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Abstract: Probabilistic earthquake location with non-linear, global-search methods 
allows the use of 3D models and produces comprehensive uncertainty and 
resolution information represented by a probability density function (PDF) 
over the unknown hypocentral parameters. We describe a probabilistic 
earthquake location methodology and introduce an efficient Metropolis-Gibbs, 
non-linear, global sampling algorithm to obtain such locations. Using synthetic 
travel times generated in a 3D model we examine the locations and 
uncertainties given by an exhaustive grid-search and the Metropolis-Gibbs 
sampler using 3D and layered velocity models, and by a iterative, linear 
method in the layered model.   We also investigate the relation of average 
station residuals to know static delays in the travel times, and the quality of the 
recovery of known focal mechanisms.  With the 3D model and exact data, the 
location PDFs obtained with the Metropolis-Gibbs method are nearly identical 
to those of the slower but exhaustive grid-search.  The location PDFs can be 
large and irregular outside of a station network even for the case of exact data.  
With location in the 3D model and static shifts added to the data there are 
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systematic biases in the event locations.  Locations using the layered model 
show that both linear and global methods give systematic biases in the event 
locations and that the error volumes do not include the “true” location – 
absolute event locations and errors are not recovered.  The iterative, linear 
location method can fail for locations near sharp contrasts in velocity and 
outside of a network.  Metropolis-Gibbs is a practical method to obtain 
complete, probabilistic locations for large numbers of events and for location 
in 3D models. It is only about 10 times slower than linearised methods but is 
stable for cases where linearised methods fail.  The exhaustive grid-search 
method is about 1000 times slower than linearised methods but is useful for 
location of smaller number of events and to obtain accurate images of location 
PDFs that may be highly-irregular. 

1. INTRODUCTION 

The accurate location of earthquakes and a complete understanding of the 
location uncertainties are critical to seismotectonic and seismic hazard 
studies, to “real-time” seismic notification, and to nuclear test ban treaty 
verification.  With the increasing availability of three-dimensional structural 
models from geologic and geophysical interpretations and seismic travel-
time inversion, it is important to have location methods valid for 3D velocity 
models.  Probabilistic earthquake location with non-linear, global-search 
methods allows the use of 3D models and produces comprehensive 
uncertainty and resolution information. 

A complete, probabilistic earthquake location is represented by a 
probability density function over the unknown parameters, i.e. three spatial 
co-ordinates of the hypocentre and an origin time.  This hyper-volume 
representation of a location may include multiple “optimal” solutions and 
may have a highly irregular form. Many studies of seismicity and 
seismotectonics make explicit use of a probabilistic representation of 
earthquake locations (i.e. Wittlinger, Herquel and Nakache, 1993; Vilardo et 
al., 1996; Calvert, 1997; Gresta et al., 1998; Jones and Stewart, 1997). 

Commonly used iterative-linearised location programs produce a single, 
point solution, the preferred hypocentre, and uncertainty estimates based on 
gaussian, or normal, statistics evaluated at this point.  Such a solution will be 
a good representation of the complete, probabilistic location only for the 
case that the density function has a single optimum and a near-ellipsoidal 
form.  Non-linear, global-search methods can be used to identify irregular 
volumetric, probability density functions required for complete, probabilistic 
locations.  In addition, unlike linear approaches, these methods can be easily 
applied with 3D models because they do not require partial derivative 
information, which is difficult or impossible to obtain in complicated 
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models.  However, non-linear, global-search methods can be very time 
consuming, particularly exhaustive grid-search or pure Monte Carlo 
methods. For “near real-time” seismic notification and for CTBT 
monitoring, it is critical to locate events rapidly, while for seismotectonic 
and hazard studies, there is often a need to re-locate many hundreds or 
thousands of earthquakes.  It is thus of significant practical importance to 
investigate the performance and completeness of efficient, directed global 
search methods for probabilistic earthquake location in 3D models. 

In this chapter we begin with a discussion of a probabilistic earthquake 
location and existing location methods.  We then discuss the non-linear and 
linear location methods that we will use, and we introduce an efficient, non-
linear, Metropolis-Gibbs, simulated annealing global search method.  Using 
synthetic travel times generated in a 3D model and the ideal case of locating 
using the same 3D model, we compare the performance of this method for 
determining complete, probabilistic locations against a less efficient but 
exhaustive grid-search.  We next examine a more useful and realistic case of 
earthquake location in a layered model using the 3D synthetic travel times.  
We compare the layered model locations and uncertainties obtained with 
linear and non-linear methods. For the various location methods in 3D and 
layered models, we investigate the spatial variation of uncertainties, the 
relation of average station residuals to know static delays in the travel times, 
and the quality of the recovery of known focal mechanisms. 

2. PROBABILISTIC EARTHQUAKE LOCATION 

2.1 Posterior density function (PDF) 

The non-linear earthquake location algorithms described in this paper 
follow the probabilistic formulation of inversion presented in Tarantola and 
Valette (1982) and Tarantola (1987) and the equivalent methodology for 
earthquake location (i.e. Tarantola and Valette, 1982; Moser, van Eck and 
Nolet, 1992; Wittlinger, Herquel and Nakache, 1993).  This formulation 
relies on the use of normalised and unnormalised probability density 
functions to express our knowledge about the values of parameters.  Thus, 
given the normalised density function f(x) for value of a parameter x, the 
probability that x has a value between X and X+∆X is  
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In geophysical inversion we wish to constrain the values of a vector of 
unknown parameters p, given a vector of observed data d and a theoretical 
relationship θ(d,p) relating d and p.  When the density functions giving the 
prior information on the model parameters ρp(p) and on the observations 
ρd(d) are independent, and the theoretical relationship can be expressed as a 
conditional density function θ(d|p)µp(p), a complete, probabilistic solution 
can be expressed as a posterior density function (PDF) σp(p)  (Tarantola and 
Valette, 1982; Tarantola,1987) 
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where µp(p) and µd(d) are null information density functions specifying the 
state of total ignorance. 

For the case of earthquake location, the unknown parameters are the 
hypocentral coordinates x = (x, y, z) and the origin time T, the observed data 
is a set of arrival times t, and the theoretical relation gives predicted travel 
times h. Tarantola and Valette (1982) show that, if the theoretical 
relationship and the observed arrival times are assumed to have gaussian 
uncertainties with covariance matrices CT and Ct, respectively, and if the 
prior information on T is taken as uniform, then it is possible to evaluate 
analytically the integral over d in (2) and an integral over origin time T to 
obtain the marginal PDF for the spatial location, σ(x). This marginal PDF 
reduces to (Tarantola and Valette, 1982; Moser, van Eck and Nolet, 1992) 
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In this expression K is a normalisation factor, ρ(x) is a density function of 
prior information on the model parameters, and g(x) is an L2 misfit function. 

0t̂  is the vector of observed arrival times t minus their weighted mean, ĥ is 
the vector of theoretical travel times h minus their weighted mean, where the 
weights wi are given by 
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Furthermore, Moser, van Eck and Nolet (1992) show that the maximum 
likelihood origin time corresponding to a hypocentre at (x, y, z) is given by 
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The posterior density function (PDF) σ(x) given by equation (3) 
represents a complete, probabilistic solution to the location problem, 
including information on uncertainty and resolution.  This solution does not 
require a linearised theory, and the resulting PDF may be irregular and 
multi-modal because the forward calculation involves a non-linear 
relationship between hypocentre location and travel-times. 

