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S U M M A R Y
Although parts of the lithosphere may be expected to behave elastically over certain timescales,
this effect is commonly ignored in models of large-scale mantle dynamics. Recently it has been
demonstrated that elasticity, and in particular viscoelasticity, may have a significant effect on
the buckling instability and on the creation of lithospheric-scale shearzones. It is, however, less
clear whether elasticity also has an effect on mantle convection and density-driven lithospheric
instabilities. The focus of this work is, therefore, to study the effects of elasticity on the two-
layer Rayleigh–Taylor (RT) instability, consisting of a Maxwell viscoelastic layer overlying a
viscous layer of lower density. We analyse this problem by performing systematic numerical
simulations that are compared with newly derived analytical solutions. It is demonstrated that
elasticity can be important for certain parameter combinations; it leads to a speedup of the
RT instability. The cause for this speedup is that the RT instability is only sensitive to the
viscous fraction of deformation in the viscoelastic layer. Elasticity reduces the viscous fraction
of deformation at timescales shorter than the Maxwell relaxation time t M (t M = µ/G, where µ

is the viscosity and G the elastic shear module). For plate tectonics on Earth, the parameters are
such that the effect of elasticity on instability growth is negligible for most boundary conditions.
Whereas elasticity does not (or only slightly) change the timescales for lithospheric detachment
of the upper mantle, it does significantly alter the response and stress build-up in the overlying
crust. Numerical simulations illustrate this effect for lithospheric detachment and show that
peak stresses in a viscoelastic crust are smaller than stresses that develop in a viscous crust.
Moreover, if the timescale for delamination of the mantle lithosphere is equal or smaller than
the Maxwell relaxation time of the crust, the topography of the crust is increased compared to
viscous models.

Key words: elasticity, gravitational instability, lithospheric dynamics, mantle lithosphere,
Rayleigh–Taylor instability.

1 I N T RO D U C T I O N

There is little discussion about the fact that rocks behave elastically at short timescales but may flow in a ductile manner over longer periods
of time. Evidence for this comes, for example, from seismic waves, post-glacial and post-seismic rebound studies and plate bending under
seamounts. Yet it is not entirely clear what the role of elasticity is in large-scale geodynamic processes. Part of the problem seems to be
technical; only over the last decade or so have new numerical techniques been developed that include both the effects of elasticity as well as
large-strain, incompressible viscous flow (Melosh 1978; Poliakov et al. 1993; Braun & Sambridge 1994; Batt & Braun 1997; Toth & Gurnis
1998; Frederiksen & Braun 2001; Schmalholz et al. 2001; Vasilyev et al. 2001; Moresi et al. 2002, 2003; Kaus et al. 2004; Kaus 2005;
Mühlhaus & Regenauer-Lieb 2005). Another part of the problem is that the few studies that do include elastic effects typically also include
additional complexities such as brittle failure. Whereas a visco-elasto-plastic rheology is certainly more applicable to the lithosphere than
merely viscoelastic rheologies, it is difficult to isolate viscoelastic effects from previous model results. Moreover, most studies are purely
numerical in nature and are rarely backed up with analytical solutions. The consequence is that there is currently little understanding (and
agreement) on how (and if) the presence of elasticity changes the dynamics of processes such as mantle convection. Our goal is, therefore,
to study the effects of elasticity (or viscoelasticity) in a simplified, but well defined, model of density-driven flow. Our numerical results are
compared with analytical work and give insight in how elasticity changes the mechanics of these instabilities. This is useful in interpreting
more realistic models, and to estimate the importance of elasticity for geodynamic settings.

C© 2006 The Authors 843
Journal compilation C© 2006 RAS

Downloaded from https://academic.oup.com/gji/article-abstract/168/2/843/692267/Effects-of-elasticity-on-the-Rayleigh-Taylor
by University of Texas at Austin user
on 15 September 2017
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Early numerical modelling studies of thermal convection with Maxwellian fluids (Ivins et al. 1982; Harder 1991) demonstrated that
convection is more vigorous when elastic effects are important. These studies treated the viscosity of the mantle as being constant, which is a
possible explanation for the fact that numerical problems limited solutions to small Deborah numbers. More recent studies, incorporating the
effects of temperature-dependent viscosity, suggest that elasticity may have the effect to cause slab roll-back (Moresi et al. 2002) and decrease
dissipation in subducting slabs (Mühlhaus & Regenauer-Lieb 2005). Models that study subduction processes (Gurnis et al. 1996; Funiciello
et al. 2003) concluded that whereas forebulges can be created by viscous flow only (Gurnis et al. 1996), model fits improve if elasticity is
included (Funiciello et al. 2003; Hall & Gurnis 2005). Similar conclusions have been obtained for barythmetic profiles at mid-oceanic ridges
(Bercovici et al. 1992).

Initiation of subduction is another process that appears to be facilitated by the effects of elasticity (Toth & Gurnis 1998; Regenauer-Lieb
et al. 2001; Hall et al. 2003). In most models, subduction initiation is preceded by shear localization due to weakening of either cohesion
and friction angle (Hall et al. 2003) or of effective viscosity (Regenauer-Lieb et al. 2001). Elasticity is helpful in these cases since it releases
non-dissipative, elastically stored energy in small zones, which may result in strong weakening (Ogawa 1987; Regenauer-Lieb et al. 2001;
Kaus 2005; Kaus & Podladchikov 2006), sometimes accompanied with thermal runaway processes (Ogawa 1987; Kaus & Podladchikov
2006).

Models of plume–lithosphere interaction show that elastic bending stresses are non-negligible in a viscoelastic lithosphere which causes
stresses in the order of a few hundreds MPa (Podladchikov et al. 1993; Vasilyev et al. 2001; Burov & Guillou-Frottier 2005). A number of
studies concentrated on the buckling of highly viscous and viscoelastic layers embedded in a viscous matrix (Schmalholz & Podladchikov
1999, 2001; Schmalholz et al. 2002, 2005). This instability is relevant for both outcrop-scale structures such as folds and for lithospheric-scale
deformation (Burg & Podladchikov 1999; Gerbault 2000; Toussaint et al. 2004). Elastic effects significantly increase dominant growth rates
as well as alter dominant wavelengths of the buckling instability compared to the viscous end-member models.

Finally, the effects of elasticity on the Rayleigh–Taylor (RT) instability have been studied in a number of analytical and numerical models
(Biot 1965; Biot & Odé 1965; Odé 1966; Naimark & Ismail-Zadeh 1994; Poliakov et al. 1993). Most of these studies concluded that elasticity
facilitates the growth of the RT instability. However, they have either been restricted to a limited set of boundary conditions, or to isoviscous
systems. It is thus worthwhile to further evaluate the relevance of elastic effects for geodynamic processes.

2 R H E O L O G Y

To review some basic findings of viscoelastic analysis, we first consider a zero-dimensional example. For a constant strain rate ε̇vis, a Newtonian
viscous body will develop a stress τ , given by (Ranalli 1995; Schubert et al. 2001)

τ = 2µε̇vis, (1)

where µ is the shear viscosity of the material. Viscous dissipation is constant.
Deviatoric stress in a purely elastic body, on the other hand, is related to the absolute strain. Under the small-strain assumption, the

deviatoric stressing rate is related to the applied background strain rate ε̇el as

∂τ

∂t
= 2Gε̇el, (2)

where t is time and G the elastic shear modulus. Stress evolution can be obtained by integrating eq. (2), which yields τ (t) = τ (0) + 2Gε̇elt ,
where τ (0) is the initial stress. Elastic strain energy increases with ongoing deformation.

