The PLATES 2007
Atlas of Plate Reconstructions
(750 Ma to Present Day)

By
L.A. Lawver, I.W.D. Dalziel, I.O. Norton, and L.M. Gahagan

Progress Report No. 310-0308
The PLATES Project

Institute for Geophysics
The University of Texas at Austin
4412 Spicewood Springs, Bldg. 600
Austin, Texas 78759-8500

Principle Investigators: Lawrence A. Lawver and Ian W.D. Dalziel
Project Manager: Lisa M. Gahagan

Academic Collaborators include:
Steve Cande Scripps Institute of Oceanography, California
Mike Coffin Ocean Research Institute, University of Tokyo
Olav Eldholm University of Oslo, Norway
Tung-Yi Lee National Taiwan Normal University
Paul Mann University of Texas Institute for Geophysics
R. Dietmar Müller University of Sydney, Australia
Robert D. Rogers University of Puerto Rico, Mayaguez
Jean-Yves Royer Geosciences Azur, France
Sergei Pisarevsky Tectonics Special Research Centre, Australia
David Sandwell Scripps Institute of Oceanography, California

This atlas was made possible through the scientific contributions of many researchers, from UTIG and from other institutions. Their efforts are highly appreciated by the members of the PLATES research team.

This atlas should be referenced as follows:

We kindly request that this atlas, or portions thereof, not be reproduced in any form without the written permission of the Institute for Geophysics, The University of Texas at Austin.

This atlas was originally produced in March, 2008.

© The University of Texas at Austin Institute for Geophysics, 2008
600 Ma
Late Proterozoic

PLATES/UTIG
March 2008
480 Ma
Arenigian (Early Ordovician)
440 Ma
Early Llandoveryan (Early Silurian)

PLATES/UTIG
March 2008
400 Ma
Late Praghian/Early Emsian (Early Devonian)
390 Ma
Early Eifelian (Early Devonian)
380 Ma
Late Eifelian/Early Givetian (Middle Devonian)

PLATES/UTIG
March 2008
240 Ma
Anisian (Middle Triassic)

PLATES/UTIG
March 2008
220 Ma
Early Norian (Late Triassic)

PLATES/UTIG
March 2008
210 Ma
Late Norian (Late Triassic)

PLATES/UTIG
March 2008
180 Ma
Aalenian (Middle Jurassic)
090 Ma
Turonian (Late Cretaceous)

PLATES/UTIG
March 2008
030 Ma
Late Miocene
North Pole
540 Ma
Nemakitian-Daldynian (Early Cambrian)
North Pole
300 Ma
Kasimovian (Pennsylvanian)

PLATES/UTIG
March 2008
North Pole
150 Ma
Volgian (Late Jurassic)

PLATES/UTIG
March 2008
North Pole
140 Ma
Ryazanian (Early Cretaceous)

PLATES/UTIG
March 2008
North Pole
100 Ma
Late Albian (Early Cretaceous)
North Pole
080 Ma
Campanian (Late Cretaceous)
North Pole
060 Ma
Late Paleocene
PLATES/UTIG
March 2008
North Pole
000 Ma
Present Day

PLATES/UTIG
March 2008
South Pole
700 Ma
Late Proterozoic

PLATES/UTIG
March 2007
South Pole
650 Ma
Late Proterozoic
South Pole
540 Ma
Nemakitian-Daldynian (Early Cambrian)

PLATES/UTIG
March 2008
South Pole
510 Ma
Middle Cambrian

PLATES/UTIG
March 2008
South Pole
480 Ma
Arenigian (Early Ordovician)
South Pole
420 Ma
Ludlovian (Late Silurian)

PLATES/UTIG
March 2008
South Pole
330 Ma
Visean (Mississippian)

PLATES/UTIG
March 2008
South Pole
300 Ma
Kasimovian (Pennsylvanian)

PLATES/UTIG
March 2008
South Pole
150 Ma
Volgian (Late Jurassic)
South Pole
130 Ma
Hauterivian (Early Cretaceous)

PLATES/UTIG
March 2008
South Pole
070 Ma
Maastrichtian (Late Cretaceous)
South Pole
060 Ma
Late Paleocene

PLATES/UTIG
March 2008
South Pole
020 Ma
Early Miocene

PLATES/UTIG
March 2007
References for Rotation File


Burke, K. and Rutherford, E., 1987, Sumba as a sideways slipping sliver, unpublished manuscript.


http://www.wenval.cc/rdawes/FocusPages/PNWterranes.html#blue. Updated: 10/21/01.
Saleeby, J.B., pp. 2-10), *GSA Today*, vol. 6(2), pp. 3-4, 10. [Franciscan terrane accreted by 160 Ma]


Epp 1978


Liou, J.G. and Maruyama, S., 1986, Post-Permian evolution of Asia, and some implications for Taiwan, Acta Geologica Taiwanica, No. 24, pp. 5-49.


