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Highlights 8 

1. We develop a Graph Network-based Simulator (GNS) for rupture dynamics.9 
2. The GNS generalizes to unseen hypocenters, pre-stress levels, and fault sizes10 

with dozens to hundreds training scenarios.11 
3. The GNS achieves ~20-40 per-time-step speedup compared to physics-based12 

EQdyna and may help with uncertainty quantification and Bayesian inference.13 

Abstract 14 

Earthquakes arise from tectonic loading of complex fault systems consisting of 15 
heterogeneous material parameters, geometry, rheology, and prestress. All of those are 16 
subject to uncertainties, and their interactions and sensitivities for the dynamic rupture 17 
problem are incompletely understood. Here, we apply Graph Neural Networks (GNNs) 18 
to approximate the behavior learned from more computationally intensive, physics-19 
based (“high-fidelity”) computations to build a GNN-based simulator (GNS) for 20 
earthquake rupture dynamics. Given only a minimum input –the hypocenter location– 21 
our GNS can reproduce rate-weakening friction governed dynamic rupture behavior, 22 
from nucleation to propagation and termination. Outside the training set, the GNS can 23 
generalize well to different hypocenter locations, fault sizes, and pre-stress state levels 24 
while achieving a factor ~20-40 per-time-step computational speedup. This may allow 25 
for more efficient estimates of the mapping from pre-earthquake state, as might be 26 
inferred from geodesy, to expected rupture dynamics, for example. By extracting a 27 
coarse-grained version of the underlying dynamics, the GNS provides new perspectives 28 
to explore the physics of rupture. Further development of GNS may enable new kinds 29 
of parameter space exploration and provide surrogates for Bayesian model inference, 30 
uncertainty quantification, and optimal experimental design.  31 
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Plain language abstract 32

Large earthquakes pose major seismic hazards, but their source processes are hard to 33
constrain and predict due to many uncertainties. Scientists generally use “high-fidelity”, 34
full physics-based models to study earthquake dynamics, but the high computational 35
cost can limit the exploration of parameters and uncertainties. With the advance of 36
GPU-accelerated computing and deep learning, Graph Network-based Simulators 37
(GNSs) have emerged as powerful tools to model complex physical dynamics. Here, we 38
apply GNS to learn and predict earthquake source dynamics governed by rate-39
weakening friction. Our GNS can generalize to unseen hypocenters, pre-stresses, and 40
fault geometries. It also runs faster than the traditional physics-based approaches, 41
providing a potential avenue for uncertainty quantification and inferring rupture 42
physics from observations.  43

44

45

1. Introduction46
47

Even though major faults in plate boundaries are mapped relatively well in seismically 48
active regions, large earthquakes continue to surprise us with their complexity. 49
Ruptures arise from tectonic loading of fault systems that are characterized by 50
heterogeneous material parameters, irregular and multi-strand geometry, and variable 51
stress state. Despite progress in incorporating observationally constrained stress 52
conditions and laboratory-derived friction laws for complex rupture scenarios [e.g., Jia et 53
al., 2023; Ramos et al., 2021; Ulrich et al., 2019], many parameters influencing rupture 54
dynamics remain poorly constrained. There are also remaining unknowns on the 55
physical process side, such as to the role of fluids, frictional relationships, and rheology. 56
Currently, there are few modeling frameworks capable of incorporating all relevant 57
physics in a unified way to enable uncertainty quantification or Bayesian model 58
inference for earthquake rupture.  59

Analysis typically must rely on a limited number of physics-based numerical 60
simulations (PBNS) to explore aspects of the sensitivities of the nonlinear dynamics 61
involved. For example, as for the basic rupture conditions, Andrews and Barall [2011] 62
show how the combination of initial stress distributions and slip-weakening laws [e.g., 63
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Day, 1982; Ida, 1972] generate realistic rupture scenarios. Shi and Day [2013] show how 64 
fractal fault roughness and rate- and state- friction [Dieterich, 1979; Ruina, 1983] with 65 
normal stress dependence [Dieterich and Linker, 1992] reproduces realistic high 66 
frequency ground motion. Some of the additional effects explored with PBNS include 67 
the role of non-planar fault geometry and rate-weakening friction [e.g., Dunham et al., 68 
2011; Luo and Duan, 2018] and the effects of fault valving and pore pressure evolution 69 
[e.g., Zhu et al., 2020]. Moreover, Duan and Oglesby [2006], Liu et al. [2022], and Shaw et al. 70 
[2022] highlight how multi-fault geometries and earthquake sequences shape stress 71 
evolution and rupture segmentation over time. 72 

PBNS approaches have also been used for Bayesian inversions for pre-stress and friction 73 
parameters for single ruptures [e.g., Gallovič et al., 2019; Suhendi et al., 2025; 74 
Taufiqurrahman et al., 2022], for example. However, integrating a range of plausible 75 
physics into a 3-D model with multiple fault segments while allowing for exploration of 76 
both structure and physics uncertainties remains a significant computational and 77 
technical challenge. Yet, this is what is ultimately required for hazard estimates, such as 78 
when seeking to map from inferred fault loading distributions to likely rupture 79 
scenarios.  80 

Very recently, machine learning surrogates based on deep neural networks have started 81 
to be used to emulate dynamic ruptures. RuptureNet2D [Gong et al., 2025], trained on 82 
300,000 2-D dynamic rupture simulations, provides a mapping from initial stress, 83 
frictional parameters, and hypocenter locations to rupture arrival times and final slip. A 84 
reported speedup of ~1000 times compared to PBNS is partially achieved by targeting 85 
only the final output and bypassing the intermediate steps, and generalization is 86 
challenging when extrapolating to fault lengths and additional asperity patches beyond 87 
the training set. Tainpakdipat et al. [2025] present another end-to-end projection-type 88 
model using Fourier Neural Operators trained on 3000 scenarios with fractal initial 89 
stresses, to map initial stress and frictional parameters to subsampled timeseries of slip 90 
rate. Their models achieve a reported ~105  speed up, with the limitation that the 91 
predictions are confined to trained nucleation locations and fixed rupture duration.  92 

We explore an alternative deep learning approach using Graph Neural Networks 93 
(GNNs) here. GNNs have emerged as promising tools to capture the temporal 94 
evolution of high-dimensional physical systems simulations by emulating all 95 
intermediate system states [e.g., Lam et al., 2023; Pfaff et al., 2020; Sanchez-Gonzalez et al., 96 
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2020] and show strong generalization capabilities in terms of initial conditions, feature 97 
complexities, and model domain sizes. GNNs are particularly well suited for 98 
representing particle- and mesh-based systems, which many PBNS for rupture 99 
dynamics, such as finite-element and finite-difference methods, adopt [e.g., Harris et al., 100 
2018; Liu and Duan, 2018; Premus et al., 2020; Ulrich et al., 2019; Wang and Day, 2020; 101 
Withers et al., 2018]. GNN-based simulators (GNSs) can capture a wide range of physical 102 
processes, including turbulent flow and solid and granular mechanics [Choi and Kumar, 103 
2024; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020] and other nonlinear systems such as 104 
weather [Lam et al., 2023; Price et al., 2024] and climate [Kochkov et al., 2024].  105 

Besides the typical finding that GNS can provide computational speedup compared to 106 
PBNS, GNS’ inductive nature allows generalization to system sizes not seen during 107 
training [Thangamuthu et al., 2022]. Moreover, incorporating physics-informed bias, such 108 
as inertia, in deep learning frameworks has also been shown to improve performance in 109 
the learning of dynamics [Choi and Kumar, 2024; Thangamuthu et al., 2022], and GNS 110 
show remarkable generalization and physics abstraction capabilities [Choi and Kumar, 111 
2024; Pfaff et al., 2020; Thangamuthu et al., 2022].  112 