A Maxwell viscoelastic body (an elastic and viscous body connected in series) is the simplest rheological material that fits observed
post-glacial rebound data (Peltier 1985). The relationship between deviatoric strain rate and stress is in this case given by

1

2G

∂τ

∂t
+ 1

2µ
τ = ε̇ = ε̇el + ε̇vis. (3)

Under a constant background applied strain rate, ε̇0, eq. (3) can be solved for τ by integrating over time:

τ (t) = 2µ
(
1 − e−t/tM

)
ε̇0 + τ (0)e−t/tM , (4)

where t M = µ/G is the Maxwell relaxation time. From eq. (4) we can compute an apparent viscosity µapp as

µapp = τ (t)

2ε̇0
= µ − (

µ − µapp(0)
)

e−t/tM , (5)

with µapp(0) = τ (0)/(2ε̇0). Viscoelasticity thus results in a time-dependent viscosity (Fig. 1). In the case that the initial stress τ (0) is lower
than the steady-state viscous stress 2µε̇0, µapp is lower than µ for ∼3 Maxwell times (Fig. 1).

An interesting question is how much of the deformation is taken up by elastic and viscous deformation. Their respective fractions ( f el

and f vis) can be computed from eq. (3) as

1 = ε̇el

ε̇0
+ ε̇vis

ε̇0
= fel + fvis. (6)
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Viscoelastic RT instability 845

Figure 1. (a) Non-dimensional deviatoric stress versus non-dimensional time under a constant applied background strain rate for a Maxwell viscoelastic
rheology. Results are shown for two different values of initial stress. (b) Normalized apparent viscosity versus time for the same simulations as in (a). Apparent
viscosity increases with time until it reaches the ‘true’ viscosity if the initial stress is smaller than the steady-state viscous stress.

An explicit relationship for f vis is then given by

fvis = τ (t)

2µε̇0

fvis = µapp

µ
= 1 −

(
1 − τ (0)

2µε̇0

)
e−t/tM .

(7)

The elastic part of the deformation is given by f el = 1 − f vis. Thus, in a case with τ (0) = 0, the initial response is fully elastic ( f vis = 0),
whereas it is fully viscous ( f vis = 1) at t � t M . The apparent viscosity is a proxy for the viscous fraction of the deformation (eq. 7). We show
below that the viscoelastic RT instability is sensitive to the viscous fraction of the deformation only. An important consequence of this is that
viscoelastic instabilities may be faster than their respective viscous counterparts (at least if τ (0) < 2µε̇0, so that f vis(0) < 1).

In the Earth, the elastic shear module is relatively well-constrained, (G � 1010–1011 Pa for the lithosphere, for example, from PREM;
Dziewonski & Anderson (1981)). The effective viscosity, however, is highly variable. Allowing effective viscosity values of µ = 1017–
1027 Pa s yields Maxwell relaxation times between 11 days and 3.2 Byrs. Processes that take place on timescales that are significantly shorter
than t M may be influenced by the effects of elasticity.

3 M O D E L

Rocks are compressible if deformed elastically but nearly incompressible in a viscous deformation mode (Schubert et al. 2001). In most of
this work we assume, for reasons of simplicity, that rocks are incompressible. We performed a range of numerical experiments to address this
approximation. The results indicate that the effects of elastic bulk compressibility on the growth of the RT instability are small, in agreement
with earlier work on the viscoelastic folding (Mancktelow 2001) and the RT instability (Poliakov et al. 1993). In two dimensions, we can then
write
∂vi

∂xi
= 0, (8)
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Figure 2. Model set-up employed in this work. The side boundary conditions are free slip (or periodic in the semi-analytical solution), the lower boundary
condition is free slip or no-slip and a range of upper boundary conditions are employed (see Appendix A for a more detailed explanation of the upper boundary
conditions).

where v i is velocity, x i are spatial coordinates, i = 1, 2, and the Einstein summation convection applies. Assuming that the effects of inertia
can be ignored, force equilibrium gives

∂σi j

∂x j
= ρgi , (9)

where σ i j are stresses, ρ is density and gi = (0, g) is the gravitational acceleration in z-direction. We define

σi j = −Pδi j + τi j , (10)

where τ i j are deviatoric stresses, δ i j the Kronecker delta and pressure P is given by P = − σi i
2 . The (deviatoric) strain rate is defined in the

usual way, ε̇i j = 1
2 ( ∂vi

∂x j
+ ∂v j

∂xi
), and the rheology is Maxwell viscoelastic, leading to a multidimensional version of eq. (3)

ε̇i j = ε̇vis
i j + ε̇el

i j = 1

2µ
τi j + 1

2G

Dτi j

Dt
, (11)

where D/Dt denotes the objective derivative of the stress tensor versus time t. We employ the Jaumann objective formulation, which is given
by:

Dτi j

Dt
= ∂τi j

∂t
+ vk

∂τi j

∂xk︸ ︷︷ ︸
advection

−Wikτk j + τik Wkj︸ ︷︷ ︸
rotation

, (12)

where Wi j = 1
2 ( ∂vi

∂x j
− ∂v j

∂xi
) is the vorticity. Mühlhaus & Regenauer-Lieb (2005) show that rotational terms are only important for unrealistically

large values of stress (see also Kaus 2005). For the sake of completeness, however, we employ the full objective stress derivative in the numerical
code. In deriving the analytical solutions, both advection and rotation terms are ignored.

3.1 Non-dimensionalization

Our model consists of a viscoelastic layer of thickness H 1, with density ρ 1, viscosity µ1 and elastic shear module G1 that overlies a viscous
layer of thickness H − H 1, with density ρ 2 and viscosity µ2 (Fig. 2). The interface between the two fluids is perturbed sinusoidally according
to h(x) = (H − H 1) + A0 cos (2π/λx), where H 1 is the thickness of the upper layer, H the height of the model, A0 the initial amplitude and
λ the wavelength of the perturbation. If ρ 1 > ρ 2, the system is gravitationally unstable.

The number of non-dimensional parameters that arise can be minimized by choosing σ ∗ = (ρ 1 − ρ 2)gH , t∗ = µ2/((ρ 1 − ρ 2)gH), and
L∗ = H as characteristic values for stress, time and length, respectively. The constitutive law (eq. 11) in non-dimensional form (with˜denoting
non-dimensional variables) is then

−De
Dτ̃i j

Dt̃
+ 2˜̇εi j = τ̃i j . (13)

Here,

De = (ρ1 − ρ2)gH

G
, (14)

is the Deborah number, which is here defined as the ratio between the viscous (Stokes) timescale (= (ρ 1 − ρ 2)gH/µ1) and the viscoelastic
timescale (= µ1/G) of the upper layer (Poliakov et al. 1993). Interestingly, the Deborah number, which is a measure of the importance of
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Viscoelastic RT instability 847

elasticity (compare eqs 1 and 13), is independent on the viscosity of the system. This is due to the fact that the magnitude of stress is solely
dependent on the density difference for purely buoyancy-driven flow. The dynamics of the viscoelastic RT instability thus differs significantly
from that of other instabilities such as buckling (Schmalholz & Podladchikov 1999). There, the characteristic stress is given by the viscous
background stress, which depends on the background strain rate and the effective viscosity of the system.

In the present definition of the Deborah number realistic values for lithospheric-scale deformation are 10−4 ≤ De ≤ 1 (with �ρ =
10–330 kg m−3, g = 10 ms−2, H = 100–3000 km, G = 1010–1011 Pa). Systems with De = O(1) may result in unrealistically large buoyancy
stresses, once perturbations reach amplitudes of ∼O(H ). In reality such stresses cannot exist, since they exceed the theoretical yield strength
of materials (∼0.1 G). Thus other deformation mechanisms, such as plastic failure, will take over before such stresses will be reached. At
smaller values of stress (for smaller amplitudes), the mechanical behaviour of the system is viscoelastic, however, and our definition of the
Deborah number characterizes the effective mechanical response of the system.

Another parameter controlling the dynamics of the system is the viscosity contrast between the upper and the lower layer, expressed by

R = µ1

µ2
. (15)

For a lithosphere–mantle system, typically R > 1. The thickness of the upper, high-viscosity, layer is given by H 1, and the thickness ratio by:

T = H1

H
. (16)

If a free-surface upper boundary condition is present, the additional parameter

Dsurf = ρ1 − ρ2

ρ1 − ρair
, (17)

expresses the normalized density difference between air and rocks. For geophysically relevant cases, ρ air ≈ 0 and D surf < 0.2 (Poliakov &
Podladchikov 1992).

