CLIFF'S NODES

CONCERNING

PLOTTING NODAL LINES FOR P, S;, AND Sy

BY

CLIFF FROHLICH

cliff@utig.ig.utexas.edu

ALL SAINTS DAY
1 November 1995

UNIVERSITY OF TEXAS INSTITUTE FOR GEOPHYSICS
TECHNICAL REPORT NoO. 132



TABLE OF CONTENTS

INETOAUCHION < eeiniiineitee e e eiee e e e e eec et e et e e sba e sea et e e e e e e e aaasnes 1
Brief Program Description ............oouiiiiiiiiiiiiiiiiiiiiiii 2
Qualitative Description of Nodal Lines for P, Sp and Sy ..........c...co.o. 4
APPrOACh ... 4
J\ 016 SRR {0} i OO TP PPS 5
Absence of Nodes for S ..o 5
NOAES TOL S h e ettt 8
Nodes for Sy..cooeiiiiiiiieinineies e e e 10
Derivation of Analytical Expressions for Nodal Lines.........c...cccoveenie. C 12
Background Concerning M.........cccooiimiiiiiiiiiiiiineniiee e, 12
J\ (o6 I8 (0] o <SSP PPURS R 15
Absence of Nodes for S . ..o, 17
Background Concerning the Earth Coordinate System ................. - 18
Nodes for Sj....... e 19
NOAES FOr Sy 21
Nodes When M has an Isotropic Component...................cocoooaee. 21
A Note About Triangle Diagrams........ et teeteeetieeraeetaneataaataenaerariaraans 23
Acknowledgments ..... ..o 28
ReEfCIeNCES. ettt .. 28
Table 1: Principal moments and orientations of T, B, and P ................. 30

axes for all mechanisms plotted in this report.

To Obtain Cliff's Nodes Software From IRIS.....ccovoreeeiieeeiieiaae, 31



INTRODUCTION

As earthquake seismologists, we routinely plot "beach ball" focal
mechanisms describing the pattern of P-wave first-motions for ordinary,
garden-variety double-couple earthquakes. But, how does one plot the pattern
for S, and S, waves, or for earthquake sources with isotropic or compensated

linear vector dipole (CLVD) components?

Recently I needed to know the answer for two reasons: to check some
software I had written for constructing synthetic seismograms; and also to
determine whether observations of S-waves at certain specific seismic stations
had the same sign as the radiation predicted by the published Harvard centroid
moment tensors (CMT). When I undertook to derive analytical expressions
for the Sp and S, nodes, I found the derivation more difficult than I had
imagined. Also, in the process I learned some simple things that I should have -
known, but didn't (e.g., that there are no nodal lines for S, only for S, and
Sv). Thus, when I finished I resolved: .

* To write down how I had determined analytical expressions for the
nodal lines, because the derivations were messy enough that I was sure I
would never remember if anyone asked me;

o To distribute my program to all who wanted it, so they wouldn't waste
their time on such an "easy" problem;

e To ask around at the AGU meeting about who previously had written
software for plotting nodal lines, as my respect for them had by now
increased, whoever they were.

Thus, the purpose of this technical report is to provide background
information for a Fortran program package CliffsNodes.PShSv for plotting
focal mechanisms and nodal lines. This program package and technical report
can be obtained from me via email, or from the IRIS Data Management
Center (see inside back cover of this report). These efforts do not represent
fundamental new research, as I have found several other people who wrote
similar programs, namely Jeff Barker (see Barker, 1984), Bruce Julian (see
Julian and Foulger, 1994), Thorne Lay (see Lay and Helmberger, 1983), Jose
Pujol and Bob Herrmann (Pujol and Herrmann, 1990), and Terry Wallace.
Interested individuals might also wish to read Kennett's (1988) suggestions for
an alternative plotting strategy.



BRIEF PROGRAM DESCRIPTION

This report provides background for a Fortran program package named
CliffsNodes.PShSv. This program package contains subroutines to plot nodal
lines and focal spheres for P, S, and Sy energy for a moment tensor M and
also subroutines to plot triangle diagrams (see Figure 1). I am arranging to
make this program package publicly available from the IRIS Data
Management Center; it is also available from me via anonymous ftp at my
email address. It is also described briefly in Frohlich (1996).

The Fortran program package itself consists of a sample main program,
several user-callable subroutines for plotting focal mechanisms and triangle
diagrams, and several subroutines for manipulating vectors and moment
tensors. In particular, subroutines bballP, bballSh, and bballSv produce equal-
area focal plots of nodes for P, Sy and S, (Figure 1). The calling arguments
- specify azimuths, dips and principal moments for T, B, and P axes, along with
the radius .and center location for the focal plot. A final argument allows the
user to plot "+" symbols in the positive sectors of the focal plots, if so desired. .
If the user does not know the azimuths, dips and principal moments for T, B,
and P axes, a subroutine TBPfind calculates them if the user supplies the six
independent elements of the moment tensor M. Another subroutine, stnPlr,
allows the user to plot symbols on the focal spheres at specified azimuths and
take-off angles which, e.g., might represent seismic stations.

