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Glossary

Arrival time
The time of the first measurable energy of a seismic phase on a seismogram.
Centroid

The coordinates of the spatial or temporal average of some characteristic of an earthquake, such as
surface shaking intensity or moment release.
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Data space

If the data are described by a vector d, then the data space D is the set of all possible values of d.
Direct search

A search or inversion technique that does not explicitly use derivatives.

Earthquake early-warning

The goal of earthquake early-warning is to estimate the shaking hazard of a large earthquake at a
nearby population centre or other critical site before destructive S and surface waves have reached the
site. This requires that useful, probabilistic constraint on the location and size of an earthquake is
obtained very rapidly.

Earthquake location

An earthquake location specifies a spatial position and time of occurrence for an earthquake. The
location may refer to the earthquake hypocentre and corresponding origin time, a mean or centroid of
some spatial or temporal characteristic of the earthquake, or another property of the earthquake that can
be spatially and temporally localized. This term also refers to the process of locating an earthquake.

Epicentre
The point on the Earth’s surface directly above a hypocentre.
Error

A specified variation in the value assumed by a variable. See also uncertainty.

Global search

A search or inversion that samples throughout the prior pdf of the unknown parameters.

Hypocentre

The point in three-dimensional space of initial energy release of an earthquake rupture or other seismic
event.

Importance sampling

A sampling procedure that draws samples following the posterior pdf of an inverse, optimization or
other search problem. Since these problems involve initially unknown, posterior pdf functions,
importance sampling can only be performed approximately, usually through some adaptive or learning
procedure as sampling progresses.

Inverse problem, Inversion

The problem of determining the parameters of a physical system given some data. The solution of an
inverse problem requires measurements of observable quantities of the physical system, and the
mathematical expression (the forward problem) that relates the parameters defining the physical system
(model space) to the data (data space). In inverse problems, estimates of the unknown parameters in
the model space and of their uncertainties are sought from the combination of the available information
on the model parameters (prior pdf), the data and the forward problem.

Likelihood function
A non-normalized pdf.
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Misfit function

A function that quantifies the disagreement between observed and calculated values of one or more
quantities. See objective function.

Model space

If the model parameters are described by a vector m, then model space M is the set of all possible
values of m.

Objective function

A function expressing the quality of any point in the model space. Inversion and optimisation
procedures use an objective function to rank and select models. Usually objective functions are defined
in terms of misfit functions, and for probabilistic inversion the objective function must be a pdf or
likelihood function.

Origin time
The time of occurrence of initial energy release of an earthquake rupture or other seismic event.
Prior pdf

A pdf that expresses the information on the unknown parameters available before an inverse problem is
solved. For an earthquake location, the prior pdf is often a simple function (e.g., boxcar) of three
spatial dimensions and time. See also Inverse problem.

Probability density function - pdf

A function in one or more dimensional space X that (i) when integrated over some interval Ax in X
gives a probability of occurrence of any event within Ax, and (ii) has unit integral over space X, where
X represents a space of possible events. An earthquake location pdf is often a 3-dimensional
probability density function over all possible spatial locations or a 4-dimensional probability density
function over all possible spatial locations and times of occurrence.

Posterior pdf

A pdf that expresses the information about the unknown parameters available after inversion. The
posterior pdf for an earthquake location is often a function of the three spatial dimensions and the
origin time of the hypocenter parameters; this function may be complicated. See also Inverse problem.

Ray path

A local minimum-time path between a source and receiver of idealized, infinite frequency wave energy
of a specified wave type (e.g., P or S).

Receiver or Station
Synonyms for an observation point where ground motion is detected and a seismogram recorded.
Seismic phase

A distinct packet of energy from a seismic source. Usually refers to a specified wave type (e.g. P or S)
satisfying a particular physics of wave propagation.

Seismicity

The distribution in space and time of seismic event locations.
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Seismogram

An analogue or digital recording of the ground motion at a point (receiver or station) in the Earth. Also
called a waveform.

Source

A general term referring to an earthquake, explosion or other release of seismic energy as a physical
phenomenon localized in space and time.

Station

See receiver.

Travel time

The time that a signal, e.g. elastic wave energy of a seismic phase, takes to propagate along a ray path
between two points in a medium.

Uncertainty

Random variation in the values assumed by a variable. See also error.

I.  Definition of the Subject and Its Importance

An earthquake location specifies the place and time of occurrence of energy release from a seismic
event. A location together with a measure of size forms a concise description of the most important
characteristics of an earthquake. The location may refer to the earthquake's epicentre, hypocentre, or
centroid, or to another observed or calculated property of the earthquake that can be spatially and
temporally localized. A location is called absolute if it is determined or specified within a fixed,
geographic coordinate system and a fixed time base (e.g., Coordinated Universal Time, UTC); a
location is called relative if it is determined or specified with respect to another spatio-temporal object
(e.g., an earthquake or explosion) which may have unknown or uncertain absolute location.

For rapid hazard assessment and emergency response, an earthquake location provides information
such as the locality of potential damage or the source region of a possible tsunami, and a location is
required to calculate most measures of the size of an earthquake, such as magnitude or moment.
Locations are required for further analysis and characterisation of the event, for studies of general
patterns of seismicity, to calculate distributions of stress and strain changes around the earthquake, for
assessing future earthquake hazard, and for basic and applied seismological research.

Since earthquakes occur deep in the Earth, their source locations must be inferred indirectly from
distant observations, and earthquake location is thus a remote-sensing problem. Most commonly an
earthquake location is determined by the match or misfit between observed arrival times of seismic
wave-energy at seismic stations, and predictions of these arrival times for different source locations
using a given elastic-wave speed model; this is an inverse problem. Essentially, many potential
locations (place and time) are examined and those for which some measure of misfit between predicted
and measured arrival times is smallest are retained as best estimates of the true location.

Many numerical location methods involve linearization of the equations relating the predicted arrival
times to the location through Taylor expansion involving partial derivatives; these are called linearized
methods. Methods that do not are called nonlinearized or direct-search methods. The term nonlinear
is used ambiguously in geophysics to refer to linearized-iterated and to nonlinearized methods. In this
chapter we focus on nonlinearized, direct-search methods, and to avoid ambiguity we identify them
with the term direct-search.
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Direct-search location can be performed through graphical analyses, regular or stochastic searches over
a space of possible locations, and other algorithms. Direct-search earthquake location is important
because, relative to linearized methods, it is easy to apply with realistic earth models which may have
abrupt and complicated variations in three-dimensions, it places little restriction on the form of the
measure of misfit, it is stable (i.e., does not suffer numerical convergence problems) when the
observations are insufficient to fully constrain the spatial location or origin time, and it can produce
comprehensive, probabilistic solutions which indicate the full location uncertainty, often a complex
functions of space and time. Conversely, the primary advantage of linearized location methods is that
they are much less demanding computationally than direct-search methods.

II. Introduction

Most commonly, an earthquake location is determined using observed seismic-phase arrival-times and
associated uncertainties, and predicted travel times in a given wave-speed model. Ideally, the location
procedure will determine a 4-dimensional, posterior probability density function, or location pdf, over
all possible solutions (spatial locations and origin times). This location pdf quantifies the agreement
between predicted and observed arrival times in relation to all uncertainties, and forms a complete,
probabilistic solution. In practice, however, an earthquake location is often specified as some optimal
solution (a point in space and time) with associated uncertainties.

The earliest, formal earthquake locations using seismic-phase arrival-time observations employed
direct-search procedures such as graphical methods (e.g., Milne, 1886) or simple grid searches (e.g.,
Reid, 1910). The advent of digital computers in the 1960's lead to the use of iterated linearized
approaches based mainly on Geiger's method (1912). Since the 1980's, the increasing power of digital
computers has made large-scale, grid and stochastic direct searches practical for routine earthquake
location. Direct-search methods are now used routinely in research and earthquake monitoring (e.g.,
Sambridge and Kennett, 1986; Johnson et al., 1994; Rabinowitz, 2000; Husen et al., 2003; Husen and
Smith, 2004; Presti et al., 2004; Lomax, 2005; Horiuchi et al., 2005; Lomax, 2008).

In principle, direct-search methods can be applied to locate the relative positions of ensembles of
events, and for joint epicentral determination (e.g., Pujol 2000) to simultaneously determine multiple
earthquake locations and station corrections related to errors in the velocity model. However, the high-
dimensionality of such problems makes direct-search solution difficult and computationally
demanding; at the present time these problems are usually performed through large scale, linearized
procedures. For these reasons, we mainly consider here absolute location of individual events.

