Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia

Robert W. Porritt, Thorsten W. Becker, and Gaspar Monsalve

1Department of Earth Sciences, University of Southern California, Los Angeles, California, USA, 2Facultad de Minas, Departamento de Geociencias y Medio Ambiente, Universidad Nacional de Colombia, Medellin, Colombia

Abstract The Nazca, Caribbean, and South America plates meet in northwestern South America where the northern end of the Andean volcanic arc and Wadati-Benioff zone seismicity indicate ongoing subduction. However, the termination of Quaternary volcanism at ~5.5°N and eastward offset in seismicity underneath Colombia suggest the presence of complex slab geometry. To help link geometry to dynamics, we analyze SKS splitting for 38 broadband stations of the Colombian national network. Orientations measured at stations in the back arc, farther to the east, however, abruptly change to roughly trench parallel anisotropy. This may indicate along-arc mantle flow, possibly related to the suggested “Caldas” slab tear, or a lithospheric signature, but smaller-scale variations in anisotropy remain to be explained. Our observations are atypical globally and challenge our understanding of the complexities of subduction zone seismic anisotropy.

1. Introduction

Subduction of multiple plates in northwestern South America is expressed in the offset of Andean topography in Colombia, complex seismicity indicating several slab segments, and the termination of Andean volcanism at ~5.5°N. This has been explained by a northeastern ("Bucaramanga") and a southwestern ("Cauca") slab segment, in the nomenclature of Pennington [1981], with the separation coincident with the extent of volcanism [e.g., Pennington, 1981; van der Hilst and Mann, 1994; Taboada et al., 2000; Gutscher et al., 2000; Ojeda and Havskov, 2001; Cortés and Angelier, 2005; Vargas and Mann, 2013; Yarce et al., 2014]. However, the origin of the different slab segments and their respective subduction angle remains debated. For example, it was recently suggested that the cause of the segmentation may be the "Caldas Tear," a slab gap inferred to be associated with the southern end of a 12 Ma Caribbean oceanic arc [Vargas and Mann, 2013].

There are currently two prevailing hypotheses for the separation of the Cauca and Bucaramanga segments. One suggests that the Cauca segment is the northern termination of the subducting Nazca Plate, while the Bucaramanga segment represents an older piece of the Caribbean Plate that has rotated into its current geometry following closure of the Isthmus of Panama [e.g., Pennington, 1981; Montes et al., 2012; Vargas and Mann, 2013]. Alternatively, the seismicity patterns may correspond to a folded or torn slab, or two pieces of the Nazca Plate that have been separated by a transform fault and are now subducting independently. This alternative explains the offset and near-parallel strikes but seems difficult to reconcile with the surface plate reorganizations during the closure of the Isthmus of Panama [e.g., Montes et al., 2012].

Interpretation of mantle structure should ideally be reflected in a dynamically consistent model that includes predictions of mantle flow around slabs. Observations of seismic anisotropy lend themselves to put constraints on such models, particularly from measurements of teleseismic (SKS) shear wave splitting [e.g., Silver, 1996]. For the upper mantle, we expect that the alignment of intrinsically anisotropic olivine crystals under recent mantle flow, or frozen in from prior convective episodes, is the main cause of anisotropy. The polarization plane of the fast propagating wave ("fast axis") of shear wave splitting is then expected to align roughly with the shear direction via formation of "A"-type lattice-preferred orientations (LPOs) along the raypath [e.g., Mainprice, 2007]. Alternatively, other olivine fabrics such as B or C type may be present under high-stress and -water content conditions [e.g., Karato et al., 2008]. In this case, fast axes would be oriented perpendicular to mantle shearing, but we expect those regions to contribute less to the signal, and, globally, A-type LPO provides a valid model for azimuthal anisotropy underneath oceanic plates [Becker et al., 2014].
Corner flow-type mantle circulation in subduction zones predicts a sense of shear with orientation, and hence fast axes, aligned perpendicular to the trench [e.g., McKenzie, 1979]. However, subduction zone anisotropy based on SKS splitting often shows trench-parallel alignment, particularly when sensing the subslab mantle [Long and Silver, 2008]. This has been attributed to a number of causes, and many of the models for the wedge and subslab region are reviewed in Long and Becker [2010]. Explanations include differences in LPO formation, contributions from inherited structure in the slab, or minerals other than olivine, to anisotropy, and more complex, 3-D flow fields around slabs. Those asthenospheric flow models invoke slab dip variations [Kneller and van Keken, 2008], slab gaps [e.g., Eakin et al., 2010], or realignment of flow caused by relative trench motions [e.g., Buttles and Olson, 1998; Hall et al., 2000; Druken et al., 2011; Faccenda and Capitanio, 2013; Li et al., 2014].

