The PLATES 2005
Atlas of Plate Reconstructions
(750 Ma to Present Day)

By

L.A. Lawver, I.W.D. Dalziel, and L.M. Gahagan

Progress Report No. 300-0206

Phone: (512) 471-0488 Fax: (512) 471-8844 Internet: plates@ig.utexas.edu
The PLATES Project

Institute for Geophysics
The University of Texas at Austin
4412 Spicewood Springs, Bldg. 600
Austin, Texas 78759-8500

Principle Investigators: Lawrence A. Lawver and Ian W.D. Dalziel
Project Manager: Lisa M. Gahagan

Academic Collaborators include:
Steve Cande Scripps Institute of Oceanography, California
Mike Coffin Ocean Research Institute, University of Tokyo
Olav Eldholm University of Oslo, Norway
Tung-Yi Lee National Taiwan Normal University
Paul Mann University of Texas Institute for Geophysics
R. Dietmar Müller University of Sydney, Australia
Robert D. Rogers University of Puerto Rico, Mayaguez
Jean-Yves Royer Geosciences Azur, France
Sergei Pisarevsky Tectonics Special Research Centre, Australia
David Sandwell Scripps Institute of Oceanography, California

This atlas was made possible through the scientific contributions of many researchers, from UTIG and from other institutions. Their efforts are highly appreciated by the members of the PLATES research team.

This atlas should be referenced as follows:

We kindly request that this atlas, or portions thereof, not be reproduced in any form without the written permission of the Institute for Geophysics, The University of Texas at Austin.

This atlas was originally produced in March, 2006.

© The University of Texas at Austin Institute for Geophysics, 2004
540 Ma
Nemakitian-Daldynian (Early Cambrian)

PLATES/UTIG
February 2006
520 Ma
Lenian (Early Cambrian)
480 Ma
Arenigian (Early Ordovician)
470 Ma
Late Arenigian/Early Llanvirnian (Early/Middle Ordovician)
460 Ma
Llandeilan (Middle Ordovician)

PLATES/UTIG
February 2006
440 Ma
Early Llandoveryan (Early Silurian)
430 Ma
Late Llandoveryan (Early Silurian)

PLATES/UTIG
February 2006
410 Ma
Early Praghian (Early Devonian)
400 Ma
Late Praghian/Early Emsian (Early Devonian)
390 Ma
Early Eifelian (Early Devonian)

PLATES/UTIG
February 2006
380 Ma
Late Eifelian/Early Givetian (Middle Devonian)
350 Ma
Tournaisian (Mississippian)
340 Ma
Early Visean (Mississippian)

PLATES/UTIG
February 2006
330 Ma
Visean (Mississippian)

PLATES/UTIG
February 2006
300 Ma
Kasimovian (Pennsylvanian)

PLATES/UTIG
February 2006
290 Ma
Late Gzelian/Early Asselian (Pennsylvanian/Permian)

PLATES/UTIG
February 2006
280 Ma
Early Sakmarian (Early Permian)

PLATES/UTIG
February 2006
270 Ma
Late Sakmarian (Early Permian)

PLATES/UTIG
February 2006
250 Ma
Tatarian (Late Permian)

PLATES/UTIG
February 2006
240 Ma
Anisian (Middle Triassic)

PLATES/UTIG
February 2006
230 Ma
Ladinian (Middle Triassic)
220 Ma
Early Norian (Late Triassic)
210 Ma
Late Norian (Late Triassic)
200 Ma
Sinemurian (Early Jurassic)

PLATES/UTIG
February 2006
190 Ma
Pliensbachian (Early Jurassic)
160 Ma
Callovian (Middle Jurassic)
150 Ma
Volgian (Late Jurassic)

PLATES/UTIG
February 2006
140 Ma
Ryazanian (Early Cretaceous)
130 Ma
Hauterivian (Early Cretaceous)
120 Ma
Aptian (Early Cretaceous)
100 Ma
Late Albian (Early Cretaceous)

PLATES/UTIG
February 2006
090 Ma
Turonian (Late Cretaceous)

