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1 Exercise: 1-D heat conduction with finite elements

Reading
This finite element example is based on Hughes (2000), sec. 1.1-1.15.

1.1 Implementation of the 1-D heat equation example

In the previous two sections, we considered the example PDE

∂2u
∂x2 + s = 0 (1)

on the domain x ∈ [0; 1], u(x), s(x), and subject to essential (Dirichlet) boundary condi-
tion u(0) = g on the left, and natural (Neumann) BCs, ∂u(1)

∂x = h on the right. Equation
(1) may be considered a general version of the steady-state heat equation

∂2T
∂x2 + H = 0 (2)

with sources s = H, for example.
See sec. ??, but in brief: If we have n elements between n + 1 global nodes, the weak

form of eq. (1) can be written for each global node A as

∑
B

a(NA, NB)dB = (NA, s) + NA(1)h− a(NA, N̂1)g. (3)

Here, NA are the shape functions in the interior, B is another global node, and N̂1 the
boundary shape function for the essential boundary condition g. This can be further
abbreviated by

KAB = a(NA, NB) =
∫ 1

0

∂NA

∂x
∂NB

∂x
dx (4)

FA = (NA, s) + NA(1)h− a(NA, N̂1)g (5)

=
∫ 1

0
NAsdx + δA,n+1h−

(∫ 1

0

∂NA

∂x
∂N̂1

∂x
dx
)

g, (6)

where we have used the definitions of the bi-linear forms a(·, ·) and (·, ·) from before, and
the Kronecker delta

δi,j =

{
1 if i = j
0 else (7)

is used for the flux boundary condition (also see Hughes, 2000, chap 1). Note that it is
sometimes helpful to not think about nodes but about elements. The weak form of the
equations are satisfied on average per element, and by constructing an appropriate map-
ping/numbering we can easily go from a single element to a 1D or 2D domain.
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The approximate solution of u after discretization of the weak form is given by

ũ(x) =
n+1

∑
A=2

dANA(x) + N̂1g = ∑ dANA(x), (8)

where the latter summation implies choosing the boundary shape function and BC if
needed. The vector d = {dA} values have to be obtained by solution of the matrix equa-
tion

K d = F, (9)

with K = {KAB} and F = {FA}.
We discussed previously how the integration over the domain can be broken down

into summation over integrals over each element (see sec. ??). This integration is most
easily performed in a local coordinate system −1 ≤ ξ ≤ 1 between the two nodes of each
element, which has a mapping to the corresponding, global coordinate interval [xA; xA+1].
We can also express the shape functions as x(ξ),

x(ξ) = ∑
A

NA(ξ)xA and u(ξ) = ∑ NA(ξ)dA. (10)

The global K matrix and the F vector are then assembled by looping over all elements
1 ≤ e ≤ n and adding each element’s contribution for shared nodes. By change of inte-
gration variables and the chain rule, those elemental contributions follow as

ke =
1

∆x

(
1 −1
−1 1

)
, (11)

where ∆x is the element size, xA+1 − xA, and for the force term

f e =
∆x
6

(
2s1 + s2
s1 + 2s2

)
+

{ ka1g for e = 1
δa,n+1 for e = n
0 else

(12)

where we have assumed that the source function s varies linearly over each element, and
s1 and s2 are the contributions from each local node a within the element from s(x). After
assembly, one needs to ensure that each row of the global K matrix that corresponds to a
fixed value (Dirichlet) boundary condition, will only have a diagonal entry and the other
columns for this row are zero.

1.2 Exercises

a) Download heat1dfe.m, and all helper routines for this section. Read through the
implementation of what is summarized above, heat1dfe.m, and understand this
code.
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b) Fill in the blanks in heat1dfe.m and experiment with a solution of eq. (1) for n = 3
elements.

(i) Print out the stiffness matrix (full(stiffness)) to appreciate its banded struc-
ture. Does this look familiar to you?

(ii) Choose the MATLAB solver (solver=0) and plot the finite element solution at
the nodes, as interpolated within the elements, and compare with the analytical
solution.
For this, first plot the error as a function of x. Then, define an overall error
metric, change the resolution succesively, and evaluate the error as a function
of grid size, for example.