Previous observations of anisotropy in South America away from subduction zones show primarily east-west fast axes (Figure 1). Closer to the trench, along the Pacific subduction zones, trench-parallel anisotropy is often, but not always, observed. Russo and Silver [1994] interpreted the trench-parallel fast axes as being caused by slab-induced stirring in the mantle, and some version of this model, perhaps in combinations with the effects mentioned above, is often invoked to explain trench-parallel anisotropy. However, the global subduction zone anisotropy signal is complex, and a comprehensive model seems elusive [Long, 2013]. Here we set out to complement the South American anisotropy data set by providing additional SKS splitting measurements for the tectonically complex and dynamically important region of western Colombia.

2. Shear Wave Splitting Measurements

We performed SKS splitting measurements for seismic waveforms as recorded at stations of the National Seismological Network of Colombia (Red Sismológica Nacional de Colombia, RSNC). We were able to obtain splitting parameters at 18 out of the 38 stations (Table S1 in the supporting information) for the data set that was available to us (April 2008 to December 2012, though not all stations were operational throughout the entire time period). The stations are distributed throughout western Colombia, primarily along the high topography of the Colombian cordilleras (see Figure S1 for station locations and names). SKS splitting parameters were obtained using SplitLab [Wüstefeld et al., 2008], selecting events larger than magnitude M5 with epicentral distance between 90° and 130°. Velocity-proportional seismograms were windowed around the SKS arrival when observed on the radial and vertical channels and band-pass filtered between 0.02 and 0.1 Hz. SplitLab estimates the splitting delay time and fast axis by three methods: maximum correlation between fast and slow axes (rotation correlation, RC) [Bowman and Ando, 1987], minimum energy on the transverse component (SC) [Silver and Chan, 1991], and the eigenvalue method (EV) [Silver and Chan, 1991]. For our data set, we find that the RC method has the most consistent results as was also found and discussed by Miller et al. [2013]. In order to ensure the highest-quality splitting measurements, we only present “good” results, as defined by visual assessment considering limited trade-off in misfit plots, consistency between the RC and SC methods, a flattened transverse component, and particle motion collapsed from elliptical to linear. Examples of good splitting at stations HEL and BRR are shown in Figure S2, but many of the events recorded were too noisy to allow single-event shear wave splitting measurements. Table 1 lists the mean fast axis and delay time at each station, and Table S1 presents the individual splitting parameters for all three methods. Practical limitations such as interrupted recording and high noise level limit us to present far fewer splits, with reduced back azimuthal coverage, than would be expected based on the global seismicity distribution during the study period.

All of our new splitting parameters are shown in Figure 2. The inferred fast axes of azimuthal anisotropy are oriented east-west in southern Colombia, north-south in the Eastern Cordillera, and rotate from east-west to northwest-southeast in the northern Central Cordillera. These areas also have relatively large delay times between 1 and 2 s. Areas with low topography, such as the Magdalena Valley located between the Eastern and Central Cordillera, and the northwest along the Colombian Caribbean coast show smaller amplitude splitting delay times (<1 s) or lack good observations. Four stations in these low-lying regions had no good quality splitting measurements, while four stations in the Eastern Cordillera and three in the Western Cordillera also lack acceptable observations. No clear null splits were observed in the data set. The
distribution of back azimuths with good splitting is limited primarily to the southwest, but observations from the northwest display consistent splitting parameters (see Figure S3). This limitation restricts the analysis to assume a single layer of anisotropy, realizing that averaging properties of SKS splitting are complex [e.g., Becker et al., 2012].
3. Discussion

The observation of consistently trench perpendicular anisotropy along the arc of the Cauca segment fits the standard model of corner flow [McKenzie, 1979] with entrained subslab mantle currents. This is consistent with A-type LPO development and simple fluid dynamics, but atypical of most subduction zones (e.g., Figures 1 and 2). The trench-perpendicular trend continues northward, through the suggested Caldas Tear, and into the coastal plains of northern Colombia. However, above the shallow seismicity of the Bucaramanga segment, station BRR indicates an apparent fast orientation of anisotropy parallel to the trend of seismicity. Stations south of the Bucaramanga segment, in the back arc of the Cauca segment, show similar anisotropy to BRR with an orientation mostly north-south.

Due to the consistency across multiple stations and events, the strong spatial variations in fast axes appear to be real. Such a ~90° rotation in anisotropy over distances of ~100 km is uncommon but seen, for example, in the Japan subduction setting [e.g., Long and van der Hilst, 2005]. This indicates that the depth that causes the change of anisotropy occurs is fairly shallow because the three-dimensional Fresnel zones of the utilized SKS paths have little overlap shallower than ~250–300 km depth. This leads us to consider lithospheric signatures, fossil anisotropy in the subducting plate, large-scale asthenospheric flow, and second-order slab-related flow as possible explanations for the observed patterns in splitting.

