Supporting Material for Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets by Porritt, Becker, Boschi, and Auer

Manuscript in press at Geophysical Journal International, May 2021

This file provides supplementary supporting material to the main text. In particular, we provide:

- 1. Table S1, listing all of the data types used in our inversion for the new SAVANI-US tomographic model. This is expanded from Table 1 in the main text which only lists the new data.
- 2. Figure S1, which is a plot of the data adaptive mesh at each model depth.
- 3. Figure S2, an example trade-off test for evaluation of the roughness damping.
- 4. Figure S3, a comparison of the isotropic and anisotropic structure as we change the weight of the difference damping.
- 5. Figure S4, the power spectrum as a function of depth and spherical harmonic degree for the four tomographic models shown in Figure 4 of the main text.
- 6. Figure S5, map view figures of radial anisotropy focused on the continuous US.
- 7. Figure S6, a synthetic resolution test with a slab and craton model embedded into SAVANI-US to explore depth resolution.
- 8. Figures S7 and S8, a comparison of tomographic models for two profiles underneath the continuous US.

				Number			
			SW	of			Station
Source	Phase	SW mode	Period	raypaths	Sensitivity	Weight	Distribution
Array							
Network							
Facility							Contiguous
(ANF)	S	N/A	N/A	220,313	dVsh	15	US + Alaska
							Contiguous
	SKS	N/A	N/A	12,174	dVsv	9	US + Alaska
Lai et al.,							
2018	ScS	N/A	N/A	23,301	dVsh	3	Global
	ScSScS	N/A	N/A	10,274	dVsh	3	Global
	S	N/A	N/A	129,895	dVsh	15	Global
	SS	N/A	N/A	53,127	dVsh	3	Global
	SSS	N/A	N/A	11,836	dVsh	3	Global

Table S1: Full summary of the dataset used in the inversion for SAVANI-US.

Ekstrom,							
2014,							Contiguous
2017	Rayleigh	Fundamental	15	34,504	dVsv	2	US
							Contiguous
			20	47,620	dVsv	2	US
							Contiguous
			25	70,914	dVsv	2	US
							Contiguous
			30	97,199	dVsv	2	US
							Contiguous
			35	90,712	dVsv	2	US
							Contiguous
			40	80,844	dVsv	2	US
							Contiguous
	Love	Fundamental	15	33,233	dVsh	3	US
							Contiguous
			20	38,407	dVsh	3	US
						_	Contiguous
			25	50,239	dVsh	3	US
			20			2	Contiguous
			30	58,955	dvsh	3	US Castia a s
			25		al) (a b	2	Contiguous
			35	51,474	avsn	3	US Continuous
			40	42 1 60	d) /ch	2	Contiguous
Ditcomo			40	42,100	uvsn	5	03
All Seria							
2011	Ses	N/A	NI/A	6 1 1 9	d\/sh	2	Global
2011	505			11 0/5	dVch	2	Global
		N/A		6 0/1	dVsh	2	Global
	st355355			100 222	dVsh	J 15	Global
		N/A		7 102	dVcv	0	Global
		N/A		7,105	dVsv	9	Global
				23,230	dVch	2	Global
	5363	N/A		1,557	dVch	2	Global
	5363363	N/A		2,955	dVch	2	Global
	5363363363	N/A		2,303	dVch	2 2	Global
	55	N/A	N/A	14,558	dVcv	3	Global
	SSNS	N/A		2,142	dVcb	9	Global
	222		N/A	20,377	dVch	3	
	3000		N/A	2,400	uvsn	3	
EKSTOM,	Daulaiah	Fundamental	25	15 216	d\/cy/	2	Clobal
2011	rayleign	runuamental	25	45,310	dVcv	2	
			27	45,005	uvsv	2	

			30	46,005	dVsv	2	Global
			32	71,639	dVsv	2	Global
			35	71,742	dVsv	2	Global
			40	71,827	dVsv	2	Global
			45	71,886	dVsv	2	Global
			50	100,350	dVsv	2	Global
			60	101,048	dVsv	2	Global
			75	101,085	dVsv	2	Global
			100	100,428	dVsv	2	Global
			125	90,439	dVsv	2	Global
			150	23,217	dVsv	2	Global
			200	23,059	dVsv	2	Global
			250	22,090	dVsv	2	Global
	Love	Fundamental	25	9,698	dVsh	3	Global
			27	9,833	dVsh	3	Global
			30	9,889	dVsh	3	Global
			32	17,373	dVsh	3	Global
			35	17,395	dVsh	3	Global
			40	17,416	dVsh	3	Global
			45	17,441	dVsh	3	Global
			50	38,413	dVsh	3	Global
			60	39,491	dVsh	3	Global
			75	39,527	dVsh	3	Global
			100	38,909	dVsh	3	Global
			125	31,520	dVsh	3	Global
			150	16,332	dVsh	3	Global
			200	14,868	dVsh	3	Global
			250	13,843	dVsh	3	Global
Visser et							
al., 2008	Rayleigh	Fundamental	35	28,931	dVsv	2	Global
			37	28,931	dVsv	2	Global
			40	28,931	dVsv	2	Global
			43	28,931	dVsv	2	Global
			51	28,931	dVsv	2	Global
			56	28,931	dVsv	2	Global
			62	28,931	dVsv	2	Global
			69	28,931	dVsv	2	Global
			75	28,931	dVsv	2	Global
			88	28,931	dVsv	2	Global
			100	28,931	dVsv	2	Global
			114	28,931	dVsv	2	Global
			125	28,931	dVsv	2	Global

