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Highlights

1. We develop a Graph Network-based Simulator (GNS) for rupture dynamics.

2. The GNS generalizes to unseen hypocenters, pre-stress levels, and fault sizes
with dozens to hundreds training scenarios.

3. The GNS achieves ~20-40 per-time-step speedup compared to physics-based

EQdyna and may help with uncertainty quantification and Bayesian inference.
Abstract

Earthquakes arise from tectonic loading of complex fault systems consisting of
heterogeneous material parameters, geometry, rheology, and prestress. All of those are
subject to uncertainties, and their interactions and sensitivities for the dynamic rupture
problem are incompletely understood. Here, we apply Graph Neural Networks (GNNs)
to approximate the behavior learned from more computationally intensive, physics-
based (“high-fidelity”) computations to build a GNN-based simulator (GNS) for
earthquake rupture dynamics. Given only a minimum input —the hypocenter location—
our GNS can reproduce rate-weakening friction governed dynamic rupture behavior,
from nucleation to propagation and termination. Outside the training set, the GNS can
generalize well to different hypocenter locations, fault sizes, and pre-stress state levels
while achieving a factor ~20-40 per-time-step computational speedup. This may allow
for more efficient estimates of the mapping from pre-earthquake state, as might be
inferred from geodesy, to expected rupture dynamics, for example. By extracting a
coarse-grained version of the underlying dynamics, the GNS provides new perspectives
to explore the physics of rupture. Further development of GNS may enable new kinds
of parameter space exploration and provide surrogates for Bayesian model inference,

uncertainty quantification, and optimal experimental design.
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Plain language abstract

Large earthquakes pose major seismic hazards, but their source processes are hard to
constrain and predict due to many uncertainties. Scientists generally use “high-fidelity”,
tull physics-based models to study earthquake dynamics, but the high computational
cost can limit the exploration of parameters and uncertainties. With the advance of
GPU-accelerated computing and deep learning, Graph Network-based Simulators
(GNSs) have emerged as powerful tools to model complex physical dynamics. Here, we
apply GNS to learn and predict earthquake source dynamics governed by rate-
weakening friction. Our GNS can generalize to unseen hypocenters, pre-stresses, and
fault geometries. It also runs faster than the traditional physics-based approaches,
providing a potential avenue for uncertainty quantification and inferring rupture

physics from observations.

1. Introduction

Even though major faults in plate boundaries are mapped relatively well in seismically
active regions, large earthquakes continue to surprise us with their complexity.
Ruptures arise from tectonic loading of fault systems that are characterized by
heterogeneous material parameters, irregular and multi-strand geometry, and variable
stress state. Despite progress in incorporating observationally constrained stress
conditions and laboratory-derived friction laws for complex rupture scenarios [e.g., Jia et
al., 2023; Ramos et al., 2021; Ulrich et al., 2019], many parameters influencing rupture
dynamics remain poorly constrained. There are also remaining unknowns on the
physical process side, such as to the role of fluids, frictional relationships, and rheology.
Currently, there are few modeling frameworks capable of incorporating all relevant
physics in a unified way to enable uncertainty quantification or Bayesian model

inference for earthquake rupture.

Analysis typically must rely on a limited number of physics-based numerical
simulations (PBNS) to explore aspects of the sensitivities of the nonlinear dynamics
involved. For example, as for the basic rupture conditions, Andrews and Barall [2011]

show how the combination of initial stress distributions and slip-weakening laws [e.g.,

In press at J. Geophys. Res. - Sol. Earth, 11/2025. doi:10.1029/2025JB031981



64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96

Day, 1982; Ida, 1972] generate realistic rupture scenarios. Shi and Day [2013] show how
fractal fault roughness and rate- and state- friction [Dieterich, 1979; Ruina, 1983] with
normal stress dependence [Dieterich and Linker, 1992] reproduces realistic high
frequency ground motion. Some of the additional effects explored with PBNS include
the role of non-planar fault geometry and rate-weakening friction [e.g., Dunham et al.,
2011; Luo and Duan, 2018] and the effects of fault valving and pore pressure evolution
le.., Zhu et al., 2020]. Moreover, Duan and Oglesby [2006], Liu et al. [2022], and Shaw et al.
[2022] highlight how multi-fault geometries and earthquake sequences shape stress

evolution and rupture segmentation over time.

PBNS approaches have also been used for Bayesian inversions for pre-stress and friction
parameters for single ruptures [e.g., Gallovic et al., 2019; Suhendi et al., 2025;
Taufiqurrahman et al., 2022], for example. However, integrating a range of plausible
physics into a 3-D model with multiple fault segments while allowing for exploration of
both structure and physics uncertainties remains a significant computational and
technical challenge. Yet, this is what is ultimately required for hazard estimates, such as
when seeking to map from inferred fault loading distributions to likely rupture

scenarios.

Very recently, machine learning surrogates based on deep neural networks have started
to be used to emulate dynamic ruptures. RuptureNet2D [Gong et al., 2025], trained on
300,000 2-D dynamic rupture simulations, provides a mapping from initial stress,
frictional parameters, and hypocenter locations to rupture arrival times and final slip. A
reported speedup of ~1000 times compared to PBNS is partially achieved by targeting
only the final output and bypassing the intermediate steps, and generalization is
challenging when extrapolating to fault lengths and additional asperity patches beyond
the training set. Tainpakdipat et al. [2025] present another end-to-end projection-type
model using Fourier Neural Operators trained on 3000 scenarios with fractal initial
stresses, to map initial stress and frictional parameters to subsampled timeseries of slip
rate. Their models achieve a reported ~10° speed up, with the limitation that the

predictions are confined to trained nucleation locations and fixed rupture duration.

We explore an alternative deep learning approach using Graph Neural Networks
(GNNs) here. GNNs have emerged as promising tools to capture the temporal
evolution of high-dimensional physical systems simulations by emulating all

intermediate system states [e.g., Lam et al., 2023; Pfaff et al., 2020; Sanchez-Gonzalez et al.,
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2020] and show strong generalization capabilities in terms of initial conditions, feature
complexities, and model domain sizes. GNNs are particularly well suited for
representing particle- and mesh-based systems, which many PBNS for rupture
dynamics, such as finite-element and finite-difference methods, adopt [e.g., Harris et al.,
2018; Liu and Duan, 2018; Premus et al., 2020; Ulrich et al., 2019; Wang and Day, 2020;
Withers et al., 2018]. GNN-based simulators (GNSs) can capture a wide range of physical
processes, including turbulent flow and solid and granular mechanics [Choi and Kumar,
2024; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020] and other nonlinear systems such as
weather [Lam et al., 2023; Price et al., 2024] and climate [Kochkov et al., 2024].