Here, we develop a GNS for earthquake dynamics on a 2-D fault interface embedded in 113 
3-D rock volume where the training data are generated from dozens to hundreds of 3-D 114 
PBNS rupture dynamics models and fault sliding is governed by friction with strong 115 
rate-weakening. We explore the GNS performance and generalization capabilities for 116 
three different types of setups –unseen hypocenters, pre-stress amplitudes and 117 
distributions, and fault sizes, and discuss GNS strengths, limitations, and potential 118 
future applications to earthquake physics and hazard. 119 

 120 

2. Methods  121 
 122 

2.1 The high fidelity, PBNS model 123 

We use the CPU-parallelized finite-element software EQdyna [Duan and Oglesby, 2006; 124 
Liu and Duan, 2018; Liu et al., 2022] to generate earthquake rupture scenarios (sequences 125 
of fault sliding velocity states, or slip rates) at “high fidelity”, to train the GNS and as 126 
ground truth for testing and validation. EQdyna solves the 3-D elastodynamic equations 127 
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of motion with a friction law on fault interfaces for rupture propagation including wave 128 
radiation. EQdyna has been benchmarked extensively, e.g. within the SCEC Spontaneous 129 
Rupture Code Verification Project [Harris et al., 2009, 2018]. Here, we choose the SCEC 130 
benchmark TPV104 as the reference, because the associated strong rate-weakening 131 
friction law produces significant slip rate changes during rupture. Moreover, this test 132 
case has been used for benchmarking by many rupture codes, ensuring comparability 133 
and easy reproducibility of our study. We then vary hypocenter locations and initial 134 
stress levels and stress anomaly distributions.  135 

Figure 1A shows our reference setup, which models earthquake dynamics for a vertical, 136 
strike-slip, planar fault embedded in a 3-D isotropic, linear elastic half space, and 137 
breaking the surface. Slip evolution is governed by rate- and state- friction with strong-138 
rate weakening (Table 1), following eqs. (1-7) in the SCEC TPV104 benchmark 139 
description (strike.scec.org/cvws/download/SCEC_validation_slip_law.pdf).  140 

 141 

Figure 1. A) Model setup for earthquake rupture dynamics. A fault interface is 142 
embedded in a 3-D elastic volume, and the fault walls move relative to each other, with 143 
relative displacement defined as slip. Slip evolution is influenced by initial stress 144 
conditions, frictional mechanisms and other parameters such as hypocenter location. B) 145 
Hypocenter locations used to construct Dataset D1 for GNS with training (blue), 146 
validation (green), and test (red) sets. Gray dots represent fault nodes in the reference 147 
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model. C)-D). Final slip distribution and rupture time contours from two scenarios in 148 
the training set. White numbers indicate rupture arrival times in seconds. 149 

We use a fault dimension of 18 × 10 km, 200 m on-fault grid size, and there are a total of 150 
4,500 fault nodes in each scenario. The 3-D model domain boundaries are extended 151 
20 km away from the nearest fault edges, respectively, and radiated seismic waves are 152 
damped by absorbing boundary conditions [Liu and Duan, 2018]. We start with 153 
homogeneous initial stresses and frictional parameters; at the hypocenter, nucleation is 154 
driven by imposing an additional shear stress over 1 s and within a 3 km radius, as per 155 
eqs. (14-16) in the benchmark. Because the fault is uniformly velocity weakening, 156 
rupture front reflections from fault boundaries are expected. This setup is intended to 157 
test the GNS’ capability to learn and predict the dynamics beyond simple, crack-like 158 
extension of the rupture, such as the effect of boundaries.  159 

Each computational scenario lasts 15 s, which is long enough for rupture to propagate 160 
over the whole fault and die out. With a time increment of 0.0167 s, each scenario 161 
contains 900 time steps. At the beginning of each scenario, the earthquake is under 162 
forced nucleation with minimal slip rate information on the fault. Therefore, we use 163 
rupture states after initiation at time 𝑡 = 1.2 s to train the GNS models; this gives 826 164 
time steps per scenario.  165 

Table 1. Key parameters for the reference, physics-based numerical model 166 

Fault length along strike (km) 18 

Fault width along dip (km) 10 

Grid size (m) 200 

Initial shear stress (MPa) 40 

Initial normal stress (MPa) 120 

Density (km/m3) 2670 

S-wave velocity (km/s) 3.464 

P-wave velocity (km/s) 6 

Rate- and state- friction parameters 

Reference friction coefficient 0.6 

Reference slip rate (m/s) 10-6 

a 0.01 

b 0.014 
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Characteristic length, L, (m) 0.4 

Friction threshold for strong rate weakening, 𝑓𝑤 0.2 

Slip rate threshold for strong rate weakening, 𝑉𝑤, (m/s) 0.1 

Initial state variable value, Ψ 0.563591842632738 

Additional peak shear stress for nucleation (MPa) 45 

Nucleation radius (km) 3 

Artificial nucleation duration (s) 1 

 167 

      2.2 Graph neural networks and message passing 168 

      2.2.1 Graphs and earthquake system rupture state  169 

Graph formalisms can be applied to emulate physical system interactions [e.g., Battaglia 170 
et al., 2016; Sanchez-Gonzalez et al., 2020]. In an elastic solid, a frictional interface which 171 
governs earthquake rupture dynamics can be modeled as a graph 𝐺 = (𝑽, 𝑬) where a set 172 
of vertex variables 𝑽 (𝒗𝒊 ∈ 𝑽) captures the kinematics of discretized vertices on the 173 
interface, and a set of edges 𝑬  ( 𝒆𝒊,𝒋 ∈ 𝑬 ) represents physical interactions between 174 
neighboring vertices through their relative locations (𝒗𝒊 and 𝒗𝒋).   175 

In our finite-element approach [e.g., Liu and Duan, 2018; Liu et al., 2022], we discretize 176 
the fault interface into vertices 𝑽FE  which are connected by edges 𝑬FE . We define a 177 
rupture state at time 𝑡 as 𝑆𝑡(𝒖̇, 𝒙), for all the vertices’ slip rates 𝒖̇𝒊 and their locations 𝒙𝒊 178 
on the fault interface (𝑖 ∈ 𝑽FE).  Slip rate is the relative velocity between two fault walls 179 
bordering the interface. We then use a graph 𝐺 = (𝑽FE, 𝑬FE) to represent the rupture 180 
state and its evolution.  181 

      2.2.2 Graph Neural Networks (GNNs) and Message Passing 182 

A Graph Neural Network (GNN) is an essential element in GNS architecture. The GNN 183 
takes a graph 𝐺 = (𝑽FE, 𝑬FE) as the input and outputs a new graph 𝐺′ = (𝑽𝑭𝑬

′ , 𝑬𝑭𝑬
′ ) with 184 

updated 𝒖̇𝑖
′ and 𝒆𝑖,𝑗

′  through message passing [Gilmer et al., 2017]. Message passing is the 185 
process by means information is propagated through the graph structure, e.g., capturing 186 
the transport of energy and momentum. In the dynamic rupture context, the GNN takes 187 
graph 𝐺 = (𝑽FE, 𝑬FE) as the input that describes the current system state 𝑆𝑡 and updates 188 
to a new 𝐺′ = (𝑽𝑭𝑬

′ , 𝑬𝑭𝑬
′ ), which after decoder and updaters, returns the next state 𝑆𝑡+1.  189 

Message passing contains three steps:  190 
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1. Message construction 𝒆𝑖,𝑗
′ = 𝜙𝚯𝜙