		150	28,931	dVsv	2	Global
		175	28,931	dVsv	2	Global
Love	Fundamental	35	24,281	dVsh	3	Global
		37	24,281	dVsh	3	Global
		40	24,281	dVsh	3	Global
		43	24,281	dVsh	3	Global
		51	24,281	dVsh	3	Global
		56	24,281	dVsh	3	Global
		62	24,281	dVsh	3	Global
		69	24,281	dVsh	3	Global
		75	24,281	dVsh	3	Global
		88	24,281	dVsh	3	Global
		100	24,281	dVsh	3	Global
		114	24,281	dVsh	3	Global
		125	24,281	dVsh	3	Global
		150	24,281	dVsh	3	Global
		175	24,281	dVsh	3	Global
Rayleigh	1st overtone	35	23,995	dVsv	1	Global
		37	23,995	dVsv	1	Global
		40	23,995	dVsv	1	Global
		43	23 <i>,</i> 995	dVsv	1	Global
		46	23,995	dVsv	1	Global
		50	23,995	dVsv	1	Global
		56	23,995	dVsv	1	Global
		61	23,995	dVsv	1	Global
		69	23,995	dVsv	1	Global
		77	23,995	dVsv	1	Global
		87	23,995	dVsv	1	Global
		99	23,995	dVsv	1	Global
		113	23,995	dVsv	1	Global
		129	23,995	dVsv	1	Global
		148	23,995	dVsv	1	Global
		172	23,995	dVsv	1	Global
Love	1st overtone	35	20,113	dVsh	1	Global
		37	20,113	dVsh	1	Global
		40	20,113	dVsh	1	Global
		43	20,113	dVsh	1	Global
		46	20,113	dVsh	1	Global
		51	20,113	dVsh	1	Global
		56	20,113	dVsh	1	Global
		62	20,113	dVsh	1	Global
		69	20,113	dVsh	1	Global

	78	20,113	dVsh	1	Global
	88	20,113	dVsh	1	Global
	100	20,113	dVsh	1	Global
	114	20,113	dVsh	1	Global
	131	20,113	dVsh	1	Global
	153	20,113	dVsh	1	Global
	176	20,113	dVsh	1	Global

Figure S1: Data adaptive mesh used for the tomographic inversion at each model layer. Bottom of each panel indicates the depth. This mesh was created with the SAVANI software available at <u>https://github.com/rwporritt/savani</u>. Specifically, this depends on hit count adaptive for each voxel. The minimum voxel size is set to $0.3125^{\circ} \times 0.3125^{\circ}$ to a maximum of $5^{\circ} \times 5^{\circ}$ doubling at each step. The thresholds for the global meshing are 5000, 7000, 8000, and 9000 for coarsest mesh to finest mesh. The regional thresholds for North America (longitude 180° to 315° E and latitude 10° to 70° N and depth less than 1300 km) are 2000, 3000, 4000, and 5000 hits per voxel.

Figure S2: Trade-off curve for tested roughness damping at constant difference damping and norm damping. The red circle is our preferred value for SAVANI-US.

Figure S3: Effect of difference damping parameter on leakage. Most of the explored space is nearly linear and high difference damping values show a local maximum in isotropic variance.

Figure S4: Plot of power spectral density vs. depth and spherical harmonic degree for isotropic velocity models compared in Figure 4. Higher spherical harmonic degree corresponds to shorter wavelength structures. SAVANI is by Auer et al. (2014), SAVANI-US our new model, S40RTS by Ritsema et al. (2011), S362ANI-M by Moulik and Ekstrom (2014).

Figure S5: Models of radial anisotropy focused under the contiguous US. Model names on top are the same as per the main paper. NASEM is by Clouzet et al. (2018).

Figure S6: Result of a resolution test with a thick craton in the upper 200 km and a 200 km thick slab in the transition zone. The input model is our best-fit model but with the structure in the central US replaced for the test (top panel). The output shows that the zone of neutral velocity anomaly separating the slab and the craton is poorly resolved and replaced with structure smeared between the slab and the craton.

Figure S7: Comparison of seismic tomography models along a profile similar to Figure 7b (A-A'). Models along the top row are focused on the continuous US and use body waves and surface waves in the case of SAVANI-US and MITS_BWSW. Models in the middle row are relatively smooth, global models. Models along the bottom row are P wave only models. MITS_BWSW is by Golos et al. (2018), TX2019 by Lu et al. (2019, version without prescribed slabs), SEMUCB-WM1 by French and Romanowicz (2014), GAP_P4 by Obayashi et al. (2013) and Fukao and Obayashi (2013) and UU-P07 by Amaru (2007) and Hall and Spakman (2015).

Figure S8: Comparison of velocity models along a profile similar to Figure 7c (B-B'). See caption for S7 for model description.

Additional references cited

Amaru, M.L., 2007, Global travel time tomography with 3-D reference models: Geologica Ultraiectina, 274, 174p.

Fukao Y., M. Obayashi (2013), Subducted slabs stagnant above, penetrating through and trapped below the 660-km discontinuity. J. Geophys. Res., 118, 5920-5938, doi:10.1002/2013JB010466.

Hall, R., and Spakman, W., 2015, Mantle structure and tectonic history of SE Asia: Tectonophysics, 658, 14-45.

Lu, C., Grand, S. P., Lai, H., & Garnero, E. J. (2019). TX2019slab: A new P and S tomography model incorporating subducting slabs. Journal of Geophysical Research: Solid Earth, 124, 11549–11567. <u>https://doi.org/10.1029/2019JB017448</u>.

Obayashi M., J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, Y. Gao (2013), Finite frequency whole mantle P-wave tomography: Inprovement of subducted slab, Geophys. Res. Lett., 40, 5652-5657, doi:10.1002/2013GL057401.