
Chapter 1

Basic calculus and algebra review

This section provides a few brief notes on math notation and concepts needed for this text.
Not all concepts and formula are presented in a mathematically rigorous way, and you
should refer to something like a Math for Engineers text for a more complete treatment.
For most of this text, it will be assumed that the reader is familiar with the material treated
in this chapter.

1.1 Calculus

1.1.1 Full and partial derivatives

In calculus, we are interested in the change or dependence of some quantity, e.g. u, on small
changes in some variable x. If u has value u0 at x0 and changes to u0 + δu when x changes
to x0 + δx, the incremental change can be written as

δu =
δu
δx

(x0)δx. (1.1)

The δ (or sometimes written as capital ∆) here means that this is a small, but finite quan-
tity. If we let δx get asymptotically smaller around x0, we of course arrive at the partial
derivative, which we denote with ∂ like

lim
δx→0

δu
δx

(x0) =
∂u
∂x

. (1.2)

The limit in eq. (1.2) will work as long as u does not do any funny stuff as a function of
x, like jump around abruptly. When you think of u(x) as a function (some line on a plot)
that depends on x, ∂u/∂x is the slope of this line that can be obtained by measuring the
change δu over some interval δx, and then making the interval progressively smaller.

We call ∂u
∂x (we also write in shorthand ∂xu(x) or u′(x); if the variable is time, t, we also

use u̇(t) for ∂u/∂t) the partial derivative, because u might also depend on other variables,
e.g. y and z. If this is the case, the total derivative du at some {x0, y0, z0} (we will drop (i.e.
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CHAPTER 1. BASIC CALCULUS AND ALGEBRA REVIEW

not write down) the explicit dependence on the variables from now on) is given by the
sum of the changes in all variables on which u depends:

du =
∂u
∂x

dx +
∂u
∂y

dy +
∂u
∂z

dz. (1.3)

Here, dx and similar are placeholders for infinitesimal changes in the variables. This
means that eq. (1.3) works as long as dx is small enough that a linear relationship between
δu and δx still holds. In fact, we can perform a Taylor approximation on any u(x) around
x0 by

u(x) = u(x0) +
∂u
∂x

(x0)(x− x0) +
∂2u
∂x2 (x0)

(x− x0)
2

2!
+

∂3u
∂x3 (x0)

(x− x0)
3

3!
. . . (1.4)

Here, ∂2u
∂x2 is the second derivative, the change of the change of u with x. n! denotes the

factorial, i.e.
n! = 1× 2× 3× . . . n. (1.5)

So, as long as dx = x− x0 is small, the derivative will work (for well behaved u). For ex-
ample, if better approximations are needed, e.g.when the strain tensor is not infinitesimal
anymore, quadratic and higher terms like the one that goes with the second derivative
in the series eq. (1.4) and so on need to be taken into account. Finite difference methods
essentially use Taylor approximations to approximate derivatives, as we will see later.

How to compute derivatives Here are some of the most common derivatives of a few
functions:

function f (x) derivative f ′(x) comment

xp pxp−1 special case: f (x) = c = cx0 → f ′(x) = 0
where c, p are constants

exp(x) = ex ex that’s what makes e so special
ln(x) 1/x
sin(x) cos(x)
cos(x) − sin(x)
tan(x) sec2(x) = 1/ cos2(x)

If you need to take derivatives of combinations of two or more functions, here called
f , g, and h, there are four important rules (with a and b being constants):

Chain rule (inner and outer derivative):

If f (x) = h(g(x)) (1.6)
f ′(x) = h′(g(x))g′(x), (1.7)

i.e. derivative of nested functions are given by the outer times the inner derivative.
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Sum rule:
(a f (x) + bg(x))′ = a f ′(x) + bg′(x) (1.8)

Product rule:
( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) (1.9)

Quotient rule:

If f (x) =
g(x)
h(x)

(1.10)

f ′(x) =
g′(x)h(x)− g(x)h′(x)

h(x)2 (1.11)

If you need higher order derivatives, those are obtained by successively computing
derivatives, e.g. the third derivative of f (x) is

∂3 f (x)
∂x3 =

∂

∂x

(
∂

∂x

(
∂

∂x
f (x)

))
. (1.12)

Say, f (x) = x3, then

∂3x3

∂x3 =
∂

∂x

(
∂

∂x

(
∂

∂x
x3
))

=
∂

∂x

(
∂

∂x
3x2
)
=

∂

∂x
6x = 6. (1.13)

1.1.2 Divergence and curl

Operators are mathematical constructs that do something with the entity that is written to
their right. For example, we had earlier introduced the gradient operator,∇ (the del opera-
tor is represented by the “Nabla” symbol∇), which takes derivatives in all directions and,
in a Cartesian system, is given by∇ =

{
∂

∂x , ∂
∂y , ∂

∂z

}
. Note that the operatore∇ is a vector.