PLATES/UTIG
February 2006
080 Ma
Campanian (Late Cretaceous)

PLATES/UTIG
February 2006
070 Ma Maastrichtian (Late Cretaceous)
050 Ma
Early Eocene

PLATES/UTIG
February 2006
030 Ma
Early Oligocene

PLATES/UTIG
February 2006
000 Ma
Present Day

PLATES/UTIG
February 2006
750 Ma
Late Proterozoic
700 Ma
Late Proterozoic
600 Ma
Late Proterozoic
540 Ma
Nemakitian-Daldynian (Early Cambrian)
510 Ma
Middle Cambrian
480 Ma
Arenigian (Early Ordovician)
450 Ma
Caradocian (Late Ordovician)
420 Ma
Ludlovian (Late Silurian)
390 Ma
Early Eifelian (Early Devonian)
360 Ma
Famennian (Late Devonian)
Visean (Mississippian)

330 Ma
300 Ma

Kasimovian (Pennsylvanian)
Late Sakmarian (Early Permian)

270 Ma
240 Ma
Anisian (Middle Triassic)
Aalenian (Middle Jurassic)
North Pole

180°

0°

South Pole

150 Ma

Volgian (Late Jurassic)
120 Ma

Aptian (Early Cretaceous)
090 Ma

Turonian (Late Cretaceous)
030 Ma
Early Oligocene
North Pole

180°

0°

South Pole

0°

180°

000 Ma

Present Day

PLATES/UTIG
References for Plate Model

Burke, K. and Rutherford, E., 1987, Sumba as a sideways slipping sliver, unpublished manuscript.

Epp 1978

Liou, J.G. and Maruyama, S., 1986, Post-Permian evolution of Asia, and some implications for Taiwan, Acta Geologica Taiwanica, No. 24, pp. 5-49.

Rogers, R., 2003, Jurassic to Recent tectonic and stratigraphic history of the Chortis block of Honduras and Nicaragua (northern Central America), PhD dissertation, The University of Texas at Austin.

Smith, A.B., 1988, Late Palaeozoic biogeography of East Asia and palaeontological constraints on plate tectonic reconstructions, Phil. Trans. R. Soc. Lond., A326: 189-227.

Veevers & Eittreim 1988

References for digital data

Tectonic map of Australia and New Guinea, 1971, scale 1:5,000,000, Geological Society of Australia, Sydney, Australia.

Total sedimentary isopach map, offshore east Asia, 1991, Working group on resource assessment, committee for co-ordination of joint prospecting for mineral resources in Asian offshore areas (CCOP), scale 1:4,000,000.

Bergh, H.W., pers. comm.

Bradshaw, J.D., 1997, Terrane Dynamics 1997 Guidebook for Field Excursions A, B, & C, University of Canterbury, Christchurch, New Zealand. Figure 1, page III.

British Antarctic Survey, 1985, Tectonic Map of the Scotia Arc, Scale 1:3,000,000. BAS (Misc.) 3, Cambridge, British Antarctic Survey.

British Oceanographic Data Centre (Proudman Oceanographic Laboratory), 1997, General Bathymetric Chart of the Oceans (GEBCO) Digital Atlas, Bidston Observatory, Merseyside L43 7RA, UK (cdrom).

Case, J. and Holcombe, T., 1980, Geologic-tectonic map of the Caribbean region, scale 1:2,500,000.

Coffin, M.F. and Eldholm, O., in prep., Chapman paper.

Cuban Gulf Oil Co., 1956, Regional Geologic Map of Cuba; air photographic base; scale approximately 1:100,000; sheets B6, C6, and C7.

Defense Mapping Agency Hydrographic/Topographic Center, 1980, Shetland Islands: Deception Island to King George Island, map, mercator projection, scale: 1:200,000 at latitude 65°.

Dunbar, J. and Sawyer, D., 1986, Crust extension within the Gulf of Mexico: Implications for the breakup of Western Pangea, abs. from 1986 Geodynamics Symposium.

Exxon Production Research Company (World Mapping Project), 1985, Tectonic Map Series of the World, Exxon Production Research Company, Houston, TX.