(𝒗𝑖, 𝒗𝑗 , 𝒆𝑖,𝑗) (1) 

2. Message aggregation 
𝒗̅𝑖 = ∑ 𝒆𝑖,𝑗

′

𝑗∈𝑁(𝑖)

 
(2) 

3. Update to vertex 𝒗𝑖
′ = 𝛾𝚯𝛾

(𝒗𝑖, 𝒗̅𝑖) (3) 

Here, 𝚯𝜙  and 𝚯𝛾  are a set of learnable parameters; 𝜙𝚯𝜙
 is the message construction 191 

function, a matrix operation, that takes in the attribute vectors of the connecting vertices 192 
(𝒗𝑖  and 𝒗𝑗 ) and those of the edge connecting the two vertices (𝒆𝑖,𝑗 ) and returns an 193 
updated edge feature vector 𝒆𝑖,𝑗

′ . Then, messages are aggregated toward a single vector 194 
𝒗̅𝑖 where 𝑁(𝑖) is the set of sender vertices j related to vertex i. The last step is to update 195 
vertex features using the aggregated message 𝒗̅𝑖  and the current attribute vector 𝒗𝑖 , 196 
through the update function 𝛾𝚯𝛾

= 𝚯𝛾(𝒗̅𝑖 + 𝒗𝑖).  197 

We refer readers to Figure 2 in Choi and Kumar [2024] for an illustration of the message 198 
passing concept in the GNN context. After message passing, the graph is updated to 199 
𝐺′ = 𝐺(𝑽𝑭𝑬

′ , 𝑬𝑭𝑬
′ ) = 𝐺(𝒗𝑖

′, 𝒆𝑖,𝑗
′ ). To propagate the information further into the network, 200 

multiple message passing steps can be used, where the involved “hyperparameter” 201 
choices affect model prediction performance and computational speed. In a supervised 202 
learning setup, learnable parameters are optimized through training.   203 

        2.3. The surrogate, GNS model 204 

On top of the GNNs is the GNS architecture to learn and predict earthquake rupture 205 
state evolution. We adapt an open-source, mesh-based GNS, MeshNet [Choi and Kumar, 206 
2024; Kumar and Choi, 2023; Kumar and Vantassel, 2023] and proceed to present details on 207 
GNS input, as well as the encoder, processor, decoder, and updater, as shown in Figure 208 
2.   209 

         2.3.1 Input 210 

The input to the GNS, 𝒔𝑖
𝑡 ∈ 𝑆𝑡, is a vector containing current slip rate 𝒖̇𝑖

𝑡 and on-fault 211 
location along strike and dip, 𝒙𝑖

𝑡 = [𝒙𝑖,𝑠𝑡𝑟𝑖𝑘𝑒
𝑡 , 𝒙𝑖,𝑑𝑖𝑝

𝑡 ], respectively, for all vertices. The 212 
current state is 𝒔𝑖

𝑡 = [𝒖̇𝑖
𝑡, 𝒙𝑖

𝑡]. Sanchez-Gonzalez et al. [2020] show that for mesh-based 213 
GNS, only the current state should be used to predict the next one, without the need for 214 
memory of past states; this is different from the particle-based GNS examples for 215 
granular flow [Choi and Kumar, 2024]. Vertex attributes can be expanded to include other 216 
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features such as initial shear stress level, 𝝉𝑖
𝑡, or frictional parameters, pore pressure, or 217 

different frictional laws.   218 

         2.3.2 Encoder 219 

The vertex and edge encoders, 𝜀𝚯
𝑣  and 𝜀𝚯

𝑒  converts 𝒔𝑖
𝑡 into the vertex and edge attribute 220 

vectors 𝒗𝑖
𝑡 and 𝒆𝑖,𝑗

𝑡  and embed them into a latent graph 𝐺0 = (𝑽0, 𝑬0) where 𝒗𝑖
𝑡 ∈ 𝑽0 and 221 

𝒆𝑖,𝑗
𝑡 ∈ 𝑬0.  222 

𝒗𝑖
𝑡 = 𝜀𝚯

𝑣(𝒖̇𝑖
𝑡),        𝒆𝑖,𝑗

𝑡 = 𝜀𝚯
𝑒 (𝒙𝑖

𝑡) 

 

(4) 

A two-layered, 128-dimensional multi-layer perceptron (MLP) is used for the 𝜀𝚯
𝑣  and 𝜀𝚯

𝑒 , 223 
respectively. The vertex encoder 𝜀𝚯

𝑣  uses only slip rates 𝒖̇𝑖
𝑡 to make predictions without 224 

the current position information. The updated positions of vertices are predicted using 225 
the last positions and slip rates by an explicit Euler step.  226 

        2.3.3 Processor 227 

Starting from the initial graph 𝐺0, the processor handles message passing (eqs. (1) to (3)) 228 
for 𝑀 steps (i.e., message passing steps; 𝐺0 → 𝐺1 → ⋯ → 𝐺𝑀) and returns the updated 229 
graph 𝐺𝑀. We use two-layered 128-dimensional MLPs for both the message construction 230 
function, 𝜙𝚯𝜙

, and vertex update function, 𝛾𝚯𝛾
, and element-wise summation for the 231 

message aggregation in eqs. (1-3).  232 

        2.3.4 Decoder 233 

The decoder 𝛿𝚯
𝑣 extracts the dynamics 𝒚𝑖

𝑡 ∈ 𝑌𝑡 from the vertices 𝒗𝑖
𝑡 using the final graph 234 

𝐺𝑀 following 𝒚𝑖
𝑡 = 𝛿𝚯

𝑣(𝒗𝑖
𝑡). A two-layer 128-dimensional MLP is used for 𝛿𝚯

𝑣.   235 

        2.3.5 Updater 236 

The dynamics 𝒚𝑖
𝑡, analogous to slip acceleration, are used to predict the next time-step 237 

slip rate, which is updated using Euler integration to get the next time-step location 238 
𝒙𝑖

𝑡+1. As noted by Choi and Kumar [2024], this updater imposes the inductive biases of an 239 
inertial frame to force the GNS to learn the interaction dynamics to improve learning 240 
efficiency. A traditional neural network must learn both the update function and the 241 
interaction dynamics. Ideally, this implies that the GNS learns the actual dynamics, i.e. a 242 
coarse-grained version of local physical interactions, regardless of absolute vertex 243 
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positions. This approach permits the GNS to generalize beyond the training fault plane 244 
size, hypocenter locations, stress levels and distributions, as will be shown below.   245 

The task then is to predict the next state, 𝑆𝑡+1(𝒖̇, 𝒙), from the current, 𝑆𝑡(𝒖̇, 𝒙), using the 246 
GNS (Figure 2A). Following Sanchez-Gonzalez et al. [2020] and Choi and Kumar [2024], 247 
Figure 2B shows the structure of the GNS which uses a learned dynamic model, 𝑑Θ, to 248 
predict dynamics, 𝑌𝑡, analogous to slip acceleration, from an input state, 𝑆𝑡, and the 249 
updater to estimate the next state, 𝑆𝑡+1. Figure 2C shows the structure of 𝑑Θ, which 250 
contains an encoder to construct a graph 𝐺0 from the input state 𝑆0, a processor using 251 
message passing [Gilmer et al., 2017] through M GNNs to update graphs, and a decoder 252 
to extract dynamics information, 𝑌𝑡, from the last graph, 𝐺𝑀.  253 

