. Above this depth, the IODP 

predicts hydrostatic pressures. Between 200 – 400 mbsf, overpressures closely approach 

the IODP estimates and give a good match to the data in the upper 400 mbsf. Below 400 

mbsf, the Matlab® model predicts only 80% of the overpressure estimated by the IODP 

(Figure 2-16).  

 Change in the gradient of the overpressure is closely matched to the boundaries of 

the lithofacies which are identified on the porosity and permeability plots on the right of 

Figure 2-16. Overburden stress predicted by the Matlab® model slightly underpredicts the 

IODP data. This indicates that the solid fraction deposited in this simulation is less than 

that observed at Site 1324.  
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 Figure 2-16  

Figure 2-16:  Overpressure and reduced lithostatic stress predicted using the Matlab model (dotted
lines) underpredict the IODP estimates (solid lines) for Site U1324. The permeability profile used in 
the simulation is shown on the right, and lithology layers are labeled. 
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2.7 Discussion 

 Comparison with analytical solutions  

 Two analytical solutions are compared with the numerical 1-D consolidation 

model. Close agreement with Turcotte and Schubert’s analytical solution of the diffusion 

equation indicates that the diffusive component is correctly discretized. However, the 

solutions are not identical as the Matlab® model allows for build-up of strain, which is 

not accounted for in the analytical solution. The Matlab® model converged on the 

analytical solution during low permeability simulations, or when there is the least amount 

of strain.  

 In the comparison with the Gibson consolidation solution, the Matlab® model 

showed the best agreement with large time factors. Large time factors occur with fast 

sedimentation rates and/or with low permeability sediments. This is an encouraging result 

as the Gibson model was developed for consolidation of low permeability clays, or low-

strain simulations. In the Gibson solution, bulk density and compressibility are specified 

constant over the simulation period, while the bulk density is allowed to vary with 

overpressure in the numerical model. Additionally, the Gibson solution is based on 

compaction of clays over a very small depth range or small change in effective stress. 

The model domain and parameter values for the Matlab® model can be significantly 

larger with depths of several kilometers and large variations in effective stress.  

 The Gibson solution, due to its constant permeability and compressibility 

requirement, cannot accurately model rapid consolidation in shallow submarine 
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sediments, as in the Ursa Region. At these depths and large effective stress ranges, a 

Matlab® model is required to simulate the complexities of sub-sea consolidation, where 

large strain accumulates. 

 

 Ursa simulation results 

 The Ursa simulation produced overpressures that closely approached the IODP 

data in the uppermost 400 mbsf. However, this model overpredicted the overpressures in 

the shallow region above 200 mbsf. At depths below 400 mbsf, the model underpredicted 

the IODP estimates, particularly at the depth of the Subunit II layer. This may indicate 

that the sedimentation rates for this layer are too slow. The interpreted seismic cross-

section suggests that this layer experienced significant post-depositional erosion. Some 

correction, to factor in the effect of higher sedimentation and later erosion, may be 

necessary to improve the overpressure prediction for this layer.  

 An alternative source of error may be that the permeability function used does not 

adequately reflect the permeability of the sediments. The simulation was run with single 

permeability functions over layers several hundred meters thick. Permeability was also 

assumed to be isotropic. The sediments may be less permeable or more simply, less 

connected laterally due to erosion. To improve the predictive ability of the 1-D model, 

alternative permeability profiles may need to be considered. Additional testing with 

multiple permeability functions and varying degrees of anisotropy may produce more 

accurate pressure profiles.  

 With multiple layers and multiple permeability functions, averaging techniques 

have been used to approximate the layering effect of mixed lithologies. The averaging 
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methods control the weighting of individual constituent permeabilities as well as the 

degree of anisotropy in the mixed layer. Empirical testing, in other models involving 

shale sediments with small sand percentages, provides support for the use of horizontal 

geometrical averaging of end member permeabilities. In the vertical direction, harmonic 

averaging is used to represent the decreased diffusivity of such mixtures (Fogg, 1986; 

Harrison and Summa, 1991).  

 Additional boundary conditions can also be considered. A no-flow boundary 

condition was imposed at the base in both 1-D models and this may not be a true 

reflection of the flow conditions in the Ursa sediments. High overpressure at Ursa 

suggests a regional aquifer may drive flow through the system and feed overpressure, 

particularly in the Blue Unit. Additional runs with alternative overpressure boundary 

conditions may improve the match between simulation results and IODP data and provide 

support for the regional aquifer model.  
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Chapter 3 
 

Multi-dimensional Compaction flow modeling of Ursa Region 

3.1 Abstract 

Compaction results from the Stellar™ model and the Matlab® model of the 

previous chapter agree closely. However, one- and two-dimensional Ursa simulation 

results using Stellar™ overpredict the pressure estimates from the Integrated Ocean 

Drilling Program (IOPD) Expedition 308 at shallow depths (< 200 mbsf). The Stellar™ 

models show close agreement with the IODP data only at depths greater 200 mbsf. At 

shallower depths, the Stellar™ models predict significant overpressure where IODP 

overpressure estimates hydrostatic pressure conditions. The two-dimensional models 

show that the overpressure decreases from west to east and fluid flow is focused within 

the Blue Unit sands. Extractions of overpressure at different times show that the most 

significant overpressure is generated in the last 30 kya, while the Subunit I lithofacies is 

deposited. 
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3.2 Introduction 

The Stellar™ numerical model is a proprietary finite-difference model that solves 

the diffusion equation in three dimensions. The model solves the partial differential 

equation describing fluid flow and compaction as described in Chen et al (2002).   

 In the equation above, us is velocity of the compacting medium and q is the source 

or sink term. 

