Spatial Characteristics of Recycled and Primordial Reservoirs in the Deep Mantle

M. G. Jackson¹, T. W. Becker², and B. Steinberger³,⁴

¹Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA, USA, ²Department of Geological Sciences, Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA, ³Section 2.5 Geodynamic Modelling, GFZ German Research Centre for Geosciences, Potsdam, Germany, ⁴Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway

Abstract The spatial distribution of the geochemical domains hosting recycled crust and primordial (high-3He/4He) reservoirs, and how they are linked to mantle convection, are poorly understood. Two continent-sized seismic anomalies located near the core-mantle boundary—called the Large Low Shear Wave Velocity Provinces (LLSVPs)—are potential geochemical reservoir hosts. It has been suggested that high-3He/4He hotspots are spatially confined to the LLSVPs, hotspots sampling recycled continental crust are associated with only one of the LLSVPs, and recycled continental crust shows no relationship with latitude. We reevaluate the links between LLSVPs and isotopic signatures of hotspot lavas using improved mantle flow models including plume conduit advection. While most hotspots with the highest-3He/4He can indeed be traced to the LLSVP interiors, at least one high-3He/4He hotspot, Yellowstone, is located outside of the LLSVPs. This suggests high-3He/4He is not geographically confined to the LLSVPs. Instead, a positive correlation between hotspot buoyancy flux and maximum hotspot 3He/4He suggests that it is plume dynamics (i.e., buoyancy), not geography, which determines whether a dense, deep, and possibly widespread high-3He/4He domain is entrained. We also show that plume-fed EM hotspots (enriched mantle, with low-¹⁴₃Nd/¹⁴⁴Nd), signaling recycled continental crust, are spatially linked to both LLSVPs, and located primarily in the southern hemisphere. Lastly, we confirm that hotspots sampling HIMU (“high-μ,” or high ²³⁸U/²⁰⁴Pb) domains are not spatially limited to the LLSVPs. These findings clarify and advance our understanding of deep mantle reservoir distributions, and we discuss how continental and oceanic crust subduction is consistent with the spatial decoupling of EM and HIMU.

1. Introduction

Hotspot volcanoes erupt lavas that are melts of buoyantly upwelling mantle plumes from the deep mantle. The radiogenic isotopic compositions (³He/⁴He, ¹⁴₃Nd/¹⁴⁴Nd, ²⁰⁶Pb/²⁰⁴Pb, etc.) of hotspot lavas, which are unchanged by mantle melting processes, thus provide windows into the chemical make-up of the inaccessible deep mantle sourced by plumes. A primary observation made from the geochemical characterization of hotspot lavas is that the mantle entrained by upwelling plumes is heterogeneous and contains primordial isotopic signatures, including high ³He/⁴He ratios. However, hotspot lavas also record signatures of subducted oceanic and continental crust recycled back to the near-surface from ancient subduction zones (Hofmann & White, 1982; White & Hofmann, 1982) that are associated with low ³He/⁴He (e.g., Hanyu & Kaneoka, 1997; Jackson et al., 2007a; Kurz et al., 1982). Thus, both recycled and primordial domains exist in the mantle sources of upwelling plumes, but the spatial relationships among these reservoirs are poorly understood.

Mantle reservoirs hosting subducted crust have unique isotopic fingerprints that reflect timescales since formation and subduction as well as the processes that acted on the rock protoliths prior to, during, and following subduction. There are many proposed models for the origin of hotspot lavas with HIMU (“high-μ,” or high ²³⁸U/²⁰⁴Pb) signatures (e.g., Castillo, 2015; Castillo et al., 2018; Eisele et al., 2002; Kendrick et al., 2017; Pilet et al., 2008; Weiss et et al., 2016), characterized by having high ²⁰⁶Pb/²⁰⁴Pb, low ³He/⁴He (<8 Ra), and long-term incompatible element depletion resulting in high ¹⁴₃Nd/¹⁴⁴Nd (referred to as geochemically depleted ¹⁴₃Nd/¹⁴⁴Nd compositions). Nonetheless, a common interpretation of the HIMU geochemical signature is that it arises from recycled oceanic crust (Hofmann & White, 1982). Similarly, ancient recycled continental cur...
crust and associated sediments evolve into EM (enriched mantle) reservoirs (White & Hofmann, 1982) that exhibit geochemically enriched (low) $^{143}\text{Nd}/^{144}\text{Nd}$ and low $^{3}\text{He}/^{4}\text{He}$.

