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Programming: Philosophy

● strive for transparency by commenting and 
documenting the hell out of your code

● create modularity by breaking tasks into reusable, 
general, and flexible bits and pieces

● achieve robustness by testing often
● obtain efficiency by avoiding unnecessary 

computational operations (instructions)
● maintain portability by adhering to standards

   D. Knuth: The art of computer programming

http://www-cs-faculty.stanford.edu/~knuth/taocp.html


Programming: Traditional 
languages in the natural sciences

● Fortran: higher level, good for math
– F77: legacy, don't use (but know how to read)
– F90/F95: nice vector features, finally implements C 

capabilities (structures, memory allocation)
● C: low level (e.g. pointers), better structured

– very close to UNIX philosophy
– structures offer nice way of modular programming, 

see Wikipedia on C
● I recommend F95, and use C happily myself

http://en.wikipedia.org/wiki/Fortran
http://www.ictp.trieste.it/~manuals/programming/sun/fortran/f77rm/1_elements.doc.html
http://www-ccs.ucsd.edu/c/
http://en.wikipedia.org/wiki/C_programming_language


Programming: Some Languages that 
haven't completely made it to 

scientific computing

● C++: object oriented programming model
– reusable objects with methods and such
– can be partly realized by modular programming in C

● Java: what's good for commercial projects (or 
smart, or elegant) doesn't have to be good for 
scientific computing

● Concern about portability as well as general 
access



Programming: Compromises

● Python
– Object oriented

– Interpreted

– Interfaces easily with F90/C

– Numerous scientific packages



Programming: Other interpreted, high-
abstraction languages for scientists

● Bash, awk, perl, python: script languages
– Bash: A shell can be scripted
– AWK: interpreted C, good for simple data processing

● Matlab (or octave)
– language is some mix between F77 and C, highly 

vectorized
– might be good enough for your tasks
– interpreted (slower), but can be compiled

● IDL: visualization mostly, like matlab
● Mathematica: symbolic math mostly

http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/Awk.html
http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.octave.org/
http://www.rsinc.com/idl/
http://documents.wolfram.com/mathematica/


Programming: 
Trade-offs for scientific computing

assembler

C

F95

matlab

abstraction, 
convenience

efficiency, 
speed

F77

Java
python



Programming: Most languages need to 
be compiled to assembler language

● $(F77) $(FFLAGS) -c main.f -o main.o
● there are standards, but implementations differ, 

especially for F77/F90/F95, not so much for C
● the compiler optimization flags, and the choice of 

compiler, can change the execution time of your 
code by factors of up to ~10, check out some
example benchmarks for F90

● the time you save might be your own
● don't expect -O5 to work all the time

http://www.polyhedron.co.uk/compare/linux/f90bench_p4.html


AWK programming

● In many ways, like C
● Very useful for small computations, in 

particular when operating on ASCII tables
● Based on line by line processing
echo 5 6 7 | gawk '{print($2*$3)}' 

will return 42



AWK programming



Additional material
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Tuning: 
How to design efficient code
● watch array ordering in loops x[i*n+j] 
● avoid things like: 

– f1=cos(x)*sin(y);f2=cos(x)*cos(y); 
● use BLAS, LAPACK
● experiment with compiler options which can 

turn good (readable) code into efficient
● look into hardware optimized packages
● design everything such that you can run in 

parallel (0th order) on one file system



Tuning: Tuning programs

● use compiler options, e.g. (AMD64 in brackets)
– GCC: -O3 -march=pentium4 (-m64 -m3dnow -march=k8) 
-funroll-loops -ffast-math -fomit-frame-pointer

– ifc: -O3  -fpp -unroll -vec_report0
– PGI: -fast -Mipa (-tp=amd64)

● use profilers to find bottlenecks
● use computational libraries



Tuning: Matlab

● basically all actual computations within 
matlab are based on LAPACK, ARPACK and 
other library routines etc.

