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Figure 1: Stress solution for a sheared, elastic box with an inclusion of different strength (see
problem set for details).

1 Exercise: Linear elastic, compressible finite element prob-
lem

Reading

• Hughes (2000), secs. 2.7, 2.9 - 2.11, 3.10

• Dabrowski et al. (2008)

This FE exercise is again based on the MILAMIN package by Dabrowski et al. (2008).
Their “mechanical” solver (incompressible Stokes fluid, to be discussed in the next sec-
tion) was rewritten for the elastic problem, and simplified to reduce the dependency on
packages external to MATLAB.

A highly optimized version of the code that, for example, uses matrix reordering for K
is available from us (this one is closer to the original Dabrowski et al. (2008) code). When in-
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specting the source codes, you should find many similarities (same mesher, same variable
structure, etc.) with last section’s 2-D heat equation exercise.

1.1 Implementation of static 2-D elasticity

1.1.1 Problem in strong form

The strong form of the PDE that governs force balance in a medium is given by

∇ · σ + f = 0, (1)

where σ = σij is the stress tensor and f a body force (such as due to gravity). (Note that
this equation is a general force balance equation in the absence of inertia. You can use it
for static elastic deformation, as we do here, or the Stokes fluid flow problem, as we will
discuss subsequently. The difference arises in the constitutive law.)

Written in component form as PDEs for the finite element domain Ω for each of the
three spatial coordinates i this is

∂σij

∂xj
+ fi = 0 on Ω (2)

with essential boundary conditions for displacements u = g on Γg. Natural boundary
conditions for tractions h = σ · n shall apply on Γh with vector n normal to the boundary
such that

ui = gi on Γgi (3)
σijnj = hi on Γhi . (4)

Here, Γh and Γhi , and similar for g, denotes that different components of the traction vector
may be specified on different parts of the domain boundary Γ.

In the case of linear, elastic behavior, the constitutive law linking dynamic with kine-
matic properties is given by the generalized Hooke’s law

σ = C ε or σij = Cijklεkl, (5)

with the elasticity tensor C, and the strain-tensor ε, computed as

εij = u(i,j) =
1
2

(
∂uj

∂xi
+

∂ui

∂xj

)
. (6)

Note 1: Notice the definition of the (i,j) derivative short-hand, e.g. operating on u to get
the tensor ε, like u(i,j).
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Note 2: C is a 4th order tensor and somewhat cumbersome to deal with. Noticing that

there are only 6 independent components in σ and ε, we can write the 21 indepen-
dent components of C in the Voigt notation, as a 6× 6 matrix, CV . However, this

matrix has different definitions (see, e.g. Browaeys and Chevrot, 2004, for a discus-
sion), and is not a tensor anymore. I.e. you can do math with it, such as multiplying
CV · ε6 to get the stress state, where ε6 is a vector that has the six independent com-
ponents of ε, appropriately sorted, but you cannot rotate CV anymore. For this, the
full 4th order C has to be restored before pre- and post-multiplying with the rotation

matrices, R (see eq. ??).

For an isotropic material, the constitutive law between total stress and strain thank-
fully simplifies to

σij = λεkkδij + 2µεij = λ∆δij + 2µεij, (7)

where µ and λ are the shear modulus and Lamè parameter, respectively; the latter speci-
fies how incompressible a body is. This formulation uses the isotropic dilation,

∆ = εii =
3

∑
i=1

εii, (8)

and the Kronecker δ, δij = 1 for i = j and zero for i 6= j.
The elastic moduli can also be expressed differently, e.g. we can write

λ = µ
2ν

1− 2ν
=

νE
(1 + ν)(1− 2ν)

with E = 2µ(1 + ν), (9)

with the Poisson ratio ν and Young’s modulus E. (There are only two independent
material parameters for isotropic elasticity.) If a block is fixed at the base and loaded
in z-directions without constraints, then ν measures the deformation in the horizontal
ν = −εxx/εzz. E measures the stress exerted for the same experiment if the material is not
allowed to give way sideways (free-slip in z direction) by E = σzz/εzz.