When applied to scalar field (a distribution of values that depends on spatial location),
such as a temperature distribution T(x, y, z) (meaning T is variable with coordinates x, y,
and z, assumed implicitly for all properties from now on), the gradient operation

grad T = ∇T =

 ∂T
∂x
∂T
∂y
∂T
∂z

 (1.14)

generates a vector from the scalar field which points in the direction of the steepest in-
crease in T.

Consider what ∇ can do to a vector field (i.e. vectors that vary in space, x). If

v(x) = {v1(x), v2(x), v3(x)} (1.15)
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is a velocity field, then the divergence (grad dot product) operation on a vector field

div v = ∇ · v (1.16)

is equivalent to finding the dilatancy (volumetric) strain-rate 4̇ from the strain-rate tensor
components because

4̇ =
˙∆V

V
= tr(ε̇) = ∑

i
ε̇ii = ε̇11 + ε̇22 + ε̇33 =

∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
= ∇ · v. (1.17)

Here V is volume, and ˙∆V volume rate-change and, mind you, the strain-rate tensor,
ε̇, is defined as

ε̇ = ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (1.18)

In complete analogy, if the vector field are displacements u(x), then ∇ · u yields the dila-
tancy, i.e. the trace of the strain tensor, ε,

ε = εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (1.19)

Eq. (1.17) illustrates that the divergence has to do with sinks and sources, or volu-
metric effects. The volume integral over the divergence of a velocity field is equal to the
surface integral of the flow normal to the surface. (An electro-magnetics example: For the
magnetic field: div B = 0 because there are no magnetic monopoles, but for the electric
field: div E = q, with electric charges q being the “source”.)

If we take the vector instead of the dot product (see sec. 1.2.2) with the grad operator,
we have the curl or rot operation

curl v = ∇∧ v. (1.20)

The curl is a rotation vector just like ω. Indeed, if the velocity field is that of a the rigid
body rotation, v = ω ∧ r, one can show that ∇∧ v = ∇∧ (ω ∧ r) = 2ω.

Second derivatives enter into the Laplace operator which appears, e.g. in the diffusion
equation:

4 T = ∇2T =
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 (1.21)

Some rules for second derivatives:

curl(grad T) = ∇× (∇T) = 0 (1.22)
div(curl v) = ∇ · ∇× v = 0 (1.23)
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1.1.3 Integrals

Taking an integral

F(x) =
∫

f (x)dx, (1.24)

in a general (indefinite) sense, is the inverse of taking the derivative of a function f ,

F
(

∂ f (x)
∂x

)
= f (x) + c (1.25)

∂

∂x
F
(

∂ f (x)
∂x

)
=

∂

∂x
( f (x) + c) = f ′(x). (1.26)

Any general integration of a derivative is thus only determined up to an integration con-
stant, here c, because the derivative, which is the reverse of the integral, of a constant is
zero.

Graphically, the definite (with bounds) integral over f (x)∫ b

a
f (x)dx = F(b)− F(a) (1.27)

along x, adding up the value of f (x) over little chunks of dx, from the left x = a to the
right x = b corresponds to the area under the curve f (x). This area can be computed by
subtracting the analytical form of the integral at b from that at a, F(b)− F(a). If f (x) = c
(c a constant), then

F(x) = cx + d (1.28)
F(b) = cb + d (1.29)
F(a) = ca + d (1.30)

F(b)− F(a) = c(b− a), (1.31)

the area of the box (b− a)× c.
Here are the integrals (anti derivatives) of a few common functions, all only deter-

mined up to an integration constant C

function f (x) integral F(x) comment

xp xp+1

p+1 + C special case: f (x) = c = cx0 → F(x) = cx + C
ex ex +C
1/x ln(|x|) + C
sin(x) − cos(x) + C
cos(x) sin(x) + C

There are also a few very helpful definite integrals without closed-form anti derivatives,
e.g. ∫ ∞

0
e−x2

dx =

√
π

2
(1.32)
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Wolfram Alpha1, Mathematica, a standard math textbook, table of integrals, or Wikipedia
will be of help with more complicated integrals.

