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S U M M A R Y 

Analysis of tectonic and earthquake-cycle associated deformation of the crust can provide 
valuable insights into the underlying deformation processes including fault slip. How those 
processes are expressed at the surface depends on the lateral and depth variations of rock 

properties. The effect of such variations is often tested by forward models based on a priori 
geological or geophysical information. Here, we first develop a novel technique based on an 

open-source finite-element computational framework to invert geodetic constraints directly 

for heterogeneous media properties. We focus on the elastic, coseismic problem and seek to 

constrain variations in shear modulus and Poisson’s ratio, proxies for the effects of lithology 

and/or temperature and porous flow, respecti vel y. The corresponding nonlinear inversion is 
implemented using adjoint-based optimization that ef ficientl y reduces the cost function that 
includes the misfit between the calculated and observed displacements and a penalty term. 
We then extend our theoretical and numerical framework to simultaneously infer both het- 
erogeneous Ear th’s str ucture and fault slip from surface deformation. Based on a range of 
2-D synthetic cases, we find that both model parameters can be satisfactorily estimated for 
the megathrust setting-inspired test problems considered. Within limits, this is the case even 

in the presence of noise and if the fault geometry is not perfectly known. Our method lays 
the foundation for a future reassessment of the information contained in increasingly data- 
rich settings, for example, geodetic GNSS constraints for large earthquakes such as the 2011 

Tohoku-oki M 9 event, or distributed deformation along plate boundaries as constrained from 

InSAR. 

Key words: Seismic cycle; Inverse theory; Joint inversion; Numerical modelling; Earthquake 
source observations; Kinematics of crustal and mantle deformation. 
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1  I N T RO D U C T I O N  

Crustal displacement time-series, for example, as recorded by the 
Global Navigation Satellite System (GNSS) or Interferometric Syn- 
thetic Aperture Radar (InSAR), contain information about both 
Ear th str ucture and the drivers of deformation, such as earthquakes 
within the seismic cycle. Depending on the questions asked, het- 
erogeneity in the Earth may be signal or nuisance. For example, 
for the elastic problem of inverting surface deformation for fault 
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slip or plate boundary loading for megathrust margins, material 
heterogeneity such as lateral variations in shear moduli due to sedi- 
ment cover can affect fault slip inversions (e.g. Williams & Wallace 
2015 , 2018 ; Hashima et al. 2016 ). Other effects of lateral material 
variations in subduction zones can be due to the presence of the 
volcanic arc, for example (Takada & Fukushima 2013 ; Muto et al. 
2016 ; Dhar et al. 2022 ). Exploring such effects usually involves 
computing different linear coseismic slip inversions and adjusting 
the Ear th str ucture model, for example, based on information from 

other geophysical or geological constraints. Ho wever , to compre- 
hensi vel y explore the contributions of fault slip uncertainty and 
material variations, it is necessary to analyse the trade-off between 
these parameters, preferabl y b y jointl y inverting the surface defor- 
mation for fault slip and structural heterogeneity. 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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The accurate inference of Ear th’s str ucture given imperfect sam-
ling and trade-offs is, of course, a long-standing challenge in geo-
ciences. Material properties at depth are often inferred from vari-
tions in seismic wave speeds. Ho wever , uncertainties arise when
onverting seismic velocities and/or attenuation properties to elas-
ic and viscous moduli due to factors such as temperature, volatile
ontent and composition. To reduce the resulting non-uniqueness in
ectonic settings, a range of studies have explored joint inversions
sing different deformation constraints (e.g. Reuber 2021 ). 

Standard inverse approaches like grid search or sampling-based
echniques (Baumann et al. 2014 ) may allow consideration of differ-
nt constraints but are computationally e xpensiv e due to the nonlin-
ar scaling of required forward models with the number of model pa-
ameters and data dimensions (Reuber et al. 2020 ). Gradient-based
ethods, on the other hand, are more efficient as the numerical cost

s often independent of the number of parameters to recover (Reuber
t al. 2020 ). The gradient of the objective function, composed of the
ata misfit and a regularization term, can be e v aluated through nu-
erical and analytic differentiation or using the adjoint method (e.g.
onnet & Constantinescu 2005 ; Avril et al. 2008 ; Reuber 2021 ).
he latter is particularly efficient for accurately computing the gra-
ient and can also be used to compute the second-order deri v ati ve,
nown as the Hessian, which is useful for convergence acceleration
nd uncertainty quantification (e.g. Kelley & Sachs 1991 ; Martin
t al. 2012 ; Petra et al. 2014 ; Bui-Thanh & Ghattas 2015 ; Isaac
t al. 2015 ; Ghattas & Willcox 2021 ). 

Commonly, such studies utilize adjoint-based optimization meth-
ds to ef ficientl y solv e linear/nonlinear inv erse problems, and ad-
oint approaches are increasingly used for mantle convection prob-
ems (e.g. Bunge et al. 2003 ; Liu & Gurnis 2008 ; Worthen et al.
014 ; Reuber et al. 2020 ; Rudi et al. 2022 ). In the seismotectonic
ontext, Crawford et al. ( 2017 ) employed viscoelastic models and
djoints to invert surface deformations after earthquakes and re-
over the viscosity structure in 2-D synthetic tests. Agata et al.
 2017 ) used adjoints to invert surface geodetic velocities to recover
oth the afterslip distribution and a three-layered asthenosphere
iscosity structure beneath Japan. 

Ho wever , the accurate and efficient implementation of first and
econd deri v ati ves in numerical models remains a challenge. Pre vi-
us studies have addressed this challenge by representing the model
omain with finite-element (FE) or finite-difference schemes and
eriving the adjoint equation based on this discretization (Crawford
t al. 2017 ; Agata et al. 2017 ; Reuber et al. 2020 ). Ho wever , this
pproach is problem-specific, requiring manual modification of the
iscretization for each problem, and can make the deri v ation of the
iscrete Hessian very dif ficult, particularl y for complex discretiza-
ions of constitutive laws (Ghattas & Willcox 2021 ; Villa et al.
021 ). 

Recent developments in advanced open-source libraries have ad-
ressed the issues of flexibility and optimization in both mesh dis-
retization and solver options (Balay et al. 2020 ), enhancing the
olution of complex multiphysics coupling problems (e.g. Logg
 Wells 2010 ; Wilson et al. 2017 ; Rathgeber et al. 2016 ; Villa

t al. 2021 ). In particular, the HIPPYLIB library (Villa et al. 2018 ,
021 ) relies on FENICS (Logg & Wells 2010 ; Logg et al. 2012 )
or the FE discretization, and implements state-of-the-art scalable
djoint-based algorithms for partial differential equation (PDE)-
ased deterministic and Bayesian inverse problems. In HIPPYLIB ,
oth gradient and Hessian information of the objective function
re ef ficientl y computed using the adjoint method while leveraging
he automated symbolic differentiation and assembly of variational
orms in FENICS (Alnæs et al. 2014 ). This makes the solution of
ny PDE-based inverse problem transparent and relati vel y straight-
orward, overcoming challenges associated with problem-specific
mplementations. 

Here, we aim to utilize these powerful libraries to address the
roblem of inferring Earth’s material heterogeneity based on surface
eodetic observations during large earthquakes. Previous related ef-
orts have focused on recovering elastic properties for engineering
roblems with sparse observations throughout the domain (Fatehi-
oroujeni et al. 2016 , 2020 ). Ho wever , these models were limited
o solving simple 2-D tests with constraints impossible to achieve
or solid Earth prob lems, w here geodetic data are limited to the
urface. In this paper, we seek to investigate for the first time, to our
nowledge, if surface geodetic data alone can provide sufficient in-
ormation about both the fault slip distribution and Earth’s structure
or subduction earthquake type problems. 

Puel et al. ( 2022 ) described a novel fault discontinuity imple-
entation for FE modelling using a stress-accurate, mixed elastic

ormulation and discussed formal links between linear coseismic
lip inversions and adjoint-based optimization methods which elim-
nate the need for Green’s function computations. Here, we build
pon this computational frame work, le veraging the capabilities of
ENICS and HIPPYLIB . First, we re vie w the elastic forward model,
nd then we formulate and derive expressions for the gradient and
essian of the infinite-dimensional deterministic nonlinear inverse
roblem for heterogeneous material property distribution (e.g. Pois-
on’s ratio), and present numerical results for inversion in the crust
nd mantle wedge in Sections 2 and 3 , respecti vel y. Lastl y, in Sec-
ion 4 , we extend our work by combining the fault slip inversion
resented in Puel et al. ( 2022 ) with the inference of heterogeneous
aterial properties, specifically variations in the shear modulus, for
 joint inversion to infer both model parameters. A 3-D application
f our approach involving actual coseismic data is beyond the scope
f this work but will be addressed in a separate manuscript. More-
ver, the approach described here may well be suited for tackling
ore complex joint inversions, for example, involving three-field

arameters, such as two elastic properties and fault slip. Trade-offs
mong parameters are expected, but it is also possible to incorpo-
ate additional constraints, such as from other geophysical methods
ncluding seismic tomography, for example. 

 F O RWA R D  P RO B L E M :  E L A S T I C I T Y  

I X E D  F O R M U L AT I O N  

i ven an y point x within the domain � ⊂ R 

d , d = 2 , 3 with Dirich-
et ( � D ) and Neumann ( � N ) external boundaries, and an internal
ault discontinuity � F , the Hellinger–Reissner formulation of the
lasticity equation aims to find the displacement u , stress σ and
otation � fields that satisfy the governing equations (Arnold et al.
007 ) and the fault and external boundary conditions (Puel et al.
022 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

A σ = ∇ u − � in �, 

−∇ · σ = f in �, 

u = u 0 on � D , 

σ · n = t on � N , 

� T ( n � F ) u � = s on � F , 

� u · n � F � = 0 on � F , 

� σ · n � F � = 0 on � F , 

(1) 

here we write the strain tensor as the difference between the
 radient defor mation tensor ∇u and its skew-symmetric part � =

1 
2 ( ∇ u − ∇ u 

T ) . The first and second equations represent the consti-
utive relation and linear balance of momentum, respectively. Here,
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A = A ( x ) is the fourth-order elastic compliance tensor describing 
the material properties of the medium, f represents body forces, u 0 is 
the imposed displacement at the boundaries, n denotes the outward 
unit normal of ∂� and t is the traction. The last three conditions 
in eq. ( 1 ) represent the constraints on the fault discontinuity (Puel 
et al. 2022 ). � θ� = θ− − θ+ is the jump operator that restricts the 
function θ from the left, θ−, and right, θ+ , side of the fault, respec- 
ti vel y. T ( n � F ) is the tangent operator which takes the component 
of the displacement u parallel to the fault plane � F . s is the fault 
slip and n � F = n 

+ = −n 

− is the unit vector normal to � F . For an 
isotropic, linear-elastic medium, the compliance A ( x ) depends only 
on two independent scalar fields: for example, the shear modulus 
μ( x ) and second Lam é parameter λ( x ), or more commonly μ( x ) and 
the Poisson’s ratio ν( x ) (Appendix A ) 

A σ = 

1 

2 μ

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
, (2) 

where I is the d × d identity matrix and tr ( σ ) is the trace of the 
stress tensor. 

Following Arnold et al. ( 2007 ), we employ a mixed FE method 
to discretize the three spatial fields. In this approach, the stress is 
approximated using Brezzi–Douglas–Marini H(div)-conforming fi- 
nite elements (Brezzi et al. 1985 ). These elements are piecewise 
vector polynomials on each mesh element and have continuous 
normal components across inter-element facets. The displacement 
and rotation fields are approximated by piecewise discontinuous 
Galerkin elements. This mixed FE discretization satisfies stress bal- 
ance discretely and provides a higher order of accuracy for the stress 
variable than the standard displacement elastic formulation (Puel 
et al. 2022 ). Another advantage of using a discontinuous Galerkin 
discretization for the displacement field is that the slip can be pre- 
scribed across the fault without the need of conventional split node 
(Melosh & Raefsky 1981 ) or decomposition discrete approaches 
(Aagaard et al. 2013 ). 

Hence, the elasticity equation in this mixed FE approximation 
seeks to find ( σ h , u h , r h ) ∈ � h × W h × � h , where r h = 

1 
2 ∇ × u is 

the rotation vector of the skew-symmetric tensor � , such that ∫ 
�h 

A σ h : τ h d x + 

∫ 
�h 

u h · ( ∇ · τ h ) d x + 

∫ 
�h 

as ( τ h ) · r h d x 

= 

∫ 
� h,F 

s · [
T ( n � F )( τ h n � F ) 

]
d S ∀ τ h ∈ � h , 

−
∫ 

�h 

( ∇ · σ h ) · ω h d x = 

∫ 
�h 

f · ω h d x ∀ ω h ∈ W h , ∫ 
�h 

as ( σ h ) · ξ h d x = 0 ∀ ξ h ∈ � h , (3) 

where �h and � h , F are the discretized domain and the union 
of facets aligning with the fault geometry, respecti vel y. Here, 
as( τ ) = ( τ 12 − τ 21 ) and as( τ ) = ( τ 32 − τ 23 , τ 13 − τ 31 , τ 21 

− τ 12 ) T is the asymmetric operator in 2-D and 3-D, respec- 
ti vel y. τ h , ω h , ξ h are the test functions for stress, displacement 
and rotation, respecti vel y, and d S represents the inte gration ov er 
the fault internal boundary. The discretized spaces are defined 
as � h = { τ ∈ H ( ∇·, �h , M ) : τ n = 0 on � h,N , � τ n � F � = 0 on
� h , F } , W h = L 

2 ( �h , R 

d ) , � h = L 

2 ( �h , R 

d ) , which respecti vel y
represent the space of square-integrable matrix fields with square- 
inte grable div ergence satisfying the traction and fault boundary 
conditions, and the spaces of all square-integrable vector fields. 
The restriction on the stress space along � h , F is ef fecti vel y satis- 
fied when the fault is resolved by the computational grid. � h , N is 
the discretized external boundaries. The discretization details in- 
cluding the fault deri v ation from the integration by parts of the 
non-confor ming ter m in the constitutive equation can be found in 
Puel et al. ( 2022 ). 

