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1 Exercise: Solving ODEs – Lorenz equations

Reading

• Spiegelman (2004), chap. 4

• Press et al. (1993), chap. 16

• Spencer and Ware (2008), sec. 16

We previously discussed the 4th order Runge Kutta method as a simple method to
solve initial value problems where the task is to forward integrate a vector y(t) from an
initial condition y

0
(t = t0) to some time t f while the time derivatives of y are given by

dy
dt

(t) = f (t, y, C) (1)

we made the dependence of f on constant parameters explicit in the C.
Numerically, this is done by successively computing y

n+1
for time t + h from the last

known solution for y
n

at time t with time step h

y
n+1
≈ y

n
+ hy′(h, t, y, C) (2)

where y′ denotes the approximate time-derivatives for y.
In a real application, we would use adaptive step-size control by means of error check-

ing depending on the accuracy of our approximate method, or employ an entirely differ-
ent approach (Press et al., 1993, sec. 16.2). Spencer and Ware (2008) discuss some of the
algorithms that are implemented in MATLAB , and the problem set file rikitake.m1 is an
example for how to use the MATLAB function ode45. However, the Runge-Kutta is good
example method and easy enough to implement.

1.1 The Lorenz equations solved with simple Runge Kutta

As an interesting example of a three-dimensional
(

y = {y1, y2, y3}
)

ODE system, we will
discuss the classic Lorenz (1963) equations. These equations are a simplified description of
thermal convection in the atmosphere and an example of a low order, spectral numerical
solution. They were also fundamental in the establishment of deterministic chaos theory.

1All MATLAB files for all of the problem sets are at http://geodynamics.usc.edu/~becker/

teaching-557.html. Some problem sets, including this ODE one also have Python implementations.
Solved MATLAB scripts for the problem sets are available for instructors upon request.

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 1
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1.2 What exactly are these equations modeling?

For an incompressible, Newtonian fluid, conservation of mass, energy, and momentum
for the convection problem can be written as

∇ · v = 0 (3)
∂T
∂t

+ v · ∇T = κ∇2T (4)

∂v
∂t

+ (v · ∇) v = ν∇2v− 1
ρ0
∇P +

ρ

ρ0
g. (5)

Here, ν = η/ρ0 is dynamic viscosity, v velocity, T temperature, κ thermal diffusivity, g
gravitational acceleration, ρ density, and P pressure. In the Boussinesq approximation,
ρ(T) = ρ0(1− α(T− T0)), where α is thermal expansivity and ρ0 and T0 reference density
and temperature, respectively.

If we assume two-dimensionality (2-D) in x and z direction, and a bottom-heated box
of fluid, the box height d provides a typical length scale. If g only acts in z direction and all
quantities are non-dimensionalized by chosing length scale d, as time scale the diffusion
time, d2/κ, and the temperature contrast between top and bottom ∆T, we can write

∂T′

∂t′
+ v′ · ∇T′ = ∇2T′ (6)

1
Pr

(
∂ω

∂t′
+ v′ · ∇ω

)
= ∇2ω− Ra

∂T′

∂x′
, (7)

where the primed quantities are now non-dimensionalized. If chosen right, such a trans-
formation makes the individual terms of the equations that depend on the primed vari-
ables of order unity, such that the material parameter dependent factors (here Ra and Pr)
measure the importance of the terms during solution (see sec. ??).

Eq. (7) is eq. (5) rewritten in terms of vorticity ω, which is defined as

ω = ∇× v (8)

and for 2-D with v = {u, w} is the scalar quantity

ω =
∂w
∂x
− ∂u

∂z
. (9)

Using the stream-function ψ, ∇2ψ = −ω, which relates to velocity as

v = {u, w} = {∂ψ/∂z,−∂ψ/∂x} (10)

and enforces incompressibility (mass conservation), see sec. ??.
The important part here are the two new non-dimensional quantities that arise, the

Prandtl and the Rayleigh numbers, which were discussed previously (eqs. ?? and ??).

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 2
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Lorenz (1963) used a very low order spectral expansion to solve the convection equa-
tions. He assumed that

ψ ≈ W(t) sin (πax) sin (πz) (11)
T ≈ (1− z) + T1(t) cos (πax) sin (πz) + T2(t) sin (2πz) (12)

for convective cells with wavelength 2/a. This is an example of a spectral method where
spatial variations in properties such as T are dealt with in the frequency domain, here
with one harmonic. Such an analysis is also common when examining barely super-
critical convective instabilities.

