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A B S T R A C T

Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical
velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western
and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a
rock uplift rate pattern is at odds with the horizontal velocity field, characterized by shortening and crustal
thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me-
chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of
the Western Alpine slab, as well as lithospheric and surface deflection due to mantle convection. Here, we assess
previous work and present new estimates of the contributions from these mechanisms. Given the large range of
model estimates, the isostatic adjustment to deglaciation and erosion are sufficient to explain the full observed
rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and
crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and
Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock
uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the
European slab and/or asthenospheric upwelling. While it is difficult to independently constrain the patterns and
magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should
provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather
than an individual forcing, best explain ongoing Alpine elevation changes.

1. Introduction

The elevation and relief of mountain ranges evolve accordingly to
the tectonic and climatic histories (e.g. England and Molnar, 1990;
Molnar and England, 1990; Raymo and Ruddiman, 1992; Avouac and

Burov, 1996; Ruddiman, 1997; Willett, 1999; Braun, 2010; Carminati
and Doglioni, 2012). The rate of change of mountain elevation is sen-
sitive to the rate of change of tectonic or climatic processes and thus
potentially allows discerning between the predominant tectonic or cli-
matic control on the orogen morphology. However, detailed constraints
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on the many interdependent processes and topographic effects involved
by tectonic and climatic changes are required.

In the European Alps, major Pliocene-Quaternary tectonic and cli-
matic processes, including widespread glaciation (e.g. Penck, 1905;
Preusser et al., 2010) and various mechanisms of lithospheric strain
(e.g. Argand, 1916; Schmid et al., 2017), have been documented for
over a century, contributing much of our knowledge about orogenic
processes in general. Recent works called upon various combinations of
“surface” or “deep-seated” forces related to Pliocene-Quaternary cli-
matic or tectonic events in order to explain current measurements of
elevation changes in time (e.g. Delacou et al., 2004; Sue et al., 2007;
Serpelloni et al., 2013; Walpersdorf et al., 2015; Nocquet et al., 2016).
However, the relative contributions of surface or deep-seated forces to
the vertical displacement rate as well as the relationships between the
vertical and horizontal components of motion are still elusive.

Here, we present an integrated characterization of the processes
controlling the current Alpine surface vertical displacement rate. We
first provide a reference map of Global Positioning System (GPS)
measurements of the current Alpine vertical displacement rate (Section
2). Then, we review the surface mass redistribution-related or tectonic-
related processes that may affect the current vertical motion of the Alps
and compare previously proposed and new models of their relative
contributions to the observed surface vertical displacement rate. In the
spirit of a review, we report proposed magnitudes of vertical dis-
placement rate for each mechanism (Section 3). However, strong as-
sumptions are unavoidable in modeling a complex system such as the
Alps, and the uncertainty within models, rarely quantified, is likely
larger than the observed vertical displacement rate. We thus caution the
reader that any consideration regarding modelled magnitudes in this
section should be taken as our interpretative assessment. Instead,
comparisons between and considerations regarding the spatial patterns
of each contribution (Section 4) should be seen as likely more robust.
Our main conclusion (Section 5) is that current Alpine vertical motion is
unlikely to be related to an individual process, but rather is the result of
multiple contributions adding up differently along and across the Al-
pine strike.

2. Measurements of ongoing Alpine vertical displacement rates

2.1. Overview

Continuous Global Navigation Satellite System (GNSS) networks
provide increasingly detailed information on the three-dimensional
surface velocity field in the Euro-Mediterranean area. Serpelloni et al.
(2013) provided a first synoptic view of vertical ground motion rates
over the great Alpine region, integrating data from several GNSS net-
works. Levelling data have long revealed the uplift rates of the Swiss
Alps with respect to the foreland (Schaer and Jeanrichard, 1974; Gubler
et al., 1981). Despite a few disagreements, independent analyses of the
GNSS and GNSS/levelling datasets spanning decades to a century show
overall consistency in the main trends (in terms of location and mag-
nitude) of the relative uplift rates (Nocquet et al., 2016).

Here we update the solution of Serpelloni et al. (2013) using vertical
GPS data up to the end of 2016 at 555 stations (while Serpelloni et al.
(2013) processed data between 1998 and 2011 at 278 stations), with an
average observational time span of 7.5 years (minimum 2.5 and max-
imum 23 years) (Fig. 1). The position time-series have been obtained
adopting a three-step procedure: 1) raw phase data reduction, 2)
combination of loosely constrained network solutions and reference
frame definition and 3) time-series analysis, including velocity esti-
mates and spatial filtering of common mode errors. The raw GPS ob-
servables have been analysed using the GAMIT/GLOBK software
package version 10.6 (Herring et al., 2015), adopting standards defined
in the framework of the IGS “Repro2 campaign” (http://acc.igs.org/
reprocess2.html). Loosely constrained solutions have been combined
with the global solution of the IGS network by the MIT, realizing a

global reference frame by applying generalized constraints (Dong et al.,
1998). We define the reference frame by minimizing the velocities of
the IGS08 core stations (http://igscb.jpl.nasa.gov), while estimating a
seven-parameter transformation with respect to the GPS realization of
the ITRF2008 frame (Altamimi et al., 2011). In the third step, we
analyse the position time series in order to estimate and correct offsets
due to stations equipment changes, while simultaneously estimating
annual and semi-annual periodic signals and a linear velocity term. For
additional details on the GPS data processing and post-processing the
reader is referred to Serpelloni et al. (2018). The GPS velocity field in
Switzerland is augmented by using an additional GPS velocity field
from the AGNES (Automated GNSS Network for Switzerland) network,
made available by Swisstopo (http://pnac.swisstopo.admin.ch). Velo-
cities from this solution have been aligned to ours using sites in
common between the two databases, while estimating a 6-parameters
transformation (Serpelloni et al., 2013; Serpelloni et al., 2016). Prior to
this operation, the velocity uncertainties provided by the AGNES so-
lution (representing the formal uncertainty arising from rigorous ad-
justment using original daily normal equations) are increased by a
factor of 15 since they underestimate the true value by a similar amount
(E. Brockmann, 2018, personal communication). Vertical GPS/GNSS
velocities are provided in Table S1. In the Western Alps, vertical velo-
cities are consistent with those of Nocquet et al. (2016) and
Walpersdorf et al. (2015).