Rogers, R., 2003, Jurassic to Recent tectonic and stratigraphic history of the Chortis block of Honduras and Nicaragua (northern Central America), PhD dissertation, The University of Texas at Austin.

Rosa, J.W.C., and Molnar, P., 1988, Uncertainties in reconstructions of the Pacific, Farallon, Vancouver and Kula plates and constrains on the rigidity of the Pacific and Farallon (and


Smith, A.B., 1988, Late Palaeozoic biogeography of East Asia and palaeontological constraints on plate tectonic reconstructions, Phil. Trans. R. Soc. Lond., A326: 189-227.


Veevers & Eittreim 1988


Wilson, D.S., 1988, Tectonic history of the Juan de Fuca Ridge over the last 40 million years, Journal of Geophysical Research, 33: 11,863-11,876.


References for data


Tectonic map of Australia and New Guinea, 1971, scale 1:5,000,000, Geological Society of Australia, Sydney, Australia.

Total sedimentary isopach map, offshore east Asia, 1991, Working group on resource assessment, committee for co-ordination of joint prospecting for mineral resources in Asian offshore areas (CCOP), scale 1:4,000,000.


Bergh, H.W., pers. comm.


Bradshaw, J.D., 1997, Terrane Dynamics 1997 Guidebook for Field Excursions A, B, & C, University of Canterbury, Christchurch, New Zealand. Figure 1, page III.

British Antarctic Survey, 1985, Tectonic Map of the Scotia Arc, Scale 1:3,000,000. BAS (Misc.) 3. Cambridge, British Antarctic Survey.

British Oceanographic Data Centre (Proudman Oceanographic Laboratory), 1997, General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas, Bidston Observatory, Merseyside L43 7RA, UK (cdrom).


Case, J. and Holcombe, T., 1980, Geologic-tectonic map of the Caribbean region, scale 1:2,500,000.


Christofel, D.A. and Falconer, R.F., 1972, Marine magnetic measurements in the southwest Pacific Ocean and the identification of new tectonic features, in Antarctic Oceanology II -


Coffin, M.F. and Eldholm, O., in prep., Chapman paper.


Cuban Gulf Oil Co., 1956, Regional Geologic Map of Cuba; air photographic base; scale approximately 1:100,000; sheets B6, C6, and C7.


Defense Mapping Agency Hydrographic/Topographic Center, 1980, Shetland Islands: Deception Island to King George Island, map, mercator projection, scale: 1:200,000 at latitude 65°.
Dickinson, W.R. and Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico, Geological Society of America Bulletin, vol. 113(9), p. 1142-1160 (Fig. 1). Digitized Del Sur terrane. Southeastern portion of the terrane was modified using reference 2106, Weber et al., 2007.


(Based on: Draper, G., Mann, P., and Lewis, J.F., 1994, Hispaniola, in S.K. Donovan and T.A. Jackson (eds.), Caribbean Geology: An Introduction, 129-150, University of the West Indies Publisher's Association, Kingston, Jamaica.)


Dunbar, J. and Sawyer, D., 1986, Crust extension within the Gulf of Mexico: Implications for the breakup of Western Pangea, abs. from 1986 Geodynamics Symposium.


Exxon Production Research Company (World Mapping Project), 1985, Tectonic Map Series of the World, Exxon Production Research Company, Houston, TX.
Falconer, R.H.K. and Tharp, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5*14, Canadian Hydrographic Service.
Fisher, R.L., pers. comm.
Ghidella, M., 1999, personal communication. USAC data.
Hayes, D.E. and Vogel, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•13, Canadian Hydrographic Service.


Instituto Geografico Nacional, 1970, Mapa Geologico de la Republica de Guatemala, scale 1:500,000.


Iwabuchi, Y., 1979, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•6, Canadian Hydrographic Service.

Jackson, Martin, 2007, Outline of salt basins from his salt basin database, personal communication.


Jennings, C.W., 1961, Geologic map of California: Kingman sheet, scale 1:250,000, California Division of Mines and Geology, Sacramento, CA.
Johnson, G.L., and Vanney, J.R., 1980, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5-18, Canadian Hydrographic Service.


LaBrecque, J. and Rabinowitz, P.D., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•16, Canadian Hydrographic Service.
Laughton, A.S., 1975, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•5, Canadian Hydrographic Service.
Lodolo, E. and Coren, F., 1997, A late Miocene plate boundary reorganization along the westernmost Pacific-Antarctic Ridge. Tectonophysics, 274(4): 295-305; Figure 3. Re-picked by Tip Meckel.


Mammerickx, J. and Cande, S., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•15, Canadian Hydrographic Service.


Mann, P., personal communication. NEHRP Proposal. Active tectonic lineaments in Mona Passage, between Hispaniola and Puerto Rico.