In this article we describe the earthquake location problem and direct-search methods used to perform
this location, and we present a number of examples of direct-search location. We do not compare
different direct-search location methods or compare direct-search to linearized algorithms, but instead
focus on illustrating important features and complexity in earthquake location results. For this reason
we emphasize direct, global-search, probabilistic location, which produces general and complete
solutions that best illuminate these features and complexity.

III. The Earthquake Location Problem

An inherently nonlinear problem

In a homogeneous medium with wave speed v and slowness defined to be u = 1/v, the arrival time, 7,
at an observation point X.ps , Voss » Zobs Of @ signal emitted at origin time #, from a source location at x ,
y() » 20 iSa
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tob.v = tO +u[('xobx _x0)2 +(yob.v _y0)2 + (Zob.v _20)2]1/2 ’ (1)

This expression shows that a change in the spatial position of the source introduces a nonlinear change
in t,5, even in the simplest possible medium. When the speed v and hence slowness u are
inhomogeneous in space, the arrival time at the observation point becomes,

Ly =to+ | ur,)ds, )
ro(s)

where 1o(s) denotes a point at distance s along ray path ry between source and receiver locations.
Equation (1) is a special case of (2) that has straight source-receiver ray paths. Equation (2) is
nonlinear since a change in the source location changes the ray path over which the integral is
calculated. Thus, earthquake location, which maps arrival times into spatial location and origin time, is
inherently a nonlinear problem.

The observed data

Data used to constrain earthquake locations are usually derived from seismograms recorded at seismic
stations distributed around the earthquake source area, usually at or near the surface of the Earth. The
derived data for earthquake location include arrival times, polarization angles, or array slownesses and
azimuths. For earthquake location there are three important aspects of this data determination: 1)
choosing locations for the stations (before data have been collected), 2) deriving data and associated
uncertainties from the seismograms, and 3) association of the derived data into subsets of data
corresponding to unique events.

The first important aspect of data determination is choosing station locations with the goal of
constraining as tightly as possible event locations for a given source area; this is classified as a problem
of “experimental design” in the field of statistics. The design problem must be resolved prior to data
collection and so is posed in terms of expected data, and expected location results. We describe
experimental design techniques in more detail later, after introducing and discussing the location
solution on which such designs depend.

Once stations are installed and have recorded seismograms from earthquakes of interest, a data set must
be extracted that is sensitive to the event source location, and which we can associate with some
physics (e.g., P or S waves) and paths of wave propagation. Most commonly for earthquake location
the data set will be phase arrival times and associated uncertainties picked manually or automatically
from seismograms (Figure 1). It is often easy to detect and pick arrivals manually since the human eye
can identify a change in amplitude or frequency in the signal even in the presence of significant noise.
The picking of the S phase is sometimes more difficult because it arrives in the P coda and can be
preceded by converted phases; this is a common problem with recordings at local (e.g., up to about 100
km) and near-regional (e.g., up to about 300 km) distances, especially if horizontal component
seismograms are not available. The automatic detection, identification and picking of P and S arrivals
is much more difficult, especially in the presence of high noise levels. However, automatic detection
and picking is faster and, for the case of initial P phases or other phases with characteristic forms, can
produce a more consistent data set than manual processing. Automatic arrival detection relies on
identifying temporal variations in energy, frequency content, polarization or other characteristics of the
signal which are anomalous relative to their background or noise level. Often the detection and picking
algorithms are applied to filtered and processed time-series in order either to reduce noise, or to
augment the signal in pre-set or dynamically-determined frequency bands or polarization directions.
See Gentili and Michelini (2006) for an approach that exploits neural networks for phase identification
and picking, and Withers et al. (1998) for a review and systematic comparison of several approaches to
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automatic detection and picking.

The data used for earthquake location (e.g., arrival times) must have associated uncertainty estimates
otherwise the location uncertainty and a probabilistic solution (i.e., location pdf) can not be calculated.
Most generally, a vector d describes the data takes values from a data space D, and p(d) denotes the pdf
representing uncertainty in d. The uncertainty in arrival time data should include not only an estimate
of the uncertainty in the picked phase arrival time, but also uncertainty in which phase (e.g., P or ) is
associated with the pick. If there are multiple expected phase arrivals close to the picked arrival time
of a phase, then ideally these should all be taken as candidate phase types for the arrival. Also, the pick
uncertainty of each phase may be best described by a pdf that is asymmetric in time, since usually a
latest-possible time for a pick is much easier to define than the earliest time (Figure 1). True data
uncertainty pdf’s are therefore generally multi-modal, and can be quite complex to calculate and
parameterize. In practice, an enumerated quality indication or, at best, a simple normal distribution
(Gaussian uncertainty) is used to describe the picking error, and the phase association is usually fixed
(e.g. to P or S) so corresponding uncertainties are ignored. In many cases these simplified data
uncertainty estimates will lead to bias or increased error in the resulting event locations.

The third important aspect of data determination is the association of the derived data into sets of data
for unique events. For example, this association may entail the assignment of each arrival time
obtained within a specified time window to a unique event, forming the minimum possible number of
events and corresponding arrival time sets required to explain observed data. This association
procedure can be very difficult, especially with automatic systems and when there are signals from
multiple seismic events that are close or overlapping in time (e.g., Johnson et al., 1994), and we do not
address this issue further here. In the following, except for an examination of outlier data, we
implicitly assume that location is performed with a data set that is already associated to a unique event.

The velocity or slowness model

The velocity or slowness model specifies seismic wave-speeds in the region of the Earth containing the
sources, the receivers and the ray paths between the sources and receivers. Equation (2) is nonlinear
with respect to source location, but also with respect to slowness since a change in the slowness
distribution of the medium changes the ray path. The velocity structure is sometimes estimated through
coupled, simultaneous inversions for velocity structure and event locations (commonly called seismic
tomography), but these are very large inverse problems solved mainly with linearized methods.
Usually for earthquake location the velocity model is taken as known and fixed.

Often, for computational convenience or due to lack of information, the velocity model is
parameterised with velocity varying only with depth. This is commonly called a laterally
homogeneous or 1-dimensional (1D) model. Such a model may consist of one or more layers of
constant or vertical-gradient wave-speeds. For work at a local or near-regional scale the layers may be
horizontal and flat; for larger, regional or global scale problems the layers should be spherically
symmetric shells to represent the curvature of the Earth. When more information on the velocity
structure is available, a 3D model may be used in order to increase the accuracy of the ray paths and
travel times, and hence of the locations, relative to a 1D model. All models, whether 1D or 3D, are
described by a limited number of parameters and include some form of spatial averaging or
interpolation with respect to the true Earth. Although 3D models can potentially represent velocity
variations in the Earth more accurately than 1D models, in practice the velocities in 3D models can
locally be poorly constrained and have large errors. It is therefore often important to consider several
different possible 1D and 3D velocity structures in a location study, either to test the sensitivity of the
locations to errors in velocity, or to better estimate the travel-time uncertainties and produce a more
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meaningful location pdf. In principle the use of diverse velocity models poses no difficulties with
direct-search location methods.

The travel-time calculation

The theoretical seismic wave travel-times through a given velocity model between any particular
source and receiver locations are required by most location algorithms. The calculation of travel times
is commonly referred to as forward modelling, because inverse theory need not be invoked. There are
three basic classes of methods to calculate the travel times: full-waveform methods, ray methods, and
Huygens wavefront or eikonal methods.

Full-waveform methods (e.g., Aki and Richards, 1980) produce complete synthetic seismograms from
which predicted travel times can be extracted. These methods include frequency—wavenumber or
modal-summation techniques which are valid for a broad range of frequencies and can produce exact
waveforms, but which are only applicable for relatively simple velocity structures. Numerical
techniques such as finite elements and finite differences can accurately model full wave phenomena in
complicated structures, but these methods typically require large computing resources and computing
time. Currently, full-waveform methods are rarely used to determine predicted travel times for
earthquake location because these times can be obtained directly and more efficiently with ray and
eikonal methods.

Ray methods (e.g., Aki and Richards, 1980; Cerveny, 2001; Thurber and Kissling, 2000) provide travel
times and the path, or ray, travelled by high-frequency waves, and can be applied to complicated and
3D velocity structures. With simple model parameterizations such as flat layers with constant or
gradient velocity, ray paths and travel times can be determined very rapidly with analytical or semi-
numerical algorithms. For these and more complicated models, shooting, or ray tracing techniques
generate rays though iterative solution of a set of ray-tracing equations starting in a specified direction
at the source or receiver location. The ray that passes through a specified end point is found by a
search over the direction at the starting point; this search can be time consuming or unstable. In
addition, shooting methods do not produce diffracted arrivals (e.g., “head waves” from the
Mohorovi¢i¢ discontinuity) which are often the first arriving signal at near-regional distances and thus
critical for earthquake location. Two-point, ray bending and perturbation techniques rely on Fermat’s
principle of least time: an initial guess at the ray between two points is perturbed repeatedly to attain a
minimum travel time and corresponding ray between the points. These techniques perform best with
smooth models, but do produce diffracted arrivals. In general, except for analytical or semi-numerical
algorithms in simple models, ray methods are too computationally expensive for direct-search location,
which usually requires evaluation of travel times between a very large number of source and receiver
positions. However, some ray bending methods (e.g., Um and Thurber, 1987; Moser et al., 1992b) are
efficient enough to be used in direct-search location when a relatively small number of source and
receiver positions position need to be examined.