 The basin model is built with geometric layers defined by height, width and 

length or, by finite surfaces derived from surface and isopach maps. These layers and 

surfaces are assigned lithological properties such as permeability, porosity and 

anisotropy.  Porosity and permeability can be defined as constants, or expressed as 

exponential functions. 

Porosity is calculated as an effective stress dependent function. 

The permeability function is a modified form of the Carman-Koseny function:  

The values of k0 are specified according to constant permeabilities defined in the previous 

chapter. Values of m and n are determined using curve matching to produce permeability 

relationships that approximate the functions given in Chapter 2 (Figure 3-1) and are listed 
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in Table 3-1. The Carman-Kozeny functions agree closely with the exponential functions 

for porosity values above 35% for Subunit II and above 45% for Subunit I. This is within 

the range of measured porosity (40 – 61 %) for Ursa sediments above 1000 mbsf. These 

porosity values are low for shallow sediments, but are the experimentally determined 

porosity values from the regression in Figure 2-14 .   
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Figure 3-1  
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Figure 3-1: Plot showing the match between Stellar™ permeability functions (symbols)
and the exponential functions (solid lines) from Figure 2-15 used in the Matlab® model 
of Chapter 2. The permeability functions show good agreement for porosities higher than
35 % for Subunit II (Stellar II) and higher than 40 % for Subunit I (Stellar I).  Stellar
Sand models the permeability function used to represent the Blue Unit. 
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Table 3-1  

 

 Although the onset and duration of deposition is specified in the model, the 

geometry of the present day sediment column is also defined. This present-day geometry, 

in terms of layer thicknesses, is used to verify model results. The forward model 

estimates the amount of sediment deposited during the simulation. If the predicted final 

layer thicknesses conflict with the present-day geometry, the model is repeated varying 

the amount of sediment deposited until the error in layer thickness is less than 1 %.  

The Stellar™ model can be used to characterize and simulate basins in 1-, 2- and 

3-dimensional runs. The model is compared with the Matlab® model of Chapter 2 for 

verification, and then to overpressure estimates from the IODP Expedition 308. The 

intent is to simulate the Ursa Region in order to define the flow regime and pore 

pressures in multiple dimensions.  

To validate the Stellar™ model, simple 1-D models are run to compare the 

simulation output with the Matlab® model. A single Carman-Koseny type permeability 

function is used in all the layers. The function is adjusted by varying the initial 

permeability (k0) values in Equation 3.3. The k0 values used are: 4.818 x 10-18 m2 (0.005 

md) and 4.818 x 10-15 m2 (4.88 md). The latter is the representative shale permeability in 

the Ursa simulation, while the former simulates relatively impermeable sediment. Initial 

Table 3-1: Permeability exponents used in Stellar function 

Layer m exponent n exponent 
Subunit I 11 10 
Subunit II 11 10 
Blue Unit 2 3 
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porosity (φ0) is 0.61 in both simulations. Values for m and n used in this test are 4 and 5 

respectively. The simulations are allowed to run for 80 ky with a constant sedimentation 

rate of 0.015 m/yr.  

Simulation results between the Stellar™ and the Matlab® model agree (Figure 3-

2), although there is a difference in the overall thickness of sediment deposited. Note that 

all the Stellar™ results show the same end thickness of sediment deposited (900 m). In 

the Matlab® model, however, the total sediment column is shorter (or more compacted) in 

the higher permeability run. The converse is true for the lower permeability run.  

For the shale permeability simulations (k0 = 4.88 mD), both models show a near 

hydrostatic condition in the upper 200 mbsf, with a gradual increase in overpressure with 

depth. For the low permeability (k0 = 0.005 mD) runs, the simulations again agree. The 

overpressure generated is very close to the reduced overburden stress, and the 

overpressure begins within 50 mbsf. 
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Figure 3-2  
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Figure 3-2: Stellar™ models are run using a single Carman-Kozeny type permeability 
function in all layers and compared with the Matlab® model. The functions are modified 
by changing the initial permeability (k0) values, which are labeled on the graphs. Stellar 
results (red *’s) agree with the Matlab® model (blue dots) for both permeability tests. 
Model inputs are described in Section 3.2. 

k0 = 4.88 mD k0 = 0.005 mD 
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3.3 1-D Ursa model 

The 1-D consolidation model is built of 7 layers with thicknesses as prescribed in 

Figure 2-12 for Site U1324 and Figure 2-13 for Site U1322. The depositional ages of the 

layers as defined in Table 2-3. Lithofacies are defined using the Carman-Kozeny 

adaptations of the permeability functions presented in Chapter 2 and shown graphically in 

Figure 3-1. The simulation is run for 80 ky. 

Lateral boundaries and the base of the sediment column are set to be no flow 

boundaries. As lithology is laterally uniform, the flow field is vertical only. Pressure 

results are presented at grid cell centers. 

3.3.1 Results 

 The Stellar™ 1-D model of Site U1324 produces overpressures that overpredict 

the overpressure estimates from the IODP data in the uppermost 150 mbsf. The model 

diverges from the hydrostatic and predicts significant overpressure within 100 mbsf 

(Figure 3-3). The IODP estimates indicate a hydrostatic condition to 150 mbsf. At depths 

greater than 200 mbsf, the model agrees with the IODP estimates and even underpredicts 

the estimates at depths below 500 mbsf. The Blue Unit is predicted to be moderately 

overpressured with an overpressure ratio (λ*) of 30 %.  