3.1. Lithospheric and Other Fossil Anisotropy

SKS splitting is expected to be mainly sensitive to asthenospheric flow in the uppermost mantle as this region may be the most susceptible to the coherent development of anisotropic fabric in A-type olivine [e.g., Long and Becker, 2010]. This assumption will be incorrect if there is strong fossil anisotropy within the

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Longitude</th>
<th>Latitude</th>
<th>Mean Fast Axis (Degrees Azimuth) (RC)</th>
<th>Mean Delay Time (s) (RC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRR</td>
<td>-73.7</td>
<td>7.1</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>C0</td>
<td>-73.7</td>
<td>7.1</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>CHI</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>ROSC</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>PAR</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>PCON</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>SOTA</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>SOTA</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>ANIL</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>GCUF</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
<tr>
<td>MAP</td>
<td>-73.7</td>
<td>1.11</td>
<td>72</td>
<td>0.55</td>
</tr>
</tbody>
</table>

*All three methods used in SplitLab are presented, but the text focuses on the rotation correlation (RC) method for interpretation. Values reported do not represent significant figures.
lithosphere or slab, or if there is deep mantle anisotropy. We can address this issue by comparing local and teleseismic observations. Shih et al. [1991] report primarily north-south oriented splitting in the Bucaramanga segment from local events recorded on a 16 day temporary network. Splitting reached a maximum of 0.42 s delay for their longest available raypaths from the 160 km deep Bucaramanga Nest [Schneider et al., 1987] and was observed to have an average fast axis of ~ N5°E. While we only have one high-quality observation above the slab at station BRR, the orientation and delay (N22°E and 0.55 s) are broadly consistent with the local splits. This indicates that much of the observed anisotropy may be due to azimuthal anisotropy in the mantle wedge, with some contribution from the subslab uppermost mantle. However, it is possible that some of the rotation from trench-perpendicular fast axes to a more north-south aligned orientation (Figures 2 and 3) is caused, or at least affected, by lithospheric-scale shear zones or frozen-in anisotropy in the lithosphere. Lithospheric deformation zones include the north-south grain of sutures throughout much of the region such as the Romeral, Palestina, and Guaicaramo Faults (Figure 2), and the larger-scale compression and assembly of tectonic units during the docking of the Baudo-Panama island arc since ~20 Ma.

Another kind of frozen-in anisotropy with orthorhombic character may exist in the asthenosphere underneath oceanic plates, perhaps due to fractionation processes at the spreading center [Song and Kawakatsu, 2012]. This mechanism can account for trench-perpendicular anisotropy for shallowly dipping slabs, and Song and Kawakatsu [2013] were able to match much of the complex splitting observed in southeast Alaska accounting for the variability of the slab dip. The Cauca segment has a dip of ~40° [e.g., Taboada et al., 2000; Vargas and Mann, 2013], and the Bucaramanga segment is argued to vary in dip from ~20° to ~50° depending on its distance from the trench and the Caldas Tear [e.g., Vargas and Mann, 2013]. These dips appear too steep to invoke subslab frozen-in anisotropy as an explanation for the trench-perpendicular anisotropy.

Figure 2. Map of good splitting measurements obtained here and in the references of Figure 1. Black circles represent available stations; large circles without yellow bars indicate no good splitting was observed. Plate boundaries from Bird [2003] plotted in black lines. Earthquakes used as SKS sources for the study are shown in the global inset in the upper left as blue circles. Background topography is from ETOPO1 from NOAA (http://www.ngdc.noaa.gov/mgg/global/global.html). Abbreviations: CC (yellow field), Central Cordillera; EC (red field), Eastern Cordillera; GF, Guaicaramo Fault; MV, Magdalena Valley; PF, Palestina Fault; RF, Romeral Fault; WC (blue field), Western Cordillera; Bu, Bucaramanga segment; Ca, Cauca segment; CT, Caldas Tear. Seismic recording stations discussed in the text labeled with red text (BRR, HEL, and SJC). The bar at BRR is immediately west of the label, HEL is east of the label, and SJC is south of the label.
3.2. Asthenospheric Anisotropy Other Than Corner Flow

We tested the match of the suite of the global mantle flow models from Miller and Becker [2012], which were scored by these authors against their predictions based on LPO anisotropy as compared to splitting observations east of our study region, mainly in Venezuela. When anisotropy is computed for the stations in our study region, Miller and Becker’s best fit model for Venezuela SKS also leads to the best average orientational misfit for our new SKS measurements in Colombia, at ~28° misfit. However, this large-scale flow model fails to capture the observed small-scale variations, as could be expected since it does not include smaller-scale slab anomalies underneath Colombia.