Wavefront, eikonal and graph-based methods (Thurber and Kissling, 2000) provide travel-times of the
first arriving, high frequency waves including diffracted arrivals, and are efficient and applicable with
complicated, 3D velocity structures. In effect, these methods propagate wavefronts through a velocity
model with repeated application of Huygen’s principle, by considering a large number of virtual
sources (Huygens sources) along each wavefront. At time ¢ these sources emit circular wavelets which
expand for a small time At through the (constant) local, medium velocity. The locus of the first
arriving circular wavelets defines the new wavefront location at time +A¢. The synthetic travel time of
the first-arriving energy at the receiver is the time at which a wavefront first touches the receiver. In
practice, this problem is solved on a computer either by replicating this “wavefront marching” process
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(e.g., Sethian, 1999; Rawlinson and Sambridge, 2004a), or by finding a numerical solution to the
eikonal equation (e.g., Vidale, 1988; Podvin and Lecomte, 1991), or by graphical analysis (e.g., Moser
et al., 1992a). Though wavefront, eikonal and graph-based methods produce directly only the travel
time of the first-arriving signal, information about the path travelled by the signal can be derived
numerically from the travel-time field or from ray-tracing, and travel-times of secondary arrivals can be
obtained through multi-stage calculations (e.g., Podvin and Lecomte, 1991; Rawlinson and Sambridge,
2004b).

Wavefront, eikonal and graph-based methods can efficiently generate the travel-times from one point in
a gridded velocity model to all other points in the model. This makes these methods particularly useful
for direct-search location, which may test a large number of possible source positions widely
distributed in space. For this purpose, the travel times from each seismic station to all points in the
model can be pre-calculated and stored in computer disk files or in memory; obtaining the travel time
from a station to any other point then reduces to a simple lookup (e.g., Moser et al., 1992a; Lomax et
al., 2001).

A complete solution - probabilistic location

Consider a vector ds of observed data (e.g., arrival times) that takes values in a data space D, and let
p(d) be the pdf over D describing the data uncertainty in do,s due to measurement and processing
uncertainties. Similarly, let m denote the vector of source location parameters (spatial coordinates and
origin time) which take values from parameter space M. Let p(m) be the prior pdf representing all
information available about the location before (prior to) using the data dops; p(m) might include
knowledge of the known, active fault zones in the area, or might specify the bounds of a region within
which we know the event occurred from damage reports, or of a region containing the network of
stations that recorded the event. Also consider the forward problem (e.g., travel time calculation)
relating m to a vector of predicted data (e.g., arrival times), dcac. In general the forward problem may
also be uncertain, for example due to uncertainties in velocity structure, so we use F(d,m) to denote the
pdf of the relationship between dc.c and m as constrained by the forward problem.

As an example of F, it is commonly assumed that for each particular m, the corresponding predicted
data d,care given by a function f(m) with negligible errors. Then the conditional pdf F(d | m) (the
probability distribution of d when m is fixed at a particular value) is described by
F(d|m)=0[d—f(m)] where Jis the Dirac delta-function. Also, the forward problem is often assumed
to place minimum possible constraint on parameters m; the pdf describing this state of information
about m is called the homogeneous distribution, represented by (m). No pdf exists that describes zero
information, but some information about m always exists in practice (the positivity of parameter values,
for example); g(m) describes that minimum state of information. In that case the forward problem is
given by (Tarantola and Valette, 1982; Tarantola 2005),

F(d,m) = 5[d—f(m)] (m). 3)

A solution to the earthquake location problem is found by combining the information in the observed
data, p(d), the prior pdf, p(m), and the ability of the forward problem to predict the observed data,
F(d,m) (Tarantola and Valette, 1982; Tarantola, 2005). This is achieved in a probabilistic framework
by constructing a pdf O describing the state of posterior (post-experimental) information by:

_  P@F(d,m)p(m)
4(d, m)

O(d,m) ; 4
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where the constant & normalizes QO to unit integral over DxM and g(d,m) is the homogeneous
distribution over data d and parameters m. Equation (4) contains all information (from the prior, data
and physics) that could have a bearing on location m, and defines a joint pdf between parameters m and
data d. The final, posterior state of information about location parameters m is given by integrating
over the data d to obtain the marginal posterior pdf,

O(m) = pim) [PEF O aq.

Equation (5) is the general, probabilistic solution to the inverse problem of event location from the
available data since it describes the uncertainty in event location m given all available information. It is
usual to call the integral in (5) the likelihood function L(m), which gives a (non-normalized) measure
of how good any model m is in explaining the observed data p(d).

)

As mentioned earlier it is often the case that p(d) for the observed data is approximated by a Gaussian
distribution, described by mean dy and covariance matrix C4. Assuming that the uncertainties in the
forward problem F relating d and m are negligible results in the form of F in equation (3). It is also
usually assumed that d and m are independent and hence that z(d, m) can be written z(d) g(m); z(d) is
usually taken to be constant. With these simplifications, used by many current direct-search location
procedures, the (non-normalised) likelihood function is given by,

L(m) = eXP{—%[do —f(m)]"C,'[d, —f (m)]} (6)

With the above simplifications a maximum likelihood origin time, #), can be determined analytically
from weighted means of the observed arrival times and the predicted travel times (e.g., Tarantola and
Valette, 1982), and if the observed and predicted times are uncorrelated we arrive at a likelihood
function,

L(x):exp —%Z{l—; , (7)

i O;

where x is the spatial part of m, 7° are observed travel times, 7, are the calculated travel times for
observation i (i.e., 7,° represents the travel time, rather than arrival time, part of f(m)), and o;

summarizes the associated standard deviation of uncertainty in 7 and 7;°.

Though not normalized, L(x) is sufficient to provide the relative probability of any location m being
the best estimate of the event location given the available data measurements. Since in practice
integrating over all of Dx M to find normalizing constant & in equation (5) is often computationally
intractable, the product of the prior, spatial location information p(x) (i.e., the spatial part of p(m)) and
the non-normalized likelihood L(x) is usually taken as the objective function for inversion and
searching in direct-search location algorithms. If L(x) is determined throughout the prior pdf p(x)
through a global-search, then equation (5) can be normalized approximately after location. In the
following text and examples, we refer to such an approximately normalized function, p(x)L(x), as a
location pdf.

The likelihood function in equation (5) is entirely defined by the probabilistic error processes involved.
However, often it is desirable to change the approximations employed in deriving equations (6) and (7)
from equation (5), in order to remove biases or instability in the solution. The approximation in
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equation (6) uses the exponential of an L2-norm misfit function (the term in braces {} in equation 6 or
7) to represent the pdf of the data error variation, but because data used for location often contain
outliers it is often considered that an L1 norm or other Lp norm (p < 2.0) is more appropriate (e.g.,

Shearer, 1997), where Lp -norm|x| =" 1”[2|x[|p . Earthquake location problems formulated with an Lp

norm (or indeed other kinds of likelihood functions — see equation (8) below), can be solved relatively
easily with direct-search methods, which, unlike linearized methods, do not require determination of
partial derivatives of the likelihood or objective function with respect to event location.

An alternative to Lp-likelihood functions that is very robust in the presence of outliers is given by the
equal differential-time (EDT) formulation (Zhou, 1994; Font et al., 2004; Lomax, 2005). For the EDT
case, the location likelihood is given by,

N

T R L e A G LA LA .

o 2 2
ab \/Ga —|—Ub Ga +G[,

where x is the spatial part of m, 7 and 7, are the observed arrival times and 77 and 77, are the

calculated travel times for two observations a and b; the sum is taken over all pairs of observations, and
N is the total number of observations. Standard deviations o, and o, summarize the assigned
uncertainties on the observed arrival times and calculated travel times, where it is assumed that the
observed and the calculated times are uncorrelated.

