
Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus (2016)

1 Finite difference example: 1D explicit heat equation

Finite difference methods are perhaps best understood with an example. Consider the
one-dimensional, transient (i.e. time-dependent) heat conduction equation without heat
generating sources
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)
(1)

where ρ is density, cp heat capacity, k thermal conductivity, T temperature, x distance, and
t time. If the thermal conductivity, density and heat capacity are constant over the model
domain, the equation can be simplified to
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where
κ =

k
ρcp

(3)

is the thermal diffusivity (a common value for rocks is κ = 10−6 m2s−1; also see discussion
in sec. ??).

We are interested in the temperature evolution versus time, T(x, t), which satisfies
eq. (2), given an initial temperature distribution (Fig. 1A). An example would be the in-
trusion of a basaltic dike in cooler country rocks. How long does it take to cool the dike
to a certain temperature? What is the maximum temperature that the country rock expe-
riences?

The first step in the finite differences method is to construct a grid with points on
which we are interested in solving the equation (this is called discretization, see Fig. 1B).
The next step is to replace the continuous derivatives of eq. (2) with their finite difference
approximations. The derivative of temperature versus time ∂T

∂t can be approximated with
a forward finite difference approximation as

∂T
∂t
≈

Tn+1
i − Tn

i
tn+1 − tn =

Tn+1
i − Tn

i
∆t

=
Tnew

i − Tcurrent
i

∆t
. (4)

Here, n represents the temperature at the current time step whereas n + 1 represents the
new (future) temperature. The subscript i refers to the location (Fig. 1B). Both n and i are
integers; n varies from 1 to nt (total number of time steps) and i varies from 1 to nx (total
number of grid points in x-direction). The spatial derivative of eq. (2) is replaced by a
central finite difference approximation (cf. sec. ??), i.e.
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See geodynamics.usc.edu/~becker/Geodynamics557.pdf for complete document. 1

geodynamics.usc.edu/~becker/Geodynamics557.pdf


Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus (2016)

country rock dikecountry rock

x

T(x,0)

A B

space

ti
m

e

L

boundary nodes

Dx

Dt

i,n

i,n-1

i,n+1

i+1,ni-1,n

L

Figure 1: A) Setup of the thermal cooling model considered here. A hot basaltic dike intrudes
cooler country rocks. Only variations in x-direction are considered; properties in the other di-
rections are assumed to be constant. The initial temperature distribution T(x, 0) has a step-like
perturbation, centered around the origin with [−W/2; W/2] B) Finite difference discretization of
the 1D heat equation. The finite difference method approximates the temperature at given grid
points, with spacing ∆x. The time-evolution is also computed at given times with time step ∆t.

Substituting eqs. (5) and (4) into eq. (2) gives
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The third and last step is a rearrangement of the discretized equation, so that all known
quantities (i.e. temperature at time n) are on the right hand side and the unknown quan-
tities on the left-hand side (properties at n + 1). This results in:
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)
(7)

Because the temperature at the current time step (n) is known, we can use eq. (7) to com-
pute the new temperature without solving any additional equations. Such a scheme is
and explicit finite difference method and was made possible by the choice to evaluate the
temporal derivative with forward differences. We know that this numerical scheme will
converge to the exact solution for small ∆x and ∆t because it has been shown to be con-
sistent – that its discretization process can be reversed, through a Taylor series expansion,
to recover the governing partial differential equation – and because it is stable for certain
values of ∆t and ∆x: any spontaneous perturbations in the solution (such as round-off
error) will either be bounded or will decay.
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The last step is to specify the initial and the boundary conditions. If for example the
country rock has a temperature of 300◦C and the dike a total width W = 5 m, with a
magma temperature of 1200◦C, we can write as initial conditions:

T(x < −W/2, x > W/2, t = 0) = 300 (8)
T(−W/2 ≤ x ≤W/2, t = 0) = 1200 (9)

In addition we assume that the temperature far away from the dike center (at |L/2|) re-
mains at a constant temperature. The boundary conditions are thus

T(x = −L/2, t) = 300 (10)
T(x = L/2, t) = 300 (11)

The MATLAB code in Figure 2, heat1Dexplicit.m, shows an example in which the
grid is initialized, and a time loop is performed. In the exercise, you will fill in the ques-
tion marks and obtain a working code that solves eq. (7).