3  I N F I N I T E - D I M E N S I O NA L  

D E T E R M I N I S T I C  I N V E R S I O N  F O R  

P O I S S O N ’ S  R AT I O  

In this section, we derive the formulation in infinite dimensions—
that is, at a continuous inte gral lev el—of the deterministic inverse 
problem for heterogeneous medium properties using the FE method. 
Here, we choose to invert for the Poisson’s ratio which has been used 
as a proxy for the presence of fluids in the mantle wedge and post- 
seismic poroelastic effects (e.g. Feigl & Thatcher 2006 ; Panuntun 
et al. 2018 ). An analogous procedure will be employed in Section 4 
to jointly invert surface deformation for both the shear modulus 
field and fault slip. 

Given an infinite-dimensional Hilbert space of functions M de- 
fined on the domain �, and some sparse noisy finite-dimensional 
surface defor mation obser vations d ∈ R 

n obs , we seek to infer the 
Poisson’s ratio field ν( m ) = 

1 
4 [1 + tanh ( m )] which best predicts 

the data. The choice of inverting for the argument of the hyperbolic 
tangent m ∈ M derives from the physical constraints of the Pois- 
son’s ratio, ν ∈ [0, 0.5]. We formulate this nonlinear inverse problem 

as the following constrained least-squares optimization problem: 

min 
m ∈ M 

J ( m ) : = 

1 

2 
|| F ( m ) − d || 2 

� −1 
noise 

+ R( m ) , (4) 

where the cost functional J ( m ) contains the data misfit, weighted 
by the data noise covariance � 

−1 
noise and a regularization term R( m ) , 

respecti vel y. The latter term is necessary due to the ill-posedness of 
most inverse problems (e.g. Hadamard 1923 ; Tikhonov & Arsenin 
1977 ). F ( m ) : = B u ( m ) is the parameter -to-observab le map and 
u ( m ) is the displacement field computed by solving the elasticity 
problem (eq. 3 ) given the Poisson’s ratio parameter field m . B is an 
observation operator restricting the predicted displacement field to 
the surface observations. 

For the case of material properties inference, u depends on m 

nonlinearly. Therefore, we seek to find an efficient and scalable algo- 
rithm to solve this minimization problem (eq. 4 ). Newton’s method 
proves to be suitable for this purpose by providing a fast and effi- 
cient solution of the discretized infinite-dimensional optimization 
problem (e.g. Allgower et al. 1986 ; Heinkenschloss 1993 ). By lever- 
aging information from the second deri v ati ve of the least-squares 
cost functional (the Hessian), these methods have demonstrated 
mesh-independent convergence (e.g. Kelley & Sachs 1991 ; Ghattas 
& Willcox 2021 ), requiring significantly fewer forward PDE solves 
than algorithms relying only on gradient information. 

Newton’s method requires the computation of the (infinite- 
dimensional) gradient and Hessian, which are the first- and second- 
order G ˆ ateaux deri v ati ves of the objecti ve function J ( m ) with re- 
spect to m . Gradient and Hessian expressions can be derived through 
variational calculus and the adjoint method. Using the Lagrangian 
formalism (T r öltzsch 2010 ), w e formulate an expression for the 
gradient G ( m ) at an arbitrary point m 

∗ in parameter space. The 
Lagrangian functional for the gradient L 

G includes eq. ( 4 ) and the 
weak form of the forward problem (eq. 3 ), 

L 

G ( φ, m , p ) = 

1 
2 || B u ( m ) − d || 2 

� −1 
noise 

+ R( m ) + 

∫ 
�

p · ψ ( φ, m ) d x ,

(5)
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here φ = ( σ , u , r ) and p = ( τ , ω, ξ ) are the state and adjoint vari-
b les w here the latter serve as Lagrange multipliers for the stress,
isplacement and rotation, respecti vel y. ψ( φ, m ) is the residual of
he elasticity PDE (eq. 1 ). The second term, R( m ) , could be, for ex-
mple, a Tikhonov-type regularization that imposes a certain level
f smoothness of the solution m . 

By taking the deri v ati ve of L 

G with respect to the adjoint and
tate variables, we obtain the variational form of the forward and
djoint equations, respecti vel y. The latter reads: 

(
∂L 

G 

∂ σ
, ˜ σ

)
+ 

(
∂L 

G 

∂ u 

, ̃  u 

)
+ 

(
∂L 

G 

∂ r 
, ̃  r 

)

= 

∫ 
�

1 

2 μ

[
˜ σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( ̃  σ ) I 

]
: τ d x 

+ 

∫ 
�

( ∇ · ˜ σ ) · ω d x + 

∫ 
�

as ( ̃  σ ) · ξ d x 

+ 

∫ 
�

˜ u · ( ∇ · τ ) d x + 

∫ 
�

as ( τ ) · ˜ r d x 

+ 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˜ u d x = 0 

∀ ̃

 σ ∈ �; ∀ ̃

 u ∈ W ; ∀ ̃

 r ∈ �, (6) 

here B 

∗ is the adjoint of the observational operator which maps
he discrete surface displacement back to the infinite-dimensional
tate space, and ˜ σ , ˜ u and ˜ r are test functions. 

By taking a variation of the Lagrangian functional with respect to
he model parameter, we obtain the pointwise gradient expression
t a point m 

∗ in an arbitrary direction ˜ m : 

 G ( m 

∗) , ˜ m ) = ( R m 

( m 

∗) , ˜ m ) − 1 

E 

∫ 
�

νm 

( m 

∗) ˜ m [
1 + ν( m 

∗)( d − 2) 
]2 

tr ( σ ) I : 

τ d x ∀ ̃

 m ∈ M, (7)

here ( R m 

( m 

∗) , ˜ m ) denotes the G ˆ ateaux deri v ati v e of the re gular-
zation R with respect to m in the direction ˜ m e v aluated at m = m 

∗.

m ( m ) indicates the deri v ati ve of ν( m ) with respect to m . σ and τ
re the solutions of the forward and adjoint problems (eqs 1 and
 ), respecti vel y. The cost of e v aluating the gradient consists of one
orward and one adjoint PDE solve. 

Eq. ( 1 ) shows that u depends on m in a nonlinear manner through
he solution of the forward mixed elasticity problem. Therefore, we
an leverage Hessian information in combination with Newton’s
ethod to accelerate the convergence of the Poisson’s ratio infer-

nce. For the deri v ation of the Hessian action in a direction ˆ m in
arameter space, we follow the same approach as before and con-
truct the second-order Lagrangian functional L 

H , which consists
f the sum of the gradient, forward equation (second term) and
djoint equation (last two terms), respecti vel y: 

L 

H ( φ, m , p ; ˆ φ, ˆ m , ˆ p ) = ( G ( m ) , ˆ m ) + 

∫ 
�

ˆ p · ψ ( φ, m ) d x 

 

∫ 
�

p · ψ φ( φ, m )[ ̂  φ] d x + 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˆ u d x , (8) 

here ˆ φ, ˆ m , ˆ p are the test functions of the forward, gradient and
djoint equations, respecti vel y. ψ φ is the deri v ati ve of the forw ard
DE residual with respect to the state variables. To obtain the action
f the Hessian in a direction ˆ m , we take the variation of L 

H with
espect to m : 

( ̃  m , H ( m ) ˆ m ) = ( ̃  m , R mm 

( m ) ˆ m ) 

− 1 

2 μ

∫ 
�

[
νmm 

( m ) + 2 ν2 
m 

( m )( d − 2) 
]

[
1 + ν( m )( d − 2) 

]2 
˜ m ̂

 m tr ( σ ) I : τ d x 

− 1 

2 μ

∫ 
�

νm 

( m ) ˜ m [
1 + ν( m )( d − 2) 

]2 

[
tr ( σ ) I : ˆ τ + tr ( ̂  σ ) I : τ

]
d x 

∀ ̃

 m ∈ M, (9) 

here νm and νmm denote the first and second deri v ati ves of ν( m )
ith respect to m , respecti vel y. σ and τ are the solutions to the for-
ard and adjoint problems in eqs ( 1 ) and ( 6 ), respecti vel y, and ˆ σ and

ˆ are the solutions of the incremental forward and adjoint problems,
especti vel y (see Appendix B ). Once we have gradient and Hessian
ction expressions, we can apply an inexact Newton-conjugate gra-
ient (Newton-CG) algorithm (e.g. Ak c ¸elik et al. 2006 ; Borz ̀ı &
chulz 2011 ) to solve the optimization problem in eq. ( 4 ). At each
 th Newton iteration, we solve the linear system, 

H ( m k ) ˆ m k = −G ( m k ) , (10) 

or the Newton direction ˆ m k with the linear CG method in a matrix-
ree manner via a pair of incremental forward/adjoint PDE solves,
erminating early to avoid ne gativ e curvature and oversolving (Stei-
aug 1983 ; Eisenstat & Walker 1996 ). The search direction solution
rovides an update to the model parameter m k + 1 at the ( k + 1)th
teration as 

m k+ 1 = m k + αk ˆ m k , (11) 

ith asymptotic quadratic convergence. The step length αk ∈ (0, 1]
s chosen according to an appropriate line search strategy (e.g. No-
edal & Wright 1999 ). The advantages of this inexact Newton-CG
lgorithm are: (1) the Hessian operator is not built explicitly because
he operator-free CG algorithm requires only the matrix action on a
iv en v ector via eq. ( 9 ); (2) the cost per Newton iteration of solving
q. ( 10 ) involves a pair of linearized PDE solves, one incremental
orward and one incremental adjoint problem and (3) the number of
terations for convergence does not depend on the parameter or the
ominal data dimension (e.g. Ghattas & Willcox 2021 ; Villa et al.
021 ). The computational cost, measured in linearized PDE solves,
epends only on the intrinsic dimensionality of the problem—that
s, the number of directions in parameter space that are informed
y the data. HIPPYLIB does not require the direct input of the gra-
ient and Hessian expressions, but only the variational form of the
orward problem (eq. 3 ), automatically computing the gradient and
essian action using the symbolic differentiation capabilities of the
ENICS library. In the following section, we will focus on the regu-

arization term R( m ) in the context of the heterogeneous Poisson’s
atio inference from surface deformation data. 

.1 Tikhonov versus total variation regularization 

n the absence of the regularization term R( m ) , solving the opti-
ization problem stated in eq. ( 4 ) becomes challenging. In typical

ases where F ( m ) is governed by PDEs with infinite-dimensional
arameters, the inverse problem is ill-posed—that is, its solution, if
t exists, is not unique and is highly sensitive to errors in the data
nd model (e.g. Hadamard 1923 ; Engl et al. 1996 ; Vogel 2002 ). 

A common feature of many ill-posed inverse problems is the
apid decay of the spectrum of the Hessian of the data fidelity term.
he inverse of the Hessian’s small eigenvalues amplify noise com-
onents contained in the data in the directions of the corresponding
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eigenfunctions, leading to unstable inference of these modes. The 
faster the decay of the spectrum of the Hessian and the higher the 
noise, the fewer eigenvalues will be above the noise level, and the 
fewer modes of m can be reliably recovered from the data (Ghattas 
& Willcox 2021 ). Since the data are not sensitive to eigenfunction 
modes associated with these smaller eigenvalues, w e ma y remove 
them by truncating the spectrum—that is, truncated singular value 
decomposition. Ho wever , this approach is applicable only when 
F ( m ) is a linear operator. A more general strategy, also for non- 
linear operators, is to use some type of regularization R( m ) (e.g. 
Arridge et al. 2019 ; Benning & Burger 2018 ) such as Tikhonov 
regularization (T ikhonov 1963 ; T ikhonov & Arsenin 1977 ), which, 
acting as a filter, damps the smallest eigenvalues. 

