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Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast
problem.

1 Exercise: Linear, incompressible Stokes flow with FE

Reading

• Hughes (2000), sec. 4.2-4.4

• Dabrowski et al. (2008), sec. 4.1.2, 4.3.1, 4.4-4.7

This FE exercise is again based on the MILAMIN package by Dabrowski et al. (2008).
As for the heat and elasticity problems, we simplified their “mechanical”, incompressible
Stokes fluid solver to reduce the dependency on packages external to MATLAB.

Dabrowski et al. (2008) have a highly optimized version, which you can obtain from
us or the original authors; it uses, e.g., reordering of node numbers to improve matrix
solutions which comes an important memory issue for larger problems. The notation
here is close to Dabrowski et al. (2008), for simplicity, but Hughes (2000) has a somewhat
clearer exposition.

1.1 Implementation of incompressible, Stokes flow

We are interested in the instantaneous solution of a fluid problem in the absence of inertia
(infinite Prandtl number limit), as is appropriate for the Earth’s mantle, for example (see
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secs. ?? and ??). These approximations transform the general, Navier-Stokes equation for
fluids into the Stokes equation, which is easier to solve, on the one hand, because there is
no turbulence. On the other hand, it is more complicated numerically as Stokes requires
implicit solution methods, whereas turbulent equations can often be solved in an explicit
manner.

The static force-balance equations for body forces due to gravity are given by

∇ · σ = f = ρg or
∂σij

∂xj
= ρgi, (1)

where σ is the stress tensor, ρ density, and g gravitational acceleration (gi = gδiz).
We assume that the medium is incompressible and a linear (Newtonian) fluid consti-

tutive law holds,
σij = −pδij + 2ηε̇′ij, (2)

where η is the viscosity, p pressure, and ε̇′ the deviatoric strain-rate tensor,

ε̇′ij = v(i,j) −
1
3

∂vk
∂xk

δij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
− 1

3
∂vk
∂xk

δij, or ε̇′ = ε̇− 1
3

tr(ε̇)I, (3)

where v are the velocities, and ε̇′ is the total strain-rate reduced by the isotropic part.
We can define

ė =
1
3 ∑

i
ε̇ii =

1
3

ε̇ii =
1
3

tr(ε̇) (4)

in analogy to the pressure

p = −1
3 ∑

i
σii (5)

such that deviatoric stress and strain-rate are defined from the isotropic quantities as

τij = σij + pδij, and (6)

ε̇′ij = ε̇ij − ėδij. (7)

(8)

Using the constitutive law, and assuming 2-D (x-z space), the Stokes equation can be
written as (also see sec. ??)

∂

∂x

(
η

(
4
3

∂vx

∂x
− 2

3
∂vz

∂z

))
+

∂

∂z

(
η

(
∂vx

∂z
+

∂vz

∂x

))
− ∂p

∂x
= 0 (9)

∂

∂z

(
η

(
4
3

∂vz

∂z
− 2

3
∂vx

∂x

))
+

∂

∂x

(
η

(
∂vx

∂z
+

∂vz

∂x

))
− ∂p

∂z
= ρgz. (10)

Often, we write the constitutive law for deviatoric quantities only,

τij = 2ηε̇′ij with τij = σij + p = σij − σkk/3. (11)
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Incompressibility translates to a constraint on the divergence of the velocity

∇ · v = 0 or
∂vi

∂xi
= 0, (12)

which allows solving eq. (1) for the additional unknown, pressure. For ∇ · v = 0,

tr(ε̇) = 0 → ε̇′ = ε̇, (13)

but we made the distinction between deviatoric and total strain-rate because we numeri-
cally only approximate the incompressible continuity equation, eq. (12), by requiring the
divergence to be smaller than some tolerance.

There are several approaches to do this (e.g. penalty methods (sec. ??) or Lagrange
methods) which typically involve iterations to progressively introduce additional “stiff-
ness” to the medium (sec. ??). We shall allow for a finite, large bulk viscosity, κ, such that
eq. (12) is approximated by

∂vx

∂x
+

∂vz

∂z
= − p

κ
, (14)

the right hand side would → 0 for κ → ∞. Eq. (14) is valid for the incompressible and
the compressible cases. However, for the compressible case, where the constitutive law,
eq. (2), is replaced by

σij = κ
∂vk
∂xk

δij + 2ηε̇ij, (15)

p cannot be interpreted as the actual pressure, P = −σii/3, rather it is a pressure parame-
ter because

P = −(κ + 2η/3)
∂vi

∂xi
(16)

and
p = −κ

∂vi

∂xi
. (17)

Note: The general, compressible case is identical to the elastic formulation where v → u
and the constitutive law is

σij = λ
∂vk
∂xk

δij + 2µε̇ij. (18)

1.2 Problem in strong form

The (finite element) solution is to be found for the problem stated by eqs. (1) and (14),

∂σij

∂xj
+ fi = 0 (19)

∂vi

∂xi
+

p
κ

= 0 (20)
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with boundary conditions

vi = gi on Γgi (21)
σijnj = hi on Γhi (22)

for velocities and tractions, respectively.

