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Introduction

Geologists have invoked fault zones as both migration pathways and seals (Figure 1). 

For example Smith (1966) proposed that hydrocarbons are trapped within sands juxta-

posed against low permeability fault zones. Schowalter (1979) suggested that the capillary 

properties of sealing material could be used to predict the hydrocarbon column height of 

charged sands (Figure 1). The sealing nature of faults has been well documented (Antonel-

lini and Aydin, 1994; Knipe, 1992; Smith, 1966) and is considered to be the result of 

petrophysical differences between host rock and fault zone (Scholz and Anders, 1993; 

Antonellini and Aydin, 1994; Pittman, 1981; Knipe, 1992). The differences in petrophysi-

cal properties such as permeability, porosity, sorting, and capillary pressure between fault 

zones and neighboring reservoirs are believed to be the result of one or more physical pro-

cesses associated with the deformation that occurs in fault zones. 

Pittman (1981) proposed that cataclasis or crushing of rocks in and around fault zones 

resulted in lower porosity and permeability in the fault relative to the host rock from 

which it was derived. He further proposed that the grain size sorting of the fault zone was 

poor relative to the grain size sorting of the host rock, resulting in tighter pore throats and 

higher capillary entry pressures (Smith (1966) defines capillary entry pressure as the min-

imum pressure needed to form an interconnected hydrocarbon filament through the pore 

throats of a rock).  Bouvier (1989) suggests that significant reductions in permeability and 

porosity within the fault zone relative to nearby reservoirs is caused by a process known as 

clay smear. Clay smear occurs in regions of interbedded shales and sandstones that have 

undergone deformation due to faulting. Significant faulting can drag large amounts of clay 

into the fault zone causing a reduction in both permeability and porosity. 
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Figure 1. Conceptual model of a fault zone behaving as both a conduit for migration and 
a seal for entrapment of hydrocarbons.
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Work by Antonellini and Aydin (1994) shows that these decreases in permeability and 

porosity between fault rocks and host rocks are about three orders of magnitude and one 

order of magnitude, respectively. Knipe (1992) suggested that significant reductions in 

permeability may be obtained without reductions in porosity through a process called 

Òwash sealÓ. This process reorganizes the clay minerals in the pore throats causing an 

effective seal at the borders of a fault zone (Knipe, 1992). Hippler (1993) has attributed 

fault seals to cement deposition in the pore throats of fault zones. 

Yet these same faults are often also interpreted to be low permeability migration path-

ways (Hippler, 1993; Knipe, 1992; Forster et al., 1993). Hippler (1993) suggested that in 

brecciated regions of fault zones, hydrocarbon staining provided evidence of hydrocarbon 

migration. Knipe (1992) suggested that migration along fault zones occurs, but that the 

migration is both localized and episodic.

Thus, there is an apparent contradiction or paradox where faults must both transport 

and trap hydrocarbons. We use two-phase hydrodynamic modelling to simulate the migra-

tion of hydrocarbons through a fault zone and the infilling of adjacent reservoirs. We first 

present an analytical model of steady state flow through a fault zone and the resultant sat-

urations and column heights. We next simulate the time dependant charging of a fault zone 

and the resultant infilling of adjacent reservoir sands using a numerical model.

In our analytical model we show that column height is a function of the saturation in 

the fault zone which is dependent on the rate of charge of hydrocarbons. This result 

extends the static methodology proposed by Showalter (1979) and shows that column 

height is a dynamic function of the charge history. In our numerical models we show that 

the geometry of the reservoir is a critical control in predicting whether reservoir sands will 
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be fully charged. If the sands are not connected to a large aquifer, hydrocarbons may not 

fully charge the sands. We also illustrate the manner by which multiple sands are filled 

with hydrocarbons and how the rock properties of the fault zone will control hydrocarbon 

migration.
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Steady State Flow in a Fault Zone

We first consider the case of one-dimensional steady-state incompressible flow in an 

isolated fault zone (Figure 2). We assume fluid flow is governed by DarcyÕs Law:

where Qo is the volumetric oil flow rate from the source rock, kro is the relative permeabil-

ity to oil, k is the intrinsic permeability of the rock, A is the cross sectional area of the fault 

zone normal to flow, µo is the oil viscosity, Φo is the oil potential, and L is the length of the 

fault zone. We further assume that the oil injected into the system is dead (i.e. contains no 

dissolved gas). Assuming the transport of oil up through the fault is driven by gravity, the 

driving force, ∆Φο/L, (otherwise known as the buoyancy gradient) can be written as:

where ∆ρ is the density difference between oil and water, g is the gravitational accelera-

tion, and θ is the angle from vertical of the fault zone.

The relative permeability of the system to oil and water is modeled with CoreyÕs 

approximation,

where

where Swirr is the irreducible water saturation, and Sw is the water saturation (Ertekin, 
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Figure 2. Physical description of the analytical system (fault zone).
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1993). Figure 3 is a graphical representation of CoreyÕs approximation for water and oil 

relative permeability.