In Fig. 1a, we plot the data and an interpolated surface together
with the horizontal velocity field modelled by Serpelloni et al. (2016).
We use only GPS/GNSS data, since these alone provide homogeneous
coverage over the Alps. However, Fig. S1 shows that our preferred so-
lution has reasonably good spatial agreement with levelling data
(Schlatter et al., 2005). The interpolated surface bears a degree of un-
certainty and probabilistic analyses suggest more conservative magni-
tudes (Husson et al., 2018), but the main pattern is robust.

2.2. Data interpretation

Since at least the Oligocene, the Northern Apennine and Dinaride
orogenic belts are characterized by continental subduction to the SW
under the Apennines and to the NE under the Dinarides. In addition, the
Apennine slab is rolling back to the NE. Both systems affect the Alpine
structures at their terminations (e.g. Ratschbacher et al., 1991;
Rosenbaum and Lister, 2004; Schmid et al., 2004; Vignaroli et al., 2008;
Bennett et al., 2008; Mitterbauer et al., 2011; Šumanovac, 2015; Handy
et al., 2015). Today's Alpine horizontal deformation is consistent with
the kinematics imposed by these boundary conditions, with Adria-
European motion described by a counterclockwise rotation around an
Euler pole positioned in the northwestern Po plain (e.g. Anderson and
Jackson, 1987; Collombet et al., 2002; Battaglia et al., 2004; Nocquet
and Calais, 2004; D'Agostino et al., 2008; Rolland et al., 2012). The
resulting horizontal strain involves shortening in the Eastern Alps,
dextral shear in the Central Alps, and no deformation, or very slow
horizontal extensional deformation in the Western Alps (e.g. Slejko
et al., 1989; Doglioni, 1990; Sue et al., 2007; Walpersdorf et al., 2015;
Serpelloni et al., 2016). The geodetic vertical velocity measurements
show that the Western Alps around the Vanoise-Zermatt area and
Central Alps near Davos are currently uplifting at maximum local rates
of ~2 mm/a and ~2.5 mm/a, respectively, while values gradually de-
crease to zero and become negative toward the Eastern and South-
Western Alps (Fig. 1a,b). Regions undergoing uplift rates > 1 mm/a
belong almost exclusively to the Alpine arc and are systematically lo-
cated within the Last Glacial Maximum (LGM) ice extent (Ehlers and
Gibbard, 2004). The analysis of the structures that accommodate the
present-day surface vertical displacement rates from our preferred so-
lution is beyond the scope of this study. However, major Alpine tectonic
lineaments often wrap around, rather than cut through, domains with
distinct uplift rates from our solution. For instance, the fast uplifting
Central Alpine sector is bound by the Periadriatic, Giudicarie and
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Engadine lines, while the fast uplifting Western Alpine region lies be-
tween the Centovalli-Canavese lines and the main northern Alpine
thrust front. Of particular importance for this study is that present-day
uplift rates are faster where horizontal shortening is limited (in the
Western and Central Alps), while regions undergoing significant hor-
izontal shortening (the Eastern Alps) are uplifting at slower rates. Such
a first-order pattern is a robust feature, largely independent of the

method used to interpolate the scattered data (Serpelloni et al., 2013;
Serpelloni et al., 2016).

3. Analysis of the modern Alpine vertical displacement rates

Elevation changes are generally associated with changes in crustal
thickness (e.g. Heiskanen and Vening Meinesz, 1958). However,

Fig. 1. (a) Measurements of ongoing Alpine vertical displacement rate (see Section 2 for detail). Values at circles (locating GPS/GNNS stations) are interpolated using
the GMT blockmean and surface commands at a spatial resolution of 30 km and with a tension factor of 0 (minimum curvature solution). Isolines at 1 mm/a intervals
are shown with thin black lines. Black arrows show the horizontal velocity field as from the model by Serpelloni et al. (2016). The thick black line shows the LGM ice
extent as from (Ehlers and Gibbard, 2004). White lines show major Alpine tectonic lineaments (Schmid et al., 2004), NAT - Northern Alpine Thrust, CC – Centovalli-
Canavese line, PE – Periadriatic line, GI – Giudicarie line, EN – Engadine line. (b) Along-strike West-East vertical displacement rate against distance swath profile
(location shown by green lines in a). The solid line shows mean values, the shaded region shows minimum and maximum values. (c) Schematic representation of the
main proposed mechanisms of Alpine vertical displacements. Lighter or darker colors denote lighter or denser materials. All mechanisms are discussed in details in
the main text (Section 3).

P. Sternai, et al. Earth-Science Reviews 190 (2019) 589–604

591



exceptions to this correlation exist. For instance, topographic loads with
wavelengths shorter than ~100–200 km do not necessarily cause the
sinking of the crust into the mantle, but may rather produce litho-
spheric flexure over wide areas (e.g. Watts, 2009). In addition, the
mantle flow actively modulates the surface topography through vertical
tractions (e.g. Hager et al., 1985; Cazenave et al., 1989; Gurnis, 1993;
Le Stunff and Ricard, 1995; Christensen, 1998; Lithgow-Bertelloni and
Silver, 1998; Braun, 2010; Husson et al., 2014; Sternai et al., 2016a;
Gvirtzman et al., 2016). This latter contribution to surface elevation
changes is often referred to as “dynamic” to emphasize the forcing by
moving mass anomalies, as opposed to the quasi-static mass anomalies
(e.g. topographic loads) that control the amount of “isostatic” topo-
graphy. Whether or not the term “dynamic” includes topographic ef-
fects due to processes involving the mantle lithosphere is controversial
(e.g. Flament et al., 2013). Here, we only include sub-lithospheric
processes in the definition and consider variations in lithospheric
thickness as providing an isostatic contribution to surface elevations
(Fig. 1c).

Processes that likely originate the rock uplift (sensu England and
Molnar, 1990) shown in Fig. 1a and b are the isostatic adjustment to
surface mass redistribution due to (1) deglaciation since the LGM and
(2) erosion of the orogen, the isostatic adjustment to (3) lithospheric
structural changes and (4) the dynamic traction due to sub-lithospheric
mantle convection. These mechanisms and their potential contributions
to the observed rock uplift rates are assessed hereafter.

3.1. Alpine uplift by isostatic adjustment to deglaciation

3.1.1. Overview
Approximating the behaviour of the Alpine lithosphere to that of a

viscoelastic medium (e.g. Turcotte and Schubert, 2002; Watts, 2009),
the characteristic viscoelastic relaxation time, τ = 2η/E (where η and E
are, respectively, the mean asthenospheric viscosity and elastic mod-
ulus), defines the system response reference timescale. Reasonable es-
timates of τ for the Alpine system give values between a few thousands
and a few tens of thousands of years (e.g. Digby, 1981; Jackson and
Paterson, 1987; Forte and Mitrovica, 1996). In the Alps,

geochronological and geomorphological studies define a maximum age
for the onset of the LGM deglaciation of ~21 ka (e.g. Ehlers and
Gibbard, 2004; Ivy-Ochs et al., 2006). Since the characteristic timescale
of the deglaciation is comparable to the viscoelastic relaxation time,
viscoelastic effects are expected to be important and provide a sub-
stantial contribution to the currently observed uplift rate.

