The Consolidation and Strength Behavior of Mechanically Compressed Fine-Grained Sediments

A Ph.D. Defense

by

Brendan Casey

Thesis Supervisor: Dr. Jack Germaine
Committee Chair: Prof. Herbert Einstein
Committee Members: Dr. Richard Plumb, Prof. Peter Flemings, Prof. Brian Evans & Prof. Charles Ladd

Friday, April 25th 2014
Outline

• Motivation and Objectives
• Resedimentation
• Permeability Results
• Triaxial Equipment and Procedures
• Principle of Effective Stress
• Shear Strength Behavior
• Summary and Conclusions
Outline

• Motivation and Objectives
 • Resedimentation
 • Permeability Results
 • Triaxial Equipment and Procedures
 • Principle of Effective Stress
 • Shear Strength Behavior
 • Summary and Conclusions
Motivation

For soils and ‘soft’ rock, shear strength is complex a function of:

\[\tau_{max} = f \]

- composition \((w_L)\)
- effective stress \((\sigma')\)
- stress history \((OCR)\)
- mode of shear \((b, \alpha)\)
- temperature \((T)\)
- strain rate \((\dot{\varepsilon})\)
- water saturation \((S_w)\)
- diagenesis
• Majority of previous studies have involved testing intact samples
 ➢ cannot isolate and quantify individual factors influencing behavior
 ➢ disturbance and cost, particularly for deep or offshore samples

• Resedimentation
 ➢ Technical necessity!
 ➢ Practical advantages
 ➢ Compares well with intact behavior

• Best data for resedimented clay behavior from Abdulhadi (2009)
 ➢ tested RBBC for stresses from 0.1→ 10 MPa in triaxial compression

• Very limited testing of resedimented soil over a wide stress range
 – Bishop et al. (1975); tested London Clay at Imperial College
 – Yassir (1989); tested mud volcano clay at UCL
 – Nüesch (1991); tested unsaturated Opalinus Shale
 – Berre (1992); tested a kaolinite – Moum clay mixture at NGI
 – William (2007); tested Bringelly Shale at University of Sydney
Outline

• Motivation and Objectives

• **Resedimentation**

• Permeability Results

• Triaxial Equipment and Procedures

• Principle of Effective Stress

• Shear Strength Behavior

• Summary and Conclusions
Resedimentation

1. Obtain core material
2. Breakdown into powder and blend
3. Mix dry powder and water into slurry
4. Vacuum the slurry
5. Pour slurry into a consolidometer

Comparisons of resedimented vs. intact behavior:
- Berman 1993 (BBC)
- Mazzei 2008 (RGoM Ursa)
- Casey 2011 (BBC)
- House 2012 (BBC)
- Betts 2014 (RGoM Eugene Is.)
Resedimentation

4. Load incrementally
 - Different consolidometers used depending on testing needs
 - Low stress triaxial: $\sigma'_p = 0.1$ MPa
 - Medium stress triaxial: $\sigma'_p = 2$ MPa
 - High stress triaxial: $\sigma'_p = 10$ MPa
 - Time required for resedimentation strongly dependent on soil type (c_v)

5. Swell to OCR = 5

6. Extrude and trim test specimen
What am I dealing with?

Contributing researchers:
- Grennan (2010)
- Abdulhadi (2009), Sheahan (1991)
- Jones (2010)
- Kontopoulos (2012)
- Betts (2014), Fahy (2014)
Outline

• Motivation and Objectives
• Resedimentation
• **Permeability Results**
• Triaxial Equipment and Procedures
• Principle of Effective Stress
• Shear Strength Behavior
• Summary and Conclusions
Permeability

\[
\log(k) = \gamma (n - 0.5) + \log(k_{0.5})
\]

for \(0.20 < n < 0.75\)
Permeability Correlations

\[\log(k) = \gamma \cdot (n - 0.5) + \log(k_{0.5}) \]

\[\gamma = 0.067 \cdot w_L + 5.1 \quad r^2 = 0.75 \]

\[\log(k_{0.5}) = -7.55 \log(w_L) - 3.4 \quad r^2 = 0.90 \]
Permeability Model: Error Analysis