Perhaps the most popular type of Tikhonov regularization is the 
H 

1 norm, which penalizes oscillatory components of the gradient 
of the model parameter m by imposing smoothness: 

R 

H 1 ( m ) = 

γH 1 

2 

∫ 
�

∇ m · ∇ m d x + 

δL 2 

2 

∫ 
�

m · m d x , (12) 

where γH 1 acts as a dif fusion coef ficient that controls the strength 
of the penalty. This parameter is usually chosen by using such 
techniques as the Morozov discrepancy principle (Scherzer 1993 ; 
Pere verze v & Schock 2000 ) or the L-curve criterion (Miller 1970 ; 
Lawson & Hanson 1995 ), in order to balance errors due to the noise 
level in the data and the effect of the regularization. The second 
term, which corresponds to adding a mass matrix term ( L 

2 -type 
Tikhonov), is needed to make the re gularization inv ertible for the 
inexact Newton-CG algorithm to converge, since Neumann bound- 
ary conditions are typically imposed on the m field. Here, δL 2 is a 
scalar parameter that controls the strength of the L 

2 -type regular- 
ization and is much smaller than γH 1 . First and second variations 
of R 

H 1 ( m ) in eqs ( 7 ) and ( 9 ) are straightforward to derive, since 
R 

H 1 ( m ) is explicit in m . 
A limitation of this Tikhonov-type regularization is that, by de- 

sign, it smooths out sharp edges of the model parameter field m that 
may exist at least in parts of the domain. A better approach if sharp 
contrasts are expected, common in image denoising for example, 
is to use total variation (TV) regularization (e.g. Rudin et al. 1992 ; 
Strong & Chan 2003 ; Chan et al. 2005 ), which takes the L 

1 ( �) norm 

of the gradient rather than the L 

2 , 

R 

TV ( m ) = γTV 

∫ 
�

( ∇ m · ∇ m + ε) 
1 
2 d x + 

δL 2 

2 

∫ 
�

m · m d x , (13) 

where γ TV controls the strength of the regularization term, and the 
small positive parameter ε is included to preserve the differentia- 
bility of R 

T V ( m ) when ∇m = 0. Intuiti vel y, TV can be seen to 
preserve sharp edges as follows. At an interface, ∇m is unbounded, 
and squaring it as in Tikhonov H 

1 regularization leads to an un- 
bounded integral, which mean the optimizer will avoid such an 
infinite penalty be smoothing the interface. On the other hand, the 
square root in TV restores integrability, leading to a finite penalty 
(in fact equal to the jump in m multiplied by the length of the in- 
terface, for a piece wise homo geneous medium). Thus, if the data 
are indicative of an interface, TV will seek to preserve it. The first 
variation of R 

T V in eq. ( 7 ) reads: 

R TV 
m ( m , ˜ m ) = γTV 

∫ 
�

1 

( ∇ m · ∇ m + ε) 
1 
2 

∇ m · ∇ ̃

 m d x + δL 2 

∫ 
�

m · ˜ m d x , (14) 

while the second variation is: 

R TV 
mm ( m , ˜ m , ˆ m ) = γTV 

∫ 
�

1 

( ∇ m · ∇ m + ε) 
1 
2 

( 

I − ∇ m ⊗ ∇ m 

∇ m · ∇ m + ε 
∇ ̃

 m 

) 

· ∇ ̂

 m d x

+ δL 2 

∫ 
�

˜ m · ˆ m d x , (15)
where ⊗ is the outer product. The highly nonlinear term 

(
I −

∇ m ⊗∇ m 

∇ m ·∇ m + ε 
)

slows the convergence of Newton’s method, since the 
radius of the region of quadratic convergence shrinks as ε decreases 
and |∇m | increases. For this reason in the following, we will replace 
the second variation of R 

TV with the so-called lagged diffusivity 
variational form: 

˜ R 

TV 
mm 

( m , ˜ m , ˆ m ) = γTV 

∫ 
�

1 

( ∇ m · ∇ m + ε) 
1 
2 

∇ 

˜ m · ∇ 

ˆ m d x 

+ δL 2 

∫ 
�

˜ m · ˆ m d x . (16) 

The resulting method exhibits a first-order convergence rate but 
becomes more robust for small values of ε and larger ∇m . It is 
straightforward to show that if ε is large, the TV behaves like the 
H 

1 -type Tikhonov regularization. 

3.2 Model setup 

To demonstrate the potential of our computational framework in 
solving heterogeneous media nonlinear inverse problems, we con- 
sider a 2-D synthetic model inspired by a subduction zone setting. 
We also want to compare the performance of the two different types 
of regularization, R( m ) , namel y H 

1 -type Tikhonov and total v ari- 
ation (TV), to recover the heterogeneous Poisson’s ratio structure, 
ν( m ). 

The model consists of a curved fault internal boundary and 20 ob- 
servations of displacements, both horizontal and ver tical, unifor mly 
spaced at the surface in the over-riding plate (grey triangles, inset 
in Fig. 1 d, and panel a). We selected this particular network config- 
uration as it resembles the locations of geodetic stations that might 
monitor subduction zones. The estimated material property field, 
as well as the associated model uncertainty, are of course highly 
dependent on the observational sites. The development of scalable 
approaches for the solution of the associated optimal experimental 
design (OED) problem of determining optimal observation loca- 
tions is an active area of research (e.g. Alexanderian et al. 2016 ; 
Attia et al. 2018 ; Koval et al. 2020 ; Wu et al. 2023 ) and is be- 
yond the scope of this manuscript. The 1100 × 500 km rectangular 
domain contains a triangular Poisson’s ratio anomaly of ν = 0.35 
located in the over-riding plate. This anomaly may resemble, for 
example, the presence of fluids or partial melt in the mantle wedge. 
The background Poisson’s ratio is chosen to be ν = 0.20 indicating 
a more compressible material. The unstructured mesh, generated 
by the open-source software GMSH (Geuzaine & Remacle 2009 ), 
contains 2391 triangular cells. The mesh is finer close to the fault 
discontinuity and coarser near the lateral and bottom boundaries 
(Fig. 1 d). 

The forward mixed elasticity problem (eq. 3 ) is discretized using 
the first-order stable triplet of FE spaces, resulting in 21 717 degrees 
of freedom (DOFs) for the primary variables (stress, displacement 
and rotation). The stress field σ is approximated with Brezzi–
Douglas–Marini elements (14 544 DOFs). The displacement and 
rotations vector fields, u and r , are approximated by using piece- 
wise constant discontinuous Galerkin elements, resulting in 4782 
and 2391 DOFs, respecti vel y. We choose to discretize the Poisson’s 
ratio scalar field m with linear Lagrange elements (1246 DOFs). 
Zero displacement boundary conditions are applied to the left, right 
and bottom boundaries, and a free surface to the top of the model. 
We assume no body forces and a homogeneous shear modulus of a 
nominal 30 GPa, where inversions cannot constrain absolute values 
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Figure 1. Comparison of the recovered Poisson’s ratio, ν, structure between the (b) Tikhonov and (c) TV regularization. (a) True Poisson’s ratio structure 
(blue colours, background: ν = 0.2) including the triangular anomaly ( ν = 0.35) in the over-riding plate. The earthquake displacement is used to compute the 
20 synthetic noisy ( σ d = 0.2 cm) surface displacement data (grey triangles). (d) FE mesh with a zoomed-in view of the mesh refinement around the fault. For 
comparison, the triangular black dashed line indicates the shape of the material anomaly. Fault slip is depicted using the second, copper colour scale. 
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To model an earthquak e-lik e signal, we kinematically prescribe a
aussian slip distribution on the fault interface. Given the nature of

he problem, we are sensitive only to relative displacements with a
cale set by the amplitude of fault slip. Thus, only Poisson ratio and
hear modulus variations with respect to a reference modulus can
e inferred, and not absolute v alues. Howe ver, we use dimensional
alues with 10 m for peak slip and Earth-like length dimensions to
ake actual numbers comparable to megathrust cases. The Gaussian

lip distribution has the peak slip centered at a depth of 20 km and a
tandard deviation of 15 km (Fig. 1 a). We adhere to the convention
here ne gativ e slip is associated with thrust faults and positiv e

lip is associated with normal faults. We generate synthetic surface
orizontal and vertical displacements recorded at the 20 surface
eodetic stations by solving the forward mixed elasticity problem
Fig. 1 a). We add Gaussian noise N (0 , σ 2 

d ) to these data, with a
ean of zero and a standard deviation of σ d = 0.2 cm. This standard

e viation v alue is an average estimate derived from realistic data
oise observed at onshore geodetic stations in Japan (e.g. Hatanaka
005 ; Iinuma et al. 2012 ). All computations were performed using
 single core of a standard laptop (Intel I9-9880H machine running
t 2.4 GHz with 32 GB of RAM). 

To analyse the quality of the inverse solution m , we can assess
he amount of information that can be recovered from the data.
e determine the eigenvalues and eigenfunctions of the second
eri v ati ve of the cost functional J ( m ) (eq. 4 ), the Hessian H ( m ) ,
ocusing on its data misfit part. After discretization, the Hessian is
enerally a large, dense matrix; therefore, an explicit construction of
 for large-scale problems is typically intractable (e.g. Bui-Thanh
 Ghattas 2013 ; Petra et al. 2014 ). Each column of the Hessian

equires the solution of a pair of linearized forward/adjoint PDEs.
he Hessian H can be decomposed into the Hessian of the data misfit

H 

misfit = J T � 

−1 
noise J + 

∑ 

i ∂ mm 

[ F ] i [ F ( m ) − d ] i and the Hessian of
he regularization term H 

reg . J is the Jacobian of the discretized
arameter -to-observab le map F ( m ) evaluated at any point, � 

−1 
noise =

1 
σ 2 

d 
I represents the data noise covariance matrix, and [ · ] i is the i th

omponent of the vector. Although the explicit construction of H 

misfit 

s often intractable, we can leverage the fact that its eigenvalues
ypicall y collapse rapidl y to zero. Hence, it is possible to build a
ow-rank spectral decomposition of the misfit part of the Hessian
Ghattas & Willcox 2021 ). In HIPPYLIB , we employ randomized
igensolvers (Halko et al. 2011 ) to estimate the eigenvalues λi and
igenvectors v i of the Hessian misfit by solving the generalized
igenproblem (Villa et al. 2021 ): 

H 

misfit v i = λi R v i λ1 ≥ λ2 ≥ · · · ≥ λn , (17) 
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where R is the discretized regularization operator R, and n is the 
number of discretized model parameters. Eigenvalues λi greater 
than unity correspond to eigenvectors that can be inferred from the 
data, while λi < 1 are associated with eigenvectors that are largely 
influenced by the noise (Villa et al. 2021 ) and those modes of m 

cannot be reliably recovered by the inversion. 
To quantitati vel y compare the solutions of the inverse prob- 

lem we use a metric based on the data information content of 
the Hessian misfit. We call this metric LDPDH, which is the 
log-determinant of the pre-conditioned data misfit Hessian, and it 
reads: 

LDPDH = 

1 

2 
log det 

(
I + 

˜ H 

misfit 
)

≈ 1 

2 

N λ∑ 

j= 1 
ln (1 + λ j ) , (18) 

where I is the identity matrix, ˜ H 

misfit = R 

− 1 
2 H 

misfit R 

− 1 
2 is the reg- 

ularization preconditioned data misfit Hessian, and λj are the eigen- 

values of ˜ H 

misfit 
from eq. ( 17 ). N λ is the number of eigenvalues 

above 1. The greater the LDPDH, the higher is the information 
content that can be retrieved from the data about the model pa- 
rameter. In Bayesian OED problems, this metric reduces to the 
expected information gain in the linear inverse problem case (D- 
optimality criterion, e.g. Alexanderian et al. 2016 ). In that context, 
maximizing the LDPDH with respect to the station’s location is 
equi v alent to finding the sensor configuration that maximizes infor- 
mation gain from the data. This metric is independent of the true 
solution. 

3.3 Inversion results with different regularization 

After perturbing the synthetic surface displacements with random 

Gaussian noise, we invert them for the heterogeneous Poisson’s ratio 
spatial distribution using the H 

1 -type Tikhonov (Fig. 1 b) and TV 

re gularization (Fig. 1 c), respectiv ely. The Poisson’s ratio anomaly is 
well recovered in both cases, with the highest accuracy at the centre 
of the anomaly. In particular, the Tikhonov regularization blurs the 
sharp triangular edges, which are better preserved using the TV 

regularization. 
Nevertheless, there is a notable difference in the computational 

performance of the tw o in versions. The in version with the Tikhonov 
regularization requires 11 iterations to reduce the L 2 norm of the gra- 
dient by 9 orders of magnitude, using penalty weights of γH 1 = 10 2 

and δL 2 = 10 −3 . On the other hand, the inverse problem with TV 

re gularization e xhibits slo wer con v ergence, as e xpected, necessitat- 
ing 39 iterations with penalty weights of γ TV = 0.5, ε = 10 −7 and 
δL 2 = 10 −3 . The slower convergence of the TV may be attributed to 
the nonlinear term in the denominator of eqs ( 14 ) and ( 15 ), and the 
use of an approximated Hessian. 