1.1 Exercises

a) Open MATLAB and an editor and type the MATLAB script in an empty file; alter-
natively use the template provided on the web if you need inspiration. Save the file
under the name heat1Dexplicit.m. If starting from the template, fill in the question
marks and then run the file by typing heat1Dexplicit in the MATLAB command
window (make sure you’re in the correct directory). (Alternatively, type F5 to run
from within the editor.)

b) Study the time evolution of the spatial solution using a variable y-axis that adjusts
to the peak temperature, and a fixed axis with range axis([-L/2 L/2 0 Tmagma]).
Comment on the nature of the solution. What parameter determines the relationship
between two spatial solutions at different times?

Does the temperature of the country rock matter for the nature of the solution? What
about if there is a background gradient in temperature such that the country rock
temperature increases from 300◦ at x = −L/2 to 600◦ at x = L/2?

c) Vary the parameters (e.g. use more grid points, a larger or smaller time step). Com-
pare the results for small ∆x and ∆t with those for larger ∆x and ∆t. How are these
solutions different? Why? Notice also that if the time step is increased beyond a
certain value, the numerical method becomes unstable and does not converge – it
grows without bounds and exhibits non-physical features.

Investigate which parameters affect stability, and find out what ratio of these pa-
rameters delimits this scheme’s stability region. This is called the CFL condition,
see von Neumann stability analysis in (cf. chap 5 of Spiegelman, 2004).
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%heat1Dexplicit.m

%

% Solves the 1D heat equation with an explicit finite difference scheme

clear

%Physical parameters

L = 100; % Length of modeled domain [m]

Tmagma = 1200; % Temperature of magma [C]

Trock = 300; % Temperature of country rock [C]

kappa = 1e-6; % Thermal diffusivity of rock [m2/s]

W = 5; % Width of dike [m]

day = 3600*24; % # seconds per day

dt = 1*day; % Timestep [s]

% Numerical parameters

nx = 201; % Number of gridpoints in x-direction

nt = 500; % Number of timesteps to compute

dx = L/(nx-1); % Spacing of grid

x = -L/2:dx:L/2;% Grid

% Setup initial temperature profile

T = ones(size(x))*Trock;

T(find(abs(x)<=W/2)) = Tmagma;

time = 0;

for n=1:nt % Timestep loop

% Compute new temperature

Tnew = zeros(1,nx);

for i=2:nx-1

Tnew(i) = T(i) + ?????;

end

% Set boundary conditions

Tnew(1) = T(1);

Tnew(nx) = T(nx);

% Update temperature and time

T = Tnew;

time = time+dt;

% Plot solution

figure(1), clf

plot(x,Tnew);

xlabel(’x [m]’)

ylabel(’Temperature [^oC]’)

title([’Temperature evolution after ’,num2str(time/day),’ days’])

drawnow

end

Figure 2: MATLAB script heat1Dexplicit.m to solve eq. (2) (once the blanks indicated by the
questions marks are filled in . . . ).

d) Record and plot the temperature evolution versus time at a distance of 5 m from
the dikecountry rock contact. What is the maximum temperature the country rock
experiences at this location and when is it reached? Assume that the country rock
was composed of shales, and that those shales were transformed to hornfels above
a temperature of 600◦C. What is the width of the metamorphic aureole?

e) Think about how one would write a non-dimensionalized version of the tempera-
ture solver.

f) Add a test with an analytical solution for diffusion and plot error vrs. resolution. A
good reference for analytical solutions for heat conduction problems is Carslaw and
Jaeger (1959), or see sec. ??.

The spatial discretization should be second order for a second order scheme.

g) Derive a finite-difference approximation for variable k (and variable ∆x allowing for
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uneven spacing between grid points should you so desire). Test the solution for the
case of k = 10 inside the dike, and k = 3 in the country rock.
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