![Graph showing measured vs. predicted permeability values for different models. The graph includes a legend with various line styles and markers for different models such as SS, RPC, RBBC, etc. There is a note indicating that if measured permeability $k = 1$, predicted permeability $k = 0.2 \rightarrow 5$. The graph has a linear scale on the x-axis for predicted permeability and a log scale on the y-axis for measured permeability.](image)
Permeability: Predicting In situ Behaviour

Boston Blue Clay

Liquid limit / Porosity

Permeability, k (m²)

Depth (ft)

- liquid limit
- porosity
Permeability: Predicting In situ Behaviour

- Measured Permeability, \(k \) (m\(^2\)) vs. Predicted Permeability, \(k \) (m\(^2\))
- Data points for different categories are represented with different symbols and colors.
- The graph includes a zoomed-in map of the area around New Orleans with a distance scale of 100 km or 50 miles.
- The data is shown with a range of +/- 5 for certain datasets.
Outline

• Motivation and Objectives
• Resedimentation
• Permeability Results
• **Triaxial Equipment and Procedures**
• Principle of Effective Stress
• Shear Strength Behavior
• Summary and Conclusions
Typical Triaxial Test Procedure

1. Setup and back-pressure saturation (*1 day*)
2. K_O-consolidation of specimens (*3-10 days*)
 - Important to mimic field conditions
3. Secondary compression/creep (*1 day*)
4. K_O-swelling (*1 – 2 days*)
5. Undrained shear in triaxial compression (*1 day*)
low pressure triaxial
($\sigma'_p < 2 \text{ MPa}$)

medium pressure triaxial
($2 < \sigma'_p < 10 \text{ MPa}$)

high pressure triaxial
($10 < \sigma'_p < 100 \text{ MPa}$)
Outline

• Motivation and Objectives
• Resedimentation
• Permeability Results
• Triaxial Equipment and Procedures
• **Principle of Effective Stress**
• Shear Strength Behavior
• Summary and Conclusions
Effective Stress

- **Effective Stress**: Partial stress which controls changes in deformation and shear resistance of porous materials.

- Conventional Terzaghi (1923) definition for saturated soil:
 \[\sigma' = \sigma - u \]
 - assumes particles are: 1) incompressible, and 2) have a constant yield strength

- Some have proposed modified definitions, such as:
 - \[\sigma' = (\sigma - u) + au + (R - A) \quad \text{‘Intergranular stress’} \]
 - \[\sigma' = \sigma - \left(1 - a \frac{\tan \psi}{\tan \phi'}\right)u \quad (Skempton 1960) \]
 \(a \) = contact area between particles per unit area.

- At high stresses the contact area can become significant; can true effective stress deviate from Terzaghi definition? ...literature typically assumes no
Tests of Bishop and Skinner (1977)

- Most significant testing program to examine effective stress in relation to shear resistance
- Drained triaxial compression tests involving large changes in back-pressure but keeping \((\sigma_3 - u_b)\) constant during shearing
- Significance of interparticle contact area determined from discontinuities in shear stress-strain curve
- Tested sand, silt, crushed marble, lead shot for pore pressures up to 40 MPa
Tests of Bishop and Skinner (1977)

Results and conclusions:

• Terzaghi definition applicable for full range of stresses tested with no observable change in shear resistance
• Intergranular stress equation not valid
• Inconclusive re. Skempton’s (1960) equation

However….

• No clays were tested
• Nature of inter-particle contacts is potentially different for clays
Effective Stress Tests

$$\sigma'_p = 0.6 \text{ MPa}$$

<table>
<thead>
<tr>
<th>Line</th>
<th>Soil</th>
<th>u_b (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBBC</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>RBBC</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>RBBC</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>RBBC</td>
<td>9.80</td>
<td></td>
</tr>
<tr>
<td>RBBC</td>
<td>9.80</td>
<td></td>
</tr>
<tr>
<td>RGoM</td>
<td>varies</td>
<td></td>
</tr>
<tr>
<td>Ursa</td>
<td>varies</td>
<td></td>
</tr>
</tbody>
</table>
Outline