Besides the typical finding that GNS can provide computational speedup compared to
PBNS, GNS’ inductive nature allows generalization to system sizes not seen during
training [Thangamuthu et al., 2022]. Moreover, incorporating physics-informed bias, such
as inertia, in deep learning frameworks has also been shown to improve performance in
the learning of dynamics [Choi and Kumar, 2024; Thangamuthu et al., 2022], and GNS
show remarkable generalization and physics abstraction capabilities [Choi and Kumar,
2024; Pfaff et al., 2020; Thangamuthu et al., 2022].

Here, we develop a GNS for earthquake dynamics on a 2-D fault interface embedded in
3-D rock volume where the training data are generated from dozens to hundreds of 3-D
PBNS rupture dynamics models and fault sliding is governed by friction with strong
rate-weakening. We explore the GNS performance and generalization capabilities for
three different types of setups —unseen hypocenters, pre-stress amplitudes and
distributions, and fault sizes, and discuss GNS strengths, limitations, and potential

future applications to earthquake physics and hazard.

2. Methods

2.1 The high fidelity, PBNS model

We use the CPU-parallelized finite-element software EQdyna [Duan and Oglesby, 2006;
Liu and Duan, 2018; Liu et al., 2022] to generate earthquake rupture scenarios (sequences
of fault sliding velocity states, or slip rates) at “high fidelity”, to train the GNS and as

ground truth for testing and validation. EQdyna solves the 3-D elastodynamic equations
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of motion with a friction law on fault interfaces for rupture propagation including wave
radiation. EQdyna has been benchmarked extensively, e.g. within the SCEC Spontaneous
Rupture Code Verification Project [Harris et al., 2009, 2018]. Here, we choose the SCEC
benchmark TPV104 as the reference, because the associated strong rate-weakening
friction law produces significant slip rate changes during rupture. Moreover, this test
case has been used for benchmarking by many rupture codes, ensuring comparability
and easy reproducibility of our study. We then vary hypocenter locations and initial

stress levels and stress anomaly distributions.

Figure 1A shows our reference setup, which models earthquake dynamics for a vertical,
strike-slip, planar fault embedded in a 3-D isotropic, linear elastic half space, and
breaking the surface. Slip evolution is governed by rate- and state- friction with strong-
rate weakening (Table 1), following eqgs. (1-7) in the SCEC TPV104 benchmark
description (strike.scec.org/cvws/download/SCEC validation slip law.pdf).
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Figure 1. A) Model setup for earthquake rupture dynamics. A fault interface is
embedded in a 3-D elastic volume, and the fault walls move relative to each other, with
relative displacement defined as slip. Slip evolution is influenced by initial stress
conditions, frictional mechanisms and other parameters such as hypocenter location. B)
Hypocenter locations used to construct Dataset D1 for GNS with training (blue),

validation (green), and test (red) sets. Gray dots represent fault nodes in the reference
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model. C)-D). Final slip distribution and rupture time contours from two scenarios in

the training set. White numbers indicate rupture arrival times in seconds.

We use a fault dimension of 18 x 10 km, 200 m on-fault grid size, and there are a total of
4,500 fault nodes in each scenario. The 3-D model domain boundaries are extended
20 km away from the nearest fault edges, respectively, and radiated seismic waves are
damped by absorbing boundary conditions [Liu and Duan, 2018]. We start with
homogeneous initial stresses and frictional parameters; at the hypocenter, nucleation is
driven by imposing an additional shear stress over 1 s and within a 3 km radius, as per
eqgs. (14-16) in the benchmark. Because the fault is uniformly velocity weakening,
rupture front reflections from fault boundaries are expected. This setup is intended to
test the GNS’ capability to learn and predict the dynamics beyond simple, crack-like

extension of the rupture, such as the effect of boundaries.

Each computational scenario lasts 15 s, which is long enough for rupture to propagate
over the whole fault and die out. With a time increment of 0.0167 s, each scenario
contains 900 time steps. At the beginning of each scenario, the earthquake is under
forced nucleation with minimal slip rate information on the fault. Therefore, we use
rupture states after initiation at time t = 1.2 s to train the GNS models; this gives 826

time steps per scenario.

Table 1. Key parameters for the reference, physics-based numerical model

Fault length along strike (km) 18
Fault width along dip (km) 10
Grid size (m) 200
Initial shear stress (MPa) 40
Initial normal stress (MPa) 120
Density (km/m?) 2670
S-wave velocity (km/s) 3.464
P-wave velocity (km/s) 6

Rate- and state- friction parameters

Reference friction coefficient 0.6
Reference slip rate (m/s) 10

a 0.01
b 0.014
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Characteristic length, L, (m) 04

Friction threshold for strong rate weakening, f,, 0.2

Slip rate threshold for strong rate weakening, V,,, (m/s) 0.1

Initial state variable value, ¥ 0.563591842632738
Additional peak shear stress for nucleation (MPa) 45
Nucleation radius (km) 3

Artificial nucleation duration (s)

2.2 Graph neural networks and message passing
2.2.1 Graphs and earthquake system rupture state

Graph formalisms can be applied to emulate physical system interactions [e.g., Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2020]. In an elastic solid, a frictional interface which
governs earthquake rupture dynamics can be modeled as a graph G = (V, E) where a set
of vertex variables V (v; € V) captures the kinematics of discretized vertices on the
interface, and a set of edges E (e;; € E) represents physical interactions between

neighboring vertices through their relative locations (v; and v;).

In our finite-element approach [e.g., Liu and Duan, 2018; Liu et al., 2022], we discretize
the fault interface into vertices Vgg which are connected by edges Erg. We define a
rupture state at time t as S; (1, x), for all the vertices’ slip rates i; and their locations x;
on the fault interface (i € Vgg). Slip rate is the relative velocity between two fault walls
bordering the interface. We then use a graph G = (Vgg, Egg) to represent the rupture

state and its evolution.
2.2.2 Graph Neural Networks (GNNs) and Message Passing

A Graph Neural Network (GNN) is an essential element in GNS architecture. The GNN
takes a graph G = (Vgg, Epg) as the input and outputs a new graph G’ = (Vgg, Epg) with
updated ; and e; ; through message passing [Gilmer et al., 2017]. Message passing is the
process by means information is propagated through the graph structure, e.g., capturing
the transport of energy and momentum. In the dynamic rupture context, the GNN takes
graph G = (Vgg, Egg) as the input that describes the current system state S; and updates

to anew G' = (Vgg, Epg), which after decoder and updaters, returns the next state S;;.