In our synthetic case, we arbitrarily choose a material anomaly 
with higher Poisson’s ratio than the background. This choice, as well 
the selected model setup, significantly influences the variations in 
surface deformation recorded by the observations such as GNSS 

and InSAR. In the next section, we will investigate the effects of 
varying the material properties (Poisson’s ratio and shear modulus), 
and the model setup (fault dip) on the surface horizontal and verti- 
cal displacements. The differences in displacements caused by the 
relative contribution between the earthquake source and the hetero- 
geneous medium will also be important in Section 4 , where we will 
perform a joint inversion for both fault slip and subduction zone 

structure. 
3.4 Signature of material heterogeneity and fault dip on 

surface deformation 

Why does the inversion for material parameters work, and what 
sensitivities should we expect in general? While these questions 
are accessible with formal inverse approaches, it helps to build 
some intuition as to which of these heterogeneities can be inferred 
through inversion. To analyse the impact of heterogeneity and fault 
dip on the recorded surface displacements, we solve the forward 
problem described in eq. ( 3 ). We vary the fault dip angle as well 
as the values of Poisson’s ratio, ν, and shear modulus, μ, within 
the triangular anomaly relative to the background homogeneous 
structure ( ν = 0.20 and μ = 30 GPa). To study the role of fault 
dip more ef fecti vel y, we consider a straight fault with a fixed length 
but varying dip angles of 30 ◦, 45 ◦ and 60 ◦, respecti vel y, instead 
of a more curved fault geometry (see Fig. 2 a). The selection of 
such a wide range of fault dip angles is intended to provide a 
conserv ati ve estimate of the effect of dip; realistic uncertainties 
associated with slab geometry in subduction zones are usually much 
smaller. 

Fig. 2 illustrates the horizontal and vertical surface displace- 
ments as a function of fault dip and triangular material anomaly 
(shaded in light brown). In subplots (b)–(e), the light brown verti- 
cal line indicates the location of the trench. The shaded grey areas 
in panels (b) and (c) indicate the variations of (b) horizontal and 
(c) vertical displacements assuming a fault dipping at 30 ◦ (dotted 
grey line) and 60 ◦ (solid) to the left, respecti vel y. The orange and 
blue shaded regions in Figs 2 (b) and (c) correspond to changes in 
surface horizontal and vertical deformation caused by uniformly 
v arying the v alues of shear modulus and Poisson’s ratio in the tri- 
angular anomal y, respecti vel y. Specificall y, the dashed orange line 
in panels (d) and (e) represents a shear modulus of 15 GPa, while 
the solid line represents 45 GPa. For the Poisson’s ratio, the solid 
blue line represents 0.05, and the dashed line represents 0.35. Pan- 
els (d) and (e) show a zoomed-in view of the differences in surface 
horizontal and vertical displacements resulting from variations in μ
and ν within the triangular anomaly, compared to the homogeneous 
case ( ν = 0.20 and μ = 30 GPa) for a fault dipping 45 ◦. 

First, as expected, the changes in surface deformation caused by 
material heterogeneity are significantly smaller compared to those 
caused b y dif ferences in fault dip. This ef fect will also influence 
the results of the joint inversion for both fault slip and subduction 
zone structure (refer to Section 4 ). Second, as has also been dis- 
cussed, variations in fault dip have a greater impact on the recorded 
surface deformation, as shown by the grey shaded area in Figs 2 (b) 
and (c), which is much more pronounced than changes in material 
properties. Shallower faults result in more trenchward motion and 
subsidence in the overriding plate compared to deeper faults. Fur- 
thermore, the peak of the uplift is more trenchward for faults with 
a steeper dip angle than for shallower faults (panel c). 

Regarding the changes in material properties within the triangular 
anomaly, more incompressible materials result in a second region 
of more trenchward motion in the western part of the anomaly, and 
a more landward in the easter n por tion of it (dashed blue line in 
Fig. 2 d). Conversely, the opposite occurs with a more compressible 
material anomaly (blue solid line). A similar effect can be seen with 
a weaker material (represented by the orange dashed line), although 
the variations in magnitude are higher, suggesting that changes in μ
primaril y af fect the horizontal components of the surface displace- 
ment field. On the other hand, the vertical component (Fig. 2 d) 
is more influenced by variations in Poisson’s ratio rather than the 
shear modulus (blue-shaded area). Materials with higher Poisson’s 
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Figure 2. Effect of fault dip and material heterogeneity variations on horizontal and vertical surface displacements. (a) Reference model configuration with 
the triangular material anomaly (shaded light brown) and straight faults with different fault dips. (b) and (c) demonstrate the changes in horizontal and vertical 
surface deformations, respecti vel y, b y v arying the fault dip (grey shaded area), shear modulus (orange area) and Poisson’s ratio (blue area). The shaded brown 
area delineates the region of the material anomaly, while the line indicates the location of the trench. (d) and (e) A zoomed-in view of panels (b) and (c) 
representing the differences in horizontal (d) and vertical (e) displacements when varying the shear modulus μ (orange) and Poisson’s ratio ν (blue), considering 
a fault dipping at an angle of 45 ◦, in comparison to a homogeneous background structure. 
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atios lead to more subsidence compared to a homogeneous struc-
ure (represented by the blue dashed line), while lower ν result in
ore uplift (blue solid line). The highest uplift/subsidence occurs in

he middle of the anomaly, where the anomaly has a greater vertical
xtent. 

The signatures of heterogeneous shear moduli are more complex
han those of the Poisson’s ratio. In the case of a weaker material
ithin the triangular anomaly, there is greater subsidence in the

entral part of the anomaly and increased uplift at the sides (as shown
y the orange dashed line in Fig. 2 d) compared to the homogeneous
ase. Conversely, for stronger μ anomalies, the resulting surface
ertical displacement exhibits more uplift at the center and more
ubsidence at the sides of the anomaly. Fur ther more, we obser ve
hat the influence of material heterogeneity on surface deformation
 xtends be yond the lateral e xtent of the anomal y, af fecting the far-
eld, particularly in the horizontal component (Fig. 2 d). The impact
f material property gradients on surface displacements may also
e understood as distributed deformation sources and interpreted as
dditional body forces in the momentum equation (Hsu et al. 2011 ;
illiams & Wallace 2018 ). 
a  
.5 Role of noise and number of observations in the 
nverse solution 

hile the forward tests show that hetero geneity ef fects can be sub-
le, we nonetheless found that our framework can satisfactorily
nvert for Poisson’s ratios for certain geometries. Using the TV reg-
larization, we now further investigate the parameters that affect
esolution. 

To quantify the impact of noise on the eigenvalues and the in-
 erse solution, we e xamine how the metric LDPDH decreases with
ncreasing noise levels in the deformation data. The regularization
arameters are kept fixed and equal to the test above (F ig. 1 ). F ig. 3
llustrates the relationship between the LDPDH (eq. 18 ) and the
oise level in the surface data. The x -axis represents the noise level
ercentage, calculated by normalizing the standard deviation of the
oise with the L ∞ 

norm of the surface displacements. It is evident
hat the LDPDH decreases nonlinearly as the data become nois-
er. Panels (a)–(f) present six examples of the inferred spatial field
f Poisson’s ratio obtained through inversion by varying the noise
evel. We keep the number of evenly spaced surface stations fixed
t 20 (grey triangles) and the earthquake source depth at 20 km. We

art/ggad442_f2.eps
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Figure 3. Role of noise level in the inverse solution of Poisson’s ratio. The metric LDPDH is measured as a function of data noise percentage. Examples (a)–(f) 
illustrate the inferred value of ν (Poisson’s ratio) for various noise levels, based on 20 surface observations (showed as grey triangles in panels a and b). For 
comparison, the triangular black dashed line indicates the shape of the material anomaly. Fault slip is depicted using a copper colour. 
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note that with noise-free data, the triangular shape of Poisson’s ratio 
anomaly can be nearly fully reconstructed (panel a), with imperfec- 
tion likely due to the small number of surface observations (20); 
internal constraints such as from seismological or electromagnetic 
imaging could be implemented as well. 

Increasing the noise level in the data gradually reduces the resolu- 
tion of the inverse solution at the edges of the anomaly. As the noise 
increases, the difference between the background and the anomaly 
diminishes. Ho wever , it is still possible to detect the geometry of 
the anomaly (panels b–d). Typically, realistic values of data noise 
for onshore horizontal and vertical GNSS stations range from σ d = 

0.2 to 1.5 cm, respecti vel y (e.g. Hatanaka 2005 ). In our model, this 
corresponds to noise percentages of about 0.08–0.6 per cent (panels 
b and c). When the noise exceeds 3 per cent, reliable recovery of the 
Poisson’s ratio anomaly becomes challenging (panel f), as might be 
expected, and additional constraints, for example, on the geometry 
of likely anomalies, would be needed. 

In addition to the noise level in the data, there are other factors 
that affect the resolution of the inverse solution. One such fac- 
tor is the number of surface observ ations. Intuiti vel y, having more 
surface stations available should provide more information gained 
from the data about the Poisson’s ratio structure. To verify this hy- 
pothesis and quantify the contribution of the number of stations, 
we can vary the number of surface observations while keeping the 
data noise level fixed at σ d = 0.2 cm, and maintaining the same 
setup as before—that is, earthquake depth equal to 20 km depth and 
same regularization weights as above. Fig. 4 illustrates the LDPDH 

(eq. 18 ) as a function of the number of surface sensors, assuming 
e venl y spaced stations located in the overriding plate and within the 
same length range as the previous tests. These results will differ if 
the stations were optimally distributed rather than e venl y spaced. 
Ho wever , determining the optimal station configuration would re- 
quire solving a Bayesian OED problem which we do not attempt 
here. 

Panels (a)–(f) represent six examples of the recovery of the Pois- 
son’s ratio triangular anomaly from the nonlinear inversion by vary- 
ing the number of surface geodetic stations. Higher LDPDH values 
indicate a more reliable inference of additional eigenmodes from 

the data. The LDPDH rapidly increases from nearly zero to approx- 
imately 75 as the number of stations increases from 1 to 20–25, as 
shown in panels (a), (b), and (c), as might be e xpected. Howev er, 
adding more than 25 surface stations does not lead to a signif- 
icant improvement in the inverse solution. Panels (d)–(f) clearly 
demonstrate that a higher number of surface geodetic sensors does 
not necessarily result in a better recovery of the material anomaly. 
The logarithmic-type saturation in the metric versus station number 
curve indicates diminishing returns of adding more stations given 
the station-anomaly configuration indicating redundancy. 
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Figure 4. Role of the number of surface stations in the inverse solution for Poisson’s ratio. The metric LDPDH is examined as a function of the number of 
observations. Examples (a)–(f) represent inferred values of ν for different numbers of sensors, assuming a noise level of 0.2 cm. For comparison, the triangular 
black dashed line indicates the shape of the material anomaly. Fault slip is depicted using a copper colour. 
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Fig. 5 summarizes these results along with an analysis of the
ole of earthquake source depth. To perform these tests, we employ
he same model setup as Fig. 1 , including the fault geometry and

esh discretization. In panel (a) representing the spectrum decay,
e consider an earthquake originating at a depth of 20 km with
0 e venl y spaced surface observations, and we vary the noise level
f the surface displacement data (Fig. 3 ). In panel (b), where we
nalyse the number of observations, we set the data noise level to

d = 0.2 cm and maintain the earthquake depth at 20 km. Re-
arding the earthquake source depth, we assume a data noise level
f σ d = 0.2 cm and use 20 e venl y spaced surface observations.
e plot the eigenvalue decay of the regularization-preconditioned

ata misfit Hessian, ˜ H 

misfit 
(eq. 17 ), as a function of data noise

a), the number of surface obser vations (b), and ear thquake depth
c). Darker colours represent low noise, a large number of sensors
nd shallower earthquakes, respecti vel y. The grey dotted line at λ
 1 in all three subplots represents the threshold above which the

igenmodes associated with the corresponding eigenvalues are pre-
ominantl y determined b y the data (Villa et al. 2021 ). Eigenmodes
orresponding to generalized eigenvalues below unity are strongly
enalized by the regularization. In the inset plots, we show the
DPDH as a function of the three parameters. 
By comparing the spread of the Hessian data misfit spectrum

ith respect to the three different parameters, it becomes evident
hat data noise plays the most significant role in influencing the
ecovery of the material anomaly. In fact, by changing the noise level
rom 0 to about 10 per cent, the eigenvalues spread several orders
f magnitude (panel a). As expected, the second most influential
actor affecting the quality of the inverse solution is the number of
urface observations (Fig. 5 b), followed by the earthquake depth
c). Regarding the latter, it is evident that shallower earthquakes
rovide more valuable information about the inverse solution (refer
o the inset in panel c). In fact, the eigenvalue spread decreases
lmost linearly as the depth of the earthquake source increases.
his observation is logical since surface displacements caused by
lip at shallower depths are larger and contain more information
bout the structure of the subduction zone. 

So far, w e ha ve considered a known fault source, which might, in
eality, be inferred from a given fault geometry and constraints other
han geodesy on slip, for example, from radiated seismic waves.
o wever , more commonly, we do not know the slip distribution,

nd it is important to quantify trade-offs between structure and slip.
e thus proceed to discuss inversions where fault slip is solved for

imultaneously with material heterogeneity. 

