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1 Scaling analysis and non-dimensional numbers

While this is a textbook on numerical analysis, it is crucial to keep the nature of the physi-
cal processes which we would like to model in mind. This will help guide your judgement
of what are reasonable solutions, what are artifacts, and help with the algorithmic design
itself. While we cannot review all of the physics underlying the modeling examples here
fully, it is very helpful to consider scaling analysis to get a feeling for the order of magni-
tude of likely solutions, and the importance of different terms in the equations we would
like to model.

Reading

• Spiegelman (2004), sec. 1.4

• Turcotte and Schubert (2002), Google, and Wikipedia for reference and material pa-
rameters

1.1 Scaling analysis

Scaling analysis refers to order of magnitude estimates on how different processes work
together and control a system. While this is a text on numerical analysis, such theoretical
considerations are very useful if we are interested in getting a quick idea of the values that
are of relevance for a problem, and for the order of magnitude for solutions. Comparing
these estimates with the numerical results is always good practice and part of a basic set
of plausibility checks that have to be conducted.

For example, shear stress τ (in units of Pa) for a Newtonian viscous rheology with
viscosity η (in units of Pa s) is given by the simple constitutive law

τ = 2ηε̇ (1)

where ε̇ is the strain-rate (in units of s−1). Say, we wish to estimate the typical amplitudes
of shear stress in a part of the crust that we know is being sheared at some (e.g. plate-)
velocity u over a zone of width L. The strain-rate in 3-D is really a tensor, ε̇, with 3× 3
components that depends on the spatial derivatives of the velocity like so

ε̇ = ε̇ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2)

and has to be either constrained by kinematics or inferred from the full solution. How-
ever, for our problem, we only need a “characteristic” value, i.e. correct up to a factor of
ten or so. Strain-rate is physically the change in velocity over length, and the characteris-
tic strain-rate is then given by

ε̇ ∝
v
L

(3)

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 1

geodynamics.usc.edu/~becker/Geodynamics557.pdf


Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus (2016)

where ∝ means “proportional to”, or “scales as”, to indicate that eq. (3) is not exact. As-
suming we know the viscosity η, we can then estimate the typical stress in the shear zone
to be

τ ∝ 2η
v
L

. (4)

If you think about the units of all quantities involved (“dimensional analysis”), then this
scaling could not have worked out any other way. Viscosity is Pa s (stress times time),
velocity m/s (length over time), so stress=Pa s m/(s m)=Pa as it should be. 1

Note I: Whenever you work out, or type up, a new equation, it is always a good idea
to check if the units on both sides make sense.

Note II: The scaling of velocities and stress for a buoyancy driven problem, such as the
Stokes sinker discussed below, is entirely different!

1.2 Non-dimensionalization

A complementary approach that also takes into account the order of magnitude of vari-
ables is to simplify the governing equations by defining “characteristic” quantities and
then dividing all properties by those to make them “non-dimensional”. This way, the
non-dimensional quantities that enter the equation on their own should all be of order
unity so that the resulting collection of parameters in some part of the equation measures
their relative importance.

A classic example for this is based on the Navier Stokes equation for an incompress-
ible, Newtonian fluid. When body forces driving flow are due to temperature T fluctua-
tions in (the Earth’s) gravitational field

ρ
Dv
Dt

= −∇pd + η∇2v + ρ0αTg (5)

where D is the total, Lagrangian derivative operator

D
Dt

=
∂

∂t
+ v · ∇, (6)

v velocity, ∇ the Nabla derivative operator ∇ = {∂/∂x, ∂/∂y, ∂/∂z}, t time, pd the dy-
namic pressure (without the hydrostatic part), η the viscosity, ρ0 reference density, α, and
g gravitational acceleration. One can now choose (as mentioned before for the Lorenz
equations) typical quantities that can be derived from the given parameters such as a ∆T
temperature difference, a fluid box height d, and some choice for the timescale. All other
characteristic values for physical properties can then be derived from those choices (see,
e.g., discussion in Ricard, 2007).

1We will always use SI units unless it’s inconvenient for Earth applications, where we might use multi-
ples of SI units such as cm/yr instead of m/s for velocities. Also note that one year has roughly π · 107 s
(accurate up to 0.5%), i.e. 1 cm/yr is ≈ 3.2 · 10−10 m/s, and that you should account for leap years for
geological time conversions, meaning that 365.25× 24× 60× 60 is the right number of seconds per year.
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Let us assume that we are dealing with a box heated from below and cooled from
above, i.e. held at constant temperature difference of ∆T = Ttop − Tbot, with no internal
heating (Rayleigh-Benard problem). A typical choice for a characteristic timescale is to
use the diffusion time that can be constructed from the thermal diffusivity, κ, in the energy
equation

DT
Dt

= κ∇2T (7)

(no heat sources) that couples with the momentum equation, eq. (5). Because κ has units
of length2/time, any diffusion-related time scale td for a given length l has to work out
like

td ∝
d2

κ
, (8)

by dimensional analysis. This relationship is hugely important for all diffusional pro-
cesses.

