The PLATES 2006
Atlas of Plate Reconstructions
(750 Ma to Present Day)

By
L.A. Lawver, I.W.D. Dalziel, and L.M. Gahagan

Progress Report No. 305-0307
The PLATES Project

Institute for Geophysics
The University of Texas at Austin
4412 Spicewood Springs, Bldg. 600
Austin, Texas 78759-8500

Principle Investigators: Lawrence A. Lawver and Ian W.D. Dalziel
Project Manager: Lisa M. Gahagan

Academic Collaborators include:
Steve Cande Scripps Institute of Oceanography, California
Mike Coffin Ocean Research Institute, University of Tokyo
Olav Eldholm University of Oslo, Norway
Tung-Yi Lee National Taiwan Normal University
Paul Mann University of Texas Institute for Geophysics
R. Dietmar Müller University of Sydney, Australia
Robert D. Rogers University of Puerto Rico, Mayaguez
Jean-Yves Royer Geosciences Azur, France
Sergei Pisarevsky Tectonics Special Research Centre, Australia
David Sandwell Scripps Institute of Oceanography, California

This atlas was made possible through the scientific contributions of many researchers, from UTIG and from other institutions. Their efforts are highly appreciated by the members of the PLATES research team.

This atlas should be referenced as follows:

We kindly request that this atlas, or portions thereof, not be reproduced in any form without the written permission of the Institute for Geophysics, The University of Texas at Austin.

This atlas was originally produced in March, 2007.

© The University of Texas at Austin Institute for Geophysics, 2007
750 Ma
Late Proterozoic

PLATES/UTIG
March 2007
470 Ma
Late Arenigian/Early Llanvirnian (Early/Middle Ordovician)

PLATES/UTIG
March 2007
430 Ma
Late Llandoverian (Early Silurian)
420 Ma
Ludlovian (Late Silurian)

PLATES/UTIG
March 2007
410 Ma
Early Praghian (Early Devonian)
400 Ma
Late Praghian/Early Emsian (Early Devonian)

PLATES/UTIG
March 2007
390 Ma
Early Eifelian (Early Devonian)

PLATES/UTIG
March 2007
380 Ma
Late Eifelian/Early Givetian (Middle Devonian)

PLATES/UTIG
March 2007
370 Ma
Late Givetian/Early Frasnian (Late Devonian)
340 Ma
Early Visean (Mississippian)

PLATES/UTIG
March 2007
300 Ma
Kasimovian (Pennsylvanian)

PLATES/UTIG
March 2007
280 Ma
Early Sakmarian (Early Permian)

PLATES/UTIG
March 2007
270 Ma
Late Sakmarian (Early Permian)

PLATES/UTIG
March 2007
250 Ma
Tatarian (Late Permian)

PLATES/UTIG
March 2007
240 Ma
Anisian (Middle Triassic)
230 Ma
Ladinian (Middle Triassic)

PLATES/UTIG
March 2007
220 Ma
Early Norian (Late Triassic)

PLATES/UTIG
March 2007
210 Ma
Late Norian (Late Triassic)
200 Ma
Sinemurian (Early Jurassic)
190 Ma
Pliensbachian (Early Jurassic)

PLATES/UTIG
March 2007
180 Ma
Aalenian (Middle Jurassic)

PLATES/UTIG
March 2007
150 Ma
Volgian (Late Jurassic)

PLATES/UTIG
March 2007
130 Ma
Hauterivian (Early Cretaceous)

PLATES/UTIG
March 2007
120 Ma
Aptian (Early Cretaceous)

PLATES/UTIG
March 2007
110 Ma
Early Albian (Early Cretaceous)
070 Ma
Maastrichtian (Late Cretaceous)

PLATES/UTIG
March 2007
030 Ma
Early Oligocene

PLATES/UTIG
March 2007
North Pole
700 Ma
Late Proterozoic

PLATES/UTIG
March 2007
North Pole
650 Ma
Late Proterozoic

PLATES/UTIG
March 2007
North Pole
540 Ma
Nemakitian-Daldynian (Early Cambrian)
North Pole
510 Ma
Middle Cambrian

PLATES/UTIG
March 2007
North Pole
480 Ma
Arenigian (Early Ordovician)
North Pole
450 Ma
Caradocian (Late Ordovician)

PLATES/UTIG
March 2007
North Pole
420 Ma
Ludlovian (Late Silurian)

PLATES/UTIG
March 2007
North Pole
390 Ma
Early Eifelian (Early Devonian)
North Pole
360 Ma
Famennian (Late Devonian)
North Pole
270 Ma
Late Sakmarian (Early Permian)
North Pole
240 Ma
Anisian (Middle Triassic)
North Pole
210 Ma
Late Norian (Late Triassic)