Substituting Equations 2 and 4 into Equation 1, the following relationship between oil 

flux and fault zone saturation is obtained:

Equation 6 states, that for specific rock and fluid properties, the fault zone saturation is a 

function of the flux. This is illustrated in Figure 4 for the properties shown in Table 1.

In this paper we will be considering several specific simulations where the fault is con-

sidered to have a rectangular cross-sectional area of 334.5 m2 (3600 ft.2) and a porosity of 

5.0%. Both a low permeability fault and a high permeability fault are considered with per-

meabilities of 0.01 and 0.10 millidarcies, respectively. In our analysis, the viscosities and 

densities of oil and water are assumed constant (Table 1).

Table 1: Parameters for the Fault Zone

Fault Cross Section 334.5 m2

Fault Porosity 5.0 %

High Perm Fault Permeability 0.10 millidarcies

Low Perm Fault Permeability 0.01 millidarcies

Oil viscosity 3.519*10-4 Pa*s

Water Viscosity 1.838*10-4 Pa*s

Oil Density 849.8 kg/m3

Water Density 999.9 kg/m3

(6)
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Figure 3. CoreyÕs approximation of relative permeability in the fault zone and reservoir 
as a function of water saturation.
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Figure 4. Flux versus water saturation in the high and low permeability fault zones. 
Solution of Equation 6 from water saturation of 0.2 to 1.0 assuming CoreyÕs 
approximation for the relative permeability data (Figure 3).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Water Saturation

10-14

10-13

10-12

10-11

10-10

10-9

F
lu

x 
=

 Q
o/

A
  (

m
/s

)

High Permeability Fault

Low Permeability Fault



10
We will model a flux of 1.13*10-11 m/s. We solve Equation 6 for the above conditions 

and find a steady-state fault oil saturation of 46% and 20% for the low permeability (0.01 

millidarcies) and high permeability (0.1 millidarcies) models, respectively. Figure 4 illus-

trates a range of solutions for these two fault permeabilities. Note the curves in Figure 4 

are just the relative permeability to oil curves scaled by the constant k∆ρgcosθ/µo (see 

Equation 6).
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Column Height in Adjacent Sands During Steady-State Flow

We next consider steady-state flow in a fault with an adjacent reservoir abutted against 

the fault (Figure 5). The reservoir and the fault zone are assumed to have different petro-

physical properties. As discussed in the previous section, during steady-state flow the fault 

saturation is constant. If a reservoir is abutted against the fault (Figure 5), it will fill with 

hydrocarbons (from the fault zone) until the capillary pressure at the top of the reservoir is 

equal to the capillary pressure within the fault zone.

ThomeerÕs relationship (Jorden and Campell, 1984) is used to model the capillary 

pressure in the fault and reservoir:

where Pc is the capillary pressure, Pd is the capillary entry pressure, G is the pore geomet-

rical factor and So is the oil saturation. Equation 7 is used to define the capillary pressure 

curves for the 0.1 millidarcy fault and a reservoir with a horizontal permeability of 1.0 

millidarcies, a vertical permeability of 0.1 millidarcies, and a porosity of 20%. (Figure 6). 

The parameters specifically used to define the capillary pressure curves for the reservoir 

and the high permeability fault zone are shown in Table 2.

Table 2: Parameters for ThomeerÕs Relationship

Variable Reservoir High Permeability 
Fault Zone

Pd 5.0 psi 10.0 psi

G 0.5 0.1

Swirr 0.20 0.20

Pc e

Pdlog
G

SO

1 SÐ wirr
--------------------- 
 log

-----------------------------------

 
 
 
 
 

Ð

 
 
 
 
 

= (7)
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Figure 5. Physical description of analytical system with sand and hydrocarbons.
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Figure 6. Capillary pressure relationships for the sand and the two faults illustrating the
relationship between fault zone saturation and reservoir saturation. At a steady 
state the capillary pressure in the reservoir is equal to that in the fault.
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We use the Leverett-J function (Amyx et al., 1960) to scale the capillary pressure of 

the lower permeability fault from the capillary pressure of the higher permeability fault:

where J(Sw) is the J function, σ is the interfacial tension between the oil and water phases 

(20 dynes/cm) and φ is the porosity (5.0% for the fault). Equation 8 allows scaling of cap-

illary pressure relationships to be a function of both permeability and porosity. Figure 6 

illustrates the resulting capillary pressure curves for the reservoir, the low permeability 

fault, and the high permeability fault.

As discussed in the previous section, a steady state flow rate in the fault zone results in 

a constant saturation of the fault zone. At steady-state, both the oil and water pressures 

will tend to equalize across the fault-reservoir interface. Therefore the capillary pressure 

in the reservoir will approach the capillary pressure of the fault. The two cases from the 

previous section are examined below. For the low permeability fault zone, the steady-state 

oil saturation of the fault is 47%. At this saturation the capillary pressure in the fault is 79 

psi (5.44*105 N/m2). Since the capillary pressure in the reservoir will be the same, the oil 

saturation at the top of the reservoir should reach 79%. For the high permeability fault 

zone, the steady-state oil saturation of the fault is 20%. The corresponding capillary pres-

sure is 14 psi (9.66*104 N/m2) which neccessitates an oil saturation of 77% at the top of 

the reservoir.