Viscoelastic rheology is sensitive to the initial stress. We have employed two techniques to set the initial stress in the viscoelastic layer.
For the first, we compute the stress distribution for given initial conditions assuming a purely viscous rheology for the upper layer. This
gravity-driven stress is multiplied with a factor B fac and the result is employed as initial stress of the model. The second technique assumes
that initial, far-field pure-shear, extension or compression was present before the onset of gravity-driven deformation. The magnitude of this
stress can be measured by

Bvis = σ0

(ρ1 − ρ2)gH
, (18)

where σ 0 is the initial pre-stress. The vertical deviatoric stress τ zz is used as a measure of the initial stress (σ 0 = τ zz). B vis thus indicates the
magnitude of the initial over the maximum density-driven viscous stress. Positive and negative B vis numbers indicate an initial compressive
and extensional stress, respectively.

In our model, five non-dimensional parameters (De, R, B vis/B fac, D surf and T) govern the dynamics. Compared to viscous models,
viscoelasticity introduces two new parameters, B vis/B fac and De. Poliakov et al. (1993) studied the effect of De on the growth rate of the RT
instability. They demonstrated that the effect of elasticity is to enhance the growth rate of the instability. However, their analysis was restricted
to B vis = 0, a fixed wavelength and viscosity contrast and to free-slip boundary conditions. Here we extend their study by including a wider
range of boundary conditions and by studying the effect of changing R and B vis/B fac.

4 S E M I - A N A LY T I C A L M E T H O D

Perturbation analysis of the RT instability states that the growth in amplitude versus time of a sinusoidal perturbation is exponential

A(t) = A0eqt , (19)

where A0 is the initial amplitude, and q the growth rate. This growth rate depends on material parameters such as viscosity contrast, boundary
conditions and geometrical constraints. In the general non-Newtonian viscous case, closed form analytical expressions for q can be derived for
a two-layer system (Biot & Odé 1965; Fletcher 1972; Fletcher & Hallet 1983; Ricard & Froidevaux 1986; Zuber et al. 1986; Bassi & Bonnin
1988; Conrad & Molnar 1997; Burg et al. 2004), with free-slip, no-slip or fast erosion upper boundary conditions. Viscous rheologies are
characterized by a direct proportionality between strain rate and deviatoric stress. In the viscoelastic case, such a proportionality is no longer
given; instead, stress is time dependent, which allows the derivation of simple analytical solutions only for very specific, and restricted, cases
(one such case is addressed below). For the more general case, we have derived a set of (non-linear) ordinary differential equations, which
can be solved numerically to yield a semi-analytical solution. These new solutions are in good agreement with our numerical results, as we
show below.

A proxy for the velocity of the sinusoidally perturbed interface of amplitude A, and thus the strain rate in the model, is given by

∂ A

∂t
= qeff A, (20)

and

ε̇ = 1

H

∂ A

∂t
. (21)
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848 B. J. P. Kaus and T. W. Becker

The stress evolution is given by the general Maxwell relationship (eq. 11). Ignoring advective and rotational terms, this yields

∂τ

∂t
= 2Gε̇ − G

µ
τ. (22)

The viscous fraction of the deformation is given by

fvis = ε̇vis

ε̇
= τ H

2µ∂ A
∂t

. (23)

The main assumption in our model is that in a viscoelastic layer only the viscous fraction f vis of the deformation contributes to the growth
of the RT instability. The growth rate q eff can than be computed from the classical viscous analysis if the apparent viscosity, µapp = f vis µ,
rather than µ is used as a proxy for the viscosity of the viscoelastic layer. In our model set-up (Fig. 2), only the upper layer is viscoelastic.
Thus the growth rate q eff is computed from the viscous growth rate q as

qeff = q

(
fvis

µ1

µ2
, T, λ, �ρ, BC ′s

)
. (24)

The viscous growth rate can be taken from literature or can be derived for a specific case. Appendix A gives a brief outline of the procedure
used in this work.

The equations that govern model behaviour in our two-layer model can thus be summarized as

∂ A

∂t
= qeff A

∂τ

∂t
= 2G

H

∂ A

∂t
− G

µ1
τ

qeff = q

(
τ H

2µ∂ A
∂t

µ1

µ2
, T, λ, �ρ, BC ′s

)
.

(25)

As initial conditions, we employ

A(0) = A0

and

τ (0) = 2µ1

q
(

µ1
µ2

, T, λ, �ρ, BC ′s
)

A0

H
Bfac.

The initial condition for stress is a proxy for the viscous stress with an initial amplitude A0, multiplied by a factor B fac.
Eqs (25) with initial conditions (26) have been numerically integrated forwards in time, using an adaptive time step, implicit ODE solver.

Iterations are employed at every time step to treat the non-linearities that arise from the dependence of q eff on strain rate and stress.

5 N U M E R I C A L M E T H O D

Analytical and semi-analytical solutions are only valid for small amplitudes. Moreover, we make many simplifying assumptions such as
ignoring advection and rotation of stress. It is thus important to compare the analytical results with a numerical technique which can correctly
integrate the governing equations up to finite amplitudes. For this purpose, we use a recently developed 2-D numerical code, SloMo, that uses
the finite element technique to solve the governing equations for slowly moving viscoelastoplastic materials (Kaus 2005; Buiter et al. 2006).
The velocity–pressure formulation is employed with admissible Crouzeix–Raviart Q2 − P 1 quadrilateral elements (Cuvelier et al. 1986). A
newly introduced feature of the code is the ability to treat both compressible and incompressible materials in the same computational domain.
In the case of incompressible flow, we employ Uzawa iterations to enforce incompressibility (Poliakov & Podladchikov 1992; Cuvelier et al.
1986).

Here, we are mainly interested in how the initial growth rate of the RT instability changes as a function of elastic parameters. It is,
therefore, desirable to have a solution as accurate as possible during these stages. Typically, Eulerian-based flow solvers that incorporate the
effects of viscoelasticity suffer from numerical issues such as diffusion of stresses, or oscillations of stresses due to out-of-balance interpolated
stresses. Whereas Lagrangian codes suffer from the same issues whenever remeshing is applied, these issues do not arise until the remeshing
stage. For these reasons, we used the code in a purely Lagrangian manner and determined growth rates before remeshing was employed. The
code has been extensively benchmarked versus analytical solutions for the RT and the folding instability as well as for various 0-D rheological
models (see Kaus 2005; Kaus & Schmalholz 2006, for different benchmark comparisons)). The incorporation of elastic bulk compressibility
in the code was verified with an analytical solution for self-compaction of viscoelastic materials under the influence of gravity and with a 0-D
extension/compression test for which a simple solution can be derived (results available upon request).

The gravity-driven initial stress state is numerically obtained by computing the stress from a purely viscous model, which is then
multiplied with a factor B fac. The pure-shear initial stress state is computed by imposing a pure-shear background deformation to the model.
The background strain rate ε̇BG is chosen such that τzz = σ0 = 2µ1ε̇BG, τxx = −σ0, far away from the perturbed interface. Both methods
result in an initial stress state that is in force balance.

C© 2006 The Authors, GJI, 168, 843–862

Journal compilation C© 2006 RAS

Downloaded from https://academic.oup.com/gji/article-abstract/168/2/843/692267/Effects-of-elasticity-on-the-Rayleigh-Taylor
by University of Texas at Austin user
on 15 September 2017



Viscoelastic RT instability 849

6 R E S U LT S

In the first part of this section we analyse the effects of elasticity on the RT instability by deriving an analytical solution for the case of a
viscoelastic layer on top of an infinite viscous half-space. Then we employ both semi-analytical and numerical methods to study the more
general case in which

(1) the lower layer is allowed to have a finite thickness,
(2) the upper boundary condition is varied and
(3) the effect of non-zero initial stress is taken into account.

Finally, we show results from a few, more realistic, numerical models that address the gravitational instability of the mantle lithosphere.