 J O I N T  I N V E R S I O N  F O R  

E T E RO G E N E O U S  S T RU C T U R E  A N D  

AU LT  S L I P  

e build upon the nonlinear inversion method described in Sec-
ion 3 , as well as the coseismic slip inversion of Puel et al. ( 2022 ).
elow, we outline the formulation of the gradient and Hessian ac-

ion expressions for the deterministic joint inversion at the infinite-

art/ggad442_f4.eps


788 S. Puel et al . 

Figure 5. Eigenvalue decay of the regularization-pre-conditioned data misfit Hessian, ˜ H 

misfit 
(eq. 17 ) and LDPDH (insets) as a (a) function of data noise, (b) 

number of surface observations and (c) earthquake depth, respecti vel y. 

Figure 6. Solution of the joint inverse problem. (a) True variations in the shear modulus structure, �μ( m μ), and earthquake displacements used to compute 
the 20 synthetic, noisy ( σ d = 0.2 cm) surface data (grey triangles). (b) Recovered shear modulus structure variations obtained from the joint inversion in actual 
units and normalized by the reference μr of the background. (c) The inferred fault slip is shown as a black dashed line, compared to the true slip distribution 
represented by the grey solid line. For comparison, the triangular black dashed line in panel (b) indicates the shape of the material anomaly. 
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dimensional level—that is, the continuous integral level—similar to 
Section 3 . Subsequently, we provide an example of the inverse re- 
sult using a 2-D synthetic test and investigate the trade-off between 
inferring fault slip and the structure of shear modulus. 

4.1 Infinite-dimensional deterministic joint inverse 
f orm ulation 

Our objective is to simultaneously invert surface geodetic data for 
both fault slip and structure, for which we now choose shear mod- 
ulus as the parameter of interest for comparison with previous for- 
ward studies (e.g. Williams & Wallace 2015 , 2018 ; Hashima et al. 
2016 ). We consider an infinite-dimensional Hilbert space of func- 
tions M = M s × M μ defined in the domain �, and sparse noisy 
finite-dimensional surface displacement geodetic data d ∈ R 

n obs . 
Our goal is to find the optimal fault slip distribution m s ∈ M s and 
shear modulus spatial field μ( m μ), with m μ ∈ M μ, that predict the 
surface deformation caused by earthquakes. Similar to the inversion 
for Poisson’s ratio, we choose to invert for the argument of the hy- 
perbolic tangent to constrain the shear modulus, such that μ( m μ) = 

μ0 [1.1 + tanh ( m μ)]. This constraint ensures that the shear modulus 
remains within a specified range of values. Here, μ0 represents the 
mean of the chosen range, for example, 30 GPa, recalling that we 
are onl y sensiti ve to relati ve v ariations of μ with respect to some 
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Figure 7. T rade-off betw een the shear modulus structure and the fault slip contribution in the surface displacements. The contour lines delineate regions with 
the same � 2 error for surface deformation between the perturbed models and the reference model (represented by a yellow star, where � s = �μ = 0). Lighter 
colours indicate lower � 2 error, while darker colours represent higher data misfit. The yellow star indicates our reference model, where � s = �μ = 0. 
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caling μr rather than absolute values. For our example, the allow-
ble range for the shear modulus variation is between 0.1 and 2.1 μ0 .
his choice of constraining the shear modulus within a range im-
roves the well-posedness of the joint inverse problem and avoids
ero values. Fur ther more, this choice is often realistic as w e ma y
ave prior knowledge of the expected range of μ. The detailed ex-
ression for μ( m μ) does not significantly impact the results (see
ection 4.4 ). 
To derive the gradient and Hessian expressions for this inverse

roblem, we employ an analogous approach as described in Sec-
ion 3 . Ho wever , in this case, we introduce tw o model parameters,
 μ and m s , instead of just one. By utilizing the Lagrangian for-
alism (T r öltzsch 2010 ), w e can derive the adjoint prob lem, w hich

s similar to the Poisson’s ratio problem, with the exception of the
rst term. In this term, we substitute m μ instead of μ in the elas-

ic compliance expression (eq. 2 ). By taking the deri v ati ve of the
agrangian functional of the gradient with respect to the model
arameters ( m μ, m s ), we obtain the pointwise gradient expression
n an arbitrary direction ( ̃  m μ, ˜ m s ) : 

G ( m μ, m s ) , ( ̃  m μ, ˜ m s ) 
) = ( R m μ

( m μ) , ˜ m μ) + ( R m s ( m s ) , ˜ m s ) 

 

∫ 
�

μm 

( m μ) ̃  m μ

2 μ2 ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: τ d x ∫ 

� F 

˜ m s ·
[
T ( n � F )( τ n � F ) 

]
d S ∀ ( ̃  m μ, ˜ m s ) ∈ M, (19) 

here μm is the deri v ati ve of μ( m μ) with respect to m μ, and
R m μ

( m μ) and R m s ( m s ) are the deri v ati ves of the regularization of
he shear modulus and fault slip with respect to m μ and m s , respec-
i vel y. To find the expression of the Hessian action in a direction
 ̂

 m μ, ˆ m s ) , we need to take the deri v ati ve of the second-order La-
rangian functional with respect to the model parameters ( m μ, m s )
o get: 

(
( ̃  m μ, ˜ m s ) , H ( m μ, m s ) ( ̂  m μ, ˆ m s ) 

) = ( ̃  m μ, R mm 

( m μ) ˆ m μ) 

+ ( ̃  m s , R mm 

( m s ) ˆ m s ) 

+ 

∫ 
�

μ( m μ) μmm 

( m μ) − μ2 
m 

( m μ) 

μ3 ( m μ) 
˜ m ̂

 m [
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: τ d x 

+ 

∫ 
�

μm 

( m μ) ̃  m μ

2 μ2 ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: ˆ τ d x 

+ 

∫ 
�

μm 

( m μ) ̃  m μ

2 μ2 ( m μ) 

[
ˆ σ − ν

1 + ν( d − 2) 
tr ( ̂  σ ) I 

]
: τ d x 

−
∫ 

� F 

˜ m s ·
[
T ( n � F )( ̂  τ n � F ) 

]
d S ∀ ( ̃  m μ, ˜ m s ) ∈ M, (20) 

here μm and μmm denote the first and second deri v ati ves of μ( m μ)
ith respect to m μ, respecti vel y. σ and τ are the solutions of the

orward and adjoint problems, respectively, and ˆ σ and ̂  τ are the solu-
ions of the incremental forward and adjoint problems, respecti vel y
Appendix C ). We observe that the expressions for the gradient and
essian, in this case, are more complex compared to those used

or the Poisson’s ratio inverse problem (eqs 7 and 9 ). This com-
lexity arises from the presence of the shear modulus parameter in
he denominator of both the shear and volumetric components in
q. ( 2 ). The deri v ation of the fault slip part is straightforward in
oth the gradient and Hessian expressions. These expressions can
e implemented in HIPPYLIB , although the library only requires the
ariational form of the forward problem since it automatically com-
utes first and second deri v ati ve information using the symbolic
ifferentiation capabilities of the FENICS library. Once w e ha ve the
xpressions for the gradient and Hessian action, we can apply the
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Figure 8. Comparison of fault slip solutions and variations in shear modulus structure from the joint inversion, considering different choices of the mathematical 
e xpressions μ( m μ). P anels (a)–(c) illustrate the inferred heterogeneous material structure where μ is constrained to vary in a range that is 0.5, 1 and 2 times 
the true μ range, as seen in scaled and non-dimensionalized versions of μ. Grey triangles represent the 20 surface observations, while the dashed black line 
indicates the shape of the true triangular material anomaly. Panel (d) shows the recovered material structure using the exponential function. Panel (e) displays 
the recovery of the fault slip, with the black solid line representing the true slip used to generate the synthetic surface data. The slip results from the joint 
inversion are shown as lines coloured according to the different parametrizations of μ( m μ). 
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inexact Newton-CG algorithm, similar to Section 3 , to solve the 
joint inversion. 

4.2 Results of joint inversion tests 

We consider the same 2-D FE mesh as the Poisson’s ratio problem 

(Section 3 ) and test for a triangular anomaly of shear modulus in 
the overriding plate of 26.5 GPa and the background structure with 
reference value μr = 39.5 GPa, where Earth-like values are used 
for illustrative purposes but sensitivity is only relative to μr , that 
is, we are solving for a ≈33 per cent reduction in shear modulus 
(Fig. 6 a). We fix the Poisson’s ratio to be 0.25 and homogeneous 
throughout the entire domain. We keep the same 20 surface stations 
configuration as the Poisson’s ratio problem. To discretize the mixed 
elasticity problem, we use the second-order stable triplet of FE 

spaces, resulting in 57 681 DOFs for the state variables (stress, 
displacement and rotation). In this case, the displacement field is 
approximated with piecewise linear elements. Ho wever , since we are 
building the 2-D synthetic data with the same order of discretization 
of the forward problem, the solution should be independent of the 
discretization order. 

We choose to discretize both m μ and m s using continuous piece- 
wise linear Lagrange elements, resulting in 2492 DOFs. The surface 
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Figure 9. Results of joint inversion as a function of variations in the fault dip where μ inferences are provided in scales and non-dimensional v ersions. P anels 
(a)–(j) display the inferred heterogeneous material structure, similar to Fig. 6 . Grey triangles represent the 20 surface observations, while the dashed black line 
indicates the shape of the true triangular material anomaly. Panel (k) shows the recovery of the fault slip. The black solid line indicates the true slip used to 
generate the synthetic surface data, whereas the slip results from the joint inversion are shown with lines coloured according to different choices. The inset 
(panel j) provides a view of the triangular anomaly and the faults with different fault dips, represented by coloured lines. 
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ynthetic data are generated by prescribing the same Gaussian slip
s the Poisson’s ratio problem, centred at a depth of 20 km with a
tandard deviation of 15 km and a magnitude of 10 m. The resulting
isplacement field caused by this model setup is shown in Fig. 6 (a).
hen, we perturb these data using the same Gaussian random noise
s in Section 3 ( σ d = 0.2 cm) and invert those for both the fault slip
 s and the shear modulus μ( m μ). We use R 

H 1 (eq. 12 ) to regularize
he fault slip component and the TV regularization (eq. 13 ) for the
hear modulus part to better preserve the sharp edges, similarly to
he Poisson’s ratio problem. We use ε = 10 −7 , γ TV = 0.1, γH 1 = 0 . 2
nd δL 2 = 2 · 10 −4 as penalty terms. The joint in version con verges
n 49 Newton iterations. 

Figs 6 (a) and (b) show the true variations in the shear modulus
sed to build the synthetic surface data and the recovered struc-
ure from the joint inv ersion, respectiv ely; we plot the variations
f μ by removing its mean such that �μ( m μ) = μ( m μ) − μ̄( m μ) ,
here μ̄( m μ) is the mean solution. Percentage values indicate the

ame results with respect to the scaling μr . Panel (c) represents the
ecovered fault slip m s from the same joint inverse problem. We
an see that both the shear modulus structure and the fault slip are
ell recovered, with some indication of minor spurious oscillation

n the shear modulus. Ho wever , the overall anomaly is accurately
esolv ed, e xhibiting similar variations to the true structure. Us-
ng Tikhonov-type regularization, rather than TV, we could remove
hose oscillations to the detriment of inferring anomaly geometries.
n Fig. 6 (b), we observe a loss of resolution in the vertical compo-
ent of the anomaly due to the surface-only data, and the top-right
dge of the triangular anomaly is not well resolved. This limitation
ay be attributed to the majority of the slip being concentrated in

hat region (panel a). The surface displacements are primarily influ-
nced by the fault slip rather than the heterogeneous structure ( cf .
igs 2 a and b), resulting in a good fit of the inferred slip near the
urface (panel c, left), but a poor fit for the shear modulus recovery.

The successful recovery of slip near the trench in our tests is, of
ourse, contingent on the near-trench data (grey triangles in Fig. 6 ).
n the absence of these critical data, inferring the slip distribution
ecomes more challenging, as indicated by significant disparities
bserved in published slip models. In the next section, we will
urther examine the relative contributions of fault slip and material
eterogeneity in the joint inverse problem. 

.3 Trade-off analysis between shear modulus and fault 
lip 

 rom F ig. 2 , we know that the effect of the f ault slip on surf ace
isplacements is larger than the heterogeneous material structure.
ere, we aim to show how various combinations of fault slip and

ubduction zone structure can produce the same surface displace-
ents. We consider the same 2-D model setup of the joint inverse

rob lem (F ig. 6 ). We solve the forward prob lem given a reference
arthquake of 10 m of Gaussian coseismic slip, centred at 20 km
epth and standard deviation of 15 km depth, and a triangular shear
odulus anomaly. As above, we assign μ= 26.5 GPa in the anomaly
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and μ = μr = 39.5 GPa for the background. We compute the hor- 
izontal and vertical surface displacements, denoted as d 

ref , for this 
reference model at the same 20 observations as in Fig. 6 (a). 

Then, we slightly perturb both the magnitude of the fault slip s + 

� s and the shear modulus triangular anomaly μ + �μ, while keep- 
ing the backg round str ucture and earthquake depth fixed. We then 
recompute the surface displacements d . Lastly, we compare the sur- 
face deformation of this perturbed model with that of the reference 
model by computing the � 2 error: ‖ d − d ref ‖ � 2 = 

∑ n obs 
j= 1 ( d j − d ref 

j ) 2 . 
We repeat the same procedure by solving approximately 2500 for- 
ward problems, considering constant perturbations of fault slip | � s | 
between −8 and 8 m, and �μ ranging from −26 to 70 GPa. Fig. 7 
shows the results of this test. 