The final stage is to relate the capillary pressure in the reservoir to the column height 

present. Capillary pressure is defined as the difference between the oil and water pres-

(8)J Sw( )
Pc Sw( )

σ
-----------------

k
φ
--- 
 

1
2
---

=
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sures:

where Po is the oil pressure and Pw is the water pressure. At the free water level the oil and 

water pressures are equal, Pc=0. Above the free water level, fluid pressures are propor-

tional to h, the height above the free water level:

Substituting Equations 10 and 11 into Equation 9 and solving for h yields:

We use Equation 12 and our capillary pressure relationship (Figure 6) to calculate the 

oil column height versus fault zone saturation in Figure 6 (opposite axis). Note that the 

actual hydrocarbon column height will be less than h if Pc at Sw = 1.0 is greater than zero 

for the reservoir (as illustrated in Figure 6). In this case the actual hydrocarbon column 

height, hoil, is:

Given this approach, we calculate steady-state column heights of 347 meters and 44 

meters (1140 feet and 143 feet) for the low and high permeability cases, respectively.

A similar approach was used by Schowalter (1976) to predict column height as a func-

tion of capillary pressures of the seal rock. We emphasize, however, one important distinc-

tion, in SchowalterÕs model column height is dependent only on the capillary pressure 

Pc Po PwÐ= (9)

Po PFWL ρÐ ogh= (10)

Pw PFWL ρÐ wgh= (11)

h
Pc

ρw ρoÐ( )g
---------------------------= (12)

hoil

Pc at top of sand( ) Pc at Sw 1.0=( )Ð

ρw ρoÐ( )g
-------------------------------------------------------------------------------------= (13)
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curveÕs Òbreak throughÓ point. At this point (typically ~10% oil saturation) the buoyant 

forces of the hydrocarbon column are large and the seal will leak (Figure 6). Work per-

formed by Katz and Thompson (1986) suggests that the leaking potential of a seal may be 

predicted by determining the inflection point of the capillary pressure curve. The inflec-

tion point of the capillary pressure curve is considered to be the minimum saturation 

needed to form a continuous stream of hydrocarbons across the zone of interest, allowing 

hydrocarbon migration. Our model is different than both of these models because the cap-

illary pressure within the fault zone is a function of the saturation which is ultimately a 

function of the flux into the fault. SchowalterÕs model does not consider the seal as a 

potential migration pathway. Our model does and this allows for dynamic hydrocarbon 

column heights that are a function of hydrocarbon flux into the fault.

Extending this methodology, we propose a method for determining the approximate 

time needed to fill the reservoir to steady state hydrocarbon column height. We assume 

that all oil injected into the fault enters the reservoir until a steady state hydrocarbon col-

umn height is achieved. In addition, we neglect the pore volume of the fault in our calcula-

tions. From Figure 6 we may determine the analytical steady state oil saturation 

throughout the reservoir as a function of height. Using this analytical oil saturation, we 

may determine an average saturation throughout the reservoir. Once we have determined 

this average saturation, we calculate the volume of oil needed to fill the reservoir to the 

predicted hydrocarbon column height. Simply dividing the volume of oil needed by the 

flowrate of oil into the fault will approximate the time required to fill the reservoir. 

We illustrate this method with an example. From the previous section, we predicted 

that a low permeability (0.01 millidarcies) fault zone and a flux of 1.13*10-11 m/s would 
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produce a hydrocarbon column height of 347 meters. Equation 14 is the equation used to 

predict the average saturation in the reservoir:

where hoil, is the height of the steady state oil column. For example, we numerically inte-

grate oil saturation versus column height of the reservoir (Figure 6) from 0 to 347 meters, 

divide through by our column height and find the average oil saturation to be 78.6% 

throughout the reservoir. We then calculate the pore volume of rock that will be saturated 

with oil, multiply this by the average oil saturation of 78.6%, and divide by the flowrate to 

obtain a fill time of 5.8 million years.

(14)Average SO

SO h( ) hd

0

hoil

∫

hd

0

hoil

∫

-------------------------------=
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Numerical Simulations

We now consider the application of these principals to numerical simulations. Using 

the ECLIPSE 100 reservoir simulation package developed by Intera, we model the time 

dependent hydrodynamic flow of oil through a fault zone and into adjacent reservoirs. In 

all simulations we specify a constant pressure boundary at the top of the fault of 2000 psi 

(1.38*107 N/m2) and a constant flowrate at the bottom of the fault. Oil is injected at a rate 

of 3.77*10-9 m3/s (2.05*10-3 Bbls/Day) for all but one of the simulations. We present six 

simulations investigating the sensitivity of results to fault rock properties, flux into the 

fault zone, and reservoir geometry.