In Equation (8), the first and second terms in brackets in the exponent are, respectively, the differences
between the observed arrival times and the differences between the calculated travel times. The
exponent is the difference between these two terms, and thus the exponential has a maximum value of 1
which occurs at points x where the two differences are equal (hence, the name “equal differential
time”’). Such points x best satisfy the two observations a and b together, and, in general, the set of x
where the exponential is nonzero forms a “fat,” curved surface in 3D space. Because the summation
over observations is outside the exponential, the EDT location pdf has its largest values for those points
x where the most pairs of observations are satisfied and thus is far less sensitive to outlier data than Lp
norms which seek to best satisfy all of the observations simultaneously. Note that the EDT likelihood
function L(x) does not require calculation of an origin time f; this reduces the hypocenter search to a
purely 3-parameter problem and contributes to the robustness of the EDT method. Nevertheless, a
compatible estimate of 7, can be calculated for any hypocenter point x.

Ultimately, the full solution to the probabilistic location problem is a posterior pdf which includes as
comprehensive as possible uncertainty information over parameters m. This may include multiple
“locally-optimal” solutions, e.g., O(m) or p(x)L(x) may have multiple maxima, and may have a highly
irregular form. Some studies of seismicity and seismotectonics make explicit use of a probabilistic
representation of seismic event locations (e.g., Presti et al., 2004; Husen and Smith, 2004; Lomax,
2005).

Experimental design methods — choosing receiver locations

As noted earlier, it is important to position stations so as to constrain as tightly as possible the event
locations for a given source area. The location inverse problem solution in equations (5), (7) or (8) is
constrained by prior information on location p(m), by observed data p(d), and by forward-problem
physics relating d and m. One way to significantly influence the form of this inverse problem, and
hence uncertainty in its solution, is to change the data we record. Thus, we alter both p(d) and the
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forward-problem physics, F(d,m).

For seismic location problems we may change the data by employing experimental design methods to
choose or change the locations of seismic receivers. The goal of the design procedure is to place
receivers such that the location information described by solution O(m) is expected to be maximised.
This is a “macro-optimisation” problem where, prior to the occurrence of an earthquake, we optimise
the design of the inverse problem that we expect to solve after an earthquake has occurred.

The design is varied such that it maximises an objective function. This is usually taken to be the

expected value of some approximation to the unique measure of information that was discovered by
Shannon (1948),

J(R) = E, {/[0(m);R,m, [} (9)

where R is a vector describing the design (e.g., receiver locations), /[Q(m) ; R, my] is the information
contained in the resulting posterior pdf Q(m) for design R when the true parameters (e.g., event
location) is my, and the statistical expectation E,, is taken over all possible m, which (according to our

prior knowledge) are expected to be distributed according to the prior distribution p(m). J(R) should
be maximised.

Within the expectation in equation (9), the design criterion J(R) takes account of all possible potential
true event locations my, their prior probability of occurrence p(m), and the corresponding data
(including their uncertainties) that are expected to be recorded for each location (the latter are included
within O(m)). To calculate the expectation usually requires integration over a far greater proportion of
the model and data spaces, M and D respectively, than need be considered when solving the inverse
problem after a particular event has occurred (since then p(d) and hence Q(m) are fixed, and p(m) is
more tightly constrained). Consequently, experimental design is generally far more computationally
costly than solving any particular inverse problem post-event.

For this reason, design methods invoking linearized approximations to the model-data relationship
F(m,d) (e.g., equation 10 below) have been employed by necessity in the past (Steinberg et al., 1995;
Rabinowitz and Steinberg, 2000; Curtis 2004a; Curtis et al., 2004), or indeed non-probabilistic methods
have been employed (e.g., Maurer and Boerner 1998; Curtis, 1999a,b; Stummer et al., 2004). Truly
non-linearized design methods have been developed for location problems only relatively recently (van
den Berg et al., 2003; Curtis 2004b; Winterfors and Curtis, 2007). Historically, however, station
network geometry has been defined more by heuristics (rules of thumb) and geographical, logistical
and financial constraints, with design theory only recently being deployed.

IV. Location methods

Once data have been recorded and prior pdf’s defined, a solution such as that of equations (5), (7) or (8)
must be evaluated throughout the prior pdf, p(x), to identify one or more locally-optimal” solutions, or,
preferably, to obtain a full probabilistic location pdf. This evaluation generally requires direct-search
optimisation and search techniques, which we discuss below. We first digress and summarize
linearized location procedures, which typically determine a single optimal hypocenter along with a
simplified and approximate representation of the location pdf (e.g., a confidence ellipsoidal centred on
the estimated hypocenter and origin time).

Linearized location methods

With linearized methods the arrival time expression (2), which is nonlinear with respect to the spatial
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location m=(x, y, z), is approximated by a Taylor series expansion around some prior estimate mo=(x,
Vo, z9) of the spatial location:

(m-— mo)z
2
where f(m) is the forward problem that calculates an arrival time dc.. given a location m (e.g., f{m)
might represent the right hand side of equation (2) directly). A linear vector-matrix inverse problem is
obtained if we approximate the forward problem for all dcyc by using only the first two terms of the

Taylor series. The resulting vector-matrix equation may be solved using linear algebraic methods.
This process is called linearized inversion.

f(m)=f(m0)+ (m_mo)f'(mo)+ f”(mo)"' 0[(m_m0)3] (10)

Usually, this linearized inversion is iterated: the prior estimate my is set equal to the newly-found, best-
fit location, the problem is re-linearized around this new estimate using equation (10), and the new
linear problem solved again. This method may be repeated (iterated) many times, as needed to attain
some convergence criteria.

Linearized methods produce a single, best-fit (e.g., maximum likelihood) hypocenter and origin time
location, and associated, linearly-estimated uncertainties, such as a multi-dimensional, normal-
distribution centred on the best-fit hypocenter and origin time. However, this linearized solution is
often a poor representation of the complete solution pdf (Figure 2 and see examples), and it may be
unstable when the pdf is irregular or has multiple peaks due to insufficient or outlier data, velocity
model complexities, and other causes (e.g., Buland, 1976; Lomax et al., 2000).

Direct-search location methods

The earliest, formal earthquake locations from phase arrival time observations used nonlinearized
procedures. Milne (1886) describes and applies several graphical and algebraic methods to determine
earthquake locations. These include a perpendicular bisector method for the case of 3 or more
simultaneous arrival time observations (related to the modern arrival order or bisector method,
described below), a method of hyperbolae based on the differences in arrival times at pairs of stations
(related to the modern EDT method, described below) and a method using the differences in arrival
times of different wave types at individual stations. The latter is a generalization of the method of
circles using S-P times, in which the distance from a station to the source is, for given P and S velocity
models, a function of the difference of the S and P arrival times; an epicentre can be constrained with
such S-P based distances from 3 stations. Reid (1910) determined a hypocenter location for the great
1906 California earthquake through a coarse, systematic grid search over velocity, position along the
causative fault and depth, solving for the origin time and wave velocity by least-squares at each grid
point.

The arrival order or bisector method (Anderson, 1981; Nicholson et al., 2004a) is a nonlinear,
geometrical approach that uses the constraint that if a phase arrival is earlier at station A than at station
B, then the event is closer to A than to B (assuming the velocity model is such that arrival order implies
distance order). Applying this constraint to all pairs of stations defines a convex region containing the
event location. This method is useful for obtaining some constraint on the location of events far
outside of an observing station network, and for rapidly and robustly obtaining starting locations for
linearized methods.

Most other modern, direct-search earthquake location methods (excluding graphical methods that are
now mainly used for illustrative and educational purposes) are based on deterministic or stochastic
searches which may be exhaustive or directed and evolutionary. These searches are used to explore or
map likelihood functions such as those given in equations (5), (7) or (8). When these searches gather
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and retain information globally, throughout the prior pdf p(x), they can produce a complete,
probabilistic location pdf. Otherwise, searches may determine a global or local maximum of the
location pdf, or may explore the neighbourhood around these optimal points to locally estimate the pdf
and obtain uncertainty information.

Regular, deterministic search

Regular and deterministic searches, such as grid-searches, nested grid-searches and stochastic, “crude”
Monte-Carlo searches (e.g., Hammersley and Handscomb, 1967; Sambridge and Mosegaard, 2002) use
global and well-distributed sampling of the model space and thus can estimate the complete location
pdf. All of these approaches are computationally demanding for problems with many unknown
parameters, large parameter spaces, or time consuming forward calculations, because the number of
models that must be tested can be very large. These methods have been successfully applied to the
determination of optimal hypocenters (i.e., Sambridge and Kennett, 1986; Kennett, 1992; Shearer,
1997; Dreger, et al. 1998), and to probabilistic location (i.e., Moser et al., 1992a; Wittlinger et al.,
1993; Calvert et al., 1997; Lomax et al., 2000), but their inefficiency may impose unacceptable
limitations on the number of events that can be considered, or on the size of the search volume.