The incompressibility, K, is defined as

p = −K∆ = −Kεii (10)

where p is pressure with

p = −1
3 ∑ σii = −

1
3

σii, (11)

and can be computed from

K = λ +
2
3

µ =
E

3(1− 2ν)
, (12)

or

µ =
3K(1− 2ν)

2(1 + ν)
. (13)

Note that λ = µ for ν = 1/4, which is often close to values measured for rocks.
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1.1.2 Problem in weak form

It can be shown (e.g. Hughes, 2000, p. 77ff) that the equivalent weak form formulation of
the elastic equilibrium PDE is given by the following statement: Find the displacements
u for all virtual displacements w such that

a(w, u) = (w, f ) + (w, h)Γh (14)

with

a(w, u) =
∫

dΩ w(i,j)Cijklu(k,l) (15)

(w, f ) =
∫

dΩ wi fi (16)

(w, h)Γh =
3

∑
i=1

(∫
Γhi

dΓ wihi

)
. (17)

Note that unlike the thermal problem, the solution function we wish to obtain using the
finite element method is a vector, u, rather than a scalar.

1.1.3 Matrix assembly

In the finite element approximation, we then solve for the nodal displacements d which
approximate u within the elements with shape functions N from

K d = F. (18)

The global K is assembled from the element level by

ke
ab =

∫
Ωe

dΩ BT
a D Bb (19)

where a, b are local node numbers. The elemental force vector at local node a is given by

f e
i =

∫
Ωe

dΩ Na fi +
∫

Γe
hi

dΓ Nahi −∑
b

kabgb. (20)

B connects displacements at the nodal level with strains. For 2-D,

Ba =

 ∂Na
∂x 0
0 ∂Na

∂z
∂Na
∂z

∂Na
∂x

 . (21)

We can represent the strain tensor ε as a strain vector e that can be computed from
displacements u by a gradient operator L (see eq. 26 for relation to Ba), like

e = L u or ej = Ljkuk. (22)
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In 2-D, for example,

e =

 εxx
εzz
γxz

 =

 ∂
∂x 0
0 ∂

∂z
∂
∂z

∂
∂x

( ux
uz

)
, (23)

where the definition of γxy simplifies the notation, and it is where the “engineering strain”
convention arises. Make sure to distinguish it from ε, i.e. convert with the factor 2 if
needed, since

γxy = 2εxy. (24)

Within each finite element the displacements can be obtained by summation over the
shape functions for each node a, Na, times the nodal displacements,

u = uk = Nada = Nadk
a (25)

where da is the displacement at the local node a, and dk
a is the k-th spatial component of

this displacement. Then,

e = ej = LjkNadk
a = Bjkadk

a = Bada (26)

defines Ba. If we define a stress vector

s =

 σxx
σzz
τxz

 (27)

with
τxz = 2σxy (28)

in analogy to γxy), then the (symmetric) elasticity matrix D can be used to obtain stresses
from displacements like

s = D e = D Ba da. (29)

The D matrix is a “condensed” version of C (see above),

DI J = Cijkl, (30)

where I, J = 1, 2, . . . , nsd(nsd + 1)/2 in nsd dimensions, which exploits symmetries in C

such that
w(i,j)Cijklu(k,l) = e(w)TD e(u). (31)

Note that D may or may not be identical to C in the Voigt notation, CV .

Equation (15) can then be written as

a(w, u) =
∫

dΩ e(w)TDe(u), (32)
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where e(w) indicates applying the gradient operator to the virtual displacements, as op-
posed to e(u) as in eq. (22).

In the isotropic, 2-D plane strain approximation, D takes the simple form

D =

 λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

 =
E(1− ν)

(1 + ν)(1− 2ν)

 1 ν
1−ν 0

ν
1−ν 1 0
0 0 1−2ν

2(1−ν)

 , (33)

where plane strain means that no deformation is allowed in the y direction, εyy = 0.
For the case of plane stress, where deformation is allowed and σyy = 0,

D =

 λ̄ + 2µ λ̄ 0
λ λ̄ + 2µ 0
0 0 µ

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (34)

with
λ̄ =

2λµ

λ + 2µ
. (35)

From eq. (35), it is apparent that plane stress reduces the effective, volumetric stiffness of
a body, for ν = 1/4, λ̄ = 2/3λ, because out of plane deformation is permitted.

1.1.4 Viscous equivalence

The constitutive law for linear viscous flow with viscosity η, and deviatoric stress σ, σ =
2ηε̇, is analogous to the elastic case with σ = 2µε, assuming the material is incompressible.