The two geometries presented are illustrated in Figure 7. Figure 8a represents the grid 

used for simulating infinite reservoirs (Figure 7a) and Figure 8b represents the grid used 

for simulating finite reservoirs (Figure 7b). The grid blocks connecting the periphery of 

the reservoir to the fault zone (Figure 8a) assure a hydrostatic pressure boundary at the 

edge of the simulated infinite reservoir. This geometry is interpreted geologically, as a 

large regional reservoir (Figure 7a). The lack of these grid blocks (Figure 8b) create a no-

flow boundary at the periphery of the reservoir which may be interpreted geologically as a 

stratigraphic pinch out (Figure 7b), a faulted section with little or no permeability, or a 

localized sand lens.
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Figure 7. Conceptual models for simulations. a) A regional and infinite reservoir. b) A 
local and finite reservoir.
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Figure 8. Model geometry for the numerical simulations. a) Infinite reservoir b) Finite 
reservoir
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RUN_1: High Permeability Fault and Infinite Reservoir

The first numerical simulation we present illustrates SchowalterÕs static methodol-

ogy. We simulate a high permeability (0.10 millidarcies), isotropic, homogeneous fault 

zone connected to a relatively high permeability (1.0 millidarcies horizontal direction and 

0.10 millidarcies vertical direction), anisotropic, homogeneous infinite reservoir (Figure 

7a).

The capillary pressure curves for the fault zone and the reservoir are taken from the 

example mentioned before (Figure 6). The relative permeability curves for both the fault 

and the reservoir are shown in Figure 3. The flux of oil is 1.13*10-12 m/s and dictates a 

steady-state oil saturation of approximately 10% in the fault zone (Equation 6). Analyti-

cally, an oil saturation of 10% in the fault zone will charge the reservoir with 35 meters of 

oil (Figure 6) in 3.4 million years. 

The numerical simulation generates an oil column approximately 34 meters high in the 

reservoir shortly after 3 million years (Figure 9), at which point steady state is reached. 

The difference in oil potential (driving force) from the fault into the sand as a function of 

time illustrates that initially there is a driving potential of approximately 6 psi from the 

fault into the sand (Figure 10). As time passes, the difference in oil potential begins to 

decrease in the first and second blocks of the interface (Figure 10). This equalizing in the 

first two blocks of the fault-reservoir interface is due to the charging of the reservoir. The 

remaining potential in the third and fourth blocks of the fault reservoir interface is a func-

tion of the height of the hydrocarbon column and the thickness of the reservoir. The reser-

voir itself is 61 meters thick and a 34 meter oil column does not saturate the full extent of 

this interface. Therefore, driving potential remains in the third and fourth grid
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Figure 9. Hydrocarbon column height versus time for the high permeability fault and 
infinite reservoir simulation used to illustrate SchowalterÕs static methodol-
ogy (RUN_1). Steady-state height is 34 meters numerically and 35 meters ana-
lytically. The X represents the analytically calculated time required to fill the 
sand to a steady state hydrocarbon column of 35 meters.
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Figure 10. Difference in oil potential through time across the fault-reservoir interface for 
RUN_1. Values are calculated so that a positive difference in potential repre-
sents a driving force from the fault into the reservoir.
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 blocks. Oil flows into the these grid blocks, rises upwards in the reservoir, breaches the 

sealing potential of the fault zone causing the fault to leak maintaining the hydrocarbon 

column at 34 meters. The difference in water potential between the reservoir and the fault 

zone shows no driving force (Figure 11). 

Increased oil saturations cause the water relative permeability to drop in the reservoir 

near the reservoir-fault interface (Figure 12). The water relative permeability drops to 

nearly zero in the first and second blocks of the reservoir. Furthermore, water relative per-

meability drops to steady-state values of 0.032 and 0.747 for the third and fourth grid 

blocks, respectively (Figure 12). Once again, this is attributed to the steady-state oil satu-

ration along the fault-reservoir interface where oil saturations are high in the first and sec-

ond blocks of the reservoir and low in the third and fourth blocks of the reservoir along the 

interface (Figures 13 and 14). Figure 13 and Figure 14 are selected time slices of oil satu-

ration versus location.

SchowalterÕs (1979) hypothesis states that the potential of sealing materials, in this 

case the fault zone, is a static function of the sealing materialÕs capillary pressure at satu-

rations of ~10% oil. For this example, SchowalterÕs theory predicts that an oil column of 

35 meters may be supported by the fault zone. Our next example is intended to show that 

the sealing capacity of fault zones acting as conduits for oil migration and seals for oil 

accumulation, is not a static function of the capillary pressure at ~10% oil saturation. 

Rather, we intend to show that the sealing capacity of faults acting as secondary migration 

conduits is a dynamic function of the flux into those fault zones, the saturations that ensue 

and the resulting capillary pressures.
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Figure 11. Difference in water potential through time from the outermost block in the 
sand to the first block in fault next to the interface for RUN_1. Values are cal-
culated so that a positive difference in potential represents a driving force from 
the the reservoir into the fault.
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Figure 12. Relative permeability through time of the reservoir grid blocks next to the 
fault-reservoir interface for RUN_1.
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Figure 13. Saturation of oil versus location for RUN_1 at 0.25, 0.50, 1.00 and 1.50 mil-
lion years.
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Figure 14. Saturation of oil versus location for RUN_1 at 2.00, 2.50, 3.00 and 3.50 mil-
lion years.