Considering mesoscale slab-induced flow effects to explain the rotation in fast axes, a comparable swing in subduction zone anisotropy has been observed around the southern edge of the Gorda segment of the Juan de Fuca Plate [Özalaybey and Savage, 1995; Zandt and Humphreys, 2008; Eakin et al., 2010; Liu et al., 2012]. There, the signal has been argued to represent either partially frozen-in anisotropy from the removal of the slab [Özalaybey and Savage, 1995] or large-scale toroidal flow [Zandt and Humphreys, 2008]. However, the scale of such toroidal flow appears too large compared to our observations, making it unlikely that toroidal...
flow can fully explain the observations, and the lack of a slab window in the region invalidates the hypothesis of partially frozen-in anisotropy from slab removal.

To elucidate possible smaller-scale variations further, Figure 3 presents cross-sectional views of the seismicity in the region (from RSNC) along with our splitting measurements. Profile A-A’ (Figure 3b) indicates that three stations at the northern end of the Cauca segment, colocated with Quaternary volcanoes, exhibit trench-perpendicular anisotropy where a lack of intermediate depth earthquakes indicates the Caldas Tear. Stations south of the Caldas Tear also show trench-perpendicular anisotropy, while the station to the north of the tear records a fast axis parallel to the trench. Profile B-B’ (Figure 3c) crosses the Bucaramanga segment and displays a pattern where the fore arc exhibits trench normal anisotropy and the station above the slab has a fast axis parallel to the inferred strike of the slab. Profiles C-C’ and D-D’ (Figures 3d and 3e) cross the Cauca segment and show trench-perpendicular splitting in the northern segment near the Caldas Tear, but trench-parallel splitting in the back arc.

The trench-perpendicular anisotropy of the Cauca segment makes this one of the few regions that exhibits this style of anisotropy [Long and Silver, 2008]. The tank experiments of Butdiles and Olson [1998] and Drufen et al. [2011] show that a slab undergoing rollback can develop a trench normal mantle flow field from the arc through the back arc. However, the northern South America trenches are only inferred to roll back in some hot spot reference frames and not in the no-net rotation frame [e.g., Becker and Facenna, 2009], and this would not explain variations on a continental scale (Figure 1). Furthermore, the flow field generated by this mechanism should align the back-arc stations in the Eastern Cordillera to be trench normal. Therefore, if rollback-induced mantle flow is occurring, it appears strongly modified by secondary scales of mantle convection or strain in the back arc developed with formation of the north Andean sutures.

An alternative explanation is mantle flow through a tear fault or under a short slab which may lead to trench normal anisotropy [e.g., Eakin et al., 2010]. This seems plausible due to the Caldas Tear, which may allow lateral flow through a slab gap, and seismicity limited to shallower than ~200 km depth in the region of rotation, suggesting the slab does not extend significantly into the asthenosphere. However, the actual location of the slab in this region is unclear. South of ~3°N, the seismicity is poorly resolved in the RSNC catalog, making it difficult to determine a Wadati-Benioff zone in southern Colombia and Northern Ecuador. Further complicating matters, in the Central Cordillera, the Quaternary volcanoes appear to align with the 150 km depth contour of seismicity (see Figure 3d), which may be significantly deeper than the global average of 100 km depth [e.g., England and Katz, 2010].

It thus appears that our measurements do not fit well with any single one of the previously suggested models of subduction zone anisotropy [e.g., Long, 2013]. Instead, a combination of relatively simple, trench-perpendicular flow alignment in a corner flow subduction scenario with either a lithospheric, or slab gap-induced, anomaly, and/or strong variations of azimuthal anisotropy along the SKS path may have to be invoked. Continued broadband seismic monitoring by the RSNC will provide future opportunities to revisit these questions and more thoroughly sample the anisotropy in the region.

4. Conclusions

The Cauca and Bucaramanga slab segments of Colombia are reflected in a complex pattern of seismic anisotropy in western Colombia. Fast axes suggest largely trench-perpendicular shearing throughout much of the region, but with rotation to a roughly trench-parallel signal in the back arc over distances of ~100 km. Such a signal is atypical globally but generally fits with the classical model of corner flow alignment in subduction zones. The rapid rotation to trench-parallel fast axes in the Cauca back arc and along the Bucaramanga segment could be related to a lithospheric signature, or asthenospheric flow through the suggested Caldas Tear, which would imply mechanical separation between the Cauca and Bucaramanga segments. Our findings speak to the relationship between slab dynamics and tectonics in Colombia but are also a challenge to both our understanding of the link between mantle flow and anisotropy, and the general interpretation of subduction zone anisotropy.

References