Similarly, a subroutine TriDiag plots a triangle diagram, with the call-
ing arguments specifying the center coordinates of the plot and the base-to-
vertex height of the triangle. The user can specify whether to plot lines on the
triangle marking 10° intervals of dip of T, B, and P axes, or whether to plot -
only one line in each triangle corner containing the regions of thrust, normal
faulting, and strike-slip faulting mechanisms. The user can also choose
whether to plot "beach ball" icons at the edges and center of the triangle.
Another subroutine TriPlt allows the user to plot a symbol within the diagram
representing a single double-couple focal mechanism. The only necessary
subroutines not provided in the package are standard plotting routines plots,
plot, newpen, symbol, and numbur. The routine plots is an initialization call;
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Figure 1. Plot produced by the sample program in the Fortran package
CliffsNodes.PShSv. At the bottom of the figure are equal-area, lower hemisphere focal
plots of the P, Sp, and S;, radiation pattern for the moment tensor with the 7, B, and P axes
and principal moments shown in the label. The program draws nodal lines, places "+"
symbols in regions where the sign of the radiation is positive, and marks the position of the
T, B, and P axes. Also, a large triangle marks the location of a hypothetical station,
situated at azimuth of 280° E of N with a take-off-angle of 70°. In the upper part of the
figure a large "+" marks where the mechanism below belongs on a triangle diagram. Note
that the plotted mechanism is "regular” with respect to the rules for P, Sy, and S,. Itis
"regular” for P-wave radiation because none of its principal moments are zero, and thus its
two nodal lines do not intersect. It is "regular" for Sj-radiation because none of its
principal axes are horizontal, and thus the two nodal lines do not intersect. It is "regular"
for Sy-radiation because its B axis is not vertical, and it is not a pure double-couple with P
and T axes equidistant from the vertical.



plot is a pen-command routine; newpen sets the pen width; symbol provides
labels for character variables; and numbur provides labels for numerical
information.

QUALITATIVE DESCRIPTION OF NODAL LINES
FOR P, Sp, AND Sy

Approach

For an earthquake with moment tensor M, I shall derive expressions for
" the nodal lines of P, Sp, and S,, that is, those directions describing rays leav-
ing the source region such that P, Sp, or Sy has zero amplitude. Note that if p
is a unit vector representing the direction of a ray leaving the earthquake
source region, and if h and ¥ are unit vectors perpendicular to one another
“and to P, with h a horizontal vector, and ¥ a “"vertical" vector lying in the
plane formed by p and the true vertical Z (in the earth coordinate system),
then:

amplitude P ~ pMp”
amplitude Sp, ~ pMA’ (D)
amplitude Sy ~ pM¥” '

Here p”, etc. are just the transposed vectors—the column vectors correspond-
ing to P, etc. Thus, the nodes for P, Sy, and Sy will occur when:

» node P when 0= f)Mf)AT (2)
e node Sy, when O=pMh’ (3)
« node Sy, when 0=pM#%7 4

In the remainder of this section, I list a number of basic rules which
qualitatively describe the nodal lines for a variety of different moment
tensors, and provide examples. The objective is to provide enough examples
of both "regular" and "irregular" mechanisms so that a reader could sketch the

nodal lines on equal-area focal sphere plots, even when no plotting program 1is
available.



Nodes for P

« P1: If the three principal moments of M are nonzero and all have the same
sign, there are no P nodes. Otherwise, there are two nodal lines, dividing the
focal sphere into three zones.

e P2: The P-nodes of M are fixed with respect to the T, B, and P axes,
independent of rotations of M.

« P3: These two nodal lines never meet and never intersect any of the three
principal axes of M unless one of the principal moments of M is identically
Zero.

« P4: If one of the principal moments of M is zero and the other two principal
moments have opposite signs, then nodal lines fall along great circles,
intersecting at the B axis.

Thus, rule P1 is that there are no P nodes if the source is implosive or
explosive in all directions (Figure 2, top). Rule P3 describes the most
"regular" case—when none of the three principal moments is zero but they
don't all have the same sign (Figure 2, three topmost examples). - Then, there .
are two nonintersecting nodal lines which enclose the principal axis which has
the largest absolute principal moment. Rule P2 is quite useful for plotting,
since in essence it states that if you can plot the P nodes in any coordinate
system, you can plot them in another coordinate system just by performing a
simple rotation (Figure 3). Rule P4 concerns the “irregular” case (Figure 2,
bottom two examples). This actually includes most common situation for

earthquake seismology—the ordinary double-couple source (Figure 2, second
from bottom).