(iii) Reads the following section on solving linear systems of equations, if you have
time, and work on the examples (optional).
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2 Solution of large, sparse linear systems of equations

Parts of this exercise are based on Zhong (2008).
The finite element method and implicit finite difference methods quickly leads to very

large, linear systems of equations
K d = F (13)

whose solution can be quite involved. Ideally, we would hand off the solution of eq. (13)
to a computational scientist and use a “black box” solver. However, practice shows that
the nature of the physical problem and the best solution method are often intertwined.

Choosing a different solver might also allow addressing larger, e.g. 3-D, problems be-
cause of improved efficiency. Moreover, it is very hard to make solvers bullet-proof and
one often encounters problematic (e.g. unstable, or no convergence) performance in prac-
tice.

Linear systems of equations also arise in other fields of geophysics, such as inverse
theory, and some exposure to computational linear algebra is needed to fully understand
the MILAMIN (Dabrowski et al., 2008) finite element implementation which we will use later.
We therefore digress a bit here. If your research has you deal with matrices a lot, Golub
and Van Loan (1996) is a classic numerical linear algebra text that might come in handy.

2.1 Direct solvers

For the finite element method, we can always write our problem in the form of eq. (13),
where K is a square, n× n matrix. A general strategy to solve eq. (13) is then LU decom-
position

K = L U, (14)

where L and U are lower and upper triangular matrices, respectively, which only have ze-
ros in the other part of the matrix. The solution of eq. (13) can then be obtained efficiently
from

K d = L U d = F (15)

by solving for y = L−1F and then d = U−1y, because the inverse of U and L are compu-
tationally fast to obtain. LU is often how general matrix inversion is implemented on a
computer.

For most FE problems, the K matrix will also be sparse and banded. Special algorithms
exist to exploit this feature such that the run time is ideally dominated by the number of
non-zero entries of K, rather than the full size. Moreover, if K is symmetric and positive
definite, as in our example above, we can use the Cholesky decomposition for which
U = LT and computations are twice as fast as for the general LU case. However, for
complex, 3-D FE problems, current computational limitations often prohibit the use of
direct solvers which is why iterative methods which do not require matrix decomposition
or inversion, are used.
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Notes:

• Symmetry means K = KT, where KT is the transpose, KT
ij = Kji.

• Positive definite means that cTK c > 0 for any non-zero c. Graphically, this corre-
sponds for a 2 × 2 matrix to a well defined minimum (lowest) point in a curved
landscape, which is important for iterative methods (e.g. Shewchuk, 1994).

• Positive definite, symmetric matrices also arise in least-squares problems in geo-
physical inversions (e.g. seismic tomography, see for example Boschi and Dziewoński,
1999, for a nice introduction to linear algebra in this framework).

• Least-squares means that we wish to solve

A x = b (16)

in the sense that |A x − b| = min, i.e. deviations from the true solution are mini-
mized, for a matrix A that may be under-determined, i.e. not simply invertible. It
can be shown that the general least squares solution xLS is given by

xLS =
(

AT · A
)−1
· AT · d, (17)

where
(

AT · A
)−1

is the generalized inverse (which exists even if the inverse of A,

A−1, does not exist because A is singular). AT · A is symmetric and positive definite,
meaning that Cholesky is also the method of choice for direct approaches to find xLS.

2.2 Iterative solvers

2.2.1 Jacobi method

The simplest iterative solution of eq. (13) is given by the Jacobi method. If K is LU decom-
posed and we write the diagonal matrix (only non-zero along diagonal) of K as D, then
an iterative solution for d starting from an initial guess d1 (e.g. 0) can be obtained from

D di+1 = F− (U + L)di, (18)

where the iteration is over i and is stopped once di+1 is not changing more than some
tolerance from the previous solution estimate di. On an element by element basis, this
can be written as

di+1
j =

1
Kjj

(
Fj −

n

∑
l=1, l 6=j

Kjldi
l

)
(19)

where the summation is over all l but for l = j. The Jacobi method following eq. (19)
is implemented in jacobi.m. It serves mainly illustrative purposes but is guaranteed
to converge, albeit slowly (see below), if K is “diagonally dominant” which is satisfied
strictly when the absolute value of the diagonal elements is larger than the sum of the
absolute values of each row.
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2.2.2 Gauss-Seidel method