6.1 Analytical solution for a viscoelastic layer overlying an infinite viscous half-space

A closed-form analytical solution for the viscoelastic RT instability can be derived only in a number of, somewhat restricted, cases. One such
case is a system in which a viscoelastic lithosphere of thickness H 1 and with viscosity µ1 and elastic shear module G overlies an infinite
viscous half-space of viscosity µ2. The viscous growth rate, q, is in this case given by

q = �ρgH1

µ2

(1 + R) e2 k + (−1 + R) e−2 k − 2 R − 4 k

k ((2 R + R2 + 1) e2 k + (2 R − R2 − 1) e−2 k + 4 R2k − 4 k)
, (26)

where k = 2π

λ
is the wavenumber, and we assume free-slip upper boundary conditions. For a given wavelength of λ/H 1 ≤ 4 a numerical

approximation of this equation is given by

q ≈ �ρgH1

µ2

c

1 + R
, (27)

where c is a wavelength-dependent constant given by c ≈ 0.07957, 0.15493, 0.2295 for λ/H 1 = 1, 2 and 4, respectively (the maximum relative
error of this approximation varies from ∼1 per cent for λ/H 1 = 1 to ∼18 per cent for λ/H 1 = 4). The governing equations in dimensional
form are then (cf. eqs 25):

Ȧ = �ρgH1

µ2

c

1 + H1τ

2µ1 Ȧ
µ1
µ2

A

τ̇ = 2G

H1
Ȧ − G

µ1
τ,

(28)

with Ȧ = ∂ A
∂t , τ̇ = ∂τ

∂t . In addition we assume A(0) = A0 and τ ′(0) = 2 cA0 RBfac/(1 + R). If we choose H 1, �ρgH 1 and µ2/(�ρgH 1) as
characteristic scales for length, stress and time, respectively, the equations can be written in non-dimensional form as

Ȧ′ = c(
1 + τ ′

2 Ȧ′
) A′

τ ′ = 2R Ȧ′ − De1 Rτ̇ ′,
(29)

where De1 = �ρgH1
G is the Deborah number of this set-up and ′ indicates non-dimensional parameters. From this representation, it can be

observed that the limiting case of De1 → 0 yields the viscous case. An analytical solution of eqs (29) can be found, and the solution for A′(t ′)
is given by

A′(t ′) = A0

2

(
eat ′ + ebt ′ −

(−1 − De1 Rc − R2 − 2R + (−1 + 2 Bfac) De1 R2c
) (

eat ′ − ebt ′)
√

K (1 + R)

)
, (30)

where

a = −R − 1 + cDe1 R + √
K

2De1 R

b = −R − 1 + cDe1 R − √
K

2De1 R

K = R2 + 2R − 2 cDe1 R2 + 1 + 2 cDe1 R + c2 De1
2 R2.

A plot of A′(t′) versus t′ for the case of a highly viscous viscoelastic layer overlying an infinite viscous mantle with B fac = 0 (Fig. 3a) reveals
that elasticity generally enhances the growth of the RT instability. A small parameter range exists in eq. (30) during which elasticity slows
down the growth of the RT instability for a finite period of time (if B fac > 1). At even larger values of B fac, however, negative amplitudes
develop which we consider unphysical.

The time it takes a viscous instability to grow from its initial amplitude until an amplitude A′ = 1 is for the present set-up given by

tv = − log(A0)(1 + R)

c
. (31)

A more systematic analysis can be made by defining the time, t ve, it takes a viscoelastic instability to grow until an amplitude of A′(t ′) = 1.
Similarly, one can define t ve as the time it takes a viscoelastic instability to grow a similar amount. t ve can than be computed using eq. (30).
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Figure 3. (a) Amplitude–time evolution as a function of Deborah number (De1) for a viscoelastic layer overlying an infinite viscous half-space, λ/H 1 = 4,
B fac = 0. Numerical simulations have been performed for selected cases (open circles, T = 0.9). Viscoelastic effects enhance the growth of the RT instability
if De1 > 0.1. (b) Contourplot of the time it takes a viscoelastic instability to grow to A′ = 1 (t ve), normalized over the time it would take a viscous instability
to reach the same amplitude (t v). A value of t ve/t v = 1 indicates purely viscous behaviour. Viscoelastic effects enhance the growth of the RT instability, but
are present only for sufficiently large values of De1 and R.

The ratio t ve/t v is thus an indication of the importance of elasticity for the RT instability. A contourplot of this ratio versus viscosity contrast
R and Deborah number De1 shows that: (a) elasticity enhances the growth of the RT instability and, (b) elasticity has a significant effect on the
RT instability only for De1 > 1, R > 1 (Fig. 3b). The maximum Deborah number for Earth-like parameters is an order of magnitude smaller
than this value (De1 = 0.03, with �ρ = 330 kg m−3, g = 10 ms−2, H 1 = 100 km and G = 1010 Pa). Thus, from the analysis presented here,
one could conclude that elasticity plays a minor role in lithospheric-scale gravitational instabilities on Earth. In deriving our solution, we
however made a number of simplifications. Before drawing any conclusions, we therefore first want to address some of these simplifications.

6.2 Effect of Deborah number, De

A combination of numerical and semi-analytical results for a case with a finite-thickness viscous lower layer shows that elasticity increases the
growth rate of the RT instability substantially if a critical Deborah number is exceeded (Fig. 4). This is a robust feature and has been observed
for a range of boundary conditions and initial set-ups (various T and R); it is also in agreement with previous simulations (Poliakov et al.
1993) for the isoviscous case. Intuitively, this effect can be understood by the time dependency of the apparent viscosity in the viscoelastic
case as outlined above. Since the apparent viscosity is comparatively small at the beginning of a model run with large De, the velocity of
the interface is large. With time, the apparent viscosity increases until it approaches the true viscosity and the velocity will decrease. The
remarkable agreement between the semi-analytical and numerical solutions (Fig. 4) substantiates this finding. At the onset of the simulation,
growth rates are largest (characterized by a sharp increase in amplitude), an effect which is caused by the low apparent viscosity.

The critical Deborah number, Decrit, is large compared to natural values of De (De ∼ 10−4 − 1). This would lead one to expect that the
role of elasticity is negligible for Earth-like parameters. However, since Decrit is strongly influenced by the boundary and initial conditions,
further analysis is useful.

6.3 Growth rate as a function of De and R

The effects of elasticity on the RT instability can be quantified by computing a growth rate q num from the semi-analytical and numerical
simulations as

qnum = log ((Amax + A0)/A0)

�t
, (32)

where �t is the non-dimensional time required for the instability to grow from its initial amplitude A0 until an amplitude of Amax + A0(Amax

= 0.1H is employed here).
A comparison of numerically versus analytically computed growth rates shows excellent agreement (Fig. 5a). At low De, elasticity is

not important and the growth rate is that of the viscous case with a high-viscosity layer overlying a lower-viscous matrix (R > 1). Above a
critical De, the growth rate increases by several orders of magnitude due to the effects of elasticity until it saturates at a certain level. This
saturation growth rate is identical to the viscous growth rate obtained when a low-viscosity layer overlies a higher-viscous matrix. Intuitively
this can again be understood by the time dependency of the apparent viscosity of the viscoelastic layer. If viscoelastic effects are important
(i.e. De is large), the apparent viscosity is small for a significant amount of time. At large De, the instability reaches an amplitude of A =
Amax + A0 before the apparent viscosity of the viscoelastic layer becomes larger than the viscosity of the matrix. Since the growth rate for a
viscous set-up with R < ∼10−4 is independent of further changes in R, a saturation effect of q num occurs (qvis

max).
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Viscoelastic RT instability 851

Figure 4. Non-dimensional amplitude versus non-dimensional time as a function of De for a fixed wavelength with free-slip upper and lower boundary
conditions (other parameters given in the title). Numerical solutions (dashed lines) are in good agreement with semi-analytical solutions (solid lines). Elasticity
speeds up the instability above a critical Deborah number of Decrit ∼ 1.