We can interpret this plot as a model space representing the 
two model parameters, s and μ, and it demonstrates how various 
combinations of these parameters can yield identical surface dis- 
placements. It is apparent that shear modulus variations are less 
well constrained than the fault slip; that is, the solution of the joint 
inversion is not unique, in particular for the heterogeneous medium 

component, as expected from Fig. 2 . 

4.4 Effect of shear modulus parametrization in the joint 
inverse solution 

We now proceed to test the effect of how relative shear modulus 
variations are parametrized. We adopt the same model setup as 
described in Section 4.2 . The 2-D synthetic displacements are com- 
puted using the same true fault slip as mentioned earlier, and we 
consider the same 20 surface observations. We use the same TV reg- 
ularization for the shear modulus component and Tikhonov for the 
fault slip, respecti vel y, with identical penalty weights as above. Af- 
ter polluting these data with random Gaussian noise N (0 , 0 . 2 cm ) , 
we perform four joint inversions b y v arying the range of allowable 
values for the shear modulus variations. In three of these tests, we 
invert for the argument of the hyperbolic tangent to determine the 
shear modulus field, following a similar approach as shown in Fig. 6 . 
For these tests, we utilize a mathematical expression of the form 

μ( m μ) = 

μ0 
α

[ α + tanh ( m μ) ] . Here, μ0 is set to 33 GPa, and α is 
chosen as 10, 5 and 2.5 to confine μ within a range that is 0.5, 1 and 
2 times the true range, respecti vel y. In the last test, we invert for the 
argument of the exponential function, that is, μ( m μ) = exp ( m μ), 
to ensure the shear modulus remains positive. Our objective is to 
compare whether reliable estimates of both fault slip and subduction 
zone structure can be achieved regardless of the choice of μ( m μ). 

Fig. 8 illustrates the inferred fault slip (panel e) and the variations 
in the shear modulus structure �μ( m μ) (with the mean removed) 
for these tests. Panels (a)–(c) show the recovered heterogeneous 
material structure by constraining μ to vary between one half and 
two times the true range of shear modulus. In panel (d), we slightly 
modify the μ( m μ) expression to invert for the argument of the ex- 
ponential. The inferred fault slip and the heterogeneous material 
structure are quite stable, irrespective of the expressions used for 
the joint inversion. Specifically, the triangular material anomaly is 
accurately recovered with a similar shape as shown in Fig. 6 . Fur- 
thermore, the magnitude of the variations in shear modulus remains 
consistent, except when the range is only half of the true �μ( m μ), 
as expected. When the shear modulus is allowed to vary within 
a wider range the inverse solution is very similar regardless of the 
mathematical expression used (panels c and d). Overall, the inferred 
slip is also quite similar in particular at shallow depths (left-hand 
panel e), and there are only slight differences near the deeper edge 
of the fault (right-hand panel). This discrepancy is again likely due 
to geodetic data being limited to the surface, resulting in larger 
slip uncertainties in the deeper segments of the f ault interf ace. Our 
anal ysis focuses onl y on the deterministic inverse problem. The es- 
timation of the model uncertainties of both parameters associated 
with this nonlinear inversion will require the solution of a Bayesian 
inverse problem (e.g. Stuart 2010 ; Bui-Thanh et al. 2013 ; Beskos 
et al. 2017 ), and will be addressed in future research. 

4.5 Role of fault dip in the joint inverse solution 

In all the tests we have conducted so far, w e ha ve relied on the 
assumption that the fault geometry is known. We now explore the 
role of uncertainty in fault geometry. To simplify the analysis, we 
focus on a 2-D synthetic test similar to the one discussed pre viousl y. 
Instead of a curved fault, we consider a dipping straight fault, al- 
lowing us to vary only one parameter, the fault dip. We keep the 
same data noise σ d = 0.2 cm as the previous tests. As our reference 
model, we consider a fault dipping at 45 ◦ to the left and calculate 
the 2-D synthetic horizontal and vertical displacements at the same 
20 surface observations as in Fig. 6 . Then, we perform multiple 
joint inversions using these data, varying the fault dip angle be- 
tween 40 ◦ and 50 ◦. The results are shown in Fig. 9 . Panels (a)–(j) 
display the recovered heterogeneous shear modulus structure, while 
panel (k) shows the inferred fault slips by varying the fault dip angle 
(panel l). 

When the synthetic surface data are inverted using the reference 
model (fault dip equals to 45 ◦), both the fault slip (yellow line in 
panel k) and the subduction zone structure (panel e) are accurately 
recov ered. Re garding the inferred slip distributions (Fig. 9 k), we 
can see that the slip is underpredicted at shallow depths for shal- 
lower faults, while being overpredicted for deeper faults. In terms 
of the variations in the shear modulus structure, shallower faults 
yield poorer results compared to deeper faults, exhibiting some ar- 
tifacts near the trench (panels a–c). On the other hand, deeper faults 
show better recovery of the triangular material anomaly (panels 
f–j). Near the trench, a trade-off between slip and shear modulus 
structure is observed locally. The underestimation of the slip dis- 
tribution results in the inference of weaker materials (panels a–d), 
while the overestimation of slip indicates stronger material (panels 
f–j). This phenomenon is further evident in Fig. 7 , where the pres- 
ence of stronger materials (located to the right of the yellow star) 
corresponds to increased slip. 

Overall, for our particular 2-D model setup, the triangular ma- 
terial anomaly is well recovered within approximately ±5 ◦. We 
attempted the same joint inversion for fault dips below 40 ◦ or above 
50 ◦, but inferring both model parameters proved to be more chal- 
lenging. This challenge was anticipated by the observation that vari- 
ations in fault dip can result in relati vel y large differences in surface 
displacements compared to the effects of heterogeneity (Figs 2 b and 
c). Thus, significant uncertainty in fault geometry renders the joint 
inversion for slip and material structure ill-posed for these 2-D tests, 
indicating that there are simply inherent limits in the information 
that can be obtained, as in any inverse problem. In practice, relocated 
seismicity, for example, may provide quite detailed information on 
fault planes, and one might use other constraints, such as from ra- 
diated seismic waves, to infer fault slip independently to reduce 
non-uniqueness (e.g. Ide & Takeo 1997 ; Lay et al. 2011 ). Besides 
putting additional a priori constraints on joint slip and shear modu- 
lus inversions, it turns out that the 3-D geometry and data density of 
well-recorded coseismic deformation also makes the inversion quite 
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 bit more robust, as will be explored in a companion application
aper. 

 C O N C LU S I O N S  

e developed and tested a novel technique, that employs an open-
ource modelling framework and adjoint-based inexact Newton
ethod, to jointly invert geodetic data for fault slip and hetero-

eneous material properties, using the coseismic deformation and
nversion for Poisson’s ratio and shear modulus as a test case. This
pens up a range of new applications to infer tectonically relevant
ignals and formally explore trade-offs between uncertainties in
ar th proper ties and fault dynamics. Poisson’s ratio anomalies for
egathrust-like settings can be satisfactorily recovered from noisy

ata when the fault geometry and slip are known. The quality of our
nverse results is primarily affected by the noise level of the surface
bservations, the number of available GNSS stations, and the earth-
uake source depth. Joint inversions for fault slip and shear modulus
ariations may be feasible for well-instr umented ear thquakes. Our
ndings indicate that lateral variations in elastic strength can be re-
overed using geodetic data alone if fault geometries are reasonably
ell known. 
Beyond better constraining tectonic and volcano-associated dy-

amics, there is a broader need for flexible and transparent inverse
ethods to identify material parameters, with potential applica-

ions outside solid Earth including in hydrolo gy, glaciolo gy and
irtuall y an y field of science. While we have focused on invert-
ng static surface data from sparse GNSS stations, our approach
hows promise for integrating other geodetic constraints, in partic-
lar, InSAR deformation time-series such as from Sentinel and the
pcoming NISAR mission, and to expand the analysis to formal in-
ersion of time-dependent processes, such as the complex transients
bserved during the seismic cycle. 
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ATA  AVA I L A B I L I T Y  

he Jupyter notebooks and codes for reproducing the results are
vailable in the online GitHub repository at https://github.com/S
monePuel/PoissonRatio- Joint- Inversions.git . We utilized FENICS-
019.1.0 and HIPPYLIB-3.0.0 to compute all the results in this study.
hese libraries can be downloaded at https://fenicspr oject.or g and
ttps://hippylib.github.io , respecti vel y. The unstructured meshes for
he FE computations were generated using the open-source software

MSH (Geuzaine & Remacle 2009 ), and the corresponding files are
ncluded in the online repository. 
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inversion of the Lam é parameter field for slender structures with cantilever 
loading, in International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference, Vol. 50206, p. 
V008T10A031, American Society of Mechanical Engineers. 

Fatehiboroujeni , S. , Petra, N. & Goyal, S., 2020. Linearized Bayesian in- 
ference for Young’s modulus parameter field in an elastic model of slen- 
der structures, Proc. Math. Phys. Eng. Sci., 476 (2238), 20190476, doi: 
10.1098/rspa.2019.0476. 

Feigl , K.L. & Thatcher, W., 2006. Geodetic observations of post-seismic 
transients in the context of the earthquake deformation cycle, C. R. 
Geosci., 338, 1012–1028. 

Geuzaine , C. & Remacle, J.-F., 2009. Gmsh: a 3-D finite element mesh 
generator with built-in pre-and post-processing facilities, Int. J. Num. 
Meth. Eng., 79 (11), 1309–1331. 

Ghattas , O. & Willcox, K., 2021. Learning physics-based models from data: 
perspectives from inverse problems and model reduction, Acta Numer., 
30, 445–554. 

Hadamard , J. , 1923. Lectures on Cauchy’s Problem in Linear Partial Dif- 
ferential Equations, New Haven Press. 

Halko , N. , Martinsson, P.-G. & Tropp, J.A., 2011. Finding structure with 
randomness: probabilistic algorithms for constructing approximate matrix 
decompositions, SIAM Rev., 53 (2), 217–288. 

Hashima , A. , Becker, T.W., Freed, A.M., Sato, H. & Okaya, D.A., 2016. 
Coseismic deformation due to the 2011 Tohoku-oki earthquake: influence 
of 3-D elastic structure around Japan, Earth Planets Space, 68 (1), 1–15. 

Hatanaka , Y. , 2005. Evaluation of precision of routine solutions of 
GEONET, J. Geog. Surv. Inst., 108, 49–56. 

Heinkenschloss , M. , 1993. Mesh independence for nonlinear least squares 
problems with norm constraints, SIAM J. Opt., 3 (1), 81–117. 

Hsu , Y. , Simons, M., Williams, C. & Casarotti, E., 2011. Three-dimensional 
FEM derived elastic Green’s functions for the coseismic deformation of 
the 2005 Mw 8.7 Nias-Simeulue, Sumatra earthquake, Geochem. Geo- 
phys. Geosyst., 12 (7), 1–19. 

Ide , S. & Takeo, M., 1997. Determination of constitutive relations of 
fault slip based on seismic w ave anal ysis, J. geophys. Res. Solid Earth, 
102 (B12), 27379–27391. 

Iinuma , T. et al. , 2012. Coseismic slip distribution of the 2011 off the Pacific 
coast of Tohoku earthquake (M9.0) refined by means of seafloor geodetic 
data, J. geophys. Res. Solid Earth, 117 (B7). 1–18. 

Isaac , T. , Petra, N., Stadler, G. & Ghattas, O., 2015. Scalable and efficient 
algorithms for the propagation of uncertainty from data through inference 
to prediction for large-scale problems, with application to flow of the 
Antarctic ice sheet, J. Comput. Phys., 296, 348–368. 

Kelley , C.T. & Sachs, E.W., 1991. Mesh independence of Newton-like meth- 
ods for infinite dimensional problems, J. Integ. Equat. Appl., 3 (4), 549–
573. 

Koval , K. , Alexanderian, A. & Stadler, G., 2020. Optimal experimental 
design under irreducible uncertainty for linear inverse problems governed 
by PDEs, Inverse Probl., 36 (7), 1–23. 

Lawson , C.L. & Hanson, R.J., 1995. Solving Least Squares Problems, SIAM. 
Lay , T. , Ammon, C.J., Kanamori, H., Xue, L. & Kim, M.J., 2011. Possible 

large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of 
Tohoku earthquake, Earth Planets Space, 63, 687–692. 

Liu , L. & Gurnis, M., 2008. Simultaneous inversion of mantle properties 
and initial conditions using an adjoint of mantle convection, J. geophys. 
Res. Solid Earth, 113 (B8), 1–17. 

Logg , A. & Wells, G.N., 2010. DOLFIN: automated finite element comput- 
ing, ACM Trans. Math. Softw. (TOMS), 37 (2), 1–28. 

Logg , A. , Wells, G.N. & Hake, J., 2012. DOLFIN: A C ++ /Python finite 
element library, in Automated Solution of Differential Equations by the 
Finite Element Method, pp. 173–225, Springer. 