This solution includes location uncertainties due to the spatial relation 
between the network and the event, measurement uncertainty in the observed 
arrival times, and errors in the calculation of theoretical travel times.  
However, realistic estimates of uncertainties in the observed and theoretical 
times must be available and specified in a gaussian form through Ct and CT, 
respectively.  Absolute location errors due to incorrect velocity structure 
could be included through CT if the resulting travel time errors can be 
estimated and described with a gaussian structure.  Estimating these travel 
time errors is difficult and often not attempted.  When the model used for 
location is a poor approximation to the “true” structure (as is often the case 
with layered model approximations), the absolute location uncertainties can 
be very large. 

2.2 Existing inversion methods and complete, 
probabilistic locations 

In practice, a complete, probabilistic earthquake location is formed by 
some estimate, throughout the region of significant prior probability ρ(x), of 
the posterior density function (PDF) σ(x) given by, equation (3).  Ideally, 
this solution will include multiple solutions and significant irregularities in 
the form of the PDF. 

2.2.1 Linearized inversion 

Direct and iterative, linear inversion methods (see Aki and Richards, 
1980 for a review) can be very rapid for optimisation, and have been used 
frequently in recent years for this reason.  These methods can be applied to 
non-linear problems when the theoretical relationship between the model and 
the data can be locally approximated by a linear expression and when there 
is a single, well-defined misfit “basin” containing the optimal solution (i.e. 
the problem is not ill-conditioned).  If these conditions do not hold, then the 
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results of the inversion, including information on uncertainty and resolution, 
may be incomplete or unstable, and they will not form a good estimate of the 
complete, probabilistic solution.  In earthquake location, the combined 
effects of the depth-origin time trade-off, the network-event geometry, 
reading errors, and gradients or interfaces in the velocity model can result in 
a highly non-linear and ill-conditioned inverse problem that does not satisfy 
the above requirements.  In this case, the inversion may fail, or may produce 
a solution that is not a good representation of the complete PDF.  However, 
we will see below that for location of events within a network using a 
layered velocity model, an iterative linear method, such as HYPOELLIPSE 
(Lahr, 1989), can produce a hypocentre and associated gaussian uncertainties 
that are nearly identical to PDF obtained with global search methods. 

2.2.2 Exhaustive global search 

Both an exhaustive grid-search and a “crude” Monte-Carlo search 
(Hammersley and Handscomb, 1967; Keilis-Book and Yanovskaya, 1967; 
Press, 1968; Wiggins, 1969; Sen and Stoffa, 1995) use global and well-
distributed sampling of the model space.  Thus the results obtained with 
these search methods can be used to estimate the PDF σ(x) and thus to 
obtain complete, probabilistic locations.  However, both methods are 
inefficient for problems with many unknown parameters, large parameter 
spaces, or time consuming forward calculations, because the number of 
models that must be tested can be very large.  These methods have been 
successfully applied to earthquake hypocenter determination (i.e. Sambridge 
and Kennett, 1986; Kennett, 1992; Shearer, 1997; Dreger, et al. 1998), and 
to probabilistic location (i.e. Moser, van Eck and Nolet, 1992; Wittlinger, 
Herquel and Nakache, 1993; Calvert et al., 1997), but their inefficiency may 
impose unacceptable limitations on the number of events or the size of the 
search volume. 

Below we will use a nested grid-search as one of our non-linear, global 
location methods.  This method gives excellent recovery of the location PDF 
σ(x), but requires considerable calculation time and computing resources. 

2.2.3 Directed, stochastic search 

Directed, stochastic search techniques (Sen and Stoffa, 1995) include 
evolutionary, adaptive global search methods such as the genetic algorithm 
(Goldberg, 1989; Holland, 1992; Stoffa and Sen, 1991; Sambridge and 
Drijkoningen, 1992) and simulated annealing (Kirkpatrick et al., 1983; 
Rothman, 1985; Tarantola, 1987).   Most of these methods were developed 
for optimisation, the identification of some very good solutions, which is 
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equivalent to identifying global or local maxima of a solution PDF σ(x). But 
in general these methods do not use a well-distributed sampling of the model 
space that can produce complete, probabilistic solutions to inverse problems.  
For example, the genetic algorithm obtains samples that cluster in small 
regions near locally optimum solutions and consequently cannot be used to 
obtain the global structure of a PDF (e.g. Goldberg and Richardson, 1987; 
Stoffa and Sen, 1991; Nolte and Frazer, 1994; Lomax and Snieder, 1995).  
Similarly, with simulated annealing, the interaction of the variable 
“temperature” parameter and step size with the local structure of the target 
function can lead to a slow gain of information about the global structure of 
this function (Scales, Smith and Fischer, 1992).  In practice, this leads to 
convergence and stalling near a locally optimum solution and a poorly 
distributed sample distribution. 

Though not directly applicable to complete, probabilistic location, the 
genetic algorithm and simulated annealing are excellent for non-linear, 
earthquake hypocentre determination because of their efficiency (i.e. 
Sambridge and Gallagher, 1993; Billings, 1994). 

2.2.4 Importance sampling – the Metropolis-Gibbs algorithm 

The efficiency of a Monte Carlo algorithm used to estimate properties of 
a target function can be increased by choosing a sampling density which 
follows the function as closely as possible (Hammersley and Handscomb, 
1967; Lepage, 1978; Press et al., 1992).  Techniques that follow this rule are 
referred to as importance sampling methods, these were originally developed 
in physics for fast and accurate numerical integration of multi-dimensional 
functions.  

The target function is unknown, however, and consequently the optimum 
importance sampling distribution cannot be determined a priori.  But the 
efficiency can still be improved by adjusting (or adapting or evolving) the 
sampling by incorporating information gained from previous samples so that 
the sampling density tends towards the target function (Lepage, 1978; Press 
et al., 1992; Mosegaard and Tarantola, 1995; Sen and Stoffa, 1995).  For 
example, importance sampling to determine the earthquake location PDF, 
equation (3), can be obtained by beginning with a sampling that follows the 
prior density function ρ(x) and then adjusting the sampling as the search 
progresses so that the sampling density approaches the location PDF σ(x). 

An importance sampling technique that is relevant to inversion for 
complete, probabilistic solutions is the Metropolis-Gibbs version of 
simulated annealing.  The Metropolis-Gibbs sampling procedure is based on 
an algorithm (Metropolis et al., 1953) for the simulation of the distribution 
of atoms in a gas at a given temperature.  Other importance sampling 
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methods are discussed in Hammersley and Handscomb (1967), Lepage 
(1978) and in Press et al. (1992) in the context of numerical integration. 

The Metropolis-Gibbs sampler (Sen and Stoffa, 1995; Mosegaard and 
Tarantola, 1995) is similar to simulated annealing with a constant 
temperature parameter.  In the context of our earthquake location problem, 
the Metropolis-Gibbs algorithm performs a random walk in the solution 
space  (x, y, z) with nearby trial moves which are accepted or rejected 
according to the PDF σ(x) (after evaluation of the forward problem).  
Mosegaard and Tarantola (1995) show that this algorithm generates a set of 
“accepted” samples that are distributed according to the PDF σ(x); it is 
therefore an importance sampling method.  They also show that, in the limit 
of a very large number of trials, it will not become permanently “trapped” 
near a locally optimum solution and consequently can produce global 
sampling.  