In contrast, mantle domains with primordial high $^{3}\text{He}/^{4}\text{He}$ (up to ~50 Ra) (Starkey et al., 2009) signatures are characterized by geochemically depleted (high) $^{143}\text{Nd}/^{144}\text{Nd}$ ratios and low $^{206}\text{Pb}/^{204}\text{Pb}$. Mantle domains with primordial $^{3}\text{He}/^{4}\text{He}$ have also been associated with anomalous ^{129}Xe (Mukhopadhyay, 2012), ^{182}W (Mundt et al., 2017; Mundt-Petermeier et al., 2020; Rizo et al., 2019), and ^{146}Nd (Horan et al., 2018; Peters et al., 2018) isotopic compositions, which are the products of short-lived nuclides extinct only in the Hadean: ^{127}I (half-life $T_{1/2} = 15.7$ Ma), ^{182}Hf ($T_{1/2} = 8.9$ Ma), and ^{146}Sm ($T_{1/2} = 103$ Ma), respectively. These observations support an early Hadean origin of the high $^{3}\text{He}/^{4}\text{He}$ domain followed by long-term preservation in the mantle. However, it is not known how anomalies generated in the Hadean survived ~4.5 Ga of mantle convection to be sampled by modern basalts. The viscosity and density of the host reservoirs will control mixing (e.g., Ballmer et al., 2017; Becker et al., 1999; Davaille, 1999; McNamara & Zhong, 2004), and reservoir preservation may also relate to where these primordial domains reside, thereby providing constraints on dynamics (e.g., Coltice et al., 2005; Dechamps et al., 2011; Jackson et al., 2017; Lin & van Keken, 2006; Samuel & Farnetani, 2003). Thus, it is critical to better constrain where primordial, and recycled, domains are stored in the Earth’s mantle.

In contrast to the depleted mantle (DM)—which has geochemically depleted $^{143}\text{Nd}/^{144}\text{Nd}$, low $^{206}\text{Pb}/^{204}\text{Pb}$, and low $^{3}\text{He}/^{4}\text{He}$, and is sampled from the upper mantle by mid-ocean ridge basalts (MORB; Gale et al., 2013)—high $^{3}\text{He}/^{4}\text{He}$ signatures are relatively rare and are sampled only by hotspots fed by the hottest plumes with the highest buoyancy fluxes, supporting a deep-mantle origin for a high $^{3}\text{He}/^{4}\text{He}$ mantle domain that is relatively dense (Jackson et al., 2017). In addition, hotspots that erupt extreme EM or HIMU components tend to be associated with seismically resolved mantle plumes (Jackson et al., 2018a), which supports a deep mantle home for recycled crust sampled by plumes. However, the spatial relationships between primordial (high $^{3}\text{He}/^{4}\text{He}$) and recycled (EM and HIMU) domains in the deep mantle are not well known. The two near-antipodal, deep mantle LLSVPs (large low shear wave velocity provinces)—one LLSVP located under the Pacific Ocean, and the other LLSVP situated under Africa and the Atlantic and Indian Oceans, called the Indo-Atlantic LLSVP hereafter—are attractive in this regard, but studies suggesting they are home to primordial and recycled domains yield conflicting conclusions.

Williams et al. (2019) explored laterally advected plume conduits where, instead of rising vertically, conduits tilt in the “mantle wind” (Boschi et al., 2007; Steinberger & O’Connell, 1998). Williams et al. (2019) traced high $^{3}\text{He}/^{4}\text{He}$ hotspot associated plumes and concluded that the high $^{3}\text{He}/^{4}\text{He}$ source region is restricted to the LLSVPs. However, that study excluded Yellowstone, which is a high $^{3}\text{He}/^{4}\text{He}$ hotspot with a likely deep source underneath the Americas (Nelson & Grand, 2018; Steinberger et al., 2019), suggesting high $^{3}\text{He}/^{4}\text{He}$ material is in fact not restricted to the LLSVPs.