Directed search

Directed, stochastic search techniques include evolutionary, adaptive global search methods such as the
genetic algorithm (Goldberg, 1989; Sambridge and Drijkoningen, 1992) and simulated annealing
(Kirkpatrick et al.,, 1983; Rothman, 1985; Tarantola, 1987). The simplex method is a directed,
deterministic search technique that is nonlinearized and can be used for earthquake location (e.g.,
Rabinowitz, 2000). Most of these methods were developed for optimization or the identification of
some very good solutions, which is equivalent to identifying a global or local maximum of the location
pdf. In general, these methods do not explore the prior pdf p(x) in a manner that can produce complete,
probabilistic solutions to inverse problems. For example, the genetic algorithm performs global
searching and may be one of the most efficient stochastic methods for optimization, but it does not use
well distributed sampling (the sampling tends to converge rapidly to the region of a locally optimum
solution). Similarly, in the simulated annealing, random-walk method the interaction of its variable
“temperature” parameter and step size with the local structure of the misfit function can lead to
convergence and stalling near a locally optimum solution, and a sample distribution that is neither well
nor globally distributed. Both the genetic algorithm and simulated annealing can be tuned to sample
more broadly and in the limit become crude Monte Carlo searches, but this removes the main
advantage of these methods — that of rapid stochastic optimization.

Though not directly applicable to complete, probabilistic location, directed search algorithms are useful
for direct-search, earthquake hypocentre estimation because of their efficiency (e.g., Sambridge and
Kennett, 1986; Sambridge and Gallagher, 1993; Billings, 1994; Rabinowitz, 2000).

Importance sampling

The efficiency of a Monte Carlo algorithm used to estimate properties of a target (misfit or likelihood)
function can be increased by choosing a sampling density which follows the target function as closely
as possible (Hammersley and Handscomb, 1967; Lepage, 1978; Press et al., 1992). Techniques that
follow this rule are referred to as importance sampling methods, and were originally developed in
physics for fast and accurate numerical integration of multi-dimensional functions. The target function
is unknown, however, and consequently the optimum importance sampling distribution cannot be
determined a priori. Instead, improved efficiency is attained by adjusting (or adapting or evolving) the
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sampling by using information gained from previous samples so that the sampling density tends
towards the target function as the search progresses (Lepage, 1978; Press et al., 1992; Mosegaard and
Tarantola, 1995; Sen and Stoffa, 1995). For example, importance sampling to determine an earthquake
location pdf or likelihood function (e.g., equation (5), (7) or (8)), can be obtained by beginning with a
sampling that follows the prior pdf, p(m), and then adjusting the sampling as the search progresses so
that the sampling density approaches the location pdf.

Importance sampling techniques that can be used to find complete, probabilistic solutions to inverse
problem include the VEGAS algorithm (Lepage, 1978), the Metropolis algorithm (Mosegaard and
Tarantola, 1995), the neighbourhood algorithm (Sambridge, 1998) and, for three-dimensional
problems, oct-tree (Lomax and Curtis, 2001). Other importance sampling methods are discussed in
Hammersley and Handscomb (1967) and in Press et al (1992) in the context of numerical integration.

The VEGAS algorithm (Lepage, 1978; Press et al, 1992) performs importance sampling by
accumulating appropriate sampling distributions independently for each parameter as the sampling
proceeds. This method can give very good estimates of an individual or a joint marginal pdf, but it
looses efficiency if the target function includes strong correlation between parameters or if it is
independent of some parameters (Press et al, 1992). In addition, the VEGAS algorithm may be
difficult or impossible to implement with prior information, such as smoothness constraints, that
introduces correlation between parameters. Consequently, this algorithm may not be appropriate for
some geophysical problems, including earthquake location, when the location parameters are often
correlated or poorly resolved.

The Metropolis or Metropolis-Hastings algorithm (e.g., Mosegaard and Tarantola, 1995) is similar to
simulated annealing but with a constant temperature parameter. The Metropolis algorithm performs a
random walk in the model space, testing at each step nearby trial samples which are accepted or
rejected after evaluation of the forward problem according to a likelihood L(m). Mosegaard and
Tarantola show that this algorithm samples from the posterior pdf of the problem and is therefore an
importance sampling method. They show that, in the limit of a very large number of trials, it will not
become permanently “trapped” near local maxima and consequently will produce global sampling.
Also, because it is a random walk technique, the Metropolis algorithm can perform well even if the
volume of the significant regions of the posterior pdf is small relative to the volume of the prior pdf.
However in practical application this algorithm can become trapped in strong local maxima of the
posterior pdf if this function is complicated. The Metropolis algorithm has been applied to earthquake
location in 3D structures by Lomax et al. (2000) and Lomax et al. (2001).

Another recently developed importance sampling technique used in geophysics is the neighbourhood
algorithm (Sambridge, 1998, 1999a, 1999b), applicable to high dimensional model spaces. Given an
existing set of samples of the objective function, the neighbourhood algorithm forms a conditional pdf
using an approximate Voronoi cell partition of the space around each sample. The algorithm generates
new samples through a uniform random walk within the Voronoi cells of the best fitting models
determined so far. This algorithm is applied to the 4D hypocentre location problem in Sambridge
(2003) and in Kennett (2006).

The oct-tree importance-sampling method (Lomax and Curtis, 2001) uses recursive subdivision and
sampling of rectangular cells in three-dimensional space to generate a cascade structure of sampled
cells, such that the spatial density of sampled cells follows the target pdf values. The relative
probability that an earthquake location is in any given cell i is approximately,

P =VL(x,), (11)
where V; is the cell volume and x; is the vector of coordinates of the cell centre. Oct-tree importance-
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sampling is used to determine a location pdf by first taking a set of samples on a coarse, regular grid of
cells throughout the search volume. This is followed by a recursive process which takes the cell & that
has the highest probability Px of containing the event location, and subdividing this cell into 8 child
cells (hence the name oct-tree), from which 8 new samples of the pdf are obtained. These samples are
added to a list of all previous samples, from which the highest probability cell is again identified
according to equation (11). This recursive process is continued until a predetermined number of
samples are obtained, or until another termination criterion is reached.

For most location problems, including those with a complicated location pdf, the oct-tree recursive
subdivision procedure converges rapidly and robustly, producing an oct-tree structure of cells
specifying location pdf values in 3D space. This oct-tree structure will have a larger number of smaller
cells in areas of higher probability (lower misfit) relative to areas of lower pdf value and thus the oct-
tree method produces approximate importance-sampling without the need for complex geometrical
constructs such as Voronoi cells. Oct-tree sampling can be used with the L2-norm likelihood function
in equation (7) or the EDT likelihood function in equation (8), since both require searching over three-
dimensional spatial locations only. Oct-tree sampling has been applied to earthquake location in 3D
structures by Husen et al. (2003), Husen and Smith (2004), Lomax (2005) and Lomax (2008); we use
this sampling method to determine locations in the examples presented below. Though limited to
determination of the 3D, spatial location, it is possible that this recursive sampling procedure can be
extended to 4D to allow determination of the origin time.

V. [Illustrative Examples

We illustrate the concepts described in the previous sections using an M3.3 earthquake that occurred in
the Garfagnana area of Northern Tuscany, Italy, on March 5, 2007 at 20:16 GMT. The earthquake was
recorded by stations of the Italian Seismic Network (ISN) at distances from less than 10 km to more
than 300 km. We use manually picked P and S phase arrival times from the INSN bulletin with
Gaussian uncertainties (standard deviations from 0.01 to 0.1 s), and a 1-D velocity model similar to the
standard model used by INSN for routine earthquake location in Italy. We perform all event locations
with the probabilistic location program NonLinLoc (Lomax, et al., 2000; Lomax, et al., 2001; Lomax,
2005; http://www.alomax.net/nlloc; NLL hereafter), using the oct-tree sampling algorithm (section I'V)
to perform a global-search within a parameter space M formed by a rectangular volume 360 km on
each side and from the Earth’s surface to 35 km depth (except as noted in figure captions). We use
the L2-norm (equation 7) or EDT (equation 8) likelihood functions to obtain location pdf’s in 3D space
and corresponding maximum likelihood origin times.

In order to describe the location problem and the solution quality for each of the examples presented
below we focus on geometrical properties of the location pdf, which represents most completely the
results of probabilistic, direct, global-search methodologies. We also consider the maximum likelihood
hypocenter, defined as the point in space of the maximum value of the location pdf, and the
corresponding origin time. We examine statistics of the quality of the solutions using the half-lengths
of three principal axes of a 68% confidence error ellipsoid approximation to the location pdf, L.y, the
weighted, root-mean-square of the arrival residual (observed — calculated) times, rms, and a relative
measure of the volume of the high likelihood region of the location pdf, V4, given by,

pdf(x)
I df de ’ ( 1 2)

where pdf™" is the maximum value of the location pdf in M. We also make use of standard measures
of the experimental design quality (i.e, stations coverage) including the gap - the largest angle between
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the epicentre and two azimuthally adjacent stations used for location, and the distance Ay from the
hypocenter to the closest station. These indicators are summarized in Table 1 for the examples
presented here.