0.00 0.25 0.50 0.75 0.80
Oil Saturation

3.5 million years

3.0 million years

2.5 million years

2.0 million years

500 m



29
RUN_2: High Permeability Fault and Infinite Reservoir

The next simulation is identical to the first simulation except the flux rate into the fault 

is one order of magnitude higher (1.13*10-11 m/s). This, in turn, increases the steady-state 

oil saturation in the fault zone from 10% to 20% oil (Equation 6). Analytically, we predict 

a hydrocarbon column height of 44 meters (145 feet) (Equation 13) in 0.5 million years.

The results of this simulation show a hydrocarbon column height of 42 meters (138 

feet) after 1.0 million years (Figure 15). Figure 16 illustrates the difference in oil potential 

between the fault and the reservoir through time. Initially, this difference is high in all 4 

grid blocks. After 0.6 million years the difference in oil potential drops to nearly zero in 

the first and second blocks of the reservoir (Figure 16). The difference in potential at the 

interface for the third and fourth grid blocks, however, does not drop to zero indicating 

that the oil potential across the interface is not in equilibrium. Oil enters into the third and 

fourth grid blocks of the reservoir after steady state is reached and rises up in the reservoir 

and re-enters the fault in the same manner as described for the first simulation.

The relative permeability to oil is high in the reservoir, therefore only a small oil 

potential is required for the oil to flow back into the fault from the reservoir. Figure 17 

illustrates that water has essentially no driving potential from the reservoir into the fault. 

This lack of driving potential in water is due to the lack of hydrocarbon column height. 

The hydrocarbon column height is small relative to the thickness of the reservoir and 

water may freely escape from the sand to the fault.

The relative permeability of water in the reservoir blocks next to the interface is shown 

in Figure 18. We notice that the relative permeability of the fourth grid block does not 

approach zero, but achieves a steady-state value of about 0.45. Since the hydrocarbon
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Figure 15.  Hydrocarbon column height versus time for the high permeability, infinite res-
ervoir simulation (RUN_2). Steady-state height is 42 meters numerically and 
44 meters analytically. The X represents the analytically calculated time 
required to fill the sand to a steady state hydrocarbon column of 44 meters.
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Figure 16. Difference in oil potential through time across the fault-reservoir interface for 
RUN_2. Values are calculated so that a positive difference in potential repre-
sents a driving force from the fault into the reservoir.
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Figure 17. Difference in water potential through time from the outermost block in the 
sand to the first block in fault next to the interface for RUN_2. Values are cal-
culated so that a positive difference in potential represents a driving force from 
the the reservoir into the fault.
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Figure 18. Relative permeability through time of the reservoir grid blocks next to the 
fault-reservoir interface for RUN_2.
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column is only 42 meters (138 feet), the oil saturation remains relatively low in the fourth 

grid block. Therefore, we do not see a drop in water relative permeability to zero in this 

block. Figure 19 is selected time slices of oil saturation versus location. 
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Figure 19. Saturation of oil versus location for RUN_2 at 0.30, 0.60, and 0.90 million 
years.
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RUN_3: High Permeability Fault and Finite Reservoir

The next simulation that we present is a high permeability fault zone (0.10 millidar-

cies) with a finite reservoir attached. The steady-state oil saturation within the fault zone 

requires an analytical hydrocarbon column height of 44 meters (145 feet) in 0.5 million 

years. 

We observe a numerical hydrocarbon column height of 42 meters (138 feet) after 1.0 

million years (Figure 20). The difference in oil potential across the interface (Figure 21), 

the difference in water potential across the interface (Figure 22), and the relative perme-

ability to water in the reservoir next to the interface (Figure 23) are essentially the same as 

in the previous example. Figure 24 is selected time slices of oil saturation versus location.
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Figure 20.  Hydrocarbon column height versus time for the high permeability, finite reser-
voir simulation (RUN_3). Steady-state height is 42 meters numerically and 44 
meters analytically. The X represents the analytically calculated time required 
to fill the sand to a steady state hydrocarbon column of 44 meters.
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Figure 21. Difference in oil potential through time across the fault-reservoir interface for 
RUN_3. Values are calculated so that a positive difference in potential repre-
sents a driving force from the fault into the reservoir.
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Figure 22. Difference in water potential through time from the outermost block in the 
sand to the first block in fault next to the interface for RUN_3. Values are cal-
culated so that a positive difference in potential represents a driving force from 
the the reservoir into the fault.
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Figure 23. Relative permeability through time of the reservoir grid blocks next to the 
fault-reservoir interface for RUN_3.
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Figure 24. Saturation of oil versus location for RUN_3 at 0.30, 0.60, and 0.90 million 
years.
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RUN_4: Low Permeability Fault and Infinite Reservoir

 This simulation is identical to RUN 2 except that a low permeability (0.01 millidar-

cies) fault zone is simulated instead of a high permeability fault zone (0.10 millidarcies). 

The capillary pressure is scaled accordingly using the Leverett-J function (Equation 8 and 

Figure 6).

