Convection in Thin Shells of Icy Satellites: Effects of Latitudinal Surface Temperature Variations

Matthew B. Weller¹, Lukas Fuchs¹,³, Thorsten W. Becker¹,², and Krista M. Soderlund¹

¹ Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, USA

² Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, USA

³ Now at Johann-Wolfgang Goethe Universität, Frankfurt, Germany

corresponding email: mbweller@ig.utexas.edu

Keywords: planetary interiors; convection in thin shells; icy satellites; geodynamics
Key points

- A pole to equator variation in insolation can drive "Hadley-like" convective cells in the ice shell, with polar downwelling and equatorial upwelling.
- Velocity and surface deformation patterns can be diagnostic, with poleward compressive and equatorward extensional trends.
- Latitudinal variation in surface temperature is likely an important effect for convection within the outer satellites.
Abstract

We use three-dimensional numerical experiments of thin shell convection to explore what effects an expected latitudinal variation in solar insolation may have on a convection. We find that a global flow pattern of upwelling equatorial regions and downwelling polar regions, linked to higher and lower surface temperatures (T_s), respectively, is preferred. Due to the gradient in T_s, boundary layer thicknesses vary from equatorial lows to polar highs, and polar oriented flow fields are established. A “Hadley cell” type configuration with two hemispheric scale convective cells emerges with heat flow enhanced along the equator, and suppressed poleward. The poleward transport pattern appears robust under a range of basal and mixed heating, isoviscous and temperature-dependent viscosity, vigor of convection, and different degrees of T_s variations. Our findings suggest that a latitudinal variation in T_s is an important effect for convection within the thin ice shells of the outer satellites, becoming increasingly important as solar luminosity increases. Variable T_s models predict lower heat flow and a more compressional regime near downwellings at higher latitudes, and higher heat flow and a more extensional regime near the equator. Within the ice shell, Hadley style flow could lead to large-scale anisotropic ice properties that might be detectable with future seismic or electro-magnetic observations.
Due to the curvature of planets, energy from the Sun varies from the equator to the poles. On airless bodies, such as the icy satellites, this difference in the Sun's energy leads to a variation in surface temperatures from an equatorial maximum to a polar minimum. This difference in surface temperatures for the icy satellites is a significant fraction of the temperature at the base of the ice shell, or a significant fraction of the temperature differential that drives convection. We use numerical models of mantle convection in a three-dimensional sphere to show that a poleward transport of material from equatorial regions emerges. Models with latitudinally variable surface temperatures predict lower heat flow, thicker conductive regions, and a more compressional stress state near downwellings at high latitudes, and higher heat flow, thinner conductive regions, and a more extensional stress state near the equator. A latitudinal variation in surface temperatures is likely an important effect for convection and the expression of surface deformation of the icy outer satellites, and becomes increasingly important as the Sun ages.
1) Introduction

The surfaces of the icy satellites within our solar system indicate a wide range of geologic activity, from relatively undeformed Callisto (e.g., Bender et al., 1997; Greely et al., 2000; Moore et al., 2004) and Dione (Moore et al. 1985; Wagner et al. 2006; Moore and Schenk 2007; Collins et al., 2010) to highly deformed Ganymede (e.g., McKinnon and Parmentier 1986; Pappalardo et al. 2004), Miranda (e.g., Smith et al. 1986; Zahnle et al. 2003; Cameron et al., 2018), Enceladus (e.g., Porco et al., 2006; Kirchoff and Schenk 2009; Collins et al., 2010; Barr and Preuss, 2010), and Europa (e.g., Helfenstein & Parmentier, 1985; Greeley et al., 2004; Kattehorne and Prockter, 2014), the latter two currently active as evidenced from observed plumes (e.g., Spitale & Porco 2007; Spencer et al., 2009; Jia et al., 2018). Explanations for the variations in activity range from external impact events to internal processes such as ice shell solidification and convection (e.g., Pappalardo et al., 1998a; McKinnon 2006; Moore 2006; Grott et al., 2007; Hammond and Barr, 2014 a,b; Barr and Hammond 2015; Sparks et al., 2017). Solid state convection is a particularly attractive solution as the outer satellites’ ice shells likely have significant energy input from tidal heating, in addition to heating from the underlying silicate mantle.

Unraveling how heat is transferred in the outer ice shells is of key importance for understanding the thermal and dynamic evolution of icy bodies. The efficiency of heat transport, its spatial distribution, and the mode the transport takes across the outer shell controls the satellites’ evolution, both in the interior as well as the styles of resurfacing and stress distribution within and on the surface of the ice shell. The long term evolution in turn controls the existence as well as the longevity of any potential subsurface ocean and, consequently, is a significant control for the possibility for life on these worlds. As such, in order to understand the thermal and geodynamic evolution of icy satellites, and how these
may or may not lead to clement conditions for life, we need to understand how ice convection behaves in response to physical processes and driving forces on the icy satellites.

Here, we address the effect of latitudinally variable surface temperature (due to differences in solar heating; e.g., Ojakangas and Stevenson, 1989a; Nadeau and McGehee, 2017) for isoviscous and temperature-dependent viscosity convection for pure basal and mixed heating systems with high internal heating rates (as proxy for tidal heating) on the convective vigor and planform within a thin ice shell of fixed thickness. The majority of studies of the icy satellites focus on Cartesian geometries (e.g., Showman and Han, 2004, 2005; Barr 2008; Han and Showman, 2010; O’Neill and Nimmo, 2010; Hammond and Barr, 2014a,b; Barr and Hammond 2015) with relatively few exploring convection in thin shell geometries or in full spherical 3-D (e.g., Roberts and Nimmo, 2008; Han et al., 2012; Showman et al., 2013; Yao et al., 2014; Guerrero et al., 2018). The intent of this work is not to model convection in a specific icy satellite, but instead to explore the effect of latitudinally variable surface temperatures in cases of thin shell convection that may be applied broadly to any icy satellite (and potentially Mercury and extra-solar planets, cf. van Summeren et al., 2011; Tosi et al., 2015). Our models are deliberately simple, so as to be able to isolate the effects of variable surface temperature on dynamics in full spherical 3-D systems before incorporating other complicating processes, such as tidal dissipation, in a subsequent study.

In order to evaluate the effects of latitudinal variation in surface temperature, we first focus on a simple system of basally heated, isoviscous convection. Subsequently, we add complexity by including varying degrees of temperature-dependent viscosity. Following this, we test the robustness and sensitivity of the system to a range of parameters. First, we consider the effects of a mixed heating system (combination of basal and internal heating to mimic tidal heating effects). Second, we test the sensitivity of our results by evaluating
differing vigors of convection, and third we test the effects of the amplitude of surface temperature variations. We show that a latitudinal variation in solar insolation has a robust effect on all convective systems tested. It affects the planform of convection, velocity and strain distributions, and heat flux patterns, which have important and testable implications for the icy satellites.

2. Numerical Models and Methods

To model global convection in 3-D, spherical geometry we use dimensionless forms of the governing equations for conservation of mass, momentum, and energy, assuming infinite Prandtl number and Boussinesq approximations:

\[u_{i,j} = 0 \quad (1) \]

\[-P_j + \left(\eta (u_{i,j} + u_{j,i}) \right)_j + RaT \delta_{ij} = 0 \quad (2)\]

\[T_j + u_i T_j = T_{ji} + Q \quad (3) \]

where \(u \) is velocity, \(P \) is dynamic pressure, \(\eta \) is viscosity, \(Ra \) is the Rayleigh number (defined below), \(T \) is temperature, \(\delta_{ij} \) is the Kronecker delta, \(Q \) is heat production rate, \(i \) and \(j \) represent spatial indices, \(r \) is a unit vector in the radial direction, \(t \) is time, and the form \(X_{ij} \) represents the derivative of \(X \) with respect to \(y \). Repeated indices imply summation. The governing equations (1-3) are solved using the finite element community code CitcomS (version 3.3) (Moresi and Solomatov, 1998; Zhong et al., 2000, 2008).

The vigor of convection, as defined for pure basal convection, can be described by a Rayleigh number:
\[Ra = g \rho \alpha \Delta T d^3 / (\kappa \eta) \] (4)

where \(\alpha \) is thermal expansivity, \(\rho \) is density, \(\eta_0 \) is reference viscosity, \(\Delta T \) is the reference temperature drop given as the temperature contrast from the convecting layer depth \((d) \) to the surface \((T_b - T_s) \) and \(g \) is the gravitational acceleration. The non-dimensional quantity \(Q \) characterizes the internal heat generation rate:

\[Q = H d^2 / (\kappa \Delta T) \] (5)

where \(H \) is the volumetric heating rate.

Variables are non-dimensionalized following:

\[
\begin{align*}
\tau = \frac{d^2}{\kappa} \tau' & \quad u = \frac{\kappa}{d} u' & \quad \eta = \frac{\kappa}{d} \eta' & \quad \Delta T = \Delta T' & \quad q_{\text{conv}} = \frac{\kappa \Delta T}{d} Nu & \quad \tau = \frac{\eta_0 \kappa}{d^2} \tau'
\end{align*}
\] (6)

where \(\kappa \) is thermal diffusivity, \(q_{\text{conv}} \) is the heat flux, \(Nu \) is the non-dimensional heat flux, \(k \) is the thermal conductivity, and \(\tau \) is stress. Variables marked as \(X' \) are taken to be dimensionless in equation (6); primes are dropped for clarity elsewhere.

Viscosity is assumed temperature-dependent as given by

\[\eta(T) = \eta_0 \exp \left(A \left[\frac{1}{T + 1} - \frac{1}{2} \right] \right) \] (7)

where the rheological parameter \(A \) is the non-dimensional activation energy that controls the total variation in the temperature-dependent viscosity \((\Delta \eta) \) of the system (it is implied the \(Ra \) is defined for a viscosity at \(T = 0.5 \)). The internal temperature, despite cases with high \(Q \) values, falls within the boundary surface and basal temperatures \([T_s, T_b] \) (e.g., \(T < T_b \) for all cases). The reference viscosity \((\eta_0) \) is controlled in part by the ice grain size (e.g., McKinnon,
Despite ice grain sizes in the outer satellites being poorly constrained (e.g., Kirk and Stevenson, 1987; Barr and McKinnon, 2007), it has been suggested that a reasonable assumption of the dimensional reference viscosity of ice at the base of an ice shell to be \(\eta_0 \approx 10^{13} \) to \(10^{15} \) Pa·s (e.g., Pappalardo et al., 1998a; Durham and Stern, 2001), which corresponds to an ice grain size range of 0.1 – 2 mm (e.g., Kirk and Stevenson, 1987; Barr and McKinnon; Han et al., 2012).

We have modified the boundary condition of CitcomS to allow for a smooth variation in surface temperature with co-latitude \(\phi \) in the functional form \(\sin(\phi) \), which allows for maximum insolation at the equator and minimum insolation at the pole (assuming an axial tilt of \(\approx 0^\circ \) from the solar plane and a fixed bond albedo). Along the ice-ocean interface, the ice shell may reach \(\approx 273 \) K assuming a low salinity ocean (e.g., Glein et al., 2015), which we take as our basal thermal boundary condition (\(T_b = 1 \) non-dimensionally, as per eq. 5).

Variations in surface temperatures from pole to equator of airless bodies may be expected to be a few 10s K (e.g., Ojakangas and Stevenson, 1989; Nadeau and McGehee, 2017). We take this variation to be \(\approx 16\% \) the temperature at the base of the ice shell, or equivalently 45 K as a maximum value, in line with, though slightly lower than, suggestions for the Galilean system (e.g., Squyres, 1980; Ojakangas and Stevenson, 1989a; Nimmo and Manga, 2009). A subset of models are tested at half the surface temperature variation, \(\approx 8\% \) the basal temperature or 22.5 K, in line with suggestions for the Saturnian and Uranian systems.

