Mapping and modeling
Earth Science Data

Some brief notes on computing
and programming

Thorsten Becker

University of Southern California, Los Angeles

Universita di Roma TRE, June 2012

Computing fundamentals

At a low level, a computer stores information in the binary system, i.e. in bits that can hold the
values of either zero or one. You can then use a byte (8 bits) to encode numbers from 0 to 2% — 1 =
255 using the binary system. For floating point or larger integers. more memory 1s required.
A single precision float take up four bytes and is accurate up to ~ 5- 1077, a double precision
float up to ~ 5- 10719, With a 32 bit operating system, the largest number you can represent is
231 _ 1 ~ 2.1 billion. (Aside: this might seem like a big number but is not, as it corresponds
roughly to a bit more then 8007 resolution.)

— A numerical representation of a float will always be approximate (only integers are exact).
This means to not test for x == 0 (equal to zero) but abs(x) < € (abs(x) = |x|) where ¢
depends on implementation.

— The detailed storage depends on the hardware, “big endian™ vrs.“small endian™

— Some mathematical operations that are theoretically valid will lead to large round off errors.
e.g. cos~ ! (x) for small x, subtracting large numbers from each other.

— The memory requirements for a float vector will be half of that of a double.

Memory

I MB (megabyte) corresponds 1024 < 1024 bytes: 1 GB = 1024 MB. As of 2008, your PC will
have likely have at least ~ 2 GB of Random Access Memory or RAM (as opposed to hard drive
space) meaning you can store how many floats and doubles? To increase the available memory,
one can use formerly called “supercomputers™. Those consist these days mainly of

Distributed memory machines e.g. 200 < 2 xquadcore (8 Central Processing Units or CPUs) x8
GB RAM machines which need specially designed software to make use of parallelism,
e.g. Message Passing Interface or MPL

Shared memory machines This 1s the more expensive, old school approach where several CPUs
can share a larger than normal (e.g. 256 GB) memory. Compilers can sometimes help make
your code make use of “parallelism”, i.e. having the computational time decrease by using
more than one core or CPU. Right now, typical PCs can be considered shared memory (multi-
core, i.e. CPU) machines.

Elements of a
computer program

This is the main program. Notice the '%' symbol - it means this line is
a comment and will be ignored at run time.

= 0; % assign integer variable for loop

= 100; % some number of elements

o= ol

zeros(n,1l); % allocate and initialize a vector x[] with n elements
:l.r
or 1 = 1:n & loop fromi=1, 2, ..., n

0

X(1) = v 2; % assign some value
y = y+2; % increment variable
nd % close loop
% notice the statements inside the loop are indented.
i =1;
while (1 <= n) % different loop construct
(1) = mysin(x(1i)); % function call
1 = 1+1;

[T T S
[l

qE]

printf ("%g\n", x(1i)); % output statement
end

% This is the subroutine or function "mysin’

function result = mysin(xloc)

result = sin(xloc);

Note that this subroutine will not know the main programs
variables, they are "local”.

oy o=

Programming philosophy

1. Modularize and test for robustness.

e Break the task down into small into small pieces that can be reused within the same
program or in another program

e Test each part well before using it in a larger project to make code more robust.
e cnsure that each subroutine gives error messages, 1n case non sensible input arguments
are given.

e do not ignore compiler warnings

Programming philosophy

2. Strive for portability

Don’t use special tricks/packages that might not be available on other platforms.

3. Comment

e Add explanatory notes for each major step, strive for a fraction of comments to code
= 30%

This will help re-usability, should you or someone else want to modify the code later.
4. Use “structures”, avoid globals

e [f variables are needed in several subroutines, do not use “global™ declaration, but pass
a structure that contains a set of variables.

5. Avoid unnecessary computations

See below for common speed up tricks.

Programming philosophy

6. Visualize you intermediate results often (But don’t print it all out in color!)

Bugs in the code can often be seen easily when output is analyzed graphically, and may show
up as, e.g.

e lines being wiggly when they should be smooth

e solutions being skewed when they should be symmetrical

e ¢IcC.

Object oriented programming forces you to follow rules 1 & 4 (not so much 2). Editors and
advanced development environments (such as the Matlab DE) help with 3 & 6.