1.2.1 Problem in weak form

The pressure equation modifies the stiffness matrix component such that∫
dΩ w(i,j)σij −

∫
dΩ q

(
∂vi

∂xi
+

p
κ

)
=
∫

dΩ wi fi +
nsd

∑
i

∫
Γhi

dΓ wihi, (23)

with nsd the number of spatial dimensions. We again use the Galerkin approach, which
leads to the matrix equations.

1.2.2 Matrix assembly

In analogy to the elastic problem, we define a (total) strain-rate vector ė = {ε̇xx, ε̇zz, γ̇xz =
2ε̇xz} such that strain-rates on an element level can be computed from

ė = B v, (24)

where v are velocities given at the element-local nodes, and B holds the derivatives, as
before. When expressed for the local node a and shape functions Na,

Ba =

 ∂Na
∂x 0
0 ∂Na

∂z
∂Na
∂z

∂Na
∂x

 . (25)

Likewise, deviatoric stresses can be computed from t = D ė, where the property matrix D
shall be given by

D = η

 4
3 −

2
3 0

−2
3

4
3 0

0 0 1

 , (26)

for a plane-strain approximation (compare the elastic case). This allows to express the
stress vector with pressure part as

s = −pm + D ė, (27)

where m = {1, 1, 0}. The deviatoric-only version of D is

D′ = η

 2 0 0
0 2 0
0 0 1

 . (28)
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In analogy to the displacement, u, representation for the elastic problem, interpolated
velocities, v, are assumed to be given by the summation over the nodal velocities times
the shape functions within each element

v(x) ≈ ∑
a=1

Na(x)va. (29)

Given the incompressibility constraint, special care has to be taken in the choice of shape
functions, and we will use the seven-node, Crouzeix and Raviart (1973) triangle with qua-
dratic shape functions Na (cf. Dabrowski et al., 2008).

As detailed in Hughes (2000), one can either choose “conforming” elements for the
problem at hand and get a nice solution for the velocities and pressure right away (which
is what we do here), or choose theoretically inappropriate shape functions and later cor-
rect the pressure (e.g. for so-called “checkerboard modes”). The latter, rough-and-ready
approach may seem less appealing, but works just as well if done properly.

A departure from the elastic problem is that the pressure is treated differently from v,
and we use linear (constant) shape functions for

p(x) = ∑
a′

Ña′(x)pa′ = Ña′ pa′ , (30)

where a′ indicates an element-local node, to be distinguished from a which we use for
the velocity shape function, and the respective total node number per element may be
different (e.g. seven for velocities, one for pressure). This approach is called the “mixed
formulation”. Correspondingly, we introduce an isotropic strain operator Bv, such that

∇ · v = ε̇v = Bvve, (31)

and pe = −κBvve.
The global system of equations for velocity, V, and pressure, P, at the nodes is given

by (
A QT

Q M

)(
V
P

)
=

(
F
H

)
, (32)

where F are the load vectors, e.g. due to body forces, and H is due to the divergence that
may be imposed traction loads for the compressible case (H = 0 for incompressible case).

On an element-level, the stiffness matrix is given by

ke
ab =

∫
Ωe

dΩ

(
A QT

Q − 1
κ M

)
(33)

=
∫

Ωe
dΩ

(
BT

a D Bb −BT
v ÑT

−ÑBv −
1
κ ÑaÑT

b

)
,

i.e. Q = −ÑBv, M = ÑÑT, and A corresponds to the total stiffness matrix k in the elastic
case. We have omitted the dependence on the local node number in eq. (33). Note that all
operations involving Q and M involve the pressure, and not the velocity, shape functions.
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We avoid having to actually solve for the global p by using the “static condensation”.
This means that we locally (element by element) invert M to obtain the pressure from

p ≈ Ña′ pa′ = κÑT
(

M−1Qve
)
= −κBvve. (34)

(This is not a good idea if combined with iterative solvers.)
We can then simplify eq. (33) to the global, linear equation system

A′V = f , (35)

which is to be solved for the nodal velocities V. Here, f = { f e} = {ρege} and (the Schur
complement)

A′ = A + κQT M−1Q. (36)

A′ is now symmetric and positive-definite, and the regular, efficient matrix solution meth-
ods can be applied. (Note that the A is only symmetric if the Dirichlet boundary condi-
tions are applied carefully. If implemented straightforwardly, A is not symmetric.)