3.1.2. Modeling results and interpretation
With a viscoelastic Earth model and assuming a simplified LGM ice

mass, Gudmundsson (1994) predicted post-LGM rebound rates com-
parable in magnitude to modern geodetic measurements. However, he
cautioned about the need for more accurate assessments as to the
rheological parameters and geometrical constraints involved with these
estimates. According to Norton and Hampel (2010) post-LGM un-
loading may result in uplift rates > 10 mm/a during the early stages of
the deglaciation (i.e. ~20–15 ka), but such values quickly reduce to
0.3–0.4 mm/a after ~13 ka, when the viscous deformation becomes
dominant with respect to the elastic strain. Slightly lower, but similar
values were obtained by Stocchi et al. (2005) and Spada et al. (2009)
based on the sea-level equation approach (Farrell and Clark, 1976).
Spada et al. (2009), in particular, estimate up to ~0.5 mm/a of near-
present uplift rates due to the deglaciation since the LGM and the
melting of the remote ice-sheets in the far-field of the Mediterranean
based on the ICE-5G model of Peltier (2004) (Fig. S2). Barletta et al.
(2006) estimated some 0.4–0.5 mm/a of local uplift rate due to the
glacier reduction during the 1996–1999 time interval in the Western
Alps. Overall, these models account for ~10–30% of the geodetically
determined rock uplift rates in the Western/Central Alps and reach up
to ~50% in the Eastern Alps.

Chery et al. (2016) show that an ad hoc viscosity contrast between
the Alpine foreland and central sector may allow post-LGM rebound to
explain nearly all of the fast Western Alpine uplift rates as obtained by
Serpelloni et al. (2013). Mey et al. (2016) argue that uplift rates due to
the melting of the LGM Alpine ice cap account for ~90% of the orogen-
scale uplift rates measured through levelling techniques by Jouanne
et al. (1995), Schlatter et al. (2005) and Bruyninx (2004). However,
when directly compared to our geodetically determined rock uplift

Fig. 2. (a) Difference between modelled rock uplift rates due to the deglaciation modelled by Spada et al. (2009), as from Fig. S2c, and observed rock uplift rates, as
from Fig. 1a. (b) Along-strike West-East residual vertical displacement rate against distance swath profile (location shown by the thick and dashed black lines in a).
(c) Difference between modelled rock uplift rates due to the deglaciation modelled by Mey et al. (2016), as from their Fig. 6, and observed rock uplift rates (as from
Fig. 1a). (d) Along-strike West-East residual vertical displacement rate against distance swath profile (location shown by the thick and dashed black lines in c). In a
and c, isolines are shown at 1 mm/a intervals. Note that, since the models proposed by Spada et al. (2009) and Mey et al. (2016) only address uplift due to the
deglaciation, the comparisons in a and c are meaningful only within the Alpine domain. In b and d, the solid line shows mean values, the shaded region shows
minimum and maximum values.
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rates (Fig. 1a), their preferred model (i.e. Fig. 6 in Mey et al., 2016)
shows lower residuals in the Central Alps but higher residuals in the
Western and Eastern Alps with respect to the those obtained using es-
timates by Spada et al. (2009) (Fig. 2). Estimates by Mey et al. (2016)
also predict uplift rates higher than observed in the South-Eastern,
North-Western and South-Western Alps (Fig. 2b), while over-predic-
tions with respect to observations are almost exclusively located outside
the Alpine belt if estimates by Spada et al. (2009) are considered
(Fig. 2a).

The proposed contribution from post-LGM rebound to the observed
rock uplift rates thus ranges widely from values as low as ~10–30%
(e.g., Stocchi et al., 2005; Spada et al., 2009; Norton and Hampel, 2010)
to > 90% rates (e.g. Chery et al., 2016; Mey et al., 2016). However, the
upper end of these estimates calibrated to post-LGM rebound in the
Central Alps leads to high residuals in the Western and Eastern Alps,
even if one accounts for lateral variations in lithospheric rigidity (Mey
et al., 2016). We thus think that more conservative estimates of uplift
rates by postglacial rebound (e.g. Stocchi et al., 2005; Norton and
Hampel, 2010) and overall contributions to observations between
~10–30% and up to ~50% in the Western/Central and Eastern Alps,
respectively, are more likely. In the Western/Central Alps, one may add
to these percentages an extra 10–20% due to the present-day glacier
shrinkage (Barletta et al., 2006), although this effect appears to be
primarily a short-wavelength spatial feature.

3.2. Alpine uplift by isostatic adjustment to erosion and sediment
redistribution

3.2.1. Overview
Although debated (e.g. Willenbring and Jerolmack, 2016), long-

term sedimentary and geochronological archives document an increase
in the mass of sediments released from most major mountain ranges
since the onset of glaciation in the late Cenozoic (e.g. Peizhen et al.,
2001; Herman et al., 2013) and the Alps have been one of the best
studies examples (e.g. Kuhlemann et al., 2002; Mancin et al., 2009; Fox
et al., 2015). While it is not clear whether glaciers are more effective
erosive agents than rivers (e.g. Koppes and Montgomery, 2009), it is
established that shifting fluvial-glacial conditions involve transient
landscapes associated with significant erosional changes at 101–106 a
timescales (e.g. Koppes and Montgomery, 2009; Willett, 2010; Sternai
et al., 2011; Herman et al., 2011; Sternai et al., 2013; Fox et al., 2015;
Sternai et al., 2016b). The density of upper crustal rocks and sediments
exceeds that of ice by a factor of ~3, which implies that erosion rates in
the order of the millimetre per year sustained throughout glacial-in-
terglacial cycles produce surface load variations comparable to those
due to ice building/melting (e.g. Champagnac et al., 2009; Sternai
et al., 2016b).