A few conventions and rules for integration:

Notation: Everything after the
∫

sign is usually meant to be integrated over up to the
dx, or the next major mathematical operator if the dx is placed next to the

∫
if the context

allows: ∫
(a f (x) + bg(x) + . . .) dx =

∫
a f (x) + bg(x) . . . dx (1.33)∫

dx f (x) =
∫

f (x)dx (1.34)

Linearity: ∫ b

a
(c f (x) + dg(x)) dx = c

∫ b

a
f (x)dx + d

∫ b

a
g(x) (1.35)

Reversal: ∫ b

a
f (x)dx = −

∫ a

b
f (x)dx (1.36)

Zero length: ∫ a

a
f (x)dx = 0 (1.37)

Additivity: ∫ c

a
f (x)dx =

∫ b

a
f (x)dx +

∫ c

b
f (x)dx (1.38)

Product rules: ∫
f ′(x) f (x)dx =

1
2
( f (x))2 + C (1.39)∫

f ′(x)g(x)dx = f (x)g(x)−
∫

f (x)g′(x)dx (1.40)

Quotient rule: ∫ f ′(x)
f (x)

dx = ln | f (x)|+ C (1.41)

1https://www.wolframalpha.com/
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Gauß theorem The integral over the area Ω of the divergence of a vector field f is equiv-
alent to the boundary integral, ∂Ω, over the local normal (to the boundary), n, dotted with
f : ∫

Ω
dA ∇ · f =

∫
∂Ω

ds n · f . (1.42)

1.2 Linear algebra

TO BE ADDED: matlab conventions for mathematical operations such as dot and cross
products.

1.2.1 The dot product

We will make use of the dot product, which is defined as

c = a · b =
n

∑
i=1

aibi, (1.43)

where a and b are vectors of dimension n (n-dimensional, geometrical objects with a di-
rection and length, like a velocity) and the outcome of this operation is a scalar (a regular
number), c. In eq. (1.43), ∑n

i=1 means “sum all that follows while increasing the index i
from the lower limit, i = 1, in steps of of unity, to the upper limit, i = n”. In the examples
below, we will assume a typical, spatial coordinate system with n = 3 so that

a · b = a1b1 + a2b2 + a3b3, (1.44)

where 1, 2, 3 refer to the vector components along x, y, and z axis, respectively (ADD
FIGURE HERE). In the “Einstein summation” convention, we would rewrite ∑n

i=1 aibi
simply as aibi, where summation over repeated indices is implied, i.e. the ∑ is not written.

When we write out the vector components, we put them on top of each other

a =

 a1
a2
a3

 =

 ax
ay
az

 (1.45)

or in a list, maybe with curly brackets, like so: a = {a1, a2, a3}. Here, we use a to denote a
vector, like what is commonly done when writing by hand. You will also see bold font a
to denote vectors as opposed to scalar a, or another common form is~a.

We can write the amplitude (or: length, L2 norm) of a vector as

|a| =
√

n

∑
i

a2
i =

√
a2

1 + a2
2 + a2

3 =
√

a2
x + a2

y + a2
z. (1.46)
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For instance, all of the basis vectors defining the Cartesian coordinate system, ex, ey, and ez
have unity length by definition, |ei| = 1. Those ei vectors point along the respective axes
of the Cartesian coordinate system so that we can assemble a vector from its components
like

a = {ax, ay, az} = axex + ayey + azez. (1.47)

For a spherical system, the er, eθ, and eφ unity vectors can still be used to express vectors
but the actual Cartesian components of ei depend on the coordinates at which the vectors
are evaluated.

We can restate eq. (1.43) and give another definition of the dot product,

a · b = |a||b| cos θ (1.48)

where θ is the angle between vectors a and b. The meaning of this is that if you want to
know what component of vector a is parallel to b, you just take the dot product. Say, you
have a velocity v and want the normal velocity vn along a vector n with |n| = 1 that is
oriented at a 90◦ angle (perpendicular) to some plate boundary, you can use vn = v · n.