However, the matrix becomes ill-conditioned (hard to invert) for the desired large val-
ues of κ, which is why iterations for the velocity solution are needed in order to achieve
the incompressibility constraint. Our example code applies “Powell and Hestenes” iter-
ations for the global velocity and pressure vectors V and P (cf. Dabrowski et al., 2008), as
in

P0 = 0, i = 0 (37)
while max(∆Pi) > tolerance

Vi = (A′)−1( f −QTPi)

∆Pi = M−1QVi

Pi+1 = Pi + ∆Pi

i = i + 1
end

If and when the algorithm converges, the pressure correction ∆Pi = M−1QV, which de-

pends on the divergence, M−1QV, goes to zero. Above, all matrices are meant to be the
global, not element-local representation.

1.3 Exercises

a) Make sure you have the common FE MATLAB subroutines from the earlier exercises
(ip_-triangle.m, shp_deriv_triangle.m, genereate_mesh.m), and the triangle

binary in your working directory.
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b) Download the mechanical2d_test.m driver, and the mechanical2d_std.m solver.
Inspect both and compare with above for implementation. You will have to fill in
the blanks in the driver.

c) Compute the sinking velocity of a dense sphere (i.e. disk in 2-D) with radius 0.1 that
is centered in the middle of the 1× 1 box with free-slip boundary conditions (no
shear stress tangentially to the boundary, no motion perpendicular to the boundary)
on all sides.

Ensure that the sphere is well resolved by choosing∼ 50 points on its circumference
and using a high quality mesh. Use the second order triangles (six nodes on the
edges plus one added in the center), and six integration points.

(i) Note how boundary conditions are implemented in the MATLAB code, and
comment on essential and natural types.

(ii) Compute the solution for the dense sphere with the same viscosity as the back-
ground. Plot the velocities on top of the pressure within the fluid. You may
choose whichever absolute parameter values you like but will have to be con-
sistent subsequently.

(iii) Change the number of integration points to three, and replot. Change the type
of element to linear, replot. Comment on the velocity and pressure solution.

(iv) The solver applies a finite bulk viscosity (it should be ∞ for an incompress-
ible fluid). For increasing sphere/medium viscosity contrasts upward of 103,
experiment with increasing the pseudo-incompressibility and comment on the
stability of the solution. After this experiment, reset to the starting value.

(v) The solver applies iterations to enforce the incompressibility constrain. Change
the tolerance criterion and comment on the resulting velocity and pressure so-
lutions.

(vi) Change back to seven node triangles with six integration points. Plot the verti-
cal velocity, vz, along a profile for x ∈ [0; 1] at z = 0.5.

(vii) Vary the radius of the sphere and comment on how the vz profiles are affected
by the size of the sinker relative to the box size. How small does the sphere
have to be to not feel the effect of the boundaries?

(viii) Change the boundary conditions to no-slip (v = 0 on all domain edges), replot
the vertical velocity profile for a sphere of radius 0.1. Comment. Change back
to free-slip subsequently.

(ix) Compute the sinking velocity of a dense sphere with radius 0.1 that is 0.001,
1, and 1,000 times the background viscosity. Define the sinking velocity as the
maximum velocity at the sphere’s origin at x = {0.5, 0.5}.

(x) Provide an analytical estimate for the sinking velocities and compare with the
numerical estimates.
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d) Compute the sinking velocities of a highly elliptical (choose ellipticity 0.975, radius
0.25) body whose viscosity is 1,000 times the background viscosity. Investigate the
case where this “needle” is oriented horizontally (i.e. perpendicular to the sinking
velocity at its center) and when it is oriented vertically (i.e. aligned with the sinking
velocity at its center). Comment on the difference in the maximum sinking velocity
between the two elliptical and the spherical cases.

e) Bonus (somewhat involved): Compute the sinking velocity for a non-Newtonian, power-
law fluid with ε̇′I I ∝ τn

II where n = 3, and I I indicated the second, shear invariants.

Hints: You will have to convert the constitutive law to a viscosity, for which you can
assume constant strain-rates. Then, you will have to modify the code to compute
the strain-rate tensor to obtain the second invariant, ε̇ I I . (You might want to check
the elastic exercise for the use of D and B to obtain strain and stress.) This strain-rate
will then enter the viscosity, and you will have to use a second iteration loop, start-
ing with a Newtonian viscosity, then updating the viscosity from the first velocity
solution, and repeat until velocities do not change by more than some tolerance.
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