Absence of Nodes for S

* S1: The S-wave radiation pattern is independent of the isotropic component
of M

» S2: Unlike the case for P waves, for the full S wave there are no nodal lines,
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Figure 2. Sample focal plots illustrating rules P1, P3, P4, and S1 for plotting' P-wave and
S-wave radiation patterns. All five mechanisms have T, B, and P axes with the same
orientations, only their principal moments differ from one another. All the principal
moments are positive for the top mechanism, so there are no P nodes (rule P1). For the
second mechanism, the P-principal moment is negative, so two nodal lines appear
surrounding the P axis (P3). The third mechanism is deviatoric (i.e., has no isotropic
component), but possesses a CLVD component (P3). The fourth mechanism has a pure,
double-couple, strike-slip mechanism, and is "irregular” because the two nodal lines meet at
the B axis (P4). The bottom mechanism is also "irregular"; it is like the second mechanism
from the top but one of its principal moments is zero (P4). The top three mechanisms differ
only in the amount of isotropic component—thus, they all have the same Sy, and S, radiation
patterns (S1). Here the statistics f and I at left of each focal plot measure the proportions of
CLVD and isotropic components as defined in equations 7 and 37.
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Figure 3. Sample focal plots illustrating requirements P2 and S3 for plotting P-wave and
S-wave radiation patterns. All five mechanisms are pure CLVD mechanisms and thus have
the same principal moments, but the orientations of their 7, B, and P axes differ. The top
mechanism has a polar axis oriented north-south and horizontal; the axis rotates until it
reaches the vertical in the center plot; then it rotates toward the east until it becomes
horizontal in the bottom plot; note that in all cases the P nodes have identical orientations
with respect to the 7, B, and P axes (rule P2). These mechanisms are all "irregular" with
respect to their S-wave radiation pattern because the possess an S-nodal line along the
equatorial axis (S3); note that this nodal line occurs for both Sy, and S, radiation.



i.e., along which Sp2 + Sy2 vanishes. Unless M has a pure CLVD source this
occurs only at three particular points, i.e., along the T, B, and P axes.

« S3: If M has a pure CLVD source there is one equatorial nodal line; if M is
purely isotropic it radiates no § waves.

The first two rules are quite restrictive and quite remarkable.
Basically, rule S1 asserts that there is absolutely no way of determining from
S waves alone whether the source has an isotropic component (Figure 2, top
three mechanisms). Rule S2 asserts that if a source is "regular” it will radiate
S waves in all directions except along the three principal axes of M. Rule S3
deals with two "irregular” cases (Figure 3). '

Nodes for Sy
¢ Sul: S, nodes are independent of the isotropic component of M
* Sp2: There are two Sp nodal lines, dividing the focal sphere into three zones.

* S$33: The Sp-nodes are not fixed with respect to the 7, B, and P axes. But,
each nodal line passes through the 7, B, and P axes. ’
' - One nodal line always passes through the P axis, the downward
vertical, and the T axis in the lower hemisphere, and then the B axis in the
upper hemisphere; _

- The other nodal line always passes through the 7T axis, the upward

vertical, and the P axis in the upper hemisphere, and then the B axis in the
lower hemisphere. '

* Sh4: The two Sp-nodes never intersect unless one of the principal axes (7, B,
or P) is horizontal or unless M is a pure CLVD.

- When any principal axis is horizontal, the plane perpendicular to that
axis is an Sy node.

Rule Sp2 states that, as with P, in the "regular” cases there are two non-
intersecting Sp nodal lines (Figure 1; Figure 4, top three mechanisms).
However rule S;3 states that, unlike P, they are strongly affected by rotations



Figure 4. Sample focal plots illustrating requirements Sy1, Sp2, S33, Sp4, Sy1, S,2 and
Sy3. The top two mechanisms differ only in the amount of the isotropic component, and
thus have identical S;, and S, radiation patterns (rules Syl and S,1). The top three
mechanisms are all "regular” with respect to Sy, as they possess two S nodal lines (Sp2).
All five mechanisms are "regular” with respect to S,, as they possess three S, nodal lines
(5v2). The bottom four mechanisms are identical except for rotation, however, note that
the Sy and Sy patterns are not identical; yet, each has nodal lines passing through the
vertical as well as the T, B, and P axes (S33 and S,3). The bottom two mechanisms
illustrate “irregular" S, patterns, where one of the principal axes is horizontal, and so there
1s a vertical oriented nodal plane perpendicular to the horizontal axis (Sj4).



of M. Indeed, each of the two nodal lines always passes through either the
upward or downward vertical axis. This is misleading, since h changes
direction as we cross the vertical, and thus the vertical direction does not
represent a zero in the Sy, radiation pattern in the usual sense (Figure 5). In

"regular" cases nodal lines also pass through the T and P axes, as well.