Philosophy

» strive for transparency by commenting and
I documenting the hell out of your code

» create modularity by breaking tasks into reusable,
general, and flexible bits and pieces

* achieve robustness by testing often

» obtain efficiency by avoiding unnecessary
computational operations (instructions)

* maintain portability by adhering to standards

a2 D. Knuth: The art of computer programming

http://www-cs-faculty.stanford.edu/~knuth/taocp.html

I Traditional
I languages in the natural sciences

- F77: legacy, don't use (but know how to read)
- F90/F95: nice vector features, finally implements C
capabilities (structures, memory allocation)
* C:low level (e.g. pointers), better structured
- very close to UNIX philosophy
- structures offer nice way of modular programming,
see Wikipedia on C

* | recommend F95, and use C happily myself

I * Fortran: higher level, good for math

http://en.wikipedia.org/wiki/Fortran
http://www.ictp.trieste.it/~manuals/programming/sun/fortran/f77rm/1_elements.doc.html
http://www-ccs.ucsd.edu/c/
http://en.wikipedia.org/wiki/C_programming_language

I Some Languages that
haven't completely made it to
I scientific computing

» C++: object oriented programming model
I - reusable objects with methods and such
— can be partly realized by modular programming in C

» Java: what's good for commercial projects (or
smart, or elegant) doesn't have to be good for
scientific computing

» Concern about portability as well as general
access

I Compromises

* Python
I — ODbject oriented
- Interpreted
- Interfaces easily with FO0/C

- Numerous scientific packages

I Other interpreted, high-
I abstraction languages for scientists

— Bash: A shell can be scripted
- AWK: interpreted C, good for simple data processing
» Matlab (or octave)
- language is some mix between F77 and C, highly
vectorized
- might be good enough for your tasks
- interpreted (slower), but can be compiled
* |DL: visualization mostly, like matlab

* Mathematica: symbolic math mostly

I » Bash, awk, perl, python: script languages

http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/Awk.html
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.octave.org/
http://www.rsinc.com/idl/
http://documents.wolfram.com/mathematica/

I Trade-offs for scientific computing

abstraction,
I convenience

Java

python
matlab
FO5
C
F77

assembler

efficiency,
speed

I Most languages need to
I be compiled to assembler language
* $

(F77) $(FFLAGS) -c main.f -o main.o

 there are standards, but implementations differ,
especially for F77/F90/F95, not so much for C

» the compiler optimization flags, and the choice of
compiler, can change the execution time of your
code by factors of up to ~10, check out some
example benchmarks for F90

* the time you save might be your own

» don't expect - b to work all the time

http://www.polyhedron.co.uk/compare/linux/f90bench_p4.html

I AWK programming

* In many ways, like C
I * Very useful for small computations, in
particular when operating on ASCII tables

* Based on line by line processing
echo 5 6 7 | gawk '{print($2*$3)}"

will return 42

calculate the standard deviation of the col column, [}
fast (and inaccurate) if fast is set to unity, default is slow
if col is not set, uses col=1
$Id: standarddev.awk,v 1.5 2012/06/23 22:20:39 becker Exp becker %
BEGIN {
sum = sum2 = 0.0;n = i1 = B; # initialize summations
if(col==0) # default is to use first column
col = 1;
3
{
if((NF>=col)&&(substr($1,1,1)!="#")&&(tolower(%col)!="nan")){ # we can use this line
if(fast){ # fast, inaccurate way
sum += $col;sum2 += $col * $col;n++;
lelse{ # slow way
n++;x[n]=%col;sum += %col;
3
}
}
END {
if(n > 1){
if(fast){
std = sgrt ((n * sum2 - sum * sum) / (n*(n-1)));
mean would be sum / n;
printf("%.10g\n", std)
lelse{
mean = sum / n;sumZ = 0.0;
for(i=1;i<=n;i++){
¥[1] -= mean;
sum2 += x[1]*x[1];
}
printf("%.10g\n", sqrt(sum2/(n-1)));
3
lelse{
print("NaN");
3

Additional material

How to design efficient code

Even better, in Matlab (and languages such as FORTRANOY90) you can vectorize, i.e. write
symbolically for a vector x

X =X + 5; % X here can be a matrix or a vector

if you want to add a scalar to each element, or

for the example above. Matlab internally takes take that the looping 1s taking care of in the
most efficient way. This can make a huge difference, vectorize whenever you can in.