1.3 Problems

The resulting equations for the time dependent parameters of the approximate Lorenz
convection equations are

dW
dt

= Pr(T1 −W) (13)

dT1

dt
= −WT2 + rW − T1

dT2

dt
= WT1 − bT2

where b = 4/(1 + a2), r = Ra/Rac with the critical Rayleigh number Rac.

a) Identify W, T1, and T2 as y1, y2, y3 and write up a MATLAB code for a 4th order
Runge Kutta scheme to solve for the time-evolution of y using eq. (13) for deriva-
tives.

Hint: You can code this any way you want, but consider the following (Figure 2):

• You will want to separate a “driver” that deals with initial conditions, control-
ling the total time steps, plotting, etc., and an actual routine that computes the
Runge Kutta step following the formula we discussed in class. Those should
be separate m-files, or at least separate functions.

• You will want to make the Runge Kutta stepper independent of the actual func-
tion that is needed to compute dy/dt so that you can reuse it for other prob-
lems later. This can be done in MATLAB by defining a function myfunc that
computes the derivatives, and then passing the function name myfunc as an ar-
gument to the Runge Kutta time stepper. Within the time stepper, the function
then then has to be referred to as
@func. Alternatively, the function that computes the derivatives can be made
into its own “.m” file, in the same directory as the other subroutines, making it
available to all subroutines in that folder.

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 3
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Figure 1: Solution to one of the problem set questions visualizing the behavior of the Lorenz
equations (the Lorenz attractor).

• If you need some inspiration on how to do this, download the m-file fragments
we provide for this sections problem set, lorenz_dy.m, lorenz.m, and rkstep.

m. There is also a complete Python implementation, ode.py and lorenz.py, if
you are curious.

b) Use initial condition y
0
= {0, 0.5, 0.5}, parameters b = 8/3, Pr = 10 and solve

for time evolution for all three variables from t = 0 to t = 50, using a time step
h = 0.005. Use r = 2 and plot T1 and T2 against time. Comment on the temporal
character of the solution, what does it correspond to physically?

c) Change r to 10, and then 24. Plot T1 and T2 against time, and also plot the “phase
space trajectory” of the system by plotting y in W, T1, and T2 space using MATLAB
plot3. Comment on how these solutions differ.

d) Increase r to 25 and plot both time behavior of T and the phase space trajectory.
What happened? Compare the r = 25 solution with the r = 24 solution from the
last question. Do you think r = 24 will remain steady for all times? Why? Why not?

e) Use r = 30 and show on one plot how T1 evolves with time for two different
initial conditions, the y

0
from before, {0, 0.5, 0.5}, and a second initial condition

{0, 0.5, 0.50001}. Comment.

f) Compare your solution with h = 0.005 for T1 and an initial condition of your choice

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 4
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in the r = 30 regime with the MATLAB -internal ODE solver you deem most appro-
priate. Plot the absolute difference of the solutions against time. Comment.

For help with making simple plots with MATLAB , see Spencer and Ware (2008), for
example. It is very easy to get such plots while developing code and debugging, but
often hard to generate publication quality results from MATLAB.How to do this is dis-
cussed in numerous online resources, including some helpful routines at http://geoweb.
princeton.edu/people/simons/software.html, for example. While it is generally pre-
ferred to remain within one framework, you might want to consider plotting MATLAB
generated results with external graphics packages such as Gnuplot2 (mainly for x-y type
plots, but some great extra capability) or GMT3 (a very versatile plotting software that
does, however, often require scripting).

1.4 Additional examples

a) If you are curious about additional Earth Science applications of ODEs, the literature
of geochemical modeling is full of it because it is often easiest, or most appropriate,
to consider fluxes between reservoirs of different chemical species with averages
properties, so-called “box models” (e.g. Albarede, 1995).

b) A classic example from magneto-hydrodynamics is the 3-D Rikitake dynamo model
that consists of two conducting, rotating disks, coupling by smart cross wiring, in a
background magnetic field. The Rikitake dynamo shows behavior similar to the
Lorenz system and serves as an analog for the geodynamo, exhibiting irregular
magnetic field reversal. The equations are

dx
dt

= −mx + yz (14)

dy
dt

= −my + (z− a)x

dz
dt

= 1− xy

with typical parameters for a of 4 or 10, m = 2, at initial conditions x, y, z = −5, 2, 2.
The file rikitake.m provides an example implementation of these equations using
a MATLAB ODE solver.