Additional detail is given in the Supporting Information (Whitaker et al., 1973; Bergstralh et al., 1991; Murray and Dermott, 1999; Howett et al., 2011; Baland et al., 2016).

We run suites of numerical experiments for both homogeneous and latitudinally variable surface temperature conditions, under both isoviscous and temperature-dependent viscosity formulations. In addition to basally heated systems, a subset of mixed heating
models with high degrees of internal heating are additionally explored in order to mimic the
effects of tidal heating. Uniform internal heating rates range from a maximum value of
$Q = 49$ to a minimum of $Q = 10$ (where $Q = 0$ represents basal heating conditions), which
correspond roughly to $H \sim 10^{10} \text{ W kg}^{-1}$ to $10^{11} \text{ W kg}^{-1}$, respectively (e.g., O'Neill and
Nimmo, 2010), and are calculated using the average surface temperature following eq. (5).

We consider a range of Ra values estimated to be representative for the icy satellites: $3 \cdot 10^5$,
$7 \cdot 10^5$, and $3 \cdot 10^6$, corresponding to a reference viscosity of $\nu (10^{14}) \text{ Pa s}$. For our nominal
model space, we mostly focus on the lowest representative $Ra (3 \cdot 10^5)$, with higher Ra values
(more numerically intensive) limited to testing the robustness of our solution space. Table 1
illustrates how these model parameters are expected to compare to a set of satellites spanning,
and largely representative of, three gas giant planetary systems (Jovian: Europa; Saturnian:
Enceladus; and Uranian: Miranda).

In order to isolate the effects of latitudinally variable surface temperatures on the
planform of convection, both latitudinally variable and homogeneous surface temperature
cases are run at the same average surface temperature (e.g., $T_s \approx 0.105$). That is, both models
are designed to operate with approximately the same effective Ra, as defined by equation (6)
using the average surface temperature. For models with temperature-dependent viscosities,
the rheological parameter, A, is chosen to yield a variation in viscosity from the base of the
domain to the surface of $10^2 - 3 \cdot 10^4$. At high viscosity contrasts ($\Delta \eta \geq 10^4$), the system enters
a characteristic stagnant lid regime where convection only occurs under a thick immobile lid.
For both simplicity and to be consistent with previous studies, we adopt a Newtonian flow
formulation (e.g., O'Neill and Nimmo, 2010; Han et al., 2012). The core fraction, or
curvature, is defined as the ratio of the inner to outer boundaries ($f = R_i/R_0$). In our models
this is set to 0.762, which gives a dimensionless ice shell thickness (d) of 0.238 (~24% of a
general satellite radius). This would imply an ice shell thickness of ~ 60 km for a general
Enceladus or Miranda type satellite, which is in the range for suggested current maximum Enceladian ($d \sim 60$ km) and minimum Mirandian ($d \sim 59$ km) ice shell thicknesses (see Table 1 and caption). Due to the overlapping ranges in key satellite parameters (e.g., R_i, g, T_s) and the assumed shell thickness of ~ 60 km, Enceladus and Miranda type satellites are, for our cases here (e.g., in terms of system behaviors and metrics such as surface/internal velocities) broadly similar. In the case of Europa, full 3D spherical shell experiments exploring currently expected ice shell geometries (f as great as 0.99; Table 1) are computationally demanding, and as a result this geometry is not explicitly considered. The model domains consist of $65 \times 65 \times 32$, $65 \times 65 \times 65$, or $129 \times 129 \times 65$ grid cell elements (x, y, and z directions, respectively) for each of the 12 spherical caps of CitcomS’ mesh structure; higher resolutions are necessary to adequately resolve the velocity structure of both larger Ra and isoviscous models. As discussed in the Supporting Information, lower resolution models are not as well resolved and show small velocity artifacts. Boundary conditions are free slip. Each numerical experiment is run to a statistically steady state where the time averaged heat flow from the surface is equal to within $\sim 1\%$ of the base. Isoviscous models were initialized from a conductive state with the same temperature perturbation of 0.1 magnitude in spherical harmonics degree three at mid model depths. Following statistically steady-state conditions for the isoviscous system, temperature-dependent viscosity is added. Simulations are run to a minimum of 20 overturn times (time a parcel takes to traverse the ice shell) to ensure that the system is sufficiently removed from its initial state (e.g., isoviscous flow structure). Additionally, select models with temperature-dependent viscosity were initialized from the original conductive state and temperature perturbation to ensure that the results were not strongly influenced by the isoviscous initial condition. The results of 67 three-dimensional numerical experiments are summarized in Table 2.
3. Convection with Homogeneous and Latitudinally Variable Surface Temperatures

3.1. Basally Heated Isoviscous Systems

In order to isolate the effects of a pole to equator variation in T_s on the planform of convection, we initially consider simple isoviscous experiments. These models are driven by basal heating and are designed to operate at the same average surface temperature and approximately the same effective Ra (see Supporting Information). The basal Ra is fixed for each model at 3×10^5. For isoviscous convection, surface velocities have a simple relation to interior convection and mobility of the system (defined as $M = u_{\text{surface}} / u_{\text{mantle}}$). Mobility is a measure of the surface dynamics and the average level of interaction with the interior globally. In general, high mobilities, as for instance those here that approach unity, indicate that the surface moves at the same velocity as the interior of the convecting system; i.e. the surface participates in, and is the expression of the convecting cell at depth. Therefore, the surface dynamics are largely representative of the convecting system as a whole. In contrast, low mobilities, those less than unity and greater than ~0.1, indicate that the surface lags behind the convecting interior, though it may still participate in overturn and the convective cycle. For mobilities much less ~0.1, the surface no longer participates in a meaningful way with the convecting interior.

As compared to a homogeneous T_s case, the net effect of a pole to equator variation in surface temperature is to disrupt the planform of convection. This can be seen clearly in the surface velocity plots (Fig. 1). A homogeneous surface temperature favors large Rayleigh–Bénard style convective cells, with broad upwelling sites and ring-like downwelling curtains. Surface velocities have no preferred global orientation, instead they are strictly controlled by
“local” upwelling and downwelling sites with little communication between stable cells, though they are coupled at their boundaries. As a result, both heat flow and strain rate are largely focused into a "patchwork" structure. Mobility for both surface temperature cases is ~1.2 (less than 2% difference between cases). Surface velocities for both cases are approximately 1700 (non-dimensional velocity \(u' \)), which leads to a dimensional velocity \(u_s \) ~ 20 cm/a, from eq. (6) using the defined ice shell thickness (\(d \)) of 60 km. Stress (\(\tau \)) can be calculated by multiplying the strain rate and viscosity fields with a factor of two. The viscosity is uniform in isoviscous models, so stress also reflects the strain rate field. With a reference viscosity of \(10^{14} \) Pa·s, the average and maximum dimensional surface stress is \(\tau_{\text{mean}} \sim 1 \) and \(\tau_{\text{max}} \sim 16 \) Pa (\(\tau'_{\text{max}} \sim 580 \), dimensionalized using eq. 6) for both surface temperature cases. All figures are snapshots at a single time in the statistically steady state simulations.

Each result is checked to ensure that the global flow structures are representative through the simulation (quasi steady-state).

The application of a variation in \(T_s \) (maximal at equator and minimal at the poles), results in a disruption of this configuration. The equatorial region tends to favor warm upwellings as indicated by a band of low velocities, high heat flows, and high strain rates in Figure 1, while downwellings tend to be concentrated in the polar region. The downwelling zones become elongated, hemispheric in scale, and oriented nearly perpendicular to the equator. This is reflected in the velocity field at the surface, where material is generally transported away from the warmer equator towards the cooler poles. This poleward oriented convective cell results in heat flow and velocity gradients that are focused along the equator, and along lines of longitude towards the poles.

Heat flux (Fig. 1B, E) is a proxy for age (flux is inversely proportional to the square root of cooling age for a half-space) and boundary layer (or "lithospheric") thickness, and can
offer a window into the internal structure of the convective shell. Regions of high heat flow correspond to upwelling zones of higher internal temperatures, where low heat flow corresponds to regions of downwellings and lower internal temperatures. Consequently, the boundary layer thickness is controlled by the local upwelling and downwelling structure in the homogeneous T_s case and the variation in the global surface temperatures in the latitudinally variable T_s case. Here, the boundary layer thins in warmer equatorial regions with active upwellings and thickens in the colder polar regions or active downwellings, preferentially (e.g., Fig. 2).

Figure 2 illustrates the meridionally averaged variation in internal structure from pole to equator (marked as “eq”) for the convective shells. Results are further time averaged across statistically steady state solutions (minimum of 1.5 overturn times). Equatorial ice of the latitudinally variable T_s case is indeed warmer, with a thinner boundary layer, and the poles are significantly colder with thicker boundary layers (Fig. 2 C, D). The net motion of the surface is also shown to be directed poleward (Fig. 2 B). The Thermal Boundary Layer depth from the surface (z_{TBL}) is calculated from the inflection point of the second derivative of the meridionally averaged radial temperature field, which corresponds to the transition from conductive to convective profiles (consistent with the approach of Moore, 2008; Weller et al., 2016). Select profiles were additionally tested using both the horizontal velocity field (10% of bulk internal velocity defining the base of the mechanical "lithosphere"), and classic boundary layer/heatflow scaling relationships (e.g., Turcotte and Schubert, 2005). All approaches calculated the z_{TBL} to be in ~1% of each other. The z_{TBL} is calculated as a function of latitude in 0.25° intervals to resolve small scale features. The average z_{TBL} for both T_s cases is 0.987 (3.3 km thickness). The non-dimensional radius of the outer surface (R_o) is set to 1, such that the non-dimensional thickness of the convecting layer is given as $1 - R_i$ (outer...
minus inner radius). Dimensionalizing by the satellite radius (Table 1) results in the \(z_{TBL} \) thickness reported (given the similar values between the radii of Enceladus and Miranda, we report thicknesses based on Enceladus' radius). The standard deviation of the \(z_{TBL} \), calculated over both the time and latitudinal domains, is 0.002 (0.5 km). An inspection of the homogenous \(T_s \) case in Figure 2C indicates an asymmetric \(z_{TBL} \) about the pole. A global minima in depth occurs at ~ 70°S and a global depth maxima occurs at the south pole, apparently similar to the variable \(T_s \) case. The \(z_{TBL} \) thickness minima and maxima, as well as its gradient, offer clues to resolve the apparent discrepancy. The variable \(T_s \) indicates global minima and maxima at the poles and equator, with a steady (within natural variation) deepening of the \(z_{TBL} \) towards the poles. In contrast, the variation for the homogenous case from 70°S is not reflected globally i.e. the steep gradient is localized in extent. These suggest that this change in \(z_{TBL} \) is reflective of asymmetric convection, which is common within this \(Ra \) parameter range (e.g., Schubert et al., 2001).

