The PLATES 2010
Atlas of Plate Reconstructions
(750 Ma to Present Day)

By
L.A. Lawver, I.W.D. Dalziel, I.O. Norton, and L.M. Gahagan

Progress Report No. 340-0710
The **PLATES** Project

Institute for Geophysics
The University of Texas at Austin
J.J. Pickle Research Campus, Bldg. 196
10100 Burnet Road (R2200)
Austin TX 78758-4445

Principle Investigators: Lawrence A. Lawver and Ian W.D. Dalziel
Co-Investigator: Ian O. Norton
Project Manager: Lisa M. Gahagan

Academic Collaborators include:
Steve Cande Scripps Institute of Oceanography, California
Mike Coffin Ocean Research Institute, University of Tokyo
Olav Eldholm University of Oslo, Norway
Tung-Yi Lee National Taiwan Normal University
Paul Mann University of Texas Institute for Geophysics
R. Dietmar Müller University of Sydney, Australia
Robert D. Rogers University of Puerto Rico, Mayaguez
Jean-Yves Royer Geosciences Azur, France
Sergei Pisarevsky Tectonics Special Research Centre, Australia
David Sandwell Scripps Institute of Oceanography, California

This atlas was made possible through the scientific contributions of many researchers, from UTIG and from other institutions. Their efforts are highly appreciated by the members of the **PLATES** research team.

This atlas should be referenced as follows:

We kindly request that this atlas, or portions thereof, not be reproduced in any form without the written permission of the Institute for Geophysics, The University of Texas at Austin.

This atlas was originally produced in July, 2010.

© The University of Texas at Austin Institute for Geophysics, 2010
510 Ma
Furongian (Cambrian)

PLATES/UTIG
July 2010
500 Ma

Furongian (Cambrian)
490 Ma
Paibian
Furongian (Cambrian)
480 Ma
Tremadocian
Early Ordovician

PLATES/UTIG
July 2010
470 Ma

Middle Ordovician

PLATES/UTIG
July 2010
430 Ma
Telychian
Llandovery (Early Silurian)

PLATES/UTIG
July 2010
420 Ma
Ludfordian
Ludlow (Late Silurian)

PLATES/UTIG
July 2010
410 Ma
Pragian
Early Devonian

PLATES/UTIG
July 2010
390 Ma
Givetian
Middle Devonian

PLATES/UTIG
July 2010
240 Ma
Anisian
Middle Triassic
210 Ma
Late Norian
Late Triassic
200 Ma
Sinemurian
Early Jurassic
140 Ma
Berriasian
Early Cretaceous
120 Ma
Aptian
Early Cretaceous
090 Ma
Turonian
Late Cretaceous
030 Ma
Rupelian
Early Oligocene
20 Ma
Burdigalian
Early Miocene
North Pole
390 Ma
Givetian (Middle Devonian)

PLATES/UTIG
July 2010
North Pole
360 Ma
Famennian (Late Devonian)
North Pole
270 Ma
Late Sakmarian (Early Permian)

PLATES/UTIG
July 2010
North Pole
240 Ma
Anisian (Middle Triassic)

PLATES/UTIG
July 2010
120 Ma
Aptian (Early Cretaceous)

North Pole

PLATES/UTIG
July 2010
North Pole
090 Ma
Turonian (Late Cretaceous)
South Pole
420 Ma
Ludfordian (Late Silurian)
South Pole
330 Ma
Visean (Mississipian)

PLATES/UTIG
July 2010
South Pole
270 Ma
Late Sakmarian (Early Permian)

PLATES/UTIG
July 2010
South Pole
180 Ma
Aalenian (Middle Jurassic)
PLATES/UTIG
July 2010
South Pole
090 Ma
Turonian (Late Cretaceous)

PLATES/UTIG
July 2010
South Pole
030 Ma
Early Oligocene

PLATES/UTIG
July 2010
References for Rotation File

Cuchumantanes Terrane, Chicol Formation: Ordovician-Permian; early Paleozoic

Polochic-Motagua and Santa Cruz terranes: 144 Ma.