3. Avoid if statements as much as possible. For example. if this test

if (debu 1) % evaluating this expression will take time
% do this

else
% do that

end

if optional and usually zero, comment it out using pre-processor directives. Le. in C, you
would write the code like so

$ifdef DEBUG

% code here for debugging version of program
telse

% code here for the regular version of program
tend

and compile the program with or without
gcc —-DDEBUG

depending on if you want those statements to be executed when the program runs.

4. Pre-compute common factors to avoid redundant computations.
For example, instead of

for 1 = 1:n
x (i) = x(1)/180*pi;
end

It 1s better to do

fac = pi/180;
for 1 = 1:n

x(1) = x(1)*fac;
end

because it entails one less division per step. In Matlab, it’s better still to use the vectorized
version, x=x. *fac.

5. Share the code!

The more eyes, the less bugs. and the better the performance.

How to design efficient code

6. Use hardware optimized packages for standard tasks, e.g.
e LAPACK for linear algebra
This package 1s available highly optimized for several architectures.

e FFTW for FFT,
an automatically adapting package.

Different hardware makes certain chunks of memory sized (“cache™) operations highly
efficient (see, e.g. Dabrowski et al., 2008, as used later 1n class),

7. Use version control!

Use version control packages (such as subversion, RCS) during code development, as this
might safe you an immense amount of time when you're trying to track down where and
when that bug crept into the code.

. Avoid reading and writing intermediate steps ro “file”, i.e. on the hard drive (Input/Output
or [0) 1f at all possible.

Use nested loops that are sorted by the fastest/major index, because memory access is faster

that way. The storage depends on the computer larguage (C vrs. FORTRAN). e.g. in Matlab,
you would write

for i =1 % lncrement 1 across all rows (slow 1index)
% row 1 computations across all columns j first
x(1i,3) = x(1i,3) * y(1,3);
end
end

to multiply x elements by those of y and NOT the other way around,

'n
for J = 1:m

for J = 1:m % row 1 computations across all columns j first
for i = 1:n % this will make things jump around in memort
% and slow things down
x(1,3) = x(1,3) * v(i,3);
end

end

I How to design efficient code

» watch array ordering in loops X[i*n+j]
I avoid things like:
- f1=cos(x)*sin(y);f2=cos(x)*cos(y);
* use BLAS, LAPACK
* experiment with compiler options which can
turn good (readable) code into efficient
* look into hardware optimized packages
» design everything such that you can run in

parallel (0™ order) on one file system

I Tuning programs

» use compiler options, e.g. (AMDG64 in brackets)

- GCC: -® -march=pentium (-n64 -nBdnow - mar ch=k8)
-funroll-1oops -ffast-math -fomt-frane-pointer

- ifc: -8 -fpp -unroll -vec reportO
- PGIl: -fast -M pa (-tp=and64)
 use profilers to find bottlenecks
* use computational libraries

Matlab

basically all actual computations within
matlab are based on LAPACK, ARPACK and
other library routines etc.

Mathwork added a bunch of convenient
wrappers and neat ways to do things
vectorially

plus plotting and GUI creation

Matlab might be all you need

I Using standard
I subroutines and libraries

encountered by computational scientists for
the last 50 years

e don't re-invent the wheel

e don't use black boxes either

« exceptions: /O, visualization, and complex
matrix operations

I * many tasks and problems have been

I Collection of
I subroutines: Numerical recipes

* THE collection of standard solutions in source
I code
 usually works, might not be best, but OK
* NR website has the PDFs, | recommend to buy the
book
criticism of numerical recipes
website on alternatives to numerical recipes
use packages like LAPACK, if possible
else, use NR libraries but check
MATLAB wraps NumRec, LAPACK & Co.

http://www.nrbook.com/a/bookcpdf.php
http://nr.com/
http://amath.colorado.edu/computing/Fortran/numrec.html
http://www.fceia.unr.edu.ar/~fisicomp/apuntes/biblios/altnr.htm

I Linear algebra packages,
I examples

* EISPACK, ARPACK: eigensystem routines
I * BLAS: basic linear algebra (e.g. matrix

multiplication)

 LAPACK: linear algebra routines (e.g. SVD,
LU solvers), SCALAPACK (parallel)

» parallel solvers: MUMPS (parallel, sparse,
direct), SuperLU

« PETSc: parallel PDE solvers, a whole
different level of complexity

http://www.netlib.org/eispack/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/scalapack_home.html
http://graal.ens-lyon.fr/~jylexcel/MUMPS/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-2/