The effect of variable insolation on these systems is then to break the asymmetric planforms that develop in favor of symmetry about the equator. This can be seen in greater detail in the averaged flow field (denoted by arrows). The homogeneous \(T_s \) case shows multiple convective cells operating in each hemisphere, with the equator being a zone of weak downwelling between two adjacent cells. The specific locations of upwelling and downwelling zones is arbitrary, and no one specific orientation would be preferred. The latitudinally variable \(T_s \) case shows two distinct, hemispheric scale convective cells with poleward flow at the surface, and equatorward flow at the base, indicating a preferred orientation and symmetry due to variable surface temperature conditions in contrast to the constant case (see the \(z_{TBL} \)). Quantitatively, this is shown in the power spectra (Fig. 2 E, F), where the wavelengths of convection are obtained from the spherical harmonics decompositions of the poloidal velocity field at each radial level indicated up to spherical
harmonic degree $l = 25$ (normalization of Dahlen and Tromp, 1998). Low l values indicate large wavelength features, with increasing l values corresponding to progressively smaller features. Due to the hemispheric symmetry imposed by the latitudinal variation in surface temperatures, we use the $l = 2, m = 0$ component of the poloidal velocities as a diagnostic metric of the power of the hemispheric scale flow field (including higher order m increases the power of the $l = 2$ component, but otherwise does not qualitatively change these results).

The dominant powers of the homogenous T_s case are spread fairly evenly between $l = 1$ and ~ 7. All degrees show a significant drop in power at the mid-depth, which corresponds to the velocity minima at the center of the convective cells (Fig. 2 A and B). In contrast to the homogenous T_s case, the variable T_s case shows a significantly stronger (maximum power) for most depths at $l = 2$, with a much smaller power at $l = 3$ and $5 – 7, 9$. While the homogenous T_s case does exhibit a moderately strong $l = 2$ power, the principle difference between the two cases is that the homogenous T_s case's power spectrum is spread across a wide range of l. For the variable T_s case, most power is at $l = 2$ for nearly all depths, consistent with the surface results of Fig. 1 and the internal analyses of Fig. 2 A – D. The velocity field in Fig. 1D (indicated by arrow directions), which is not strongly oriented toward the poles (oriented instead towards smaller local downwellings) is reflective of the higher order l seen in Fig. 2F. The sum of the $l = 2$ power versus the sum of the total power spectrum further shows the distinct difference between the cases. The total $l = 2$ power in the variable T_s case is 17% of the total power in the convecting system versus the total power in $l = 2$ limited to $\sim 3\%$ of the total power for the homogenous T_s case. Due to the $l = 2$ flow structure in the variable T_s case, the majority of the mid-ice shell is isolated from the surface and basal flow (velocity minima internal to the convective cells).
3.2. Basally Heated Systems with Temperature-Dependent Viscosity

When temperature-dependent viscosity is introduced, overall surface velocities become more sluggish and the surfaces become increasingly isolated from the convective interior. We explore surface to basal (maximum temperature range) viscosity ratios ($\Delta \eta$) from 10^2 to 10^4 for both homogeneous and variable T_s scenarios. As viscosity contrasts increase, the global effective Ra (as defined in section 2) decreases by as much as an order of magnitude (e.g., Guerrero et al., 2018). In addition, velocity, mobility, and heat flux all decrease while internal temperature increases (Table 2). We focus on the large scale global flow orientations as these are robust between model spaces.

Next, we explore the effects of latitudinally variable surface temperatures on more complex temperature-dependent viscosity systems. Figure 3a (homogeneous T_s) indicates that convective cells and the planform of convection tend to increase in spatial extent with increasing surface viscosity ($\Delta \eta < 10^4$). For a low viscosity contrast ($\Delta \eta = 10^2$, Fig. 3a, A - D), the Rayleigh–Bénard style cells from Figure 1 increase in scale and, as result, vertical transport and surface deformation become localized (fewer but larger cells). Similarly, heat flux and strain rate become more localized, though at lower overall values compared to the isoviscous results. Surface velocity directions remain controlled by the numerous local upwelling and downwelling sites. As the surface viscosity increases ($\Delta \eta = 10^3$, Fig. 3a, E - H), a large undulating upwelling forms in the lower latitudes, with a smaller more localized upwelling in the mid to upper latitudes. Heat flux and strain rate become further localized. In contrast to other homogeneous T_s cases, there is a strongly asymmetric global flow field with preferred orientations (single polar downwelling zones).

The effects of latitudinally variable T_s on temperature-dependent viscosity systems is striking (Fig. 3b). For small viscosity contrasts ($\Delta \eta = 10^2$, Fig. 3b, panels A - D), the
Rayleigh–Bénard cells are disrupted, and the system instead favors localization and large-scale convective flow patterns that are stable in time; i.e. the flow patterns are fixed spatially and temporally once they become established. Upwelling zones are favored along the region of maximal surface temperatures (the equator) and concentrated zones of downwellings occur along the region of lowest surface temperature (the poles). The mid-latitudes are regions of maximum horizontal (surface) velocities, though high strain rates still are predominantly focused at the equator and poles. Due to the gradient in surface temperatures, surface viscosity varies from an equatorial low to a polar high with the mid latitude representative of the average value (coinciding with the average surface temperature). Mobility begins to diverge between the models ($\Delta \eta =10^2$), and are ~ 1.01 and ~ 1.09 for the homogeneous and latitudinally variable T_s cases, respectively. These mobility values translate to average surface velocities of 435 (4.96 cm/a) and 496 (5.68 cm/a), for the homogeneous and latitudinally variable T_s cases, respectively. The difference of less than 8% between cases is relatively small, but still greater than the natural variability within the system ($\sim 5\%$). Interestingly, the stresses at the surface show greater divergence than the previously discussed velocities ($\Delta \eta =10^2$), or the results from the isoviscous cases. Stress averages are $\tau_{\text{mean}} \sim 0.01$ kPa and ~ 0.02 kPa, and stress maxima significantly increase from the isoviscous cases with $\tau_{\text{max}} \sim 0.28$ kPa and ~ 0.55 kPa for the homogeneous and latitudinally variable T_s cases, respectively (due to the increase in stress from isoviscous conditions, temperature dependant cases will be reported in kPa). Average surface stresses increase, despite decreasing strain rates, due to a larger increase in viscosity globally. The maxima reflect stress localization into discrete zones of deformation, and as such can be considered a local instead of global process, and as a consequence can have values that far exceed the global average. In the homogenous surface temperature case, this occurs along the patchwork of downwelling zones (high viscosity and high strain rates) and in the center of the upwelling zones (low viscosity and maximum strain
rates), as shown in Fig. 3a, panels A - D. In the variable surface temperature case maximum viscosities occur in the mid to polar latitudes (with high strain rates), and maximum strain rates occur along polar upwelling bands (with low viscosity), consequently strain maxima occur in polar regions and along the equator (Fig. 3b, panels A - D).

As the surface viscosity increases ($\Delta \eta = 10^3$, Fig. 3b, panels E - H), heat flux and surface velocities decrease with decreasing effective Ra. Upwelling zones still occur near the equator; however, downwelling regions become pronounced, forming perpendicular to the equator and separating regions of upwellings. This can be seen by the three distinct upwelling zones, surrounded by downwelling sheets focused along the equator in the heat flux plot of Figure 3b (panel G). Mobility decreases substantially for both surface temperature cases, with values of ~0.8 and ~0.7 for the homogeneous and latitudinally variable T_s cases, respectively.

Average surface velocities are 164 (1.87 cm/a) and 214 (2.44 cm/a) for the homogeneous and latitudinally variable T_s cases, respectively. Average surface stresses increase due to increasing viscosity to $\tau_{\text{mean}} \sim 0.03$ kPa and ~ 0.06 kPa, while maxima reach values of $\tau_{\text{max}} \sim 1.69$ kPa and ~ 2.35 kPa for the homogeneous and latitudinally variable T_s cases, respectively. Similarly to the previous cases, stress is focused in a non-preferred orientation associated with upwellings and downwellings in the homogeneous case, and along the poles and equator in the latitudinally variable case.

At high viscosity contrasts ($\Delta \eta \geq 10^4$), the system enters a different regime, that of the stagnant lid (e.g., shown in Fig. 3a, panels I - L). Here, we define a stagnant lid at mobilities < 0.1 with no surface participation in mantle overturn. Due to the variation in viscosity contrast from the latitudinally variable surface temperatures, the equatorial region is slightly less viscous than the poles ($\Delta \eta = 10^4$ is defined at the mid latitudes). This allows for small scale surface motions that are orientated poleward, and consequently greater strain rates.
focused on the equatorial to mid-latitude regions (Fig. 3b, panels I - L). Additionally, warm upwelling plumes tend to not only be focused near the equator, but also are enhanced in size and in surface heat flux from the homogeneous T_s case. Mobility drops to ~0.03 and ~0.09 for the homogeneous and latitudinally variable T_s cases, respectively, where the higher mobility reflects the enhanced surface velocity field nearly centered on the reduced viscosity equator. This corresponds to 4.32 (0.04 cm/a) and 16.01 (0.18 cm/a) for the homogeneous and latitudinally variable T_s cases, respectively. Both average and maximum surface stresses decrease to $\tau_{\text{mean}} \sim 0.02$ kPa and $\tau_{\text{max}} \sim 0.18$ kPa for the homogeneous surface temperature case due to the cessation of appreciable surface velocities. However, while average stresses decrease to $\tau_{\text{mean}} \sim 0.04$ kPa maximum surface stresses remain appreciably large at ~ 0.95 kPa for the latitudinally variable T_s case due to the local movement of the surface (Figure 3b).

The meridionally and temporally averaged internal structure of these temperature-dependent viscosity cases is shown in Figure 4 a–c. Similarly to the isoviscous cases (Fig. 2), the internal structure for the low viscosity contrast ($\Delta \eta = 10^2$) regime indicates that the latitudinally variable T_s case operates in hemispheric scale convective cells, pinned to the equator and the poles (Fig. 4a, A and B). Compared with the analogous homogeneous T_s case, the polar boundary layers are significantly thicker and the equatorial boundary layer is thinner. The average z_{TBL} (boundary layer depths) are 0.97 (8.0 km thick) and 0.96 (10.3 km thick), with standard deviations of 0.003 (0.75 km) and 0.02 (3.8 km) for the homogeneous and variable cases, respectively (Fig. 4a C and D). The power spectrum of the homogenous T_s case is spread between $l = 2$ and 5, with a $l = 4$ dominance, and a secondary $l = 3$ signal (Fig. 4a E). Similarly to the isoviscous results, latitudinally variable T_s shifts the dominant power to lower degree (higher wavelength) with a significantly stronger (maximum power) signal at $l = 2$, and a secondary signal at $l = 3$ and 4 (Fig. 4a F). The ratio of total $l = 2$ power to the total power of the convective system decreases from the isoviscous case for both systems,

© 2019 American Geophysical Union. All rights reserved.
with 2% and 15% for the homogeneous and latitudinally variable T_s cases, respectively. For the higher surface viscosity case of $\Delta \eta = 10^3$ (Fig. 4b), the homogeneous T_s case exhibits strong asymmetry between polar flow features (upwelling and downwelling poles), while the latitudinally variable T_s case has symmetric polar downwelling zones with broader and thicker boundary layers. The z_{TBL} is 0.94 (14.1 km thick) and 0.95 (13.6 km thick), with standard deviations of 0.011 (2.7 km) and 0.024 (6.0 km), for the homogeneous and variable cases, respectively (Fig. 4b C and D). The power spectrum of the homogenous T_s case diverges from previous viscosity case results and is spread between $l = 1$ and 3, where $l = 1$ is dominant in this system. There is moderate power in both $l = 2$ and 3, with limited power in $l = 4$ and 6 (Fig. 4b E). Intermediate viscosity contrasts ($\Delta \eta = 10^3$) at $Ra \sim (10^5-10^6)$ and internal temperatures (~ 0.7 non-dimensional or greater) favor long wavelength degree-1 type convective cells (McNamara and Zhong, 2005). In the case of the latitudinally variable T_s case, the maximum power still occurs at $l = 2$. However, now there is a much greater spread in total power, between $l = 1$ and 4, with an appreciable amount of power also in $l = 1$ (Fig. 4b F). Variable surface temperatures in previous cases (isoviscous and $\Delta \eta = 10^2$) caused the flow field to have more power in lower degrees compared to the analogous constant surface temperature cases. Here, variable surface temperatures act to disrupt a preferred degree-1 structure in favor of higher degree convection, driving the systems slightly towards $l = 2$ due to the imposed thermal boundary condition while maintaining power in both $l = 1$ and higher degrees, which was not seen in previous examples. The ratio of total $l = 2$ power to the total power of the convective system is similar in both cases at $\sim 6\%$. Though the latitudinally variable T_s case contains $\sim 10\%$ more power than the homogenous case. This thermal configuration resembles the effectively low Rayleigh number non-Newtonian grainsize-dependent computations of Rozel et al. (2014), albeit focused along the equator due to the surface temperature gradient, as opposed to their pole-located plume. This indicates that an
appropriately defined effective Rayleigh number may capture both cases, where Rozel et al.’s variations are due to locally higher mantle viscosity, and ours are due to temperature contrast variations.