Because it is a random walk technique, the Metropolis-Gibbs sampler 
may perform well even if the volume of the significant regions of σ(x) is 
small relative to the volume of the prior search space ρ(x), this is usually the 
case in earthquake location.  However, because it must use small steps in the 
model space between consecutive samples, and in practice the number of 
samples is limited, it may be subject to stalling near strong local optimal 
solutions if σ(x) is a complicated function.  In addition, since samples are 
accepted or rejected after evaluation of the forward problem, the number of 
evaluations of the forward theory may be much larger that the set of 
“accepted” samples obtained. 

Below we will introduce a new Metropolis-Gibbs algorithm for 
probabilistic earthquake location. We will see that it is much more 
computationally efficient than a grid-search while producing nearly identical 
definition of the complete location PDF σ(x) when this function is not highly 
irregular. 

3. NON-LINEAR, PROBABILISTIC LOCATIONS IN 
3D: NONLINLOC 

For the non-linear, global search locations in this chapter, we use a set of 
location programs called NonLinLoc.  This software can be obtained over 
the internet at the ORFEUS Seismological Software Library 
(http://orfeus.knmi.nl) under the “software links” page.  The location 
program in NonLinLoc can be used with 3D velocity models; it produces an 
estimate of the posterior density function (PDF) for the spatial hypocentre 
location, σ(x), using either a systematic grid-search or a stochastic, 
Metropolis-Gibbs sampling approach. The location algorithm follows the 
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probabilistic inversion approach of Tarantola and Valette (1982), described 
above, and the earthquake location methods of Tarantola and Valette (1982), 
Moser, van Eck and Nolet (1992) and Wittlinger, Herquel and Nakache 
(1993).   

A grid of PDF values obtained by grid-search, samples drawn from this 
grid, or samples of the PDF obtained by the Metropolis-Gibbs sampler, 
represent the complete, probabilistic spatial solution to the earthquake 
location problem. This solution indicates the uncertainty in the spatial 
location due to gaussian picking and travel-time calculation errors, the 
network-event geometry, and the incompatibility of the picks. The location 
uncertainty will in general be non-ellipsoidal (non-gaussian) because the 
forward calculation involves a non-linear relationship between hypocentre 
location and travel-times.  

To make the location program efficient for complicated, 3D models, the 
travel-times between each station and all nodes of an x,y,z spatial grid are 
calculated once using a 3D version (Le Meur, 1994; Le Meur, Virieux and 
Podvin, 1997) of the Eikonal finite-difference scheme of Podvin and 
Lecomte, (1991) and then stored on disk as travel-time grid files. This 
storage technique has been used by Wittlinger, Herquel and Nakache (1993), 
and in related approaches by Nelson and Vidale (1990) and Shearer (1997).  
The forward calculation during location reduces to retrieving the travel-times 
from the grid files and forming the misfit function g(x) in, equation (3). 

3.1 Travel-time and take-off angles calculations 

The travel times between a station and all nodes of a 3D grid are 
calculated using the Eikonal finite-difference scheme of Podvin and 
Lecomte, (1991).  This algorithm and related methods (i.e. Vidale, 1988) use 
a finite-differences approximation of Huygen’s principle to find the first 
arriving, infinite frequency travel times at all nodes of the grid.  The 
algorithm of Podvin and Lecomte (1991) gives stable recovery of diffracted 
waves near surfaces of strong velocity contrast and thus it accurately 
produces travel times for diffracted and head waves.  A limitation of the 
current 3D version of the method is a restriction to cubic grids.  This may 
lead to excessively large travel-time grids if a relatively fine cell spacing is 
required along one dimension since the same spacing must be used for the 
other dimensions.  This can be a problem for regional studies where a fine 
node spacing in depth is necessary, but the horizontal extent of the study 
volume can be much greater than the depth extent.  Thus a modification of 
the travel times calculation to allow use of an irregular grid would be very 
useful. 
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After the travel times are calculated throughout the grid, the NonLinLoc 
program uses the gradients of travel-time at the node to estimate the take-off 
angles at each node.  Two gradients are estimated for each axis direction x, y, 
and z - one Glow between the node and its preceding neighbour along the 
axis, and a second Ghigh between the following neighbour and the node.  The 
total gradient Gaxis along an axis is the mean of these two gradients; the total 
gradient along the three axes determines the vector gradient of travel-time. 
The direction opposite to the vector gradient of travel-time gives the ray 
take-off angles for dip and azimuth.  An estimate of the quality of the angle 
determination is given by a comparison of the magnitudes and signs of Glow 
and Ghigh.  If these two values are not similar, then there may be two rays 
which arrive nearly simultaneously at the station, and the take-off angle 
determination at the node may be unstable. 

3.2 Grid-Search Algorithm 

The grid-search algorithm in NonLinLoc performs successively finer, 
nested grid-searches within a spatial, x,y,z volume to obtain an estimate of 
the location PDF, equation (3).  The grid-search performs a systematic, 
exhaustive coverage of search region and thus can identify multiple optimal 
solutions and highly irregular confidence volumes.  However, the grid-
search is very time consuming relative to the Metropolis-Gibbs sampler and 
linear location techniques.  It also requires a careful selection of the grid 
sizes and node spacing, otherwise, relative to the size of the most significant 
region of the PDF, the fine search grids may be too large (giving low 
resolution) or too small (leading to truncation of the PDF). 

3.2.1 Procedure 

An initial grid with a fixed size, number of nodes and location defines the 
full search region. Subsequent, nested grids are centred automatically on the 
optimal hypocentral node of the containing grid in one or more of the x,y,z 
directions. The nested grids are typically smaller in size, but may have more 
nodes than the containing grid.  

For every node of each location grid, the grid-search algorithm must 
obtain travel-times for every observation from the corresponding travel-time 
grid files.  For 3D structures these files may be very large, and with many 
observations there will be many such files. To read these files efficiently 
without storing them entirely in memory, the search is performed 
systematically throughout each location grid with the x index varying last. 
Thus, it only necessary to read into memory a 2D, y-z plane or "sheet" 
corresponding to the current x index for each observation. 
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With these travel-times equation (3) is evaluated to obtain a non-
normalised location PDF value, which is stored at the appropriate node in the 
search grid in memory.  When the grid-search for the final, fine grid is 
complete, the gridded PDF values are normalised by assuming that the 
integral of PDF over the search volume is unity.  A set of samples of the 
PDF can be drawn from this normalised grid.  The normalised fine grid, the 
PDF samples and additional location results (see below) are saved to disk 
files. 

3.3 Metropolis-Gibbs Sampling Algorithm 

The Metropolis-Gibbs sampler introduced here performs a directed 
random walk within a spatial, x,y,z volume to obtain a set of samples that 
follow the location PDF. This algorithm is similar to those described in Sen 
and Stoffa (1995) and Mosegaard and Tarantola (1995), with the addition of 
three distinct sampling stages to obtain adaptively an optimal step size for 
the walk.  