An improvement over the Jacobi method is the Gauss-Seidel (GS) approach, where the
iterative rule is

(D + K)di+1 = F−U di. (20)

The main benefit is that di+1 can be computed from di directly, without having to store a
full previous solution, following

di+1
j =

1
Kjj

(
Fj −∑

l<j
Kjldi+1

l −∑
l>j

Kjldi
l

)
. (21)

Note that this operation can be done “in place”, and is implemented in gauss seidel.m.
The GS method will converge (somewhat faster than the Jacobi method) for diagonally
dominant, or positive definite and symmetric K.

2.2.3 Successive Over Relaxation (SOR)

Successive Over Relaxation is a more general variant of the Gauss-Seidel method that can
lead to faster convergence. This is obtained by adding a parameter w which determines
the weight of the current solution in the weighted average used to compute the next
solution.

di+1
j = (1− w) di

j +
w
Kjj

(
Fj −∑

l<j
Kjldi+1

l −∑
l>j

Kjldi
l

)
(22)

Setting w = 1 will reduce SOR to the GS method. The optimal value of w is dependent
upon the matrix K, but setting w = 0.5 is a good starting point. The method has been
rigorously shown to converge for symmetric, positive definite matrices K for 0 < w < 2.

Exercise 1

a) Plot the Jacobi, GS, and SOR solutions for 32 elements and a tolerance of 10−4, 10−5,
and 10−6 on one plot each; comment on the accuracy and number of iterations re-
quired. Can you improve the definition of tolerance for the Jacobi method?

b) Choose a tolerance of 10−6, and record the number of iterations required to solve the
1-D FE example problem using the Jacobi and GS methods for increasing number of
elements, e.g. for 8, 16, 32, 64, and 128 elements. (You might want to automate these
computations and not wait until convergence and record the results by hand.)

c) Plot the number of iterations against number of elements for both methods.

d) Comment on the “scaling” of iteration numbers with size.
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2.2.4 Conjugate gradient

You have now seen that while the Gauss-Seidel (GS) method is an improvement on the
Jacobi approach, it still requires a large number of iterations to converge. This makes
both methods impractical in real applications and other approaches are commonly used.
One of those is the conjugate gradient (CG) method which works for positive-definite,
symmetric, square (n × n) matrices. The CG method is explained in a nice, geometric
fashion by Shewchuk (1994). We cannot explore the motivation behind CGs in detail,
but conjgrad.m provides a pretty straightforward MATLAB implementation which you
should check out.

The CG method provides an exact solution after n iterations, which is often a pro-
hibitively large number for real systems, and approximate solutions may sometimes be
reached for a significantly smaller number of iterations. There are numerous tweaks in-
volving modifications to the conjugate gradient method that pertain to “pre-conditioners”
where we solve

M−1Kd = M−1F, (23)

for some M which approximates K but is simpler to handle than K. The best choice of
these is, for some applications, an active area of research (e.g. May and Moresi, 2008).

For sparse least-squares problems, such as for the typically-mixed determined seismic
tomography problem, the LSQR approach of Paige and Saunders (1982) is a popular choice
that is used by many researchers for linear inversions. The robustness of the iterative
solution compared to direct solvers was explored by Boschi and Dziewoński (1999), for
example (it works!).

Exercise 2

a) Switch the solver from the GS method to conjugate gradient and increase the max-
imum iteration number stepwise from a fraction of n to the full n (as determined
by the number of elements which you should choose large, e.g. 200, for this exer-
cise). Test different initial guesses for di (e.g. all zero, random numbers), record the
convergence and comment on the solution.

2.2.5 Multigrid method

An interesting philosophy to solving PDEs of the type we are considering for the 1-D fi-
nite element example is by using several layers of variable resolution grids (e.g. Press et al.,
1993, sec. 19.6). The insight is based on the observation that the Gauss-Seidel method is
very good at reducing short-wavelength residuals in the iterative solution for d (“smooth-
ing”), but it takes a long time to reduce the largest wavelength components of the residual.
(You should try to plot successive solutions of the GS method compared to the analytical
solution for different starting d0 to visualize this behavior.)