The latter can, in theory, be achieved by letting ν→ 1/2 for which K/µ→ ∞ such that
the linear FE approach can be used to solve simple fluid problems. In practice, however,
special care needs to be taken to allow for the numerical solution of the incompressible
elastic, or the Stokes flow case, which we discuss in sec. ??.

1.1.5 Exercises

a) Make sure you have the MATLAB subroutines ip_triangle.m, shp_deriv_triangle.
m, generate_mesh.m, and the triangle binary from last section in your working di-
rectory. Both shape functions and the mesher will be reused.

b) Download elastic2d_std.m, a simple linear elasticity solver, and calc_el_D.mwhich
assembles D. Also download the driver routine elastic2d_test.m. You will have
to fill in the blanks.

c) Inspect elastic2d_std.m, compare with the notes above for linear elasticity, and the
heat solver from sec. ??.
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d) Download and inspect det2D.m, inv2D.m, and eig2d.m (for computing the determi-
nant, inverse, and eigen system of 2× 2 matrices, respectively). Writing out these
operations specifically slightly improves performance compared to using MATLAB
’s inv and eig functions. Also download arrow.m, which is a routine to plot vectors
from the web, and download and inspect calc_el_stress.m and
plot2d_strain_cross.m, which are used to compute element integration node stresses
and plot strain- or stress, crossed-vectors symbols for visualization of the stress ten-
sor in the eigen system coordinates, respectively.

e) Consider a square, homogeneous elastic body with shear modulus µ = 1, Poisson’s
ratio ν = 1/4 and size 1× 1 in x and z directions.

Figure 2: Load case sketches for some of the exercises, along with common symbols for kinematic
boundary conditions.

(i) Assume the body is fixed at the base (zero displacement u for all z = 0), and
sheared with a uniform ux displacement of u0 = 0.1 at the top (z = 1) (Load
case a of Figure 2a). Assume the plane strain approximation and zero density
(i.e. zero body forces). What kind of geologic deformation state does this cor-
respond to? What kinds of displacements would you expect, and how should
the major (σ1) extensional and the major compressional (σ2) stress axis align?
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(ii) Compute the displacements and stresses using the 2-D FE programs provided.
Use linear, three node triangles and experiment with the integration order. Use
a coarse mesh with area constraint 0.01 and angle constraint 25◦.
For this and each subsequent problem, hand in three plots: 1), of the deformed
mesh, indicating the shape of the deformed body, possibly exaggerating the
displacements of each node; 2) a plot where the background field (colored) is
the amplitude of displacement, and the foreground has displacement vectors,
plotted with origin at each original node location; and, 3), a plot of mean (nor-
mal) stress (colored in the background), along with extensional and compres-
sional stress axes vector-crosses. The MATLAB routines provided can, with
some alterations, perform all of these tasks.

(iii) Compare the predicted stress and displacements for plane strain and plane
stress approximations. Comment.

(iv) Compare the distorted mesh shape for linear triangles with that for six node,
quadratic shape functions. Increase the number of elements and compare the
predicted stress fields. Does the displacement and stress field agree with your
expectations for this load case?

(v) Consider Figure 2b and prescribe ux displacements linearly tapered from ux =
u0 at z = 1 down to ux = 0 at z = 0. Compare the predicted displacements
and stresses with load case Figure 2a. Comment on the stress and displacement
fields.

(vi) Relax the kinematic boundary conditions on the sides and top and include
body forces with density ρ = 1 at a fixed (no slip) bottom boundary condition
(Figure 2c). Compute the displacements and stresses, plot those, and comment.

(vii) Compute the body force load case of Figure 2d with free-slip (no horizontal dis-
placements, ux = 0, and no “vertical” shear stresses, τxz = 0) conditions on the
left and right sides. Compare the stress field with the previous, unconstrained
case and comment.

f) Consider the square elastic medium in 2-D plane strain plus a centered, spherical
inclusion with radius 0.2, shear modulus 0.001. Increase the resolution (e.g. use 100
nodes on the outline of the inclusion, 0.001 minimum element area, and 30◦ triangle
edge angle). Load the system as in Figure 2b, compute and plot the stress field, and
comment.

g) Bonus: Write a subroutine that computes the stresses at the global node locations, as
opposed to the integration points within each element as is currently implemented.
Use the nodal stresses and trisurf to generate a plot of triangles colored according
to their normal stress. Compare with the previous plot.
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