Also, eq. (1.47) only works because the basis vectors ei of any coordinate system are,
by definition, orthogonal (at right angle, perpendicular, at θ = 90◦) to each other and
ei · ej = 0 for all i 6= j. Likewise, ei · ei = 1 for all i since a · a = |a|2, and basis vectors have
unity length by definition. Using the Kronecker δ

δij = 1 for i = j, and δij = 0 for i 6= j, (1.49)

we can write the conditions for the basis vectors as

ei · ej = δij. (1.50)

1.2.2 Vector or cross product

This operation is written as a× b or a ∧ b and its result is another vector

c = a ∧ b (1.51)

that is at a right angle to both a and b (hence the right-hand-rule, with thumb, index, and
middle finger along a, b, and c, respectively). vector c’s length is given by

|c| = |a ∧ b| = |a||b| sin θ, (1.52)

that is, c is largest when a and b are orthogonal, and zero if they are parallel. Compare
this relationship to eq. (1.48).

In 3-D,

c = a ∧ b =

 aybz − azby
azbx − axbz
axby − aybx

 (1.53)
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(note that there is no i component of a or b in the i component of c, this is the aforemen-
tioned orthogonality property).

An example for a cross product is the velocity v at a point with location r in a body
spinning with the rotation vector ω, v = ω ∧ r. The rotation vector ω is different from,
e.g., r in that ω has a spin (a sense of rotation) to it (the other right-hand-rule, where your
thumb points along the vector and your fingers indicate the counter-clockwise motion).
ADD FIGURE

1.2.3 Matrices and tensors

A n×m matrix is a rectangular table of elements (or entries) with n rows and m columns
which are filled with numbers. For example, if A is 3× 3,

A =

 axx axy axz
ayx ayy ayz
azx azy azz

 or

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 . (1.54)

You will see matrices also printed like so A, with us here using the handwritten/blackboard
version, double underlining like so A. The elements are referred to as aij where i is the
row and j the column. Matrices can be added and or multiplied.

Multiplication of matrix with a scalar

f A = f aij = f ×

 axx axy axz
ayx ayy ayz
azx azy azz

 =

 f axx f axy f axz
f ayx f ayy f ayz
f azx f azy f azz

 (1.55)

Multiplication of a matrix with a vector cx
cy
cz

 =

 axx axy axz
ayx ayy ayz
azx azy azz

 .

 bx
by
bz

 =

 axxbx + axyby + axzbz
ayxbx + ayyby + ayzbz
azxbx + azyby + azzbz

 (1.56)

or
ci = ∑

j
aijbj. (1.57)

Multiplication of two matrices works like this:

C = A B (1.58)

cij = ∑
k

aikbkj, (1.59)

where k goes from 1 to the number of columns in A, which has to be equal to the number
of rows in B. Note that, in general, A B 6= B A!

USC GEOL557: Modeling Earth Systems 9
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Special types of matrices and matrix operations

Quadratic matrices Have n× n rows and columns. All simple physical tensors, such as
stress or strain, can be written as quadratic matrices in 3× 3.

Identity matrix 1 = I, iij = δij, i.e. this matrix is unity along the diagonal, and zero for
all other elements.

Trace The trace of a n× n matrix A is the sum of its diagonal elements

tr(A) =
n

∑
i=1

aii. (1.60)

Determinant The determinant for a 2× 2 matrix is computed as

det(A) = a11a22 − a12a21 (1.61)

and is a measure of area change. For 3× 3,

det(A) = a11 (a22a33 − a23a32) (1.62)
− a12 (a21a33 − a23a31)

+ a13 (a21a32 − a22a31)

(note how the 3× 3 determinant is assembled from a pattern of 2× 2 determinants; for
n > 3, a correspondingly more complicated formula applies.

ADD FIGURE

Vector cross product based on the determinant The cross product c = a ∧ b (eq. 1.53)
can also be written as the determinant of the matrix ex ey ez

ax ay az
bx by bz

 (1.63)

Invariants The trace
IA = tr(A) = ∑

i
aii = aii (1.64)

(Einstein summation convention implies summation over all repeated indices), and de-
terminant

I I IA = det(A) (1.65)

of a matrix A are two of the three invariants, i.e. properties of a tensor (expressed as a
matrix) that are independent of a coordinate system. The third is the “second invariant”,

I IA = a11a22 + a11a33 + a22a33 − a2
12 − a2

13 − a2
23. (1.66)

These expressions arise when finding the eigenvectors and values of a tensor, eq. (1.75).
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Transpose of a matrix (AT)ij = aT
ij = aji, i.e. the transpose has all elements flipped by

row and column.