Figure 5. (a) Comparison of numerically and analytically computed growth rate as a function of Deborah number and viscosity contrast for a two-layer system
with no-slip lower and upper boundary conditions (A0 = 10−3 H ). (b) Data collapse of (a), showing the speedup of the RT instability due to the effects of
elasticity as a function of normalized Maxwell relaxation time of the viscoelastic layer. The characteristic curves are valid for R > 100 and arbitrary T , λ and
boundary conditions.

The results shown on Fig. 5(a) are computed for a fixed λ, T , A0 and no-slip boundary conditions; different boundary conditions and
initial amplitudes result in different curves. In the following, we describe a more generally applicable technique which results in a set of
speedup-curves as a function of a non-dimensional time (or ‘effective Deborah number’) and initial amplitude. The main advantage of these
speedup-curves is that they are no longer dependent on initial and boundary conditions.

The time t vis that a viscous RT instability requires to grow from its initial amplitude A0 to an amplitude A0 + Amax is given by

tvis = q−1
vis log

(
1 + Amax + A0

A0

)
. (33)

This time can be compared with the Maxwell relaxation time of the viscoelastic layer, tM = µ1
G , yielding an effective Deborah number,

Deeff = tM

tvis
. (34)

Clearly, if Deeff � 1, viscoelastic effects are expected to be important. An actual computation of the speedup of the RT instability as a function
of Deeff reveals that, depending on initial amplitude, elasticity influences the RT instability significantly for Deeff > 0.1 (Fig. 5b). Although
this transition is somewhat dependent on the initial amplitude, it is nearly independent of viscosity contrast, layer thickness, wavelength and
boundary conditions (at least for R > 100).
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Figure 6. (a) Effect of a gravity-driven pre-stress state on the growth of the instability. Both numerical and analytical solutions are shown. The viscous case
(De � 1) is plotted for comparison. (b) Effect of initial pure-shear compressional state of the system for a two-layer case in which elasticity is important (De
= 10). All other parameters as in Fig. 4; only numerical solutions are presented. An initial extensional stress state increases the growth rate, whereas an initial
compressional stress state decreases the growth rate. Compressional stress states beyond 0.05 resulted in buckling-type instabilities.

6.4 Effect of pre-stress

If elastic effects are significant, the initial stress state of the model influences the growth rate of the instability. We have considered both a
gravity- and a compressional-dominated initial stress state. In the first set of models, we consider the effect of a gravity-dominated initial
stress state with both numerical and analytical methods (through the parameter B fac). An initial extensional pre-stress (B fac < 0) accelerates
the instability whereas an initial compressional stress state (B fac > 0) results in smaller growth rates (Fig. 6). This effect can be understood
qualitatively by the time dependency of the apparent viscosity, which is larger for compressional initial stresses.

An interesting effect occurs for B fac = 1, when the initial stress is identical to the viscous stress. We had intuitively expected the growth
rate of the viscoelastic RT instability to be identical to that of the viscous case. However, both numerical and analytical results indicate
otherwise; they show that the viscoelastic growth rate is significantly larger (Fig. 6) then the viscous growth rate. This is due to the changes in
stress caused by the movement of the interface, which results in non-zero elastic strain rates. More quantitatively, we can use the observation
that in the viscoelastic case with B fac = 1, amplitudes grows exponential but with a growth rate q ve >q vis. The temporal evolution of amplitude
and stress are then approximately given by

A(t) = A0eqve t , (35)

τ (t) = τ0eqve t . (36)

Substituting these expressions into the rheological eq. (22) yields the following expression

τ0qve = 2G

H
A0qve − G

µ1
τ0

qve =
G
µ1

τ0

2G
H A0 − τ0

.

(37)

By using τ 0 = (2 µ1 q vis A0/H ) for B fac = 1 one can derive a relationship between the viscoelastic growth rate and the viscous growth rate,
which is

qve = 1

1 − µ1
G qvis

qvis for 0 < qvis <
G

µ1
. (38)

This expression is similar to the one derived in Poliakov et al. (1993). For the case shown on Fig. 6(a) with B fac = 1, q vis = 7.74 × 10−5, µ1/

G = 104. The theoretical speedup ratio of q ve/q vis = 4.42 compares well with the numerically obtained ratio of 4.32. Eq. (38) has a resonance
if µ1

G qvis → 1. In this case, a more complete analysis should be employed to study the behaviour of the model. Examples of such an analysis
are the semi-analytical or numerical approaches outlined here. The results indicate that if µ1

G qvis ≥ 1 the timescale of the deformation becomes
controlled by the deformation of the lower, viscous layer. This manifests itself in a stabilization of the growth rate q at large values of De
(Fig. 5a). The actual value of this stabilization growth rate (qvis

max) is inversely proportional to the viscosity of the lower layer. A consequence of
this is that if the lower layer has zero viscosity, or if it is initially stress free and viscoelastic (resulting in an initially zero apparent viscosity),
the above described resonance phenomena may result in an ill-posed problem (with infinite growth rates). We indeed observed un-physical
growth rates in cases where the lower layer was viscoelastic and the employed numerical time step was smaller than the smallest relaxation time
of the system. For Earth-like parameters, this is not a serious issue since the asthenosphere has a sufficiently small Maxwell relaxation time
to be treated as a viscous fluid of small, but finite, viscosity. In a number of papers on the RT instability, however, the mantle has been treated
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Figure 7. Semi-analytically computed growth rate as a function of wavelength for two different boundary conditions and for different De. For comparison,
viscous spectra are shown for the case of R = 1000 (high-viscosity layer overlying a low-viscosity substratum) and for the case of R = 10−4 (limiting case
of a weak viscous layer overlying a high-viscosity matrix). With increasing De, the viscoelastic growth rate spectra approach the viscous spectra with R =
10−4. Note that viscoelastic effects are noticeable for De = 0.1 if a fast erosion boundary condition is present, whereas De > 1 is required for a no-slip upper
boundary condition.

as an inviscid fluid. Whereas this may be a valid approximation if the lithosphere is viscous, caution should be taken when the lithosphere is
viscoelastic.

In the second set of models, we consider the effect of an initially far-field compressional or extensional stress state with numerical
experiments (through the parameter B vis). In the case of extension (B vis < 0), the growth rate of the RT instability increases compared to
initially stress-free models (Fig. 6b). In the case of compression (B vis > 0), on the other hand, the growth rate decreases. However, the effect
is less pronounced than in the gravity-dominated case. Our explanation of this is that an initially compressive stress state is not the optimal
stress state for a gravity-driven instability. Upon model initialization, a phase of stress re-equilibrium occurs which slows down the instability
compared to gravity-driven initial stress states. An additional effect that occurs for far-field initial stress conditions is a buckling, or necking,
instability at large values of initial stress.

6.5 Growth rate as a function of wavelength

So far we have shown results for a fixed wavelength of λ/H = 1. To understand whether and how the dominant wavelength changes as a
function of De and pre-stress, we have used our semi-analytical solution to compute q num as a function of wavelength and De for different
boundary conditions (Fig. 7). At low De, the growth rate is identical to the viscous case with R > 1. The growth rate increases with De and
approaches that of the viscous case with R � 1. This saturation effect, which is identical to the effect found in Section 6.3, is caused by the
apparent viscosity of the upper layer being very small until the instability reaches an amplitude of A = 0.1H .

The dominant wavelength λdom of the RT instability is typically only weakly dependent on the viscosity contrast (Conrad & Molnar
1997; Kaus 2005). In the case of a fast erosion upper boundary condition, this dependence results in a five-fold reduction of the dominant
wavelength, whereas in the case of no-slip boundary conditions the change is hardly noticeable (Fig. 7). The maximum change in dominant
wavelength due to the effects of elasticity can thus be estimated by computing λdom for R and for R � 1.