While arguing for a connection between high $^{3}\text{He}/^{4}\text{He}$ and the LLSVPs, Williams et al. (2019) rejected a geographic relationship between LLSVPs and conduits sourcing hotspots that exhibit recycled crust signatures (Williams et al., 2019), where recycled crust signatures were defined by having the maximum $^{208}\text{Pb}^{*}/^{206}\text{Pb}^{*}$ at each hotspot (where $^{208}\text{Pb}^{*}/^{206}\text{Pb}^{*} = (^{208}\text{Pb}/^{204}\text{Pb} – 29.475)/(^{206}\text{Pb}/^{204}\text{Pb} – 9.306)$) (Galer & O’Nions, 1985). In contrast, Castillo (1988) and Jackson et al. (2018b) showed that hotspots with EM signatures, associated with continental crust recycling, are geographically restricted to both the Indo-Atlantic and Pacific LLSVPs, but these studies did not explore whether primordial high $^{3}\text{He}/^{4}\text{He}$ is also associated with the LLSVPs. Another potential weakness of those studies is that they assumed vertical, instead of advected, plume conduits, for simplicity. In addition, Jackson et al. (2018b) showed that, while EM reservoirs do appear to be geographically restricted to the LLSVPs, HIMU domains are not.

More recently, Doucet et al. (2020) arrived at two unexpected conclusions regarding the distribution of EM hotspots: (1) deeply sourced plumes with EM signatures are linked only with the Indo-Atlantic and not the Pacific LLSVP, and (2) the distribution of the EM domain is not related to latitude. Doucet et al. (2020) excluded geochemical data for hotspots with seismically resolved plumes that did not meet specific criteria. Partially because of this filtering, Doucet et al.’s (2020) results contrast with the proposed geographic association between EM hotspots and both the Indo-Atlantic and Pacific LLSVPs (Castillo, 1988; Jackson et al., 2018b). Doucet et al. (2020) also rejected the suggestion that EM domains are concentrated in a
large-scale southern hemispheric geochemical province referred to as the DUPAL anomaly (Dupré+Allègre, 1983; Hart, 1984).

Therefore, key questions regarding the distribution of recycled and primordial domains in the deep Earth remain (Doucet et al., 2020; Jackson et al., 2018b; Konter & Becker, 2012; William et al., 2019). Are primordial or recycled domains, or both, located in the LLSPVs? Does just one LLSPV exhibit clear signatures of recycled continental crust, or do both? Given that the protoliths for recycled mantle reservoirs—continental and oceanic crust—are likely subducted together, with similar trajectories governed by large-scale subduction associated transport, why are EM and HIMU domains seemingly spatially decoupled in the mantle? Do geochemical reservoirs exhibit geographic distributions that favor one hemisphere over the other, or is a hemisphere-scale DUPAL domain an outdated concept?

The answers to these questions bear on the thermo-chemical convection dynamics that control the co-evolution of the surface and deep mantle over geologic time, including mechanisms for the long-term preservation of geochemical domains and processes that influence their geographic distribution in the deep Earth.

2. Methods

We address these questions by comparing the inferred geographic distributions of the lower mantle sources of 58 hotspots with geochemical signatures that trace primordial and recycled material measured in hotspot lavas (Figure 1). Our geochemical database seeks to represent the most geochemically extreme lavas from each hotspot to identify the global distribution of EM, HIMU, and high ³He/⁴He lavas. Values for the highest ³He/⁴He (most primordial), lowest ¹⁴⁳Nd/¹⁴⁴Nd (useful for identifying the strongest EM signatures), and highest ²⁰⁶Pb/²⁰⁴Pb (for identifying the strongest HIMU signatures) lavas at each hotspot are provided in Table S1. In most cases, the geochemically extreme compositions at any given hotspot are measured on different lavas, but there are several exceptions where the lowest ¹⁴³Nd/¹⁴⁴Nd and highest ²⁰⁶Pb/²⁰⁴Pb at a given hotspot are found in a single lava (Jackson et al., 2018a, 2018b). We define elevated ³He/⁴He as being higher than the ³He/⁴He range for global MORB away from hotspots (8 ± 2 Ra, 2σ; Graham, 2002). In addition, high ²⁰⁶Pb/²⁰⁴Pb (HIMU) lavas have at least one lava with ²⁰⁶Pb/²⁰⁴Pb ≥ 20 (a threshold defined and justified in Jackson et al., 2018b), and ¹⁴³Nd/¹⁴⁴Nd value is not considered in defining whether hotspots have HIMU compositions. Geochemically enriched (EM) hotspots have at least one lava with ¹⁴³Nd/¹⁴⁴Nd ≤ 0.512630 (where 0.512630 is the chondritic ¹⁴³Nd/¹⁴⁴Nd value; Bouvier et al., 2008), and ²⁰⁶Pb/²⁰⁴Pb values are not considered in defining whether hotspots have EM compositions. Mantle domains with ¹⁴³Nd/¹⁴⁴Nd > 0.512630 have experienced past melt extraction and depletion of highly incompatible relative to less incompatible elements, and are considered to be incompatible element depleted (or, more simply, geochemically depleted). In contrast, mantle domains with ¹⁴³Nd/¹⁴⁴Nd < 0.512630 have experience incompatible element addition, and such mantle domains are referred to as incompatible element enriched, or geochemically enriched.