Rule Sp4 concerns "irregular" cases, which occur whenever one of the
principal axes of M is horizontal (Figure 4, bottom two mechanisms), and
where there is a vertical nodal plane that is perpendicular to the horizontal
axis. For sketching nodes, it is useful to remember that when any principal
axis is nearly horizontal, the nodal lines will closely approach the associated
perpendicular vertical plane (Figure 4, third and fourth mechanism).

Nodes for Sy
« Sy1: Sy nodes are independent of the isotropic component of M

« S,2: There are three S, nodal lines, dividing the focal sphere into four
Zones.

* Sy3: The Sy-nodes are not fixed with respect to the 7, B, and P axes.

- But, one nodal line (usually roughly circular or oblong in shape)
passes through the upward vertical and the either the T or P axis, depending
on which is closer to the vertical.

- A second nodal line of the same shape passes through the downward
vertical and either the T or P axis, depending on which is closer.to the
vertical.

- A third nodal lines passes through the B axis and either the T or P
axis, depending on which is closer to the horizontal.

* Sv4: The nodal lines only intersect in certain special cases:

- If the B axis is vertical (or, M is a pure CLVD and the plane of
symmetry passes through the vertical),

- If M is a pure double couple and the T and P axes are equidistant from
the vertical.

10
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Figure 5. The nodal lines for Sy and Sy cross the vertical in all cases, but the

vertical direction does not represent a zero in the radiation pattern in the usual
sense. When none of the three principal axes of M coincide with the vertical
Z, then there will be an S wave, with north-south and east-west components
given by S, = ZMi” and S, = ZM&”, respectively (top left). On a blowup of
the near-vertical region of the focal sphere (top right), as we cross the vertical
along a line parallel to the direction of S (line 1-3) there will be a nodal line
for Sp. Yet, along a line perpendicular to the direction of S (line 2-4 at top
right), Sp changes from large and negative to large and positive because the
direction of h changes as we cross the vertical. Similarly, there is a nodal line
for Sy along a line perpendicular to S (line 2-4), while S, changes from large
and negative to large and positive as we cross vertical along the parallel
direction (line 1-3) because the direction of v changes.

11



Rule S,2 states that, unlike P and Sp, in the "regular” cases there are
three non-intersecting S, nodal lines (Figure 4). However rule §,3 states that,
unlike P and like Sp, they are strongly affected by rotations of M. Indeed,
two of the nodal lines always pass through either the upward or downward
vertical axis. This is misleading, since v changes direction as we cross the
vertical, and thus the vertical direction does not represent a zero in the Sy
radiation pattern in the usual sense (Figure 5). In "regular” cases these two
nodal lines also pass through either the T or the P axis, whichever is closer to
the vertical; while the third nodal line passes through the B axis and either the
T or P axis, whichever remains (Figure 4). Rule S,4 concerns "irregular"
cases, which occur whenever the B axis is vertical, or, when M 1s a double-
couple and the T and P axes are equidistant from the vertical (Figure 6).

DERIVATION OF ANALYTICAL EXPRESSIONS
FOR NODAL LINES

Background Concerning M

For convenience, assume that we know all the information about M that

is routinely provided in the Harvard CMT catalog, i.e., the values for the six
independent elements mjj; of M as well as the dips (o, 0p, 0¢p), strikes

(¢, 95, ¢p), and principal eigenvalues (A, Az, Ap) of the T, B, and P axes of
M. In particular:

my; My, My A 00
M=|m,, m,, m,|=R| 0 A, 0 |RT (5
My3 My3 Mg 0 0 4,

where R is an (unspecified) rotation matrix which brings vectors described in

the principal axis system to the usual earth coordinate system, and R7 is the
transpose of R. In the earth coordinate system, the unit vectors a,, a,, and

a, describing the three principal axes are:

12
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Figure 6. Sample focal plots illustrating rule Sy4. The top four plots are
“irregular” in that the nodal lines for Sy intersect one another. In the top
two mechanisms this occurs because the B axis is vertical; the third and
fourth mechanisms are pure double couples with the P and T axes
equidistant from the vertical. The bottom two mechanisms are identical
except that the bottom mechanism has a small CLVD component.

13



a; =(—sinoy, cos oy sin Py, cos Oy cos ¢T)
ﬁB=(—sina3,cosaBsind)B,cosagcosq)B) (6)
ap= (—Sinap, cosOlp Sinp, cOs OLp COS ¢P)

For now we assume that M is deviatoric (i.e., that A, +Az+4, =0),
although we shall relax this condition later. For later computational
convenience we rewrite M to show explicitly the dependence on f, the strength
of the non-double-couple component.