These examples are meant to show important features and complexity in earthquake location results,
not to compare different direct-search location methods or to compare direct-search to linearized
algorithms. However, because linearized earthquake location has been and remains an important and
widely used tool, we indicate for each example the location results obtained with a linearized
algorithm, Hypoellipse (Lahr, 1999). Hypoellipse uses a least-squares, L2-norm and produces a 68%
confidence ellipsoid for the hypocenter location. For well constrained locations this ellipsoid should
closely match the pdf of our probabilistic, L2-norm locations; we plot the Hypoellipse ellipsoid for
cases where it differs notably from the probabilistic location, L2-norm pdf.

Example 1: An ideal location

To construct an ideal, reference location and synthetic data set for the 2007 Italian earthquake we first
locate the event using the earliest 20 observed P or § arrival times (Fig. 3; Table 1; example 1a). Next,
we subtract the arrival residuals for this location from the corresponding times for all observations and
relocate the event with the earliest 50 of these “corrected” times (Fig. 3; Table 1; Example 1b). This
procedure results in an ideal, synthetic data set and a location problem that are equivalent to the case of
no “a posteriori” picking error and no travel-time error (i.e., no velocity model error). For this problem
the quality of the solution and the shape of the resulting location pdf reflect primarily the station
geometry and corresponding ray take-off angles about the source.

The reference location (Fig. 3; Table 1; Example 1b) has rms = 0's, gap = 63°, Ao~ 9 km, V4~ 7.0
km® and L; = 1.05, 1.32 and 2.05 km. The rms is necessarily zero because we used residuals as time
corrections, while the other indicators and the near-ellipsoidal form of the location pdf show a well
constrained location. The location is well constrained by the data because stations are available at a
wide range of distances and azimuths. In particular, the presence of a station nearly above the event,
and of both P and S-wave arrival times for the closer stations, give good depth constraint.

Examples 2-5: Station distribution

In the next examples we show locations for three cases with poor station distribution about the source:
1) few available stations; 2) stations all to one side of the event; and 3) no data for stations near or
above the source, and we illustrate the application of experimental design techniques to improve the
station distribution.

Example 2: Few available stations

We first examine relocations of the 2007 Italian earthquake obtained with different numbers of P and S
arrival times selected from the ideal, synthetic data set (Fig. 4; Table 1; Example 2a-d). With only two
stations and 2 arrivals (2 P phases) the location pdf is a fat, near-vertical, planar surface with an
elongated, boomerang shape trending perpendicular to the line connecting the two receivers (Fig. 4a).
With the addition of S arrivals from the same stations (4 arrivals — 2 P and 2 S phases) the location pdf
is greatly reduced in volume, and has the form of an annulus oriented roughly perpendicular to the line
connecting the two receivers (Fig. 4b). The annular form of this pdf results from the intersection of the
boomerang shape pdf produced by the 2 P phases (Fig 4a.) and two hemispherical pdf’s centred on each
station. Each of these hemispherical pdf’s would be produced by location using only the P and the S
reading from either station; this is the probabilistic analogue to the method of circles using S-P times.
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With three stations (3 arrivals — 3P phases) the location pdf forms one mass and its volume is further
reduced. This location pdf retains an irregular, curved shape resulting from poor constraint of one
spatial dimension that trades off with origin time (Fig. 4c). For all of these locations the problem is
effectively underdetermined — the data cannot constrain all three hypocentral coordinates and origin
time. In these cases a linearized location algorithm may not converge and would be unable to represent
properly the effective location uncertainties. As more data are added, the location pdf progressively
reduces in size and complexity, and with the addition of a station close to and above the source (8
arrivals — 5 P and 3 § phases), the location pdf has a compact, near ellipsoidal form indicating some
constraint on all hypocentral coordinates and origin time (Fig. 4d). This location is similar to that
obtained with the complete, ideal data set (Fig. 3b), though the location pdf remains much larger than
that of the ideal case which has arrival times from many more stations.

Example 3: Stations to one side of the event — large gap

Next, we examine the case of earthquakes occurring outside of the recording network with an example
using P arrival times from stations only to the southeast of the earthquake (Fig. 5; Table 1; Example 3).
The location pdf is large and elongated in a northwest-southeast direction oriented towards the centroid
of the available stations because the lack of stations to the northwest (and use of P times only) allows a
strong trade-off between potential hypocenter locations along this direction and origin time. In
contrast, there is some constraint of the pdf to the northeast and southwest due to the aperture of the
available stations. The poor station distribution and potential lack of constraint is clearly indicated by
the large gap value for this location, gap = 251°. One or more good quality S readings can reduce the
elongation of the pdf.

Example 4: Stations far from the event — vertically elongated pdf

We next show an example where the nearest recording stations are far from the earthquake, relative to
its depth, and either P arrival times only or both P and § arrival times are available (Fig. 6; Table 1;
Examples 4a-b). With this station geometry the seismic rays leave the source region with
approximately the same dip-direction to all stations. Consequently a change in source depth gives about
the same change in predicted travel times to all stations. This change in travel time is indistinguishable
from a change in origin time (c.f., Egs. 1 or 2), leading to a strong trade-off between origin time and
depth. Consequently the location pdf has a vertically elongated shape which, for the case of P arrivals
only (Fig. 6a), extends throughout the entire search range in depth indicating no depth constraint. For a
linearized location algorithm this location problem can be effectively underdetermined, though most
linearized algorithms can fix the hypocenter depth artificially in order to obtain a stable epicentral
location. The addition of S arrival times (Fig. 6b) improves the depth constraint to some extent,
although the location pdf remains highly elongated in the vertical direction. The lack of close stations
and potential lack of constraint is clearly indicated by the large A value for this location, Ag= 106 km.

This case is common with sparse networks and with shallow sources. Reducing the vertical extent of
the pdf requires stations at distances of the order of the source depth or less. The addition of one or
more good quality S readings, especially at the closest stations, would further improve the depth
constraint.

Example S: Stations selection with experimental design

Next, we illustrate the application of experimental design techniques to station selection (Fig. 7; Table
1; Example 5). Considering a case similar to Example 3, which has 6 stations to one side of the event
giving poor constraint on the location, we determine an optimal set of 6 stations to best constrain the
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location. To do this we apply a linearized design method (Curtis et al., 2004) to select an optimal
subset of 6 of the available INSN stations to best constrain an event at the (known) location produced
by the ideal, synthetic data (Example 1b).

The design procedure does not simply select the 6 closest receivers to the source (i.e. first 6 available
arrival times, Fig. 7a), but instead selects receivers distributed around, and to a large distance away
from the source (Fig. 7b). This choice can be understood as balancing the distribution of directions
(azimuth and inclination) that the rays leave the source to the selected receivers, a direct result of the
use of the linearized approximations to the model-data relationship (equation 10) in the linearized
design method (Curtis et al., 2004). This method is based on selecting stations based on the similarity
between the rows of the location kernel matrix of the linearized problem; the approach does not differ
significantly from that of Uhrhammer (1980) based on the condition number of the same matrix. The
improvement in station distribution in azimuth is indicated by the small gap value for this location, gap
= 89°. The resulting location pdf (Fig. 7b) is compact and symmetric relative to the location pdf
obtained from the first 6 stations recording the P phases (Fig. 7a), and the maximum likelihood
hypocenter is close to the ideal location hypocenter.

Example 6: Incorrect picks and phase identification - outlier data

For a given hypocenter location, an outlier arrival time has a residual that is much greater than its
nominal error. Data outliers are common with automatic phase arrival picking algorithms, with S
arrival picks, for small events, distant stations, or other cases where the signal to noise ratio is low, and
for early instrumental data where large timing errors are common. In many cases, such as automatic
earthquake monitoring and early warning systems, it is important to have robust location procedures
that are influenced as little as possible by the presence of outliers. One way to achieve this is to use
robust likelihood functions such as EDT (equation 8). In the example below, we compare the
performance of EDT and the more commonly used L2-norm likelihood functions.