 254 

 255 

Figure 2. Concept of using Graph Network-based Simulator (GNS) to predict 256 
earthquake rupture dynamics with nucleation, rupture propagation, and termination, 257 
and the GNS architecture (modified from Choi and Kumar [2024] and Sanchez-Gonzalez et 258 
al. [2020]). A) With an initial state 𝑆0 as input, the GNS predicts the next state and 259 
autoregressively generate state predictions for entire ruptures. B) The GNS predicts 260 
dynamics, 𝑌𝑡,  using the learned dynamics model, 𝑑Θ , and then uses an updater to 261 
predict next state, 𝑆𝑡+1 . C) The structure of the learned dynamics model 𝑑Θ , which 262 
includes an encoder to construct graph 𝐺0  from input state 𝑆0 , a processor using 263 
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message passing through M Graph Neural Networks (GNNs) to update graphs, and a 264 
decoder to extract dynamics information 𝑌𝑡 from the last graph 𝐺𝑀. 265 

 266 

2.4 Reference datasets 267 

We prepare two datasets to train the GNS focusing on different objectives and a third 268 
dataset to test GNS performance on more complex cases. Dataset D1 has homogenous 269 
initial shear stress of 40 MPa on the fault but variable hypocenter locations. Our goal is 270 
to test whether the GNS can predict the right rupture dynamics even though 271 
hypocenter locations are different from those in the training data. Figure 1B shows the 272 
distribution of hypocenters for rupture scenarios in the training, validation, and testing 273 
sets, each of which contains 10, 3, and 6 scenarios, respectively. Figures 1C and D show 274 
final slip distributions and rupture front arrival time contours from two scenarios in the 275 
training set as an example.  276 

Dataset D2, in addition to various hypocenters, contains heterogeneous initial stress 277 
cases, here initially chosen for simplicity to be in the form of 4 × 4 km asperities at 35, 278 
45, 50, and 55 MPa stress levels, representing 10% of all the fault vertices. Figures 3A-E 279 
show the five hypocenter locations and associated locations of asperities with 35/55 MPa 280 
initial stress in the training set for M2, which totals at 30 scenarios. Figure 3F shows 281 
hypocenters and stress asperities of selected scenarios in the test set, whose asperity 282 
stresses (45/50 MPa) differ from those in the training set. We want to see if the GNS 283 
trained on D2 can generalize to unseen stress amplitudes and asperity locations, in 284 
combination with unseen hypocenter locations, and predict the associated modulations 285 
of rupture speed. To explore the effect of the size of training set, we also train model M3 286 
on additional scenarios from dataset D2; 37 scenarios are selected for each asperity 287 
stress level, which has five hypocenter locations. With four asperity stress levels, the 288 
total number of scenarios in the training set is 148 scenarios.   289 

To test the limits of the GNS’ generalization capability, we build another Dataset D3 290 
with 15 scenarios using fractal-type, irregularly distributed, “rough” initial stress. There 291 
are five scenarios with different hypocenter locations for each roughness R of 0.1, 0.5, 292 
and 0.9, using the diamond square algorithm (Fournier et al., 1982), for initial stresses as 293 
shown in Figures 11A, 12A, and 13A. We test GNS M2 and M3 on D3 to check if the 294 
GNS can capture more complex stress distributions based on learning relatively simple, 295 

In press at J. Geophys. Res. - Sol. Earth, 11/2025. doi:10.1029/2025JB031981



and different spatial character, features in the training set, and examine the impact of 296 
training set size.  297 

298 
Figure 3. Hypocenter and stress anomaly (i.e., asperity) locations (boxes) and 299 
normalized asperity stress levels at 0, 0.25 (outside of asperity), 0.5, 0.75, and 1, which 300 
linearly corresponds to 35, 40 (outside of asperity), 45, 50, and 55 MPa. A)-E) 30 301 
scenarios used in the training set, which contains only normalized asperity stress levels 302 
at zero and unity. F) Initial stress setups in selected scenarios from the test set with 303 
normalized stress levels at 0.5 and 0.75, which are unseen in the training set.  304 

  305 
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2.5 Training and prediction 306 

We train the GNS’ learnable parameter sets to minimize the mean square error (MSE) 307 
between predicted normalized slip acceleration proxy 𝒚𝑖

𝑡 and normalized ground truth 308 
slip acceleration 𝒖̈𝑡, computed by derivatives of slip rate 𝒖̇𝑡,  for all the fault vertices 309 
based on a standard gradient-based optimizer, Adam [Kingma and Ba, 2014] run over 310 
training time steps and epochs. GNS performance is affected by the choices of 311 
hyperparameters, such as learning rate, number of message passing steps in GNNs, and 312 
noise levels. We start from hyperparameters optimized for granular dynamics [Choi and 313 
Kumar, 2024] including the number of message passing steps of 10, learning rate of 10-4, 314 
batch size of 2, and Gaussian distributed noise with standard deviation of 0.02 m/s 315 
(Table 2). These hyperparameters achieve a good balance between predicting 316 
performance and training cost for our problem as well [cf. Pfaff et al., 2020]. We also 317 
explore the effect of hyperparameter choices (Table 2) on training and prediction 318 
performance (Section 3.7).  319 

During the prediction phase of the GNS, i.e., rollout, we take an initial state which 320 
contains relatively small slip rate distributions (with peak ~1 m/s) inside the nucleation 321 
zone at 𝑡 = 1.2 𝑠  simulation time, and the GNS then autoregressively generates the 322 
entire time sequence of earthquake rupture. 323 

 324 

Table 2. GNS Hyperparameters  325 

Model M1/M2 M3 

Learning rate 10-4 3 × 10-5 

Batch number 2 8 

Number of message passing steps 5/10/15 5/10/15 

Gaussian noise level 0.02/0.005 0.02/0.005 

Number of hidden layers in multi-layer perceptron 2 2 

Dimension of hidden layers in multi-layer perceptron 128 128 

 326 

Figures 4A, 4B, and 4C show the training and validation loss curves for GNS M1, M2, 327 
and M3 trained on Datasets D1 (10 scenarios), D2 (30 scenarios), and D2 (148 scenarios), 328 
respectively. For M1, the training and valid loss show rapid descent until 1 million steps 329 
and a slower decrease afterward. There is no apparent overfitting (where we would 330 

In press at J. Geophys. Res. - Sol. Earth, 11/2025. doi:10.1029/2025JB031981



expect validation loss increase and training loss to keep decreasing) over the whole 331 
training process. However, we do not expect significantly improved performance after 332 
3 million steps. We thus consider the GNS for M1 trained at 3 million steps.  333 

For M2, the training loss follows a similar trend to that in M1, with improvements 334 
diminishing after 1 million steps. Again, there is no sign of overfitting, and we choose 335 
the GNS for M2 trained at 3 million steps. The strong oscillations and training and 336 
validation losses reflect the fast learning rate of 10-4 used. For M3 with a lower learning 337 
of 3 × 10-5 and larger batch size of 8, the oscillations of losses over training steps are 338 
smaller. We choose M3 trained at 2.7 million steps as the training improvement 339 
diminishing with more steps. Interestingly, the strong oscillations appear not affect 340 
GNS performance. We also train M2 at a same slower learning of 3 × 10-5, but it appears 341 
not affect the performance and oscillations. Adaptive learning rates or alternative 342 
optimizer choices may help suppress the oscillations and improve training stability or 343 
convergence speed.  344 

 345 

Figure 4. Training and validation loss for dataset M1 (A), M2 (B), and M3 (C) tabulated 346 
every 5000 steps. 347 