 At Site U1322, the Stellar™ 1-D model again overpredicts the overpressure 

estimates from the IODP data. In the uppermost 150 mbsf, the model predicts a moderate 
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overpressure where the IODP data shows hydrostatic pressures (Figure 3-4). Onset of 

overpressure is predicted again within 50 mbsf, which is almost 100 m above the IODP 

onset point. At depths greater than 200 mbsf, the model agrees with the IODP estimates.  
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Figure 3-3  
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Figure 3-3: Simulation results from the Stellar™ 1-D model of Site U1324 using 
permeability functions (1D-24 = blue dashed line) overpredicts the IODP overpressure
estimates (IODP = red solid line) for layers above 400 mbsf. Lithology layers are labeled
on the permeability and porosity plots on the right. Inputs are described in Section 3.3. 
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Figure 3-4  
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Figure 3-4:  Simulation results from the Stellar™ 1-D model of Site U1322 (1D-22 = 
blue dashed line) show significant overpressure development after 80 ky of
sedimentation. The model overpredicts the IODP overpressure estimates (IODP = red
solid line) above 175 mbsf. Permeability and porosity are shown at right, with lithofacies 
labeled. Inputs are described in Section 3.3. 
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3.4 2-D Ursa model 

 This model is built from a geometric adaptation of the seismic cross-section, 

which illustrates the wedge shaped nature of the Ursa Region deposits (Figure 3-5). 

Isopachs showing the lateral variation in the east-west direction are constructed for each 

layer. Thicknesses are pegged to the observed layer thicknesses from Site U1324 and Site 

U1322. Elsewhere in the section, layer thicknesses are estimated from the seismic cross-

section. These isopachs are assigned the same depositional history as the constant 

thickness layers defined in Table 2-3. Lithofacies are defined using the Carman-Kozeny 

adaptaptions of the permeability functions defined in Chapter 2 and presented graphically 

in Figure 3-1. The simulation is run for a total of 80 ky. 

 Boundaries are closed at the base and the sides. The only open flow boundary is at 

the surface. Therefore, flow is constrained to the east-west and vertical directions only. 

The objective is to identify whether fluid flow is being driven towards the toe of the 

wedge as predicted by flow focusing models (Dugan and Flemings, 2000; Lupa, 2002; 

Flemings et al, 2002).  

 Overpressure, effective stress and overpressure ratio results are presented as 2-D 

cross-sections for the region highlighted by the red box in Figure 3-5. Additionally, 1-D 

equivalent extractions were made for Sites U1324 and Site U1322 and are compared with 

the IODP estimates. These results are also compared to the previous 1-D model results. 

All results are presented at the grid cell centers.  
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Figure 3-5  
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Figure 3-5: Simplified cross-section of the Ursa region is used in the Stellar 2-D model. Key seismic surfaces and age dates
are highlighted. Colors identify the lithofacies used in the simulation, where brown is Subunit I, orange is Subunit II and blue
is the Blue Unit. Results from the 2-D model are shown for the region highlighted by the red box. Extractions for Sites U1324
and U1322 are taken at the location of the solid black lines. 
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3.4.1 Results 

 Overpressures from the 2-D Stellar simulation decrease from west to east, and 

from the base towards the surface (Figure 3-6). The pressure gradient is most significant 

in the shale below the Blue Unit (third and fourth layers from the base) and in the 

Southwest Pass Canyon sediments (seventh and eighth layers from the base). The 

pressure gradient in the Ursa sediments drives fluid toward the east where the sediment 

package thins. The variation in overpressure above and below the Blue Unit is also likely 

to drive fluids into the Blue Unit, where the higher permeability sands allow for high 

flow velocities.  

 Effective stress also decreases from west to east in accordance with the thinning 

of the sediment package (Figure 3-7). The highest effective stress is observed at the 

western end of the Blue Unit layers (third and fourth layers from the base), which is an 

indication that the overpressures are low in this location. This is also evident in the 

overpressure ratio (λ*) cross-section, which records low λ* values in the Blue Unit 

(Figure 3-8). The maximum λ* equal to 0.90 occurs in the toe of the wedge to the east of 

Site U1322. The base shale, bottom two layers, also shows an elevated λ* of 0.80. The 

base shale also has the lowest permeability of the section (Figure 3-9). The Blue Unit has 

the highest permeability and is shown in red.  

 Extracted 1-D results from Site U1324 for the permeability-function model 

indicate that the overpressure again overpredicts the IODP estimates at depths above 150 

mbsf (Figure 3-10). As in the 1-D model, the overpressure is similar to the IODP 
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estimates at depths between 200 – 500 mbsf. Below 500 mbsf, the model underpredicts 

the IODP estimates. The 2-D model results are nearly identical to the 1-D models at site 

U1324 (Figure 3-11).  

 Extracted results at Site U1322 show overpressures that again overpredict the 

IODP estimates (Figure 3-12). This result is much higher than the IODP estimates 

throughout the sediment column. The overpressures from this 2-D extraction are also 

higher than that of the 1-D model of Site U1322 (Figure 3-13).  The largest increase in 

overpressure is observed in the Blue Unit layers and above. This higher overpressure in 

the 2-D model may be evidence of flow towards Site U1322. 

 Figure 3-14 and Figure 3-15 show the change in overpressure as the layers are 

deposited in time. Significant overpressures begin to be generated in the last 30 ky when 

Subunit I lithofacies is deposited (Figure 3-15). The largest overpressures are seen in the 

present day in the basal shale layers (bottom two layers). Comparison of extractions from 

the 2-D model at Site U1324 for the present day and 40 kya indicate that little 

overpressure was maintained in the sediments above the Base Shale at that time 

(Figure 3-16).  
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Figure 3-6  

 

 

 

Figure 3-6: Overpressure (in psi) from the Stellar 2-D simulation is shown in cross-section after 80 ky of simulation. Overpressure decreases 
from left to right and from base of column to sea floor. The location of the Blue Unit (third and fourth layers from the base) is highlighted.
Cell boundaries are shown in black. Model inputs are described in Section 3.4. 