I Examples for some
I other science (meta-)packages

» GNU scientific library
« GAMS math/science software repository
 FFTW: fast fourier transforms

* hardware optimized solutions
- ATLAS: automatically optimized BLAS (LAPACK)
- GOTO: BLAS for Intel/AMD under LINUX
- Intel MKL: vendor collection for Pentium/ltanium
- ACML: AMD core math library

I * netlib repository

http://www.netlib.org/
http://www.gnu.org/software/gsl/
http://math.nist.gov/
http://www.fftw.org/
http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/kgoto/signup_first.html
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm
http://developer.amd.com/acml.aspx

Cluster job control

* on large, parallel machines one typically runs
batch schedulers or queing systems
* this allows distributing jobs and utilizing

resources efficiently

 PBS
- qsub myjob.exe -tricky options -q large
- qstat | grep SUSER
- pbstop
- qdel job-ID

Writing and compiling a
C program

example program to compute the sin and cosine
of = walues i1n degrees read 1n from stdin

Thorsten Becker, July 2005, twb@usc. edu

5Id: main.c,v 1.2 200507730 19:57:34 hecker Exp 3
*i

#Finclode "mysincos. h"

int main{inkt argc, char **acgv)
i

COME _PRECISION ;

int n;

for all non-zero number of command line arquments,
print a help page
*/

fprintf (stderr, "#shncompute sin and cos from x walues [deg] read from stdin’an",

_ acgw([0]) ;
exit(-1);

i

fprintf (stderr, "%s: reading x waluves 1n degrees from stdindn",
acgv [0]);

n = 0;
while (fscanf (stdin, SCAN FMT, &x) == 1)

i+

compute and print walues
*f
fprintf {stdout, "%1lg %llg'n",
mysint degix), mycosf degi(=));

i+ £+ lncrement counter */
t &% end while loop */
fprintf (stderr, "%s: computed %1 pairs of sines/cosines’n",

acgw (0], n);

return 0; A* normal end *F

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

Example
project:
mysincos.h

definitions and headers for example program to compute the sin and
cosine of mmbers read in from stdin

Thorsten Becker, July Z005
=Id: mysincos. h,+ 1.1 2005/07/30 19:44:18 becker Exp becker &

*f

#inclode <stdio. h:
#inclode <math. k>

i
precision setting
*f
#define DOUELE PRECISION /* use double precision?
undefine else

*f

#1fdef DOUBLE PRECISION
#define COMP PRECISION double
#define SCAN FMT ":1f"

#else /* single precision */
#define COMP PRECISION float
#define SCAN FMT "=f"

#endif

/* constankts */
#define OMEEIGHTOVERPI L7, 20L770L130823208767908154814105

i
function and subroutine declarations

*

COMP PRECISION mysinf degiCOMP PRECISION ;

COMP PRECISION mycosf deg(COMP PRECISION) ;

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

functions and subroutines for example program to compute the sin and
cosine of numbers read in from stdin

Thorsten Becker, July 2005, twhBEusc. edu
5Id: myfunctions. c,w 1.1 Z005/07/30 19:44:15 hecker Exp hecker 3
*i

#include "mysincos. h"

f*
Example Comot: ang Ldag] T e in degres
p rOj e Ct - output: return value

. xf
myfunct|ons_c COMP PRECISION mysinf deg(COMP_PRECISION xdeg)

d
COMP PRECISION rad;

xrad = xdeq/ONEEIGHTOVERPI; /* convert to radians */
return sin(xrad) ; f* rerturn sin *F
i
A* compute the cos of a walue in degres */
COMP_PRECISION mycosft degiCOMP _PRECISION xdeg)
i
COMP PRECISION xrad;
#rad = xdeg/ONEEIGHTOVERPT;
return cos (xrad) ;

i

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar

How to compile the
example project

becker@jackie:~/dokumente/teaching/unix/example >
ls
bin/ main.c makefile myfunctions.c mysincos.h objects/ RCS/

becker@jackie:~/dokumente/teaching/unix/example >
CC main.c -c

becker@jackie:~/dokumente/teaching/unix/example >
cc -¢ myfunctions.c

becker@jackie:~/dokumente/teaching/unix/example >
cc main.o myfunctions.o -0 mysincos -Im

becker@jackie:~/dokumente/teaching/unix/example >
echo 0 90 -90 | mysincos
mysincos: reading x values in degrees from stdin
0 1
16.12303e-17
-1 6.12303e-17
mysincos: computed 3 pairs of sines/cosines

wakefile for mysincos package

1 20050730 20:06:07 her

oL P) L

A U tO m at i n g ”E'.T“._ §(0DIR) /myfunctions. o

LIE-

the build

LlEﬂﬂ.