Message passing contains three steps:
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1. Message construction e ;= bo, Vi, V), €;)) (1)

2. Message aggregation (2)
1_7,: = 2 e:‘]
JEN()
3. Update to vertex v; =Ye,(Vi, V) (3)

Here, @4 and @, are a set of learnable parameters; ¢g, is the message construction

function, a matrix operation, that takes in the attribute vectors of the connecting vertices
(v; and v;) and those of the edge connecting the two vertices (e;;) and returns an
updated edge feature vector e; ;. Then, messages are aggregated toward a single vector
U; where N (i) is the set of sender vertices j related to vertex i. The last step is to update
vertex features using the aggregated message ; and the current attribute vector v;,
through the update function Yo, = 0,(¥; +vy).

We refer readers to Figure 2 in Choi and Kumar [2024] for an illustration of the message
passing concept in the GNN context. After message passing, the graph is updated to
G' = G(Vig, Epg) = G(v;, €; ;). To propagate the information further into the network,
multiple message passing steps can be used, where the involved “hyperparameter”
choices affect model prediction performance and computational speed. In a supervised

learning setup, learnable parameters are optimized through training.
2.3. The surrogate, GNS model

On top of the GNNs is the GNS architecture to learn and predict earthquake rupture
state evolution. We adapt an open-source, mesh-based GNS, MeshNet [Choi and Kumar,
2024; Kumar and Choi, 2023; Kumar and Vantassel, 2023] and proceed to present details on
GNS input, as well as the encoder, processor, decoder, and updater, as shown in Figure
2.

2.3.1 Input

The input to the GNS, st € S¢, is a vector containing current slip rate u} and on-fault
location along strike and dip, X; = [X{ syike, X[ aip], T€spectively, for all vertices. The
current state is st = [u}, x}]. Sanchez-Gonzalez et al. [2020] show that for mesh-based
GNS, only the current state should be used to predict the next one, without the need for
memory of past states; this is different from the particle-based GNS examples for

granular flow [Choi and Kumar, 2024]. Vertex attributes can be expanded to include other
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features such as initial shear stress level, T}, or frictional parameters, pore pressure, or

different frictional laws.
2.3.2 Encoder

The vertex and edge encoders, e§ and &§ converts s} into the vertex and edge attribute
vectors v{ and e ; and embed them into a latent graph G, = (V,, Eo) where v} € ¥ and

t
ei’j € Eo.

vi =eg(it)), ef;=¢e§(x) (4)

A two-layered, 128-dimensional multi-layer perceptron (MLP) is used for the g and &g,
respectively. The vertex encoder &g uses only slip rates u} to make predictions without
the current position information. The updated positions of vertices are predicted using

the last positions and slip rates by an explicit Euler step.
2.3.3 Processor

Starting from the initial graph G, the processor handles message passing (egs. (1) to (3))
for M steps (i.e., message passing steps; Gy = G; = -+ = Gy) and returns the updated
graph G). We use two-layered 128-dimensional MLPs for both the message construction

function, ¢g " and vertex update function, Yo, and element-wise summation for the

message aggregation in eqs. (1-3).
2.3.4 Decoder

The decoder 8§ extracts the dynamics y! € Y; from the vertices v} using the final graph

Gy following yt = §§(v)). A two-layer 128-dimensional MLP is used for §3.
2.3.5 Updater

The dynamics y¢, analogous to slip acceleration, are used to predict the next time-step
slip rate, which is updated using Euler integration to get the next time-step location
xi*1. As noted by Choi and Kumar [2024], this updater imposes the inductive biases of an
inertial frame to force the GNS to learn the interaction dynamics to improve learning
efficiency. A traditional neural network must learn both the update function and the
interaction dynamics. Ideally, this implies that the GNS learns the actual dynamics, i.e. a

coarse-grained version of local physical interactions, regardless of absolute vertex
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positions. This approach permits the GNS to generalize beyond the training fault plane

size, hypocenter locations, stress levels and distributions, as will be shown below.

The task then is to predict the next state, S;41 (i, x), from the current, S, (i, x), using the
GNS (Figure 2A). Following Sanchez-Gonzalez et al. [2020] and Choi and Kumar [2024],
Figure 2B shows the structure of the GNS which uses a learned dynamic model, dg, to
predict dynamics, Y;, analogous to slip acceleration, from an input state, S;, and the
updater to estimate the next state, S;,;. Figure 2C shows the structure of dg, which
contains an encoder to construct a graph G, from the input state Sy, a processor using
message passing [Gilmer et al., 2017] through M GNNs to update graphs, and a decoder

to extract dynamics information, Y;, from the last graph, Gy,.

St+1 St+2 Sy

- - GNS - GNS - -
NucleaV \ Rupture propagatlon Termination

t Updater — St41

9

S

5. — [ Engodar ] — Go—[GMNa ] — Gy — = —= G-y — NNy 5] 6y Becoder ] — ¥

Encoder: construct graph Processor: message passing Decoder: predict dynamics

Figure 2. Concept of using Graph Network-based Simulator (GNS) to predict
earthquake rupture dynamics with nucleation, rupture propagation, and termination,
and the GNS architecture (modified from Choi and Kumar [2024] and Sanchez-Gonzalez et
al. [2020]). A) With an initial state S, as input, the GNS predicts the next state and
autoregressively generate state predictions for entire ruptures. B) The GNS predicts
dynamics, Y;, using the learned dynamics model, dg, and then uses an updater to
predict next state, S¢;;. C) The structure of the learned dynamics model dg, which

includes an encoder to construct graph G, from input state S;, a processor using
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message passing through M Graph Neural Networks (GNNSs) to update graphs, and a

decoder to extract dynamics information Y; from the last graph Gy,.

2.4 Reference datasets

We prepare two datasets to train the GNS focusing on different objectives and a third
dataset to test GNS performance on more complex cases. Dataset D1 has homogenous
initial shear stress of 40 MPa on the fault but variable hypocenter locations. Our goal is
to test whether the GNS can predict the right rupture dynamics even though
hypocenter locations are different from those in the training data. Figure 1B shows the
distribution of hypocenters for rupture scenarios in the training, validation, and testing
sets, each of which contains 10, 3, and 6 scenarios, respectively. Figures 1C and D show
final slip distributions and rupture front arrival time contours from two scenarios in the

training set as an example.