Ar 0 O 1 0 0 -1+f 0 O
RTMR=|0 A, O |=A,0 —f 0 Jord,| O —f 0|(D
0 0 A, 0 0 -1+f 0 0 1
—Ag . )
where f = if |/1Tl>|l P| and M represents a mechanism of the polar T = .

T

type, and f = —%ﬁ- if l).,,| > |2,T| and M is of the polar P type.

P

Since in both cases the relative sizes of P, S; and S, waves depend
entirely on the relative sizes of the diagonal terms (1, —f, and —1+ f), there
is no loss of generality if we perform all subsequent calculations in the
principal axis system and use instead of M the "reduced" moment tensor MR

1 0 0
Mgr={0 —f 0 (8
0 0 -1+f
where the 1 axis is the "dominant" or D axis

(T if |Ag|>|Ap]; P if |Ap|>]|Ar ) the 2 axis is the B axis, and the 3 axis is the
"minor" or M axis (P if |A;]|>|A,}; T if |45|>]2,]).

14



Nodes for P

For a ray leaving the source region in the direction along unit direction
vector P, the strength of the P wave is proportional to pMgrp’. In the DBM
coordinate system (see Figure 7) the explicit expressions for P, PMR, and
PMRp’ are:

p = (cos a,sin asin ¢,sin & cos ¢) 9

- where  is the angle between p and the D axis, and ¢ is the azimuthal angle,
the angle with respect to the M axis of the projection of p in the B-M plane.

PMR = (cosa, — fsina sin ¢,(—1+ f)sinacos ¢) (10)

PMRp” = cos® o —sin® a[%+(%— f)cosZgb] (11)

Now, P lies on a node for P when pMR f)T vanishes, which occurs whenever:

2

. 2
oy =
S 3+(1-2f)cos2¢

(12)

There are two nodal lines, since if (o, ,¢) lie on a nodal line, then
(180°—ay, ¢) also lie along a nodal line.

Thus, to plot nodes for P we allow ¢ to vary from 0° to 360°, and use
eq. (12) to determine the angle o, where the node occurs. We then plot this
on a focal sphere in the earth coordinate system using eq. (9) and eq. (6)
above.

A

Py =cosoy a, +sinoysinga, +sinay cos ap (13)

Note that for any direction p in space, pPMRP’ is independent of the
coordinate system chosen to represent p and MR, thus the nodes of P always
have the same geometric relationship to the T, B, and P axes a,, ag, and a,.

15
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Figure 7. The two coordinate systems used in derivations in this report.
- In the "earth system" the three coordinate axes are vertical downward
(labeled "1"), horizontal due east (labeled "2"), and horizontal due north
(labeled "3"). In the "DBM" system the three coordinate axes co1n01de
with the T (D), B, and P (M) axes of the focal mechanism.

=g

Vabm hdbm

Figure 8. At any point p on the focal sphere, there is a rotation angle y
which brings the orientations of the horizontal and vertical directions in the
earth system (ﬁe and V.) in correspondence with the horizontal and
vertical directions (fldb,,,, and Vg, in the principal axis or DBM system.



Absence of Nodes for S

Do there exist directions leaving the source for which the full S wave
vanishes? To answer this we evaluate the reduced amplitudes of S in the DBM
system. In particular, for a ray leaving along direction p (see eq. (9)), in the
DBM system a horizontal direction vector h,, and a vertical direction vector
V ipm are:

h,,, =(0,—cos¢,sing) (14)
V om = (—sin @, cos arsin ¢, cos crcos ) (15)

Thus, the reduced amplitudes of the components of the S wave along these
directions are:

pMrh?, = sin asin2¢(—%+f) ' ‘ (16)
PMRVL,, = —sinacosa[%+(—;——f)0052¢} (17)
The full S wave will vanish if (MRDY,, )2+ (PMR V%, )2 is zero.

0 = sin a[[sin2¢(1 —2f)] +[cosef3+(1-2 f)cos2¢]]2] (18)

Inspection shows that this occurs generally only in three special cases. These
are:

e o =(° — this corresponds to the D axis
* a=90°and ¢ = 0° — this corresponds to the M axis
* ¢ =90° and ¢ = 90° — this corresponds to the B axis

Thus, we have shown that the full S wave vanishes only along the T, B, and P
axes; there are no nodal lines for S in the sense that they exist for P. Also, if
f =0.5, there will be a nodal line where o = 90°.