1 km 

0.3  

Blue Unit 



 

 

56

Figure 3-7  

 

Figure 3-7: Effective stress (in psi) from the Stellar 2-D simulation is shown in cross-section after 80 ky of simulation. Effective stress is 
largest in the Blue Unit sand layer (third and fourth layers up from base) which sustains the least overpressures. Effective stress decreases to
the right as the total sediment package thins. Model inputs are described in Section 3.4. 
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Figure 3-8  

Figure 3-8: Overpressure ratio from the Stellar 2-D simulation is shown in cross-section after 80 ky of simulation. The location of the Blue 
Unit (third and fourth layers from the base) is highlighted. The highest overpressure ratio (90%) is observed in the toe of the wedge to the
east of Site U1322. The base shale (bottom 2 layers below the Blue Unit) also shows an elevated overpressure ratio of 80%. Model inputs
are described in Section 3.4. 
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Figure 3-9  

Figure 3-9: Permeability from the Stellar 2-D simulation is shown in cross-section after 80 ky of simulation. The highest permeability is
observed in the Blue Unit (third and fourth layers from the base). Model inputs are described in Section 3.4. 
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Figure 3-10  
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Figure 3-10: Overpressures from the Stellar™ 2-D simulation using permeability 
functions (2D-24 = blue dashed line) extracted at the simulated Site U1324 show more
overpressure generation than the IODP estimates (IODP = red solid line). However,
reduced overburden stress predictions (blue dashed line) agree closely. Permeability and 
porosity are shown at right. Model inputs are described in Section 3.4. 
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Figure 3-11  
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Figure 3-11: Results from Figure 3-3 are overlain with results from Figure 3-10. The 1-D 
simulation of Site U1324 (1D-24 = blue dots) predicts the same overpressure as does the
2-D simulation (2D-24 = green asterisks). Both models overpredict the IODP estimates 
(IODP = red solid line). Permeability and porosity are shown at right. Model inputs are 
described in Section 3.4. 
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 Figure 3-12  
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Figure 3-12: Stellar™ 2-D overpressures using permeability functions extracted slightly
to the west of the simulated Site U1322 (2D-22 = blue asterisks) overpredict the IODP 
estimates (IODP = red solid line). Permeability and porosity are shown at right, with
lithofacies labeled. Model inputs are described in Section 3.4. 
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Figure 3-13 
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Figure 3-13: Results from Figure 3-4 are overlain with the results from Figure 3-12. The 
2-D extraction of slightly to the west of Site U1322 (2D-22 - green asterisks) predicts 
higher overpressure than the 1-D simulation (1D-22 - blue dots). Both models overpredict 
the IODP estimates (IODP - red solid line). Permeability and porosity are shown at right
with lithofacies labeled. Model inputs are described in Section 3.4. 
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Figure 3-14  

Figure 3-14: Results from the permeability function model show the development of overpressure (in psi) from 10 kya to
present day. The location of the Blue Unit (third and fourth layers from the base in each cross-section) is highlighted.   
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Figure 3-15 

Figure 3-15: Results from the permeability function model show the development of overpressure (in psi) from 50 kya to 30
kya. Significant overpressure in the base shale (bottom two layers) is sustained from 30 kya. The location of the Blue Unit
(third and fourth layers from the base in each cross-section) is highlighted. Model inputs are described in Section 3.4. 
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Figure 3-16 
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Figure 3-16: A 1-D extraction at Site U1324 from 40 kya (left graph) is compared to the 
present day (right graph). Overpressure (blue asterisks) is only sustained in the base shale
which is at 600 mbsf compared to the present day depth of 900 mbsf. Reduced
overburden stress (green line) is shown for reference. 
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3.5 Sensitivity Testing 

To determine the uniqueness of the Ursa modeling results, additional testing using 

slight modifications of permeability was done. The magnitude of the initial permeability 

(k0) was changed by 2-3 orders of magnitude from that used in the Ursa modeling 

simulation. The depositional history was not changed.  

This test showed that the magnitude of the overpressure was strongly dependent 

on the permeability structure. For permeability 3 orders of magnitude higher than Ursa 

sediments (k0 x 103), no overpressure is maintained in the column and a hydrostatic result 

is observed, except in the basal shale layers. For permeability 2 orders of magnitude 

lower than Ursa (k0 x 10-2), overpressure is elevated and is equivalent to the reduced 

overburden stress at the top of the sediment column (Figure 3-17).  

To simulate the influence of a regional aquifer, constant pressure boundaries were 

imposed on the western face of the Blue Unit. Pressure was imposed as a fraction of the 

overburden stress and was maintained for the duration of the simulation once the Blue 

Unit was deposited (65 kya to present). Results are shown extracted from Site U1324 

with 30 % and 60 % of the overburden stress imposed (Figure 3-18). When a 30 % 

pressure boundary was imposed, the overpressure result was identical to the Ursa 

simulation with no boundary condition imposed (Figure 3-10). With a 60 % pressure 

boundary imposed, overpressure was increased most significantly in the Blue Unit sands. 

The overpressure ratio in the sands increased from 30 % to nearly 50 %. There was little 

impact elsewhere in the sediment column.   
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These results are highlighted in the cross-section of overpressure in Figure 3-19. 

Due to the constant pressure gradient at the western end of the Blue Unit, there is an 

overpressure gradient within the Blue Unit sands. Overpresssure declines from west to 

east within the sands. This differs from the simulation in Section 3-4 where there was no 

boundary condition and the Blue Unit sands were at a constant overpressure (Figure 3-6). 