Burke, K. and Rutherford, E., 1987, Sumba as a sideways slipping sliver, unpublished manuscript.

Christiansen, P.P. and Sneeuw, L.W., 1994, Structure, metamorphism, and geochronology of the Cosmos Hills and Ruby Ridge, Brooks Range schist belt, Alaska, Tectonics, vol. 13(1), pp. 193-213. (“ Thrusting began during the Bathonian (176-169 Ma) and continued through the Aptian time (~115 Ma)...Orogenic shortening in the southern Brooks Range began with the obduction of the now dismembered Angayucham terrane... The oldest date determined in this study is Jurassic... a cooling age and thus a minimum age for oldest metamorphism in the Ruby Ridge area... 171.4 ± 0.4 Ma”

Epp 1978

Flinch, J.F., 2003, Structural evolution of the Sinu-Lower Magdalena area (northern Colombia), in The circum-Gulf of Mexico and the Caribbean; hydrocarbon habitats, basin formation, and plate tectonics. Bartolini, C., Buffle, R.T., and Blickwede, J. F. (editors), AAPG Memoir 79, pp. 776-796. (The Sinu-San Jacinto Province, located west of the Romer fault, is a Paleocene to Oligocene accretionary wedge floored by Cretaceous oceanic crust.)

Hall, R., van Hattum, M.W.A., and Spakman, W., 2008, Impact of India-Asia collision on SE Asia: The record in Borneo, Tectonophysics, v. 451: 366-389. (In SW Borneo the Palaeozoic is represented mainly by metamorphic rocks of Carboniferous to Permian age, although Devonian limestones have been found as river boulders in East Kalimantan.)

Hanson, R.E., McCleery, D.A., Crowley, J.L., Bowring, S.A., Burkholder, B.K., Finegan, S.A., Philips, C.M., and Pollard, J.B., 2009, Large-scale Cambrian Rhyolitic Volcanism in southern Oklahoma Related to Opening of Iapetus, presented at the Geological Society of America South-Central Section - 43rd Annual Meeting, 16-17 March 2009, Dallas, Texas, USA.

Mixteco (Acatalan) derivation from the adjacent ~1 Ga Oaxacan Complex. Part of a continental rise deposited on oceanic lithosphere - fringing Oaxaquia.

Liou, J.G. and Maruyama, S., 1986, Post-Permian evolution of Asia, and some implications for Taiwan, Acta Geologica Taiwanica, No. 24, pp. 5-49.

Pease, V. and Scott, R.A., submitted (2009), Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Paleozoic sediments in Novaya Zemlya and Taimyr, ???, p. 52. Also, personal communication from V. Pease.

Rogers, R., 2003, Jurassic to Recent tectonic and stratigraphic history of the Chortis block of Honduras and Nicaragua (northern Central America), PhD dissertation, The University of Texas at Austin.

Smith, A.B., 1988, Late Palaeozoic biogeography of East Asia and palaeontological constraints on plate tectonic reconstructions, Phil. Trans. R. Soc. Lond., A326: 189-227.

Maya Mountains, Yucatan Peninsula, Belize: 418 ± 3.6 Ma.

Mountain Pine Ridge pluton complex of Maya Mountains of Belize yielded 418 ± 3.6 Ma

Suzuki, H. and Kuwahara, K., 2003, Permian radiolarians from the Kosado area of Sado Island, central Japan, Journal of the Geological Society of Japan, vol. 109(8), pp. 489-492. (Late Permian radiolarians found on Sado Island. A part of the pre-Tertiary rocks of Sado Island should be correlated to the Permian)

Tolher, E., D’Agrella-Filho, M.S., and Trindade, R.I.F., 2006, Paleomagnetic record of Africa and South America for the 1200-500 Ma interval, and evaluation of Rodinia and Gondwana assemblies, Precambrian Research, vol. 147, p. 193-222. (Amazonia-NW Africa collide with central Gondwana 530-520 Ma; Arabian-Nubian shield was stable, coherent block ~600 Ma).