6.6 Systematic analysis of Decrit

The goal of the present work is to analyse whether, and how, elasticity may influence the dynamics of the RT instability. In the previous
sections we demonstrated that elasticity speeds up the RT instability once De >Decrit. If Decrit is defined as the Deborah number for which
q num ≥ 1.1q vis, we can evaluate the effect of elasticity by computing Decrit as a function of viscosity contrast R, initial layer thickness T , initial
stress B fac, initial amplitude A0/H and boundary conditions (Fig. 8). The parameters R and T , as well as boundary conditions, have the largest
effect on Decrit, whereas both B fac and A0/H result in second-order modifications only. Maps of Decrit as a function of those parameters show
that Decrit ∼ 1 for free-slip and no-slip upper boundary conditions, whereas Decrit is somewhat smaller for a free surface and significantly
smaller for fast erosion boundary conditions (Fig. 8).

Even though our method of determining Decrit overemphasizes the importance of elasticity (q num larger than q vis by 10 per cent), its
effect still appears to be small given that for the Earth, 10−4 ≤ De ≤ 1. If we would have defined Decrit as the Deborah number for which
q num ≥ 5q vis, Decrit would have been increased by one order of magnitude (see Fig. 5b). The effects of elasticity are thus almost always
negligible, the exception being fast erosion upper boundary conditions.
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Figure 8. Contours of log 10(Decrit) versus viscosity contrast R and thickness ratio T for two different initial amplitudes (D surf = 0.09 has been employed
in the case of a free-surface upper boundary condition). Computations have been performed for a two-layer system using the semi-analytical solution. The
wavelength employed in the computations is the dominant wavelength for the purely viscous case. Variations in the initial stress (from B fac = −1 to B fac = 1)
result in smaller variations in Decrit than the shown variations in initial amplitude.

7 D E TA C H M E N T O F T H E M A N T L E L I T H O S P H E R E I N T H E P R E S E N C E O F A
V I S C O E L A S T I C C RU S T

Due to its relative cold temperature, the mantle lithosphere is gravitationally unstable with respect to the underlying asthenosphere. Removal
of the mantle lithosphere due to a RT instability has been invoked to explain the formation of the Sierra Nevada, California (Lee et al. 2000;
Jones et al. 2004; Molnar & Jones 2004; Zandt et al. 2004), Western Tien Shan (Molnar & Houseman 2004), southern Alps of New Zealand
(Stern et al. 2000; Kohler & Eberhart-Philips 2002), and the western Transverse Ranges, California (Kohler 1999; Billen & Houseman 2004).

We can approximate the detachment problem by a three or few layer viscoelastic fluid model set-up (Figs 9 and 12). Typical material
parameters for detachment of the mantle lithosphere (of thickness 50–100 km) are �ρ = 30–200 kg m−3, g = 10 ms−2, µ = 1021 Pa s, G =
1010–1011 Pa, H = 670 km, where �ρ is the density contrast between lithosphere and mantle (Neil & Houseman 1999; Molnar & Houseman
2004; Molnar & Jones 2004). These yield a Deborah number of De = 0.002–0.1, and T = 0.07–0.15. Based on our two-layer analysis, these
values are too low for elastic effects to have a significant effect on the speed of the downwelling, except if erosion is present (Fig. 8). However,
elasticity may have an effect on the stress evolution of the crust as well as on topography above the downwelling; moreover, the presence
of a viscoelastic versus a viscous crust effectively changes the upper boundary condition for detachment of the mantle lithosphere which
may influence rates of downwelling. In order to quantify such effects, we have performed a series of numerical simulations of a simplified
mantle–lithosphere system (Fig. 9). Downwelling of the mantle lithosphere causes deformation and stress build-up in the overlying crust.
With our choice of a highly viscous upper crust (µ = 1025 Pa s), t M ∼ 32 Myr, thus equal or larger than the timescale of removal of the mantle
lithosphere; viscoelastic effects might be important.

The results, for an initially stress-free lithosphere, show a difference in stress amplitude and patterns between viscous, viscoelastic and
viscoelastoplastic simulations (Fig. 9). In the viscoelastoplastic simulation, non-associated Mohr–Coulomb plasticity is activated if stresses
are above the yield stress (with cohesion C = 20 MPa, friction angle φ = 30◦ and dilation angle ψ = 0◦). The viscous case develops larger
stresses, because this model reacts instantaneously to an applied strain rate, whereas stress in the viscoelastic model builds up, or decreases,
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Figure 9. Temporal evolution of the second invariant of the deviatoric stress tensor (differential stress) in models that simulate the detachment of the lower
lithosphere as a function of time for a viscous (top), a viscoelastic (middle) and a viscoelastoplastic upper and lower lithosphere. The lowermost panels are
vertical cross-sections through the models at 0 km. The top boundary condition is free surface; the bottom boundary condition is no-slip. Thin grey lines
indicate passive strain markers and thick white lines rheological boundaries. The lithosphere consists of a crust (with ρ = 2900 kg m−3 and µ = 1025 Pa s) and
a mantle lithosphere (with ρ = 3300 kg m−3 and µ = 1021 Pa s). The mantle is modelled as a purely viscous fluid (with ρ = 3100 kg m−3 and µ = 1020 Pa
s). The rate at which the lower lithosphere detaches is only slightly larger in the viscoelastic and viscoelastoplastic case; stress evolution and distribution in the
crust is, however, significantly different.

more gradually (as a function of the Maxwell relaxation time). The viscoelastic and viscoelastoplastic instabilities are also slightly faster than
the viscous case. This is caused by the mechanically weaker viscoelastic crust, which effectively modifies the upper boundary condition of
the detachment process. The reduced resistance to flow causes both larger topographic deflections as well as a faster detachment process.
Interestingly, the overall dynamics of the viscoelastic and viscoelastoplastic models are fairly similar, suggesting that the main difference with
viscous models are due to elasticity. Viscoelastic and viscoelastoplastic models exhibit stress concentrations only above the downwelling,
whereas viscous models develop stress perturbations over wider areas. Whereas the stress concentrations above the downwelling are caused
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Figure 10. Topography after 4 Myr model evolution for various values of µ (G held fixed; left) and G (µ held fixed; right) of the crust. Viscoelastic effects
are noticeable when the Maxwell relaxation time of the crust, t M , is on the order of 4 Myr or larger (grey areas in legend). Viscoelastic effects increase the
topography. The effects of plasticity further increase the topography (results of the viscoelastoplastic model of Fig. 9 with G = 1010 Pa are shown).

by vertically dominated flow in this region, stress enhancements at other locations are caused by simple-shear flow of the lithospheric mantle
below the mantle–crust interface. In a viscous crust, this shear strain rate is immediately transferred into stress (resulting in a stress field that
appears to be elastic), whereas a viscoelastic or viscoelastoplastic crust requires shear to be active for longer times before stress effects are
noticeable.

An analysis of the effects of viscoelastic properties of the crust on topography (Fig. 10) reveals that topographic deflections above the
downwelling are larger in a viscoelastic crust than in a viscous crust. Plasticity (brittle behaviour) further increases topography, which may be
attributed to the effectively weaker crust. Viscoelastic effects are significant only when the timescale of the process is smaller than, or on the
same order of, the Maxwell relaxation time of the crust, because the RT instability is sensitive to the apparent viscosity, rather then to the real
viscosity. The smaller this apparent viscosity, the larger topographic deflections (Neil & Houseman 1999). Our results suggest that care should
be taken when applying viscous RT models to infer the viscosity of the lithosphere using gravity data and topography; ignoring viscoelasticity
may result in a underestimation of the true viscosity of the crust and may explain the low values inferred for Venus (Hoogenboom & Houseman
2006), or for the Earth (Billen & Houseman 2004).

Maximum stresses in models with a viscoelastic crust are significantly smaller than in models with an equivalent viscous crust (Fig. 11).
Increasing the viscosity of the crust results in an increase of stress until a saturation effect occurs when t M is significantly larger than the
timescale of lithospheric detachment. This result is in agreement with results obtained by Poliakov et al. (1993), who studied the interaction
between an upwelling diapir and an overlying, viscoelastic crust. Stress reaches a maximum at ∼4 Myr for a high-viscosity crust and at ∼3.7
Myr for a low-viscosity crust and drop afterwards. Differences in timing stem from the fact that a weak crust results in a more deformable
upper boundary, enhancing growth of the RT instability.