process with

mysincos: &9 E-]:I IE AMYE1NCos

H
'_I
'_I
l:I"

l.|.l 4:-".r"'i [T [I

|_|
Ln1]

main u]

[| % (BDIR) s TS0
m a e -] o % (BDIR) /mysincos 3 (LIES)
m a kefl I e ' | -z . fohi ; then mkdir objects;
: LT : '_I] 1'hen mkdic & III]ZIIE sEigh

ithen mkdir bin; £1;5
CH) /] ; then mkdic bin/% (ARCH) ;f1;

% (0DIE)
-c %< -0 &(0DIR) &+

Building with make

becker@jackie:~/dokumente/teaching/unix/example > make dirs

if [! -s ./objects/]; then mkdir objects;fi;

if [| -s objects/i686/];then mkdir objects/i686/;fi;\

if [! -s ./bin/];then mkdir bin;fi;\

if [! -s bin/i686/];then mkdir bin/i686;fi;
becker@jackie:~/dokumente/teaching/unix/example > make

icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c main.c\
-0 objects/i686//main.o

icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c myfunctions.c \
-0 objects/i686//myfunctions.o

icc objects/i686//main.o objects/i686//myfunctions.o -0 bin/i686//mysincos -Im
becker@jackie:~/dokumente/teaching/unix/example > make

make: Nothing to be done for "all'.

becker@)jackie:~/dokumente/teaching/unix/example > touch main.c
becker@jackie:~/dokumente/teaching/unix/example > make

icc -no-gcc -O3 -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION -c main.c\
-0 objects/i686//main.o

icc objects/i686//main.o objects/i686//myfunctions.o -0 bin/i686//mysincos -Im

I Version control

« RCS, SCCS, CVS, SVN: tools to keep track
I of changes in any documents, such as

source code or HTML pages
» different versions of a document are checked

iIn and out and can be retrieved by date,
version number eftc.
* | recommend using RCS for everything

RCS example

becker@)jackie:~/dokumente/teaching/unix/example > co -l main.c
RCS/main.c,v --> main.c

revision 1.2 (locked)

done

becker@)jackie:~/dokumente/teaching/unix/example > emacs main.c

becker@jackie:~/dokumente/teaching/unix/example > ci -u main.c
RCS/main.c,v <-- main.c

new revision: 1.3; previous revision: 1.2

enter log message, terminated with single '.' or end of file:

>> corrected some typos

>>

done

becker@jackie:~/dokumente/teaching/unix/example > rcsdiff -r1.2 main.c

RCS file: RCS/main.c,v

retrieving revision 1.2

diff -r1.2 main.c

9c9

< $Id: main.c,v 1.2 2005/07/30 19:57:34 becker Exp $

> $ld: main.c,v 1.3 2005/07/30 20:42:07 becker Exp $

27c27

< fprintf(stderr,"%s: reading x values in degrees from stdin\n",

> fprintf(stderr,"%s: reading x angles in degrees from stdin\n",

I Version control is worth it

« EMACS can integrate version control, make,
debugging etc. consistently and conveniently

* opening files, checking in/out can be done
with a few keystrokes or menu options

I » small learning curve, big payoff

EMACS modes

« EMACS is just
one example of
a programming
environment

* e.g. there is a
vi mode within
EMACS

 dotfiles.com on
.emacs

File Edit Options Buffers Tools Minibuf Help

fprintf (stderr, "%s: reading x angles in degrees from stdin’n",

argv (0]} ;
n = 0;
while (fscant (stdin, SCAN FMT, &x) == 1)1

i*
compute and print walues
*f
fprintf(stdout, "2llg llgn",
nysint_deg(x), mycosf_degix));

i J* increment counter */
v/t end while loop */
fprintf (stderr, "%s: computed %1 pairs of sines/cosineshn',

argv([0].n);

return 0; J* normal end */

/

--: %% mwain.c (C RC5-1.4 abhrev)--L4d--Eot
| dd ~/dokumente/teaching/unix/example

make -k
&N -c main. c -o ohjects/ 1686/ /main. o

Snysincos -lm

Compilation finished at Sat Jul 30 14:.01:.36

/

-—:** Fpgypilation® {Compllation:exit [0])--L1--&11
i Compile command: make -k ||

icc -no-gec -03 -unroll -vec reportl -DLINUX SUEROUTINE COMVENTIO R

icc objects 1686/ /main. o ohjects/1686/ /myfunctions. o -o bin/1686// @

http://www.dotfiles.com/index.php3?app_id=6

Debugging

* put in extra output statements into code (still
the only option for MPI code, kind of)