17



Background Concerning the Earth Coordinate System

While egs. (16) and (17) represent S, and Sy amplitudes 1n the DBM
coordinate system, these are not usually equivalent to Sj and Sy as observed by
a seismologist since in the earth system the horizontal and vertical unit vectors
h, and ¥, are not the same as h 4w and v, in the DBM system. However,
all four vectors he, ¥, hy,, and ¥, represent the directions of § waves
and thus lie in a plane perpendicular to p; also, there must exist some rotation
angle y so that perpendicular vectors h. and ¥, are simply the rotation of
h,, and v,, by y about p (Figure 8). Thus, in the earth system we can
determine the amplitudes of Sy and Sy by a simple rotation:

Sy amplitude ~ pMRrA? = pMRrh%,, cos w + PMRV],, sin v (19)
Sy amplitude ~ pMR V' = -pMRh%,_sin w + pMR¥V’,, cos v 20)

To find the nodes, we set these expressions to zero and (unless y = 0° .
or Y = 90°) solve to find:

—coty(1-2f)sin2¢
3+(1-2f)cos2¢

For Su: cosay = 21)

+tany (1-2f)sin2¢
3+(1-2f)cos2¢

For Sy: cosay = (22)

But, what is the angle y? Note that h,,, *¥, = sin ¥ and h,, <h, =
cos Y (see Figure 8), so that:

A

h, v
tan W=A—‘i”'"ﬁ (23)

dbm

Suppose that in the DBM system the vector Z which represents the vertical in
the earth system has dip and azimuth a and t, i. e.:

Z = (cos a, sin a sin t, sin a cos t) 24)

18



Now, by the rules of cross products, (Z X P) is a vector parallel to ﬁe, with
length equal to the sine of the angle between Z and p; furthermore, p X (Z X
p) is a vector parallel to ¥, also with the same length as (z X p). Thus

hdbm.(f)X(in)))_Bdbm.i_(ﬁdbm'f))(ﬁ.i) Z+h

dbm
tan ¥ = ——x = - = —21=(25)
h,, *(2XP) h h gy
det{ p det| p
y z
Here, we have used the fact that h,, *p = 0 and the vector identities:
AX(BXC)=B(A+C)-C(AB)
(26)
A al 32 a3 .
A+(BXC)=det| B|=det|b; b, b,
C C; Cy C3

which hold for any three vectors, A = (aj, aj, a3), B = (by, by, b3), and C =

(c1, ¢2, ¢3) . Evaluating eq. 25 using the explicit representations for h dbm (€G-
14), p (eq. 9), and Z (eq. 24), we find:

sina sin(¢ —¢)

tan ¥ = 27
v sin ¢ cosa — cos & sina cos(¢ —¢) A @D

Nodes for Sy,

If we combine egs. 21 and 27, we obtain:

cosary = —[sin oy, cc-)sa ——.co's ay sin a cos(¢ — t)](l —2f)sin2¢ 028)
sina sin(¢—¢)(3+(1-2f)cos2¢)

19



If f#0.5 a0, and a # 90°, then we can solve this explicitly for tana,,

1.e.:

(3+(1-2f)cos2¢)sin(¢—1)
sin2¢(1—2f)

+cos(¢ — t)] (29)

tan &, = tan a|:—

Note that the nodal lines described by eq. (29) passes through all three
principal axes of M. The quantity on the right in brackets becomes infinite,
and thus a, =90° when ¢ approaches either 0° or 90°, thus showing that the
B and M axes, respectively, lie along the nodal line. It is not difficult to show
that the quantity in brackets must also vanish for some value of ¢, so that the
D axis lies along the nodal line as well.

In the special case when f = 0.5, then, cosa, = 0, and there will be a
nodal line for o, = 90° (i.e., along the B-M plane). Also, if a = 90°, then
cos ¢y factors out of both sides.of eq. (28), and we are left with a node for all
o, when ¢ satisfies: ‘

)= (1-2f)sin2¢

tan(0 = 1) = 3 =2 FYeos29

(30)

In either case, we can use eq. (13) to plot the nodal lines explicitly.

In practice, it is useful to note that whenever either the D axis, the B -
axis, or the M axis is horizontal, then the corresponding perpendicular vertical
plane will be a nodal plane. This includes the case above where a = 0, since
then both B and M are horizontal, and both lie within vertical nodal planes.