Martin , J. , Wilcox, L.C., Burstedde, C. & Ghattas, O., 2012. A stochastic 
Newton MCMC method for large-scale statistical inverse problems with 
application to seismic inversion, SIAM J. Sci. Comp., 34 (3), A1460–
A1487. 

Melosh , H.J. & Raefsky, A., 1981. A simple and efficient method for in- 
troducing faults into finite element computations, Bull. seism. Soc. Am., 
71 (5), 1391–1400. 

Miller , K. , 1970. Least squares methods for ill-posed problems with a pre- 
scribed bound, SIAM J. Math. Anal., 1 (1), 52–74. 

Muto , J. , Shibazaki, B., Iinuma, T., Ito, Y ., Ohta, Y ., Miura, S. & Nakai, Y.,
2016. Heterogeneous rheology controlled postseismic deformation of the 
2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 43 (10), 4971–4978. 

Nocedal , J. & Wright, S.J., 1999. Numerical Optimization, Springer. 
Panuntun , H. , Miyazaki, S., Fukuda, Y. & Orihara, Y., 2018. Probing the 

Poisson’s ratio of poroelastic rebound following the 2011 Mw 9.0 Tohoku 
earthquake, Geophys. J. Int., 215 (3), 2206–2221. 

Pere verze v , S. & Schock, E., 2000. Morozov’s discrepancy principle for 
Tikhonov, Numer. Funct. Anal. Optim., 21 (7–8), 901–916. 

Petra , N. , Martin, J., Stadler, G. & Ghattas, O., 2014. A computational 
framework for infinite-dimensional Bayesian inverse problems, Part II: 
stochastic Newton MCMC with application to ice sheet flow inverse 
problems, SIAM J. Sci. Comp., 36 (4), A1525–A1555. 

Puel , S. , Khattatov, E., Villa, U., Liu, D., Ghattas, O . & Becker , T.W., 2022. A
mixed, unified forw ard/inverse frame work for earthquake problems: fault 
implementation and coseismic slip estimate, Geophys. J. Int., 230 (2), 
733–758. 

Rathgeber , F. et al. , 2016. Firedrake: automating the finite element method 
by composing abstractions, ACM Trans. Math. Softw. (TOMS), 43 (3), 
1–27. 

Reuber , G.S. , 2021. Statistical and deterministic inverse methods in the geo- 
sciences: introduction, re vie w, and application to the nonlinear diffusion 
equation, GEM - Int. J. Geomath., 12 (1), 1–49. 

Reuber , G.S. , Holbach, L., Popov, A.A., Hanke, M. & Kaus, B. J.P., 2020. 
Inferring rheology and geometry of subsurface structures by adjoint-based 
inversion of principal stress directions, Geophys. J. Int., 223 (2), 851–861. 

Rudi , J. , Gurnis, M. & Stadler, G., 2022. Simultaneous inference of plate 
boundary stresses and mantle rheology using adjoints: large-scale 2-D 

models, Geophys. J. Int., 231, 597–614. 
Rudin , L.I. , Osher, S. & Fatemi, E., 1992. Nonlinear total variation based 

noise removal algorithms, Phys. D: Nonlinear Phenom., 60 (1–4), 259–
268. 

Scherzer , O. , 1993. The use of Morozov’s discrepancy principle for 
Tikhonov regularization for solving nonlinear ill-posed problems, 
Computing, 51 (1), 45–60. 

Steihaug , T. , 1983. Local and superlinear convergence for truncated iterated 
projections methods, Math. Pr ogr am., 27 (2), 176–190. 

Strong , D. & Chan, T., 2003. Edge-preserving and scale-dependent proper- 
ties of total variation regularization, Inverse Probl., 19 (6), S165–S187. 

Stuart , A.M. , 2010. Inverse problems: a Bayesian perspective, Acta Numer., 
19, 451–559. 

Takada , Y. & Fukushima, Y., 2013. Volcanic subsidence triggered by the 
2011 Tohoku earthquake in Japan, Nat. Geosci., 6 (8), 637–641. 

Tikhonov , A.N. , 1963. Solution of incorrectly formulated problems and the 
regularization method, Soviet Math., 4, 1035–1038. 

Tikhonov , A.N. & Arsenin, V.Y., 1977. Solutions of ill-posed problems . V. 
H. Winston & Sons, Washington, D.C.Note: Translated from the Russian, 
Preface by translationEditor: John F., Scripta Series in Mathematics. 
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P P E N D I X  A :  D E R I VAT I O N  O F  

L A S T I C  C O M P L I A N C E  T E N S O R  F RO M  

A M  ́E  PA R A M E T E R S  T O  S H E A R  A N D  

O I S S O N ’ S  M O D U L I  

n this section, we derive the expression of the elastic compliance
ensor A from the Lam é parameters ( μ and λ) to the shear and
oisson’s ratio moduli, μ and ν. We start from the expression in
uel et al. ( 2022 ), 

A σ = 

1 

2 μ

[
σ − λ

2 μ + dλ
tr ( σ ) I 

]
. (A1) 

nowing that the Lam é parameters can be written as a function of
 and ν, respecti vel y: 

= 

Eν

(1 + ν)(1 − 2 ν) 
, μ = 

E 

2(1 + ν) 
, (A2) 

e can write: 

A σ = 

2(1 + ν) 
2 E 

[
σ −

Eν
(1 + ν)(1 −2 ν) 

2 E 
2(1 + nu ) + d Eν

(1 + ν)(1 −2 ν) 
tr ( σ ) I 

]
, (A3) 

A σ = 

1 + ν
E 

[
σ −

Eν
(1 + ν)(1 −2 ν) 

E (1 −2 ν) + d E ν
(1 + ν)(1 −2 ν) 

tr ( σ ) I 

]
, (A4) 

A σ = 

1 + ν
E 

[ 
σ − Eν

E (1 −2 ν) + d E ν tr ( σ ) I 
] 
, (A5) 

A σ = 

1 + ν
E 

[
σ − Eν

E −2 E ν+ d E ν tr ( σ ) I 
]
, (A6) 

A σ = 

1 + ν
E 

[ 
σ − Eν

E(1 −2 ν+ dν) tr ( σ ) I 
] 
, (A7) 

A σ = 

1 + ν
E 

[ 
σ − ν

1 + ν( d−2) tr ( σ ) I 
] 
, (A8) 

A σ = 

1 
2 μ

[ 
σ − ν

1 + ν( d−2) tr ( σ ) I 
] 
. (A9) 

n particular, for the 2-D ( d = 2) problems considered in this work,
he expression reads: 

A σ = 

1 

2 μ
σ − ν

2 μ
tr ( σ ) I . (A10) 

P P E N D I X  B :  G R A D I E N T  A N D  

E S S I A N  C O M P U TAT I O N S  F O R  T H E  

O I S S O N ’ S  R AT I O  I N V E R S E  P RO B L E M  

ere, we derive the gradient and Hessian expressions through vari-
tional calculus and the adjoint method. Using the Lagrangian for-
alism (T r öltzsch 2010 ), w e formulate an expression for the gradi-

nt G ( m ) at any arbitrary point in parameter space. The Lagrangian
unctional for the gradient L 

G includes eq. ( 4 ) and the weak form
f the forward problem (eq. 3 ), 

L 

G ( σ , u , r , m , τ , ω , ξ ) = 

1 

2 

∫ 
�

( B u − d ) T � 

−1 
noise 

( B u − d ) d x + R( m ) 

+ 

∫ 
�

1 

2 μ

[
σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( σ ) I 

]
: τ d x 

+ 

∫ 
�

u · ( ∇ · τ ) d x + 

∫ 
�

as ( τ ) · r d x 

−
∫ 

� D 

u 0 · ( τ n ) d s −
∫ 

� F 

s · [
T ( n � F )( τ n � F ) 

]
d S 

+ 

∫ 
�

( ∇ · σ ) · ω d x + 

∫ 
�

f · ω d x + 

∫ 
�

as ( σ ) · ξ d x , (B1) 

here the second term can be a Tikhonov-type regularization which
mposes some smoothness of the solution m . τ , ω and ξ are the ad-
oint variables for the stress, displacement and rotation, respecti vel y.

By taking the deri v ati ve of L 

G with respect to the adjoint and the
tate variables, we obtain the variational form of the forward and
djoint equations, respecti vel y. The latter reads: (
∂L 

G 

∂ σ
, ˜ σ

)
+ 

(
∂L 

G 

∂ u 

, ̃  u 

)
+ 

(
∂L 

G 

∂ r 
, ̃  r 

)

= 

∫ 
�

1 

2 μ

[
˜ σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( ̃  σ ) I 

]
: τ d x 

+ 

∫ 
�

( ∇ · ˜ σ ) · ω d x + 

∫ 
�

as ( ̃  σ ) · ξ d x 

+ 

∫ 
�

˜ u · ( ∇ · τ ) d x + 

∫ 
�

as ( τ ) · ˜ r d x 

+ 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˜ u d x = 0 

∀ ̃

 σ ∈ �; ∀ ̃

 u ∈ W ; ∀ ̃

 r ∈ �, (B2) 

here B 

∗ is the inverse mapping of the observational operator
hich maps the discrete surface displacement back to the infinite-
imensional state space, and ˜ σ , ˜ u and ˜ r are test functions. Solving
q. ( 6 ) gives the adjoint variables τ , ω and ξ . By integrating the
econd term by parts, we can derive the strong form of the adjoint
roblem: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

A ( m ) τ − ∇ ω + as ∗( ξ ) = 0 in �, 

∇ · τ = −B 

∗� 

−1 
noise 

(
B u − d 

)
in �, 

as ( τ ) = 0 in �, 

ω = 0 on � D , 

τ · n = 0 on � N , 

(B3) 

here the compliance elastic tensor A ( m ) depends nonlinearly on
he Poisson’s ratio m (eq. 2 ), and as ∗( ξ ) is defined as: 

s ∗( ξ ) = 

(
0 −ξ

ξ 0 

)
. (B4) 

The infinite-dimensional gradient, which is the G ˆ ateaux deri v a-
ive of the objective function J ( m ) with respect to m , can be derived
y taking a variation of the Lagrangian functional with respect to the
odel parameter. The gradient expression in a arbitrary direction

˜ m reads: 

 G ( m ) , ˜ m ) = ( R m 

( m ) , ˜ m ) − 1 

2 μ

∫ 
�

νm 

( m ) ˜ m [
1 + ν( m )( d − 2) 

]2 
tr ( σ ) I 

: τ d x ∀ ̃

 m ∈ M, (B5) 

here ( R m 

( m ) , ˜ m ) denotes the G ˆ ateaux deri v ati ve of R with respect
o m in the direction ˜ m . νm ( m ) indicates the deri v ati ve of ν( m ) with
espect to m . σ and τ are the solutions of the forward and adjoint
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problems (eq. 1 and eq. B3 ), respecti vel y. The cost of e v aluating the 
gradient consists of one forward and one adjoint PDE solve. 

For the deri v ation of the Hessian action, we repeat the same pro- 
cess as before and construct the second-order Lagrangian functional 
L 

H as the sum of gradient, state and adjoint equations, respecti vel y: 

L 

H ( σ , u , r , m , τ , ω , ξ , ˆ σ , ̂  u , ̂  r , ˆ m , ̂  τ , ˆ ω , ̂  ξ ) 

= ( R m 

( m ) , ˆ m ) − 1 

2 μ

∫ 
�

νm 

( m ) ˆ m [
1 + ν( m )( d − 2) 

]2 
tr ( σ ) I : τ d x 

+ 

∫ 
�

1 

2 μ

[
σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( σ ) I 

]
: ˆ τ d x 

+ 

∫ 
�

u · ( ∇ · ˆ τ ) d x + 

∫ 
�

as ( ̂  τ ) · r d x 

−
∫ 

� F 

s · [
T ( n � F )( ̂  τ n � F ) 

]
d S −

∫ 
� D 

u 0 · ( ̂  τ n ) d s 

+ 

∫ 
�

( ∇ · σ ) · ˆ ω d x + 

∫ 
�

f · ˆ ω d x + 

∫ 
�

as ( σ ) · ˆ ξ d x 

+ 

∫ 
�

1 

2 μ

[
ˆ σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( ̂  σ ) I 

]
: τ d x 

+ 

∫ 
�

( ∇ · ˆ σ ) · ω d x + 

∫ 
�

as ( ̂  σ ) · ξ d x + 

∫ 
�

as ( τ ) · ˆ r d x 

+ 

∫ 
�

ˆ u · ( ∇ · τ ) d x + 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˆ u d x . (B6) 

To obtain the action of the Hessian in a direction ˆ m , we take the 
deri v ati ve of L 

H with respect to m : 

( ̃  m , H ( m ) ˆ m ) = ( ̃  m , R mm 

( m ) ˆ m ) 

− 1 

2 μ

∫ 
�

[
νmm 

( m ) + 2 ν2 
m 

( m )( d − 2) 
]

[
1 + ν( m )( d − 2) 

]2 
˜ m ̂

 m tr ( σ ) I : τ d x 

− 1 

2 μ

∫ 
�

νm 

( m ) ˜ m [
1 + ν( m )( d − 2) 