Effective stress is still largest within the Blue Unit (Figure 3-20). However, as the fluid 

pressure has increased in the sands, the effective stress decreased, relative to the result 

presented in Figure 3-7.  
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Figure 3-17  
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Figure 3-17: Overpressures are shown for model runs with initial permeability adjusted
by 3 orders of magnitude higher (k x 103 = green dots) and 2 orders of magnitude lower 
(k x 10-2 = red asterisks). Results are compared with the Ursa Region model (Ursa = blue
squares) of Figure 3-10. All results are extracted at simulated Site U1324. Permeability
and porosity are shown on the right, with lithofacies labeled. Model inputs are described 
in Section 3.5. 
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Figure 3-18 

 

0 2 4 6 8

x 106

0

100

200

300

400

500

600

700

800

900

Overpressure (Pa)

D
ep

th
 s

ub
m

ud
 (m

)

Ursa

60%

30%

Overpressure (psi)
0 200 400 600 800

-20 -10 0

0

100

200

300

400

500

600

700

800

900

Log(k) - m2
0.4 0.6

0

100

200

300

400

500

600

700

800

900

Porosity

 
Figure 3-18: Overpressures are shown for model runs with constant pressure boundaries 
at 30 % (red dots) and 60% (green asterisks) of the overburden stress imposed on the
western face of the Blue Unit. Results are compared with the Ursa Region model with
closed boundary conditions (blue squares).  Extractions are from simulated Site U1324. 
Permeability and porosity are shown on right with lithofacies labeled. Model inputs are
described in Section 3.5. 
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Figure 3-19  

Figure 3-19:  Overpressure (in psi) is shown in cross-section when a 60 % constant pressure boundary is imposed on the western face of the
Blue Unit (third and fourth layers from the base). Compared to Figure 3-6, this boundary condition has caused a significant pressure
gradient within the Blue Unit. Cell boundaries are shown in black. Model inputs are described in Section 3.5. 
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Figure 3-20  

Figure 3-20: Effective stress (in psi) is shown in cross-section when a 60 % constant pressure boundary is imposed on the western face of
the Blue Unit (third and fourth layers from the base). Compared to Figure 3-7, this boundary condition has caused a decline in the effective
stress at the western end of the Blue Unit. Cell boundaries are shown in black. Model inputs are described in Section 3.5. 
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3.6 Discussion  

Comparison of 1-D Stellar™ models with the Matlab® model of the previous 

chapter show very close agreement in the pressure signature of the simulations. The 

Stellar™ models slightly underpredict the numerical model, and show the closest 

agreement with low permeability simulations.  

Results from the Ursa simulations performed with Stellar™ consistently 

overpredict the IODP overpressure estimates at shallow depths, but show good agreement 

within the sediment column. Simulation results do show a marked decrease in 

overpressure in the region from the west to the east. This pressure variation corresponds 

to an overall thinning of the sediment package. Additionally, comparison of 1-D and 2-D 

extractions indicates that there is increased overpressure at Site U1322, which may be an 

indication of lateral fluid flow towards this site. This result supports the hypothesis that 

the geometry of the sediments at Ursa result in focused flow towards the toe of the 

wedge. 

Observation of the changes in overpressure with time show that significant 

overpressure is accumulated during the last 30 ky, during the deposition of the Subunit I 

lithofacies. This facies is of low permeability and was rapidly deposited, restricting fluid 

flow out of the Ursa Region. 

Additional testing with variable permeabilities indicated that the overpressures are 

strongly dependent on the pressure functions used. For permeabilities higher than those 
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calculated for Ursa, little to no overpressure is developed. Permeabilities 100 times lower 

than the Ursa permeabilities result in overpressures that equal the reduced overburden 

stress at shallow depths. This latter result indicates that slope failure is likely to occur 

with rapid loading of such low permeability sediments. 

Testing with boundary conditions to simulate an aquifer driving flow from the 

west showed very small overall impact on the overpressure of the overall sediment 

column. Only within the Blue Unit, where the pressure boundary was imposed, was there 

a significant increase in overpressure. This result suggests that the overpressure is 

retained within the sands and transferred laterally, rather than dissipating upwards 

through the sediment column. The overpressure gradient within the sands is additional 

evidence that fluid flow is likely to be significant within the sands. Thus a regional 

aquifer may explain why the overpressure is maintained within the sands, though it is not 

necessary to explain the overall overpressure of the Ursa Region. 

In order to improve the model accuracy, the following may be considered: 

(a) gridding and resolution – as with all numerical models, higher resolution or 

smaller grid cells produce more accurate results at the cost of computational 

efficiency. It may be useful to revisit the models with higher resolution to 

confirm that the low overpressures generated are not a result of numerical 

inaccuracy. The resolution of the model is limited by the resolution of the 

seismic data used to build the grids. 

(b) statistical variation – the current model assumes homogenous lithology layers that 

are well connected laterally and vertically. A more realistic model may be 

constructed that includes statistical variation of the lithology, particularly in 
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terms of anisotropy. Additionally, a lithology map can be built to simulate 

random facies variation in the Ursa region. An improved model that relies on 

variation of seismic parameters may provide useful lithology maps. 



75 

 

3.7  Summary 

Numerical models of sediment compaction illustrate that rapid sedimentation of 

low permeability sediments contribute to the high overpressure observed in the Ursa 

Region. Overpressure was generated during the last 30 kya, when deposition of the low 

permeability mud and clay comprising Subunit I occurred. The wedge geometry of the 

slope sediments caused a gradient in sedimentation rates across the region. Sedimentation 

rates at Site U1324 were 3 times much higher than those at Site U1322. Fluid pressures 

are elevated where the sedimentation rate was high and deposits are consequently thick. 