The only missing detail is that angles a and t which describe Z in DBM
coordinates are not given explicitly in the Harvard CMT catalog. However, it
is straightforward to show that if the T axis is the dominant axis then:

a=90°—o; (31)
sin g

tanft = —
sinop
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while if the P axis is the dominant axis then:

a=90°—c, (32)
in o
tant::SfIl B
sin &
Nodes for Sy

Combining egs. (22) and (27) we obtain:

sinasin(¢ —1)(1-2f)sin2¢
[sincty cosa—cos oy sina cos(¢ —1)](3+cos2¢(1—2f))

cosS Oty =

(33)

As with the Sy, case, if f = 0.5 (or if a = 0) there will be a node for a, =90°.-

Otherwise, after some manipulation one obtains a quadratic equation in
tan oy :

— tan2
0=tan” oy +tan aN[

3+cos2¢(2f-1)
tana sin(¢ —)sin2¢(1-2f)

[3+cos2¢(1—2f)]cos(¢ —¢)
sin2¢ sin(¢ —r)(1-2f)

(34)

For plotting the nodes of Sy, one simply solves eq. (34) using the binomial
theorem, and plots the nodes using eq. (13).

Note that unlike the nodes of P, the nodes of S, and S}, depend on the
relationship between the vertical Z and the position of the D axis. This is
because h, and ¥, depend on Z, and thus so do PMRh’ and PMR¥.. Thus,
unlike the P situation, it is not possible to determine Sy, and Sy, nodes by simply

rotating the nodes determined for any particular coordinate system, such as
the DBM system.
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Nodes When M has an Isotropic Component

If M has an isotropic component it is possible to rewrite M as the sum
of a pure isotropic tensor My and a deviatoric tensor Mp, i.e.,, M = M +
Mp. Following eq. (7), in DBM coordinates this would be:

1 00 1 0 0
RTMR=2,/0 1 O|+A,/0 —f 0 (35
00 1 0 0 -1+f

where A, =A; or A, =A,, depending on whether T or P is the dominant
axis of Mp.

The amplitudes of P, S, and Sy, waves (eq. (1) are:

amplitude P ~ pMp” = pMyp’ + pMpp’
amplitude Sy ~ f)MlAleT = f)MIﬁZ + ﬁMDfleT = ﬁMDﬁZ (36)
amplitude Sy ~ pM¥V. = pMy¥! + pMp¥! = pMpv] |

[4

Since the amplitudes for Sp and Sy depend only on the deviatoric part of
tensor, their nodes are exactly as we have derived previously unless Mp = 0,
in which case there will be no S waves in any direction.

For P waves, we can construct a "reduced" moment tensor equivalent to
eq. (8):

1+171 0 0
MrR=| 0 —f+I 0 37
0 0 -1+ f+1

A
Ap

where the parameter I =

The amplitude of P depends on I:
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1 (1
PMRpP’ =1+ cos® o —sin* & [§+(5—f) coqub} (38)

and the P amplitude vanishes when:

2421
3+(1—2f)cos2¢

(39)

sin® &y, =

This is a straightforward extension of eq. (12), so that it i1s possible to plot the
P nodes using eq. (13). Note that unless the strength I lies in the range
between -1 and 1- f there will be no P nodes whatsoever.

A NOTE ABOUT TRIANGLE DIAGRAMS

Triangle diagrams (Figure 1 and Figure 9) are a quantitative graphical
scheme for displaying information about the dip angles of one or more
double-couple focal mechanisms. On the triangle diagram each mechanism is
plotted as a single point; pure thrust mechanisms, pure normal faulting
mechanisms, and pure strike-slip mechanisms each plot in their respective
corners of the triangle, while mechanisms with a component of all three types
of faulting plot in the interior. As demonstrated in Frohlich (1992) and
Frohlich and Apperson (1992), they are especially useful if one requires a
display which illustrates the amount of similarity or dissimilarity among a
large number of double-couple mechanisms.

The purpose of this note is to describe triangle diagrams, as a
subroutine TriDiag for plotting them is included in the CliffsNodes software
package. In addition I wish to correct an error in the previously published
equations for plotting the triangle diagrams. This error appears in the
equations (but not in the figures) which appear in both Frohlich (1992) and
Frohlich and Apperson (1992).

It is possible to plot a double-couple focal mechanism as a unique point

on a triangle diagram because the T, B and P axes are mutually perpendicular.
Thus, if «;, o, and op are the dips angles of the T, B and P axes,
respectively, then:
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D

Figure 9a

Figure 9. Triangle diagrams with P (Figure 9a), Sj (Figure 9b) and S,
(Figure 9c) radiation patterns for 28 double-couple mechanisms, chosen to
illustrate the range of possible types. For the seven focal plots along each
edge of the triangle, one principal axis is horizontal (B horizontal along
bottom edge; P along right edge; T along left edge), and the other two axes
dip at angles of 0°, 15°, 30°, 45°, 60°, 75° and 90° with respect to the
horizontal. For each focal plot in the triangle interior, two axes have
identical dip angles (thus plotting along lines bisecting the angles and sides)

while the third axis makes angles of 15°, 35.3°, 60° and 75° with the
horizontal.
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Figure 9c
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sin® oty +sin® @y +sin’ ap =1 (40)

If we define x=sina,, y=sinap, and z=sin,, then eq. (40) is just the
equation of the sphere x2 + y2 + 22 = 1. Since all the angles are between 0°
and 90°, plotting focal mechanisms on a triangle diagram is equivalent to the
cartographer's problem of projecting locations from a quarter-hemisphere
onto a triangular flat surface.