At high viscosity contrasts ($\Delta \eta \geq 10^4$) in the stagnant lid regime (Fig. 4c), internal velocities drop significantly. Boundary layers thicken and, as found for the less viscous cases, asymmetry that is prevalent for homogeneous T_s in flow and boundary layer thicknesses near the poles does not exist for the latitudinally variable T_s case. The average z_{TBL} are 0.93 (19 km thick) and 0.92 (20 km thick), and standard deviations are 0.0003 (0.08 km) and 0.017 (4.3 km) for the homogeneous and variable T_s cases, respectively (Fig. 4c C and D). The standard deviations for the variable surface temperature cases are notably larger than their homogenous counterparts. Since both T_s conditions are designed to operate at the same average surface temperature, the average z_{TBL} should be similar if not the same (as is the case for the isoviscous systems). The variable T_s cases then will have greater variability due to the insolation structure "imposed" at the boundary, which is reflected in the larger standard deviations.

The power spectrum of the homogenous T_s case shows a significant spread in power between $l = 8$ and 18, where $l = 12$ is dominant (Fig. 4c E). These values suggest small wavelength convection that is consistent with local scale drips and plumes impinging the thermal boundary layer (which is reflected in both the small standard deviation of the z_{TBL} and the smaller localized (plume) hotspots on the heat flux map in Fig. 3a K). The variable surface temperature case is markedly different. A bifurcation of the power spectra occurs, with a strong $l = 2$ component and a spread in appreciable powers from $l = 4 – 16$. Even though the $l = 2$ is not dominant here, it is still present and reflective of the surface temperature condition. The ratio of total $l = 2$ power to the total power of the convective
system decreases from the $\Delta \eta = 10^3$ case, with almost no power in the homogeneous T_s case and 3% in the latitudinally variable T_s case. The presence of the $l = 2$ power at depth and separately in the lid suggests that the lid and interior are both affected by the surface temperature condition, though differently, driving differential motions in between them. Velocity maxima exist at depth near the thick polar boundary layers and adjacent upper latitude cells. Throughout the remainder of the interior, velocities remain relatively low. This, in conjunction with high internal temperatures, indicates that despite stagnant lid behavior (i.e., no interaction from the deep interior to the surface), a pole to equator variation in surface temperatures can affect the interior.

3.3. Sensitivity to Changes in Parameters and Increasing System Complexity: Internal Heating, Vigor of Convection, and Surface Temperatures

Next, we test the effects of latitudinally variable surface temperatures on mixed heating systems with a high degree of internal heating (Q), increasing vigor of convection (Ra), and a reduction in the surface temperature variation to $T_s \sim 8\%$ the base of the ice shell.

First, we consider systems with high a degree of internal heating to mimic the general effects of tidal heating. For comparison with the results from section 3.1, we choose an example isoviscous system with a basal $Ra = 3 \cdot 10^5$ and $Q = 49$. Surface velocities are generally more variable in their orientations as compared to the pure basal heating case, though while somewhat muted, an overall poleward orientation is still evident in the latitudinal surface temperature case (Fig. 5, panels A and E). In general, increased internal heating moves an isoviscous system to smaller aspect ratio cells (Schubert and Anderson, 1985), as can be seen in Fig. 5D, in which higher degrees are enhanced and dominate as
compared to the basally heated case (note the low amplitude in power for $l = 2$). While the homogeneous T_s system moves to smaller aspect ratio convection, an inspection of the power spectra plot (Fig. 5 H) of the latitudinally variable T_s system shows that the $l = 2$ power still dominates, and that the muted expression of this degree-2 pattern at the surface is the result of enhanced power in higher degrees. The ratio of total $l = 2$ power to the total power of the convective system is similar to the $\Delta \eta = 10^2$ cases, with less than 1% for the homogeneous case and 12% for the latitudinally variable T_s case. An implication from Schubert and Anderson (1985) is that the total convective power should decrease, and the total power for mixed heating cases ($Q = 49$) decreases by 41% (homogeneous) and 18% (latitudinally variable) as compared to the basally heated cases. Compared to the basal heating case, bulk system (and consequently surface) velocities decrease by $\sim 19\%$, consistent with the findings of O'Farrell and Lowman (2010) for principally Cartesian geometries as well as Weller et al. (2016) for spherical shell geometries with a core fraction of 0.54 (see Weller et al., 2016 and Weller and Lenardic, 2016). Consequently, strain rates similarly decrease (Fig. 5, panels C and G). Mobilities are ~ 1.11 and ~ 1.08 for the homogeneous and latitudinally variable T_s cases, respectively, a difference of less 3% which similarly falls near the natural variability of the systems ($\sim 1\%$). These values are marginally smaller than the ~ 1.2 value obtained in the comparable basal heating cases. Average surface velocity similarly follows as being less than ~ 1700 (~ 20 cm/a) due to decreases in both mobility and bulk average velocities. The average and maximum surface stress is largely unchanged from the basally heated case with $\tau_{\text{mean}} \sim 1$ Pa and $\tau_{\text{max}} \sim 19$ Pa for both the homogeneous and latitudinally variable T_s conditions.

Next, we consider an example temperature-dependent viscosity system, with a viscosity contrast of 10^3, and the Ra and internal heating rates identical to the previous case. In contrast to the isoviscous cases, the net effect of increasing Q on the system behavior is
one of stabilization and amplification. In the homogeneous T_s case, there is an upwelling zone in the northern hemisphere and a ring-like downwelling feature surrounding an upwelling zone in the southern hemisphere (Fig. 6 A). Both upwelling zones are nearly antipodal. Heat flux and strain rate are maximal in the northern hemisphere and minimal in the southern hemisphere (besides the small upwelling zone contained within the downwelling curtain; Fig. 6C, D). In contrast, the latitudinal T_s case has an enhanced upwelling plume anchored on the equator (Fig. 6 F). Surface velocities are oriented radially from the plume center. This configuration leads to high heat flux within about 20% of the domain, and minimal heat flux antipodal to the equatorial upwelling (Fig. 6 H). Strain rates are maximal in both polar regions (Fig. 6 I). Surface (and bulk internal) velocities increase from the basally heated case (an increase of a factor of ~1.8 bulk internal and ~2.8 surface velocities). Likely, this is due to both the long wavelength convection cells that become established and the increasing bulk system velocities from increased internal temperatures reducing the viscous resistance to flow. An inspection of the power spectra for both cases reinforces this large scale structure (Fig. 6 E and K). Degree-1 one convection strongly dominates both systems, with a very small $l = 2$ signal in the lower and upper portions of the domain. The ratio of total $l = 2$ power to the total power of the convective system is ~6% for both the homogeneous and latitudinally variable T_s cases. The total power for both mixed heating cases ($\Delta \eta = 10^3$, $Q = 49$) increases by between 45 and 49% as compared to the basally heated cases at the same parameter value, opposite the results of the isoviscous cases. This signifies that while the variable insolation is changing the flow characteristics of the shell (orientation of surface velocities Fig. 6A and F), it is not the dominant effect. Instead the internal stabilizing effects of both high internal heating and intermediate viscosity contrast ($\Delta \eta = 10^3$) controls the aspect ratio of the convective system. In these cases, the net effect of variable insolation is to reorient the upwelling zone to the equator. Mobilities are ~1.10 and ~1.16 for the
homogeneous and latitudinally variable T_s cases, respectively, which is similar to the isoviscous cases at ~ 1.1, presumably due to the reduction in bulk viscosity from higher internal temperatures and the long wavelength of convection. Average surface velocities are 469 (5.35 cm/a) and 524 (5.98 cm/a). Average surface stresses increase to $\tau_{\text{mean}} \sim 0.06$ kPa and ~ 0.3 kPa and stress maxima increase substantially to $\tau_{\text{max}} \sim 2.24$ kPa and ~ 13.53 kPa for the homogeneous and latitudinally variable T_s cases, respectively.

We now consider the robustness of both increasing basal Ra numbers with variable surface temperatures and decreasing the total temperature contrast across the surface. First, we focus on isoviscous systems with no internal heating, basal Ra of $7 \cdot 10^5$ (Fig. 7) and $3 \cdot 10^6$ (Fig. 8), and the same fixed average surface temperature as before. In both cases, similar to the lower Ra system, the latitudinally variable T_s leads to a poleward flow of material and longitudinally elongated convection cells, despite the higher convective vigor. Similarly, reducing the average surface temperature variation amplitude has the net effect of increasing the system's effective Ra. Qualitatively, a reduction in the average T_s variation by 50% (to $\sim 8\%$ the base of the ice shell), should increase the effective Ra by a factor of two. Indeed, an inspection of Figure 9, which has otherwise identical input parameters of those of Figure 7, indicates a qualitative agreement with the nominal $Ra = 7 \cdot 10^5$ models. The orientations of the convective cells are still affected and organized by the variation in surface temperature despite a total reduced magnitude. The ratio of the $l=2$ to total convective power decreases to negligible levels ($< 1\%$) for the homogenous T_s case, and decrease slightly to 16% for the variable T_s case (Figure 7), as compared to the nominal isoviscous cases ($Ra = 3 \cdot 10^5$). In Figure 9, as compared to Figure 7, the 8\% T_s variation cases show that the power is distributed more broadly, though $l = 2$ still dominates the power spectrum of the variable T_s case. The ratio of $l = 2$ power to the total power of the convective system is 1% for the homogeneous T_s case and drops to 11% for the latitudinally variable T_s case.
The net effect of increasing the Ra under constant surface temperatures is generally to move the system to higher degree convection (Figs. 7–9, D and H). While there is an increase in power at higher degrees, the variable insolation cases still indicate a dominant $l = 2$ signal. Interestingly Fig. 8H shows very little power away from $l = 2$, and while the ratio of $l = 2$ power to the total power of the convective system is less than a percent for the homogeneous T_s case, it increases (relative to the lower Ra cases) to 21% for the latitudinally variable T_s case ($Ra = 3 \cdot 10^6$).