 348 

3. Results 349 
 350 

      3.1 Predicting rupture dynamics from unseen hypocenters 351 

We applied the M1 trained GNS to predict rupture propagation from unseen 352 
hypocenter locations. For this, we provide an initial state with slip rate distribution near 353 
the hypocenter and the GNS then generates the entire time sequence of rupture states 354 
autoregressively. Figure 5 shows rupture time contour comparisons between GNS 355 
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predictions and PBNS ground truth from four scenarios. We report three metrics, root 356 
mean square error of slip rate time series over all the fault vertices (SR RMSE), root 357 
mean square error of rupture arrival times over all the fault vertices (RT RMSE), and the 358 
difference between predicted and ground truth event moment magnitude, Mw, 359 
respectively.  360 

The GNS predicts rupture front arrivals well overall, showing RT RMSE of 0.04-0.06 s 361 
for Figure 5A-C, and SR RMSE of 0.33-0.45 m/s, where peak slip rates are in the range of 362 
20-30 m/s. Figure 5D shows a scenario where rupture terminates early close to the 363 
bottom of the fault, where rupture time contours merge. The GNS prediction 364 
deteriorates where ruptures terminate early, showing RT RMSE of 0.47 s and SR RMSE 365 
of 0.81 m/s. Early rupture termination is a rare feature in the training set; this indicates 366 
that the GNS’ performance gets worse for sparsely represented features. In terms of 367 
event magnitudes, all four models perform well, showing magnitude errors between 368 
0.01 to 0.07. This means the GNS learns to preserve the total earthquake moment, 369 
although some rupture details for early termination scenarios are not well captured.   370 

 371 

Figure 5. Rupture time contour comparisons between GNS predicted dynamic ruptures 372 
(red) and PBNS ground truth (black) for four cases with hypocenter locations unseen in 373 
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the training set. Numbers are seconds since initiation when the rupture front arrives at 374 
that location and slip rate rises above 0.1 m/s. SR RMSE: Slip rate root mean square 375 
error for the slip rate time series on all fault vertices between GNS prediction and 376 
ground truth. RT RMSE: Rupture time root mean square error for rupture arrival times 377 
on all fault vertices between GNS prediction and ground truth. GT Mw: Ground truth 378 
event moment magnitude. Pred Mw: GNS predicted magnitude.  379 

Figures 6A-D show slip rate snapshots at times t = 2.2, 3.2, 4.2 and 5.2 s after rupture 380 
initiation for scenario Figure 5A. The GNS can predict the location and amplitude of the 381 
localized high slip rate rupture fronts well. Early into the rupture, the nucleation phase 382 
is captured accurately (Figure 6A), and Figure 6B shows that the reflection from the free 383 
surface and right boundary are also modeled accurately. Later into the rupture, the 384 
weaker reflection from the bottom of the fault and the surface reflection traveling to the 385 
middle depth of the fault are likewise captured (Figure 6C), along with the termination 386 
phase of rupture where slip rate drops to zero (Figure 6D). Moreover, the GNS can 387 
predict the termination of ruptures with zero slip rate across the fault (not shown).  388 
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 389 

Figure 6. Slip rate snapshots of GNS prediction and PBNS ground truth at times t = 2.2, 390 
3.2, 4.2, and 5.2 s after rupture initiation.  391 

3.2 Predicting rupture dynamics from unseen stress heterogeneity 392 

In a first step towards increased complexity, we explore how flexibly the structure of 393 
learned interactions can accommodate spatial variations in initial stress conditions. For 394 
this, we first apply the trained GNS M2 to scenarios with a single asperity of both 395 
unseen location and stress levels of 45/50 MPa (0.5/0.75 normalized stress). Figure 7 396 
shows rupture time contour comparisons, together with SR RMSE, RT RMSE, and 397 
magnitude errors. Remarkably, to us, the GNS captures both the arrivals of rupture 398 
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fronts at asperities and amplitudes of accelerations from these unseen stress levels and 399 
locations, showing SR RMSEs in the range of 0.42-0.62 m/s and RT RMSEs of 0.05-0.09 s, 400 
and magnitude errors no larger than 0.05. This indicates that heterogeneous material 401 
properties can be incorporated into the learned network. Should hold more broadly, a 402 
wide range of classes of heterogeneity, from fault roughness to friction parameters, 403 
could be considered within the GNS framework. 404 

 405 

Figure 7. Rupture time contour comparisons between GNS predicted dynamic ruptures 406 
(red) and PBNS ground truth (black) for four scenarios with unseen stress level and 407 
location of asperities (boxes) in the training set. Labels and error metrics else as in 408 
Figure 5, see there for description. 409 

 410 

We then apply the GNS to scenarios with checkerboard-type multiple stress asperities, a 411 
more complex heterogeneity pattern, at 35/55 MPa stress with an unseen hypocenter. 412 
Figure 8 shows rupture time contour comparisons. The GNS captures rupture 413 
acceleration and deceleration caused by asperities reasonably well in both scenarios, 414 
showing SR RMSEs of 0.57 to 0.72 m/s and RT RMSEs of 0.11s and magnitude error no 415 
larger than 0.05.  416 
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Figures 9 and 10 show slip rate time series at asperity centers for models as in Figure 8A 417 
and B, respectively. The first major peaks in terms of amplitude and arrival time are 418 
well predicted by GNS. In Figure 9, stations along-strike and dip coordinates (1, 7) 419 
and (3, 7) appear to miss the small, secondary peaks later in the rupture. However, a 420 
larger secondary peak is captured at station (1,3). In Figure 10, all secondary peaks 421 
are well captured. This indicates that the GNS, as trained, may occasionally miss 422 
secondary peaks at specific sites, and derived products such as ground shaking from 423 
secondary phases would be underestimated. However, the dominant control on ground 424 
shaking, earthquake moments, are well predicted for both scenarios, as shown in Figure 425 
8.  426 

 427 

Figure 8. Rupture time contour comparisons between GNS predicted dynamic ruptures 428 
(red) and PBNS ground truth (black) for two scenarios with checkerboard multiple 429 
asperities not found in the training set. Labels and error metrics else as in Figure 5, see 430 
there for description. 431 
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 432 

 433 

Figure 9. Comparisons of slip rate evolutions at the center of the asperities of the model 434 
shown in Figure 8A. Prediction is from the GNS, ground truth from the PBNS. RMSE: 435 
root mean square error for each time series; MAE: mean average error for each time 436 
series; Corr: correlation between the predicted and ground truth time series. 437 

 438 
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439 
Figure 10. Comparisons of slip rate evolutions at asperity centers in the model in 440 
Figure 8B, else as in Figure 9. 441 

3.3 Rupture dynamics predictions from unseen fractal initial stress. 442 

To explore the limit of the GNS generalization capability further, we apply GNS M2, 443 
which is only trained on two end-member stress amplitudes with a single rectangular 444 
asperity, to fractal-type distributed stresses, with amplitudes varying from 35 to 445 
55 MPa. Figure 11 shows rupture time contour comparisons between M2 predictions 446 
and PBNS ground truth for ruptures with unseen hypocenter locations, and initial stress 447 
levels and patterns with roughness in the diamond square algorithm of 𝑅 = 0.1. For 448 
Figure 11B and 11C, the GNS predicts RT RMSE of 0.11 to 0.16s and SR RMSE of 0.57-449 
0.58 m/s, and magnitude errors of 0.07 and 0.01. For Figure 11D, where early rupture 450 
termination occurs, GNS prediction deteriorates to SR RMSE of 0.92 m/s and RT RMSE 451 
of 0.95 s, but moment magnitude error is still within 0.06.  452 