• Motivation and Objectives
• Resedimentation
• Permeability Results
• Triaxial Equipment and Procedures
• Principle of Effective Stress
• **Shear Strength Behavior**
• Summary and Conclusions
Stress-Strain Response during Shearing

Normalized Shear Stress, q/σ'_{vc} vs. Axial Strain, ε_a (%)

- s_u/σ'_{vc}
- $\sigma'_{vc} = 0.2$ MPa
- 1.2 MPa
- 9.8 MPa
- 105 MPa

R. Ugnu Clay @ OCR = 1
Undrained Strength @ OCR = 1

\[
\frac{s_u}{\sigma'_{vc}} = S_1 (1000\sigma'_p [\text{MPa}])^T
\]
Undrained Strength @ OCR = 1

- Skibbereen Silt
- R. Presumpscot Clay
- R. Boston Blue Clay
- R. GoM Ursa Clay
- R. Ugnu Clay
- R. S.F. Bay Mud
- R. London Clay
- R. GoM Eugene Is.

Preconsolidation Stress, σ'_p (MPa) vs. Undrained Strength Ratio, s_u/σ'_v
Undrained Strength - Liquid Limit Correlations

\[S_1 = 0.86 \log(w_L) - 1.04 \]
\[r^2 = 0.97 \]

\[T = -0.46 \log(w_L) + 0.73 \]
\[r^2 = 0.95 \]
Overconsolidated Behavior

\[\frac{\sigma_v'}{\sigma_v'} = \begin{cases} \text{OCR} = 8 \\ \text{OCR} = 4 \\ \text{OCR} = 2 \\ \text{OCR} = 1 \end{cases} \]

\[\sigma_v' = 0.6 \text{ MPa} \]

\[\sigma_v' = 40 \text{ MPa} \]

R. Boston Blue Clay

Normalized Shear Stress, \(\frac{q}{\sigma_v'} \) vs. Axial Strain, \(\varepsilon_a \) (\%)
Increase in Ductility with Stress

R. Boston Blue Clay

Axial Strain to Undrained Failure, ε_f (%) vs. Overconsolidation Ratio Ratio, OCR

- $\sigma'_p = 40$ MPa
- $\sigma'_p = 10$ MPa
- $\sigma'_p = 0.2$ MPa
Undrained Strength: Overconsolidated Soil

R. Boston Blue Clay

OCR = 8

OCR = 4

OCR = 2

OCR = 1

Undrained Strength Ratio, s_u/σ'_{vc}

T is independent of OCR

$s_u/\sigma'_{vc} = 1.701(1000\sigma'_p)^{-0.028}$

$s_u/\sigma'_{vc} = 1.083(1000\sigma'_p)^{-0.035}$

$s_u/\sigma'_{vc} = 0.593(1000\sigma'_p)^{-0.020}$

$s_u/\sigma'_{vc} = 0.366(1000\sigma'_p)^{-0.024}$

Preconsolidation Stress, σ'_p (MPa)

Undrained Strength Ratio, s_u/σ'_{vc}

$s_{1(OC)}$
Undrained Strength: Overconsolidated Soil

\[S_{1(OC)} = 0.368(OCR)^{0.73}, \quad r^2 = 0.9999 \]

approx. constant for fine-grained soils

R. Boston Blue Clay
Summary of Strength Equations

• Undrained triaxial compressive strength:

\[\frac{s_u}{\sigma'_v} = S_1 (1000\sigma'_p \text{[MPa]})^T (OCR)^{0.73} \]

- \[S_1 = 0.86\log(w_L) - 1.04 \]
- \[T = -0.46\log(w_L) + 0.73 \]
Effect of K_0 on Undrained Strength @ OCR=1

$$\sigma'_V$$

$$K_0 = \frac{\sigma'_H}{\sigma'_V}$$

$$\frac{s_u}{\sigma'_{vc}} = 0.57 - 0.50K_{ONC}$$

$$+/- 0.02$$
Friction Angle

\[\phi = A(0.001\sigma'_p [\text{MPa}])^B \]

Critical State Friction Angle, \(\phi'_{cs} \) (°)

Preconsolidation Stress, \(\sigma'_p \) (MPa)