We also provide new ³He/⁴He data for the San Felix hotspot, a hotspot that has never been characterized for ³He/⁴He (Table S2). Analytical methods for ³He/⁴He measurement are provided in the supporting information Text S1.

Continental lithosphere assimilation at continental hotspots will decrease ³He/⁴He ratios, so measured ³He/⁴He data at continental hotspots are treated as minima. Therefore, figures that include ³He/⁴He show oceanic and continental hotspots separately. In contrast, the impact of continental assimilation on ¹⁴³Nd/¹⁴⁴Nd, and especially ²⁰⁶Pb/²⁰⁴Pb, is less predictable. Thus, Nd and Pb isotopic systematics at continental hotspot lavas are not evaluated here.

To assess ensemble uncertainties for Earth structure and inferred dynamic models, we use four global seismic tomography models—S40RTS (Ritsema et al., 2011), SEMUCB-WM1 (French & Romanowicz, 2015), the composite SMEAN2 (Becker & Boschi, 2002; Jackson et al., 2017), and TX2016 (Lu & Grand, 2016)—in an internally consistent way to, (1), evaluate how plumes tilt in mantle flow as they upwell, (2), define mantle plume conduits beneath hotspots, and, (3), delineate the margins of the LLSPVs.
2.1. Plume Advection Models

For each of the four global seismic models, we employ a plume advection model (Steinberger & O’Connell, 1998; Steinberger et al., 2019) to explore how plumes tilt as they upwell through the mantle, which allows us to infer the location of a mantle plume conduit at the core-mantle boundary (CMB) (Text S1 in supporting information). In order to illustrate the effect of choice of seismic model on conduit paths, conduits are shown beneath all hotspots for all four seismic models in Figure 1. We find that conduit paths are broadly similar across the seismic models considered (cf. Boschi et al., 2007), reflective of their similarity in terms of the shear wave velocity anomaly structure at the longest wavelengths (cf. Becker & Boschi, 2002).

2.2. Defining Plume Conduits Beneath Hotspots

A number of approaches have been put forward to identify seismically resolved plume conduits beneath hotspots and their uncertainties (e.g., Boschi et al., 2008; Marignier et al., 2020). Our approach is slightly modified from Boschi et al. (2007): in each seismic model we evaluate the fraction of the mantle’s depth (i.e., the plume’s “connected conduit length”) over which the advected conduits exhibit negative seismic velocity anomalies, and the new method allows for small gaps in the conduit (see Text S1 in supporting information). We average each plume’s connected conduit length across the four seismic models, and if the average length is at least 0.6—which corresponds to the conduit spanning 60% of the mantle, and is close to the mean conduit lengths for the hotspots considered—the conduit is categorized as a plume connecting to a hotspot (Figure 2, Table S1). Applying this definition of a plume, 30 of the 58 hotspots examined in this study are associated with seismically imaged mantle plumes.

We use this criterion to define plume-sourced and nonplume hotspots in the remaining figures. Such a global tomographic approach appears useful for identifying presumably wide thermochemical plumes (Boschi et al., 2007; French & Romanowicz, 2015; Marignier et al., 2020), with the caveat that numerous complications exist (e.g., depth-dependent mapping between temperature and velocity anomalies). However, any method based on relatively long-wavelength, global tomography may fail to identify narrower conduits, as expected for purely thermal plumes. Moreover, global tomography does not yet image all the plumes identified in regional studies. For example, the Yellowstone plume is not easily identifiable in any of the four global tomographic models considered; Yellowstone in fact shows the second shortest conduit extent (∼0.25) among the 58 hotspots examined (Figure 2). However, the higher resolution afforded by USArray permitted resolution of the Yellowstone plume in a regional seismic model (Nelson & Grand, 2018), and the imaged plume conduit matches dynamic models for the lateral advection of the plume (Steinberger et al., 2019). The Yellowstone case thus suggests that we cannot