Increasing the viscosity contrast to 10^2 shows a very similar response, the ratio of $l = 2$ power to the total power of the convective system is 6% for homogeneous T_s case, and it remains elevated at 18% for the latitudinally variable T_s case ($Ra = 3 \cdot 10^6; \Delta \eta = 10^2$). Intermediate viscosity contrasts ($\Delta \eta = 10^2$) with a $Ra = 3 \cdot 10^6$ (Fig. 10), and additional higher viscosity contrasts cases ($\Delta \eta > 10^3$) qualitatively show little difference in the surface flow field, heat flux, and strain rates from the reference Ra cases in Figure 3. Once stagnant, increasing the viscosity contrast to $3 \cdot 10^4$ indicates similar behavior and is not qualitatively different from other high viscosity reference Ra cases (Figs. 4c and 10). For this case, the $l = 2$ to total power ratio is 1% for the homogeneous T_s case (nearly identical to the case of Fig. 4c), and increases by nearly a factor of two to 9% for the latitudinally variable T_s case (as compared to Fig. 4c). These results strongly indicate that a significant increase in Ra for latitudinally variable T_s cases act to amplify the power of $l = 2$, and the hemispheric flow pattern compared to lower Ra, while the homogeneous T_s case favors higher degree convection, suggesting that the upper bounds on the Ra calculated for each satellite (Table 1) may act to reinforce degree-2 style convection from variable solar insolation.

Mobility for all surface temperature cases and Ra's are unaffected from previous isoviscous experiments, with values that are within a few percent of 1.2. For the isoviscous
systems, average surface velocities increase from the initial reference case ($Ra = 3 \cdot 10^5$) to ~2700 (~31 cm/a) for $Ra = 7 \cdot 10^5$, and ~6000 (~68 cm/a) for $Ra = 3 \cdot 10^6$, for both T_s cases. Maximum surface stresses increase from the reference cases to $\tau_{\text{max}} \sim 41$ Pa ($\tau_{\text{mean}} \sim 2$ Pa) for $Ra = 7 \cdot 10^5$ and ~120 Pa for $Ra = 3 \cdot 10^6$ ($\tau_{\text{mean}} \sim 6$ Pa), for both T_s cases, suggesting greater localization of stress as the Ra increases. With moderate temperature dependent viscosity (10^2) for the $Ra = 3 \cdot 10^6$ cases, velocities increase from the reference Ra case to 1758 (20 cm/a) and 1954 (22 cm/a), for the homogeneous and latitudinally variable T_s cases, respectively. Increasing the viscosity contrast to $3 \cdot 10^4$ ($Ra = 3 \cdot 10^6$) results in velocity increases (from the $Ra = 3 \cdot 10^5$ and $\Delta \eta = 10^4$ case) to 16 (~0.2 cm/a) and 47 (~0.6 cm/a), for the homogeneous and latitudinally variable T_s cases, respectively. Stresses similarly increase. With intermediate viscosity contrasts (10^2), the stresses for the homogeneous case reach $\tau_{\text{max}} = 1.0$ kPa and $\tau_{\text{mean}} = 0.05$ kPa and for the latitudinally variable case, $\tau_{\text{max}} = 3.3$ kPa and $\tau_{\text{mean}} = 0.08$ kPa. For a viscosity contrast of $3 \cdot 10^4$, the homogeneous case is $\tau_{\text{max}} = 6.8$ kPa and $\tau_{\text{mean}} = 0.2$ kPa, and the latitudinally variable case is $\tau_{\text{max}} = 40$ kPa and $\tau_{\text{mean}} = 0.6$ kPa. The preceding simulations indicate that the effects of a latitudinal variation in surface temperature is robust over the tested range of physically plausible parameters and convective vigors that would be expected for the icy satellites.

4. Discussion and Implications

It has previously been shown that variability in solar insolation may be a significant control on Mercury's geoid and topography through the generation of hotlines due to its eccentric orbit and phase locking (Tosi et al., 2015), and may also have a significant effect on flow patterns and volcanism on tidally locked exoplanets (van Summeren et al., 2011). Our work expands on these studies by examining the underlying physics of latitudinally variable
insolation with applications to thin shell convection appropriate for the icy satellites. Our results illustrate that higher surface temperatures along the equator thins the boundary layer locally, enhancing upwellings and heat flow, while colder surface temperatures at the poles lead to thickened boundary layers and enhanced downwelling zones. For the isoviscous and low viscosity contrast regimes, a hemispheric flow pattern develops that looks akin to an atmospheric Hadley-cell (for a different fluid dynamical regime, of course, but similar driving forces). In all cases, surface velocity field orientations generally transport material poleward from the equator, though increasing viscosity contrasts generally dampen this effect it is still present. In the low Ra number regimes ($3 \cdot 10^5$), homogeneous T_s cases typically exhibit strong asymmetry in upwelling and downwelling sites (e.g., strong downwelling in the northern pole, Fig. 4a B).

For the isoviscous results, the $l = 2, m = 0$ component of the poloidal power spectrum can be explored as a function of changing Ra and T_s amplitude. The latitudinally variable T_s cases indicate a general trend of increased $l = 2$ with increasing Ra and decreased $l = 2$ strength with decreasing T_s amplitude (see Table 2 for additional values not shown in figures). The power of $l = 2$ increases from the homogenous surface temperature (average $T_s \approx 0.105$) cases by $\sim 390\%$ with $Ra = 3 \cdot 10^5$ (Fig. 2), $\sim 6,600\%$ for $Ra = 7 \cdot 10^5$ (Fig. 7), $\sim 11,400\%$ with $Ra = 3 \cdot 10^6$ (Fig. 8), and $\sim 660\%$ for the for $Ra = 7 \cdot 10^5$ with an average $T_s \approx 0.05$ (Fig. 9). The homogenous T_s cases indicate decreasing importance of $l = 2$ power with increasing Ra, which is expected as the higher Ra systems favor higher degree convection. As the T_s amplitude variation decreases, the variation in $l = 2$ power decreases, as expected. The principle implication for isoviscous systems with a larger Ra than we explicitly consider here, is that the power differential between the homogenous and latitudinally variable T_s conditions should become much greater as the $l = 2$ component becomes preferentially enhanced with
increasing vigor of convection under the condition of the latitudinally variable surface temperatures driving force.

Considering next the added complexity of temperature-dependent viscosity systems, the power of \(l = 2 \) in the system becomes dampened somewhat from the isoviscous conditions, though it remains an important effect. With the exception of the degree-1 style intermediate viscosity cases (\(\Delta \eta = 10^3 \)), all variable \(T_s \) conditions show appreciably more power, often at least an order of magnitude, in \(l = 2 \) power as compared to their respective homogenous \(T_s \) cases. The power of \(l = 2 \) increases from the homogenous surface temperature cases by \(\sim 650\% \) with \(Ra = 3 \times 10^5 \) and \(\Delta \eta = 10^2 \) (Fig. 4a), \(\sim 9\% \) for \(Ra = 3 \times 10^5 \) and \(\Delta \eta = 10^3 \) (Fig. 4b), \(\sim 890\% \) for \(Ra = 3 \times 10^4 \) and \(\Delta \eta = 10^4 \) (Fig. 4c). Increasing the \(Ra \) (\(3 \times 10^6 \)) results in an increase of \(\sim 180\% \) and \(\sim 340\% \) for \(\Delta \eta = 10^2 \) and \(\Delta \eta = 3 \times 10^4 \), respectively (Fig. 10 and Table 2). Similarly to the isoviscous systems, increasing the vigor of convection for a given viscosity contrast, increases the effective power in \(l = 2 \).

The cases with increasing internal heating rates (Table 2) suggests that heat production generally acts to dampen the \(l = 2 \) power, though not uniformly. In the variable \(T_s \) cases, the effect is minor as compared to the homogenous \(T_s \) cases. This suggests variable \(T_s \) counteracts the decrease in the wavelength of convection that occurs with high heating rates, though not completely as the absolute value of \(l = 2 \) in the system drops (but it still remains significant). The power of \(l = 2 \) increases from the homogenous surface temperature case by \(\sim 2700\% \) with \((Ra = 3 \times 10^5, Q = 49; \) Fig. 5). In contrast, adding temperature-dependent viscosity with internal heating tends drives the system to a different condition, that of strengthening of \(l = 2 \) with increasing \(Q \) (Table 2). This may be due, in part, to system velocities increasing slightly with increasing \(Q \), as opposed to the decrease noted with isoviscous systems. In aggregate, these results indicate that higher \(Ra \) and large amounts of
internal heat generation with temperature-dependent viscosities may act to reinforce the expression of a Hadley type convection pattern within ice shells.

While the effects of a pole to equator variation in surface temperature in general are more pronounced for isoviscous and low viscosity contrast systems, the effects are shown clearly to still be present in the stagnant lid cases tested. Here the viscosity in the equatorial region is reduced, allowing for local movement of surface material towards the poles (movement is limited to the upper layer of the stagnant lid and as such does not interact with the interior directly). However, the higher viscosity at the minimum surface temperature precludes further movement, and material converges towards the mid latitudes, predicting regions of large strain. Internally, the thickened polar and thinned equatorial boundary layers tend to drive a flow pattern under the stagnant lid that mimics the Hadley type cell configuration of the lower viscosity contrast regimes. An important aspect of icy satellite convection that we currently neglect is the spatial variation in tidal heating. While it is currently unclear how spatial distributions in tidal heating would explicitly effect these results, a speculation can be made through a comparison of the basal and mixed heated cases. With the exception of the intermediate viscosity case ($\Delta \eta = 10^3$), the $l = 2$ component remains dominant despite increasing internal heating, from basally heated to maximal internal heating levels (Figs. 2, 4 - 9). Stagnant lid results with internal heating (not shown) do not display a significant deviation from a general poleward degree-2 style flow path. This suggests that the $l = 2$ power may remain significant in the case of spatially varying tidal heating. The addition of spatially varying tidal heating may not result in a significant difference in convective metrics at the global scale. Tidal heating that occurs preferentially at the poles may be expected to become mixed into the interior of the convective system, becoming more equilibrated with time. The effects of spatially varying tidal heating may be more significant for local or regional scales, particularly in regards to regional boundary layer effects.
However, adding spatial variations in tidal effects adds to the complexity of the system and
remains to be tested.

Another important aspect that we do not explicitly address in this work are the effects of long wavelength changes of the basal ice shell geometry due to variable insolation. An implication may be for a thinning of the ice shell along the equator and a thickening along the poles. Given the dependence of the Ra on layer depth (eq. 4), the prediction would be for a reduced effective Ra at the equator and enhanced poleward. The local effective Ra (equatorial and polar) in our system reflects this condition simply as a function of variable solar insolation, the equatorial effective Ra is reduced, and the polar effect enhanced. Addition of long wavelength variations in the base of the ice shell would likely greatly enhance our results. However, there may be negative feedback processes that could inhibit these effects.

As an example, the ice shell may thin sufficiently that convection ceases. In this case, the poleward transport of material, and the Hadley type cell structure would cease to operate. However, the expression of this cell could still be visible in the fabric of the ice shell. A caveat is that for any of the flow patterns shown in this work, there may be enough of a mass redistribution that a reorientation of the ice shell could perhaps be triggered (True Polar Wander; e.g., Nimmo and Pappalardo, 2006), changing the relative driving forces, and perhaps reorienting or shutting down the Hadley type cells.

