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1 Wave propagation

Figure 1: Finite difference discretization of the 2D acoustic problem.

We briefly discuss two examples for solving wave propagation type problems with
finite differences, the acoustic and the seismic problem.

1.1 Acoustic problem with standard grid

In an isotropically elastic medium, acoustic wave propagation, where we are only taking
care of a single type of wave, can be described by a set of two partial differential equa-
tions, leading to a hyperbolic problem. Likewise, we can worry about the propagation of
pressure waves in a gas. Newtons 2nd law states that mass× acceleration = force, which
for the case of pressure variations in a gas is given by the nagative pressure gradient. Per
unit volume, this can be written as

ρ
∂2u
∂t2 = ρü = −∇p. (1)

Here, u = {ux, uy, uz} are the three components of particle displacement, ˙ and ¨ means
first and second derivative wrt. to time, respectively, p is pressure, and ρ density. Let us
introduce a constitutive law linking pressure to the divergence of displacements,

p = −K∇ · u, (2)

or, taking the second time derivative,

∂2p
∂t2 = −K∇ · ü, (3)

where K is the bulk modulus, or compressibility. If we divide eq. (1) by ρ and take the
gradient,

∇ ü = ∇
(

1
ρ
∇p
)

. (4)
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Combining the equations, we get

∂2p
∂t2 = K∇ ·

(
1
ρ
∇p
)

. (5)

If we assume that density is constant, we can introduce a parameter, vB, which turns out
to be a velocity of propagation

∂2p
∂t2 = v2

B∇2p, (6)

where the bulk sound velocity is

vB =

√
K
ρ

. (7)

Simplifying to a 2D case, we have

∂2p
∂t2 = v2

B

(
∂2p
∂x2 +

∂2p
∂z2

)
. (8)

The equation for propogation of SH waves, the transverse components of S waves, in
seismology has a similar form as eq. (8):

∂2u
∂t2 = v2

SH

(
∂2u
∂x2 +

∂2u
∂z2

)
, (9)

where u is the displacement and VSH is the velocity of the SH component.
Likewise, a similar equation also applies for tsunami waves at long wavelengths, in

the “shallow water approximation”,

∂2ξ

∂t2 = v2
SW

(
∂2ξ

∂x2 +
∂2ξ

∂z2

)
. (10)

Here, ξ is the height of the tsunami wave, vSW is the velocity controlled by the water
depth H as

vSW =
√

gH. (11)

To solve eqs. (8)-(10), with finite differences, we use the mesh shown in Fig. 1. Here, we
have pn

i,j = P(i∆h, j∆h, n∆t) and vi,j = v(i∆h, j∆h) (meaning bulk velocity, vB). Applying

the 2nd-order, second derivative formula to the acoustic wave equation eq. (8),

pn−1
i,j − 2pn

i,j + pn+1
i,j

∆t2 = v2
i,j

[
pn

i−1,j − 2pn
i,j + pn

i+1,j

∆h2 +
pn

i,j−1 − 2pn
i,j + pn

i,j+1

∆h2

]
. (12)

After rearranging, we have

pn+1
i,j = −pn−1

i,j + (2− 4ai,j)pn
i,j + ai,j

(
pn

i−1,j + pn
i+1,j + pn

i,j−1 + pn
i,j+1

)
, (13)
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where

ai,j = v2
i,j

∆h2

∆t2 . (14)

Then, the pressure or displacement at time step n + 1 can be derived explicitly from time
step n and n− 1 as in eq. (13), though two solutions have to be stored. Note that we use
2nd-order second derivatives in eq. (13).

Two considerations are required for choosing suitable time step ∆t and spatial step ∆h:
grid dispersion and stability:

• When waves propagate on a discrete grid, they produces an artificial variation of
velocity with frequency, which is called grid dispersion. The higher frequency sig-
nals, with slower velocity, are delayed relative to the lower frequency arrivals. This
dispersion increases as ∆h becomes larger. In other words, a small ∆h is required to
avoid grid dispersion.