3.2.2. Modeling results and interpretation
Based on sediment budget analysis and the assumption that valleys

and lakes became sedimentologically closed since the deglaciation,
Hinderer (2001) estimated a mean Alpine post-LGM erosion rate of
~0.6 mm/a. These values are roughly consistent with spatially aver-
aged denudation rates inferred from cosmogenic nuclide analysis
yielding values between 0.2 and 0.3 mm/a at postglacial timescales in
the Alpine foreland and up to 0.9 mm/a along the central axis of the
orogen (Fig. 3a and references therein), in general agreement with the
pattern reported by Wittmann et al. (2007). Valley-scale studies suggest
postglacial erosion rates of the order of a few mm/a with maximum
values of up to a few cm/a and high variability within very small dis-
tances due to the transient nature of landscapes adjusting to the glacial-
interglacial transition (e.g. Brocard et al., 2003; Korup and
Schlunegger, 2007; Norton and Hampel, 2010; Valla et al., 2010; van
den Berg et al., 2012; Saillard et al., 2014; Rolland et al., 2017; Petit
et al., 2017). Despite the variability of erosion rates across spatial and
temporal scales, one can recognize a first order agreement between the

spatial distribution of Alpine erosion and rock uplift rates (Fig. 3b),
which may reflect a link between denudation and the associated iso-
static response to unloading (e.g. Schlunegger and Hinderer, 2001;
Wittmann et al., 2007). Somewhat higher erosion rates are observed
during the Quaternary and the deglaciation with respect to pre-Qua-
ternary values, i.e. prior to the onset of the Northern Hemisphere gla-
ciation (e.g. Fox et al., 2015; Grischott et al., 2017).

Assessing surface load changes and resulting uplift rate due to rock
mobilization by erosion is difficult because the sediment pathway may
involve storage in intramontane basins, floodplains, fans and terraces
within predominantly erosional landscapes (e.g. Castelltort and Van
Den Driessche, 2003; Romans et al., 2015). Boreholes and geophysical
surveys allow relatively detailed reconstructions of the sedimentary fills
within major Alpine valleys (e.g. Stucki and Schlunegger, 2013). Using
a viscoelastic model with spatially variable plate elastic thickness
averaging to 20 km and assuming that valley fills are entirely of post-
glacial origin, Mey et al. (2016) estimate a maximum uplift rate due to
post-LGM erosion and sedimentary mass redistribution reaching up to
~0.5 mm/a in the Central Alps.

Elastic flexure models were also used to estimate the time-averaged
unloading due to erosion throughout the Pliocene-Quaternary and as-
sociated average uplift rate neglecting the attenuation that would result
from accumulation of sediments within Alpine valleys. Champagnac
et al. (2007) constrained the spatial distribution of surface load changes
due to Pliocene-Quaternary erosion based on the so-called Geophysical
Relief (Small and Anderson, 1998) and used an elastic flexural model to
estimate the induced Alpine uplift assuming a uniform plate elastic
thickness of 10 km. These estimates provide a maximum bound on the
average uplift at the million years timescale reaching up to ~500 m
along the axial part of the orogen due to glacial carving of Alpine
valleys. By comparing the present-day landscape to a reconstruction of
the pre-glacial Alpine topography, Sternai et al. (2012) improved the
determination of the spatial distribution of long term erosion and ob-
tained a maximum of ~250 m of erosion-induced elastic uplift as-
suming a uniform 20 km thick elastic plate, roughly consistent with
results by van der Beek and Bourbon (2008). In Fig. 4, we present an
improvement on these estimates that accounts grossly for sediment
deposition. We constrain the volume of material eroded from the Alps
by spatial integration of the eroded material as estimated by Sternai
et al. (2012), providing a volume of ~300,000 km3 of sediments since
the mid-Quaternary (i.e. ~150,000 km3/Ma), roughly consistent with
the ~160,000 km3/Ma sediment discharge rate estimated by
Kuhlemann et al. (2002). According to the late-Quaternary sedimentary
budget provided by Kuhlemann et al. (2002), 42%, 23%, 21% and 14%
of the estimated volume of eroded material is uniformly redistributed
into low-slope regions (below a 5° threshold) within the Rhone, Rhine,
Po and Danube catchments, respectively. We then estimate the average
vertical displacement due to such a mass redistribution using an elastic
plate model with uniform elastic thickness of 20 km (Sternai et al.,
2012). The onset of major Quaternary glaciation in the Alps is con-
strained to have occurred at ~1 Ma from stratigraphic evidence in the
Po plain (Muttoni et al., 2003) and onset of Alpine valley deepening
(Häuselmann et al., 2007; Valla et al., 2011). This value is used to
calculate the average vertical displacement rates in Fig. 4b-d, showing
that the maximum time-averaged uplift rate due to late-Quaternary
erosion and sediment deposition reaches up to ~0.25 mm/a. Sediment
deposition, in particular, affects the overall pattern of isostatic adjust-
ment (Fig. 4c), but it does not significantly modify the maximum value
of uplift rates along the orogen axis (Fig. 4b and d).

It appears that the maximum contribution to orogen-scale uplift
rates (Fig. 1a) by erosion and sediment redistribution at postglacial and
late-Quaternary timescales ranges between ~10–20% in the Western
and Central Alps and ~30–40% in the Eastern Alps.
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3.3. Alpine uplift by isostatic adjustment to lithospheric structural changes

3.3.1. Overview
Information from e.g. seismic velocity and reflection data, receiver

function analysis, and other geophysical and geological observations
and models constrain the crustal and lithospheric structure of the Alps.
The deviation from Airy type isostatic equilibrium that arises from the
crustal and lithospheric Alpine structures gives insights into possible
sources of rock uplift by ongoing or recent lithospheric processes.
According to the recent model by Spada et al. (2013), which generally
agrees with previous models (e.g. Waldhauser et al., 2002; Behm et al.,
2007; Di Stefano et al., 2009; Schreiber et al., 2010; Wagner et al.,
2012) the European Moho is at typical continental depths in the
northern Alpine foreland (~30 km) and dips distinctively toward the
South-East in the Central Alps and toward the South in the Eastern Alps

(Fig. 5a). The Moho is deeper than 55 km in the Central Alps and, in the
Eastern Alps, it shallows smoothly toward the east from about 50 km
beneath the Tauern region to ~30 km in the Vienna basin. In the
Western Alps, the European Moho descends beneath the Ivrea body and
the Adriatic Moho to a depth of ~55 km.

The local isostatically compensated elevation, ziso, depends on the
thickness and density structure of the lithosphere and sub-lithospheric
mantle. The surface elevation of a lithospheric column with respect to a
reference elevation (H, usually taken as the average mid-oceanic ridge
elevation, as suggested by Lachenbruch and Morgan, 1990), is de-
termined by the crustal thickness, lc, and average density, ρc, the li-
thospheric mantle thickness, lm, and average density, ρm, and the
asthenosphere average density, ρa, according to the equation
ziso = ((ρa − ρc)/ρalc + (ρa − ρm)/ρalm) – H.