 The capillary pressure and relative permeability curves from the low permeability 

fault example above are used as input (Figure 3 and Figure 6). The analytical methods pre-

dict a hydrocarbon column height of 347 meters (Figure 6) that should take approximately 

5.8 million years to fill assuming all oil injected flows into the reservoir.

The numerical model generates a steady state hydrocarbon column height of approxi-

mately 341 meters after 10.0 million years of simulation time (Figure 25). We note that 

initially, infilling of the reservoir is rapid and apparentally linear with respect to time (Fig-

ure 25). Almost all the oil injected enters the reservoir at early times and very little flows 

up the fault past the reservoir. This is apparent in Figure 29, where we see very low oil sat-

urations in the fault zone, at early times, above the fault-reservoir interface. When the 

steady-state column height is approached filling of the reservoir slows. Figure 26 illus-

trates that as the reservoir fills, the difference in oil potential across the fault-reservoir 

interface (i.e. the driving potential of oil from the fault into the reservoir) decreases until 

about 3.5 million years, at which point the difference in oil potential across the interface 

levels off. This corresponds to the point in Figure 25 where there is a distinct departure 

from the apparent linear trend of hydrocarbon column height versus time towards a log-

normal trend. Water potential differences between the fault blocks adjacent to the reservoir 

and blocks in the farthest reaches of the reservoir are small relative to the differences in oil 
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Figure 25.  Hydrocarbon column height versus time for the low permeability, infinite res-
ervoir simulation (RUN_4). Steady-state height is 341 meters numerically and 
347 meters analytically. The X represents the analytically calculated time 
required to fill the sand to a steady state hydrocarbon column of 347 meters.
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Figure 26. Difference in oil potential through time across the fault-reservoir interface for 
RUN_4. Values are calculated so that a positive difference in potential repre-
sents a driving force from the fault into the reservoir.
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potential illustrating that water has little driving potential from the reservoir to the fault 

(Figure 27). This is due to the constant pressure boundary at the periphery of the sand 

(Figure 7a).

Due to the increase in oil saturation, a reduction in water relative permeability is 

observed through time in the reservoir blocks at the fault-reservoir interface (Figure 28). 

After 0.55 million years the relative permeability to water is essentially zero in the reser-

voir along the interface. Until about 0.55 million years, water may escape from the reser-

voir to the fault zone, after that point in time, however, the water in the reservoir may not 

escape and must move down into the infinite reservoir ahead of the entering oil.

This significant reduction of water relative permeability is due primarily to the shape 

of the capillary pressure curve and the irreducible water saturation (Figure 6 and Figure 3). 

The shape of the capillary pressure curve for the reservoir dictates the saturation of oil at 

the top of the reservoir (Figure 6). The irreducible water saturation is specified via 

CoreyÕs Approximation (Figure 3). For our example, the shape of the reservoirÕs capil-

lary pressure curve requires that the saturation at the top of reservoir approach irreducible 

water saturation. This causes the relative permeability to drop to zero. 

Figures 29 through 31 are selected time slices of oil saturation versus location. Figure 

29 shows that at 0.5 million years the oil-water contact in the reservoir approaches the 

thickness of the reservoir. 
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Figure 27. Difference in water potential through time from the outermost block in the 
sand to the first block in fault next to the interface for RUN_4. Values are cal-
culated so that a positive difference in potential represents a driving force from 
the the reservoir into the fault.
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Figure 28. Relative permeability through time of the reservoir grid blocks next to the 
fault-reservoir interface for RUN_4.
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Figure 29. Saturation of oil versus location for RUN_4 at 0.5, 1.0, 2.0, and 3.0 million 
years.
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Figure 30. Saturation of oil versus location for RUN_4 at 4.0, 5.0, 6.0, and 7.0 million 
years.
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Figure 31. Saturation of oil versus location for RUN_4 at 8.0, 9.0, and 10.0 million years.
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RUN_5: Low Permeability Fault and Finite Reservoir

The next simulation we investigate is identical to the previous simulation with the 

exception that instead of an infinite reservoir a finite reservoir is attached to the fault zone 

(Figure 8b). This is accomplished by imposing a no-flow boundary at the down dip end of 

the reservoir (Figure 7b). From the analytical methods described in this paper we predict a 

hydrocarbon column height of 347 meters and a fill time of approximately 5.8 million 

years, the same as the previous simulation.

The numerical model generates a steady state hydrocarbon column height of 58 meters 

after 1.1 million years (Figure 32) and a significant departure from the previous 

simulationÕs results (Figure 25) after 0.5 million years. Initially, the reservoir fills 

quickly with hydrocarbons from the fault zone. After 0.5 million years, however, we 

observe a distinct drop in the rate of hydrocarbons filling the reservoir (Figure 32). The 

difference in oil potential from the fault zone into the reservoir drops to low values after 

0.5 million years (Figure 33). A concurrent rise in the difference in water potential from 

the reservoir into the fault is illustrated in Figure 34.