Using the characteristic quantities fc which result from this scaling and using l = d,
for all variables in eq. (5) and eq. (7), all other properties can be derived, e.g.

vc =
d
tc

ε̇c =
vc

d
τc = ηε̇c Tc = ∆T (9)

we divide all variables (spatial and temporal derivatives are dealt with like space and
time variables) to make them unit-less, non-dimensional f ′ = f / fc, and eq. (5) can then
be written as

1
Pr

D′v′

D′t′
= −∇′p′ + (∇′)2v′ − RaT′ez (10)

where we have used g = −gez. I.e., all material parameters have been collected in two
unit-less numbers after non-dimensionalization, the Prandlt number,

Pr =
η

ρκ
=

ν

κ
(11)

and the Rayleigh number 2

Ra =
ρ0gα∆Td3

κη
. (13)

2In the derivation above, we have assumed that the system is heated from below and viscosity is con-
stant. The Rayleigh number is therefore valid for this bottom-heated case only. In Earth’s mantle, internal
heating (due to decay of radioactive elements) is at least equally important (e.g. Jaupart et al., 2007; Lay et al.,
2008). For the case of pure internal hearing, the Rayleigh-number is given by

RaH′ =
ρ0gαH′d5

kκη
, (12)

where k is conductivity and H′ is the rate of internal heat generation per volume (H′ = ρ0H where H is per
unit mass). We can identify ∆T in (13) with H′d2/k which makes sense, since the total heat flux, Q, should
scale as H′d3 and Q ∝ k ∆T

d . Also, rock viscosity depends on a range of quantities, including temperature
and strain-rate, making it imperative to properly (log) average viscosity when computing effective Rayleigh
numbers (e.g. Christensen, 1984).
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The second way of expressing Pr uses the kinematic viscosity, ν = η/ρ, which, like κ, has
units of m2/s; this makes it clear that Pr measures diffusion of momentum vrs. diffusion
of heat. Ra measures the vigor of convection by balancing buoyancy forces associated
with advection against diffusion and viscous drag.

Exercise: Verify this recasting of the Navier-Stokes equation by plugging in the non-
dimensionalized quantities.

Often, we then just drop the primes and write the equation like so

1
Pr

Dv
Dt

= −∇p +∇2v− RaTez (14)

where it is implied that all quantities are used non-dimensionalized (also see sec. ??).
This equation may still be hard to solve, but at least we now have sorted all material
parameters into two numbers, Ra and Pr.

Note I: The non-dimensional versions of the equations are also the best choice if you
want to write a computer program for a physical problem. Using non-dimensionalized
equations, all terms should be roughly of order unity, and the computer will not have
to multiply terms that are very large in SI units (e.g. η) with those that are very small,
reducing round-off error (e.g. v, what is the order of magnitude of η and of |v| for mantle
convection?).

Note II: This also means that when some geophysicist’s convection code spits out, say,
velocities, you will have to check what units those have, and more often than not you’ll
have to multiply by the vc from above to get back m/s, which you’ll then convert to
cm/yr.

Note III: You’ll also note that a few geodynamics papers will not provide the scaled
quantities used so that you can go back to SI units; sometimes this is because the values
used for the parameters in the models stray significantly from typical Earth values.

Particularly the Rayleigh number is key for mantle convection, because we typically
use the infite Prandtl number approximation, (Pr → ∞, why?). In this case, eq. (5) sim-
plifies to the Stokes equation,

η∇2v = ∇pd − ρ0αTg. (15)

Both Pr and Ra are discussed below. Fluid dynamics is full of these non-dimensional
numbers which are usually named after some famous person because they are so power-
ful. Any fluid that has the same Ra and Pr number as another fluid will behave exactly
the same way in terms of the overall style of dynamics, such as the resulting average
temperature structure and up and downwelling morphology.

The actual time scales of convection, e.g., may, however, be very different for two
systems at the same Rayleigh number (because of vc being different). This behavior al-
lows, for example, to conduct analog, laboratory experiments of mantle convection (e.g.
Jacoby and Schmeling, 1981; Faccenna et al., 1999). When conducting such experiments,
care needs to be taken that all relevant non-dimensional numbers agree between the real
Earth problem and the laboratory experiment (e.g. Weijermars and Schmeling, 1986). Also,
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when changing length scales and material, different physical effects such as surface ten-
sion may matter in the lab, while they are irrelevant for mantle convection in general (see,
e.g., sec. 6.7 of Ricard, 2007, for a discussion of Mahagoni convection).

From an analytical point of view, if the non-dimensional quantities are either very
large or very small, we can simplify the full equations to more tractable special cases. For
a nice and more comprehensive treatment of this section, you may want to refer to Ricard
(2007).