Dataset D2, in addition to various hypocenters, contains heterogeneous initial stress
cases, here initially chosen for simplicity to be in the form of 4 X 4 km asperities at 35,
45, 50, and 55 MPa stress levels, representing 10% of all the fault vertices. Figures 3A-E
show the five hypocenter locations and associated locations of asperities with 35/55 MPa
initial stress in the training set for M2, which totals at 30 scenarios. Figure 3F shows
hypocenters and stress asperities of selected scenarios in the test set, whose asperity
stresses (45/50 MPa) differ from those in the training set. We want to see if the GNS
trained on D2 can generalize to unseen stress amplitudes and asperity locations, in
combination with unseen hypocenter locations, and predict the associated modulations
of rupture speed. To explore the effect of the size of training set, we also train model M3
on additional scenarios from dataset D2; 37 scenarios are selected for each asperity
stress level, which has five hypocenter locations. With four asperity stress levels, the

total number of scenarios in the training set is 148 scenarios.

To test the limits of the GNS’ generalization capability, we build another Dataset D3
with 15 scenarios using fractal-type, irregularly distributed, “rough” initial stress. There
are five scenarios with different hypocenter locations for each roughness R of 0.1, 0.5,
and 0.9, using the diamond square algorithm (Fournier et al., 1982), for initial stresses as
shown in Figures 11A, 12A, and 13A. We test GNS M2 and M3 on D3 to check if the
GNS can capture more complex stress distributions based on learning relatively simple,
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298
299 Figure 3. Hypocenter and stress anomaly (i.e., asperity) locations (boxes) and

300 normalized asperity stress levels at 0, 0.25 (outside of asperity), 0.5, 0.75, and 1, which
301  linearly corresponds to 35, 40 (outside of asperity), 45, 50, and 55 MPa. A)-E) 30
302  scenarios used in the training set, which contains only normalized asperity stress levels
303 at zero and unity. F) Initial stress setups in selected scenarios from the test set with

304 normalized stress levels at 0.5 and 0.75, which are unseen in the training set.

305
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2.5 Training and prediction

We train the GNS’ learnable parameter sets to minimize the mean square error (MSE)
between predicted normalized slip acceleration proxy y¢ and normalized ground truth
slip acceleration it;, computed by derivatives of slip rate u,, for all the fault vertices
based on a standard gradient-based optimizer, Adam [Kingma and Ba, 2014] run over
training time steps and epochs. GNS performance is affected by the choices of
hyperparameters, such as learning rate, number of message passing steps in GNNs, and
noise levels. We start from hyperparameters optimized for granular dynamics [Choi and
Kumar, 2024] including the number of message passing steps of 10, learning rate of 10+,
batch size of 2, and Gaussian distributed noise with standard deviation of 0.02 m/s
(Table 2). These hyperparameters achieve a good balance between predicting
performance and training cost for our problem as well [cf. Pfaff et al., 2020]. We also
explore the effect of hyperparameter choices (Table 2) on training and prediction

performance (Section 3.7).

During the prediction phase of the GNS, i.e., rollout, we take an initial state which
contains relatively small slip rate distributions (with peak ~1 m/s) inside the nucleation
zone att = 1.2 s simulation time, and the GNS then autoregressively generates the

entire time sequence of earthquake rupture.

Table 2. GNS Hyperparameters

Model M1/M2 M3
Learning rate 10+ 3 x10°
Batch number 2 8
Number of message passing steps 5/10/15 5/10/15
Gaussian noise level 0.02/0.005 0.02/0.005
Number of hidden layers in multi-layer perceptron 2 2
Dimension of hidden layers in multi-layer perceptron | 128 128

Figures 4A, 4B, and 4C show the training and validation loss curves for GNS M1, M2,
and M3 trained on Datasets D1 (10 scenarios), D2 (30 scenarios), and D2 (148 scenarios),
respectively. For M1, the training and valid loss show rapid descent until 1 million steps

and a slower decrease afterward. There is no apparent overfitting (where we would
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expect validation loss increase and training loss to keep decreasing) over the whole
training process. However, we do not expect significantly improved performance after

3 million steps. We thus consider the GNS for M1 trained at 3 million steps.

For M2, the training loss follows a similar trend to that in M1, with improvements
diminishing after 1 million steps. Again, there is no sign of overfitting, and we choose
the GNS for M2 trained at 3 million steps. The strong oscillations and training and
validation losses reflect the fast learning rate of 10 used. For M3 with a lower learning
of 3 x 10° and larger batch size of 8, the oscillations of losses over training steps are
smaller. We choose M3 trained at 2.7 million steps as the training improvement
diminishing with more steps. Interestingly, the strong oscillations appear not affect
GNS performance. We also train M2 at a same slower learning of 3 x 10, but it appears
not affect the performance and oscillations. Adaptive learning rates or alternative
optimizer choices may help suppress the oscillations and improve training stability or

convergence speed.
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Figure 4. Training and validation loss for dataset M1 (A), M2 (B), and M3 (C) tabulated
every 5000 steps.

3. Results

3.1 Predicting rupture dynamics from unseen hypocenters

We applied the M1 trained GNS to predict rupture propagation from unseen
hypocenter locations. For this, we provide an initial state with slip rate distribution near
the hypocenter and the GNS then generates the entire time sequence of rupture states

autoregressively. Figure 5 shows rupture time contour comparisons between GNS
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predictions and PBNS ground truth from four scenarios. We report three metrics, root
mean square error of slip rate time series over all the fault vertices (SR RMSE), root
mean square error of rupture arrival times over all the fault vertices (RT RMSE), and the

difference between predicted and ground truth event moment magnitude, Mo,

respectively.

The GNS predicts rupture front arrivals well overall, showing RT RMSE of 0.04-0.06 s
for Figure 5A-C, and SR RMSE of 0.33-0.45 m/s, where peak slip rates are in the range of
20-30 m/s. Figure 5D shows a scenario where rupture terminates early close to the
bottom of the fault, where rupture time contours merge. The GNS prediction
deteriorates where ruptures terminate early, showing RT RMSE of 0.47 s and SR RMSE
of 0.81 m/s. Early rupture termination is a rare feature in the training set; this indicates
that the GNS’ performance gets worse for sparsely represented features. In terms of
event magnitudes, all four models perform well, showing magnitude errors between
0.01 to 0.07. This means the GNS learns to preserve the total earthquake moment,

although some rupture details for early termination scenarios are not well captured.
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Figure 5. Rupture time contour comparisons between GNS predicted dynamic ruptures

(red) and PBNS ground truth (black) for four cases with hypocenter locations unseen in
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the training set. Numbers are seconds since initiation when the rupture front arrives at
that location and slip rate rises above 0.1 m/s. SR RMSE: Slip rate root mean square
error for the slip rate time series on all fault vertices between GNS prediction and
ground truth. RT RMSE: Rupture time root mean square error for rupture arrival times
on all fault vertices between GNS prediction and ground truth. GT Mw: Ground truth

event moment magnitude. Pred Mw: GNS predicted magnitude.