Veevers & Ettreim 1988

Chiapas Block: separate crustal block, in close connection to Oaxaquia or other similar rocks in northwestern South Americ

Wilson, D.S., 1988, Tectonic history of the Juan de Fuca Ridge over the last 40 million years, Journal of Geophysical Research, 33: 11,863-11,876.

References for data

Tectonic map of Australia and New Guinea, 1971, scale 1:5,000,000, Geological Society of Australia, Sydney, Australia.

Total sedimentary isopach map, offshore east Asia, 1991, Working group on resource assessment, committee for co-ordination of joint prospecting for mineral resources in Asian offshore areas (CCOP), scale 1:4,000,000.

Bergh, H.W., pers. comm.

Bradshaw, J.D., 1997, Terrane Dynamics 1997 Guidebook for Field Excursions A, B, & C, University of Canterbury, Christchurch, New Zealand. Figure 1, page III.

British Antarctic Survey, 1985, Tectonic Map of the Scotia Arc, Scale 1:3,000,000. BAS (Misc.) 3. Cambridge, British Antarctic Survey.

British Oceanographic Data Centre (Proudman Oceanographic Laboratory), 1997, General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas, Bidston Observatory, Merseyside L43 7RA, UK (cdrom).

Case, J. and Holcombe, T., 1980, Geologic-tectonic map of the Caribbean region, scale 1:2,500,000.

Coffin, M.F. and Eldholm, O., in prep., Chapman paper.

Cuban Gulf Oil Co., 1956, Regional Geologic Map of Cuba; air photographic base; scale approximately 1:100,000; sheets B6, C6, and C7.

Defense Mapping Agency Hydrographic/Topographic Center, 1980, Shetland Islands: Deception Island to King George Island, map, mercator projection, scale: 1:200,000 at latitude 65°.

Dickinson, W.R. and Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico, Geological Society of America Bulletin, vol. 113(9), p. 1142-1160 (Fig. 1). Digitized Del Sur terrane. Southeastern portion of the terrane was modified using reference 2106, Weber et al., 2007.

(Based on: Draper, G., Mann, P., and Lewis, J.F., 1994, Hispaniola, in S.K. Donovan and T.A. Jackson (eds.), Caribbean Geology: An Introduction, 129-150, University of the West Indies Publisher’s Association, Kingston, Jamaica.)

Dunbar, J. and Sawyer, D., 1986, Crust extension within the Gulf of Mexico: Implications for the breakup of Western Pangea, abs. from 1986 Geodynamics Symposium.

Exxon Production Research Company (World Mapping Project), 1985, Tectonic Map Series of the World, Exxon Production Research Company, Houston, TX.

Falconer, R.H.K. and Tharp, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•14, Canadian Hydrographic Service.

Fisher, R.L., pers. comm.

Ghidella, M., 1999, personal communication. USAC data.

Hayes, D.E. and Vogel, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•13, Canadian Hydrographic Service.

Instituto Geografico Nacional, 1970, Mapa Geologico de la Republica de Guatemala, scale 1:500,000.

Iwabuchi, Y., 1979, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•6, Canadian Hydrographic Service.
Jackson, Martin, 2007, Outline of salt basins from his salt basin database, personal communication.
Jennings, C.W., 1961, Geologic map of California: Kingman sheet, scale 1:250,000, California Division of Mines and Geology, Sacramento, CA.
Johnson, G.L., and Vanney, J.R., 1980, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•18, Canadian Hydrographic Service.
Kovacs, L.C., Srivastava, S.P. and Jackson, H.R., 1986, Results from an aeromagnetic investigation of the Nares Strait Region, J. Geodynamics, 6: 91-110.
LaBrecque, J. and Rabinowitz, P.D., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•16, Canadian Hydrographic Service.