]2 

[
tr ( σ ) I : ˆ τ + tr ( ̂  σ ) I : τ

]
d x 

∀ ̃

 m ∈ M, (B7) 

where σ and τ are the solutions to the forward and adjoint problems 
in eq. ( 1 ) and eq. ( B3 ), respecti vel y, and ˆ σ and ˆ τ are the solu- 
tions of the incremental forward and adjoint problems, respectively. 
The incremental forward equation is given by the derivative of the 
second-order Lagrangian with respect to the adjoint variables, and 
reads: 

(
∂L 

H 

∂ τ
, ̃  τ

)
+ 

(
∂L 

H 

∂ ω 

, ˜ ω 

)
+ 

(
∂L 

H 

∂ ξ
, ̃  ξ

)
= 

∫ 
�

ˆ u · ( ∇ · ˜ τ ) d x 

+ 

∫ 
�

as ( ̃  τ ) · ˆ r d x 

− 1 

2 μ

∫ 
�

νm 

( m ) ˆ m [
1 + ν( m )( d − 2) 

]2 
tr ( σ ) I : ˜ τ d x 

+ 

∫ 
�

1 

2 μ

[
ˆ σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( ̂  σ ) I 

]
: ˜ τ d x 

+ 

∫ 
�

( ∇ · ˆ σ ) · ˜ ω d x + 

∫ 
�

as ( ̂  σ ) · ˜ ξ d x = 0 

∀ ̃

 τ ∈ �; ∀ ̃

 ω ∈ W ; ∀ ̃

 ξ ∈ �, (B8) 
while, by taking the variation of L 

H with respect to the state vari- 
ables, the incremental adjoint equation reads: (

∂L 

H 

∂ σ
, ˜ σ

)
+ 

(
∂L 

H 

∂ u 

, ̃  u 

)
+ 

(
∂L 

H 

∂ r 
, ̃  r 

)
= 

∫ 
�

( ∇ · ˜ σ ) · ˆ ω d x 

+ 

∫ 
�

as ( ̃  σ ) · ˆ ξ d x 

− 1 

2 μ

∫ 
�

νm 

( m ) ˆ m [
1 + ν( m )( d − 2) 

]2 
tr ( ̃  σ ) I : τ d x 

+ 

∫ 
�

1 

2 μ

[
˜ σ − ν( m ) 

1 + ν( m )( d − 2) 
tr ( ̃  σ ) I 

]
: ˆ τ d x 

+ 

∫ 
�

˜ u · ( ∇ · ˆ τ ) d x + 

∫ 
�

B 

∗� 

−1 
noise B ̃

 u · ˆ u d x 

+ 

∫ 
�

as ( ̂  τ ) · ˜ r d x = 0 

∀ ̃

 σ ∈ �; ∀ ̃

 u ∈ W ; ∀ ̃

 r ∈ �. (B9) 

A P P E N D I X  C :  G R A D I E N T  A N D  

H E S S I A N  C O M P U TAT I O N S  F O R  T H E  

J O I N T  I N V E R S E  P RO B L E M  

Similarly to the Poisson’s ratio inverse problem, we can derive the 
gradient and Hessian expressions by building the first- and second- 
order Lagrangian functionals, respecti vel y (Tr öltzsch 2010 ). In this 
case, we need to consider the contribution of both the slip compo- 
nent m s and the shear modulus structure μ( m μ). The Lagrangian 
functional for the gradient L 

G includes eq. ( 4 ) and the weak form 

of the forward problem (eq. 3 ), 

L 

G ( σ , u , r , m μ, m s , τ , ω , ξ ) = 

1 

2 

∫ 
�

( B u − d ) T � 

−1 
noise ( B u − d ) d x 

+ R( m μ) + R( m s ) 

+ 

∫ 
�

1 

2 μ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: τ d x 

+ 

∫ 
�

u · ( ∇ · τ ) d x + 

∫ 
�

as ( τ ) · r d x 

−
∫ 

� D 

u 0 · ( τ n ) d s −
∫ 

� F 

m s ·
[
T ( n � F )( τ n � F ) 

]
d S 

+ 

∫ 
�

( ∇ · σ ) · ω d x + 

∫ 
�

f · ω d x + 

∫ 
�

as ( σ ) · ξ d x , (C1) 

where d is the problem dimension (2–3-D). τ , ω and ξ are the adjoint 
variables for the stress, displacement and rotation, respecti vel y. By 
taking the deri v ati ve of L 

G with respect to the adjoint and the state 
variables we obtain the variational form of the forward and adjoint 
equations, respecti vel y. The latter reads: (

∂L 

G 

∂ σ
, ˜ σ

)
+ 

(
∂L 

G 

∂ u 

, ̃  u 

)
+ 

(
∂L 

G 

∂ r 
, ̃  r 

)

= 

∫ 
�

1 

2 μ( m μ) 

[
˜ σ − ν

1 + ν( d − 2) 
tr ( ̃  σ ) I 

]
: τ d x 

+ 

∫ 
�

( ∇ · ˜ σ ) · ω d x + 

∫ 
�

as ( ̃  σ ) · ξ d x 

+ 

∫ 
�

˜ u · ( ∇ · τ ) d x + 

∫ 
�

as ( τ ) · ˜ r d x 

+ 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˜ u d x = 0 

∀ ̃

 σ ∈ �; ∀ ̃

 u ∈ W ; ∀ ̃

 r ∈ �, (C2) 
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here B 

∗ is the inverse mapping of the observational operator
hich maps the discrete surface displacement back to the infinite-
imensional state space, and ˜ σ , ˜ u and ˜ r are test functions. Solving
q. ( C2 ) gives the adjoint variables τ , ω and ξ . The strong form of
he adjoint equation reads the same as eq. ( B3 ) when A ( m ) is sub-
tituted by A ( m μ). Note that the adjoint equation does not depend
n the fault parameter m s . 

By taking the deri v ati ve of the Lagrangian functional of the gra-
ient with respect to the model parameters ( m μ, m s ), we obtain the
radient expression in a arbitrary direction ( ̃  m μ, ˜ m s ) : 

G ( m μ, m s ) , ( ̃  m μ, ˜ m s ) 
) = ( R m μ

( m μ) , ˜ m μ) + ( R m s ( m s ) , ˜ m s ) 

 

∫ 
�

μm 

( m μ) ̃  m μ

2 μ2 ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: τ d x ∫ 

� F 

˜ m s ·
[
T ( n � F )( τ n � F ) 

]
d S ∀ ( ̃  m μ, ˜ m s ) ∈ M, (C3) 

here μm is the deri v ati ve of μ( m μ) with respect to m μ, and
R m μ

( m μ) and R m s ( m s ) are the deri v ati ves of the regularization of the
hear modulus and fault slip with respect to m μ and m s , respecti vel y.

To find the expression of the Hessian action in a direction
 ̂

 m μ, ˆ m s ) , we need to build the second-order Lagrangian functional
L 

H of the joint inverse problem. This is composed of the sum of the
radient expression (eq. C3 ), state and adjoint equations, respec-
i vel y, and reads: 

L 

H ( σ , u , r , m μ, m s , τ , ω , ξ , ˆ σ , ̂  u , ̂  r , ˆ m μ, ˆ m s , ̂  τ , ˆ ω , ̂  ξ ) 

= ( R m μ
( m μ) , ˆ m μ) + ( R m s ( m s ) , ˆ m s ) 

+ 

∫ 
�

μm 

( m μ) ̃  m μ

2 μ2 ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: τ d x 

−
∫ 

� F 

ˆ m s ·
[
T ( n � F )( τ n � F ) 

]
d S 

+ 

∫ 
�

1 

2 μ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: ˆ τ d x 

+ 

∫ 
�

u · ( ∇ · ˆ τ ) d x + 

∫ 
�

as ( ̂  τ ) · r d x 

−
∫ 

� F 

m s ·
[
T ( n � F )( ̂  τ n � F ) 

]
d S −

∫ 
� D 

u 0 · ( ̂  τ n ) d s 

+ 

∫ 
�

( ∇ · σ ) · ˆ ω d x + 

∫ 
�

f · ˆ ω d x + 

∫ 
�

as ( σ ) · ˆ ξ d x 

+ 

∫ 
�

1 

2 μ( m μ) 

[
ˆ σ − ν

1 + ν( d − 2) 
tr ( ̂  σ ) I 

]
: τ d x 

+ 

∫ 
�

( ∇ · ˆ σ ) · ω d x + 

∫ 
�

as ( ̂  σ ) · ξ d x + 

∫ 
�

as ( τ ) · ˆ r d x 

+ 

∫ 
�

ˆ u · ( ∇ · τ ) d x + 

∫ 
�

B 

∗� 

−1 
noise 

(
B u − d 

) · ˆ u d x . (C4) 

By taking the deri v ati ve of the second-order Lagrangian L 

H with
espect to the adjoint variables ( τ , ω, ξ ), we can solve the incremen-
al forward equation to find the incremental state variables ( ̂  σ , ̂  u , ̂  r ).
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
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he incremental forward problem reads: (
∂L 

H 

∂ τ
, ̃  τ

)
+ 

(
∂L 

H 

∂ ω 

, ˜ ω 

)
+ 

(
∂L 

H 

∂ ξ
, ̃  ξ

)

= 

∫ 
�

μm 

( m μ) ̂  m μ

2 μ2 ( m μ) 

[
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

]
: ˜ τ d x 

−
∫ 

� F 

ˆ m s ·
[
T ( n � F )( ̃  τ n � F ) 

]
d S 

+ 

∫ 
�

1 

2 μ( m μ) 

[
ˆ σ − ν

1 + ν( d − 2) 
tr ( ̂  σ ) I 

]
: ˜ τ d x 

+ 

∫ 
�

ˆ u · ( ∇ · ˜ τ ) d x + 

∫ 
�

as ( ̃  τ ) · ˆ r d x 

+ 

∫ 
�

( ∇ · ˆ σ ) · ˜ ω d x + 

∫ 
�

as ( ̂  σ ) · ˜ ξ d x = 0 

∀ ̃

 τ ∈ �; ∀ ̃

 ω ∈ W ; ∀ ̃

 ξ ∈ �. (C5) 

he incremental adjoint equation is deri ved b y taking the varia-
ion of L 

H with respect to the state variables ( σ , u , r ) to find the
ncremental adjoint variables ( ̂  τ , ˆ ω , ̂  ξ ) reads: (

∂L 

H 

∂ σ
, ˜ σ

)
+ 

(
∂L 

H 

∂ u 

, ̃  u 

)
+ 

(
∂L 

H 

∂ r 
, ̃  r 

)

= 

∫ 
�

μm 

( m μ) ̂  m μ

2 μ2 ( m μ) 

[
˜ σ − ν

1 + ν( d − 2) 
tr ( ̃  σ ) I 

]
: τ d x 

+ 

∫ 
�

1 

2 μ( m μ) 

[
˜ σ − ν

1 + ν( d − 2) 
tr ( ̃  σ ) I 

]
: ˆ τ d x 

+ 

∫ 
�

˜ u · ( ∇ · ˆ τ ) d x + 

∫ 
�

B 

∗� 

−1 
noise B ̃

 u · ˆ u d x 

+ 

∫ 
�

as ( ̃  σ ) · ˆ ξ d x + 

∫ 
�

( ∇ · ˜ σ ) · ˆ ω d x 

+ 

∫ 
�

as ( ̂  τ ) · ˜ r d x = 0 

∀ ̃

 σ ∈ �; ∀ ̃

 u ∈ W ; ∀ ̃

 r ∈ �. (C6) 

Lastly, the expression of the Hessian action in a direction
 ̃

 m μ, ˜ m s ) can be derived by taking the derivative of the second-
rder Lagrangian functional with respect to the model parameters
 m μ, m s ) to get: (

( ̃  m μ, ˜ m s ) , H ( m μ, m s ) ( ̂  m μ, ˆ m s ) 
)

= ( ̃  m μ, R mm ( m μ) ˆ m μ) 

+ ( ̃  m s , R mm ( m s ) ˆ m s ) 

+ 

∫ 
�

μ( m μ) μmm ( m μ) − μ2 
m ( m μ) 

μ3 ( m μ) 
˜ m ̂

 m 

[ 
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

] 
: τ d x 

+ 

∫ 
�

μm ( m μ) ̃  m μ

2 μ2 ( m μ) 

[ 
σ − ν

1 + ν( d − 2) 
tr ( σ ) I 

] 
: ˆ τ d x 

+ 

∫ 
�

μm ( m μ) ̃  m μ

2 μ2 ( m μ) 

[ 
ˆ σ − ν

1 + ν( d − 2) 
tr ( ̂ σ ) I 

] 
: τ d x 

−
∫ 

� F 

˜ m s ·
[ 
T ( n � F )( ̂ τ n � F ) 

] 
d S ∀ ( ̃  m μ, ˜ m s ) ∈ M, (C7) 

here μm and μmm denote the first and second deri v ati ve of μ( m μ)
ith respect to m μ, respecti vel y. σ and τ are the solutions to the

orward (eq. 3 ) and adjoint (eq. C2 ) problems, respecti vel y, and ˆ σ
nd ˆ τ are the solutions of the incremental forward (eq. C5 ) and
djoint (eq. C6 ) problems, respecti vel y. 
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