c) Examples from our own research where we have used simple ODE solutions, in-
clude some work on parameterized convection (Loyd et al., 2007), a method that
goes back at least to Schubert et al. (1980), see Christensen (1985). In this case, the
box is the mantle, and the total heat content of the mantle, as parameterized by the

2http://www.gnuplot.info/
3Wessel and Smith (1998), http://gmt.soest.hawaii.edu/, also see Becker and Braun (1998), http://

geodynamics.usc.edu/~becker/igmt

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 5
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function lorenz % this is only a function to allow function declarations

%

% Lorent’z equation solver

% the ... parts will have to be filled in by you

%

% values to solve for

%

% y(1) : W

% y(2) : T1

% y(3) : T2

% parameters for the equations

parameters.r = ...; % Rayleigh number

parameters.Pr = ..; % Prandtl number

% initial values

y= [...];

time =0;tstop=50;

h = 0.005;% timestep

save_each = 1;

nstep=0;save_step=0;

while(time < tstop) % loop while time is smaller than tstop

if(mod(nstep,save_each)==0) % only save every save_each step

save_step=save_step+1;

ysave(save_step,:)=y;

...

end

% advance the y(1:3) solution by one 4th order Runge Kutta step

y = y + rkstep(....);

nstep=nstep+1;

time=time+h;

end

figure(1);clf % time series

plot(tsave,ysave(:,2))

xlabel(’time’);ylabel(’temperature’);

legend(’T_1’,’T_2’)

function dy = rkstep(.... )

%

%

% perform one 4th order Runge Kutta timestep and return

% the increment on y(t_n) by evaluating func(time,y,parameters)

%

% ... parts need to be filled in

%

%

% input values:

% h: time step

% t: time

% y: vector with variables at time = t which are to be advanced

% func: function which computes dy/dt

% parameters: structure with any parameters the func function might need

% save computations

h2=h/2;

k1 = h .* dydt(...);

k2 = h .* dydt(...);

....

% return the y_{n+1} timestep

dy = ....

Figure 2: Suggested program structure for the Lorenz equation ODE solver exercise. Available
online as lorenz.m, rkstep.m, and dydt.m.

mean temperature, is the property one solves for. I.e. we are averaging the PDEs
governing convection spatially, to solve for the time-evolution of average mantle
temperature.

The idea is that a convective system with Rayleigh number (see eq. (??))

Ra =
ραTgh3

κη
(15)

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 6
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transports heat at Nusselt number Nu following a scaling of

Nu =
Q
cT

= aRaβ (16)

(with some debate about β, see, e.g. Korenaga, 2008, for a review). The energy balance
for the mantle is

Cp
dT
dt

= H(t)−Q (17)

where Cp is the total heat capacity, H the time-dependent heat production through
radiogenic elements, and Q the heat loss through the surface. If viscosity is a func-
tion of temperature,

η = η0 exp
(

H
RT

)
(18)

then the equations couple such that

Cp
dT
dt

= H(t)−Q0

(
T
T0

)1+β (η(T0)

η(T)

)β

. (19)

We provide an example, thermal_all.m online. You might want to experiment with
the shooting method to explore feasible and unfeasable paths of Earth’s thermal
evolution from an initial to a final temperature.

d) Another example, from the brittle regime, are spring sliders. Instead of dealing with
full fault dynamics, one may consider a block that has a friction law apply at its base
and pulled by a string. Depending on the assumptions on the friction law, such a
system exhibits stick-slip behavior akin to the earthquake cycle. For rate-and-state
(i.e. velocity and heal-time) dependent friction (e.g. Marone, 1998) with two “state”
variables, spring-slider models exhibit interesting, chaotic behavior (Becker, 2000).

The equations are

ẋ =
dx
dt

= ex((β1 − 1)x + y− z) + ẏ− ż (20)

ẏ =
dy
dt

= (1− ex)κ

ż =
dz
dt

= −exρ(β2x + z)

with β1 = 1, β2 = 0.84, and ρ = 0.048 (Gu et al., 1984).

This behavior includes the characteristic period-doubling route toward chaos (Feigen-
baum, 1978) as a function of a material parameter (spring stiffness), at critical κ =
0.08028 (Becker, 2000). You might want to reproduce the bifurcation plot of Figure 3.

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 7
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Figure 3: Poincare sections in y for the period doubling sequence to chaos for the spring-slider
system, eq. (20), as a function of normalized spring stiffness, κ′. Bottom figure shows zoom into
the dashed rectangular region highlighted on top (modified from Becker, 2000).

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 8
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