Figure 1. Hotspot surface locations (circles colored by inferred plume length) and modeled plume conduits (lines connecting circles to their plume conduit location at the bottom of the mantle) for the four global seismic models considered: (a) S40RTS, (b) SEMUCB-WM1, (c) TX2016, and (d) SMEAN2. Symbol size represents hotspot buoyancy flux in Mg/s (see Table S3). The connected conduit length (i.e., the inferred plume length) is computed based on the extent of slow seismic tomography anomalies along the conduit. Because conduit lengths are normalized to the depth of the mantle, plume conduits that span the whole mantle have values of unity, and hotspots with no resolvable conduit have connected conduit lengths of zero (cf. Boschi et al., 2007; see also Figure 2). Background shows tomographic velocity anomalies at 2,850 km for each seismic model (red-blue scale). The Large Low Shear Wave Velocity Provinces boundaries (based on the −0.75 RMS velocity anomaly) are indicated by magenta lines.

Figure 2. Distribution of normalized connected conduit lengths for different tomographic models (cf. Boschi et al., 2007) for all hotspots. The connected conduit value is the fraction of each modeled hotspot’s associated plume conduit that is located in slow tomographic velocity anomalies (Text S1 in the supporting information). The connected conduit lengths for individual seismic models are shown with different color symbols, and the average conduit length across the four seismic models is also shown (gray). The latter is used to define whether a hotspot is associated with a plume. If the connected conduit is ≥ 0.6 (where 0.6 is approximately the average connected conduit length for the tomographic models), the associated hotspot is then defined as being sourced by a plume (red text in figure); nonplume hotspots are in blue text.
exclude the presence of plumes for the 28 hotspots where global seismic models do not resolve a plume (Figure 2) because future, higher-resolution tomography may yet reveal a deep conduit connection. While connected conduit lengths from global seismic models can underestimate true conduit lengths identified in regional seismic models (e.g., Yellowstone), connected conduits lengths may overestimate the true length of a conduit in other cases: due to convective dynamics a conduit might be disrupted, but global tomography models might smear out significant vertical gaps in a plume (e.g., due to data coverage), with the result being that conduits may not, in fact, be as continuous as they appear in our analysis. However, statistical analysis shows that the match of tomographic anomalies and plume conduits is not simply indicative of broad-scale upwelling, a scenario that would permit a shallow mantle (i.e., nonplume) origin for the hotspots considered here. Instead, correlations between deep conduits and known hotspot locations at the surface are highly significant when considered as a global conduit set (Boschi et al., 2008).

2.3. Defining the LLSVP Boundaries

For each of the seismic models, we define the margins of the two LLSVPs as those shear wave velocity anomalies which are −75% of the root mean square (RMS) velocity anomaly at the CMB (see Text S1 in supporting information). In our earlier work, we found this approach to yield broadly consistent estimates compared to other methods (Jackson et al., 2018b). However, ambiguities as to how LLSVPs are defined can be important, for example when evaluating if plumes are sourced at the edges or interior of LLSVPs (e.g., Austermann et al., 2014; Thorne et al., 2004; Torsvik et al., 2006). We therefore show histograms of inferred plume locations at the base of the mantle (at 2,850 km) as a function of distance from the LLSVP edge (Figure 3). For this, we calculate the shortest distances between the margins of the LLSVPs and downward-projected bases of plume conduits (see Text S1). Using these distances, hotspots are then also classified (for simpler visualization and categorization in some of the figures) as being “far from LLSVP” (i.e., conduit distances are > 500 km outside of the margins of the LLSVPs when averaged across all four seismic models) or LLSVP hotspots (i.e., conduits that are either located within, or not further than 500 km from, the margins of the LLSVPs; cf. Figure 1; Table S1).

Below we examine relationships between hotspot geochemistry and hotspot buoyancy flux (Table S3), advected conduit distances from the margins of the LLSVPs, latitude and longitude of actual conduit base location and seismic velocity anomalies extracted from the advected conduits at 2,850 km. We present relationships using the S40RTS model in Figures 5–8 of the main text, and complementary results for the other seismic models are shown in the Figures S2 through S5.