For the multigrid (MG) method, the idea is to solve the equations to within the de-
sired tolerance only at a very coarse spatial discretization, where only a few iterations
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are required. Then, the solution is interpolated up to finer and finer levels where only
a few GS iterations are performed at each level to smooth the solution. One then cycles
back and forth until convergence is achieved at the finest, true solution level. There are
several different approaches that are all called “multigrid” methods and basically only
share the same philosophy. Differences are, for example found in terms of the way the
cycling between fine and coarse resolutions are conducted (e.g. Briggs et al., 2000), and
we will only discuss the “V cycle” method. Multigrid methods are now implemented in
most 3-D finite element methods (Zhong et al., 2007) because MG has, ideally, the perfect
scaling of O(N) where N is the size of the problem. MG methods areas of active research
(e.g. algebraic multigrid, which is related to adaptive mesh refinement).

The multigrid method is based on expressing the PDE on L MG levels of resolution
where the number of nodes in each level, ni, is given by

ni = b× 2i−1 + 1 for i = 1, 2, . . . , L, (24)

where b is the base, typically a small number such as 2 or 4. At each ith level, we need
to construct separate stiffness matrices, Ki, and the corresponding force vector where the
resolution for the i = L solution is the best approximation to K d = F, and the forcing is
only needed to be specified at FL (see below).

An example implementation may proceed like so (see, e.g. Press et al., 1993, sec. 19.6 for
some alternatives): We start at the highest level, L, and perform only a few, fixed number
of GS iterations for an rough approximate dL from

KLdL = FL (25)

to remove the short wavelength misfit starting from an initial guess dL = 0. The residual
is then given by

RL = FL − K dL. (26)

We then project, or restrict, the residual to a coarser grid at L− 1 by a projection operator
P

RL−1 = PL→L−1RL. (27)

P will be some stencil giving more weight to the fine resolution nodes that are closer to
the coarse resolution node to which we project. We next GS iterate

Kiδdi = Ri (28)

for i = L− 1 for another small number of iterations (initializing di again with 0), perform-
ing another “smoothing” step, reducing short wavelength fluctuations. Note that eq. (28)
now operates on the residual and not the load vector F such that we are computing cor-
rections of d, δd. We then repeat the smoothing and projection steps down to i = 1 where
eq. (28) can be solved quickly and exactly. This completes the downward leg of the V
cycle where the longest wavelength residual has been addressed.
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Next, we have to propagate the correction δd1 from i = 1 to i = 2 and higher res-
olutions by means of a “prolongation”, i.e. an interpolation to higher resolution by an
interpolation operator I

δdi+1 = Ii→i+1δdi. (29)

I may be a linear interpolation, for example, which is easy to compute for the mesh struc-
ture eq. (24). This upward interpolated δdi+1 can then be smoothed by using it as a start-
ing guess for a fixed number of GS iterations for

Ki+1δdi+1 = Ri+1 (30)

with δdi+1. We can now correct

δdi+1 = δdi+1 − αδdi+1 (31)
Ri+1 = Ri+1 − αδRi+1, (32)

(33)

with δRi+1 = −Ki+1δdi+1 and weighting α = (δRi+1 · Ri+1)/|δRi+1|2. We continue by
projecting δdi in this fashion up to i = L, where we update dL = dL + δdL, which com-
pletes the upward leg of the V. The whole V cycle is then repeated until the desired toler-
ance for dL is reached at which point dL = d. Details of the implementations of the MG
method, such as the smoothing, restriction, and prolongation operations, depend on the
problem and the boundary conditions (e.g. Press et al., 1993; Briggs et al., 2000).

Exercise 3

a) Download the MG implementation of the 1-D FE example (based on C code by
Zhong, 2008), multigrid.m. Read through the implementation, compare with the
above recipe, and understand the approach.

b) Compare the number of iterations needed for the MG solver with that of the GS
method for 32, 64, 128, 256 numbers of elements.

c) Plot the scaling of the number of iterations, or time spent in the multigrid subrou-
tine, with the number of elements.
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