PLATES/UTIG
March 2007
North Pole
140 Ma
Ryazanian (Early Cretaceous)
North Pole
130 Ma
Hauterivian (Early Cretaceous)

PLATES/UTIG
March 2007
North Pole
120 Ma
Aptian (Early Cretaceous)
North Pole
070 Ma
Maastrichtian (Late Cretaceous)

PLATES/UTIG
March 2007
North Pole 030 Ma Early Oligocene
PLATES/UTIG
March 2007
North Pole
020 Ma
Early Miocene

PLATES/UTIG
March 2007
North Pole
000 Ma
Present Day

PLATES/UTIG
March 2007
South Pole
600 Ma
Late Proterozoic

PLATES/UTIG
March 2007
South Pole
540 Ma
Nemakit-Daldynian (Early Cambrian)
South Pole
480 Ma
Arenigian (Early Ordovician)

PLATES/UTIG
March 2007
South Pole
450 Ma
Caradocian (Late Ordovician)

PLATES/UTIG
March 2007
South Pole
420 Ma
Ludlovian (Late Silurian)

PLATES/UTIG
March 2007
South Pole
330 Ma
Visean (Mississippian)

PLATES/UTIG
March 2007
South Pole
270 Ma
Late Sakmarian (Early Permian)

PLATES/UTIG
March 2007
South Pole
240 Ma
Anisian (Middle Triassic)
PLATES/UTIG
March 2007
South Pole
210 Ma
Late Norian (Late Triassic)

PLATES/UTIG
March 2007
South Pole
140 Ma
Ryazanian (Early Cretaceous)
South Pole
130 Ma
Hauterivian (Early Cretaceous)

180°
0°

PLATES/UTIG
March 2007
South Pole
110 Ma
Early Albian (Early Cretaceous)
South Pole
030 Ma
Early Oligocene
South Pole
010 Ma
Late Miocene
References for Rotation File


Burke, K. and Rutherford, E., 1987, Sumba as a sideways slipping sliver, unpublished manuscript.


http://www.wenval.cc/rdawes/FocusPages/PNWterranes.html#blue. Updated: 10/21/01.


Epp 1978


Liou, J.G. and Maruyama, S., 1986, Post-Permian evolution of Asia, and some implications for Taiwan, Acta Geologica Taiwanica, No. 24, pp. 5-49.


Rogers, R., 2003, Jurassic to Recent tectonic and stratigraphic history of the Chortis block of Honduras and Nicaragua (northern Central America), PhD dissertation, The University of Texas at Austin.
Smith, A.B., 1988, Late Palaeozoic biogeography of East Asia and palaeontological constraints on plate tectonic reconstructions, Phil. Trans. R. Soc. Lond., A326: 189-227.


Veevers & Eittreim 1988


Wilson, D.S., 1988, Tectonic history of the Juan de Fuca Ridge over the last 40 million years, Journal of Geophysical Research, 33: 11,863-11,876.


References for data


Tectonic map of Australia and New Guinea, 1971, scale 1:5,000,000, Geological Society of Australia, Sydney, Australia.

Total sedimentary isopach map, offshore east Asia, 1991, Working group on resource assessment, committee for co-ordination of joint prospecting for mineral resources in Asian offshore areas (CCOP), scale 1:4,000,000.


Bergh, H.W., pers. comm.


Bradshaw, J.D., 1997, Terrane Dynamics 1997 Guidebook for Field Excursions A, B, & C, University of Canterbury, Christchurch, New Zealand. Figure 1, page III.

British Antarctic Survey, 1985, Tectonic Map of the Scotia Arc, Scale 1:3,000,000. BAS (Misc.) 3. Cambridge, British Antarctic Survey.

British Oceanographic Data Centre (Proudman Oceanographic Laboratory), 1997, General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas, Bidston Observatory, Merseyside L43 7RA, UK (cdrom).


Case, J. and Holcombe, T., 1980, Geologic-tectonic map of the Caribbean region, scale 1:2,500,000.


Coffin, M.F. and Eldholm, O., in prep., Chapman paper.


Cuban Gulf Oil Co., 1956, Regional Geologic Map of Cuba; air photographic base; scale approximately 1:100,000; sheets B6, C6, and C7.


Defense Mapping Agency Hydrographic/Topographic Center, 1980, Shetland Islands: Deception Island to King George Island, map, mercator projection, scale: 1:200,000 at latitude 65°.