Our last set of runs highlight the effect of a lower crust on lithosphere–asthenosphere interaction. By varying the viscosity of the lower
crust, the coupling between upper crust and mantle lithosphere can be studied. The results (Fig. 12) demonstrate that mantle delamination is
significantly faster in the case of a weak lower crust. It also results, as expected, in smaller stresses in the upper crust. Viscous models behave
similarly, with the difference that magnitudes of stress are larger. Total detachment occurs after ∼2 Myr for a weak lower crust whereas it may
take ∼6 Myr for a viscosity of the lower crust which is similar, or larger, than the viscosity of the mantle lithosphere (Fig. 13).

8 D I S C U S S I O N

Elasticity may enhance the growth of the RT instability. Whether this effect is important for lithospheric deformation or not is critically
dependent on the speed of the viscous counterpart of the instability. If the viscous instability grows to finite amplitudes at a timescale smaller
than the Maxwell relaxation time of the layer, viscoelasticity will most likely enhance the growth of the instability.

We have made a number of simplifying assumptions. For example, the rheology of rocks is Newtonian, which is only valid for the
low-stress diffusion creep regime. Most likely, the rheology of rocks under lithospheric-scale conditions is rather governed by power-law or
non-Newtonian creep. The effect of such a rheology on the RT instability was studied in detail by Conrad & Molnar (1997). They found that
the growth rate of a non-Newtonian layer overlying an infinite half-space is given in dimensional units by

qNonNew = (ρ1 − ρ2)gH1C

µ1
, (39)

where C is the maximum growth rate in non-dimensional units which varies from 0.16 in the Newtonian case to 0.59 in the case of a perfectly
plastic layer. Superexponential growth (or ‘blowup’) occurs once the instability has reached an amplitude approximately equal to the initial
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Figure 11. Temporal evolution of maximum differential stress in the crust for various values of µ (left) and G (right) in the crust. Viscoelastic effects result in
smaller values of stress compared to purely viscous models. In the Earth’s lithosphere G = 1010–1011 Pa.

Figure 12. Deviatoric stress for models that include a lower crust of 25 km thickness with the same density as the upper crust but different viscosity. All other
properties as in Fig. 9. Top panels are for a purely viscous rheology whereas bottom panels take lithospheric elasticity into account. A weak lower crust (left
panels) results in smaller stresses and faster detachment rates compared to models in which the strength of the lower crust is equal to that of the mantle or to
that of the crust (right panels). Viscous models develop larger stresses. The scales of the colour bars are different.

layer thickness H 1. The time t vis to reach this thickness is thus given by

tvis =
log

(
H1
A0

)
qvis

. (40)

An indication of the importance of elasticity is given by the ratio of the viscous growth time with the Maxwell relaxation time (see Section 6.3;
Fig. 5b).

tM

tvis
= (ρ1 − ρ2)gH1C

log
(

H1
A0

)
G

. (41)

For (ρ 1 − ρ 2) = 200 kg m−3, g = 10 ms−2, H 1 = 160 km, G = 1010 Pa and H 1/A0 = 0.01–0.1, we obtain t M/t vis = 1.1 × 10−3–8 × 10−3.
According to the analysis presented in this work, t M/t vis should be larger than ∼10−2 for elasticity to have a noticeable, and larger than ∼10−1

− 1 for a significant, effect (Fig. 5b). It seems unlikely that elastic effects will significantly alter the results of Conrad & Molnar (1997).
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Figure 13. (a) Surface topography after 1 Myr. The weaker the lower crust, the faster the detachment and the larger the topographic deflections above the
downwelling mantle lithosphere. (b) Temporal evolution of maximum differential stress in models where a lower crust is present (cf. Fig. 12). A weak lower
crust results in a faster stress increase than cases with a strong crust.

Another effect that has been ignored here is the effect of horizontal shortening. Compression in the presence of a free surface may result
in lithospheric-scale buckling (Burg & Podladchikov 1999; Toussaint et al. 2004; Schmalholz et al. 2005), which may result in larger initial
perturbations. The effects of folding or buckling have previously been eliminated in most studies on lithospheric detachment by imposing
a free slip, or constant velocity, upper boundary condition. A study by Burg et al. (2004; see also Kaus 2005) allowed for folding (in the
presence of fast erosion) and showed that folding will dominate over the RT instability if initial amplitudes are small and(

µ1

µ2

) 2
3

ε̇BG > 0.39
(ρ1 − ρ2)g(H − H1)

2µ2
, (42)

where ε̇BG is the applied background strain rate. Employing (ρ 1 − ρ 2) = 30 − 200 kg m−3, g = 10 ms−2, (H − H 1) = 500 km, µ2 = 1020

Pa s suggests that folding will dominate over the RT instability if µ1 > 5 × 1023–3 × 1026 Pa s for values of ε̇BG = 10−15–10−16s−1. This
estimate, however, ignores the effects of elasticity, which have been demonstrated to greatly enhance the growth of the buckling instability
(Schmalholz & Podladchikov 1999; Schmalholz et al. 2002).

In order to keep the number of free parameters to a minimum, we have ignored the effects of plastic yielding throughout most of this
work. Clearly, this is an oversimplification since in the lithosphere deforms in a plastic fashion if differential stresses exceed the brittle yield
strength of rocks. Stresses that develop in the RT instability are proportional to the buoyancy force, given by �ρg H . Reasonable parameters
result in (maximum) 100 MPa in most regions, confirmed by numerical experiments (Figs 9 and 12). These values are lower than the typical
yield strength of mantle rocks inferred from laboratory experiments (∼500 MPa). Magnitudes of stress obtained in the crust exceed the values
obtained in the mantle lithosphere (caused by the stress-focussing effect; Podladchikov et al. 1993; Vasilyev et al. 2001). Here, brittle failure
occurs above the downwelling mantle lithosphere. Indeed, simulations in which plasticity is taken into account show brittle behaviour at this
location (Fig. 9). Compared with the effects of elasticity, the overall effect of plasticity is small. Plasticity does, however, influence topography
(see Fig. 9 and Burov & Guillou-Frottier 2005).

Moresi et al. (2002) described a numerical methodology and applied it to mantle convection in the presence of visco-elasto-plastic plates.
They presented three convection simulations which suggested that the elasticity may have the possible side-effect of causing slabs to roll-back
instead of to move forwards. Since they also included strain weakening it is not entirely clear whether this effect can be completely attributed
to the effects of elasticity.

Recently, Mühlhaus & Regenauer-Lieb (2005) numerically studied the effects of elasticity (in combination with plasticity) on mantle
convection. They showed that the general patterns of convection are not significantly altered by the presence of elasticity; it, however, decreases
the amount of dissipation in the lithosphere. These authors also showed an increase in convection speed with decreasing elastic shear module.
In agreement with our results here, they found that the parameters required for this effect to occur are unrealistic for the Earth.

9 C O N C L U S I O N S

In order to estimate the importance of elasticity on gravity-driven instabilities we studied the effect of elasticity on the RT instability. To
summarize our findings:

(i) If elasticity is important, it enhances the growth of the RT instability which appears sensitive to the viscous part of deformation only.
If the timescale of the process is smaller than the Maxwell relaxation time, the elastic part of the deformation is non-negligible. In this case,
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elasticity transforms a seemingly strong layer (i.e. with large viscosity) into a transiently weak layer, causing deformation to occur significantly
faster.

(ii) We have derived both an analytical and a semi-analytical model for the viscoelastic RT instability which reproduces numerical results
up to finite amplitudes with remarkable accuracy.

(iii) The solutions are employed to study the importance of elasticity for Earth-like parameters and boundary conditions; results indicate
that the effect of elasticity is negligible in most cases. Only the presence of a free surface (preferably one that is being rapidly eroded) may
result in a slight speedup of the instability.