Like the grid-search, the Metropolis-Gibbs sampler does not require 
partial derivatives and thus can be used with complicated, 3D velocity 
structures.  This method performs well with moderately irregular (non-
ellipsoidal) PDF's with a single optimum solution, but because it is a 
stochastic search it may give inconsistent recovery of very irregular PDF's 
with multiple optimal solutions.  The Metropolis-Gibbs sampler is only 
moderately slower (about 10 times slower) than linearised, iterative location 
techniques, and is much faster (about 100 times faster) than the grid-search. 
Because the Metropolis-Gibbs method samples the search space 
stochastically, it run fastest with the full 3D travel-time grid files in memory.  
If memory limitations, the number of observations, or the size of the 3D 
travel-time grids prevents this, then the travel-time grids must be accessed 
on disk, and the search may run very slowly. 

3.3.1 Procedure 

The Metropolis-Gibbs sampler used in the program NonLinLoc for 
earthquake location consists of a directed walk in the solution space (x, y, z) 
which tends towards regions of high likelihood for the location PDF, σ(x) 
given by equation (3). At each step, the current walk location xcurr is 
perturbed by a vector dx of arbitrary direction and given length l to give a 
new location xnew.  The likelihood σ(xnew) is calculated for the new location 
and compared to the likelihood σ(xcurr) at the current location. If σ(xnew) ≥ 
σ(xcurr), then the new location is accepted. If σ(xnew) < σ(xcurr), then the new 
location is accepted with probability P = σ(xnew) / σ(xcurr). When a new 
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location is accepted it becomes the current location and may be saved as a 
sample of the location PDF. 

In earthquake location, the dimensions of the significant regions of the 
location PDF can vary enormously and are not known a priori.  It is 
important to choose an initial step size large enough to allow global 
exploration of the search volume, and to obtain a final step size that gives 
good coverage of the location PDF while resolving details and irregular 
structure of the PDF.  The NonLinLoc Metropolis-Gibbs sampler uses three 
distinct sampling stages to determine adaptively an optimal step size l for the 
walk: 
1. A learning stage where the step size is fixed and relatively large. The 

walk can explore globally the search volume and migrate towards regions 
of high likelihood.  “Accepted” samples are not saved.  

2. An equilibration stage where the step size l is adjusted in proportion to 
the standard deviations (sx, sy, sz) of the spatial distribution of all 
previously “accepted” samples obtained after the middle of the learning 
stage.  After each new accepted sample, the standard deviations are 
updated and the step size l is set equal to fs (sxsysz/Ns)1/3, where Ns is the 
number of previously “accepted” samples, and  fs=8 is a step size scaling 
factor.  This formula sets l in proportion to the cell size required to tile 
with Ns cells the rectangular volume with sides sx, sy and sz.  The walk 
can continue to migrate towards or may begin to explore regions of high 
likelihood.  “Accepted” samples are not saved.  

3. A saving stage where the step size l is fixed at its final value from the 
equilibration stage. The walk can continue to explore regions of high 
likelihood. “Accepted” samples are assumed to follow the location PDF 
and can be saved, but there may be a waiting time of several samples 
between saves to insure the independence of saved samples.  
 
The NonLinLoc Metropolis-Gibbs sampling algorithm is initialised as 

follows:  
1. The walk location is set at the x,y position of the station with the earliest 

arrival time and non-zero weight, at the mean depth of the search region.  
2. If the initial step l size is not specified, it is set to the cell size required to 

tile with Ns cells the plane formed by the two longest sides of the initial 
search region. Ns is the total number of samples to be accepted during the 
saving stage, including samples that are skipped between saves.  

 
The rejection by the algorithm of new walk locations for a large number 

of consecutive tries (the order of 1000 tries) may indicate that the last 
“accepted” sample falls on a sharp likelihood maxima that is narrower than 
the current step size. To allow the search to continue in this case, the new 
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location is accepted unconditionally and the step size is reduced by a factor 
of two. 

In the case that the size of the location PDF is very small relative to the 
search region, the algorithm may fail to locate the region of high likelihood 
or obtain an optimal step size.  In this case the size of the search region must 
be reduced or the size of the initial step size adjusted.  A more robust 
solution to this problem may be to add a temperature parameter to the 
likelihood function, as with simulated annealing.  This variable parameter 
could be set to increase the effective size of the PDF during the learning and 
equilibration stages so that the region of high likelihood is located 
efficiently, and then set to 1 during the saving stage so that the true PDF is 
imaged. 

3.4 Additional location results 

In addition to an estimate of the location PDF, the NonLinLoc program 
determines an optimal hypocenter, traditional gaussian statistics and other 
location parameters. 

3.4.1 Maximum likelihood hypocentre 

The maximum likelihood (or minimum misfit) point of the complete, 
non-linear location PDF is selected as an "optimal" hypocentre.  The 
significance and uncertainty of this maximum likelihood hypocentre cannot 
be assessed independently of the complete solution PDF.  The maximum 
likelihood hypocentre location is used for the determination of ray take-off 
angles, for the determination of phase residuals, and for magnitude 
calculation.  The ray take-off angles can be used for a first-motion fault 
plane determination. 

 

3.4.2 Gaussian estimators 

"Traditional" gaussian or normal estimators, such as the expectation E(x) 
and covariance matrix C may be obtained from the gridded values of the 
normalised location PDF or from samples of this function (e.g. Tarantola and 
Valette, 1982; Sen and Stoffa, 1995).  For the grid case with nodes at xi,j,k,  

�
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,,,, )()( xxx σ , (6) 
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where ∆V is the volume of a grid cell.  For N samples drawn from the PDF 
with locations xn,  

�
=

n
nN

   E xx 1
)( , (7) 

where the PDF values σ(xn) are not required since the samples are assumed 
distributed according to the PDF.  For both cases, the covariance matrix is 
then given by  

]))(())([( TEE  E xxxxC −⋅−= . (8) 

The 68% confidence ellipsoid can be obtained from singular value 
decomposition (SVD) of the covariance matrix C, following Press et al. 
(1992; their sec. 15.6 and eqs. 2.6.1 and 15.6.10). The SVD gives:  

T] [ VUC iwdiag   = , (9) 

where U = V are square, symmetric matrices and wi are singular values. The 
columns Vi of V give the principle axes of the confidence ellipsoid.  The 
corresponding semi-diameters for a 68% confidence ellipsoid are √(3.53wi), 
where 3.53 is the ∆χ2 value for 68.3% confidence and 3 degrees of freedom.  

The gaussian estimators and resulting confidence ellipsoid will be good 
indicators of the uncertainties in the location only in the case where the 
complete, non-linear PDF has a single maximum and has an ellipsoidal form.  

4. LINEAR LOCATIONS: HYPOELLIPSE 

The HYPOELLIPSE program (Lahr, 1989) performs local and near 
regional earthquake locations in layered or gradient layered, 1D models.  
The program uses Geiger’s method (Geiger, 1912) to find a hypocentre that 
minimises the root-man-square misfit between observed and calculated 
travel times by iterative update of trial locations.  The updates are obtained 
from a damped, least-squares inversion of the matrix of partial derivatives of 
travel time with respect to the three spatial hypocentre coordinates at the 
current trial location.  Because the location problem is non-linear, this matrix 
represents a “linearisation” of the problem, and the final solution must be 
obtained though iteration. Gaussain uncertainty information for the final 
hypocenter is given in the form of a 68% spatial confidence ellipsoid 
obtained from analysis of the matrix of partial derivatives at this solution.  
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This ellipsoid forms a local approximation to the complete PDF for the 
location. 