3. Observations

3.1. Global Relationships Between Hotspots and LLSVPs

To extract some statistical background information from the plume models shown in Figure 1a, Figure 3 displays the global distribution of advected conduit base locations for all 58 hotspots as a function of longitude, latitude (and sin(latitude)), and distance from the LLSVP boundaries. Both vertical conduits, projected downward from the surface hotspot locations (Figures 3a, 3c, and 3e), and advected conduits (Figures 3b, 3d, and 3f), are shown. As expected, the advected hotspot-related plume conduits at the base of the mantle (Figures 3a and 3b) have a bimodal distribution with longitude. This pattern matches the distribution of slow velocity anomalies in tomography in the lowermost mantle (shown with gray lines) that represent the Indo-Atlantic and Pacific LLSVPs (cf. Hager et al., 1985; Richards et al., 1988). The conduit base locations are also shown as a function of latitude (Figures 3c and 3d), indicating a greater number of hotspots in the southern hemisphere, which is again mirrored in deep mantle low seismic velocity anomalies that are also shifted to the southern hemisphere. Compared to vertical conduits, advected conduits reveal a somewhat tighter clustering in the southern hemisphere. Inferred hotspot-related plume base locations are shown as a function of distance from the margins of the LLSVPs in Figures 3e and 3f. There are more hotspots inside the LLSVPs than outside when allowing for plume advection, which contrasts with a random distribution of hotspot conduits (gray line in Figures 3e and 3f). Compared to vertical conduits, which scatter around the margins of the LLSVPs, advected conduits tend to cluster more clearly inside the LLSVPs. Plume conduit base locations are thus associated with LLSVPs, as was suggested based on vertical downward conduit
Figure 3. The distribution of conduit locations beneath global hotspots are shown as a function of longitude, sin(latitude) (to account for reduced surface area per degree latitude at higher latitudes), and minimum distance from the margins of the Large Low Shear Wave Velocity Provinces (LLSVPs) at 2,850 km depth (positive distances are outside, negative inside LLSVPs). Results are shown for the SMEAN2 model, but note that the classification into Pacific LLSVP, Indo-Atlantic LLSVP (called “Atlantic” in the figure), and far (>500 km) from LLSVP hotspots is derived from the average of all four tomography models considered (as explained in supporting information Text S1). The histograms count the number of hotspots by bin (Figure S1 is equivalent and uses summed hotspot fluxes). The first column of panels (a, c, and e) assumes vertical conduits (projected downward from the surface hotspot locations). The second column (panels b, d, and f) uses conduit bases of advected plume conduits at 2,850 km depth. (This distance computation contrasts with the approach taken in Jackson et al. [2018b], where distances between LLSVPs and vertical conduits were projected to the surface.) Results for advected conduits are similar using other seismic models (e.g., S40RTS), and data for generating histograms for advected conduits using other seismic models are available in the Table S1. The gray lines in the top and middle panels show results for shear wave velocity anomalies at 2,850 km for comparison, and thus approximate LLSVP distributions; in the bottom panels, the gray line shows distance distributions for randomly located plumes.
projection (e.g., Richards et al., 1988; Ritsema et al., 2011; Thorne et al., 2004; Torsvik et al., 2006; Williams et al., 1998), and earlier analysis of advected plumes (Boschi et al., 2007). The predominance of plume sources inside the LLSVPs for advected conduits implies that while the temperature gradients at the LLSVP edges might serve to preferentially seed plume instabilities, the conduit base locations might be swept toward the interior subsequently (Steinberger & Torsvik, 2012).

In Figure S1, we also show summed hotspot buoyancy flux distributions using buoyancy estimates provided in Table S3. The results are overall consistent with Figure 3. When considering flux weighted distributions as a function of longitude, the hotspots associated with the Pacific LLSVP form a peak that is more pronounced than that of the Indo-Atlantic LLSVP hotspots, but individual hotspot buoyancy estimates dominate such histograms (e.g., Hawaii, cf. Figures 1a and 4a). Like the distribution of hotspots, the summed hotspot buoyancy fluxes are greater in the southern hemisphere (Figures S1c and S1d), and the clustering of summed hotspot fluxes in the southern hemisphere is more pronounced when using advected plumes. When considering the distances of advected plume conduits from the LLSVPs, most of the plume flux clusters are located within the LLSVPs and have high buoyancy fluxes (approaching 13 Mg/s per bin), while all inferred plume fluxes further than 500 km away from the edges of the LLSVPs are small (<3 Mg/s per bin) (Figure S1f).

3.2. Relationships Between Hotspot Geochemistry and LLSVP Locations

In Figure 4, the lowest 143Nd/144Nd, highest 206Pb/204Pb, and highest 3He/4He lavas from each hotspot with available geochemical data (see Tables S1 and S2), as well as hotspot buoyancy fluxes (Table S3), are shown in map view. These parameters are also shown in Figure 5 (and Figure S2) as a function of conduit distance from the margins of the LLSVPs.