This gradient in fluid pressures continues to drive fluids towards the toe of the wedge.  

Considering the shallow onset and the magnitude of overpressure at Ursa, a 

regional aquifer is a likely source to drive fluid into the sands and maintain the high 

overpressure signature. This theory was tested by implementing different boundary 

conditions to simulate an aquifer and found to add overpressure only in the Blue Unit 

layer. Additional compartments within the Blue Unit may also obstruct flow and allow 

pockets of overpressure to develop. Modeling with non-homogeneous layers can test the 

theory of compartmentalized overpressure.  

Other non-mechanical pressure sources, such as thermal maturation and 

diagenesis, are not believed to produce the significant overpressures observed at Ursa, 

given the rapid sedimentation rates and compaction history. Nonetheless, they may 

contribute to overpressure at depth and help to maintain the near surface overpressure 



76 

 

observed in this study. Additional study to greater depths and including these additional 

sources may provide greater insight to the pressure and flow system at Ursa.  
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Appendix A 
 

Implementation of Model Equation and Finite-difference Approximation 

Implementation of Model Equation  

 A conversion to compacted coordinates is used to simplify node tracking as 

element size changes due to compaction through time (Gordon and Flemings, 1998). This 

methodology also avoids calculation and tracking of large strains generated during 

compaction of sediments. In compacted coordinates, each element has the same number 

of grains and has no porosity. Spatial coordinates (dz) are mapped to the compacted 

coordinates (dη): 

 Porosity in the first element is initially assumed to be equivalent to the surface 

porosity. This value is projected to the midpoint of the element, and a corresponding 

element thickness, dz, value is determined. The porosity and spatial coordinates are 

tracked to determine the change in overburden stress due to this element, which is 

calculated using the bulk density equation: 
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φ

ddz
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 The change in overburden, dσv, calculated from Equation A.3 is summed over the 

column to determine the total overburden, σv, at that depth.  

The new value of σv is then used to determine porosity using the empirical porosity 

function defined by Hart et al. (1995): 

β is the matrix compressibility of the system, and Pf is the fluid pressure. Matrix 

compressibility is determined from consolidation experiments performed on cores from 

the Ursa Region and is assumed constant throughout the simulation. Fluid pressures are 

assumed hydrostatic at time of initial deposition. 

 By this iterative process, values of z, σv and φ are mapped from the compacted 

coordinates to spatial coordinates. Once a porosity profile is calculated, overpressure is 

calculated using the diffusion equation: 

In our numerical simulation, we assume that the rate of change of fluid pressure is 

equivalent to rate of change of overpressure. This holds true for any system where the 

fluid is approximately incompressible, as with water filled pores.  
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Finite-difference approximation 

 

The numerical model is an implicit finite-difference solution of the diffustion 

equation with a central difference approximation in space:  

Subscripts x, x+1 and x-1 refer to particular elements. As each element has a unique 

permeability (k), porosity (φ), and storage coefficient (St), average values must be 

calculated to evaluate flow between elements. From Darcy’s law, the expression for flux 

is:   

Noting that at the interface, the flux for each element must be equivalent, and 

setting expressions for flux in each element equal, we obtain:  

 This result dictates that the harmonic mean of the values above and below the 

interface drives flow across that interface. The harmonic mean of the diffusivity for 

elements x and x+1 is calculated as: 
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Solving the Finite-difference Equation 

 The initial condition and top boundary condition are fixed with zero overpressure. 

The base boundary condition is modelled as a no flow boundary. The finite-difference 

formulation for this basal condition is: 

Expressed as a matrix for a 5-node system as an example, the solution matrix for a 

system with a constant pressure at the top and no-flow boundary at the base is written: 

   The matrix is solved by inversion. 
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Appendix B 
 

1-D Consolidation Code 

consolidateplus.m 

%function consolidateplus(rhof, rhos, g, beta, b, dt, T, dn, n, N, eta0, phi0, m, H, bulk0, k) 
% Louanne Christopher - consolidateplus.m 
% Determine pressure and overpressure in compacted and spatial  
% coordinate system using implicit finite-difference methods 
% Calls compact.m, compact2.m, solve3.m as subroutines 
% 
% Base equation from Gordon and Flemings (1998) 
% May 30, 2006 
 
%clear all 
 
% get code constants 
[rhof, rhos, g, beta, b, dt, T, dn, n, N, eta0, phi0, m, H, bulk0, k] = values; 
 
 
% uncomment lines below to run testing simulations 
% testing analytical solution 
%eta = linspace(0, 1200, 11); n = 11; N = n; dn = 120; m = 0; H = 0; 
%[row, x] = full_analytical; 
% testing Gibson solution 
%[Pstar_gib, lambda_gib, lit_gib, x_gib, Pstar_dim, x_dim] = gibson_dim;  
 
overP = zeros(T/dt,T/dt); press = zeros(T/dt,T/dt); lith = zeros(T/dt,T/dt);  
pore = zeros(T/dt,T/dt); zdepth = zeros(T/dt,T/dt); 
 
for t = 1:T 
   t 
   if t == 1 
    % use initial eta field to generate initial z, phi, and pressure field 
    % set initial overpressure field;  
    Pstar(1:n) = 0; 
    % generate porosity and sv table for time step 1 
    [eta, dz, phi, sv] = compact(dn, n, phi0, eta0, beta, Pstar, rhos, rhof, g);  
    init_porosity = phi; init_eta = eta; 
    %phi(1:n) = phi0; 
    % calculate bulk density 
    bulk = (phi.*rhof + (1-phi).*rhos); 
    % calculate sv 
    [sv] = sumlith(dz, bulk, g, n); 
    % calculate depth 
    [depth] = sumdepth(dz, n); 
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    % calculate coefficient for dsigma term  
    h = ((beta.*phi)./(1-phi)).*(1./(beta.*(phi./(1-phi))+(b.*phi))); 
    % calculate source term 
    source = h.*m*(bulk0)*g; 
    % add load and record new pressure values 
    P = rhof.*g.*depth + source; 
    Pstar = P - rhof.*g.*depth; 
    % establish boundary conditions 
    topbc = 0; botbc = (Pstar(1));  
     