In press at J. Geophys. Res. - Sol. Earth, 11/2025. doi:10.1029/2025JB031981



 453 

Figure 11. A) Smooth fractal-type initial stress with roughness in the diamond square 454 
algorithm of R = 0.1. B)-D) Rupture time contour comparisons between GNS M2 455 
predicted dynamic ruptures (red) and PBNS ground truth (black) for three scenarios 456 
with unseen stress levels and complex patterns and hypocenter locations in the training 457 
set. Labels and error metrics else as in Figure 5, see there for description. 458 

 459 

Figure 12 shows the initial stress distribution and rupture time contour comparisons for 460 
a rougher initial stress with 𝑅 = 0.5. Error metrics SR RMSEs are 0.68 and 0.66 m/s and 461 
RT RMSEs are 0.07 and 0.11s for B and C, respectively. Figure 12D shows a larger RT 462 
RMSE of 0.38 s, and SR RMSE of 0.82 m/s. Again, the magnitudes are well predicted 463 
with errors no larger than 0.07. 464 
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 465 

Figure 12. A) Fractal initial stress with intermediate roughness of R = 0.5. B)-D) Rupture 466 
time contour comparisons between GNS M2 predicted dynamic ruptures (red) and 467 
PBNS ground truth (black) for three scenarios with unseen stress levels and complex 468 
patterns and hypocenter locations in the training set. Labels and error metrics else as in 469 
Figure 5, see there for description. 470 

 471 

For initial stresses with an even higher roughness of 𝑅 = 0.9 (Figure 13A), M2 still 472 
predicts reasonable rupture dynamics and magnitudes (Table 4, D3 cases T10-T14), but 473 
the SR RMSE, RT RMSE, and magnitude errors get consistently larger. The results 474 
indicate that the features in the relatively small training set for M2 are not 475 
comprehensive enough in their spatial character to train the GNS for more complex 476 
dynamics. Using M3, a GNS with an enlarged training set with 148 scenarios, but still 477 
constant amplitude, rectangular asperities, the predictions improve significantly, with 478 
RT RMSE no larger than 0.11 s and SR RMSEs of 0.46 to 0.76 m/s (13B-D and Table 4). 479 
This indicates that there are no fundamental limitations with the GNS approach but that 480 
the spectral character of fault zone heterogeneity affects the training process and 481 
strategy. 482 
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 483 

Figure 13. A) Fractal type initial stress with high roughness R = 0.9. B)-D) Rupture time 484 
contour comparisons between GNS M3 predicted dynamic ruptures (red) and PBNS 485 
ground truth (black) for three scenarios with unseen stress levels and complex patterns 486 
and hypocenter locations in the training set. Labels and error metrics else as in Figure 5, 487 
see there for description. 488 

 489 

 490 

3.4 Generalization to larger fault geometry size. 491 

To explore geometrical extrapolation capabilities, we apply GNS M1 to a fault of 40 km 492 
length along strike, more than twice the original 18 km training length. At the same 493 
spatial resolution, the larger fault model contains an additional 122% fault vertices. 494 
While prediction errors for rupture arrival times start to accumulate for long duration 495 
state prediction, the rupture time contours generally compare well with a RT RMSE of 496 
0.12 s (Figure 14). The SR RMSE is 0.61 m/s, at a similar level to the scenarios with 497 
complex heterogeneous stress levels. The magnitude error is 0.09. This substantiates 498 
that the inductive nature of a GNS allows generalization to out of training model 499 
geometries [Pfaff et al., 2020]. We also apply the GNS to a smaller fault size of 10 km by 500 
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5 km along strike and dip, respectively. The SR RMSE of 0.21 m/s, RT RMSE of 0.01 s, 501 
and magnitude error of 0.03 for D1.T_small (Table 3) show that the GNS can generalize 502 
to smaller fault geometry, confirming its geometrical interpolation capability.  503 

 504 

 505 

 506 
Figure 14. Rupture time contour comparisons between GNS predicted dynamic 507 
ruptures (red) and PBNS ground truth (black) for a larger fault exceeding the 508 
dimensions found in the training set. Contours and labeling as in Figure 5. Slip rate 509 
snapshot comparisons are shown for three time steps.  510 

 511 

3.5 Backward compatibility 512 

Model M2 is more general, or sophisticated, than M1 given the stress heterogeneity 513 
involved in training, and one might ask if M2 is overfit, or backward compatible with 514 
scenarios with less complexity, e.g., homogenous initial stresses but different 515 
hypocenter locations. We apply M2 to the D1 test dataset and the larger fault test, and 516 
Table 3 shows misfit metrics for five testing scenarios. The errors are similar to the M1 517 
case, which indicates that M2 is indeed backward compatible with models with less 518 
complexity. 519 
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Table 3. Root mean square error of slip rate time series over all fault vertices (SR RMSE) 520 
and root mean square error of rupture time arrivals (RT RMSE) and moment magnitude 521 
error between GNS predictions using M1 and M2 on dataset D1 and corresponding 522 
PBNS ground truths.  523 

Model M1 M2 

Metrics SR 

RMSE 

(m/s) 

RT 

RMSE (s) 

Mw error SR 

RMSE 

(m/s) 

RT RMSE 

(s) 

Mw error 

D1.T0 (Fig 5A) 0.35 0.04 0.05 0.39 0.05 0.0 

D1.T1 (Fig 5B) 0.45 0.06 0.01 0.49 0.17 0.01 

D1.T2 (Fig 5C) 0.81 0.47 0.07 0.93 0.79 0.09 

D1.T3 (Fig 5D) 0.33 0.04 0.03 0.41 0.05 0.01 

D1.T_large (Fig 14) 0.61 0.12 0.09 0.51 0.07 0.05 

D1.T_small 0.21 0.01 0.03 0.33 0.02 0.06 

 524 
3.6 The impact of enlarged training set 525 

We intend to keep the training set size as small as possible, and as shown in Section 3.3, 526 
M2 with 30 scenarios approaches its limit in predicting dynamic ruptures with high 527 
fractal-type initial stresses. Table 4 shows misfit metrics for M2 and M3 predictions with 528 
initial stresses of different fractal roughness and with hypocenter locations. For the 529 
scenarios with roughness R = 0.1, M2 is competitive to M3. However, with increased 530 
complexity of 𝑅 = 0.5 and 𝑅 = 0.9, M3 consistently performs better than M2. The results 531 
substantiate that the training set size needs to match the complexity of the prediction 532 
tasks.  533 

 534 

Table 4. Root mean square error of slip rate time series over all fault vertices (SR RMSE) 535 
and root mean square error of rupture time arrivals (RT RMSE) and moment magnitude 536 
error between GNS predictions using M2 and M3 for dataset D3 with different fractal 537 
initial stresses and corresponding PBNS ground truths.  538 

Model M2 M3 Better 

model 

Metrics SR RT Mw error SR RT Mw error  
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RMSE 

(m/s) 

RMSE 

(s) 

RMSE 

(m/s) 

RMSE 

(s) 

Low stress roughness R = 0.1  

D3.T0  0.57 0.11 0.03 0.35 0.04 0.01 M3 

D3.T1 

(Fig 11B) 

0.58 0.16 0.01 0.71 0.27 0.08 M2 

D3.T3 

(Fig 11C) 

0.92 0.95 0.04 0.82 0.88 0.05 M3 

D3.T4 

(Fig 

11D) 

0.53 0.08 0.01 0.73 0.15 0.05 M2 

Intermediate stress roughness R = 0.5  

D3.T5 

(Fig 12B) 

0.68 0.07 0.07 0.46 0.03 0.07 M3 

D3.T6 

(Fig 12C) 