Lithospheric tectonic structures developed under high-grade metamorphism in the southern 
part of Madagascar, Geodinamica Acta, 10(3): 94-114.

paleopositions of the Falkland Plateau relative to southern Africa using Mesozoic seafloor 

Martin, A.K. and Hartnady, C.J.H., 1986, Plate tectonic development of the south west Indian 
Ocean: a revised reconstruction of East Antarctica and Africa, Journal of Geophysical 
Research, 91(B5): 4767-4786.

Marton, G. and Buffler, R.T., 1994, Jurassic reconstruction of the Gulf of Mexico Basin, 

Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellieni, G., and DeMin, A., 1999, 
Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic 
Province, Science, 284(5414): 616-618.

Masce, A., Letouzey, A., Biju-Duval, B., Becue, B., Rossi, T., Ifremer, Elf-Aquitaine & 
Rueil-Malmaison, France. Scale is 1:2,500,000.

margin: Implications for the connection between the Central and Southern Atlantic ocean, 

Massell, C.G., 1996, The Neotectonics of the Macquarie Ridge Complex, Pacific-Australia Plate 

Masson, D.P., Kidd, R.B., and Roberts, D.G., 1982, Late Cretaceous sediment sample from the 
Amirante Passage, western Indian Ocean, Geology, 10: 264-266.

Mauffret, A., and Leroy, S., 1999, Neogene intraplate deformation of the Caribbean Plate at the 
Beata Ridge, in P. Mann (eds.), Caribbean Basins, Sedimentary Basins of the World, 4: 627-

May, P.R., 1971, Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the 
context of predrift position of the continents, Geological Society of America Bulletin, 
82:1285-1292.


McKenzie, D. and Selater, J.G., 1971, The evolution of the Indian Ocean since the Late 

University of California, San Diego, 121 pp.

Mejorada, P., 1976, Carta geologica del la Republica Mexicana, scale 1:2,000,000.

Meschede, M., Barckhausen, U., and Worm, H.-U., 1998, Extinct spreading on the Cocos Ridge, 
Terra Nova, 10(4): 211-216.

Deep penetrating MCS imaging of the rift-to-drift transition, offshore Douala and North 
Gabon basins, West Africa, Marine and Petroleum Geology, 13(7): 791-835. Fig. 17: 
vulcanic margin outline.

Miall, A.D., 1983, the Neves Strait problem: A re-evaluation of the geological evidence in terms 
of a diffuse oblique-slip plate boundary between Greenland and the Canadian Arctic Islands, 
Tectonophysics, 100:227-239.

Miles, P.R., Munschy, M., and Segoufin, J., 1998, Structure and early evolution of the Arabian 


Mobil Exploration and Producing Technical Center, 1994, Global Isopach Map and Digital Database, Dallas, TX.


New Zealand Geological Survey, 1972, "Geological map of New Zealand 1:1,000,000", North and South Islands sheets (1st edition), Department of Scientific and Industrial Research, Wellington, New Zealand.
http://pubs.usgs.gov/sm/mag_map/mag_s.pdf


Peter et al.


Rankenburg, K., Lassiter, J.C., and Brey, G., 2004, Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain – constraints on magma genesis and crustal contamination, Contributions to Mineral Petrology, 147: 129-144. Fig. 1.


Rogers, Rob, 2003, Jurassic to Recent Tectonic and Stratigraphic History of the Chortis Block of Honduras and Nicaragua (Northern Central America), PhD dissertation, University of Texas at Austin, pp. 264.


Rosencrantz, E. and Pardo, G., 19??, Investigations Into the Geology of Cuba, University of Texas at Austin Institute for Geophysics unpublished atlas, p. 47. Data digitized from Figure 1 of Section 1.1, "An Overview of the Cuban Orogen Geological Divisions." 


Sutherland, R., 1999, Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data, Tectonophysics, v. 308(3), 341-362.


St. John, B., 1984, Sedimentary provinces of the world - hydrocarbon productive and nonproductive, Williams & Heinz Map Corporation, Capitol Heights, MD, 20743. Scale 1:31,368,000 or 500 miles to the inch at the equator. Van der Grinten projection.


Schlich, R., Wise, S.W., Jr., et al., 1989, Leg 120, Proceedings of the Ocean Drilling Program, Initial Reports, College Station, TX.


Stern, T.A. and Davey, 1989, Crustal structure and origin of basins formed behind the Hikurangi subduction zone, New Zealand, in R.A. Price (eds.), Origin and evolution of sedimentary basins and their energy and mineral resources, 48, pp. 73-86, American Geophysical Union, Washington, D.C.,


World Data Bank #2 (CIA), Cartigraphic Database - Natural and manmade features of the world (digitized format), NTIS PB 271-874.


References for paleomagnetic data