Figures 6A-D show slip rate snapshots at times ¢t = 2.2, 3.2, 4.2 and 5.2 s after rupture
initiation for scenario Figure 5A. The GNS can predict the location and amplitude of the
localized high slip rate rupture fronts well. Early into the rupture, the nucleation phase
is captured accurately (Figure 6A), and Figure 6B shows that the reflection from the free
surface and right boundary are also modeled accurately. Later into the rupture, the
weaker reflection from the bottom of the fault and the surface reflection traveling to the
middle depth of the fault are likewise captured (Figure 6C), along with the termination
phase of rupture where slip rate drops to zero (Figure 6D). Moreover, the GNS can

predict the termination of ruptures with zero slip rate across the fault (not shown).
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Figure 6. Slip rate snapshots of GNS prediction and PBNS ground truth at times t =2.2,
3.2,4.2, and 5.2 s after rupture initiation.

3.2 Predicting rupture dynamics from unseen stress heterogeneity

In a first step towards increased complexity, we explore how flexibly the structure of
learned interactions can accommodate spatial variations in initial stress conditions. For
this, we first apply the trained GNS M2 to scenarios with a single asperity of both
unseen location and stress levels of 45/50 MPa (0.5/0.75 normalized stress). Figure 7
shows rupture time contour comparisons, together with SR RMSE, RT RMSE, and

magnitude errors. Remarkably, to us, the GNS captures both the arrivals of rupture
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fronts at asperities and amplitudes of accelerations from these unseen stress levels and
locations, showing SR RMSE:s in the range of 0.42-0.62 m/s and RT RMSEs of 0.05-0.09 s,
and magnitude errors no larger than 0.05. This indicates that heterogeneous material
properties can be incorporated into the learned network. Should hold more broadly, a
wide range of classes of heterogeneity, from fault roughness to friction parameters,
could be considered within the GNS framework.
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Figure 7. Rupture time contour comparisons between GNS predicted dynamic ruptures
(red) and PBNS ground truth (black) for four scenarios with unseen stress level and
location of asperities (boxes) in the training set. Labels and error metrics else as in

Figure 5, see there for description.

We then apply the GNS to scenarios with checkerboard-type multiple stress asperities, a
more complex heterogeneity pattern, at 35/55 MPa stress with an unseen hypocenter.
Figure 8 shows rupture time contour comparisons. The GNS captures rupture
acceleration and deceleration caused by asperities reasonably well in both scenarios,

showing SR RMSEs of 0.57 to 0.72 m/s and RT RMSEs of 0.11s and magnitude error no
larger than 0.05.
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Figures 9 and 10 show slip rate time series at asperity centers for models as in Figure 8A
and B, respectively. The first major peaks in terms of amplitude and arrival time are
well predicted by GNS. In Figure 9, stations along-strike and dip coordinates (-1, —7)
and (3, —7) appear to miss the small, secondary peaks later in the rupture. However, a
larger secondary peak is captured at station (=1, —3). In Figure 10, all secondary peaks
are well captured. This indicates that the GNS, as trained, may occasionally miss
secondary peaks at specific sites, and derived products such as ground shaking from
secondary phases would be underestimated. However, the dominant control on ground

shaking, earthquake moments, are well predicted for both scenarios, as shown in Figure
8.
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Figure 8. Rupture time contour comparisons between GNS predicted dynamic ruptures
(red) and PBNS ground truth (black) for two scenarios with checkerboard multiple

asperities not found in the training set. Labels and error metrics else as in Figure 5, see
there for description.
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434  Figure 9. Comparisons of slip rate evolutions at the center of the asperities of the model
435 shown in Figure 8A. Prediction is from the GNS, ground truth from the PBNS. RMSE:
436 root mean square error for each time series; MAE: mean average error for each time

437  series; Corr: correlation between the predicted and ground truth time series.

438
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Figure 10. Comparisons of slip rate evolutions at asperity centers in the model in

Figure 8B, else as in Figure 9.
3.3 Rupture dynamics predictions from unseen fractal initial stress.

To explore the limit of the GNS generalization capability further, we apply GNS M2,
which is only trained on two end-member stress amplitudes with a single rectangular
asperity, to fractal-type distributed stresses, with amplitudes varying from 35 to
55 MPa. Figure 11 shows rupture time contour comparisons between M2 predictions
and PBNS ground truth for ruptures with unseen hypocenter locations, and initial stress
levels and patterns with roughness in the diamond square algorithm of R = 0.1. For
Figure 11B and 11C, the GNS predicts RT RMSE of 0.11 to 0.16s and SR RMSE of 0.57-
0.58 m/s, and magnitude errors of 0.07 and 0.01. For Figure 11D, where early rupture
termination occurs, GNS prediction deteriorates to SR RMSE of 0.92 m/s and RT RMSE

of 0.95 s, but moment magnitude error is still within 0.06.
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Figure 11. A) Smooth fractal-type initial stress with roughness in the diamond square
algorithm of R = 0.1. B)-D) Rupture time contour comparisons between GNS M2
predicted dynamic ruptures (red) and PBNS ground truth (black) for three scenarios
with unseen stress levels and complex patterns and hypocenter locations in the training

set. Labels and error metrics else as in Figure 5, see there for description.

Figure 12 shows the initial stress distribution and rupture time contour comparisons for
a rougher initial stress with R = 0.5. Error metrics SR RMSEs are 0.68 and 0.66 m/s and
RT RMSEs are 0.07 and 0.11s for B and C, respectively. Figure 12D shows a larger RT
RMSE of 0.38 s, and SR RMSE of 0.82 m/s. Again, the magnitudes are well predicted

with errors no larger than 0.07.
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Figure 12. A) Fractal initial stress with intermediate roughness of R = 0.5. B)-D) Rupture
time contour comparisons between GNS M2 predicted dynamic ruptures (red) and
PBNS ground truth (black) for three scenarios with unseen stress levels and complex
patterns and hypocenter locations in the training set. Labels and error metrics else as in

Figure 5, see there for description.