0.66 0.11 0.05 0.63 0.09 0.02 M3 

D3.T7 1.08 0.37 0.01 0.88 0.13 0.07 M3 

D3.T8 

(Fig 

12D) 

0.82 0.38 0.02 0.88 0.12 0.06 M3 

D3.T9 0.9 0.21 0.07 0.93 0.33 0.03 M3 

High stress roughness R = 0.9  

D3.T10 

(Fig 13B) 

0.65 0.06 0.1 0.46 0.02 0.07 M3 

D3.T11 

(Fig 13C) 

0.93 0.17 0.02 0.76 0.11 0.04 M3 

D3.T12 

(Fig 

13D) 

3.2 0.28 0.19 0.69 0.1 0.03 M3 

D3.T13 0.99 0.13 0.09 0.82 0.11 0.02 M3 

D3.T14 0.94 0.16 0.07 0.66 0.24 0 M3 

 539 

3.7 Sensitivity analyses of hyperparameters 540 
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3.7.1 Message passing steps 541 

We apply M2 to the D1 test case T_large using different message passing steps of 5, 10, 542 
and 15. Table 5 shows misfit metrics. The model with 5 message passing steps gives 543 
large SR RMSE and RT RMSE, which indicates that it is insufficient to capture the 544 
rupture dynamics. The predictions using models with 10 and 15 message passing steps 545 
match the ground truth well. Interestingly, performance of the model using 15 message 546 
passing steps is worse compared to that with 10 steps. This agrees with findings by Choi 547 
and Kumar [2024] and Sanchez-Gonzalez et al. [2020] for other physical systems. The 548 
results are consistent with the expectation that the physics for dynamic ruptures are 549 
dominated by local and short-range interactions, spanning around 10 grid cells for our 550 
experiments.  551 

Table 5. Root mean square error of slip rate time series over all fault vertices (SR RMSE) 552 
and root mean square error of rupture time arrivals (RT RMSE) and magnitude error 553 
between GNS predictions using M2, with different message passing steps, for the large 554 
homogeneous test rupture and corresponding PBNS ground truths. 555 

Model 

message 

passing steps 

/Metrics 

SR RMSE (m/s) RT RMSE (s) Mw error 

5 3.66 1.17 0.25 

10 0.51 0.07 0.05 

15 0.70 0.17 0.07 

 556 

3.7.2 Gaussian noise level added in training 557 

We explore two Gaussian noise standard deviation levels, 0.02 (default) and 0.005 m/s 558 
(0.2% and 0.05%, respectively, in terms of ~10 m/s slip rate at rupture fronts in this 559 
study). Lam et al. [2023] show that a proper level of noise added in the training 560 
trajectories are necessary to stabilize the GNS predictions. For M2 with 0.005 m/s noise, 561 
the predictions indeed fail for half of scenarios generating SR RMSE at ~100 m/s; this 562 
confirms that a ~0.2% level of noise, or so, is necessary for stable GNS performance.  563 

3.7.3 Learning rate and batch size 564 
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For M1 and M2, which have 10 and 30 scenarios in the training sets, respectively, we 565 
use a fast learning rate of 10−4 and a small batch size of 2. Given the modest complexity 566 
involved, such learning rates and small batch size do not lead to overfitting. Although 567 
the training and validation losses oscillate widely, the model performance appears 568 
robust for most of the tasks. For M3, which has 148 scenarios involved, a batch size of 2 569 
does not allow for enough complexity to be incorporated in each epoch, and the 570 
learning rate of 10−4 leads to overfitting and poor prediction. We thus use a learning 571 
rate of 3 × 10−5 and a batch size of 8, which significantly improves model performance 572 
(Table 4).  573 

 574 

3.8 Computational performance 575 

Table 6 shows computational cost per timestep of the GNS on a single Nvidia A100 GPU 576 
and the PBNS implemented by means of the EQdyna code, using 8 CPU cores on a 577 
workstation with AMD EPYC 7543, both architectures were released in 2020. The GNS 578 
run times are ~29-41 times faster than the ground truth simulations by EQdyna. This 579 
PBNS approach should be very efficient given the explicit time integration, under-580 
integrated hexagons with hourglass control, and no solving of system of equations [e.g., 581 
Liu and Duan, 2018]. The GNS still achieves an order of magnitude, ~19-fold speedup 582 
compared to the PBNS for 200 m resolution models, and a ~41-fold for 100 m resolution, 583 
i.e. finer resolved models should benefit from the GNS even more.  584 

However, a fair comparison between ML and high-fidelity type approaches is difficult. 585 
This is true in general, and here in particular. For example, we compare a PBNS EQdyna 586 
run using eight CPUs with the GNS which uses a single GPU. The GNS predicts 587 
dynamics on a 2-D surface, the fault interface, only, while EQdyna needs to solve the full 588 
physics equations for the 3-D volume surrounding the fault. A GPU-accelerated PBNS 589 
might achieve 10 fold speedup compared to single CPU [e.g., Premus et al., 2020], for 590 
example, a suggestion we cannot directly test as EQdyna currently only runs on CPUs. 591 
Either way, accepting what we suggest is roughly an order of magnitude speedup of the 592 
GNS compared to the PBNS for what might be a typical application is certainly not as 593 
striking an advantage as the performance reported for the mapping-type ML 594 
approaches. However, we note that we try to be conservative when stating speedup 595 
because we consider all time steps of the system evolution as provided by our GNS 596 
approach.  597 
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Tainpakdipat et al. (2025) use a single CPU PBNS computation as a benchmark and 598 
predict 76 time steps, subsampled 20-fold from the time steps of their PBNS. Gong et al. 599 
(2025) use 8 CPU to run their PBNS benchmarks but the ML surrogate only predicts the 600 
final time step for the rupture sequence, skipping 1500-4000 timesteps from the PBNS. 601 
Adjusting for the time steps predicted, and the CPU cores used to run the PBNS, our 602 
GNS speedup would nominally be ~3200 or ~30,000-80,000 if computed in a similar way 603 
to Tainpakdipat et al. (2025) or Gong et al. (2025), with the caveats from above.   604 

Moreover, the GNS appears quite general, with strong generalization capability, and 605 
requires relatively smaller training sets, compared to other ML approaches, where 606 
training costs can be significant. There are still ample opportunities to further optimize 607 
the GNS approach for enhanced speedup. For example, one could consider batch 608 
rollout of multiple scenarios and/or using mixed precision computing. Moreover, for 609 
GNS or other surrogate models, there is a trade-off between information yield and 610 
computational efficiency. Additional speedup could be achieved by sacrificing the 611 
information yield by, say, training the GNS on subsampled datasets. However, the 612 
advantage of the GNS is not just raw speedup for some end results, but the information 613 
yield of capturing the full spatiotemporal evolution of system states. Such outputs are 614 
valuable for uncertainty quantification and Bayesian inference, and the GNS approach 615 
is different from surrogate models that directly map input parameters to certain, 616 
restricted outputs, as noted.   617 

Therefore, the GNS approach may still offer an efficient pathway to explore the high 618 
dimensionality of rupture dynamics parameter space and work well in real world 619 
applications. The GNS implementation is parallelized [Kumar and Vantassel, 2023] and 620 
can thus take advantage of the on-going investments in massively parallel GPU 621 
architectures. Table 6 shows the training cost of M2 and M3 per million training steps at 622 
14.33 hours using a single Nvidia A100.  623 

 624 

Table 5. Computational cost for GNS rollout and comparison to traditional PBNS. 625 

Model grid size GNS rollout per 

timestep (ms) 

CPU run time 

per timestep 

(ms) 

Speedup 

200 m  ~11 ~322 ~29.3 
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100 m ~35 ~1449 ~41.4 