1.3 Problems

a) For all of the following non-dimensional numbers, discuss briefly (2-3 sentences)
the processes which these numbers measure, e.g. by contrasting system behavior for
Th = 0 and Th = ∞, where Th is some non-dimensional number.

For each number, give numerical estimates for the Earth, at the present day. Docu-
ment your choices (i.e. providing references) for individual parameters before com-
puting joint quantities, mention where you got the estimates from, and what the
implications for Earth in terms of the dynamics are. A neat way to organize this
might be to use a table for each dimensionless number with appropriate headings
(e.g. parameter, estimate, reference).

You might have to look up definitions and other reference material, e.g. in a geody-
namics text, or on Google (note: don’t trust everything on the web . . . ). There are no
unique answers for this part of the problem set, and you will often have to decide on
an example problem for which you’ll pick a characteristic quantity such as length.
Some answers are actively debated in the literature.

(i) Rayleigh number for whole and upper mantle convection.

(ii) Peclet number for ridges, slabs, and general mantle convection. The Peclet
number is defined as

Pe =
dv
κ

(16)

with characteristic length d, velocity v, and thermal diffusivity κ.

(iii) Prandtl number for the mantle and the atmosphere. Once you’ve figured out
the meaning of the Prandtl number, think of the different response of the man-
tle to an applied pulse of change in plate motion, compared to an applied pulse
of heating.

(iv) Reynolds number for the mantle, the ocean, and a tornado. The Reynolds num-
ber is defined as

Re =
vd
ν

=
vdρ

η
. (17)

Note: Take care to distinguish between velocity v, kinematic viscosity ν = η/ρ
and dynamic viscosity η.
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(v) Deborah number for the subducting oceanic lithosphere, and for a laboratory
experiment on rock deformation. The Deborah number can be defined as

De =
tr

tp
(18)

where you can use a Maxwell time

tM =
η

µ
(19)

for the relaxation time tr, and tp is the time scale of observation. The Maxwell
time measures the visco-elastic relaxation time of a body with viscosity η and
shear modulus µ (think post-glacial rebound).

• What are characteristic Maxwell times for the crust? The upper mantle?

b) (i) Consider a solid, sinking sphere of radius a in a fluid of viscosity η and gravi-
tational pull g, and a density Stokes velocity contrast between sphere and fluid
of ∆ρ. Solve for the approximate sinking velocity of this “Stokes” sinker by
equating the gravitational pull force FP = ∆Mg = V∆ρg with the shear force
acting on the sphere’s area A, FS ∝ τA ∝ Aηε̇c. Here, I’ve used ∆M for the
mass anomaly, and V for the volume of the sphere. All equations follow from
F = ma and stress = force / area and some geometry.
Note: The full equation for a Stokes sinker is only very weakly dependent on
the viscosity of the sinker, ηs, itself, but scales mainly with the ambient vis-
cosity η. For ηs/η → ∞ and ηs/η → 0, the prefactor changes from 2/9 to
1/3, respectively (see further discussion in Becker and Faccenna, 2009, for the
subduction context).

(ii) For flow induced by a Stokes sinker, does the stress scale with η and/or ∆ρ?
How does that compare with the velocities?
Note: The scaling of v and τ with combinations of ∆ρ and η are among the
most fundamental relations of mantle dynamics (velocities v might be the plate
velocities, dynamic topography scales with τ, for example).

(iii) Estimate the Stokes velocity by dimensional analysis as in (a), but now assum-
ing that the viscosity of the fluid obeys a power-law,

τn ∝ ηε̇ (20)

(for rocks, n ∼ 3) instead of
τ ∝ ηε̇ (21)

for Newtonian creep as assumed above. (These equations are written sloppily
and don’t have the right units. For correct units, consider a relationship like
τ (τ/µ)n−1 = ηε̇, where η is a material parameter, but you may use eq. (20) for
the scaling analysis.)
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Figure 1: Illustration of the geometry of the volcanic eruption problem.

(iv) Estimate the rise velocity of a plume head large enough to cause the Deccan
traps.

c) You are moving the top of a fluid layer of height d at constant speed v(z = d) = v0,
and the fluid is held fixed at the bottom at z = 0. In this case, the laminar solution
for the flow velocity is a linear decrease of velocity with depth to v(0) = 0 at the
bottom.

(i) What material parameters set the stress in the fluid? What determines the
strain-rate and how does it vary with depth?

(ii) Now consider two fluid layers, with the top fluid viscosity larger than the bot-
tom one by a factor of two. Sketch the solution for the dependence of v(z).

d) Using dimensional analysis, such as used above for the Stokes sinker, estimate the
velocity of a volcanic eruption (see Figure below for parameters).
Hint: You might want to proceed by first using the equations for laminar, pressure-
driven (look up “Hagen-Poiseuille”) flow in a pipe of radius R, and then estimate
the pressure difference from Figure 1.
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