A key effect of variable solar insolation is to generate global flow patterns that contribute in systematic ways to other stresses that are also acting to deform the ice shell. Therefore, it is of interest to assess the magnitudes of the convective stresses that are generated. Peak stresses in our models range from \(~16\) Pa (isoviscous) to \(~40\) kPa ($Ra = 3\cdot10^6$, $\Delta \eta = 3\cdot10^4$; variable insolation). Considering Europa, these stresses maybe directly comparable to Europa’s diurnal tides (\(~50\) kPa; Wahr et al., 2009). In the case of Enceladus,
these stresses are approximately within a factor of 2 of predicted upper-bound tidal stresses operating on the tiger stripes (~100 kPa; Nimmo et al., 2007). Our model stresses are well below the several MPa stresses predicted for ocean pressurization associated with ice shell thickening as the ocean slowly freezes and potential reorientation of the ice shell/non-synchronous rotation (e.g., Manga and Wang, 2007; Matsuyama and Nimmo, 2008). Although processes generating stresses on the order of MPa might be expected to dominate deformation of these bodies, this may not be the full story. Geologic evidence on Enceladus (e.g., Spencer et al., 2009; Crow-Willard and Pappalardo, 2015) for example, suggest that ice shells may be pervasively fractured. Further, the ice may be damaged from impact events, have preexistent natural flaws in the ice structure (Hammond et al., 2018), or experience cyclic grounding and floating ice shell states (Johnston and Montési, 2017), all of which, in addition to fracturing, would reduce the strength and capacity of the ice shell to support various stresses (Bassis and Jacobs, 2013). In these scenarios, relatively low amplitude, variable insolation can set up a consistent, global, stress state in which convective stresses may serve to control deformation after the ice shell is fractured or damaged. The inference then is that a variation in solar insolation may drive significant deformation, both in isolation and in concert with other processes. For this work, we use a nominal variable surface temperature value of ~16% of the melting temperature of water ice. For the Galilean satellites, this value is likely to be appropriate (Table 1, e.g., Ojakangas and Stevenson, 1989a; Nadeau and McGehee, 2017). However, for the Saturnian or Uranian satellites, a lower surface temperature variation of ~8% is more applicable. Our results illustrate that either variation results in similar flow patterns. While these values may be representative for the current state of the solar system, they almost certainly were not in the past, and nor will they be in the future. One process that could affect the surface temperature variation is that of the albedo. The albedo may be expected to change through time for these bodies, as it may be
affected by tectonism and cryovolcanism as well as degradation and alteration of the surface from impact processes, high energy particle interactions, and space weathering (e.g., Schenk et al., 2011). Another important process to consider is that of solar luminosity variation. It is well-known that as stars age, their solar luminosity is expected to increase (e.g., Sagan and Mullen, 1972; Feulner, 2012). Consequently, early in the solar system, the effects of latitudinally variable surface temperatures on the icy bodies would be muted as solar insolation would have been reduced by ~30% at ~4.4 Ga (e.g., Gough, 1981; Bahcall et al. 2001). However, as the star ages and insolation increases, the driving force that the variation in solar insolation induces is expected to become increasingly important. The surface temperature variation representative of the satellites considered for the Saturnian system in the present may be representative of the surface temperature variation (in relation to the melting temperature of ice) in the Galilean system a few Ga ago, and the Galilean system may be a prediction for the surface temperature distribution a few Ga in the future for the Saturnian system (see Supporting Information). Therefore, each satellite system can be considered a snapshot of different times and locations in the Solar System.

Latitudinally variable insolation has interesting implications for icy satellites. A key characteristic for these systems is a thickened boundary layer at the poles and a thinned thermal boundary layer along the equator. This has important consequences for quantities such as the elastic thickness of the ice shell. In the context of temperatures, the elastic thickness depends on the surface temperature and the thermal profile of the ice shell. Flexural effects, while important (e.g., McNutt 1984), are neglected in this simple thought experiment. The thickened thermal boundary layer results in a deepening of the elastic layer depth. In contrast, the thinned thermal boundary layer along the equator results in a shallowing of the elastic layer base. In general, it can be inferred that the effects of latitudinally variable insolation is to mechanically strengthen the ice shell (able to accommodate higher stresses
and able to support larger loads before failure) towards the pole, and weaken it towards the equator, neglecting spatial distributions in tidal heating. This suggests that the hemispheric variation in surface temperatures can lead to potential local enhancement of stress and failure (as shown by the stress results). Further, due to changes in the thermal boundary layer thicknesses, heat flux is enhanced towards the equator and suppressed near the poles (e.g., Fig. 3b, panels C, G, K). This may be important for processes such as viscous relaxation (e.g., Bland et al., 2012). Both the homogeneous and latitudinally variable cases exhibit a strong heterogeneity of both thermal boundary layer thicknesses and heat flux linked to upwelling and downwelling zones (the locations themselves differ for each case). The key implication is that in either of these cases, viscous relaxation should not be expected to be uniform across the surface, and indeed significant variations linked to internal convection should exist. As such, it may not be always clear if the relaxation at the surface is reflective of the global mean, or some local minima/maxima.

A second interesting consequence of variable insolation relates to the global flow field. For low viscosity contrast regimes and high viscosity stagnant lids, hemispheric scale convection cells are established. This structure is largely disrupted in favor of a spherical harmonic degree one style (upwelling- and downwelling-dominated hemispheres) convective systems for intermediate viscosity contrasts. For viscosity contrasts $\Delta \eta \lesssim 10^2$, material is principally transported towards the poles with a return flow to the equator at the base of the ice shell. For stagnant lids, this flow is isolated under the lid. Velocities in the center of a convective cell are negligible (e.g., Turcotte and Schubert, 2005); this region is often small for standard Rayleigh–Bénard style convective cells and becomes elongated from the equator to the pole in our experiments. This elongation indicates that a planar layer of contrasting velocities (low velocity interior to high velocity exterior) exhibiting high shear would exist through large portions of the middle of the ice shell (Figs. 2 and 4; similar to shear in the
Earth's mantle, *e.g.*, Becker, 2017). This region would likely have a strong preferred crystallographic orientation and associated anisotropy that may be detectable with radar and seismic acquisitions of active ice shells such as expected for Europa (*e.g.*, Barr and Stillman, 2011; Rudolph and Manga, 2012; Panning et al., 2017; Vance et al., 2018).

The global flow field further results in strain rates that are enhanced along the equator (for all viscosity contrasts), the mid-latitudes (stagnant lid cases), and has a preferred nearly longitudinal orientation (Figs. 1, 3b, 5, 7, 9) that becomes arcuate and circular (Fig. 3b, D, H) as the viscosity contrast increases (up to the limit of the stagnant lid). Deformation would likely then be concentrated along portions of the equator, perhaps discontinuously, or radiating arcuate patterns, the surface expression of which may be strongly asymmetric (Figure 3b, H). Interestingly, the stagnant lid case exhibits enhanced surface velocities along the equator in a patch work structure. The orientations are poleward but quickly are dampened by the higher viscosities. This suggests the potential for quasi-circular regions of extension in the center (orientated near the equator), and compression along the edges (orientated in the mid-latitudes), the expression of which may be analogous to a simple rift basin (*e.g.*, Walker et al., 2012).

A third interesting aspect of the internal metrics in thin shell geometries is their divergence from thick shell geometries and Cartesian cases (*c.f.* Guerrero et al., 2018). Probably the most significant effect of increasing f is on the internal temperature (*e.g.*, Jarvis et al., 1995). As the core fraction increases (ice shell domain shrinks), internal temperatures increase and approach the basal temperature for high core fractions (*e.g.*, King et al., 2010). This occurs due to heat flux conservation of higher energy density at the base of the ice shell due to the large core (basal heat flux increases with increasing core surface area) as f approaches unity, i.e. the inner and outer surface areas of the shells become more equal. The
mean temperature effect has implications for thin shell satellites such as Europa (Table 1): the internal temperatures would be predicted to be near the melting temperature of water ice throughout the convecting ice shell. Therefore, on Europa, this effect would likely predict much more activity, such as cryovolcanism and tectonism due to thinner boundary layers and consequently weaker ice from the high internal temperatures, than Enceladus (outside of the thin South Polar Terrain). Although this argument assumes canonical basal heating relationships that may not fully hold for these systems as the boundary layers are likely to strongly interact (e.g., Weller et al., 2016), first order observations of deformation on the surfaces of Enceladus and Europa are suggestive. For example, in contrast to inferred paleo-equatorial basins on Enceladus that are likely associated with stagnant lid convection (Schenk and McKinnon, 2009; Besserer et al., 2013; Tajeddine et al., 2017), the equatorial region of Europa is characterized by areas of disrupted ice known as chaos terrains (e.g., Collins and Nimmo, 2009). Since these features may be associated with diapirism and the presence of liquid water in the subsurface (e.g., Pappalardo et al., 1998; Sotin et al., 2002; Schmidt et al., 2011), the combination of a geometrically thin shell, internal temperatures near the melting point of ice, and latitudinally variable surface temperatures may contribute to this distribution. In this context, holding all else equal, the same process of a latitudinal variation in insolation can be predicted to have different expressions at the surface for both satellites.

The previous discussion focuses on Europa and Enceladus due to their current level of activities, which make them prime candidates to identify processes associated with latitudinally variable insolation. While a complete survey of mid to large sized icy bodies is impractical (and beyond the scope of this work), it is of interest to also consider a less active satellite, notably Miranda, within the context of convection with latitudinally variable insolation. Miranda is inferred to be dominated by regions of old cratered terrain overprinted by three large “coronae” structures that fall along an arc across the surface (Smith et al.,
Recently, it has been suggested that the so-called coronae and associated resurfacing of the satellite are the results of sluggish lid, or low viscosity contrast convection (e.g., $\Delta \eta = 10^3$, Hammond and Barr, 2014a). While the work of Hammond and Barr (2014a) considers more vigorous convection, tidal heating distributions (e.g., Tobie et al., 2005; Beuthe, 2013), a constant T_s of 60 K, and small core fractions, our models with latitudinally variable insolation (e.g., Fig. 3b, panel G) show similar results at lower Ra and higher core fractions. This suggests that there may be an interesting interplay between latitudinally variable insolation, tidal heating, and vigor of convection that has yet to be explored.

Our work provides a foundation for understanding complex convective systems that more closely emulate icy satellite evolution and development. In our approach, we currently consider uniform internal heating for our mixed heating models, which is likely a poor approximation for tidal heating effects. Additionally, we do not yet consider the effects of plastic yielding or weakening to emulate large-scale plastic deformation of the ice shell. Yielding formulations allow for mobility of the surface and interaction with the interior despite the formation of high viscosity “lids.” The implication is that the system will operate in an effective intermediary viscosity regime, i.e. some combination of viscosity contrast results explored here. Further, we do not consider melting or compositional variations within the ice shell in this work. All processes are likely to be important for the expression of deformation of the ice shell, and remain to be explored.

5) Conclusions

Numerical experiments of spherical, thin-shell convection show what effects a latitudinal variation in solar insolation may have on convective dynamics. A global flow
pattern of upwelling equatorial regions and downwelling polar regions, linked to higher and lower surface temperatures, respectively, are preferred. As expected due to the gradient in surface temperatures, boundary layer thicknesses vary from equatorial lows and polar highs, and polar oriented flow fields are established.

For low viscosity contrast regimes, this results in a “Hadley cell” type configuration, with two hemispheric scale convective cells emerging. Heat flow in these systems is enhanced along the equator, and reduced along the poles. For intermediate viscosity contrast systems, larger scale plume structures emerge, focused on the equator. Heat flow in this case is focused in the hemispheric-scale plume, and suppressed in the antipodal hemisphere. For the highest viscosity contrast systems, the thick stagnant lid separates a hemispheric scale internal convective cell from a geographically limited poleward orientated velocity field at the surface. Heat flow in this case has similarities to both of the previous cases where maxima are focused in discrete upwelling plumes that are more common along the equator and less common near the poles. Outside of these small plumes, heat flux is negligible, illustrating that heat flow is highly heterogeneous within the stagnant lid system.