* use debuggers:
- compile without optimization: cc -g main.c -c
- gdb: command line debugger
e gbg bin/x86_64/mysincos
 (gdb) run
e after crash, use where to find location in code that
caused coredump, efc.

- visual debuggers: ddd, photran, etc.

http://www.gnu.org/software/ddd/
http://www.photran.org/

ddd File Edit Wiew Program Commands Status Source Data
| main.c:ag ;s D B @& @ ?

Lookup Fifides Break Uaich BEitiT,

25 exiti{—17;
26 3
27 fprintfistderr,"%s: reading x angles in degrees from stdinin®,
28 argy [0]): DD \
29 n=10;
a0 while{fscanf{stdin,SCAN_FMT,&x) = 174 Run
x| j
32 compute and print walues Interrupt
33 #)
P4 ! fprintfistdout, %119 %11ain", step | Stepi |
35 mysinf_degCxld,mycosf_deqxll; Mext | Mesti
36 n++; f* increment counter */ _ -
37 3 /% end while Toop */ Until | Finish
a8 fprintfistderr,"%s: computed %i pairs of sines/cosineshn”, ;
a9 argv[0].,.nd: _ETﬂJ_J@LJ
40 Up | Down
41 return 0; F# normal end #®/ -———J
4z 1 Unda | Fedo
Edit | Make
|

Ereakpoint 3 at 0x80484dc: file main.c, line 5.
{gdb) delete 1

{gdb) break main.c:3s

Ereakpoint 4 at 0x8042531: file main.c, 1ine 35.
{qdb) delete 3

Cgdb) clear main.c:3s

Deleted breakpoint 4

{gdb) run

Starting program: fusr/homesbecker/dokumentes/teachingfunixfexamplesbindiBEEmysincaos
fusr/fhome/becker/dokumente/teaching/unixsexamples/bin/i686/mysincos: reading ® angles in degrees from stdin
43

Breakpoint 2, main (arge=1, argv=0xbfe3fc54) at main. c:34
{gdb) print =

1 =45

fgdh) T

Eclipse environment
(see also Code warrior efc.)

— g m == e | - o ——

Jawva - asciiuintZbin.c - Eclipse SDK
File Edit Refactor MNavigate Search Project Run Window Help
By Ov Qv |8 & G B ® S v il e e @ 2 [gava]
b sl & ccivintzbine X =8| g0 =2 =0
#include <stdlib.h>

(3’
&
+

[*
4

o OB .) A Y ws
geoup L@ #include <stdio.h> B ®x e
/%
read in n unsinged intergers as ASCII and write in binary

¢
int main(int argc, char **argv)
{
unsigned int i,n;
if{arge !'= 1){
fprintf(stderr, "%s‘\nread integers as ASCII from stdin and write them in binary to std
argv[0]);
exit(-1);
]
n=0;
while(fscanf(stdin, "%i",&1)==1){
fwrite(&i,sizeof(unsigned int),1,stdout);

n++;
}
fprintf(stderr,"%s: converted %i unsinged integers‘\n",argv[0],n);
exit(n);
}
]
[<] [»]
[Problems 52 Javadoc | Declaration ®w X Y =0

0 errors, 0 warnings, 0 infos

| | Description Resource In Folder Location

Writable Smart Insernt 1:1

Calling F90 from C

e some subroutines are Fortran functions which
you might want to call from C

* this works if you pointerize and flip
- call func(x) real*8 x as func(&x) from C
- storage of x(m,n) arrays in Fortran for x(i,j) is
X[]*m+i] (fast rows) instead of x[i*n+]] (fast columns)
* C x[0,1,2,...,n-1] will be x(1,2,...,n) In Fortran
» don't pass strings (hardware dependent)
 BTW: Fortran direct binary I/O isn't really binary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