    %elseif t == 2000 
    %     k(1) = 10^-13; 
    %   P = Pstar + rhof.*g.*depth; 
        % load and calculate change in depth and effective stress 
    %[eta, dz, sig, phi, n, P, k] = compact2(dn, n, phi0, eta, beta, k, H, P, rhos, rhof, g); 
     
    % calculate bulk density 
    %bulk = (phi.*rhof + (1-phi).*rhos); 
    % calculate sv 
    %[sv] = sumlith(dz, bulk, g, n); 
    %[sv] = stress(sv,n, phi0, H, rhos, rhof, g); 
    % calculate depth 
    %[depth] = sumdepth(dz, n); 
    %[phi] = porecalc(n, phi0, beta, sv, P); 
     
    % calculate coeffiecient for dsigma term 
    %h = ((beta.*phi)./(1-phi)).*(1./(beta.*(phi./(1-phi))+(b.*phi))); 
    % recalculate source term 
    %source = h.*m*bulk0*g; 
    % add load and record new pressure values 
    %P = P + source; %Pstar +rhof.*g.*depth + source; 
    %Pstar = P - rhof.*g.*depth; 
    % establish boundary conditions in eta space  
    %topbc = 0; botbc = Pstar(1);     
         
   else 
    P = Pstar + rhof.*g.*depth; 
     
    % load and calculate change in depth and effective stress 
    [eta, dz, sv, phi, n, P, k] = compact2(dn, n, phi0, eta, beta, k, H, P, rhos, rhof, g); 
    %phi = phi0; 
    %phi(1:n) = phi0; 
    % calculate bulk density 
    bulk = (phi.*rhof + (1-phi).*rhos); 
    % calculate sv 
    [sv] = sumlith(dz, bulk, g, n); 
    %[sv] = stress(sv,n, phi0, H, rhos, rhof, g); 
    % calculate depth 
    [depth] = sumdepth(dz, n); 
    %[phi] = porecalc(n, phi0, beta, sv, P); 
    %phi(1:n) = phi0; 
    % calculate coeffiecient for dsigma term 
    h = ((beta.*phi)./(1-phi)).*(1./(beta.*(phi./(1-phi))+(b.*phi))); 
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    % recalculate source term 
    source = h.*m*(bulk0)*g; 
    % add load and record new pressure values 
    P = P + source; %Pstar +rhof.*g.*depth + source; 
    Pstar = P - rhof.*g.*depth; 
    % establish boundary conditions in eta space  
    topbc = 0; botbc = Pstar(1); 
    end 
    
% reset initial overpressure field; 
init = Pstar; 
 
% use initial and boundary conditions to solve pressure diffusion equation 
[Pstar] = solve3(dn, n, phi0, phi, k, beta, init, topbc, botbc, rhof, g); 
 
% record new values at each dt time step 
    if rem(t,dt) == 0 
        overP((t/dt),1:n) = Pstar; press((t/dt),1:n) = Pstar + rhof.*g.*depth; 
        lith((t/dt),1:n) = sv; pore((t/dt),1:n) = phi; zdepth((t/dt),1:n) = depth; 
    end 
end 
 
C = numel(zdepth)/(T/dt); 
lambda = Pstar./(sv-rhof.*g.*depth); 
 
% record changes in effective stress and pressure 
dp = []; dsv = []; 
for count = 2:(T/dt) 
    dpress = press(count,:)-press(count-1,:); 
    dlith = lith(count,:)-lith(count-1,:); 
    dp = [dp; dpress]; dsv = [dsv; dlith]; 
end 
 
P = Pstar + rhof.*g.*depth; 
    
% load and calculate change in depth and effective stress 
%[eta, dz, sv, phi, n, P, k] = compact2(dn, n, phi0, eta, beta, k, H, P, rhos, rhof, g); 
%phi(1:n) = phi0; 
% calculate bulk density 
%bulk = (phi.*rhof + (1-phi).*rhos); 
% calculate sv 
%[sv] = sumlith(dz, bulk, g, n); 
%[sv] = stress(sv,n, phi0, H, rhos, rhof, g); 
% calculate depth 
%[depth] = sumdepth(dz, n); 
%[phi] = porecalc(n, phi0, beta, sv, P); 
 
svstar = sv-(rhof.*g.*depth); 
tf = ((m^2)*t)./((k.*60.*60.*24.*365.25)./(rhof.*g.*(beta.*phi*10^-3)./(1-phi))); 
dimlesP = Pstar./(h*(bulk0-rhof)*g*depth(1));  
dimlesZ = depth./depth(1); 
 
%save simresults.mat  
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compact.m 

function [eta, depth, phi, sv] = compact(dn, n, phi0, eta0, beta, Pstar, rhos, rhof, g) 
% Algorithm to determine initial porosity field, spatial coords 
% and overburden based on initial compacted coordinate system 
% March 24, 2006 
 
porosity =[]; sv = []; depth= []; dz(1:n) = 0; sig(1:n) = 0; 
 
for count = 1:n 
    % eta = compacted coords referenced at center of each node 
    eta(count) = eta0 + dn*(count-1); 
    end 
eta = fliplr(eta); 
 