Falconer, R.H.K. and Tharp, M., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•14, Canadian Hydrographic Service.

Fisher, R.L., pers. comm.

Ghidella, M., 1999, personal communication. USAC data.

Instituto Geografico Nacional, 1970, Mapa Geologico de la Republica de Guatemala, scale 1:500,000.

Iwabuchi, Y., 1979, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•6, Canadian Hydrographic Service.

Jennings, C.W., 1961, Geologic map of California: Kingman sheet, scale 1:250,000, California Division of Mines and Geology, Sacramento, CA.

Johnson, G.L., and Vanney, J.R., 1980, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•18, Canadian Hydrographic Service.

Kovacs, L.C., Srivastava, S.P. and Jackson, H.R., 1986, Results from an aeromagnetic investigation of the Nares Strait Region, J. Geodynamics, 6: 91-110.

LaBrecque, J. and Rabinowitz, P.D., 1981, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•16, Canadian Hydrographic Service.

Laughton, A.S., 1975, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•5, Canadian Hydrographic Service.

Mammerickx, J. and Cande, S., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•15, Canadian Hydrographic Service.

Mannie, P., personal communication. NEHRP Proposal. Active tectonic lineaments in Mona Passage, between Hispaniola and Puerto Rico.

May, P.R., 1971, Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift position of the continents, Geological Society of America Bulletin, 82: 1285-1292.

Mejorada, P., 1976, Carta geologica del la Republica Mexicana, scale 1:2,000,000.

Miall, A.D., 1983, the Neves Strait problem: A re-evaluation of the geological evidence in terms of a diffuse oblique-slip plate boundary between Greenland and the Canadian Arctic Islands, Tectonophysics, 100: 227-239.

Mobil Exploration and Producing Technical Center, 1994, Global Isopach Map and Digital Database, Dallas, TX.

Monahan, D., Falconer, R.H.K., and Tharp, M., 1982, General Bathymetric Map of the Oceans (GEBCO), scale 1:10,000,000, sheet 5•10, Canadian Hydrographic Service.

New Zealand Geological Survey, 1972, "Geological map of New Zealand 1:1,000,000", North and South Islands sheets (1st edition), Department of Scientific and Industrial Research, Wellington, New Zealand.

Oh, J.Y., J.A. Austin, J.D. Phillips, M.F. Coffin, and P.L. Stoffa, Seaward-dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism
accompanying sequential formation of the Carolina trough and Blake Plateau basin, Geology, 23, 9-12, 1995.

Pardo-Casas, F. and Molnar, P., 1987, Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time, Tectonics, 6(3): 215-232.

Parfenov, L. & others, in press, "Comprehensive Geodynamic Chart," inset of northeastern Siberia from the "Geodynamic map of Okhotsk and surrounding territories."

Peter et al.

Rosencrantz, E. and Pardo, G., 19??, Investigations Into the Geology of Cuba, University of Texas at Austin Institute for Geophysics unpublished atlas, p. 47. Data digitized from Figure 1 of Section 1.1, "An Overview of the Cuban Orogen Geological Divisions."

Sutherland, R., 1999, Basement geology and tectonic development of the greater New Zealand region: an interpretation from regional magnetic data, Tectonophysics, v. 308(3), 341-362.
St. John, B., 1984, Sedimentary provinces of the world - hydrocarbon productive and nonproductive, Williams & Heinz Map Corporation, Capitol Heights, MD, 20743. Scale 1:31,368,000 or 500 miles to the inch at the equator. Van der Grinten projection.

Schlich, R., Wise, S.W., Jr., et al., 1989, Leg 120, Proceedings of the Ocean Drilling Program, Initial Reports, College Station, TX.

Theberge, A.E., Jr., 1971, Magnetic survey off southern California and Baja California: Rockwell, Maryland, National Oceanographic and Atmospheric Administration, National Ocean Survey, scale 1:1,000,000.

World Data Bank #2 (CIA), Cartigraphic Database - Natural and manmade features of the world (digitized format), NTIS PB 271-874.

References for paleomagnetic data

References for paleomagnetic data