 626 

Table 6. Computational cost for training the GNS models. 627 

Model GNS training time per million steps using one Nvidia A100 

M2/M3 14.33 hours 

 628 

 629 

4 Discussion 630 
 631 

While the overall generalization performance of our GNS is quite good, there are, of 632 
course, limitations when seeking to predict physical behaviors that are incompletely 633 
represented or absent from the training set. As expected, if the training set only contains 634 
scenarios with homogenous initial shear stress, as for D1, the GNS fails to predict 635 
rupture acceleration/deceleration caused by stress asperities, and we cannot expect to 636 
capture other effects, such as a different friction law, without dedicated training. For 637 
early termination of ruptures, scenarios which are sparsely represented in our training 638 
set, the GNS still predicts event magnitudes well, but performs poorly for rupture arrest 639 
as might be expected (e.g. Appendix A, testing scenario D3.T2). To allow the GNS to 640 
learn early rupture termination, or any physical features critical for future applications, 641 
the training dataset should be augmented with scenarios containing those desired 642 
features, or larger weights in loss functions could be applied when rare scenario 643 
samples are trained.  644 

However, our experiments also show that the predictive power of a GNS can be 645 
incrementally improved by adding features such as heterogeneous initial stress to the 646 
training set. The GNS abstracted rules for propagating rupture appear to be 647 
automatically adapted in a suitable way by additional learning to capture the right sorts 648 
of regional interaction dynamics. We only train the GNS on modest complexity in 649 
selected parameters, such as at two asperity stress levels on a single rectangular patch, 650 
with only 30/148 scenarios. The GNS then generalizes to strongly spatially variable 651 
stress distributions, in combination with unseen hypocenter locations, and produces an 652 
estimate of the full spatiotemporal evolution of fault states.  653 
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Our GNS approach can be compared to the ML approaches of Gong et al. [2025] and 654 
Tainpakdipat et al. [2025] which are very efficient, but only provide end-to-end mappings, 655 
and rely on thousands or hundreds of thousands of training scenarios. Gong et al. [2025] 656 
show that their networks show larger errors for longer faults and more heterogenous 657 
stress patches beyond the training set. This indicates that the GNS’s generalization 658 
advantages may come with the cost of less speedup compared to the other approaches. 659 
More generally, different ML approaches show complementary strengths and 660 
weaknesses; it remains to be seen which use cases are suitable for what sort of 661 
surrogates, and how the GNS performance might be improved for specific applications.  662 

Our results highlight how the GNS can extract a type of interaction “stencil” akin to a 663 
coarse-grained, local abstraction of the key physical relationships governing rupture 664 
(i.e., conservation of momentum and mass plus constitutive law). This implies the 665 
potential to expand this analysis to a wider set of parameters and applications, such as 666 
how variations in pre-stress levels and spatial distribution affect the local interaction 667 
stencil. Since there is a link between the neural network and the physics through the 668 
interaction stencil, we might consider the GNS a candidate for a robust surrogate 669 
approach. 670 

Additional features can be added to the GNS at selected levels, and extensions to a 671 
range of heterogeneity such as variations in frictional parameters, different types of 672 
frictional evolution laws, and fault roughness appear feasible using our framework. 673 
Further exploration of an expanded rupture dynamics parameter space is interesting, 674 
and the interactions captured by enhanced learning of a more general GNS might allow 675 
for model generalization to general classes of heterogeneities and constitutive laws.  676 

Another pathway forward is to extend the current 2-D planar representation of fault 677 
geometry to fully networked fault systems by incorporating more fault geometric 678 
complexity of variations in fault dip and strike as vertex features. Representing 3-D 679 
fault network structures through a GNS 2-D graph projection may help reduce 680 
computational cost. In addition, opportunities also exist in understanding and then 681 
improving how the stencils are represented in the weights of the GNS networks, and 682 
what physical relationships results from different combinations of hyperparameters, 683 
such as message passing steps, entail to better emulate the real physical processes.  684 

Currently, our GNS only predicts slip rate evolution on the fault interface, restricting its 685 
utility for seismic hazard assessment to source characteristics such as magnitude, final 686 
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slip distribution, and rupture duration. However, there is an opportunity to 687 
additionally incorporate wave propagation on the free surface for system states and use 688 
the GNS to predict rupture and ground shaking concurrently. Broadening the GNS to 689 
predict surface motions will further enhance its utility for seismic hazard assessment of 690 
ground shaking.  691 

Efforts to build enhanced GNS surrogates, with parallelization, should reduce the 692 
computational costs. We speculate that applications may include surrogates to relate 693 
probabilistically represented fault zones to seismicity, and a more broadly trained GNS 694 
might represent one version of a much-needed comprehensive representation of our 695 
best guesses for the fundamental sets of multi-scale fault zone physics.  696 

The GNS can then be a general, physics informed operator, generating likely rupture 697 
characteristics with quantified uncertainties based on incomplete, variable resolution, 698 
time-dependent, heterogenous initial conditions and material parameters. While we are 699 
only concerned with the rupture dynamics problem here, a similar GNS approach 700 
should lend itself readily to other transient earthquake system problems such as fault 701 
network, post-seismic, and earthquake cycle stress heterogeneity evolution.  702 

 703 

5 Conclusions  704 
 705 

We present a Graph Network-based Simulator (GNS) for dynamic earthquake rupture. 706 
The GNS can predict rupture dynamics in comparable accuracy to high-fidelity physics-707 
based simulations, in particular during the nucleation and rupture front propagation 708 
stage, with ~20-40 times per-time-step speedup compared to the physics-based 709 
modeling. The generalization capability of the GNS extends to scenarios with unseen 710 
hypocenter locations, stress asperity strength and geometry variations, and fault sizes. 711 
The GNS appears to learn a coarse-grained version of the physics governing local 712 
dynamics on the fault plane. This physics-informed structure of the GNS implies good 713 
robustness, as well as providing new perspectives on how to potentially explore 714 
different types of physical interactions of relevance for earthquake dynamics. With 715 
improved computational efficiency and expanded training, the GNS may be suited to 716 
serve as a comprehensive surrogate for future Bayesian model inference, uncertainty 717 
quantification, or optimal experimental design tasks. Those could cover rupture 718 
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dynamics applications within both a fundamental exploration of physics and an 719 
operational, time-dependent seismic hazard assessment context.  720 
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Appendix A. Predicting rare physical feature of early rupture termination. 737 

Figure A1A shows the prediction of M1 on testing scenario D1.T3 where the rupture 738 
terminates early in the middle of the fault, where dense rupture curves merge, and the 739 
GNS, which is not trained to learn such rare physical dynamic pattern, fails to capture 740 
the termination. In this case, the prediction of magnitude errors at ~0.3. Figure A1B 741 
shows the prediction of M3 on testing scenario D3.T2, where rupture terminates 742 
prematurely but ruptures coming from the top half of the fault keeps breaking the 743 
whole fault. The GNS predicts continuous ruptures where the ground truths show 744 
terminations. However, in this case, the magnitude is still well predicted.  745 

746 
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 747 

Figure A1. A) Rupture time contour comparisons between GNS M1 predicted dynamic 748 
ruptures (red) and PBNS ground truth (black) for testing scenario D1.T3 with unseen 749 
hypocenter locations in the training. B) Rupture time contour comparisons between 750 
GNS M3 predicted dynamic ruptures (red) and PBNS ground truth (black) for testing 751 
scenario D3.T2 with unseen stress levels and complex patterns and hypocenter locations 752 
in the training set. Labels and error metrics else as in Figure 5, see there for description. 753 
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