This example uses only stations near the source, and arrival times from ideal, synthetic data sets for
both the L2-norm and the EDT likelihood functions. We add 3 s to the P arrival time at two stations to
generate outlier data, and examine L2-norm and EDT locations without and with the outlier data (Fig.
8; Table 1; Examples 6a-d). The L2-norm location with the outlier data (Fig. 8b) does not identify and
isolate the two outlier P-arrivals but instead mixes information from these arrivals with the other data
resulting in relatively large, non-zero residuals for all arrivals. This results in a bias of about 10 km in
the maximum likelihood hypocentre location relative to the ideal location hypocenter, while the
location pdf for the L2-norm locations with and without outlier data have about the same size and form,
but have little overlap (Figs. 8a and 8b). Thus the L2-norm solution gives no clear indication of the
presence of outlier data, or that the solution may be biased. In contrast, the EDT location for the data
set containing the outliers (Fig. 8d) correctly identifies the two outlier arrivals (the EDT residuals for
these two outlier data are both about 2.9 s) and strongly down-weights them (from 1.2 to 0.17 posterior
weight), while producing small residuals (< 0.08 s) for the remaining arrival, as would be the case
without outlier data. The maximum likelihood hypocenters for the EDT locations with and without
outlier data are almost identical, but the location pdf’s are very different (Fig. 8c and d). With outlier
data, the pdf has an irregular shape and several distinct parts, reflecting the inconsistency of the data set
to constrain a unique event location. For the outlier locations, a potential problem with the data set is
indicated by the large rms values with both L2-norm and EDT, and with EDT alone, by the asymmetry
in residuals, the irregular pdf shape, and the large V,4rand I.; values.

This result shows that location in the presence of outlier data can be remarkably stable with the EDT
likelihood function, which is easy to implement with direct-search location techniques. In contrast, the
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same location with the commonly used, L2-norm likelihood function is biased, while presenting few
indicators of this bias.

Example 7: Earthquake early-warning scenario

Location for earthquake early-warning must be performed rapidly and in an evolutionary manner
starting with the first available phase arrivals. In this example we examine the ability of direct-search
location to obtain robust and useful location information using P arrivals from the first stations that
record the Northern Italian event (Fig. 9; Table 1; Examples 7a-d).

Within about 6 seconds after the origin time, #, three P reading are available. Location with these
readings produces an extensive location pdf that fills the southwest quadrant of the search region (Fig.
9a); this pdf does not provide useful constraint on the location, but is robust in that it includes the true
location. Progressive addition of more arrival time data (Fig. 9b and c) reduces the size of the location
pdf. With 5 arrivals, at about 7 s after # (Fig. 9c), the maximum likelihood location is close to that of
the ideal, synthetic location and the location pdf is well delimited, although elongated towards the west
because no arrivals are yet available from stations in that direction. By 13 s after # (Fig. 9d), 10 P
arrivals are available and the location pdf'is now compact and symmetrical, primarily because a station
to the northwest is included. This pdf has small enough V,s and I, values to provide useful,
probabilistic constraint on the location for early-warning purposes at a regional scale, while the
maximum likelihood hypocenter is effectively the same as that of the ideal location. In practical
application, direct-search location results similar to those illustrated here can be obtained within a delay
of less than 1 sec after the readings are available (e.g. Satriano et al., 2007b).

Example 8: Incorrect velocity model

Any velocity model used for earthquake location is an approximation to the true Earth and thus will in
general produce erroneous predicted travel times. The magnitude of error in the travel times depends
on many factors, but will in general be larger for more distant stations and with increased complexity in
the true Earth structure. We examine the effect of an incorrect velocity models by repeating the ideal
location (Example la and b) with and without the “corrected” times, and using 50 P arrivals (the ideal
location was determined using the first 20 P or § arrivals). We examine locations using the L2-norm
and EDT likelihood functions (Fig. 10; Table 1; Examples 8a-d).

The locations with time corrections (Fig. 10a and c) simulate the unrealizable case of perfect
knowledge of the velocity structure. With both the L2-norm and EDT the location results show zero
residuals, compact location pdf’s and a maximum likelihood hypocenter that necessarily matches
exactly the corresponding ideal location. We note, however, that the L2-norm and EDT “ideal”
locations differ slightly because they are derived from noisy, real data, and they use different likelihood
functions.

The locations without time corrections (Fig. 10b and d) use the true observed data (i.e., travel times
through the true Earth) and thus show the effect of an incorrect velocity model (i.e., the 1-D velocity
model used for location). This is shown by the pattern of positive and negative residuals obtained with
both the L2-norm and EDT. The L2-norm location without time corrections has a balanced distribution
of positive and negative residuals and, relative to the L2-norm location with corrections, a similar size
location pdf and a biased maximum likelihood hypocentre. In contrast, the EDT location without
corrections has more positive than negative residuals and, relative to the EDT location with corrections,
a larger location pdf and nearly identical, unbiased maximum likelihood hypocentre. For these
locations, a potential problem with the velocity model is indicated by the large residuals and rms values
with both L2-norm and EDT, and, with EDT, by the asymmetry in residuals, the irregular pdf shape,
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and the large V4 and I values, as with the outlier data example (Example 6).

In effect, locations with an incorrect velocity model and with outlier data are mathematically similar,
though in the former case all or most residuals may be large while in the latter case only a few will be
large. It is difficult to distinguish between the two cases with the L2-norm because this algorithm seeks
to best satisfy all of the observations simultaneously (cf., equation (7)) by balancing the distribution of
positive and negative residual (c¢f., Fig. 8b and Fig. 10b). Thus, relative to the residuals corresponding
to the correct location, the L2-norm solution damps and hides larger residuals at the expense of
increasing small residuals. In contrast, EDT seeks to best satisfy the most pairs of observations (cf-,
equation (8)) and imposes no inherent constraint on the distribution of residuals. Thus with EDT the
difference in number, magnitude and distribution of large residuals - few and large for the outlier case,
many of similar magnitude and spatially correlated for the incorrect velocity model case — allows one,
in principle, to distinguish between the two cases (cf., Fig. 8d and Fig. 10d). In addition, the size and
complexity of the location pdf’s generally increases more rapidly with EDT than with the L2-norm as
the solution quality decreases. Thus, with both the outlier and incorrect velocity model cases, the
location results with the EDT likelihood function are more informative than with the L2-norm.
However, location with the EDT likelihood function can become unstable (e.g. define only a local
maximum of the pdf) for cases where the outlier data or velocity model errors lead to extreme
complexity in the topology of the EDT location pdf.

VI. Future directions

There are various ways that direct, global-search location methodologies may evolve in the future. For
example, the stability and completeness of the location and location pdf could be improved with the use
of more complete data uncertainties, expressed as a pdf. These pdf’s may typically be irregular and
asymmetric, and difficult to determine and parameterize. Currently, enumerated quality indications or,
at best, simple normal distributions (describing Gaussian uncertainty) are used to describe the picking
error.

Similarly, we have shown that earthquake location depends inherently on the velocity model adopted,
but that no realistic uncertainties are associated with this model. Differences between the velocity
model and the true Earth can result in complicated differences in ray-paths and travel-times, which will
depend strongly on the source and receiver positions. These complications, combined with the lack of
knowledge about the true Earth, makes estimating true travel time uncertainties effectively impossible.
However, it can be assumed that changes become progressively larger with increasing ray-path length.
This effect could be accounted for approximately by travel-time uncertainties that increase with the
ray-length or travel time. Instead of using a velocity model to generate travel times, another approach
is to derive the required times from tables of empirically determined or corrected travel times (e.g.
Myers and Schultz, 2000; Nicholson et al., 2004b). With this approach the travel-time uncertainties are
estimated from timing information, with little or no direct use of velocity structures or ray paths.

We have described and illustrated the importance of the source-receiver geometry for locating
earthquakes, notably with regards to constraining a compact and symmetric location pdf. Thus,
improved constraint on event locations can be achieved through prior use of survey design techniques
to select station sites. In a related manner, after an event occurs, these techniques could be employed
dynamically to weight the available arrival times used for location with respect to the geometry of the
available stations around the likely source region.

The demand for rapid, real-time location and earthquake early warning requires improvements in the
integration, speed, quality and robustness of the phase arrival picking, phase association and event
location procedures. Currently, development is progressing on integrated procedures which are
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evolutionary and probabilistic, using, for example, robust likelihood functions such as EDT and
information from not-yet-triggered stations (e.g., Horiuchi et al.,, 2005; Rydelek and Pujol, 2004;
Satriano et al., 2007ab; Cua and Heaton, 2007).

A current problem in direct-search location is how to describe in a standardized and compact way the
sometimes topologically-complex location pdf. For example, such a description is needed if the pdf is
to be included in standard earthquake catalogues and for rapid dissemination of probabilistic location
information for earthquake early-warning. More generally, making full use of the extensive
information in direct-search location solutions will require new methods and procedures to store,
distribute and analyse the location pdf, maximum likelihood hypocentre, arrival residuals and weights,
and other statistics and quality indicators of the solutions.