% calculate spatial coordinates and change in effective stress  
% for top element 
dz(n) = 2*(1/(1-phi0))*0.5*(eta(n) - 0); depth(n) = dz(n); 
sig(n) = (phi0*rhof + (1-phi0)*rhos)*g*(dz(n)); sv(n) = sig(n); 
phi(n) = phi0.*exp(-beta.*(sig(n) - rhof*g*dz(n))); 
 
for nnodes = 1:n-1 
 
    % calculate spatial coordinates and change in effective stress  
    % for all other elements 
    dz(n-nnodes) = (1/(1-phi(n-nnodes+1)))*(eta(n-nnodes) - eta(n-nnodes+1)); 
    sig(n-nnodes) = (phi(n-nnodes+1)*rhof + (1-phi(n-nnodes+1))*rhos)*g*dz(n-nnodes); 
     
depth(n-nnodes) = sum(dz(n-nnodes:n));  % depth = true reference coords 
sv(n-nnodes)= sum(sig(n-nnodes:n));     % total lithostatic stress at every depth 
phi(n-nnodes) = phi0.*exp(-beta.*(sv(n-nnodes) - rhof*g*depth(n-nnodes))); 
end
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compact2.m 

 
function [eta, dz, sv, phi, n, P, k] = compact2(dn, n, phi0, eta, beta, k, H, P, rhos, rhof, g) 
% Function to convert spatial coords from compacted coords 
% based on porosity. 
% March 24, 2006 
 
sv = []; dz(1:n) = 0; sig(1:n) = 0; 
 
% add additional nodes if element has grown larger than node size 
% nodes are numbered from the top down 
if eta(n) > dn/2 
    eta(n+1) = (eta(n) - 0.5*dn)*0.5; 
    eta(n) = eta(n+1)/2 + 0.5*dn; 
    dz(n+1) = (1/(1-phi0))*(eta(n+1)-0); depth(n+1) = dz(n+1); 
for count = 1:n-1 
    eta(n-count) = eta(n-count+1) + dn; 
end 
% renumber permeability values 
    k(n+1) = k(n); 
% update number of nodes 
    n = n+1; P = [P rhof*g*dz(n)];    
else 
end  
 
eta(n) = eta(n)+ H/2; 
dz(n) = (1/(1-phi0))*(eta(n)-0); 
% calculate change in effective stress at top node 
sig(n) = (phi0*rhof + (1-phi0*rhos))*g*(dz(n)); sv(n) = sig(n); 
phi(n) = phi0.*exp(-beta.*(sig(n) - P(n))); depth(n) = dz(n); 
 
for nnodes = 1:n-1 
     
eta(n-nnodes) = eta(n-nnodes)+ H; 
dz(n-nnodes) = (1/(1-phi(n-nnodes+1)))*(eta(n-nnodes) - eta(n-nnodes+1)); 
% calculate change in effective stress at all other nodes 
sig(n-nnodes) = (phi(n-nnodes+1)*rhof + (1-phi(n-nnodes+1))*rhos)*g*dz(n-nnodes); 
 
depth(n-nnodes) = sum(dz(n-nnodes:n)); 
% calculate total effective stress 
sv(n-nnodes) = sum(sig(n-nnodes:n)); 
% calculate porosity at node 
phi(n-nnodes) = phi0*exp(-beta.*(sv(n-nnodes) - P(n-nnodes))); 
end
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solve3.m 

 
function [Pstar] = solve3(dn, n, phi0, phi, k, beta, init, topbc, botbc, rhof,g)  
% Implicit finite-difference solution of 1-D mass diffusion equation 
% with spatially varying storage and permeability conditions. 
% Used as subroutine in consolidateplus.m and consolidateplus_ursa.m 
% March 30, 2006 
 
N = n; 
Z = (n)*dn; 
x = linspace(0,Z,N); 
dx = mean(diff(x));  
dt = 1; yr =(60*60*24*365.25); 
 
Fo = dt/(dx^2); 
k = fliplr(k);  
phi = fliplr(phi); 
kp = (1.682*10^-13).*exp(phi./(0.125.*(1-phi)));  
mu = 1; 10^-3; 
 
% set constants: a - solid compressibility, b - fluid compressibility 
% B = permeability / viscosity (Pa s) 
B = yr.*(kp./mu).*(1/(rhof*g)); 
 
b = 0; %5^-10; 
 
% calculate storage coefficient 
St = B.*((1-phi).^2)./(beta.*(phi./(1-phi))+(b.*phi)); 
 
for s = 1:N-1 
    % calculate the harmonic mean of the storage coefficient 
    Sth(s)= 2*(St(s+1)*St(s))/(St(s+1)+St(s)); 
end 
%Sth = St; 
 
ma = zeros(N,N);  
% set matrix terms for upper boundary 
ma(1,1) = 1; 
     
% set matrix terms for inner nodes 
for count = 2:N-1 
    % calculate lower diagonal terms 
    ma(count, count-1) = -Fo*Sth(count-1); 
    % calculate diagonal terms 
    ma(count, count) = 1 + Fo*Sth(count-1) + Fo*Sth(count); 
    % calculate upper diagonal terms 
    ma(count, count+1) = -Fo*Sth(count); 
end 
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% calculate matrix terms for bottom boundary 
ma(N,N-1) = -Fo*Sth(N-1); ma(N,N) = 1+Fo*Sth(N-1); 
   
% set initial condition for pressure field 
Pstar = [fliplr(init)];  
% boundary conditions 
Pstar(1) = topbc; %Pstar(N) = botbc; 
   
if N > numel(init) 
    Pstar = [topbc init]; %Pstar(N) = botbc; 
end 
 
    overP(1:N) = ma\Pstar(1:N)';  
    Pstar = fliplr(overP); 
 