For initial stresses with an even higher roughness of R = 0.9 (Figure 13A), M2 still
predicts reasonable rupture dynamics and magnitudes (Table 4, D3 cases T10-T14), but
the SR RMSE, RT RMSE, and magnitude errors get consistently larger. The results
indicate that the features in the relatively small training set for M2 are not
comprehensive enough in their spatial character to train the GNS for more complex
dynamics. Using M3, a GNS with an enlarged training set with 148 scenarios, but still
constant amplitude, rectangular asperities, the predictions improve significantly, with
RT RMSE no larger than 0.11 s and SR RMSEs of 0.46 to 0.76 m/s (13B-D and Table 4).
This indicates that there are no fundamental limitations with the GNS approach but that
the spectral character of fault zone heterogeneity affects the training process and

strategy.
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Figure 13. A) Fractal type initial stress with high roughness R = 0.9. B)-D) Rupture time
contour comparisons between GNS M3 predicted dynamic ruptures (red) and PBNS
ground truth (black) for three scenarios with unseen stress levels and complex patterns
and hypocenter locations in the training set. Labels and error metrics else as in Figure 5,

see there for description.

3.4 Generalization to larger fault geometry size.

To explore geometrical extrapolation capabilities, we apply GNS M1 to a fault of 40 km
length along strike, more than twice the original 18 km training length. At the same
spatial resolution, the larger fault model contains an additional 122% fault vertices.
While prediction errors for rupture arrival times start to accumulate for long duration
state prediction, the rupture time contours generally compare well with a RT RMSE of
0.12 s (Figure 14). The SR RMSE is 0.61 m/s, at a similar level to the scenarios with
complex heterogeneous stress levels. The magnitude error is 0.09. This substantiates
that the inductive nature of a GNS allows generalization to out of training model
geometries [Pfaff et al., 2020]. We also apply the GNS to a smaller fault size of 10 km by
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5 km along strike and dip, respectively. The SR RMSE of 0.21 m/s, RT RMSE of 0.01 s,
and magnitude error of 0.03 for D1.T_small (Table 3) show that the GNS can generalize

to smaller fault geometry, confirming its geometrical interpolation capability.
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Figure 14. Rupture time contour comparisons between GNS predicted dynamic
ruptures (red) and PBNS ground truth (black) for a larger fault exceeding the
dimensions found in the training set. Contours and labeling as in Figure 5. Slip rate

snapshot comparisons are shown for three time steps.

3.5 Backward compatibility

Model M2 is more general, or sophisticated, than M1 given the stress heterogeneity
involved in training, and one might ask if M2 is overfit, or backward compatible with
scenarios with less complexity, e.g., homogenous initial stresses but different
hypocenter locations. We apply M2 to the D1 test dataset and the larger fault test, and
Table 3 shows misfit metrics for five testing scenarios. The errors are similar to the M1
case, which indicates that M2 is indeed backward compatible with models with less
complexity.
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Table 3. Root mean square error of slip rate time series over all fault vertices (SR RMSE)
and root mean square error of rupture time arrivals (RT RMSE) and moment magnitude
error between GNS predictions using M1 and M2 on dataset D1 and corresponding
PBNS ground truths.

Model M1 M2
Metrics SR RT Mz error | SR RT RMSE | Mw error
RMSE | RMSE (s) RMSE | (s)
(m/s) (m/s)
D1.TO (Fig 5A) 0.35 0.04 0.05 0.39 0.05 0.0
D1.T1 (Fig 5B) 0.45 0.06 0.01 0.49 0.17 0.01
D1.T2 (Fig 5C) 0.81 0.47 0.07 0.93 0.79 0.09
D1.T3 (Fig 5D) 0.33 0.04 0.03 0.41 0.05 0.01
D1.T large (Fig 14) | 0.61 0.12 0.09 0.51 0.07 0.05
D1.T_small 0.21 0.01 0.03 0.33 0.02 0.06

3.6 The impact of enlarged training set

We intend to keep the training set size as small as possible, and as shown in Section 3.3,
M2 with 30 scenarios approaches its limit in predicting dynamic ruptures with high
fractal-type initial stresses. Table 4 shows misfit metrics for M2 and M3 predictions with
initial stresses of different fractal roughness and with hypocenter locations. For the
scenarios with roughness R = 0.1, M2 is competitive to M3. However, with increased
complexity of R = 0.5 and R = 0.9, M3 consistently performs better than M2. The results
substantiate that the training set size needs to match the complexity of the prediction
tasks.

Table 4. Root mean square error of slip rate time series over all fault vertices (SR RMSE)
and root mean square error of rupture time arrivals (RT RMSE) and moment magnitude
error between GNS predictions using M2 and M3 for dataset D3 with different fractal
initial stresses and corresponding PBNS ground truths.

Model M2 M3 Better

model

Metrics SR RT Mo error SR RT Mo error
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RMSE | RMSE RMSE | RMSE

(m/s) | (s) (m/s) | (s)
Low stress roughness R = 0.1
D3.T0 0.57 0.11 0.03 035 |0.04 0.01 M3
D3.T1 0.58 0.16 0.01 071 1027 0.08 M2
(Fig 11B)
D3.T3 0.92 0.95 0.04 082 10.88 0.05 M3
(Fig 11C)
D3.T4 0.53 0.08 0.01 073 |0.15 0.05 M2
(Fig
11D)
Intermediate stress roughness R = 0.5
D3.T5 0.68 0.07 0.07 046 |0.03 0.07 M3
(Fig 12B)
D3.T6 0.66 0.11 0.05 0.63 |0.09 0.02 M3
(Fig 12C)
D3.T7 1.08 0.37 0.01 0.88 |0.13 0.07 M3
D3.T8 0.82 0.38 0.02 0.88 |0.12 0.06 M3
(Fig
12D)
D3.T9 0.9 0.21 0.07 093 1033 0.03 M3
High stress roughness R = 0.9
D3.T10 | 0.65 0.06 0.1 0.46 |0.02 0.07 M3
(Fig 13B)
D3.T11 | 0.93 0.17 0.02 076 | 0.11 0.04 M3
(Fig 13C)
D3.T12 |32 0.28 0.19 0.69 |0.1 0.03 M3
(Fig
13D)
D3.T13 | 0.99 0.13 0.09 082 |0.11 0.02 M3
D3.T14 | 0.94 0.16 0.07 0.66 |0.24 0 M3

3.7 Sensitivity analyses of hyperparameters
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3.7.1 Message passing steps

We apply M2 to the D1 test case T_large using different message passing steps of 5, 10,
and 15. Table 5 shows misfit metrics. The model with 5 message passing steps gives
large SR RMSE and RT RMSE, which indicates that it is insufficient to capture the
rupture dynamics. The predictions using models with 10 and 15 message passing steps
match the ground truth well. Interestingly, performance of the model using 15 message
passing steps is worse compared to that with 10 steps. This agrees with findings by Choi
and Kumar [2024] and Sanchez-Gonzalez et al. [2020] for other physical systems. The
results are consistent with the expectation that the physics for dynamic ruptures are
dominated by local and short-range interactions, spanning around 10 grid cells for our

experiments.

