
Mapping and modeling
Earth Science Data

Some brief notes on computing
and programming

Thorsten Becker
University of Southern California, Los Angeles

Università di Roma TRE, June 2012

Computing fundamentals

Memory

Elements of a
computer program

Programming philosophy

Programming philosophy

Programming philosophy

Programming: Philosophy

● strive for transparency by commenting and
documenting the hell out of your code

● create modularity by breaking tasks into reusable,
general, and flexible bits and pieces

● achieve robustness by testing often
● obtain efficiency by avoiding unnecessary

computational operations (instructions)
● maintain portability by adhering to standards

 D. Knuth: The art of computer programming

http://www-cs-faculty.stanford.edu/~knuth/taocp.html

Programming: Traditional
languages in the natural sciences

● Fortran: higher level, good for math
– F77: legacy, don't use (but know how to read)
– F90/F95: nice vector features, finally implements C

capabilities (structures, memory allocation)
● C: low level (e.g. pointers), better structured

– very close to UNIX philosophy
– structures offer nice way of modular programming,

see Wikipedia on C
● I recommend F95, and use C happily myself

http://en.wikipedia.org/wiki/Fortran
http://www.ictp.trieste.it/~manuals/programming/sun/fortran/f77rm/1_elements.doc.html
http://www-ccs.ucsd.edu/c/
http://en.wikipedia.org/wiki/C_programming_language

Programming: Some Languages that
haven't completely made it to

scientific computing

● C++: object oriented programming model
– reusable objects with methods and such
– can be partly realized by modular programming in C

● Java: what's good for commercial projects (or
smart, or elegant) doesn't have to be good for
scientific computing

● Concern about portability as well as general
access

Programming: Compromises

● Python
– Object oriented

– Interpreted

– Interfaces easily with F90/C

– Numerous scientific packages

Programming: Other interpreted, high-
abstraction languages for scientists

● Bash, awk, perl, python: script languages
– Bash: A shell can be scripted
– AWK: interpreted C, good for simple data processing

● Matlab (or octave)
– language is some mix between F77 and C, highly

vectorized
– might be good enough for your tasks
– interpreted (slower), but can be compiled

● IDL: visualization mostly, like matlab
● Mathematica: symbolic math mostly

http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/Awk.html
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.octave.org/
http://www.rsinc.com/idl/
http://documents.wolfram.com/mathematica/

Programming:
Trade-offs for scientific computing

assembler

C

F95

matlab

abstraction,
convenience

efficiency,
speed

F77

Java
python

Programming: Most languages need to
be compiled to assembler language

● $(F77) $(FFLAGS) -c main.f -o main.o
● there are standards, but implementations differ,

especially for F77/F90/F95, not so much for C
● the compiler optimization flags, and the choice of

compiler, can change the execution time of your
code by factors of up to ~10, check out some
example benchmarks for F90

● the time you save might be your own
● don't expect -O5 to work all the time

http://www.polyhedron.co.uk/compare/linux/f90bench_p4.html

AWK programming

● In many ways, like C
● Very useful for small computations, in

particular when operating on ASCII tables
● Based on line by line processing
echo 5 6 7 | gawk '{print($2*$3)}'

will return 42

AWK programming

Additional material

Tuning:
How to design efficient code

Tuning:
How to design efficient code

Tuning:
How to design efficient code

Tuning:
How to design efficient code
● watch array ordering in loops x[i*n+j]
● avoid things like:

– f1=cos(x)*sin(y);f2=cos(x)*cos(y);
● use BLAS, LAPACK
● experiment with compiler options which can

turn good (readable) code into efficient
● look into hardware optimized packages
● design everything such that you can run in

parallel (0th order) on one file system

Tuning: Tuning programs

● use compiler options, e.g. (AMD64 in brackets)
– GCC: -O3 -march=pentium4 (-m64 -m3dnow -march=k8)
-funroll-loops -ffast-math -fomit-frame-pointer

– ifc: -O3 -fpp -unroll -vec_report0
– PGI: -fast -Mipa (-tp=amd64)

● use profilers to find bottlenecks
● use computational libraries

Tuning: Matlab

● basically all actual computations within
matlab are based on LAPACK, ARPACK and
other library routines etc.

● Mathwork added a bunch of convenient
wrappers and neat ways to do things
vectorially

● plus plotting and GUI creation
● Matlab might be all you need

Tuning: Using standard
subroutines and libraries

● many tasks and problems have been
encountered by computational scientists for
the last 50 years

● don't re-invent the wheel
● don't use black boxes either
● exceptions: I/O, visualization, and complex

matrix operations

Algorithms: Collection of
subroutines: Numerical recipes

● THE collection of standard solutions in source
code

● usually works, might not be best, but OK
● NR website has the PDFs, I recommend to buy the

book
● criticism of numerical recipes
● website on alternatives to numerical recipes
● use packages like LAPACK, if possible
● else, use NR libraries but check
● MATLAB wraps NumRec, LAPACK & Co.

http://www.nrbook.com/a/bookcpdf.php
http://nr.com/
http://amath.colorado.edu/computing/Fortran/numrec.html
http://www.fceia.unr.edu.ar/~fisicomp/apuntes/biblios/altnr.htm

Tuning: Linear algebra packages,
examples

● EISPACK, ARPACK: eigensystem routines
● BLAS: basic linear algebra (e.g. matrix

multiplication)
● LAPACK: linear algebra routines (e.g. SVD,

LU solvers), SCALAPACK (parallel)
● parallel solvers: MUMPS (parallel, sparse,

direct), SuperLU
● PETSc: parallel PDE solvers, a whole

different level of complexity

http://www.netlib.org/eispack/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/scalapack_home.html
http://graal.ens-lyon.fr/~jylexcel/MUMPS/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-2/