Fig. 3. (a) Map of erosion rates in the Alps. Contours show erosion rates averaged during the 2–0 Ma time window as from the analysis of thermochronometric data
by Fox et al. (2015). Circles show the rates of denudation at postglacial timescales as reported by Codilean et al. (2018, in review) and inferred from 10Be
concentrations measured in stream sediments (Wittmann et al., 2007; Norton et al., 2008; Norton et al. 2010; Delunel et al., 2010; Norton et al. 2011; van den Berg
et al., 2012; Chittenden et al., 2013; Glotzbach et al., 2013; Buechi et al., 2014; Savi et al., 2014; Dixon et al., 2016; Grischott et al., 2016; Molliex et al., 2016;
Wittmann et al., 2016). Note that circles show the sample location but original values (Codilean et al., 2018, in review) represent denudation rates averaged over the
entire upstream drainage area and are corrected for the effects of ice- and snow-cover on the 10Be production rate (~20% correction in average, reducing particularly
denudation rate estimates for basins located at high elevation - R. Delunel, personal communication). Denudation rate estimates has thus been corrected, considering
the effects of modern snow and ice cover on the 10Be production rate (ca. 20% correction in average, and resulting in reducing denudation estimates for basins
located at high elevation and in the inner parts of the chain). (b) Comparison between erosion rates averaged during the 2–0 Ma time window (Fox et al., 2015) and
observed rock uplift rates (same as Fig. 1a).

Fig. 4. Predictions of average vertical displacement rate due to Plio-Quaternary erosion and sediment deposition. Loads are distributed assuming a uniform elastic
plate of thickness of 20 km. (a) 42%, 23%, 21% and 14% of the amount of material eroded estimated by Sternai et al. (2012) is uniformly redistributed into low-slope
regions (below the 5° threshold) within the Rhone, Rhine, Po and Danube catchments (Kuhlemann et al., 2002), respectively (see text for further detail). Vertical
displacement rate due to (b) erosion only (same as in Sternai et al., 2012), (c) sediment redistribution into peripheral basins and (d) erosion and sediment redis-
tribution (sum of b and c). Vertical displacement rates in b, c and d are calculated assuming that the onset of major Pleistocene glaciation in the Alps occurs at ~1 Ma
as suggested by stratigraphic evidence (Muttoni et al., 2003) and major valley deepening (Häuselmann et al., 2007; Valla et al., 2011). Isolines at 0.1 mm/a intervals
are shown in b, c and d.
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3.3.2. Modeling results and interpretation
In Fig. 5b,c, we compare ziso expected from the Moho model by

Spada et al. (2013) and density structure by Molinari and Morelli
(2011), providing spatial variations of the terms lc and ρc, respectively,
to the present-day topography. Note that several other crustal and
density models covering the entire Alps exist (e.g. Tesauro et al., 2008;
Di Stefano et al., 2009; Koulakov et al., 2009). Although variations arise
if other crustal or density models are used, we focus here on features
that appear from other available geophysical models (Fig. S3). In the
calculation of ziso, we assume a 100 km thick lithosphere (but see a
discussion about lithospheric structures below) and chose ρa in order to
minimize the regional misfit between ziso and the present-day topo-
graphy, zobs. The resulting residual topography, i.e. zres = zobs - ziso, is
slightly positive in the Western Alps, with maximum amplitude of
~250 m in the South-Western Italian Alps, and negative in the Central
and Eastern Alps, with maximum amplitude of ~ − 750 m along the
central axis of the belt (Fig. 5b,c). This suggests that, given the inferred
lithospheric structures and densities, the Central and Eastern Alps
should stand considerably higher than observed if isostasy held en-
tirely, whereas the Western Alps should stand a few hundreds of meter
below their actual elevation. Alternatively, one can assume Airy iso-
static equilibrium and use the equation defining ziso to calculate the
spatial variations in lithospheric mantle thickness, lm, required to
achieve zero residual topography (e.g. see discussion in Gvirtzman
et al., 2016). In this case, the estimated lithosphere-asthenosphere
boundary would be deeper (~130 km) beneath the Central and Eastern
Alps and shallower (~90 km) beneath the Western Alps. These values
are consistent with the available geophysical constraints on the litho-
sphere-asthenosphere boundary (e.g. Kissling, 1993; Tesauro et al.,
2013).

It is worth noting that the above estimates provide information only
on the static balance due to the lithospheric structure of the Alps. The
occurrence of a recent (posterior to ~5 Ma) slab breakoff event below
the Western Alps was proposed based on seismic tomography models
(e.g. Lippitsch et al., 2003; Spakman and Wortel, 2004; Kissling et al.,
2006; Beller et al., 2017; Kästle et al., 2018). The removal of buried
load by Pliocene-Quaternary detachment of the mantle lithosphere was
also independently advocated in order to explain anomalous features
appearing from paleo-topographic reconstructions of the Alps (Sternai
et al., 2012) and analyses of the thermochronometric Alpine record
(Baran et al., 2014; Fox et al., 2015), as well as seismically active ex-
tension in the core of the Western Alps (Sue et al., 1999). The down-dip
slab continuity beneath the Western and the Central Alps is, however,
still debated for a continuous and apparently steeper slab may be im-
aged beneath the Western Alps depending on the geophysical data and
tomographic inversion strategies (e.g. Piromallo and Morelli, 1997;
Piromallo and Faccenna, 2004; Zhao et al., 2016).

How would late-Cenozoic slab breakoff in the Western Alps affect
the ongoing pattern of Alpine uplift? Thermomechanical numerical
models show that a slab breakoff occurring at depth between 100 and
140 km, likely takes place through initial necking followed by actual
tearing and detachment of the mantle lithosphere and may take up to a
few millions of years (e.g. Duretz and Gerya, 2013; Duretz et al., 2014).
During this time, regions as wide as ~150–200 km are subject to uplift
at rates that may reach up to ~6–10 mm/a, although such high rates of
uplift are generally sustained for periods shorter than ~1 Ma. In these
numerical models, however, one cannot separate the isostatic effect due
to lithospheric unloading by detachment of the denser slab and the

dynamic effect due to the viscous downward traction associated with
slab sinking (see the following section). Despite the profound impact of
slab detachment on topographic changes suggested by numerical
models, evaluating the contribution to topographic changes by slab
dynamics across natural orogens such as the Alps is difficult, also be-
cause the crust deforms actively under collisional stresses. It might be
that a portion of up to ~50% of the observed uplift rates is related to
Pliocene-Quaternary detachment of the western European slab. How-
ever, while such contribution may apply to a region in the Western Alps
that extends laterally some 150–200 km from the position of the pro-
posed slab tear, i.e. in the northwestern Alpine arc, the vertical surface
displacements rates in the Central and Eastern Alps are unlikely to be
related to this mechanism. Even if the current impact of the detachment
of the subducting European slab on the vertical surface displacement
rates was of second order with respect to isostatic adjustments to de-
glaciation or erosion, it may account for significant lateral differences
in the observed rock uplift rate between the South-Western, Central or
Eastern Alpine sectors.