Table 5. Root mean square error of slip rate time series over all fault vertices (SR RMSE)
and root mean square error of rupture time arrivals (RT RMSE) and magnitude error
between GNS predictions using M2, with different message passing steps, for the large

homogeneous test rupture and corresponding PBNS ground truths.

Model SR RMSE (m/s) RT RMSE (s) Muw error
message

passing steps

/Metrics

5 3.66 1.17 0.25

10 0.51 0.07 0.05

15 0.70 0.17 0.07

3.7.2  Gaussian noise level added in training

We explore two Gaussian noise standard deviation levels, 0.02 (default) and 0.005 m/s
(0.2% and 0.05%, respectively, in terms of ~10 m/s slip rate at rupture fronts in this
study). Lam et al. [2023] show that a proper level of noise added in the training
trajectories are necessary to stabilize the GNS predictions. For M2 with 0.005 m/s noise,
the predictions indeed fail for half of scenarios generating SR RMSE at ~100 m/s; this

confirms that a ~0.2% level of noise, or so, is necessary for stable GNS performance.

3.7.3 Learning rate and batch size
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For M1 and M2, which have 10 and 30 scenarios in the training sets, respectively, we
use a fast learning rate of 10~* and a small batch size of 2. Given the modest complexity
involved, such learning rates and small batch size do not lead to overfitting. Although
the training and validation losses oscillate widely, the model performance appears
robust for most of the tasks. For M3, which has 148 scenarios involved, a batch size of 2
does not allow for enough complexity to be incorporated in each epoch, and the
learning rate of 10™* leads to overfitting and poor prediction. We thus use a learning
rate of 3 X 107> and a batch size of 8, which significantly improves model performance
(Table 4).

3.8 Computational performance

Table 6 shows computational cost per timestep of the GNS on a single Nvidia A100 GPU
and the PBNS implemented by means of the EQdyna code, using 8 CPU cores on a
workstation with AMD EPYC 7543, both architectures were released in 2020. The GNS
run times are ~29-41 times faster than the ground truth simulations by EQdyna. This
PBNS approach should be very efficient given the explicit time integration, under-
integrated hexagons with hourglass control, and no solving of system of equations [e.g.,
Liu and Duan, 2018]. The GNS still achieves an order of magnitude, ~19-fold speedup
compared to the PBNS for 200 m resolution models, and a ~41-fold for 100 m resolution,
i.e. finer resolved models should benefit from the GNS even more.

However, a fair comparison between ML and high-fidelity type approaches is difficult.
This is true in general, and here in particular. For example, we compare a PBNS EQdyna
run using eight CPUs with the GNS which uses a single GPU. The GNS predicts
dynamics on a 2-D surface, the fault interface, only, while EQdyna needs to solve the full
physics equations for the 3-D volume surrounding the fault. A GPU-accelerated PBNS
might achieve 10 fold speedup compared to single CPU [e.g., Premus et al., 2020], for
example, a suggestion we cannot directly test as EQdyna currently only runs on CPUs.
Either way, accepting what we suggest is roughly an order of magnitude speedup of the
GNS compared to the PBNS for what might be a typical application is certainly not as
striking an advantage as the performance reported for the mapping-type ML
approaches. However, we note that we try to be conservative when stating speedup
because we consider all time steps of the system evolution as provided by our GNS
approach.
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Tainpakdipat et al. (2025) use a single CPU PBNS computation as a benchmark and
predict 76 time steps, subsampled 20-fold from the time steps of their PBNS. Gong et al.
(2025) use 8 CPU to run their PBNS benchmarks but the ML surrogate only predicts the
final time step for the rupture sequence, skipping 1500-4000 timesteps from the PBNS.
Adjusting for the time steps predicted, and the CPU cores used to run the PBNS, our
GNS speedup would nominally be ~3200 or ~30,000-80,000 if computed in a similar way
to Tainpakdipat et al. (2025) or Gong et al. (2025), with the caveats from above.

Moreover, the GNS appears quite general, with strong generalization capability, and
requires relatively smaller training sets, compared to other ML approaches, where
training costs can be significant. There are still ample opportunities to further optimize
the GNS approach for enhanced speedup. For example, one could consider batch
rollout of multiple scenarios and/or using mixed precision computing. Moreover, for
GNS or other surrogate models, there is a trade-off between information yield and
computational efficiency. Additional speedup could be achieved by sacrificing the
information yield by, say, training the GNS on subsampled datasets. However, the
advantage of the GNS is not just raw speedup for some end results, but the information
yield of capturing the full spatiotemporal evolution of system states. Such outputs are
valuable for uncertainty quantification and Bayesian inference, and the GNS approach
is different from surrogate models that directly map input parameters to certain,

restricted outputs, as noted.

Therefore, the GNS approach may still offer an efficient pathway to explore the high
dimensionality of rupture dynamics parameter space and work well in real world
applications. The GNS implementation is parallelized [Kumar and Vantassel, 2023] and
can thus take advantage of the on-going investments in massively parallel GPU
architectures. Table 6 shows the training cost of M2 and M3 per million training steps at
14.33 hours using a single Nvidia A100.

Table 5. Computational cost for GNS rollout and comparison to traditional PBNS.

Model grid size GNS  rollout per |CPU run time | Speedup
timestep (ms) per timestep
(ms)
200 m ~11 ~322 ~29.3
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100 m ~35 ~1449 ~41.4

Table 6. Computational cost for training the GNS models.