R. Ugnu Clay

\(\Delta \) R. Ugnu Clay
Friction Angle

Critical State Friction Angle, ϕ'_{cs} (°)

Preconsolidation Stress, σ'_p (MPa)

- Skibbereen Silt
- R. Presumpscot Clay
- R. Boston Blue Clay
- R. GoM Ursa
- R. Ugnu Clay
- R. S.F. Bay Mud
- R. S.F. Bay Mud
- R. London Clay
- R. GoM Eugene Is.
Friction Angle - Liquid Limit Correlations

\[A = -75 \log(w_L) + 148 \]
\[r^2 = 0.89 \]

\[B = -0.39 \log(w_L) + 0.59 \]
\[r^2 = 0.95 \]
Summary of Strength Equations

• Undrained triaxial compressive strength:

\[s_u / \sigma'_{vc} = S_1 (1000 \sigma'_p [\text{MPa}])^T (OCR)^{0.73} \]

- \(S_1 = 0.86 \log(w_L) - 1.04 \)
- \(T = -0.46 \log(w_L) + 0.73 \)

• Drained triaxial compressive strength:

\[\phi'_{cs} = A (0.001 \sigma'_p [\text{MPa}])^B \]

- \(A = -75 \log(w_L) + 148 \)
- \(B = -0.39 \log(w_L) + 0.59 \)
Effect of OCR on ϕ'_{cs}

Critical State Friction Angle, ϕ'_{cs} (°)

Preconsolidation Stress, σ'_p (MPa)

OCR = 1
OCR = 2
OCR = 4
OCR = 8

R. Boston Blue Clay
(assuming drained conditions and no surcharge)

– a change in friction angle from 40° to 35° reduces bearing capacity by 56 %

– a change in friction angle from 40° to 30° reduces bearing capacity by 80 %!
Particle Reorientation

… but failure in triaxial compression occurs at $\sim 50^\circ \rightarrow 65^\circ$

→ Particle reorientation with stress cannot explain strength behavior
At very high stresses...

- Porous materials will ultimately reach the friction angle of the solid material, referred to as the *intrinsic friction angle* ψ (Skempton 1960)
- Tests on marble, metals, quartz and limestone

<table>
<thead>
<tr>
<th>Material</th>
<th>Ψ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone</td>
<td>8</td>
</tr>
<tr>
<td>Calcite</td>
<td>8</td>
</tr>
<tr>
<td>Quartz</td>
<td>16</td>
</tr>
<tr>
<td>Clay minerals</td>
<td>~ 5–10</td>
</tr>
</tbody>
</table>

from Skempton (1960)

\[c' = 350 \]
\[\Phi' = 34^\circ \]
\[\tau_d \]
\[\tau_f \]
\[\sigma_x' \]
Yield Surface Evolution

R. Boston Blue Clay

Normalized Shear Stress, q/σ'_{vc} vs. Normalized Effective Stress, p'/σ'_{vc}

- Green line: Low stress (< 1 MPa) yield surface
- Red line: High stress (> 10 MPa) yield surface
Conclusions

- Resedimentation is a technical necessity and practically advantageous to study the behavior of soils systematically.
- Correlations developed from resedimented soil using liquid limit can predict intact permeability, a robust indicator of composition.
- Conventional Terzaghi definition of effective stress is valid for fine-grained soils at high in situ pore pressures.
- Shear strength properties vary consistently with stress level and are closely linked to composition/plasticity.
- Variations in strength properties with stress reflect an evolving yield surface.
For soils and ‘soft’ rock, shear strength is complex a function of:

\[\tau_{\text{max}} = f \]

- composition \((w_L) \)
- effective stress \((\sigma') \)
- stress history \((OCR) \)
- mode of shear \((b, \alpha) \)
- temperature \((T) \)
- strain rate \((\dot{\varepsilon}) \)
- water saturation \((S_w) \)
- diagenesis

This work

Future Work
Publications

• Casey, B. & Germaine, J.T. (2014). “An Evaluation of Three Triaxial Systems with Results from 0.1 to 100 MPa” Geotechnical Testing Journal, in review