Inverse of A, A−1 : The inverse of a matrix is defined via

A−1A = A A−1 = I. (1.67)

If the inverse exists, then (A−1)−1 = A, (AT)−1 = (A−1)T, and (A B)−1 = B−1A−1. The
inverse only exists if det(A) 6= 0.

For the special case of a 2× 2 matrix

A =

(
a b
c d

)
, (1.68)

the inverse is given by

A−1 =
1

detA

(
d −b
−c a

)
=

1
ad− bc

(
d −b
−c a

)
. (1.69)

Orthogonal or rotation matrices: For those matrices,

A AT = AT A = 1 (1.70)

holds.
If a rotation matrix, R, converts one coordinate system for x this vector into x′, then

y′ = R y (1.71)

for any vector, and
σ′ = R σ RT (1.72)

for any matrix, such as the stress tensor.

Eigenvalues and eigen vectors: Any n× n symmetric matrix A has n eigen vectors vi
that correspond to real eigenvalues λi such that

Avi = λivi (1.73)

An example is the stress matrix which can be written in the principal axes system, where
the eigen vectors of the Cartesian representation of the stress matrix are the principal axes.

Eigenvalues can be found using

det(A− λI) = 0 (1.74)
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and eigen vectors subsequently by using the first property, which leads to

det(A− λI) = −λ3 + IAλ2 − I IAλ + I I IA = 0. (1.75)

If a symmetric matrix A is transformed into the principal axes system, A′, there are no
off-diagonal elements

A =

 axx axy axz
ayx ayy ayz
azx azy azz

→ A′ =

 a1 0 0
0 a2 0
0 0 a3

 (1.76)

where the a1, a2, and a3 correspond to the three eigenvalues λi. (The coordinate system
reference of A′ is then contained in the orientation of the eigen vectors vi.) For a matrix in
the principal axis system, the invariants are very easily computed:

tr(A′) = IA′ = IA = a1 + a2 + a3 (1.77)

I IA′ = I IA = a1a2 + a1a3 + a2a3 (1.78)

det(A′) = I I IA′ = I I IA = a1a2a3. (1.79)

See also sec. ?? for definitions of invariatns using deviators, such as for the deviatoric
stress tensor.

Matrix decomposition Any quadratic tensor A can be decomposed into a symmetric
part As (for which as

ij = as
ji) and an anti-symmetric part Aa (for which aa

ij = −aa
ji) like

A = As + Aa (Cartesian decomposition). In the case of the deformation matrix F, we call
the symmetric part strain E (the infinitesimal strain tensor, ε), and the anti-symmetric part
corresponds to a rotation R. The polar decomposition is also of interest; we can write F =
RU = VR where R is a rotation matrix and U and V are the right- and left-stretch matrices,

respectively, and V =
(

FFT
)1/2

. The left-stretch matrix describes the deformation in the
rotated coordinate system after the rotation R has been applied to the body.

1.2.4 Tensors

The stress σ and strain ε are examples of second order (rank r = 2) tensors which, for
n = 3, 3-D operations, have 3r components and can be written as n× n matrices. You will
see tensors also printed as E, we use the handwritten/blackboard version again, double
underlining like ε, making no distinction between tensors and matrices.

Tensors in a Cartesian space are defined by their properties under coordinate transfor-
mation. If a quantity v remains intact under rotation to a new coordinate system v′ such
that

v′i = Lijvj =
3

∑
j=1

Lijvj (1.80)

USC GEOL557: Modeling Earth Systems 12
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holds, then v, a vector, is a first order tensor. Lij may be, for example, a rotation ma-
trix. Likewise, a second order tensor T is defined by remaining intact after rotation into
another coordinate system where it is expressed as T′ such that

T′ij = LikTkl Ljl = ∑
k

Lik ∑
l

Tkl Ljl = L T LT (1.81)

USC GEOL557: Modeling Earth Systems 13
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