There are many programs to perform linear, iterative earthquake location 
following Geiger’s method.  We choose HYPOELLIPSE for this study 
because the 68% confidence ellipsoid can be compared directly to the 
complete PDF for the location obtained with the non-linear methods. 

HYPOELLIPSE has options to perform a grid search in depth and to 
change individual observation weights during iteration based on residuals, 
distance or azimuth to hypocentre, and other quantities.  For simplicity and 
compatibility we do not use these options in this study, but note that they 
may have significant effects on the hypocentre and confidence ellipsoid 
determinations, particularly for poorly constrained events. 

5. A STUDY OF SYNTHETIC LOCATIONS 

We examine various earthquake location scenarios using synthetic travel 
times for a 3D model.  The purpose of this study is to 1) validate and 
compare the performance of the efficient Metropolis-Gibbs sampler 
algorithm against the slow but exhaustive grid-search, 2) examine the ideal 
case of location using the “correct” 3D velocity model, 3) study the realistic 
case of location in an “incorrect” layered model, and 4) compare the 
locations and uncertainties obtained by the linear, local method with those of 
the non-linear, global-search methods.  Other synthetic location studies 
which address some of these issues have been performed by Pavlis (1986) 
and by Schwartz and Nelson (1991). 

5.1 The synthetic problem 

The station geometry, velocity structure and event locations are based on 
characteristics of the Institut de Protection et de Sûreté Nucléaire (IPSN) 
Durance micro-earthquake network and study region in southern France 
(Mohammadioun and Dervin, 1995; Volant et al., 1999).  We select 11 IPSN 
stations to obtain a network of about 60 km by 30 km and typical station 
spacing of 10 to 20 km.  For plotting we use a rotated, left-handed 
rectangular coordinate system where the Y axis is oriented along the true 
geographic azimuth N30°E, and Z is positive downwards. 

The 3D velocity structure (Figure 1) is a simplified, 2.5D version of a 
preliminary 3D model for the Durance region.  To reflect the transpressive 
tectonics of the region we include a strong velocity contrast of about 20% 
across a vertical plane through the network at Y=0 (representing the Middle-
Durance fault) and a contrasts of 6 to 12% across a dipping plane that 
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intersects this “fault” at depth.  The S velocities are determined from the P 
velocity model using a VP/VS ratio of 1.75. 

We consider 27 synthetic “events” regularly spaced on a vertical plane 
which is coincident with the “fault” plane (Y=0) and which passes through 
the network (Figure 2).  The events are located up to 20 km outside of the 
network and between 0 and 20 km in depth. 

The basic data set for the synthetic locations consists of 15 simulated P or 
S arrival times at the network stations for each of the 27 events.  The times 
are calculated using the 3D velocity structure and the same Eikonal finite-
difference algorithm (Podvin and Lecomte, 1991) used for the NonLinLoc 
event locations.  We generate a set of exact, “noise free” arrival times, and a 
set of arrival times with station “statics” by adding constant shifts to the 
times at each station of ±0.1 or ±0.2 second for P and S arrivals, respectively 
(Table 1).  For an individual event, these statics can be considered as picking 
errors or as general velocity model errors; for the 27 events together these 
statics should be considered as errors in the velocity model near each station.   

For both sets of arrival times and for all location methods the reading 
errors are set equal to the magnitude of the corresponding static shift (Table 
1).  The squares of the reading errors will form the diagonal terms of the 
diagonal covariance matrix Ct for the observed arrival times.  For 
compatibility with HYPOELLIPSE, the covariance matrix CT for theoretical 
relationship is set to the zero matrix 0; in practice the terms of this matrix 
should reflect the uncertainty in the theoretical travel times due to errors in 
the velocity model.  We also generate synthetic first-motions for each P 
arrival corresponding to a pure left-lateral mechanism (strike=90°, dip=90°, 
rake=180°) in the unrotated, geographic coordinate frame. 

Table 1. Station static shifts and reading errors 
Station phase static shift (sec) reading error (sec) 
ART1 P 0.1 0.1 
BLV1 P -0.1 0.1 
BST P 0.1 0.1 
BST S 0.2 0.2 
CAD P -0.1 0.1 
CAD S -0.2 0.2 
ESC P 0.1 0.1 
ESC S 0.2 0.2 
GRX P -0.1 0.1 
JOU P 0.1 0.1 
JOU S -0.2 0.2 
MEY P 0.1 0.1 
REV1 P  -0.1 0.1 
OBS1  P  0.1   0.1 
VAL1  P  -0.1  0.1 
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For the 1D model locations we use a two-layer over half-space velocity 
model (Table 2) where the layer depth differs from that of any horizontal 
interface in the 3D model, and with a different VP/VS ratio than the 3D 
model.  The 1D model is constructed arbitrarily and not by averaging or 
transformation of the 3D model, nor by any analysis of the simulated arrival 
times.  Thus the 1D model is not an optimised model for the problem, but 
represents a typical, “incorrect” reference model as might be used in a 
preliminary seismicity study for a region. 

Table 2. 1D, layered velocity model (VP/VS = 1.85) 
Depth to top (km) P velocity (km/sec) S velocity (km/sec) 
-   4.5  2.43 
4.5   5.8   3.14 
30   8.0   4.32 

 
Each grid-search location is run with an initial grid size of 100 by 100 km 

horizontally centred at X=0, Y=0 and a depth range of –5 to 30 km, with a 
node spacing of 2 km horizontally and 1 km vertically. Two further nested 
grids are each centred on the optimal hypocentral node of the preceding grid.  
The final grid has a size of 10 by 10 km horizontally and 15 km in depth 
with a node spacing of 0.1 km, giving 1.5 million nodes.  A total of about 1.7 
million evaluations of the forward problem are performed. 

Each Metropolis-Gibbs location is run with 1000 “accepted” samples in 
the learning stage, 4000 in the equilibration stage, and 5000 in the saving 
stage.  This gives a total of 10000 “accepted” samples, which typically 
requires the testing (evaluation of the forward problem) at about 14000 
locations. During the saving stage every fifth “accepted” sample is kept to 
give a total of 1000 samples of the PDF. 

The HYPOELLIPSE locations use the same arrival times, arrival time 
uncertainties and layered model as the non-linear locations.  HYPOELLIPSE 
is run for a maximum of 50 iterations, without any re-weighting of the 
observations during the iterations. 

The relative calculation times for the 27 event locations for the three 
methods are HYPOELLIPSE 1 unit, Metropolis-Gibbs 10 units, and grid-
search 1000 units, where a unit is the order of several second on a desktop 
workstation. 

In the following we use the notation [x,z] do identify events using their 
approximate coordinates on the (X-Z) sections. 
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5.2 Location with 3D models 

5.2.1 Exact data: verification of the algorithms and uncertainties 
due to station-event geometry 

We first perform grid-search and Metropolis-Gibbs locations using the 
exact synthetic travel times and the correct 3D model.  The location results 
are shown in Figure 2. 

The Metropolis-Gibbs and grid-search PDFs and gaussian estimators are 
very similar and the maximum likelihood hypocentres from both methods 
give excellent recovery of the true locations and origin times.  Typical 
location errors for the grid-search are ∼0km horizontally, <0.05km in depth 
and <0.01sec in origin time.  For Metropolis-Gibbs the horizontal errors are 
<0.1km outside the network and <0.02km inside, <0.1km in depth (except 
for 2 events outside the network with errors of 0.25 and 0.15km) and < 0.01 
in origin time.  There is a very good agreement between the grid-search 
PDFs, which we take as near exact, and those for the Metropolis-Gibbs 
sampler (Figure 2).  However, the Metropolis-Gibbs method does not 
recover the detailed form of the most irregular PDFs (i.e. events [–40,6] and 
[40,6]). 