(iv) Numerical simulations of multilayer detachment processes of the mantle lithosphere with a free surface indicate that stresses are lower
in a viscoelastic crust than in a viscous crust. Topographies and rates of downwellings are larger when a viscoelastic or a viscoelastoplastic
crust is present.

The question of whether elasticity is important for geodynamics or not cannot be answered with a simple yes or no. In this study, we
demonstrated that elastic effects, on the one hand, have a negligible effect on the dynamics of the RT instability. On the other hand, we also
showed that stress builds up differently in viscoelastic models compared to viscous models. Other workers have pointed out that elasticity
is important for compressional-driven instabilities (e.g. Schmalholz & Podladchikov 1999) and for shear localization (Ogawa 1987; Kaus &
Podladchikov 2006). Both processes depend on the state of stress of the lithosphere, which is currently not well understood. Future numerical
and analytical work is thus required to better understand the effects of elasticity (and plasticity) on actively deforming parts of the lithosphere.
By doing this, we will potentially be able to relate the effective elastic thickness to the thermal, mechanical and dynamical state of the
lithosphere. We could also answer questions such as whether the apparent absence of earthquakes in the mantle lithosphere is indeed caused by
a weak rheology of mantle rocks (Jackson 2002) or whether the ‘Christmas-tree’ strength envelops simply overestimates differential stresses
of the mantle lithosphere (Schmalholz et al. 2005; Kaus & Schmalholz 2006; Regenauer-Lieb et al. 2006).
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A P P E N D I X A : L I N E A R S TA B I L I T Y A N A LY S I S

The semi-analytical solution derived here consists of a set of ordinary differential equations that are coupled to a classical growth rate analysis
for the purely viscous RT instability. Viscoelasticity enters the problem by modifying the viscosity as a function of stress level (i.e. the
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apparent viscosity rather than the true viscosity is employed). Since in our model only the upper layer is viscoelastic, the apparent viscosity
is only employed for this layer; the lower layer has a Newtonian viscosity at all times. Here we outline the solution method for the viscous
RT instability. The derivation closely follows previous workers (Biot & Odé 1965; Fletcher 1972; Bassi & Bonnin 1988; Conrad & Molnar
1997; Fletcher & Hallet 1983; Ricard & Froidevaux 1986; Zuber et al. 1986; Burg et al. 2004). It differs, however, in the way we treat the time
stepping which is done with an implicit rather than explicit method, resulting in a large stability improvement when a free surface is present.

The incompressibility and force balance equations in 2-D are:
∂Vx

∂x
+ ∂Vz

∂z
= 0, (A1)

∂σxx

∂x
+ ∂σxz

∂z
= 0, (A2)

∂σxz

∂x
+ ∂σzz

∂z
= ρg, (A3)

where V x , V z denotes velocity in x, z-direction, ρ density, g gravity, P pressure and σ xx, σ zz, σ xz stress. Stress is related to deviatoric stress
as:

σxx = τxx − P, (A4)

σzz = τzz − P, (A5)

σxz = τxz . (A6)

Strain rates are defined as:

ε̇xx = ∂Vx

∂x
, (A7)

ε̇zz = ∂Vz

∂z
, (A8)

ε̇xz = 1

2

(
∂Vx

∂z
+ ∂Vz

∂x

)
. (A9)

The rheology for deviatoric stresses is viscous,

τi j = 2µappε̇i j , (A10)

where µapp is the apparent viscosity (see eq. 5) of the viscoelastic layer or the true viscosity of the viscous layer. Furthermore, it is assumed
that pressure and velocities vary harmonically in the horizontal direction:

Vz(x, z) = vz(z) cos(kx), (A11)

Vx (x, z) = −vx (z)

k
sin(kx), (A12)

P(x, z) = p(z) cos(kx), (A13)

where k = 2π/λ is the wavenumber, and λ the wavelength. Substituting eqs (A11) and (A12) into eq. (A1) yields an explicit expression of
v x as a function of v z . Pressure can be eliminated from eqs (A2) and (A3), by taking the derivative of eq. (A2) versus z and subtracting the
derivative of eq. (A3) versus x. The resulting equation is a fourth-order differential equation for v z(z).

∂4vz(z)

∂z4
− 2k2 ∂2vz(z)

∂z2
+ k2vz(z) = 0. (A14)

The solution of this equation has the form:

vz(z) = A exp(kz) + B exp(kz)z

+C exp(−kz) + D exp(−kz)z,
(A15)

where A − D are to-be-determined constants. From eq. (A15), which is valid inside each layer, we can determine analytical expressions for
v x , τ xx, τ xz, τ zz, σ xx, σ xz, σ zz and P.

We study two layers, with fixed or free surface. We thus have eight unknown coefficients for which we need eight additional equations.
Four of those are given at the interface between the two layers (e.g. at z = H int). A first-order Taylor expansion around z = H int gives an
expression for the continuity of velocity

v1
z (Hint) − v2

z (Hint) = 0

v1
x (Hint) − v2

x (Hint) = 0.
(A16)

Continuity of shear and normal stresses are given by

σ 1
xz(Hint) − σ 2

xz(Hint) = 0

σ 1
zz(Hint) − σ 2

zz(Hint) = (ρ1 − ρ2)g A,
(A17)
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where A is the amplitude of the sinusoidal perturbation of the interface. The four other equations are obtained from the boundary conditions.
No-slip conditions at the bottom of the domain are given by

v2
x (0) = 0

v2
z (0) = 0.

(A18)

Alternatively we can have free-slip lower boundary conditions

v2
z (0) = 0

σ 2
xz(0) = 0.

(A19)

A no-slip condition at the top of the domain is given by

v1
x (H ) = 0

v1
z (H ) = 0,

(A20)

a free-slip condition at the top of the domain is given by

v1
z (H ) = 0

σ 1
xz(H ) = 0,

(A21)

and a free-surface upper boundary condition is

σ 1
xz(H ) = 0

σ 1
zz(H ) = −ρ1g Asurf,

(A22)

where Asurf denotes the amplitude of the perturbation at the free surface and it is assumed that the density of air is negligible compared to the
density of rocks.

Finally, we consider a fast erosion (or fast redistribution) upper boundary condition, which is essentially a free-surface boundary that is
always maintained flat. The equations for this boundary condition are given by:

σ 1
zz(H ) = 0

σ 1
xz(H ) = 0.

(A23)

The resulting equations can be written in matrix form as (Ricard & Froidevaux 1986; Bassi & Bonnin 1988)

MC = R, (A24)

where M is an 8 × 8 matrix, C an 8 × 1 vector containing the unknown coefficients and R an 8 × 1 vector containing density terms. If Ai

indicates the amplitude of the sinusoidal perturbation of the ith interface (three in the current case), and A is a 3 × 1 vector containing Ai , R
is given by

R = PA, (A25)

where P is a 8 × 3 matrix containing forces due to density difference and gravity. The derivative of A versus time is given by

∂A

∂t
= V, (A26)

where V is a 3 × 1 vector containing the velocity at the ith interface. This velocity can be computed from the coefficient matrix C as (Bassi
& Bonnin 1988)

V = QC = QM−1R = QM−1 PA, (A27)

where Q is a 3 × 8 matrix containing coefficients required to compute velocity. An implicit time derivative of eq. (A26), yields

A − Aold

�t
= QM−1 PA = QC, (A28)

which can be written as

A = Aold + �t QC, (A29)

where Aold denotes the amplitude at the old time step and �t is the time step. Substituting eqs (A29) into (A25) and (A24) yields

(M − P Q�t)C = PAold. (A30)

Solving eq. (A30) for C allows to compute new amplitudes A according to eq. (A29). Practically we have implemented the governing equations
in a MATLAB routine, which allows to compute the solution for an arbitrary number of layers (the approach is similar to the one described
here except that there are 4 + 4n equations where n is the number of internal interfaces). In the case of a two-layer system with free-slip, no-slip
or fast erosion upper boundary conditions, it is possible to compute the solution analytically. In this case we have used MAPLE scripts similar
to the ones presented in Kaus (2005). The derived solutions have been used to verify the numerical code for purely viscous rheologies.
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