3.4. Alpine uplift by dynamic adjustment due to sub-lithospheric mantle
flow

3.4.1. Overview
A contribution to the observed uplift rates arises from the sub-li-

thospheric convection, which may induce surface displacements due to
vertical traction at the base of the lithosphere or crust. This contribu-
tion can be defined as the rate of change of dynamic topography (zdyn,
sensu Hager et al., 1985), that is zdyn. To quantitatively assess this
potential contribution, we follow the methodology described in Becker
and Faccenna (2011) and Becker et al. (2015) and infer the in-
stantaneous mantle flow of an incompressible, Newtonian fluid sphe-
rical layer with radial viscosity variations between the base of the li-
thosphere (imposed at ~100 km depth) and a depth of 1200 km. The
density model was constructed by scaling the seismic velocity structure
(see below) into temperature (Hager et al., 1985; Panasyuk and Hager,
2000; Steinberger and Calderwood, 2006; Simmons et al., 2010; Becker
and Faccenna, 2011). zdyn is estimated for three discrete time-steps from
the inferred radial traction due to the mantle flow assuming a free-slip
surface boundary, while zdyn provides an estimate of the potential dy-
namic contribution from the sub-lithospheric mantle flow to the ob-
served uplift rate pattern.

3.4.2. Modeling results and interpretation
In Fig. 6, we show results using the recent, high resolution, P-wave

Alpine seismic tomography model by Zhao et al. (2016), and the high-
resolution tomography model by Lippitsch et al. (2003), embedded into
the global P-wave mantle tomography model by Li et al. (2008). Con-
sistently with the inferred mantle viscosity profile from postglacial re-
bound studies (e.g. Cianetti et al., 2002, and references therein) and
analyses of the Alpine postglacial rebound (Stocchi et al., 2005; Spada
et al., 2009), the reference viscosities of the lithosphere (0–100 km),
asthenosphere (100–300 km), upper mantle (300–670 km) and lower
mantle (670–1200 km) are set to 50, 0.5, 1, and 50 in units of 1021 Pa s,
respectively. Results with the model by Zhao et al. (2016) (Fig. 6a-d)
show that the dynamic uplift rates are generally positive across the
entire Alpine belt and attain values as high as ~2 mm/a in a region that
encompasses the Southern-Central Alps, and the Po plain. This suggests
a significant contribution to the vertical displacement rate from

Fig. 5. (a) Moho map by Spada et al. (2013). Blue contours show density isolines by Molinari and Morelli (2011). (b) Map of residual topography, zres = zobs − ziso.
Isolines are shown at 500 m intervals. Note that the assumptions made for the calculation of ziso across the study region are plausible for the Alpine belt (see Section
3.3), but not necessarily for regions outside the Alps (e.g., northern Alpine foreland and Po plain), which implies reduced reliability of zres estimates in these regions.
(c) Swath profile along the orogen axis (location shown in b). The green line shows Moho depths against distance (West-East, follows the right axis). The blue and red
profiles show the mean observed topography, zobs, and mean isostatic topography, ziso, against distance (West-East, follow the left axis), respectively. Shaded regions
show minimum and maximum values.
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upwelling of a low velocity zone north of the subducting European slab
or increased resistance at the 410 km transition zone reducing the slab
pull in time (Zhao et al., 2016). Results based on the model by Lippitsch
et al. (2003) (Fig. 6e-h), suggesting less pronounced low velocity
anomalies north of the subducting European slab and detachment of the
European slab below the Western Alps, also show overall positive dy-
namic uplift rates across the belt, with maximum values of ~0.1 mm/a
in a region encompassing the Ligurian Alps, Northern Apennines and
southern Po plain. Results also show that the North-Western Alps are
subject to slightly negative, if any, dynamic uplift rate, likely due to less

relevant negative P-wave velocity anomalies with respect to the model
by Zhao et al. (2016), and the viscous down-welling asthenospheric
flow involved by the detachment and untied sinking of the European
slab below this region. Both models produce uplift in the Po plain and
east of longitude 14°, which is at odds with observations (Fig. 1a).

Assessing the contribution to the observed surface elevation changes
in time by zdyn is difficult because estimated magnitudes vary sig-
nificantly depending on the reference density structure (Fig. 6c,g) and
the imposed viscosity contrast between the lithosphere and astheno-
sphere (Fig. 7). For a given density structure and lithosphere-to-

Fig. 6. (a, d) Tomography models averaged between 50 and 350 km. The black dashed and solid lines show the coverage of the high-resolution models (Zhao et al.,
2016, in panel a and Lippitsch et al., 2003, in panel d) and the region shown in panels b, c, f, g, respectively. High-resolution models are embedded into and scaled
with respect to the global P-wave tomography model by Li et al. (2008). (b, f) Estimated dynamic topography, zdyn, using the tomography model by Zhao et al. (2016)
and Lippitsch et al. (2003), respectively. Thin black lines show isolines at 0.5 km. (c, g) Estimated zdyn using the tomography model by Zhao et al. (2016) and
Lippitsch et al. (2003), respectively. The viscosities of the lithosphere (0–100 km), asthenosphere (100–300 km), upper mantle (300–670 km) and lower mantle
(670–1200 km) are set to 50, 0.5, 1, and 50 in units of 1021 Pa s, respectively. Thin black lines show isolines at 0.5 mm/a intervals in c and 0.1 mm/a intervals in g. (d,
h) Along-strike swath profile of results in panels b-c and f-g, respectively (location shown in b and f). The black profile shows dynamic vertical displacement
rates, zdyn, against distance (West-East, follows the left axis). The blue profile shows dynamic topography, zdyn, against distance (West-East, follow the right axis).
Shaded regions show minimum and maximum values.
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asthenosphere viscosity contrast, in addition, the estimated magnitudes
of zdyn are inversely correlated to the absolute imposed asthenospheric
viscosity (Fig. S4). The first order pattern of observations, involving
higher rock uplift rates in the Central Alps with respect to those in the
Western and Eastern Alps, is reasonably well reproduced by models of
the dynamic rock uplift rates based on the most recent Alpine-scale
tomographic data by Zhao et al. (2016) (Fig. 6c,d). This suggests that a
considerable contribution to the Alpine-scale observed uplift rates
arises from mantle convection. On the other hand, one cannot neglect
that other processes are likely to contribute significantly to the ob-
served Alpine rock uplift rates (see previous sections). In the Central
Alps, the contributions to the rock uplift rate due to post-LGM degla-
ciation, current ice melting and erosion add up to ~70% if one refers to
estimates provided by Spada et al. (2009), Barletta et al. (2006) and
Sternai et al. (2012). Therefore, a reasonable contribution from mantle
convection to the observed uplift rate may be of ~30%. Without
knowledge regarding the effects of slab detachment or crustal short-
ening/thickening on rock uplift rates (e.g. see Section 3.3) robust as-
sessments regarding the mantle contribution to the uplift rate in the
Western and Eastern Alps are precluded.