For this “noise free” simulation with correct velocity model, the shapes 
and sizes of the PDFs reflect the assumed reading errors, variations of the 
velocity model within the PDF, and the geometric relation between the 
events and stations (through the distribution of ray take-off angles). The 
location uncertainties are smallest and generally ellipsoidal within network; 
they increase in size outside of the network, where some (i.e. events [–40,6] 
and [40,6]) become irregularly shaped and have off centre expectation 
hypocentre locations. The uncertainties are generally largest in depth, 
typically 2-4 times horizontal uncertainty, even within the network.  The 
depth uncertainty is smallest for the events within the network and with the 
least epicentral distance to the nearest station (i.e. events under station JOU).  
All of these variations reflect the improved distribution of ray take-off angles 
for events within the network and at shallower depths. 

The effect of the horizontal interface in the velocity model at 5km depth 
is seen in the truncation of the tops of several PDFs (events [–20,6], [0,6] 
and [20,6]), and in a sharp bend in the PDFs for events [-40,6] and [40,6]. 

5.2.2 Data with station “statics”: an ideal location scenario 

We next examine Metropolis-Gibbs locations in the correct 3D model 
using the synthetic travel times with station statics.  These results represent 
an ideal but realistic scenario where an accurate larger scale velocity model 
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is available (perhaps determined independently by active source refraction 
experiments), but where there remain errors in the model near the stations.  
The locations obtained with the Metropolis-Gibbs sampler are shown in 
Figure 3.  As above, these results are almost identical to those for the grid-
search (not shown). 

The maximum likelihood and expectation hypocentres in Figure 3 are 
shifted up to 5 km in depth and 2 km horizontally from the “true” event 
locations.  In plan view (X-Y) the locations bend away from the plane of 
“true” locations with a larger shift for events outside of the network; in depth 
section (Z-Y) the distance of the locations from the plane of “true” locations 
increases in with increasing depth.  Thus the added station statics do not 
cancel each other and are systematically biasing the locations. 

In general the size and orientation of the location uncertainties are similar 
to those from the previous simulation with exact data. One exception is the 
distorted and tilted PDF and confidence ellipsoid for the event near [40,5].   
The station static errors have caused a shift in the PDF for this event such 
that it interacts more strongly with the model interface at 5 km depth.  
Another exception is the more elongated PDF and confidence ellipsoid for 
the event near [40,11].  Many of the confidence ellipsoids and PDF scatter 
samples do not contain the “true” location, even though the assigned reading 
errors (Table 1) are of the same magnitude as the static shifts.  This result 
probably reflects a bias in the locations caused by the application of static 
shifts at a small number of irregularly distributed stations. 

This location scenario illustrates that formal location uncertainties are not 
very sensitive to the station static shifts and do not reflect the absolute 
location errors. Apparently the uncertainties depend primarily on the station 
geometry and assumed observational errors.  Station statics or, equivalently, 
small errors in the model near the stations, lead mainly to a bias in the 
position of the location. 

5.3 Location with layered models 

We next perform grid-search, Metropolis-Gibbs and linearized, 
HYPOELLIPSE locations in the 1D, layered model (Table 2) using the 3D 
model synthetic travel times with station statics.  With this realistic and 
typical location scenario, we examine the location uncertainties and biases 
due to the use of a model that differs significantly from the true earth 
structure.  We also compare the ellipsoidal approximations to the location 
PDFs given by HYPOELLIPSE to the complete PDFs and associated 
ellipsoids obtained with the non-linear, global search location algorithms. 
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5.3.1 Metropolis-Gibbs sampler 

The maximum likelihood and expectation hypocentres, and the PDF 
samples for the Metropolis-Gibbs location in the 1D model are shown in 
Figure 4.  In depth section (Z-Y) the 1D model locations group near a 
vertical plane which is shifted significantly from the plane of “true” 
locations (the plane Y=0).  In plan view (X-Y) the locations bend away from 
the plane of “true” locations with a shift of about 4 km horizontally towards 
higher velocity side of the 3D model for locations within network, increasing 
to about 10 km for events outside of the network.  The (X-Z) section shows 
that, relative to the “true” locations, most of the 1D locations are “pulled” 
towards the network centre ant the relative locations are not preserved.  
There is a larger shift for deeper events and for events outside the network 
which are shifted up to 10 km shallower in depth and up to 8 km 
horizontally.  The shifts in the (X-Z) section are consistent with the generally 
lower velocities in the 1D layered model relative to the 3D model. 

Overall, the location PDFs and confidence ellipsoids have the same or 
smaller size and a similar orientation to those for the 3D model.  Two 
exceptions are the events near [–35,5] and [35,5] which have enlarged, 
elongated and bent PDFs and a maximum likelihood hypocentre located 
much shallower than the expectation hypocentre.  The apparent decrease in 
uncertainty for some locations may be related to the shallower depth of the 
1D locations and to the lower velocities in the 1D models.  As with the 3D 
locations with station statics, the confidence ellipsoids and PDF samples do 
not contain the “true” locations and thus do not reflect the absolute location 
errors. 

5.3.2 Grid search 

Most of the grid-search locations and uncertainties are very similar to 
those obtained with Metropolis-Gibbs (Figure 4).  Two exceptions are the 
events at [-37,5] and [36,7] where the fine grid-search volume is not large 
enough to contain the elongated PDF which is clipped at depth.  This 
problem can be avoided by extending the fine grid in depth, at the expense of 
increased calculation time.  Other exceptions are the events at [-27,4], [36,7] 
and [10,2] where the Metropolis-Gibbs PDFs differ notably from those of 
the grid-search.  Apparently for these events the PDF is of sufficient 
complexity that it cannot be fully recovered by the Metropolis-Gibbs 
sampler.  This is most clear for the event at [10,2] where the grid-search 
PDF shows two completely separate maxima in the PDF, one at a depth of 
about 2 km and one at the top of the search region at –5 km.  The 
Metropolis-Gibbs sampler recovers only the deeper of these two solutions. 
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5.3.3 HYPOELLIPSE 

The HYPOELLIPSE hypocentres and confidence ellipsoids for locations 
in the layered model are shown in Figure 5.  

For events within the network (-20km ≤ X ≤ 20km) most of the 
HYPOELLIPSE hypocenters and confidence ellipsoids are nearly identical 
to the corresponding Metropolis-Gibbs and grid-search results (Figure 4). 
Though, like the Metropolis-Gibbs sampler, HYPOELLIPSE only recovers 
the deeper of the two solutions for the event at [10,2].  Two other exceptions 
are the events at [0,5] and at [20,5] both of which have a much larger depth 
uncertainty with HYPOELLIPSE than Metropolis-Gibbs. This discrepancy 
can be explained for both events by examining the form of the grid-search 
PDF for the event near [20,5] (Figure 6).  The PDF is strongly distorted at 
the model layer boundary at 4.5km depth and the maximum likelihood 
hypocentre is located on this boundary.  At this boundary the gradients in the 
misfit function (i.e. g(x) in equation (3)) will be discontinuous which  can 
lead to convergence problems for a linear method like HYPOELLIPSE.  For 
this event HYPOELLIPSE converges to a hypocentre just below the 
boundary.  In this region the misfit function and PDF change very slowly 
with depth (Figure 6) because the first arriving rays from points just below 
the boundary are “head waves” with horizontal take-off directions.  Thus, for 
the linear approach, the partial derivatives of travel-time with respect to 
depth will be near zero in this region, and the corresponding error estimates 
very large, leading to the elongated Z axis of the confidence ellipsoid.  Note 
that for these 2 events the difference in expectation and maximum likelihood 
hypocentres obtained by the global search methods is an indicator of 
complexity in the PDFs.   