Hotspots that host only geochemically depleted (high) 143Nd/144Nd compositions are found both inside and outside of the LLSVPs. However, the advected conduit base for all hotspots with geochemically enriched (EM) 143Nd/144Nd (i.e., 143Nd/144Nd$_{anomal}$ < 0.512630; Bouvier et al., 2008) can be traced back to the interiors of, or outside but close to (<500 km) the LLSVPs (Figures 4, 5, and S2). No EM hotspots are found far from the LLSVP boundaries; this substantiates prior work based on vertical plume conduits (Castillo, 1988; Jackson et al., 2018b). However, non-EM hotspots (i.e., geochemically depleted hotspots that lack lavas with 143Nd/144Nd < 0.512630) are likewise found within the LLSVPs, and only about one-third of geochemically characterized oceanic hotspots linked to the LLSVPs exhibit EM signatures. This suggests a heterogeneous distribution of EM and geochemically depleted material in the LLSVPs.

The highest 206Pb/204Pb at global hotspots shows no relationship with conduit distance from the LLSVPs (Figures 4, 5, and S2). This observation was made using vertical plume conduits (Jackson et al., 2018b), but is here confirmed with advected conduits and substantiated by incorporating the recent discovery of extremely high 206Pb/204Pb in the Bermuda hotspot (Mazza et al., 2019), which is located far from the margins of the nearest (i.e., Indo-Atlantic) LLSVP. Lastly, 208Pb*/206Pb* ratios associated with the lowest 143Nd/144Nd (most EM) lavas from each oceanic hotspot show a clear relationship as a function of conduit distance from the LLSVPs, where high 208Pb*/206Pb* is associated with the interiors of the LLSVPs. This relationship resembles the strong association between minimum hotspot 143Nd/144Nd and the LLSVPs (Figures 5 and S2). In contrast, 208Pb*/206Pb* ratios associated with the highest 206Pb/204Pb (most HIMU) lavas from each oceanic hotspot show no clear relationship with distance from the LLSVPs (Figure 5), resembling the lack of clear relationship between maximum hotspot 206Pb/204Pb and distance from the LLSVPs.

With one exception, the highest hotspot buoyancy fluxes, and the highest 3He/4He ratios, are linked to advected plume conduits that extend to the interiors of, or outside of but close to both LLSVPs (Figures 4, 5, and S2). However, one moderately high buoyancy flux hotspot (Yellowstone), which also has high 3He/4He (19.4 Ra), does not trace back to the LLSVPs. The remaining hotspots located far outside of the LLSVPs have low hotspot buoyancy flux and low 3He/4He (Figure 5).
<table>
<thead>
<tr>
<th>Flux (Mg/s)</th>
<th>connected conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.5</td>
</tr>
<tr>
<td>Max</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δv S [%]</th>
<th>connected conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>-1</td>
</tr>
<tr>
<td>Max</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>143Nd/144Nd</th>
<th>S40RTS @ 2850 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.5127</td>
</tr>
<tr>
<td>Max</td>
<td>0.5123</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3He/4He (Ra)</th>
<th>S40RTS @ 2850 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>0.5</td>
</tr>
<tr>
<td>Max</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>206Pb/204Pb</th>
<th>S40RTS @ 2850 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>18.5</td>
</tr>
<tr>
<td>Max</td>
<td>20.5</td>
</tr>
</tbody>
</table>

(a) Min 143Nd/144Nd, (b) Max 143Nd/144Nd, (c) Max 3He/4He (Ra), (d) Min 3He/4He (Ra)
3.3. Relationships Between Hotspot Geochemistry and Seismic Shear Wave Velocity Anomalies at the Bottom of the Mantle (2,850 km)

In Figure 6, maximum hotspot \(^{3}\text{He}/^{4}\text{He}\), minimum \(^{143}\text{Nd}/^{144}\text{Nd}\), and maximum \(^{206}\text{Pb}/^{204}\text{Pb}\) are shown as a function of the seismic velocity anomaly at 2,850 km in advected plume conduits associated with each hotspot. There is no clear relationship between maximum \(^{3}\text{He}/^{4}\text{He}\) and shear wave velocity anomalies (\(\delta v_s\)) at the base of related plume conduits. Most high \(^{3}\text{He}/^{4}\text{He}\) hotspot conduits are associated with low seismic velocity anomalies, but one high \(^{3}\text{He}/^{4}\text{He}\) hotspot, Yellowstone, is associated with positive \(\delta v_s\) in two of the global seismic tomography models (SMEAN2 and TX2016; Figure S3). In addition, hotspots with low \(^{3}\text{He}/^{4}\text{He}\) exhibit both positive and negative \(\delta v_s\).