The map projection which does this is the azimuthal gnomonic.
projection. If y is the angle defined by: -

x =tan" (sina; /sinap ) —45° (41)

then the horizontal position # and vertical positions v of a point on the triangle .
diagram are given by: ‘

_ CoSOlgSiny (42)
sin(35.26°)sin & + cos(35.25°)cos gz cos x
_c0s(35.26°)sin & —sin(35.26°)cos oz cos ¥ 43)

~ 5in(35.26°)sin & + cos(35.26°) cos &t cos ¥

Here, 35.26° is the dip angle of the T, B, and P axes for the focal mechanism -

which plots in the exact center of the triangle diagram, where 2 = v = 0. Note
that eqs. (42) and (43) are identical to the incorrect expressions which appear
in Frohlich (1992) and Frohlich and Apperson (1992) except for the cos @, in
the second term in the denominator.

Eq. (40) also provides a way of defining the fractional proportions of

thrust, strike-slip, and normal faulting for any particular focal mechanism. In
particular, if we define:

2 . .2 . .2
fthrust =Ssin aT’ fstrike—slip = Sin aB’ fnormal =sm aP (44)

then eq. (40) is just fhrust + f strike-slip + fnormal = 1. Thus, for example,
when the B axis is vertical fstrike-slip = 1 and fihryst and fnormal are zero.
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However, for a mechanism where all three dip angles are the same, equaling
35.26°, then f strike-slip = fthrust = fnormal = 0.33.
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Table 1: Principal moments and orientations of T, B, and P axes for all
mechanisms plotted in this report.

T axis B axis P axis
Ar @ ar g ©p Qg Ap Qp ap
Fig. 1 1.57 120° 24° 0.27 8  40° -1.84 232° 41°
Fig. 2 2.00 90° 0° +.90 0°  90° +0.10 0° 0°
1.70 90° 0° +.60 0°  90° -0.20 0° 0°
1.00 90° 0° -.10 0° 90° -0.90 0° 0°

1.00 90° 0° 0.00 0> 90° -1.00 0° 0°

1.00  90° 0° 0.00 0° 90° -0.10 0° 0°

Fig. 3 1.00 0©° 0° -0.50 90° 0° -0.5  90° 90°
1.00 0° 45° -0.50 90° 0° -0.5 180° 45°
1.00 ¢ 90° -0.50 90° 0° -0.5 0° 0°
1.00 90°  45° -0.50 270°  45° -0.5 0° 0°
1.00 90° 0° -0.50 90°  90° -0.5 0° 0°
Fig. 4 0.50 236° 39° -1.25 00 35° -2.25 116° 32°

1.50 236° 39° -025 0°  35° -1.25 116° 32°
1.50 265°  50° -0.25 (¢ 4° -1.25  93° 40°
1.50 270°  50° -0.25 180° 0° -1.25  90° 40°
1.50 180° 0° -0.25 270°  50° -1.25  90° 40°

Fig. 6 1.00 90° 0° 0.00 180°  90° -1.00 0° 0°
1.00 90° 0° -0.40 180° 90° -0.60 0° 0°
1.00 270°  45° 0.00 180° 0° -1.00  90° 45°
1.00  0° 35.26° 0.00 120° 35.26° -1.00 240° 35.26°
1.00  0° 35.26° -0.05 120° 35.26° -0.95 240° 35.26°
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To Obtain Cliff's Nodes Software From IRIS:

We assume that you are logged into a workstation with a UNIX operating
system and connected to the Internet.

1. To connect to IRIS computer using file transfer program type:
ftp iris.washington.edu

Computer will ask for name and password; name is "anonymous" and password is
your name, €. g., I type:

anonymous

cliff

2. Change directories on IRIS computer to subdirectories containing CliffsNodes
software-- type:

cd pub
cd programs
cd sel

cd sun
3. Transfer the documentation and software to your computer-- type:

mget CliffsNodes*

The system will ask you specifically if you want to obtain files
CliffsNodes.PShSv.README, and CliffsNodes.PShSv.tar. In each case you type:

y
Then, to leave the ftp program, type:
quit

4. To translate the tar file and create two subdirectories containing the software and
the documentation, /cliff and /doc, type:

tar -xvf CliffsNodes.PShSv.tar
The computer will list all the files as it creates them.

5. To run the CliffsNodes demonstration program, type:
cd cliff
Node.demo
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