For events outside of the network there are significant differences 
between the HYPOELLIPSE and non-linear, global search locations.  For 
many events with highly irregular PDF’s, the HYPOELLIPSE error 
ellipsoids are greatly elongated in the Z direction, indicating poor depth 
constraint, and the HYPOELLIPSE hyocentres are far from the maximum 
likelihood point of the PDFs.  Such events include [-35,5], [28,5], [36,7], and 
[39,6], which correspond to true event locations [-40,6], [30,10], [40,15], 
and [40,0], respectively. Because of the presence of the layer boundary at 
4.5km, and their location outside the network, the PDF’s for these events are 
highly irregular (Figure 4).  For the event with true location [40,0], it is 
important to note that the global optimum solution, as indicated by the grid-
search or Metropolis-Gibbs maximum likelihood point, is located near [32,-
2], more than 10km from the HYPOELLIPSE hypocentre near [39,6].  

A comparison with the un-clipped grid-search PDF for the event near 
[36,7] is shown in Figure 6.  The HYPOELLIPSE hypocentre is located near 
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a secondary maximum of the grid-search PDF, probably because the global 
maximum is in a basin with a much smaller volume than that of the 
secondary maximum and because the starting depth of 10km used for 
HYPOELLIPSE is closer to the secondary maximum.  The hypocentre is in a 
relatively flat region of the PDF, which explains the large size of the 
confidence ellipsoid in the depth direction since uncertainty is inversely 
proportional to the second derivative of the misfit surface.   The very small 
gradients of the PDF in the Z direction near the hypocentre make the linear 
system ill-conditioned and cause instability in the hypocentre depth 
perturbations; this may explain why the location of the hypocentre is not at a 
maximum of the PDF.  

HYPOELLIPSE has convergence problems or produces a confidence 
ellipsoid that is a poor estimate of the complete PDF when the PDF is 
strongly non-ellipsoidal.   This is expected since a local linerisation gives a 
poor representation of the global properties of an irregular function.  In 
effect, an irregular PDF implies a strongly non-linear problem. 

5.4 Average station residuals and station “statics” 

We next investigate the relation of average station residuals to the known 
static shifts in the arrival times.  Figure 7 shows the applied 3D model static 
shifts, theoretical layered model static shifts, and average residuals for each 
phase at each station for different location scenarios.  The theoretical layered 
model statics are given by the sum of the 3D model statics and the travel 
time difference between the 3D model times and the layered model times.  
For the goal of obtaining station adjustments to give improved absolute 
event locations, the average station residuals should match the corresponding 
applied static shifts.  

As expected, the average station residuals are effectively zero for 
locations using the exact synthetic travel times and the correct 3D model 
with both Metropolis-Gibbs (dots in Figure 7) and the grid-search (not 
shown). 

The average station residuals for Metropolis-Gibbs locations in the 
correct 3D model using the synthetic travel times with station statics (stars in 
Figure 7) generally follow the true station statics in both polarity and 
amplitude.  However, there are some significant mismatches (i.e. BST P and 
S, MEY P, VAL1 P) which can be attributed to the fact that the average 
station residuals are calculated for incorrect, though optimal, locations, and 
so reflect location errors as well as model errors.  It may be expected that an 
iterative simultaneous inversion for true statics and event locations 
beginning with these average residuals will converge to near the correct 
solutions. 
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The average station residuals for the Metropolis-Gibbs and 
HYPOELLIPSE locations in the layered model (diamonds and triangles in 
Figure 7) are nearly identical.  This agreement reflects the similarity in 
optimal hypocentres from both methods for most events.  However, these 
residuals do not match and generally have much lower amplitude than the 
theoretical layered model statics.  As above in the 3D case, this mismatch 
can be attributed to the fact that the average station residuals are calculated 
for incorrect locations, but with the layered model these locations are much 
further from the “true” locations.  In this case it does not seem likely that a 
simultaneous inversion for true statics and event relocations beginning with 
these average residuals will necessarily converge towards the correct 
solutions.  In general there is a better match between average residuals and 
theoretical statics for stations in the middle of the network (i.e. CAD, ESC, 
GRX and JOU) than for stations on the edge of the network (i.e. ART1, 
BST, OBS1, REV1 and VAL1).  This pattern is consistent with the greater 
variety of paths and coverage of the model for rays between the internal 
stations and the events than for the external stations.  

We have checked the sensitivity of this analysis to the particular set of 
static shifts used (Table 1) by repeating the locations using a reversed 
polarity for all of the static shifts.  We found that all of the conclusions in 
this subsection were effectively unchanged. 

5.5 Mechanisms 

In this section we examine the quality of the recovery of known focal 
mechanisms in the various location scenarios.  Synthetic P first-motions (up 
or down) corresponding to a pure left-lateral mechanism (strike=90°, 
dip=90°, rake=180°) were calculated along with the travel time for each 
synthetic arrival in the 3D velocity model.   For each event location, the ray 
take-off angles are calculated at the optimal hypocentre (maximum 
likelihood point of PDF for the non-linear, global search methods, final 
hypocentre for HYPOELLIPSE).  Using these synthetic first motions and 
location dependant take-off angles, composite focal mechanisms (Figure 8) 
are determined with the grid-search algorithm FPFIT (Reasenberg and 
Oppenheimer, 1985).   

As is expected, the composite focal mechanism for the exact synthetic 
travel times and the correct 3D model (Figure 8a) is nearly identical to the 
synthetic left-lateral mechanism.  The distribution of first-motion polarities 
on the focal sphere allows the exact synthetic mechanism as a possible 
solution with no discrepant observations out of 297 total.  Figure 8b shows 
the composite focal mechanism for Metropolis-Gibbs locations in the 3D 
model using the synthetic travel times with station statics.  For this case 



24 A. Lomax, J.Virieux, P. Volant, and C. Berge-Thierry
 
there are now 10 discrepant observations, but the preferred focal mechanism 
remains very similar to the synthetic mechanism. 

The composite focal mechanisms for Metropolis-Gibbs and 
HYPOELLIPSE locations in the layered model using the 3D model synthetic 
travel times with station statics are shown in Figures 8c and 8d.  The 
Metropolis-Gibbs and HYPOELLIPSE results have, respectively, up to 6 
and 10° errors in rake direction, and 43 and 48 discrepant observations.  
These differences from the synthetic mechanism are significant, but not 
extreme.  This indicate that it is possible to have good recovery of a true 
composite solution using an incorrect velocity model, if a large and well 
distributed set of events is available and it can be assumed that they all have 
the same mechanism.   