• To achieve an accurate solution, we need at least 12 points per wavelength for space
for a scheme with 2nd order accuracy. For a 4th order scheme, a minimum of 6.5
points per wavelength are required. For a fixed frequency, this minimum wave-
length is determined by the minimum velocity (vmin), so the accuracy of the system
is governed by (vmin). Following a stability analysis, we can derive the stability
requirement here as:

∆t ≤ 1√
2

∆h
vmax

(15)

where vmax is the maximum velocity on the grid.

1.1.1 Exercise 1

a) Program the 2D acoustic wave propagation in standard grid scheme as in Fig. 1
(wave_acoustic_2D.m). Study the wavefield and seismograms with different choices
of ∆t and ∆h and demonstrate how ∆t and ∆h affect the stability and grid dispersion
in the program.

b) Introduce heterogeneities in the velocities, such as a thin layer with half velocity, and
describe the difference from the isotropic model, especially how this layer affects the
observed seismograms. Run the code with the velocity inside the thin layer being
zero and explain the result.

1.2 Elastic wave problem with staggered grid

For 2D elastic wave case (P-SV system), force balance and constitutive equations can be
written as (e.g. Levander, 1988):

ρ
∂2ux

∂t2 =
∂τxx

∂x
+

∂τxz

∂z
, (16)
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ρ
∂2uz

∂t2 =
∂τxz

∂x
+

∂τzz

∂z
, (17)

τxx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
, (18)

τzz = (λ + 2µ)
∂uz

∂z
+ λ

∂ux

∂x
, (19)

and

τxz = µ

(
∂ux

∂z
+

∂uz

∂x

)
. (20)

Here, (ux, uz) are the particle displacements. For seismic waves, they are typically called
radial and vertical components, respectively, if they are recorded at surface. Further, τ is
the stress tensor, and λ and µ the elastic, Lamé coefficients (µ is shear modulus).

Typically, those equations are solved for particle velocities as U = ∂ux
∂t and V = ∂uz

∂t .
Then, the system is transformed into the frst-order hyperbolic system, introducing the
abbreviations Σ = τxx, T = τzz, Λ = τxz,

∂U
∂t

= b
(

∂Σ

∂x
+

∂Λ

∂z

)
, (21)

∂V
∂t

= b
(

∂Λ

∂x
+

∂T
∂z

)
, (22)

∂Σ

∂t
= (λ + 2µ)

∂U
∂x

+ λ
∂V
∂z

, (23)

∂T
∂t

= (λ + 2µ)
∂V
∂z

+ λ
∂U
∂x

, (24)

∂Λ

∂t
= µ

(
∂U
∂z

+
∂V
∂x

)
, (25)

with the buoyancy, b = 1/ρ.
A typical seismic wave propagation problem needs to deal with medium with variable

Poisson’s ratio, ν, which can be defined as

ν =
λ

2(λ + µ)
. (26)

For the special case of λ = µ, ν = 1/4, and many rocks have Poisson’s ratios not far
from 1/4. For liquids, ν → 0.5. For seismic wave propagation, this is particularly impor-
tant when ocean water or the outer core of the Earth are needed to be considered in the
problem, which is hard to be resolved with the traditional set up of grid as in Fig. 1.

To satisfy both requirements for stability and grid dispersion at those problems, a
P-SV staggered-grid scheme is applied. Note the structure of the elastic wave problem,
eq. (21)-eq. (25), they allow the stress and particle velocity to be spatially interlaced on the
grids as in Fig. 2. The staggered-grid scheme allows the spatial derivative to be computed

See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 4

geodynamics.usc.edu/~becker/Geodynamics557.pdf


Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus (2016)

Figure 2: 2D staggered finite difference grid for wave propagation.

to a much higher accuracy (e.g. Levander, 1988). This computational aspect is similar to
the staggered grid finite difference approach to the Stokes problem, discussed in sec. ??.