The “Hadley cell” style poleward transport of material is robust under a variety of conditions; mixed heating with a high degree of internal heat generation, increased vigor of convection, and a range of surface temperature variations. In all cases, the structures are subdued compared to the initial basal heating cases, but the variation in insolation remains a significant control on the expression of mantle convection. Together, these results suggest that a latitudinal variation in surface temperature is an important effect for convection within the thin ice shells of the outer satellites; offers general testable predictions of lower heat flow and more compressional deformation near the poles and mid-latitudes, more extensional
equatorial regions with higher heat flow; may contribute to the location and expression of tectonic features; and likely becomes increasingly important as the Sun ages.

Acknowledgments

The authors would like to thank the editor Sabine Stanley, and two anonymous referees for their constructive reviews that helped improve the clarity of the manuscript. Funding for this work was provided by NASA grant 80NSSC18K0279. Resources supporting this work were provided by both the Texas Advanced Computing Center (TACC) at The University of Texas at Austin (URL: http://www.tacc.utexas.edu) and the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

Pursuant to AGU guidelines, data for this paper is provided within the publication pages, in particular the tables and figures, and further made on Zenodo [Weller et al, 2019].
References

© 2019 American Geophysical Union. All rights reserved.

Han, L., G. Tobie, and A.P. Showman (2012). The impact of a weak south pole on thermal convection in Enceladus' ice shell. Icarus 218, 320-330.

Hammond, N. P., and A. C. Barr (2014a), Global resurfacing of Uranus’s moon Miranda by convection, Geology, 42(11), 931–934.

Table 1: Model parameter comparison with example satellites. Satellite parameters are taken from Ojakangas and Stevenson (1989a), Bergstralh et al. (1991), Schubert et al. (2007), Nimmo and Manga (2009), Spencer et al. (2009), Sotin et al. (2009), O’Neill and Nimmo (2010), Hammond and Barr (2014a), Quick and Marsh (2015), Beuthe et al. (2016), and references therein. Surface temperature variation calculations follow Ojakangas and Stevenson (1989a), see Supporting Information. Estimates of Ra follow from eq. (4) using estimated ranges for the reference viscosity of ice, the ice shell thickness, and surface and basal temperatures.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Satellite Parameters</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Quantities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface gravity</td>
<td>g</td>
<td>Europa: 1.315</td>
<td>m s$^{-2}$</td>
</tr>
<tr>
<td>Initial ice shell thickness</td>
<td>D</td>
<td>Enceladus: 0.111</td>
<td>km</td>
</tr>
<tr>
<td>Satellite Radius</td>
<td>R</td>
<td>Miranda: 0.083</td>
<td>km</td>
</tr>
<tr>
<td>Surface temperature (pole – equator)</td>
<td>T_s</td>
<td>Europa: 48 – 110</td>
<td>K</td>
</tr>
<tr>
<td>Ice density</td>
<td>ρ_i</td>
<td>950</td>
<td>kg m$^{-3}$</td>
</tr>
<tr>
<td>Thermal expansivity</td>
<td>α</td>
<td>3•10$^{-5}$</td>
<td>K$^{-1}$</td>
</tr>
<tr>
<td>Basal temperature</td>
<td>T_b</td>
<td>273</td>
<td>K</td>
</tr>
<tr>
<td>Thermal diffusivity</td>
<td>κ</td>
<td>1•10$^{-6}$</td>
<td>m2 s$^{-1}$</td>
</tr>
<tr>
<td>Basal viscosity</td>
<td>η</td>
<td>10$^{-9}$ – 10$^{-13}$</td>
<td>Pa s</td>
</tr>
<tr>
<td>Heat production</td>
<td>H</td>
<td>1•1011 – 2.3•1010</td>
<td>W kg$^{-1}$</td>
</tr>
<tr>
<td>Non-Dimensional Quantities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Basal Rayleigh Number (ice shell)</td>
<td>Ra</td>
<td>1•103 – 3•107</td>
<td>2•105 – 2•107</td>
</tr>
<tr>
<td>Core fraction</td>
<td>f</td>
<td>0.94 – 0.99</td>
<td></td>
</tr>
<tr>
<td>Surface Temperature Variation</td>
<td>ΔT_s</td>
<td>0.27 – 0.07</td>
<td></td>
</tr>
<tr>
<td>Heat Production (input)</td>
<td>Q</td>
<td>2 – 49</td>
<td></td>
</tr>
</tbody>
</table>
The poloidal power spectrum is given as a percent of the entire poloidal power spectrum. Heat flow from the surface and the base of the domain are given as Nusselt numbers. The misfit, reported as the percent difference, between the surface and basal heat flux is a measure of the balance in global heat flow. Higher misfits indicate less resolved models. The ratio of the the $l = 2$, $m = 0$ component of the poloidal power spectrum is given as a percent of the entire poloidal power spectrum. All values are non-dimensional.

Table 2: Convection results. $\Delta \eta$ is the temperature-dependent viscosity contrast of the system. The Rayleigh number, Ra, is defined for domain of the ice shell, internal heating Q is defined as the input parameter. Resolutions are given per spherical cap in the X, Y, and Z directions, respectively (where Z is the radial direction). The temperature and root-mean-square (RMS) velocity structure within the shell are computed from both horizontal and time averages of the internal temperature and velocity fields. Mobility is the ratio of surface to bulk internal velocity (see text). Heat flow from the surface and the base of the domain are given as Nusselt numbers. The misfit, reported as the percent difference, between the surface and basal heat flux is a measure of the balance in global heat flow. Higher misfits indicate less resolved models. The ratio of the the $l = 2$, $m = 0$ component of the poloidal power spectrum is given as a percent of the entire poloidal power spectrum. All values are non-dimensional.