(Based on: Draper, G., Mann, P., and Lewis, J.F., 1994, Hispaniola, in S.K. Donovan and T.A. Jackson (eds.), Caribbean Geology: An Introduction, 129-150, University of the West Indies Publisher's Association, Kingston, Jamaica.)


Dunbar, J. and Sawyer, D., 1986, Crust extension within the Gulf of Mexico: Implications for the breakup of Western Pangea, abs. from 1986 Geodynamics Symposium.


Exxon Production Research Company (World Mapping Project), 1985, Tectonic Map Series of the World, Exxon Production Research Company, Houston, TX.


Falconer, R.H.K. and Tharp, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5+14,Canadian Hydrographic Service.


Fisher, R.L., pers. comm.


Ghidella, M., 1999, personal communication. USA data.


Hayes, D.E. and Vogel, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•13, Canadian Hydrographic Service.


Instituto Geografico Nacional, 1970, Mapa Geologico de la Republica de Guatemala, scale 1:500,000.


Iwabuchi, Y., 1979, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•6, Canadian Hydrographic Service.


Jennings, C.W., 1961, Geologic map of California: Kingman sheet, scale 1:250,000, California Division of Mines and Geology, Sacramento, CA.

Johnson, G.L., and Vanney, J.R., 1980, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5+18, Canadian Hydrographic Service.


Kovaes, L.C., Srivastava, S.P. and Jackson, H.R., 1986, Results from an aeromagnetic investigation of the Nares Strait Region, J. Geodynamics, 6: 91-110.


LaBrecque, J. and Rabinowitz, P.D., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5+16, Canadian Hydrographic Service.


Laughton, A.S., 1975, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•5, Canadian Hydrographic Service.


Lodolo, E. and Coren, F., 1997, A late Miocene plate boundary reorganization along the westernmost Pacific-Antarctic Ridge. Tectonophysics, 274(4): 295-305; Figure 3. Re-picked by Tip Meckel.


Mammerickx, J. and Cande, S., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•15, Canadian Hydrographic Service.


Mann, P., personal communication. NEHRP Proposal. Active tectonic lineaments in Mona Passage, between Hispaniola and Puerto Rico.


Mejorada, P., 1976, Carta geologica del la Republica Mexicana, scale 1:2,000,000.


Miall, A.D., 1983, the Neves Strait problem: A re-evaluation of the geological evidence in terms of a diffuse oblique-slip plate boundary between Greenland and the Canadian Arctic Islands, *Tectonophysics*, 100:227-239.


Mobil Exploration and Producing Technical Center, 1994,*Global Isopach Map and Digital Database*, Dallas, TX.


New Zealand Geological Survey, 1972, "Geological map of New Zealand 1:1,000,000", North and South Islands sheets (1st edition), Department of Scientific and Industrial Research, Wellington, New Zealand.


Parfenov, L. & others, in press, "Comprehensive Geodynamic Chart," inset of northeastern Siberia from the "Geodynamic map of Okhotsk and surrounding territories."


Parfenov, L. & others, in press, "Comprehensive Geodynamic Chart," inset of northeastern Siberia from the "Geodynamic map of Okhotsk and surrounding territories."


Peter et al.


Rankenburg, K., Lassiter, J.C., and Brey, G., 2004, Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain – constraints on magma genesis and crustal contamination, Contributions to Mineral Petrology, 147: 129-144. Fig. 1.


Rosencrantz, E. and Pardo, G., 19??, Investigations Into the Geology of Cuba, University of Texas at Austin Institute for Geophysics unpublished atlas, p. 47. Data digitized from Figure 1 of Section 1.1, "An Overview of the Cuban Orogen Geological Divisions."


Sutherland, R., 1999, Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data, Tectonophysics, v. 308(3), 341-362.

St. John, B., 1984, Sedimentary provinces of the world - hydrocarbon productive and nonproductive, Williams & Heinz Map Corporation, Capitol Heights, MD, 20743. Scale 1:31,368,000 or 500 miles to the inch at the equator. Van der Grinten projection.


Schlich, R., Wise, S.W., Jr., et al., 1989, Leg 120, Proceedings of the Ocean Drilling Program, Initial Reports, College Station, TX.


Theberge, A.E., Jr., 1971, Magnetic survey off southern California and Baja California: Rockwell, Maryland, National Oceanographic and Atmospheric Administration, National Ocean Survey, scale 1:1,000,000.


World Data Bank #2 (CIA), Cartigraphic Database - Natural and manmade features of the world (digitized format), NTIS PB 271-874.


References for paleomagnetic data


