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Figure 1: Staggered grid definition. Properties such as viscosity and density inside a control
volume (gray) are assumed to be constant. Moreover, a constant grid spacing in x and z-direction
is assumed.

1 2D Stokes equations on a staggered grid using primitive
variables

1.1 Introduction

The basis of basically all mantle convection and lithospheric dynamics codes are the so-
called Stokes equations for slowly moving viscous fluids. These equations describe the
balance between buoyancy forces (e.g. due to temperature variations in the fluid) and
viscous drag (sec. ??). Here, we will describe the governing equations. There are several
ways to solve those equations, and the goal of this project is to use a staggered finite
difference approach in primitive variables.

For this, we solve the governing equations for v = {vx; vz} (velocities) and p (pres-
sure). Staggered finite differences means that the different unknowns vx, vz, p are defined
at physically different grid points. The main challenges of this project are, 1), having sev-
eral variables instead of only one (e.g. temperature), and, 2), to do the bookkeeping for the
present case that the variables are at different grid points. (While the governing equations
are different, those computational challenges are similar to those arising in the staggered
grid, finite difference approach for wave propagation discussed in sec. ??.)

1.2 Governing equations

It is assumed that the rheology is incompressible and that the rheology is Newtonian
viscous, i.e. σ = 2µε̇ with µ no function of ε̇, where σ is the stress tensor, µ viscosity, and ε̇
strain-rate tensor. In this case, the governing equations in 2D (x and z) are (see sec. ??):
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where ρ is density and g = {0, g} the gravitational acceleration. The density is where
these continuum and force balance equations (eqs. 1 to 3) couple to the the energy equa-
tion, e.g. the diffusion and advection of temperature for mantle convection, discussed in
the previous sections.

It has been suggested that a particularly nice way to solve these equations is to use a
staggered grid (more about this later) and to keep as variables vx, vz and p (Gerya and Yuen,
2003; Gerya, 2009).1 Since there are three variables, we need three equations. Substituting
eqs. (4)-(6) into eq. (2) and eq. (3) leads to:
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Note that we added the term P
γ to the incompressibility equations. This is a “trick” called

the penalty method, which ensures that the system of equations does not become ill-
posed. For this to work, γ should be sufficiently large (∼ 104 or so), so that the condition
of incompressibility (conservation of mass, eq. 1) is approximately satisfied.

1.3 Exercise

a) Discretize eqs. (7)-(9) on a staggered grid as shown on Figure 1.

b) A MATLAB subroutine is shown on Figure 2. The subroutine sets up the grid, the
node numbering and discretizes the incompressibility equations.

1For a comparison of different finite difference approaches, see Deubelbeiss and Kaus (2008), for example.
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% Solve the 2D Stokes equations on a staggered grid, using the Vx,Vz,P formulation.

clear

% Material properties

% phase #1 phase #2

mu_vec = [1 1 ];

rho_vec = [1 2 ];

% Input parameters

Nx = 20;

Nz = .9*Nx;

W = 1;

H = 1;

g = 1;

% Setup the interface

x_int = 0:.01:W;

z_int = cos(x_int*2*pi/W)*1e-2 - 0.5;

% Setup the grids----------------------------------------------------------

dz = H/(Nz-1);

dx = W/(Nx-1);

[X2d,Z2d] = meshgrid(0:dx:W,-H:dz:0);

XVx = [X2d(2:end,:) + X2d(1:end-1,:)]/2; % Vx

ZVx = [Z2d(2:end,:) + Z2d(1:end-1,:)]/2;

XVz = [X2d(:,2:end) + X2d(:,1:end-1)]/2; % Vz

ZVz = [Z2d(:,2:end) + Z2d(:,1:end-1)]/2;

XP = [X2d(2:end,2:end) + X2d(1:end-1,1:end-1)]/2; % p

ZP = [Z2d(2:end,2:end) + Z2d(1:end-1,1:end-1)]/2;

% Compute material properties from interface, properties are computed in the center of a control volume

Rho = ones(Nz-1,Nx-1)*rho_vec(2);

Mu = ones(Nz-1,Nx-1)*mu_vec(2);

z_int_intp = interp1(x_int,z_int,XP(1,:));

for ix = 1:length(z_int_intp)

ind = find(ZVz(:,1)<z_int_intp(ix));

Rho(ind(1:end-1),ix) = mu_vec(1);

Mu(ind(1:end-1),ix) = rho_vec(1);

fac = (z_int_intp(ix) - ZVz(ind(end),1))/dz;

Rho(ind(end),ix) = fac*rho_vec(1) + (1-fac)*rho_vec(2);