 The relative permeability to water in the reservoir at the interface exhibits the same 

trend for this case as the previous simulation (Figure 28 and Figure 35). That is, the rela-

tive permeability of water drops to nearly zero in all the grid blocks of the reservoir next to 

the interface. After 0.5 million years, oil flow into the reservoir is essentially stopped 

because the reservoir pressure has increased due to the compression of trapped or 

ÒPerchedÓ water. In the previous example this pressure was released across the constant 

pressure boundary. It is this drop in relative permeability that is causing the rise and drop 
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Figure 32.  Hydrocarbon column height versus time for the low permeability, finite reser-
voir simulation (RUN_5). Steady-state height is 58 meters numerically and 
347 meters analytically. The X represents the analytically calculated time 
required to fill the sand to a steady state hydrocarbon column of 347 meters.
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Figure 33. Difference in oil potential through time across the fault-reservoir interface for 
RUN_5. Values are calculated so that a positive difference in potential repre-
sents a driving force from the fault into the reservoir.
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Figure 34. Difference in water potential through time from the outermost block in the 
sand to the first block in fault next to the interface for RUN_5. Values are cal-
culated so that a positive difference in potential represents a driving force from 
the the reservoir into the fault.
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Figure 35. Relative permeability through time of the reservoir grid blocks next to the 
fault-reservoir interface for RUN_5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (millions of years)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
P

er
m

ea
bi

lit
y 

to
 W

at
er

 (
K

rw
)

Block 1
Block 2
Block 3
Block 4

1
2
3
4



56
in water and oil potential differences, respectively.

Figure 36 is selected time slices of oil saturation versus location. Figure 36 shows no 

apparent change in the oil water contact from 1.50 to 2.25 million yearsm, illustrating that 

the system is nearly at steady-state.
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Figure 36. Saturation of oil versus location for RUN_5 at 0.25, 0.75, 1.50, and 2.25 mil-
lion years.
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Figure 37. Summary of oil column height versus time for RUN_1, RUN_2, RUN_3, 
RUN_4, and RUN_5.
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RUN_6: Complex Fault and Multiple Reservoirs

The last numerical simulation is a relatively complex geological model. The fault zone 

is divided into two regions. The lower section of the fault zone has a permeability of 0.01 

millidarcies and the upper section of the fault zone has a permeability of 0.10 millidarcies 

(Figure 38). Geologically, this variation of permeability within the fault zone can be attrib-

uted to shale smear. A large shale sequence, more susceptable to ductile deformation and 

smearing, located below the first two reservoirs could cause more shale smear (lower per-

meability) in the deeper portion of the fault zone as opposed to the  shallow portion of the 

fault zone.

Connected to this fault are a total of four reservoirs. Two reservoirs, one finite and one 

infinite, are connected to both the upper and lower sections of the fault zone. The reser-

voirs on the downthrown side of the fault zone dip 20 degrees and the reservoirs on the 

upthrown side of the fault zone dip 10 degrees. Using the analytical approach developed in 

this paper, we expect oil column heights of 44 meters in both the reservoirs attached to the 

high permeability fault zone and oil column heights of 347 meters in both the reservoirs 

attached to the low permeability fault zone. Note that in this model we are predicting a 

large range of oil columns to demonstrate the geological complexity of this system. We 

propose that this complex model is a more attainable analogy to real systems that we 

observe in the field.

Our numerical model generates oil column heights of 47 meters for the finite reservoir 

attached to the high permeability fault section, 53 meters for the infinite reservoir attached 

to the high permeability fault section, 70 meters for the finite reservoir attached to the low 

permeability fault section, and 293 meters for the infinite reservoir attached to the low per-
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meability fault section (Figure 39). 
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Figure 38. Conceptual model of the complex fault and multiple reservoirs of RUN_6.
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Figure 39.  Hydrocarbon column height versus time for the complex fault and multiple 
reservoirs simulation (RUN_6).
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Figure 39 illustrates that these reservoirs fill sequentially. The first reservoir (infinite 

reservoir attached to low permeability fault section) fills to approximately 50% of itÕs 

eventual steady-state column height before the second reservoir (finite reservoir attached 

to low permeability fault section) begins to fill (Figure 39). The second reservoir fills to 

approximately 80% of its eventual steady-state column height before the third reservoir 

(infinite reservoir attached to high permeability fault section) begins to fill. The third res-

ervoir fills to approximately 58% of its eventual steady-state column height before the 

fourth reservoir (finite reservoir attached to high permeability fault section) begins to fill. 