● Mathwork added a bunch of convenient 
wrappers and neat ways to do things 
vectorially

● plus plotting and GUI creation
● Matlab might be all you need



Tuning: Using standard 
subroutines and libraries

● many tasks and problems have been 
encountered by computational scientists for 
the last 50 years

● don't re-invent the wheel
● don't use black boxes either
● exceptions: I/O, visualization, and complex 

matrix operations



Algorithms: Collection of 
subroutines: Numerical recipes

● THE collection of standard solutions in source 
code

● usually works, might not be best, but OK
● NR website has the PDFs, I recommend to buy the 

book
● criticism of numerical recipes
● website on alternatives to numerical recipes
● use packages like LAPACK, if possible
● else, use NR libraries but check
● MATLAB wraps NumRec, LAPACK & Co. 

http://www.nrbook.com/a/bookcpdf.php
http://nr.com/
http://amath.colorado.edu/computing/Fortran/numrec.html
http://www.fceia.unr.edu.ar/~fisicomp/apuntes/biblios/altnr.htm


Tuning: Linear algebra packages, 
examples

● EISPACK, ARPACK: eigensystem routines
● BLAS: basic linear algebra (e.g. matrix 

multiplication)
● LAPACK: linear algebra routines (e.g. SVD, 

LU solvers), SCALAPACK (parallel)
● parallel solvers:  MUMPS (parallel, sparse, 

direct), SuperLU
● PETSc: parallel PDE solvers, a whole 

different level of complexity

http://www.netlib.org/eispack/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/scalapack_home.html
http://graal.ens-lyon.fr/~jylexcel/MUMPS/
http://crd.lbl.gov/~xiaoye/SuperLU/
http://www-unix.mcs.anl.gov/petsc/petsc-2/


Tuning: Examples for some 
other science  (meta-)packages

● netlib repository
● GNU scientific library
● GAMS math/science software repository
● FFTW: fast fourier transforms
● hardware optimized solutions

– ATLAS: automatically optimized BLAS (LAPACK)
– GOTO: BLAS for Intel/AMD under LINUX
– Intel MKL: vendor collection for Pentium/Itanium
– ACML: AMD core math library

http://www.netlib.org/
http://www.gnu.org/software/gsl/
http://math.nist.gov/
http://www.fftw.org/
http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/kgoto/signup_first.html
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm
http://developer.amd.com/acml.aspx


Shells: Cluster job control

● on large, parallel machines one typically runs 
batch schedulers or queing systems

● this allows distributing jobs and utilizing 
resources efficiently

● PBS
– qsub myjob.exe -tricky_options -q large
– qstat | grep $USER
– pbstop
– qdel job-ID



Writing and compiling a 
C program



Example
project:
main.c

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar


Example
project:
mysincos.h

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar


Example
project:
myfunctions.c

C-Programming

http://geodynamics.usc.edu/~becker/ftp/unix/example.tar


Building: How to compile the 
example project

becker@jackie:~/dokumente/teaching/unix/example > 
ls
bin/  main.c  makefile  myfunctions.c  mysincos.h  objects/  RCS/

becker@jackie:~/dokumente/teaching/unix/example > 
cc main.c -c

becker@jackie:~/dokumente/teaching/unix/example > 
cc -c myfunctions.c

becker@jackie:~/dokumente/teaching/unix/example > 
cc main.o myfunctions.o -o mysincos -lm

becker@jackie:~/dokumente/teaching/unix/example > 
echo 0 90 -90 | mysincos
mysincos: reading x values in degrees from stdin
          0           1
          1 6.12303e-17
         -1 6.12303e-17
mysincos: computed 3 pairs of sines/cosines



Automating 
the build 
process with
make: 
makefile

Building: 