Mu(ind(end),ix) = fac*mu_vec( 2) + (1-fac)*mu_vec( 2);

end

% Setup numbering scheme----------------------------------------------------

Number_Phase = zeros(Nz + Nz-1, Nx + Nx-1); % Create the general numbering scheme

Number_ind = zeros(Nz + Nz-1, Nx + Nx-1); % Create the general numbering scheme

Number_Vx = zeros(Nz-1,Nx );Number_Vz = zeros(Nz ,Nx-1);

Number_P = zeros(Nz-1,Nx-1);

for ix=1:2:Nx+Nx-1, for iz=2:2:Nz+Nz-1, Number_Phase(iz,ix) = 1; end; end % Vx equations

for ix=2:2:Nx+Nx-1, for iz=1:2:Nz+Nz-1, Number_Phase(iz,ix) = 2; end; end % Vz equations

for ix=2:2:Nx+Nx-1, for iz=2:2:Nz+Nz-1, Number_Phase(iz,ix) = 3; end; end % P equations

num = 1;

for ix=1:size(Number_Phase,2)

for iz=1:size(Number_Phase,1)

if Number_Phase(iz,ix)~=0

Number_ind(iz,ix) = num;

num = num+1;

end

end

end

num_eqns = num-1;

ind_Vx = find(Number_Phase==1); Number_Vx(find(Number_Vx==0)) = Number_ind(ind_Vx);

ind_Vz = find(Number_Phase==2); Number_Vz(find(Number_Vz==0)) = Number_ind(ind_Vz);

ind_P = find(Number_Phase==3); Number_P (find(Number_P ==0)) = Number_ind(ind_P );

% Setup the stiffness matrix

A = sparse(num_eqns,num_eqns);

Rhs_vec = zeros(num_eqns,1);

% Setup the incompressibility equations------------------------------------

ind_list = [];ind_val = [];

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vx(:,2:end ), ( 1/dx));%dVx/dx

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vx(:,1:end-1), (-1/dx));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vz(2:end,: ), ( 1/dz));%dVz/dz

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vz(1:end-1,:), (-1/dz));

% Add local equations to global matrix

for i=1:size(ind_list,2)

A = A + sparse([1:size(ind_list,1)].’,ind_list(:,i),ind_val(:,i),num_eqns,num_eqns);

end

num_incomp = length(ind_list);

% Perform testing of the system of equation, setup some given matrixes

mu = mu_vec(1);

Vx = cos(XVx).*sin(ZVx);

Vz = -sin(XVz).*cos(ZVz);

P = 2*mu*sin(XP ).*sin(ZP );

C = zeros(num_eqns,1);

C(Number_Vx(:)) = Vx(:);

C(Number_Vz(:)) = Vz(:);

C(Number_P(:)) = P(:);

Rhs = A*C;

% Check whether the compressibility equations are implemented correctly

max(abs(Rhs(1:num_incomp)))

Figure 2: MATLAB script Staggered_Stokes.m that sets up numbering, matrix A and that solves
the incompressibility equations.
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function [ind_list,ind_val] = Add_coeffs(ind_list,ind_val,ind_add,val_add)% Add coefficients to an array

if (length(val_add(:))==1)

val_add = ones(size(ind_add))*val_add;

end

ind_list = [ind_list, ind_add(:)];ind_val = [ind_val , val_add(:)];

Figure 3: MATLAB script Add_coeffs.m, used by Staggered_Stokes.m.

Figure 4: Staggered grid definition with the boundary points. Within the purple domain, the finite
difference scheme for center points can be applied. At the boundaries, we have to apply a special
finite difference scheme which employ fictious boundary nodes.

Add the discretization of the force balance equations (including the effects of grav-
ity) into the equation matrix A. Assume that the viscosity is constant and µ = 1 in a
first step, but density is variable.

An example is given in how to verify that the incompressibility equation is incorpo-
rated correctly. This is done by assuming a given (sinusoidal) function for, let’s say,
vx (e.g. vx = cos(ωx) cos(ωz)). From the incompressibility equation (eq. 1) a solu-
tion for vz than follows. By setting those solutions in the c vector, we can compute
A c and verify that rhs for those equations is indeed zero.

c) Add free-slip boundary conditions on all sides (which means vz = 0, σxz = 0 on
the lower and upper boundaries and σxz = 0, vx = 0 on the side boundaries). Use
fictious boundary points to incorporate the σxz boundary conditions.

d) Assume a model domain x = [0; 1], z = [0; 1], and assume that the density below
z = 0.1 cos(2πx) + 0.5 is 1, whereas the density above it is 2. Compute the velocity
and pressure, and plot the velocity vectors.

e) Write the code for the case of variable viscosity (which is relevant for the Earth since
rock properties are a strong function of temperature).
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