To add the complexity, the stress and velocity field can also staggered in time. We
follow the explicit scheme and first update the velocities from time half-steps k− 1/2 to
k + 1/2, i.e. centered on time, k∆t, using second order, finite difference equations for the
first derivatives in eqs. (21)-(25) (Figure 2). Introducing

S =
∆t
∆h

, (27)

we find

Uk+1/2
i+1/2,j = Uk−1/2

i+1/2,j + bi+1/2,jS
(

Σk
i+1,j − Σk

i,j

)
+ bi+1/2,jS

(
Λk

i+1/2,j+1/2 −Λk
i+1/2,j−1/2

)
, (28)

Vk+1/2
i,j+1/2 = Vk−1/2

i,j+1/2 + bi,j+1/2S
(

Λk
i+1/2,j+1/2 −Λk

i−1/2,j+1/2

)
+ bi,j+1/2S

(
Tk

i,j+1 − Tk
i,j

)
. (29)

Then, we advance the stresses from time step k to k + 1 such that

Σk+1
i,j = Σk

i,j + (λ + 2µ)i,jS
(

Uk+1/2
i+1/2,j −Uk+1/2

i−1/2,j

)
+ λi,jS

(
Vk+1/2

i,j+1/2 −Vk+1/2
i,j−1/2

)
, (30)
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Tk+1
i,j = Tk

i,j + (λ + 2µ)i,jS
(

Vk+1/2
i,j+1/2 −Vk+1/2

i,j−1/2

)
+ λi,jS

(
Uk+1/2

i+1/2,j −Vk+1/2
i−1/2,j

)
, (31)

Λk+1
i+1/2,j+1/2 = Λk

i+1/2,j+1/2 + µi+1/2,j+1/2S
(

Vk+1/2
i+1,j+1/2 −Vk+1/2

i,j+1/2

)
+ µi+1/2,j+1/2S

(
Uk+1/2

i+1/2,j+1 −Uk+1/2
i+1/2,j

)
. (32)

Therefore, to time-evolve the solution for one full ∆t, we follow:

a) update velocities from the stress;

b) update the stress from the velocities.

For a homogeneous medium, the stability condition is

vPS = vP
∆t
∆h

<
1√
2

, (33)

where

vP =

√
λ + 2µ

ρ
(34)

is the P-wave velocity. The stability condition is independent of the S-wave velocity

vS =

√
µ

ρ
(35)

because information will propagate at the P wave speed.
To minimize the grid dispersion, the spatial sampling required at least 10 gridpoints

per wavelength, which is defined by the vP, for second order methods such as that of
Virieux (1986). For a 4th-order approach, the sampling rate can be reduced to 5 grid-
points/wavelength (Levander, 1988).

Several other issues are also very important for wave propagation in practice:

a) If a boundary condition is not well implemented, the related reflected waves from
the boundaries of the domain will affect the results strongly. Depending on the
problem, different boundary conditions can be applied to the edges: free-surface
conditions, absorbing boundaries (Clayton and Engquist, 1977), and the recently widely
adopted Perfectly Matched Layer (PML) absorbing boundary (Collino and Tsogka,
2001).

b) The source excitation, which initializes the wave propagation, also has to be treated
with care. In general, a source can be implemented by simply adding a prescribed
source time function to the source mesh. For example, an explosion point source
time function S(t) can be added to the 2D elastic case as:

τxx or zz(source grid) = τxx or zz(FD solution at source grid) + S(t)
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1.2.1 Exercise 2

a) Program the 2D elastic wave propagation in staggered grid scheme as in Fig. 2
(wave_elastic_staggered_2D.m). Choose ∆t and ∆h and describe the wavefield
(both vertical and horizontal components) for the model with uniform velocities.
Identify the first P and SV arrivals on the recorded seismograms.

b) Include a thin liquid layer (vS = 0) in the model and explain the result. Note for a
typical wave propagation problem, the input models are vP, vS, and density ρ, so
the conversions to λ and µ are required in the program.

1.2.2 Note: Implementation of materal variations

For average densities, ρ̄, when considering two materials with ρ1 and ρ2, use

ρ̄ =
ρ1 + ρ2

2
, (36)

the arithmetic average. For average elastic properties, e.g. shear modulus µ, use

µ̄ =
2µ1µ2

µ1 + µ2
=

(
1
µ1

+
1
µ2

)−1

(37)

(see sec. ?? and, e.g., Mozco et al., 2004, p. 33ff for a discussion of averaging schemes).
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