Building: Building with make

becker@jackie:~/dokumente/teaching/unix/example > make dirs
if [ ! -s ./objects/ ]; then mkdir objects;fi;
if [ ! -s objects/i686/ ];then mkdir objects/i686/;fi;\
if [ ! -s ./bin/ ];then mkdir bin;fi;\
if [ ! -s bin/i686/ ];then mkdir bin/i686;fi;
becker@jackie:~/dokumente/teaching/unix/example > make
icc -no-gcc -O3  -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION  -c main.c \
-o objects/i686//main.o
icc -no-gcc -O3  -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION  -c myfunctions.c \
-o objects/i686//myfunctions.o
icc objects/i686//main.o objects/i686//myfunctions.o -o bin/i686//mysincos -lm
becker@jackie:~/dokumente/teaching/unix/example > make
make: Nothing to be done for `all'.
becker@jackie:~/dokumente/teaching/unix/example > touch main.c
becker@jackie:~/dokumente/teaching/unix/example > make
icc -no-gcc -O3  -unroll -vec_report0 -DLINUX_SUBROUTINE_CONVENTION  -c main.c \
-o objects/i686//main.o
icc objects/i686//main.o objects/i686//myfunctions.o -o bin/i686//mysincos -lm
 



Building: Version control

● RCS, SCCS, CVS, SVN: tools to keep track 
of changes in any documents, such as 
source code or HTML pages

● different versions of a document are checked 
in and out and can be retrieved by date, 
version number etc.

● I recommend using RCS for everything



Building: RCS example

  

becker@jackie:~/dokumente/teaching/unix/example > co -l main.c
RCS/main.c,v  -->  main.c
revision 1.2 (locked)
done

becker@jackie:~/dokumente/teaching/unix/example > emacs main.c

becker@jackie:~/dokumente/teaching/unix/example > ci -u main.c
RCS/main.c,v  <--  main.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single '.' or end of file:
>> corrected some typos
>>
done

becker@jackie:~/dokumente/teaching/unix/example > rcsdiff -r1.2 main.c
===================================================================
RCS file: RCS/main.c,v
retrieving revision 1.2
diff -r1.2 main.c
9c9
< $Id: main.c,v 1.2 2005/07/30 19:57:34 becker Exp $
---
> $Id: main.c,v 1.3 2005/07/30 20:42:07 becker Exp $
27c27
<   fprintf(stderr,"%s: reading x values in degrees from stdin\n",
---
>   fprintf(stderr,"%s: reading x angles in degrees from stdin\n",



Building: 
Version control is worth it

● small learning curve, big payoff
● EMACS can integrate version control, make, 

debugging etc. consistently and conveniently
● opening files, checking in/out can be done 

with a few keystrokes or menu options



Building: 
EMACS modes

● EMACS is just 
one example of 
a programming 
environment

● e.g. there is a 
vi mode within 
EMACS

● dotfiles.com on 
.emacs

http://www.dotfiles.com/index.php3?app_id=6


Building: Debugging

● put in extra output statements into code (still 
the only option for MPI code, kind of)

● use debuggers:
– compile without optimization: cc -g main.c -c 
– gdb: command line debugger

● gbg bin/x86_64/mysincos
● (gdb) run
● after crash, use where to find location in code that 

caused coredump, etc.
– visual debuggers: ddd, photran, etc.

http://www.gnu.org/software/ddd/
http://www.photran.org/


Building: 
ddd



Building:  Eclipse environment 
(see also Code warrior etc.)



Tuning: Calling F90 from C

● some subroutines are Fortran functions which 
you might want to call from C

● this works if you pointerize and flip
– call func(x) real*8 x as func(&x) from C
– storage of x(m,n) arrays in Fortran for x(i,j) is            

x[j*m+i] (fast rows) instead of x[i*n+j] (fast columns) 
● C x[0,1,2,...,n-1] will be x(1,2,...,n) in Fortran
● don't pass strings (hardware dependent)
● BTW: Fortran direct binary I/O isn't really binary
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