Laughton, A.S., 1975, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•5, Canadian Hydrographic Service.

Lodolo, E. and Coren, F., 1997, A late Miocene plate boundary reorganization along the westernmost Pacific-Antarctic Ridge. Tectonophysics, 274(4): 295-305; Figure 3. Re-picked by Tip Meckel.

Mammerickx, J. and Cande, S., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•15, Canadian Hydrographic Service.

Mann, P., personal communication. NEHRP Proposal. Active tectonic lineaments in Mona Passage, between Hispaniola and Puerto Rico.

May, P.R., 1971, Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift position of the continents, Geologica Society of America Bulletin, 82:1285-1292.

M Eliorada, P., 1976, Carta geologica del la Republica Mexicana, scale 1:2,000,000.

Miall, A.D., 1983, the Neves Strait problem: A re-evaluation of the geological evidence in terms of a diffuse oblique-slip plate boundary between Greenland and the Canadian Arctic Islands, Tectonophysics, 100:227-239.

Mobil Exploration and Producing Technical Center, 1994, Global Isopach Map and Digital Database, Dallas, TX.

Monahan, D., Falconer, R.H.K., and Tharp, M., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•10, Canadian Hydrographic Service.

New Zealand Geological Survey, 1972, "Geological map of New Zealand 1:1,000,000", North and South Islands sheets (1st edition), Department of Scientific and Industrial Research, Wellington, New Zealand.

Pardo-Casas, F. and Molnar, P., 1987, Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time, Tectonics, 6(3): 215-232.

Parfenov, L. & others, in press, "Comprehensive Geodynamic Chart," inset of northeastern Siberia from the "Geodynamic map of Okhotsk and surrounding territories."

Pease, V. and Scott, R.A., submitted (2009), Crustal affinities in the Arctic Uralides, northern Russia: Significance of detrital zircon ages from Neoproterozoic and Paleozoic sediments in Novaya Zemlya and Taimyr, ???, p. 52. Also, personal communication from V. Pease.

Peter et al.

Rogers, Rob, 2003, Jurassic to Recent Tectonic and Stratigraphic History of the Chortis Nlock of Honduras and Nicaragua (Northern Central America), PhD dissertation, University of Texas at Austin, pp. 264.

Magnetics taken from a figure for a new in preparation.

Rosencrantz, E. and Pardo, G., 19??, Investigations Into the Geology of Cuba, University of Texas at Austin Institute for Geophysics unpublished atlas, p. 47. Data digitized from Figure 1 of Section 1.1, "An Overview of the Cuban Orogen Geological Divisions."

Sutherland, R., 1999, Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data, Tectonophysics, v. 308(3), 341-362.

St. John, B., 1984, Sedimentary provinces of the world - hydrocarbon productive and nonproductive, Williams & Heinz Map Corporation, Capitol Heights, MD, 20743. Scale 1:31,368,000 or 500 miles to the inch at the equator. Van der Grinten projection.

Schlich, R., Wise, S.W., Jr., et al., 1989, Leg 120, Proceedings of the Ocean Drilling Program, Initial Reports, College Station, TX.

Ster, T.A. and Davey, 1989, Crustal structure and origin of basins formed behind the Hikurangi subduction zone, New Zealand, in R.A. Price (eds.), Origin and evolution of sedimentary basins and their energy and mineral resources, 48, pp. 73-86, American Geophysical Union, Washington, D.C.,

Theberge, A.E., Jr., 1971, Magnetic survey off southern California and Baja California: Rockwell, Maryland, National Oceanographic and Atmospheric Administration, National Ocean Survey, scale 1:1,000,000.

Vaughan, A.P.M. and Pankhurst, R.J., 2008, Tectonic overview of the West gondwana margin, Gondwana Research, vol. 13, pp. 150-162. Fig. 4.

World Data Bank #2 (CIA), Cartographic Database - Natural and manmade features of the world (digitized format), NTIS PB 271-874.