4. Discussion

The European Alps show an intriguing pattern of surface deforma-
tion characterized by significant horizontal shortening and relatively
slow uplift rates in the East and negligible horizontal shortening and
fast uplift rates in the central and western regions. This observation is
difficult to reconcile with surface uplift by thickening of the buoyant

crustal layer due to horizontal shortening, which is expected to provide
the most relevant tectonic contribution to the topographic growth of
collisional mountain ranges. Plausible estimates of the isostatic ad-
justment to deglaciation and erosion are sufficient to cover most of the
budget of observed uplift rates in the Eastern Alps (Fig. 8). One may
thus conclude that rock uplift rates in the Eastern Alps are pre-
dominantly originated by surface mass redistribution. This interpreta-
tion, however, does not allow for a tectonic contribution to vertical
displacements rates resulting from crustal shortening/thickening or due
to asthenospheric upwelling in the Pannonian basin (e.g. Falus et al.,
2000; Cloetingh et al., 2006). Alternatively, uplift rates could be
counterbalanced by other mechanisms producing subsidence. One of
these mechanisms could be Eastern Alpine slab pull. However, the Di-
naric slab is imaged at depths of at least ~410 km (e.g. Zhao et al.,
2016), and increased resistance at the upper-lower mantle transition
should reduce the slab pull and, thus, the surface subsidence rates.
Another possibility is that the lower crustal material advected into the
Eastern Alps by horizontal convergence flows laterally instead of being
accreted vertically. The shortening rate in the Eastern Alps is of
~2 mm/a on a ~400 km wide portion of the range with an ~45 km
thick crust. This results in a net crustal input of ~0.036 km3/a with
maximum uplift rates of ~0.5 mm/a over a ~65,000 km2 region en-
compassing the Western and Central Alps if the lower crustal flow was
entirely directed toward these sectors. The horizontal upper crustal
velocity field in the Eastern Alps, however, shows vectors that gradually
reorient toward the east, not toward the west (Fig. 1a) and opposite
upper and lower crustal flow is unlikely (e.g. Ratschbacher et al., 1991;
Doglioni, 1992). Thus, while lateral flow of lower crustal material

Fig. 7. Parametric study about zdyn estimates regarding the imposed viscosity structure. The viscosities of the lithosphere (0–100 km), asthenosphere (100–300 km),
upper mantle (300–670 km) and lower mantle (670–1200 km) are respectively set to (a) 50, 0.1, 1, and 50; (b) 50, 0.5, 1, and 50 (same as in Fig. 6c); (c) 5, 0.1, 1, and
50. All viscosities are in units of 1021 Pa s. Estimated vertical displacement rates, zdyn, are obtained using the tomography model by Zhao et al. (2016) embedded into
and scaled with respect to the global P-wave tomography model by Li et al. (2008). Thin black lines show isolines at 0.5 mm/a intervals. (d) Along-strike swath
profile of results in panels a-c (location shown in a). Blue, black and red lines show dynamic vertical displacement rates, zdyn, against distance (West-East, follows) for
panels a, b and c, respectively. Shaded regions show minimum and maximum values.
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might to some extent reduce rock uplift rates due to horizontal con-
vergence and crustal thickening in the Eastern Alps, this mechanism can
not provide additional contributions to the Western and Central Alpine
rock uplift rates. Another implication of the interpretation that Eastern
Alpine rock uplift rates are entirely controlled by surface mass redis-
tribution is that, if we were to measure the eastern or Central Alpine
uplift rates some 10 ka ago, we would observe values as high as
10–15 mm/yr since current measurements are only the viscous tail of a
viscoelastic response to the bulk of the deglaciation (e.g. Spada et al.,
2009; Norton and Hampel, 2010), possibly modulated by erosion rate
changes on postglacial timescales (e.g. Wittmann et al., 2007; Norton
et al., 2010; Norton et al., 2011; Hinderer et al., 2013).

If one assumes a uniform lithospheric and sub-lithospheric mantle
structure and no other sources of uplift than the isostatic adjustment to
deglaciation and erosion, similar uplift rates should be observed along
the strike of the belt. Roughly double uplift rates in the Western/Central
Alps than in the Eastern Alps, however, would require variations of ice
melting and erosion rates of a similar magnitude. Although along-strike
variations in erosion rate exist (e.g., Hinderer et al., 2013; Wittmann
et al., 2007; Norton et al., 2010; Norton et al., 2011; Fox et al., 2015),
the average LGM ice-cap thickness and width are increased in the
Eastern Alps with respect to the Western and Central Alps (Ehlers and
Gibbard, 2004), which is opposite to the observed trends in rock uplift
rates. This suggests that either the Alpine lithospheric heterogeneities
substantially modulate the rock uplift rate signal primarily imposed by
the surface mass redistribution, or sources of rock uplift rate related to
the solid Earth contribute, or both (e.g. Wölfler et al., 2008; Campani
et al., 2010; Glotzbach et al., 2011; Sanchez et al., 2011; Boutoux et al.,
2016). Even estimates of modern uplift rates due to the deglaciation
that account for sediment redistribution as well as lithospheric het-
erogeneities (Mey et al., 2016), however, show significant misfit with
observations (Fig. 2b), especially in the Western and Eastern Alpine
sectors. Thus, the interpretation that elevation changes are mainly of
surface unloading origins does not hold and contributions from the
solid Earth should be accounted for.