We do not investigate in detail individual event mechanisms because the 
number of observations and coverage of the focal sphere is not adequate to 
constrain well these solutions.  We note, however, that for all location 
scenarios, including the exact, 3D case, the single preferred solution given 
by FPFIT differs significantly from the synthetic left-lateral mechanism for 
most events outside the network and for many events inside.  For the 
locations in the 3D model all of the single event solutions are compatible 
with the synthetic solution.  This is not the case for the layered model 
locations where the ray take-off angles have large errors due to strong 
velocity model errors and large absolute location errors. 

6. DISCUSSION 

We have described a complete, probabilistic earthquake location 
methodology and introduced an efficient Metropolis-Gibbs, non-linear, 
global sampling algorithm to obtain such locations.  With several synthetic 
location scenarios we have examined the locations and uncertainties given 
by an exhaustive grid-search and the Metropolis-Gibbs sampler using 3D 
and layered velocity models, and by the iterative, linear method 
HYPOELLIPSE in the layered model. 

With an exact 3D model and no added station static shifts, the grid-search 
and Metropolis-Gibbs location results are nearly identical and give excellent 
recovery of the true event location.  However, because the location PDFs 
vary as a function of the event-station geometry, the location uncertainties 
can be large and irregular outside of the station network even for this exact 
case. 

With an exact 3D model and added station static shifts there are 
systematic biases in the event locations.  The PDFs and 68% confidence 
ellipsoids are similar in size and orientation to those for the case without 
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statics, but for many events these error indicators do not include the “true” 
location. 

The locations using the incorrect, layered model show that both linear 
and global methods give systematic biases in the event locations and that the 
68% confidence volumes do not include the “true” location – absolute event 
locations and errors are not recovered.  The results indicate that 
HYPOELLIPSE and related linearised, local methods can give stable and 
complete location and uncertainty results within a network, except for 
hypocentres near strong gradients in velocity.  Outside a network these 
methods may have problems with depth determination, depth uncertainty 
estimation, and even epicentral location.  In contrast, the grid-search and 
Metropolis-Gibbs sampler global methods are always stable and give 
complete solution information, even near velocity gradients and outside of a 
network. 

Our examination of average station residuals indicate that theoretical 
station statics can be recovered approximately if a model similar to the true 
velocity structure is available.  However, if a poor model is used for 
location, then the average station residuals can be affected strongly by event 
location errors and will not be representative of the true station statics. 

Our analysis of focal mechanisms shows that composite mechanisms can 
be recovered very well if a good velocity model is available, and fairly well 
even with a poor model.  Individual event mechanisms, however, can be 
erroneous if there are few readings, or if a poor velocity model is used when 
there are strong lateral variations in the true structure. 

HYPOELLIPSE and related linearised approaches are very fast and do 
not require significant computer memory.  However, these methods are 
difficult or impossible to apply in 3D velocity structures, and they can fail if 
the location PDF is irregular or multi-modal.  The systematic grid-search 
algorithm we use here is inefficient, about 1000 times slower than 
HYPOELLIPSE, but will generally give accurate recovery of the complete, 
probabilistic location PDF.  However, if not selected carefully, the grid-
search volume can clip parts of the location PDF; this problem can be 
avoided with an adaptive algorithm.  Our implementation of the more 
efficient Metropolis-Gibbs sampler is only about 10 times slower than 
HYPOELLIPSE but may require considerable memory with 3D models. The 
Metropolis-Gibbs sampler gives good recovery of complete, probabilistic 
location PDFs, except for those that are highly irregular or multi-modal with 
widely separated maxima. 

Thus the Metropolis-Gibbs sampler is a practical method to obtain 
complete, probabilistic locations for large numbers of events and for location 
in 3D models.  With layered models, the Metropolis-Gibbs sampler is stable 
for cases where linearised methods fail, including locations near sharp 
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contrasts in velocity and outside of a network.  The grid-search method is 
useful for location of smaller number of events and to obtain an accurate 
images of location PDFs that may be highly-irregular. 
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9. FIGURE CAPTIONS 

Figure 1. 3D velocity structure used for generating synthetic arrival times and for 3D model 
locations.  The P velocity structure is shown in Y-Z cross section; the model is invariant in 
the X direction.  S velocities are determined from the P velocity model using a VP/VS ratio 
of 1.75. 

 
Figure 2. Location with 3D model and exact data.  a) Grid-search locations in map view (XY), 

and views perpendicular (ZY) and parallel (XY) to the event plane.  b) Grid-search PDF 
density plots in XY section.  c) Metropolis-Gibbs locations in XY section.  d) Metropolis-
Gibbs PDF density plots in XY section. (grey crosses) - true event locations, (stars) - 
Maximum likelihood hypocentres, (dots) - expectation hypocentres, ellipses – projections 
of 68% confidence ellipsoids 

 
Figure 3. Location with 3D models and station static shifts.  a) Metropolis-Gibbs locations in 

map view (XY), and views perpendicular (ZY) and parallel (XY) to the event plane.  b) 
Metropolis-Gibbs PDF density plots in XY section. (grey crosses) - true event locations, 
(stars) - Maximum likelihood hypocentres, (dots) - expectation hypocentres, (ellipses) - 
projections of 68% confidence ellipsoids 

 
Figure 4. Location with the layered model.  a) Metropolis-Gibbs locations and 68% 

confidence ellipsoids in map view (XY), and views perpendicular (ZY) and parallel (XY) 
to the event plane.  b) Metropolis-Gibbs PDF density plots in XY section.  c) Grid-search 
PDF density plots in XY section.  (grey crosses) - true event locations, (stars) - Maximum 
likelihood hypocentres, (dots) - expectation hypocentres, (ellipses) - projections of 68% 
confidence ellipsoids 

 
Figure 5. HYPOELLIPSE location with the layered model.  Locations and 68% confidence 

ellipsoids in map view (XY), and views perpendicular (ZY) and parallel (XY) to the event 
plane. (grey crosses) - true event locations, (dots) - expectation hypocentres, (ellipses)- 
projections of 68% confidence ellipsoids 

 
Figure 6. Grid-search and HYPOELLIPSE locations for (a) event [20,5] and (b) event [36,7].  

Grid-search PDF: (white contoured region) - XY slice of grid-search 90% confidence 
volume with a contour interval of 10%,  (star) - maximum likelihood hypocentre, (open 
circle) - expectation hypocentre. HYPOELLISE location: (ellipses) - projections of 68% 
confidence ellipsoid, (large dot) - expectation hypocentre. 

 
Figure 7. Comparison of station statics and average station residuals. (grey bars) True 3D 

model station statics (static shift in Table 1). (white bars) True layered model station 
statics  (added static shift in Table 1 plus travel time difference between layered and 3D 
models for the “true” event location).  Average station residuals (observed – calculated 
arrival times) for the maximum likelihood hypocentres are shown by symbols and lines for 
several location scenarios.  

 
Figure 8. Composite focal mechanisms for Metropolis-Gibbs locations in the 3D model with 

(a) exact travel times and (b) station statics, and layered model locations using (c) 
Metropolis-Gibbs and (d) HYPOELLIPSE.  Because of coordinate rotation, the positive Y 
axis of the location plots falls along the azimuth N30°E on these mechanism plots. 
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Figure 1 - 3D Model
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a)

b)

Figure 3
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Figure 4
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Layer - HYPOELLIPSE

Figure 5
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Figure 6
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Figure 7
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