The continuing increase in computer speed will allow application of direct-search inversion methods to
relative location of ensembles of events and for joint epicentral determination in the near future. The
use of these methods will be important to explore more completely the vast solution space and better
determine the error and resolution for such high-dimensional inverse problems.

The continuing increase in computer speed will also make practical earthquake location techniques
using waveform recordings directly, without the intermediate stage of extracting phase arrival times. In
these techniques, continuous waveform data streams are matched to synthetic Green’s functions within
a global-search over possible source locations and source parameters. This type of approach is used to
locate previously unidentified earthquakes using low amplitude surface waves on oft-line, continuous,
broadband waveforms (Shearer, 1994; Ekstrom, 2006), and for automatic, real-time estimation of
moment tensors and location from continuous broadband data streams (e.g., Kawakatsu, 1998).
Waveform methods will likely be applied to earthquake location on local and regional scales as faster
computers and more accurate 3D velocity models become available; related applications using simple
ray or acoustic theories to generate the Green’s functions show promising results (e.g., Baker et al.,
2005).
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Lat Lon Depth rms gap Ay Ne Vpdf Ry li' L Lid

Example o)) km) () () (km)  (km’) (km) (km) (km) (km)
ideal 1a 44208 10.295 1098 0.399 &9 9.1 20 26 1.8 1.6 22 3.2
1b 44208 10.295 1098 0.000 63 9.1 50 7 1.2 1.1 1.3 2.1
2a 44.163 12.267 47.44 0.000 335 232 2 742001 823 309 539 223
. 2b 44.172 9.565 77.60 0.001 192 258 4 21600 253 59 432 819
few stations
2¢ 44208 10.295 1440 0.000 173 645 3 2011 7.8 4.8 73 202
station 2d 44208 10.295 1098 0.000 99 9.1 8 66 2.5 2.1 2.7 49
distribution side 3 44207 10296 11.03 0.004 251 29.0 19 444 4.7 34 47 11.0
far 4a 44207 10296 11.03 0.006 103 106 46 234 3.8 2.0 24 178
4b 44208 10.295 1098 0.000 103 106 50 66 2.5 1.7 22 8.1

experimental 5a 44215 10.290 15.13 0.014 229 99 6 1806 134 83 13.7 59.1

design 5b 44208 10.295 7.83 0.007 89 363 6 381 6.6 3.1 37 115
6a 44.207 10.296 11.03 0.007 135 9.00 10 172 35 29 37 67
6b 44.120 10.267  9.02 0.813 156 10.5 10 17235 3.0 42 90
6¢ 44221 10.305 9.94 0.006 132 94 10 167 34 45 7.7 152
6d 44215 10.304 10.02 0.540 133 9.0 10 275 4.0 10.7 30.8 429
7a 44.139 10.194 24.79 0.012 307 15.6 3 628090 53.1 18.7 81.6 104
7b 44210 10.302 10.57 0.015 250 8.8 4 33908 20.1 184 30.0 105
Tc 44208 10.295 11.12 0.008 227 9.1 5 1704 74 53 139 302
7d 44207 10.296 11.03 0.007 135 9.0 10 172 35 29 37 67

L2-norm

outlier
EDT

early warning

. . L2norm 83 44208 10.295 10.98 0000 63 9.1 50 15 15 13 17 29
mf;ff;fy 8b 44160 10244 269 0.808 66 11.4 50 17 16 13 17 30
model EDT — 8¢ 44.220 10305 998 0.000 63 9.4 50 1114 12 15 26

8d 44.192 10.280 7.20 0.795 64 9.3 50 167 34 28 39 6.7

Table 1. Summary of results and quality indicators for the example locations. R, is the radius of a
sphere with volume V4 lelll, lellz, Ly are the half-lengths of the error ellipsoid axes; Np is the number
of phases used for the location; A is the distance to the closest station.
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A short waveform segment (~5 sec) showing the first P wave arrivals from a small earthquake in
Northern Italy recorded on a vertical component seismogram at a nearby station. Automatic arrival
pick times (vertical blue lines) and uncertainty estimates (blue error-bars) are shown for two phases, a
first arriving P phase (P0) and secondary P arrival (P1). The red curves show the data pdf functions
representing these arrival pick times and uncertainties for an event location procedure where the data
P(d) is approximated by a normal distribution. The green curves show irregular, asymmetric pdf
functions that may more accurately represent the uncertainty in the phase arrival times; if such pdf
functions were routinely estimated during arrival picking, they could be used without major difficulty
for direct-search location.
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Figure 2

Schematic diagram comparing linearized and direct-search locations for the case where the complete
location pdf is moderately complicated, with two maxima. This example arises from the case of a
location at the limits of the recording network and near a sharp, horizontal interface in the velocity
model between lower velocities above and higher velocities below. The coloured, contoured form
shows the true location pdf, as should be determined by a complete, probabilistic, direct-search location
procedure. A linearized location that iterates from an initial trial location below the sharp interface will
find an optimal hypocenter near the secondary, local maximum of the location pdf, below the interface.
The linearized error ellipsoid, based on the curvature of the misfit function at this optimal hypocenter,
reflects the form of this secondary maximum only. The linearized location procedure never identifies
or explores the primary maximum of the pdf above the sharp interface, and produces incorrect error
information above this interface (i.e. the uppermost part of the error ellipsoid). A probabilistic, direct,
global-search procedure can determine the complete location pdf and identify correctly the maximum
likelihood hypocentre located above the sharp interface.
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Figure 3
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Example 1: An ideal location. a) Location obtained using the first 20, observed P or S arrival times;
b) location obtained using the first 50, P or S corrected arrival times from the ideal, synthetic data set.
The elements shown in these and the following figures are: stations used for location (blue dots, in
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some cases stations fall outside the plotted region); location pdf (red cloud of points); maximum
likelihood hypocenter (green dot); ideal, synthetic location (black cross); P arrival residuals at each
station: positive (green, up-going bars) and negative (red, down-going bars), numbers indicate residual
value in sec. The Hypoellipse linearized locations and ellipsoids do not differ significantly from the
direct-search locations shown in this figure.
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Figure 4
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Example 2: Few available stations. Locations obtained using progressively (a-d) a larger number of
arrival observations. a) 2P phases (2 stations); b) 2P and 2 S phases (2 stations); c¢) 3P phases (3
stations); d) 5P and 3S phases (5 stations). For the locations in a) and b) the oct-tree search is
performed to 100 km depth. In this and the following figures the 68% Hypoellipse ellipsoid is shown
with green lines. Hypoellipse linearized location: does not converge for the location in panel a);
ellipsoid differs markedly from the direct-search location pdf in panels b) and c); and does not differ
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markedly from the direct-search location in panel d).
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Figure 5
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Example 3: Stations to one side of the event. A location example with P-wave arrival times at 7
stations only to the southeast of the event. The Hypoellipse ellipsoid differs markedly from the direct-
search location pdf in this figure.
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Figure 6
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Example 4: Stations far from the event. A location example using stations far from the epicentre,
with a) P arrival times only, b) both P and § arrival times. Hypoellipse linearized location: ellipsoid
differs markedly from the direct-search location pdf in panel a); and does not differ markedly from the
direct-search location in panel b).
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Figure 7
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Example 5: Stations selection with experimental design. A location example showing a) Location
using the stations with the first 6 available arrival times, b) location using an optimal set of 6 stations as
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determined with a linearized experimental-design method. Available stations not used or selected are
shown with open triangle symbols. Hypoellipse linearized location: ellipsoids differ markedly from the
direct-search location pdf ‘s in panels a) and b).
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Figure 8
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Example 6: Incorrect picks and phase identification - outlier data. Locations using ten P-wave
arrival times with L2-norm and a) no outliers, b) two arrival-time outliers, and with EDT and c) no
outliers, d) two arrival-time outliers. The stations with outlier arrivals are shown with violet dots. Note
the small pdf of L2-norm regardless of the outliers and, in contrast, the ability of EDT to detect the
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outliers (see text). The Hypoellipse ellipsoid differs markedly from the direct-search location pdf in
panel b). Hypoellipse not compared to EDT locations in panels c) and d).
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Figure 9
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Example 7: Earthquake early-warning scenario. Progressive location using a) 3, b) 4, ¢) 5 and d) 10
stations. Hypoellipse linearized location: ellipsoids differs markedly from the direct-search location
pdf's in panel a), b) and c); and does not differ markedly from the direct-search location in panel d).
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Figure 10
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Example 8: Incorrect velocity model. Locations using 50 P arrivals with the L2-norm and a) time
corrections, b) no time corrections, and with EDT and ¢) time corrections, d) no time corrections. The
locations without the ideal time corrections show the effect of an incorrect velocity model. The
Hypoellipse linearized locations and ellipsoids do not differ markedly from the direct-search locations
shown in this figure.
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