A Pliocene-Pleistocene slab detachment event below the Western
Alps (e.g. Lippitsch et al., 2003) may induce the lithosphere and surface
to rebound upward and potentially allow estimates of uplift rates to
approach the budget of observations. The spatial correlation between
geodetic uplift rates and long-term erosion rates (e.g., Fig. 3b, Fox et al.,
2015; Nocquet et al., 2016) or landscape modifications (Sternai et al.,
2012) in the Western Alps may be representative of the surface response
to such a deep-seated processes. However, the seismic evidence of the
Western Alpine slab breakoff is uncertain (e.g. Zhao et al., 2016). In

addition, even if recent slab breakoff occurred in the Western Alps, it is
not clear whether the expected modifications as to the rock uplift rate
may extend laterally to the Central Alps, currently subject to the highest
rates of uplift. A fully convincing interpretation of the ongoing Alpine
strain pattern involving predominant isostatic forces, if possible, re-
quires additional data and investigations regarding the surface vs. deep
Earth process coupling.

The viscous asthenospheric flow in response to a post-5 Ma de-
tachment of the western European slab as suggested by e.g. Lippitsch
et al. (2003) might imply subsidence at relatively slow rates in the
North-Western Alps (Fig. 6f), which would hamper the observed rock
uplift rates at the surface. However, the regional correlation between
fast uplift rates in the Western Alps and a 200 km deep, slow velocity
anomaly imaged by the tomography by Zhao et al. (2016) points to-
ward a possible contribution by asthenospheric upwelling to ongoing
surface displacements through vertical tractions (Fig. 6c). The spatial
misfit between the estimated and observed peak uplift rates lo-
cated > 100 km away from each other is likely related to the litho-
spheric filtering of the mantle uplift signal or to other sources of vertical
displacements. For instance, the geometry of crustal structures accom-
modating the strain modulates the possible contribution from the sub-
lithospheric flow to the surface displacement rates at the local scale.
Inferred mantle-driven upward vertical displacement rates in the
Eastern Alps are consistent with mantle upwelling in the Pannonian
basin (e.g. Falus et al., 2000; Cloetingh et al., 2006). However, the
easternmost Alpine surface displacement rates appear to have a com-
ponent of subsidence, which might be due to sediment loading in the
Pannonian basin (e.g. Royden et al., 1983). Similarly, subsidence due to
sediment loading or compaction (Carminati and Martinelli, 2002) and/
or the northern Apennine slab pull (Faccenna et al., 2014) appear to
override the inferred uplift rates due to mantle convection in the Po
plain. As for the other mechanisms, the absolute magnitude of the
possible contribution from mantle convection to the observed rock
uplift rate is difficult to constrain based on current knowledge (Figs. 6,
7 and Fig. S4). However, the general first order agreement between the
observed orogen-scale pattern of surface displacement rate and esti-
mates of rock uplift rate due to the sub-lithospheric flow based on the
most recent tomography by Zhao et al., 2016, point to a possibly sig-
nificant contribution and we argue for ~10–30% at the orogen scale.

Alpine uplift is mechanically associated with predominant exten-
sional tectonics as tested by numerical modeling (e.g. Delacou et al.,
2005; Vernant et al., 2013). Prevailing extensional faulting and minor
strike-slip deformation characterize the Plio-Quaternary Western Al-
pine strain (e.g. Bistacchi and Massironi, 2000; Sue and Tricart, 2003;

Fig. 8. Interpretative summary of proposed contributions to the observed Alpine rock uplift rates due to the deglaciation (light blue), erosion (green), lithospheric
structural changes (red) and mantle convection (purple). Dashed lines highlight more speculative proposals. Dotted lines highlight proposals that we consider
unlikely. See Section 3 for further detail and appropriate references.
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Champagnac et al., 2006; Tricart et al., 2006; Bauve et al., 2014;
Schwartz et al., 2017) and the present-day seismicity (e.g. Maurer et al.,
1997; Eva and Solarino, 1998; Sue et al., 1999; Delacou et al., 2004; Sue
et al., 2007). However, although the most seismically active region
between the Pelvoux, Argentera and Viso massifs (Briançonnais and
Piedmont) is found where the maximum extensional deformation oc-
curs (e.g. Maurer et al., 1997; Eva and Solarino, 1998; Sue et al., 1999;
Delacou et al., 2004; Sue et al., 2007), the fastest uplift rates is in the
vicinity of the Mont Blanc and Vanoise-Valais massifs (Fig. 1a) and is
located by some 150 km to the north with respect to the Briançonnais
and Piemontais areas (e.g. Vigny et al., 2002; Sue et al., 2002; Sue et al.,
2007b; Walpersdorf et al., 2015). Alpine seismic catalogues only reports
on a few decades of activity, but this discrepancy may suggest that
aseismic processes operating in the deep crust or lithosphere such as
those described above are mainly responsible for the ongoing vertical
displacement rates in these regions, while the present-day trans-ten-
sional seismicity is predominantly related to upper crustal processes
accommodating the horizontal plate motion, i.e. the counterclockwise
rotation of the Adria microplate (e.g. Anderson and Jackson, 1987;
Collombet et al., 2002; Battaglia et al., 2004; Nocquet and Calais, 2004;
D'Agostino et al., 2008; Rolland et al., 2012). Such processes may be
conditioned by structural inheritance, e.g. the Penninic front and the
Ivrea body (Sue et al., 2002). This interpretation implies uncoupled
vertical and horizontal strain mechanisms and highlights a further in-
triguing aspect of the present-day Alpine tectonics in that aseismic
vertical deformation is one order of magnitude higher than seismogenic
horizontal strain.

5. Conclusions

Based on new and previously proposed models, we consider it un-
likely that the isostatic response due to ice unloading during degla-
ciation is the only mechanism behind ongoing Alpine-scale vertical
surface displacements. While such a proposal might, to some extent,
apply to the Eastern Alps, this interpretation requires other mechanisms
to counterbalance rock uplift rates due to ongoing crustal shortening/
thickening, the identification of which is not straightforward. We sug-
gest that rock uplift rates due to the melting of the LGM Alpine ice-cap
and erosion contribute up to ~50% to the observed vertical displace-
ment rates in the Western and Central Alps. This implies substantial
contributions by convective processes (e.g., detachment of the western
European slab) to the measured surface displacement rates, and we also
support the view that the mechanisms of ongoing Alpine surface dis-
placements include dynamic contributions related to the sub-litho-
spheric mantle flow.

In conclusion, although the European Alps are the most studied
orogen worldwide, our knowledge regarding even the most recent and
ongoing processes is still limited. This fact highlights the importance of
collaborative research, because multidisciplinary datasets are required
to improve the estimates and interpretations reported here, toward a
better understanding of Alpine and, more generally, of orogenic dy-
namics.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.earscirev.2019.01.005.
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