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Figure 1: Discretization for the streamfunction approach. The boundary conditions are set through
fictious boundary points.

1 Stokes equations with FD on a staggered grid using the
stream-function approach.

1.1 Introduction

As was discussed in sec. ??, the basis of basically all mantle convection and lithospheric
dynamics codes are the Stokes equations for slowly moving viscous fluids.

There are several ways to solve those equations, and the goal of this exercise is to
use a streamfunction, finite difference approach. Stream function means that there is a
potential field which we solve for, and then obtain velocities from the derivatives of this
field. The advantage of this approach is that the continuity equation for incompressible
flow can be satisfied implicitly, rather than having to use a panelty parameter as for the
primitive variable approach of sec. ??. (It is, however, possible to formulate the stream
function method for compressible convection approximations, e.g. Schmeling, 1989). For
a comparison of different finite difference approaches, see Deubelbeiss and Kaus (2008), for
example.

The main challenges of this project are, 1), having fairly high-order and mixed deriva-
tives (up to 4th order) and, 2), setting of boundary conditions.

1.2 Governing equations

It is assumed that the rheology is incompressible and that the rheology is Newtonian
viscous. In this case, the governing equations are (see sec. ??):
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By substituting eqs. (4)-(6) into eqs. (1)-(3), we obtain (compare sec. ??)
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We can eliminate pressure from eqs. (8) and (9) by taking the derivative of eq. (8) versus
z and subtracting eq. (9) derived versus x. This results in:
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We can also use the incompressibility constraint (7) to simplify things a little bit more:
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Now we introduce a variable Ψ (the stream function) which is defined by its relation-
ship to the velocities as
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∂Ψ
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(12)
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Note that Ψ satisfies incompressibility by plugging eqs. (12) and (13) into eq. (1).
By using Ψ, we can write eq. (11) as:
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Note that this equation now has 4th order derivatives for Ψ (easier to see for constant µ,
where we can pull the viscosity out of the derivatives.) The challenge is to solve eq. (14)
for Ψ given then density gradients.

1.3 Exercise

a) Discretize eq. (14) on a grid as shown on Figure 1.

b) A MATLAB subroutine is shown on Figure 2. The subroutine sets up the grid and
the node numbering. Finish the code by programming the discretized eq. (14). To
start simple, assume that viscosity is constant.

c) Add free-slip boundary conditions on all sides (which means vz = 0, σxz = 0 on the
lower and upper boundaries and σxz = 0, vx = 0 on the side boundaries; you’ll have
to write these equations in terms of Ψ and employ fictious boundary points).

d) Assume a model domain x = [0; 1], z = [0; 1], and assume that the density below
z = 0.1 cos(2πx) + 0.5 is 1, whereas the density above it is 2. Compute the velocity,
and plot the velocity vectors.

e) Write the code for the case of variable viscosity (which is relevant for the Earth since
rock properties are a strong function of temperature).
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% Solve the 2D Stokes equations on a staggered grid, using the Vx,Vz,P

% formulation.

clear

% Material properties phase #1 phase #2

mu_vec = [1 1 ];

rho_vec = [1 2 ];

% Input parameters

Nx = 6;

Nz = 6;

W = 1;H = 1;g = 1;

% Setup the interface

x_int = 0:.01:W;

z_int = cos(x_int*2*pi/W)*1e-2 - 0.5;

% Setup the grids----------------------------------------------------------

dz = H/(Nz-1);dx = W/(Nx-1);

[X2d,Z2d] = meshgrid(0:dx:W,-H:dz:0);

%--------------------------------------------------------------------------

% Compute material properties from interface-------------------------------

% Properties are computed in the center of a control volume

Rho = ones(Nz,Nx)*rho_vec(2);

Mu = ones(Nz,Nx)*mu_vec(2);

z_int_intp = interp1(x_int,z_int,X2d(1,:));

for ix = 1:length(z_int_intp)

ind = find(Z2d(:,1)<z_int_intp(ix));

Rho(ind(1:end-1),ix) = mu_vec(1);

Mu(ind(1:end-1),ix) = rho_vec(1);

fac = (z_int_intp(ix) - Z2d(ind(end),1))/dz;

Rho(ind(end),ix) = fac*rho_vec(1) + (1-fac)*rho_vec(2);

Mu(ind(end),ix) = fac*mu_vec( 2) + (1-fac)*mu_vec( 2);

end

%--------------------------------------------------------------------------

% Setup numbering scheme----------------------------------------------------

Number_ind = zeros(Nz, Nx); % Create the general numbering scheme

num = 1;

for ix=1:Nx

for iz=1:Nz

Number_ind(iz,ix) = num;

num = num+1;

end

end

num_eqns = num-1;

%--------------------------------------------------------------------------

% Setup the stiffness matrix

A = sparse(num_eqns,num_eqns);Rhs_vec = zeros(num_eqns,1);

% Compute coefficients for mu*d4 Psi/dx4

ind_list = [];ind_val = [];

mu = mu_vec(1);

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_ind(1:end,5:end ), mu*( 1/dx4));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_ind(1:end,4:end-1), mu*(-4/dx4));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_ind(1:end,3:end-2), mu*( 6/dx4));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_ind(1:end,2:end-3), mu*(-4/dx4));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_ind(1:end,1:end-4), mu*( 1/dx4));

% Compute coefficients for d4 Psi/dx2/dz2

% compute coefficients for ....

% Add local equations to global matrix

ii = 1;

for i=1:size(ind_list,2)

A = A + sparse([ii+1:ii+size(ind_list,1)].,ind_list(:,i),ind_val(:,i),num_eqns,num_eqns);

end

% set rhs

%Rhs_vec([ii+1:ii+size(ind_list,1)]) = Rhs_vec([ii+1:ii+size(ind_list,1)]) + rho(:)*g;

% Set boundary conditions

% Solve system of equations.

Figure 2: Code Streamfunction_Stokes.m that initializes the grid and node numbering for the
2D streamfunction approach.

function [ind_list,ind_val] = Add_coeffs(ind_list,ind_val,ind_add,val_add)% Add coefficients to an array

if (length(val_add(:))==1)

val_add = ones(size(ind_add))*val_add;

end

ind_list = [ind_list, ind_add(:)];ind_val = [ind_val , val_add(:)];

Figure 3: MATLAB script Add_coeffs.m, used by Streamfunction_Stokes.m.
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