Figures 40 through 42 illustrate the transient response of oil saturation in this system 

as it is charging. Figure 42 has the steady state solution occurring at about 5.0 million 

years.
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Figure 40. Saturation of oil versus location for RUN_6 at 0.50, 1.00, 1.50, and 2.00 mil-
lion years.
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Figure 41. Saturation of oil versus location for RUN_6 at 2.50, 3.00, 3.50, and 4.00 mil-
lion years.
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Figure 42. Saturation of oil versus location for RUN_6 at 4.50 and 5.00 million years.
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Table 3: Key Input and Output for Simulations

RUN_1 RUN_2 RUN_3 RUN_4 RUN_5 RUN_6

Fault 
k (mD)

0.10 0.10 0.10 0.01 0.01 0.10 Upper
0.01 Lower

Fault
Porosity

0.05 0.05 0.05 0.05 0.05 0.05

Reservoir 
Type

Infinite Infinite Finite Infinite Finite Finite and 
Infinite

Flux into 
Fault
(m/s)

1.13*10-12 1.13*10-11 1.13*10-11 1.13*10-11 1.13*10-11 1.13*10-11

Numerical
Column 
Height (m)

34 42 42 341 58 variable

Analytical 
Column 
Height (m)

35 44 44 347 347 variable

Numerical 
Time to 
Steady State

3.5 million 
years

1.0 million 
years

1.0 million 
years

10.0 mil-
lion years

1.5 million 
years

5.0 million 
years

Analytical 
Time to 
Steady State

3.4 million 
years

0.5 million 
years

0.5 million 
years

5.8 million 
years

5.8 million 
years
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Discussion

From these six simulations it becomes evident that methodologies used in the past to 

predict hydrocarbon column height may, in some instances, prove to be less than adequate. 

Schowalter (1979), for example, states that the hydrocarbon column height is a function of 

the capillary pressure relationship for the fault zone whereby the Òbreak throughÓ satura-

tion is static. This implies that a fault zone with a given capillary pressure relationship will 

trap hydrocarbon columns of the same height. The first simulation demonstrates 

SchowalterÕs static principle (Figure 48a). Our methodology, however, predicts that for a 

given fault zone the hydrocarbon column height is primarily dependent upon the flux of 

hydrocarbons into the fault, the saturation that results from this flux, and the capillary 

pressure in the fault zone at the specified saturation. This method allows for dynamic 

hydrocarbon column heights. That is, hydrocarbon column heights may vary for the same 

fault zone as a function of the flux into the fault. This principle is demonstrated with our 

second simulation (Figure 48b). The distinction lies in the process whereby hydrocarbons 

are put in place. SchowalterÕs model suggests that a seal overlying a reservoir charged 

from the bottom is only capable of trapping an oil column equivalent in height to the 

height predicted by a 10% oil saturation on the capillary pressure curve. Our model 

invokes the seal as the primary conduit for the emplacement of hydrocarbons into the res-

ervoir. Furthermore, our model shows that the sealing capacity of a fault zone, or any seal-

ing material for that matter, is a function of the oil saturation within the seal.

In addition to the dynamic response of hydrocarbon column height to flux, we con-

sider the variation of hydrocarbon column height with respect to reservoir geometry. For 

small hydrocarbon column heights, relative to reservoir thickness, we observe that there is 
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little 

Figure 43. Summary of oil saturation versus location for the six simulations. a) RUN_1. b) 
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RUN_2. c) RUN_3. d) RUN_4. e) RUN_5. f) RUN_6.

if any difference in the hydrocarbon column height with variations in reservoir geometry. 

Comparing RUN_2 and RUN_3 we observe little or no variation in hydrocarbon column 

height (Figures 48b and 48c). For large hydrocarbon column heights relative to reservoir 

thickness, however, we observe large differences in oil column height as a function of res-

ervoir geometry. For the same input parameters, a regional and infinite reservoir can sup-

port much larger hydrocarbon columns than a local and finite reservoir (Figures 48d and 

48e). We observe that this is due primarily to the inability of water to exit the reservoir 

from the fault-reservoir interface. The relative permeability to water at this interface is 

effectively reduced to zero. This phenomena is referred to as Òperched waterÓ. As oil fills 

the reservoir, the water is displaced through the fault reservoir interface. Once the oil-

water contact exceeds the thickness of the reservoir and the water saturations at the inter-

face approach irreducible, the water is effectively locked into place. Since the water is 

essentially locked in the reservoir, oil is unable to infill. This implies that adequate struc-

ture is not the only criterion needed for a suitable hydrocarbon trap. In the case of a strati-

graphic pinch out or sand lens, a suitable structure may exist that is capable of supporting 

large hydrocarbon columns. However, if connate water already in place is incapable of 

leaking out of the reservoir, the trap may never charge to itÕs full potential.  This is 

largely due to the nearly incompressible nature of water. In small and finite reservoirs, the 

water in place may be slightly compressible, this compressibility, however, is not adequate 

to accommodate the amount of oil that could potentially charge the reservoir. In the case 

of large and infinite acting reservoirs, there is enough water to accommodate to oil that 

infills the updip portion of the trap.
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Relatively complex systems are also considered in order to understand the controls on 

hydrocarbon columns associated with more realistic geological scenarios. RUN_6 reveals 

the sequential nature of filling reservoirs connected to the same fault and the spatial distri-

bution of columns as a function of different boundary conditions and fault rock properties. 

We find that reservoirs attached to the same fault fill sequentially from the bottom up, that 

fault rock properties such as permeability directly affect the height of hydrocarbon col-

umns and that the outer boundary conditions of these reservoirs can greatly affect the 

height of hydrocarbon columns where large columns, relative to sand thickness, are pre-

dicted.
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