Model GNS training time per million steps using one Nvidia A100

M2/M3 14.33 hours

4 Discussion

While the overall generalization performance of our GNS is quite good, there are, of
course, limitations when seeking to predict physical behaviors that are incompletely
represented or absent from the training set. As expected, if the training set only contains
scenarios with homogenous initial shear stress, as for D1, the GNS fails to predict
rupture acceleration/deceleration caused by stress asperities, and we cannot expect to
capture other effects, such as a different friction law, without dedicated training. For
early termination of ruptures, scenarios which are sparsely represented in our training
set, the GNS still predicts event magnitudes well, but performs poorly for rupture arrest
as might be expected (e.g. Appendix A, testing scenario D3.T2). To allow the GNS to
learn early rupture termination, or any physical features critical for future applications,
the training dataset should be augmented with scenarios containing those desired
features, or larger weights in loss functions could be applied when rare scenario

samples are trained.

However, our experiments also show that the predictive power of a GNS can be
incrementally improved by adding features such as heterogeneous initial stress to the
training set. The GNS abstracted rules for propagating rupture appear to be
automatically adapted in a suitable way by additional learning to capture the right sorts
of regional interaction dynamics. We only train the GNS on modest complexity in
selected parameters, such as at two asperity stress levels on a single rectangular patch,
with only 30/148 scenarios. The GNS then generalizes to strongly spatially variable
stress distributions, in combination with unseen hypocenter locations, and produces an

estimate of the full spatiotemporal evolution of fault states.
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Our GNS approach can be compared to the ML approaches of Gong et al. [2025] and
Tainpakdipat et al. [2025] which are very efficient, but only provide end-to-end mappings,
and rely on thousands or hundreds of thousands of training scenarios. Gong et al. [2025]
show that their networks show larger errors for longer faults and more heterogenous
stress patches beyond the training set. This indicates that the GNS’s generalization
advantages may come with the cost of less speedup compared to the other approaches.
More generally, different ML approaches show complementary strengths and
weaknesses; it remains to be seen which use cases are suitable for what sort of

surrogates, and how the GNS performance might be improved for specific applications.

Our results highlight how the GNS can extract a type of interaction “stencil” akin to a
coarse-grained, local abstraction of the key physical relationships governing rupture
(i.e., conservation of momentum and mass plus constitutive law). This implies the
potential to expand this analysis to a wider set of parameters and applications, such as
how variations in pre-stress levels and spatial distribution affect the local interaction
stencil. Since there is a link between the neural network and the physics through the
interaction stencil, we might consider the GNS a candidate for a robust surrogate

approach.

Additional features can be added to the GNS at selected levels, and extensions to a
range of heterogeneity such as variations in frictional parameters, different types of
frictional evolution laws, and fault roughness appear feasible using our framework.
Further exploration of an expanded rupture dynamics parameter space is interesting,
and the interactions captured by enhanced learning of a more general GNS might allow

for model generalization to general classes of heterogeneities and constitutive laws.

Another pathway forward is to extend the current 2-D planar representation of fault
geometry to fully networked fault systems by incorporating more fault geometric
complexity of variations in fault dip and strike as vertex features. Representing 3-D
fault network structures through a GNS 2-D graph projection may help reduce
computational cost. In addition, opportunities also exist in understanding and then
improving how the stencils are represented in the weights of the GNS networks, and
what physical relationships results from different combinations of hyperparameters,
such as message passing steps, entail to better emulate the real physical processes.

Currently, our GNS only predicts slip rate evolution on the fault interface, restricting its

utility for seismic hazard assessment to source characteristics such as magnitude, final
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slip distribution, and rupture duration. However, there is an opportunity to
additionally incorporate wave propagation on the free surface for system states and use
the GNS to predict rupture and ground shaking concurrently. Broadening the GNS to
predict surface motions will further enhance its utility for seismic hazard assessment of

ground shaking.

Efforts to build enhanced GNS surrogates, with parallelization, should reduce the
computational costs. We speculate that applications may include surrogates to relate
probabilistically represented fault zones to seismicity, and a more broadly trained GNS
might represent one version of a much-needed comprehensive representation of our

best guesses for the fundamental sets of multi-scale fault zone physics.

The GNS can then be a general, physics informed operator, generating likely rupture
characteristics with quantified uncertainties based on incomplete, variable resolution,
time-dependent, heterogenous initial conditions and material parameters. While we are
only concerned with the rupture dynamics problem here, a similar GNS approach
should lend itself readily to other transient earthquake system problems such as fault

network, post-seismic, and earthquake cycle stress heterogeneity evolution.

5 Conclusions

We present a Graph Network-based Simulator (GNS) for dynamic earthquake rupture.
The GNS can predict rupture dynamics in comparable accuracy to high-fidelity physics-
based simulations, in particular during the nucleation and rupture front propagation
stage, with ~20-40 times per-time-step speedup compared to the physics-based
modeling. The generalization capability of the GNS extends to scenarios with unseen
hypocenter locations, stress asperity strength and geometry variations, and fault sizes.
The GNS appears to learn a coarse-grained version of the physics governing local
dynamics on the fault plane. This physics-informed structure of the GNS implies good
robustness, as well as providing new perspectives on how to potentially explore
different types of physical interactions of relevance for earthquake dynamics. With
improved computational efficiency and expanded training, the GNS may be suited to
serve as a comprehensive surrogate for future Bayesian model inference, uncertainty

quantification, or optimal experimental design tasks. Those could cover rupture
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dynamics applications within both a fundamental exploration of physics and an

operational, time-dependent seismic hazard assessment context.
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The code of the GNS for earthquake rupture dynamics, EQGNS, and the finite element
software EQdyna are publicly available on GitHub and the Zenodo repository (Liu and
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Appendix A. Predicting rare physical feature of early rupture termination.

Figure A1A shows the prediction of M1 on testing scenario D1.T3 where the rupture
terminates early in the middle of the fault, where dense rupture curves merge, and the
GNS, which is not trained to learn such rare physical dynamic pattern, fails to capture
the termination. In this case, the prediction of magnitude errors at ~0.3. Figure AlB
shows the prediction of M3 on testing scenario D3.T2, where rupture terminates
prematurely but ruptures coming from the top half of the fault keeps breaking the
whole fault. The GNS predicts continuous ruptures where the ground truths show

terminations. However, in this case, the magnitude is still well predicted.
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Figure Al. A) Rupture time contour comparisons between GNS M1 predicted dynamic
ruptures (red) and PBNS ground truth (black) for testing scenario D1.T3 with unseen
hypocenter locations in the training. B) Rupture time contour comparisons between
GNS M3 predicted dynamic ruptures (red) and PBNS ground truth (black) for testing
scenario D3.T2 with unseen stress levels and complex patterns and hypocenter locations

in the training set. Labels and error metrics else as in Figure 5, see there for description.
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