<p>	Ra	Resolution	Homogeneous/Variable	T_i	$\Delta \eta$	Q_{input}	T_i	Mobility	RMS velocity	Nu_{surf}	Nu_{bot}	misfit (%)	$l = 2$ (%)	Figure
$3 \cdot 10^7$	65x65x33	Homogeneous	0.000	10^0	0	0.35	1.17	1517.80	11.47	11.63	-1.45	—	—	
$3 \cdot 10^7$	65x65x65	Homogeneous	0.000	10^0	0	0.36	1.17	1512.50	12.10	11.98	1.04	1.65	—	
$3 \cdot 10^7$	129x129x65	Homogeneous	0.000	10^0	0	0.35	1.18	1514.00	12.26	12.24	0.18	1.25	—	
$7 \cdot 10^7$	65x65x33	Homogeneous	0.052	10^0	0	0.41	1.14	2403.70	14.04	13.97	0.54	2.40	—	
$7 \cdot 10^7$	65x65x65	Homogeneous	0.083	10^0	0	0.40	1.16	2416.10	14.20	14.13	0.49	1.43	9	
$7 \cdot 10^7$	65x65x65	Variable	0.083	10^0	0	0.39	1.15	2435.00	14.46	14.46	-0.01	11.44	9	
$7 \cdot 10^7$	65x65x65	Homogeneous	0.105	10^0	0	0.42	1.15	2371.50	13.55	13.53	0.18	0.24	7	
$7 \cdot 10^7$	65x65x65	Variable	0.165	10^0	0	0.45	1.18	2292.70	12.81	12.72	0.76	16.01	7	
$3 \cdot 10^8$	129x129x65	Homogeneous	0.520	10^0	0	0.40	1.11	6013.40	23.23	23.40	-0.76	1.16	—	
$3 \cdot 10^8$	129x129x65	Variable	0.083	10^0	0	0.40	1.12	5839.70	22.62	22.76	-0.67	10.40	—	
$3 \cdot 10^8$	129x129x65	Homogeneous	0.105	10^0	0	0.43	1.11	5768.70	21.60	21.75	-0.70	0.18	8	
$3 \cdot 10^8$	65x65x65	Homogeneous	0.105	10^0	0	0.43	1.08	5606.30	20.81	20.68	0.64	3.37	—	
$3 \cdot 10^8$	129x129x65	Variable	0.165	10^0	0	0.44	1.15	5239.20	19.86	19.90	-0.24	20.73	8	
$3 \cdot 10^8$	65x65x65	Variable	0.165	10^0	0	0.44	1.09	4806.60	19.26	19.08	0.96	—	—	
$3 \cdot 10^8$	65x65x33	Homogeneous	0.105	10^0	0	0.42	1.17	1421.70	10.03	10.12	-1.08	0.15	—	
$3 \cdot 10^8$	65x65x65	Homogeneous	0.105	10^0	0	0.42	1.18	1413.10	10.33	10.26	0.71	3.01	1, 2	
$3 \cdot 10^8$	129x129x65	Homogeneous	0.105	10^0	0	0.42	1.18	1414.90	10.52	10.53	-0.09	0.66	—	
$3 \cdot 10^8$	65x65x33	Variable	0.165	10^0	0	0.45	1.20	1393.70	9.60	9.61	-0.15	—	—	
$3 \cdot 10^8$	65x65x65	Variable	0.165	10^0	0	0.45	1.20	1386.50	9.93	9.85	0.82	17.24	1, 2	
$3 \cdot 10^8$	65x65x33	Homogeneous	0.105	10^0	0	0.53	1.01	425.09	5.09	5.05	0.94	1.97	3a, 4a	
$3 \cdot 10^8$	65x65x65	Homogeneous	0.105	10^0	0	0.54	1.01	428.37	5.07	5.05	0.50	—	—	
$3 \cdot 10^8$	65x65x33	Variable	0.165	10^0	0	0.55	1.08	450.78	4.89	4.85	0.97	14.76	3b, 4a	
$3 \cdot 10^8$	65x65x65	Variable	0.165	10^0	0	0.55	1.09	453.24	4.97	4.94	0.73	—	—	</p>
<table>
<thead>
<tr>
<th>Homogeneous</th>
<th>Variable</th>
<th>3a, 4b</th>
<th>3b, 4b</th>
<th>3a, 4c</th>
<th>3b, 4c</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.105</td>
<td>10^3</td>
<td>0</td>
<td>0.57</td>
<td>0.67</td>
<td>245.10</td>
<td>3.00</td>
<td>2.99</td>
</tr>
<tr>
<td>0.105</td>
<td>10^3</td>
<td>0</td>
<td>0.58</td>
<td>0.71</td>
<td>251.17</td>
<td>3.04</td>
<td>3.03</td>
</tr>
<tr>
<td>0.165</td>
<td>10^3</td>
<td>0</td>
<td>0.58</td>
<td>0.80</td>
<td>268.47</td>
<td>3.11</td>
<td>3.10</td>
</tr>
<tr>
<td>0.165</td>
<td>10^3</td>
<td>0</td>
<td>0.58</td>
<td>0.81</td>
<td>266.45</td>
<td>3.07</td>
<td>3.06</td>
</tr>
<tr>
<td>0.105</td>
<td>10^3</td>
<td>0</td>
<td>0.77</td>
<td>0.02</td>
<td>174.22</td>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td>0.105</td>
<td>10^3</td>
<td>0</td>
<td>0.77</td>
<td>0.03</td>
<td>175.92</td>
<td>2.46</td>
<td>2.46</td>
</tr>
<tr>
<td>0.165</td>
<td>10^3</td>
<td>0</td>
<td>0.76</td>
<td>0.08</td>
<td>179.90</td>
<td>2.43</td>
<td>2.43</td>
</tr>
<tr>
<td>0.165</td>
<td>10^3</td>
<td>0</td>
<td>0.76</td>
<td>0.09</td>
<td>177.89</td>
<td>2.41</td>
<td>2.41</td>
</tr>
<tr>
<td>0.000</td>
<td>10^3</td>
<td>0</td>
<td>0.60</td>
<td>1.11</td>
<td>1760.23</td>
<td>10.43</td>
<td>10.39</td>
</tr>
<tr>
<td>0.000</td>
<td>10^3</td>
<td>0</td>
<td>0.60</td>
<td>1.05</td>
<td>1673.98</td>
<td>10.78</td>
<td>10.73</td>
</tr>
<tr>
<td>0.000</td>
<td>10^4</td>
<td>0</td>
<td>0.81</td>
<td>0.00</td>
<td>685.86</td>
<td>4.41</td>
<td>4.42</td>
</tr>
<tr>
<td>0.052</td>
<td>3•10^3</td>
<td>0</td>
<td>0.81</td>
<td>0.02</td>
<td>732.20</td>
<td>4.39</td>
<td>4.41</td>
</tr>
<tr>
<td>0.105</td>
<td>3•10^3</td>
<td>0</td>
<td>0.81</td>
<td>0.02</td>
<td>746.61</td>
<td>4.36</td>
<td>4.38</td>
</tr>
<tr>
<td>0.165</td>
<td>3•10^3</td>
<td>0</td>
<td>0.81</td>
<td>0.06</td>
<td>761.46</td>
<td>4.39</td>
<td>4.40</td>
</tr>
<tr>
<td>0.105</td>
<td>10^6</td>
<td>10</td>
<td>0.44</td>
<td>1.17</td>
<td>1418.50</td>
<td>10.43</td>
<td>9.90</td>
</tr>
<tr>
<td>0.165</td>
<td>10^6</td>
<td>10</td>
<td>0.47</td>
<td>1.19</td>
<td>1390.60</td>
<td>10.04</td>
<td>9.47</td>
</tr>
<tr>
<td>0.165</td>
<td>10^6</td>
<td>10</td>
<td>0.48</td>
<td>1.19</td>
<td>1373.00</td>
<td>10.26</td>
<td>9.58</td>
</tr>
<tr>
<td>0.105</td>
<td>10^2</td>
<td>10</td>
<td>0.58</td>
<td>1.08</td>
<td>466.44</td>
<td>5.27</td>
<td>4.65</td>
</tr>
<tr>
<td>0.165</td>
<td>10^2</td>
<td>10</td>
<td>0.58</td>
<td>1.12</td>
<td>480.57</td>
<td>5.20</td>
<td>4.57</td>
</tr>
<tr>
<td>0.105</td>
<td>10^3</td>
<td>10</td>
<td>0.63</td>
<td>0.70</td>
<td>267.53</td>
<td>3.44</td>
<td>2.85</td>
</tr>
<tr>
<td>0.165</td>
<td>10^3</td>
<td>10</td>
<td>0.64</td>
<td>0.88</td>
<td>305.80</td>
<td>3.49</td>
<td>2.90</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>10</td>
<td>0.81</td>
<td>0.02</td>
<td>188.01</td>
<td>2.75</td>
<td>2.17</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>10</td>
<td>0.81</td>
<td>0.06</td>
<td>192.37</td>
<td>2.75</td>
<td>2.18</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.48</td>
<td>1.15</td>
<td>1381.50</td>
<td>10.99</td>
<td>9.56</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.49</td>
<td>1.15</td>
<td>1368.30</td>
<td>11.53</td>
<td>10.00</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>25</td>
<td>0.50</td>
<td>1.17</td>
<td>1356.30</td>
<td>10.66</td>
<td>9.17</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>25</td>
<td>0.56</td>
<td>1.13</td>
<td>1252.50</td>
<td>10.89</td>
<td>9.43</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.65</td>
<td>1.15</td>
<td>524.64</td>
<td>5.76</td>
<td>4.27</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.65</td>
<td>1.17</td>
<td>542.18</td>
<td>5.74</td>
<td>4.25</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.70</td>
<td>0.99</td>
<td>350.01</td>
<td>3.87</td>
<td>2.41</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>25</td>
<td>0.70</td>
<td>1.02</td>
<td>366.21</td>
<td>3.97</td>
<td>2.50</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>25</td>
<td>0.87</td>
<td>0.02</td>
<td>195.93</td>
<td>3.13</td>
<td>1.69</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>25</td>
<td>0.88</td>
<td>0.08</td>
<td>203.11</td>
<td>3.14</td>
<td>1.69</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>49</td>
<td>0.55</td>
<td>1.09</td>
<td>1269.20</td>
<td>12.28</td>
<td>9.30</td>
</tr>
<tr>
<td>0.105</td>
<td>10^4</td>
<td>49</td>
<td>0.55</td>
<td>1.08</td>
<td>1248.30</td>
<td>12.64</td>
<td>9.69</td>
</tr>
<tr>
<td>0.165</td>
<td>10^4</td>
<td>49</td>
<td>0.57</td>
<td>1.11</td>
<td>1257.00</td>
<td>11.78</td>
<td>8.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3×10^3</td>
<td>65x65x65</td>
<td>Variable</td>
<td>0.165</td>
<td>10^5</td>
<td>49</td>
<td>0.57</td>
<td>1.11</td>
</tr>
<tr>
<td>3×10^3</td>
<td>65x65x65</td>
<td>Homogeneous</td>
<td>0.105</td>
<td>10^0</td>
<td>49</td>
<td>0.74</td>
<td>1.21</td>
</tr>
<tr>
<td>3×10^3</td>
<td>65x65x65</td>
<td>Variable</td>
<td>0.165</td>
<td>10^5</td>
<td>49</td>
<td>0.73</td>
<td>1.22</td>
</tr>
<tr>
<td>3×10^3</td>
<td>65x65x65</td>
<td>Homogeneous</td>
<td>0.105</td>
<td>10^1</td>
<td>49</td>
<td>0.79</td>
<td>1.10</td>
</tr>
<tr>
<td>3×10^0</td>
<td>65x65x65</td>
<td>Variable</td>
<td>0.165</td>
<td>10^1</td>
<td>49</td>
<td>0.79</td>
<td>1.16</td>
</tr>
<tr>
<td>3×10^0</td>
<td>65x65x65</td>
<td>Homogeneous</td>
<td>0.105</td>
<td>10^4</td>
<td>49</td>
<td>0.96</td>
<td>0.02</td>
</tr>
<tr>
<td>3×10^0</td>
<td>65x65x65</td>
<td>Variable</td>
<td>0.165</td>
<td>10^4</td>
<td>49</td>
<td>0.96</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Figure 1: Basal heating isoviscous results for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, D), heat flux (B, E), and strain rate (C, F). The basal Ra is fixed at $3 \cdot 10^5$, and the average surface temperatures are identical. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6), using $d = 60$ km, $\eta_0 = 10^{14}$ Pa·s, $\kappa = 10^{-6}$ m2·s$^{-1}$, and dimensionless quantities from selected models given in Table 2.
Figure 2: Meridionally and temporally averaged internal temperature and velocity plots for homogeneous (A) and latitudinally variable (B) surface temperatures for the basally heated isoviscous models shown in Figure 1. Colorbar for dimensionless temperatures are clipped at 0.4 to 0.6 to emphasize internal variations. Arrows denote average flow direction and magnitudes (minimum and maximum velocities are 0.2 cm/a and 38 cm/a, respectively). The equator is marked by “eq.”; radius ranges from 0.762 to 1. Thermal boundary layer depths and thicknesses (see text) are shown for the homogeneous (C) and latitudinally variable (D) T_s cases. Solid lines are the mean, and dashed lines denote one standard deviation for the temporally and latitudinally averaged plots. Positive latitudes correspond to the top of the temperature slice. The log of the poloidal power spectra are shown for the homogeneous (E) and latitudinally variable (F) T_s cases. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption.
Figure 3: Basal heating temperature-dependent results for homogeneous (a) and latitudinally variable (b) surface temperatures. Plots show surface velocity field (A, E, I), surface viscosity (B, F, J), heat flux (C, G, K), and strain rate (D, H, L) for $\Delta \eta = 10^2$ (top row), 10^3 (middle row), 10^4 (bottom row). The basal Ra is fixed at $3 \cdot 10^5$, and the model average surface temperatures are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6). Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption. Note for clarity, the scales for temperature-dependence differs from the isoviscous cases.
Figure 4: Meridionally and temporally averaged internal temperature and velocity plots for homogeneous (A) and latitudinally variable (B) surface temperatures for the basally heated temperature-dependent viscosity results shown in Figures 3a and 3b (a: $\Delta \eta = 10^2$; b: $\Delta \eta = 10^3$; c: $\Delta \eta = 10^4$). Positive latitudes correspond to the top of the temperature slice. Colorbar for temperatures are clipped at 0.25 to 0.75 to emphasize internal variations. Arrows denote average flow direction and magnitudes ($\Delta \eta = 10^2$ min / max velocities are 0.02 / 9 cm/yr; $\Delta \eta = 10^3$ min / max velocities are 0.003 / 3 cm/yr; and $\Delta \eta = 10^4$ min / max velocities are 10^{-4} / 2 cm/yr). The equator is marked by “eq.” The radius ranges from 0.762 to 1. Boundary layer depths and thicknesses (see text) are shown for homogeneous (C) and latitudinally variable (D) cases. Solid lines are the mean, and dashed lines denote one standard deviation for the temporally and latitudinally averaged plots. The log of the poloidal power spectra are shown for the homogeneous (E) and latitudinally variable (F) cases. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption.
Figure 5: Mixed heating results with uniform viscosity for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, E), heat flux (B, F), strain rate (C, G), and the log of the poloidal power spectra (D, H). The basal Ra is fixed at $3 \cdot 10^5$, and the average surface temperatures in both models are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption.
Figure 6: Mixed heating results with temperature-dependent viscosity for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, F), surface viscosity (B, G), heat flux (C, H), strain rate (D, I), and the log of the poloidal power spectra (E, K) for $\Delta \eta = 10^3$. The basal Ra is fixed at $3 \cdot 10^5$, and the average surface temperatures for each model are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption. Note for clarity, the scales for temperature-dependence differs from the isoviscous cases.
Figure 7: Moderate Ra isoviscous basally heated results for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, E), heat flux (B, F), strain rate (C, G), and the log of the poloidal power spectra (D, H). The basal Ra is fixed at $7 \cdot 10^5$, and both the average surface temperatures are the same in each model. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption.
Figure 8: High Ra isoviscous basally heated results for homogeneous (top row) and latitudinantly variable (bottom row) surface temperatures. Plots show surface velocity field (A, E), heat flux (B, F), strain rate (C, G), and the log of the poloidal power spectra (D, H). The basal Ra is fixed at 3×10^6, and the average surface temperatures for each model are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption. Note for clarity, the scale range differs from the isoviscous cases in Figure 1.
Figure 9: Basal heating isoviscous results with half variation in surface temperatures ($T_s \sim 8\%$ of the basal temperature) for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, E), heat flux (B, F), and strain rate (D, G), and the log of the poloidal power spectra (D, H). The basal Ra is fixed at $7 \cdot 10^5$, and the average surface temperatures for each model are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption.
Figure 10: High Ra with temperature-dependent viscosity for homogeneous (top row) and latitudinally variable (bottom row) surface temperatures. Plots show surface velocity field (A, E), heat flux (B, F), strain rate (C, G), and the log of the poloidal power spectra (D, H). The basal Ra is fixed at $3 \cdot 10^6$, $\Delta \eta = 10^2$, and the average surface temperatures for each model are the same. Arrows denote surface flow direction. Quantities are dimensionalized following eq. (6) with property values denoted in the Figure 1 caption. Note for clarity, the scale range differs from the isoviscous cases in Figure 1.