Tuning: Examples for some
other science (meta-)packages

● netlib repository
● GNU scientific library
● GAMS math/science software repository
● FFTW: fast fourier transforms
● hardware optimized solutions

– ATLAS: automatically optimized BLAS (LAPACK)
– GOTO: BLAS for Intel/AMD under LINUX
– Intel MKL: vendor collection for Pentium/Itanium
– ACML: AMD core math library

http://www.netlib.org/
http://www.gnu.org/software/gsl/
http://math.nist.gov/
http://www.fftw.org/
http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/kgoto/signup_first.html
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm
http://developer.amd.com/acml.aspx

Shells: Cluster job control

● on large, parallel machines one typically runs
batch schedulers or queing systems

● this allows distributing jobs and utilizing
resources efficiently

● PBS
– qsub myjob.exe -tricky_options -q large
– qstat | grep $USER
– pbstop
– qdel job-ID

Writing and compiling a
C program

Example
project:
main.c

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

Example
project:
mysincos.h

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

Example
project:
myfunctions.c

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

Building: How to compile the
example project

becker@jackie:~/dokumente/teaching/unix/example >
ls
bin/ main.c makefile myfunctions.c mysincos.h objects/ RCS/

becker@jackie:~/dokumente/teaching/unix/example >
cc main.c -c

becker@jackie:~/dokumente/teaching/unix/example >
cc -c myfunctions.c

becker@jackie:~/dokumente/teaching/unix/example >
cc main.o myfunctions.o -o mysincos -lm

becker@jackie:~/dokumente/teaching/unix/example >
echo 0 90 -90 | mysincos
mysincos: reading x values in degrees from stdin
 0 1
 1 6.12303e-17
 -1 6.12303e-17
mysincos: computed 3 pairs of sines/cosines

Automating
the build
process with
make:
makefile

Building:

Building: Building with make

becker@jackie:~/dokumente/teaching/unix/example > make dirs
if [! -s ./objects/]; then mkdir objects;fi;
if [! -s objects/i686/];then mkdir objects/i686/;fi;\
if [! -s ./bin/];then mkdir bin;fi;\
if [! -s bin/i686/];then mkdir bin/i686;fi;
becker@jackie:~/dokumente/teaching/unix/example > make
icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c main.c \
-o objects/i686//main.o
icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c myfunctions.c \
-o objects/i686//myfunctions.o
icc objects/i686//main.o objects/i686//myfunctions.o -o bin/i686//mysincos -lm
becker@jackie:~/dokumente/teaching/unix/example > make
make: Nothing to be done for `all'.
becker@jackie:~/dokumente/teaching/unix/example > touch main.c
becker@jackie:~/dokumente/teaching/unix/example > make
icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c main.c \
-o objects/i686//main.o
icc objects/i686//main.o objects/i686//myfunctions.o -o bin/i686//mysincos -lm

Building: Version control

● RCS, SCCS, CVS, SVN: tools to keep track
of changes in any documents, such as
source code or HTML pages

● different versions of a document are checked
in and out and can be retrieved by date,
version number etc.

● I recommend using RCS for everything

Building: RCS example

becker@jackie:~/dokumente/teaching/unix/example > co -l main.c
RCS/main.c,v --> main.c
revision 1.2 (locked)
done

becker@jackie:~/dokumente/teaching/unix/example > emacs main.c

becker@jackie:~/dokumente/teaching/unix/example > ci -u main.c
RCS/main.c,v <-- main.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single '.' or end of file:
>> corrected some typos
>>
done

becker@jackie:~/dokumente/teaching/unix/example > rcsdiff -r1.2 main.c
===
RCS file: RCS/main.c,v
retrieving revision 1.2
diff -r1.2 main.c
9c9
< $Id: main.c,v 1.2 2005/07/30 19:57:34 becker Exp $

> $Id: main.c,v 1.3 2005/07/30 20:42:07 becker Exp $
27c27
< fprintf(stderr,"%s: reading x values in degrees from stdin\n",

> fprintf(stderr,"%s: reading x angles in degrees from stdin\n",

Building:
Version control is worth it

● small learning curve, big payoff
● EMACS can integrate version control, make,

debugging etc. consistently and conveniently
● opening files, checking in/out can be done

with a few keystrokes or menu options

Building:
EMACS modes

● EMACS is just
one example of
a programming
environment

● e.g. there is a
vi mode within
EMACS

● dotfiles.com on
.emacs

http://www.dotfiles.com/index.php3?app_id=6

Building: Debugging

● put in extra output statements into code (still
the only option for MPI code, kind of)

● use debuggers:
– compile without optimization: cc -g main.c -c
– gdb: command line debugger

● gbg bin/x86_64/mysincos
● (gdb) run
● after crash, use where to find location in code that

caused coredump, etc.
– visual debuggers: ddd, photran, etc.

http://www.gnu.org/software/ddd/
http://www.photran.org/

Building:
ddd

Building: Eclipse environment
(see also Code warrior etc.)

Tuning: Calling F90 from C

● some subroutines are Fortran functions which
you might want to call from C

● this works if you pointerize and flip
– call func(x) real*8 x as func(&x) from C
– storage of x(m,n) arrays in Fortran for x(i,j) is

x[j*m+i] (fast rows) instead of x[i*n+j] (fast columns)
● C x[0,1,2,...,n-1] will be x(1,2,...,n) in Fortran
● don't pass strings (hardware dependent)
● BTW: Fortran direct binary I/O isn't really binary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