The relationship between minimum hotspot \(^{143}\text{Nd}/^{144}\text{Nd}\) and \(\delta v_s\) broadly reflects the relationship between minimum hotspot \(^{143}\text{Nd}/^{144}\text{Nd}\) and conduit distance from the LLSPVs: EM hotspots are linked to low \(\delta v_s\), while hotspots lacking EM signatures are associated with both low and high \(\delta v_s\). However,
Geochemistry, Geophysics, Geosystems 10.1029/2020GC009525

we find that the EM Tasmanid hotspot is an exception to this relationship in two global seismic models examined here (SEMUCB-WM1 and SMEAN2; Figure S3). Lastly, we find no correlations between maximum hotspot 206Pb/204Pb and δv_x at 2,850 km.

3.4. Hotspot Geochemistry as a Function of Longitude: Comparing the Geochemistry of the Indo-Atlantic and Pacific LLSVPs

Figure 7 (and Figure S4) shows how the geochemistry of hotspots varies as a function of conduit longitude at the bottom of the mantle. The data appear in two clusters, associated with the Pacific LLSVP and the Indo-Atlantic LLSVP, respectively. The Pacific LLSVP has more hotspots with $^4\text{He}/^\text{He} \geq 20$ Ra, but the Indo-Atlantic LLSVP is host to the highest $^4\text{He}/^\text{He}$ hotspot, Iceland. While both LLSVPs are linked to hotspots with 206Pb/204Pb ≥ 20, including the second-highest 206Pb/204Pb hotspot (Macdonald), the hotspot with the highest 206Pb/204Pb (Bermuda) is not clearly associated with an LLSVP (see Figure 5, Table S1, Text S1 in supporting information). Hotspots with plume conduits (i.e., connected conduit ≥ 0.6; Figure 2) associated with EM ($^{146}\text{Nd}/^{144}\text{Nd} \leq 0.512630$) signatures are linked to both the Indo-Atlantic LLSVP (five plume-fed EM hotspots, including Amsterdam/St. Paul, Cape Verde, Comores, Kerguelen/Heard, and Meteor/Shona) and the Pacific LLSVP (six plume-fed EM hotspots, including Samoa, Pitcairn, Societies, Hawaii, San Felix, and Rarotonga) (Figure 7). We find that the Pacific LLSVP is linked to more deeply sourced (i.e., plume-fed) EM hotspots than the Indo-Atlantic LLSVP.

3.5. Hotspot Geochemistry as a Function of Latitude

Figure 8 (and Figure S5) show how the geochemistry of hotspots varies as a function of latitude of the plume conduit base. Hotspots that host only geochemically depleted compositions ($^{146}\text{Nd}/^{144}\text{Nd} > 0.512630$) are found at all latitudes, but hotspots hosting geochemically enriched compositions ($^{146}\text{Nd}/^{144}\text{Nd} \leq 0.512630$) are found primarily in the southern hemisphere. Across all four seismic models examined here, conduits locations at the CMB show that, north of $\sim 16^\circ$N latitude, there are no plumes sourcing EM signatures. Furthermore, EM signatures become more extreme at more southerly latitudes, and all hotspots with the most extreme EM signatures ($^{146}\text{Nd}/^{144}\text{Nd} < 0.5125$) are found between 15°S and 43°S. We refer to this band of EM hotspots in the southern hemisphere as the DUPAL domain (Hart, 1984). The DUPAL domain is observed when both plume-fed hotspots and hotspots without resolved plumes are included, or if only plume-fed hotspots are examined (Figure S5). While the LLSVPs are shifted toward the southern hemisphere—showing peaks in their distribution at $\sim 20^\circ$S (gray line in Figure 3c)—the DUPAL domain is shifted even further south (i.e., from 15°S to 43°S) and toward the southern regions of the LLSVPs.

Maximum hotspot $^4\text{He}/^\text{He}$ and minimum $^{146}\text{Nd}/^{144}\text{Nd}$ show possibly complementary trends with latitude: the most extreme EM signatures are concentrated toward the southernmost latitudes while the highest $^4\text{He}/^\text{He}$ is present in high-northern latitudes (farthest from the EM DUPAL domain). The upper envelope for maximum $^4\text{He}/^\text{He}$ with latitude is anchored by the Iceland hotspot, but possible complementary DUPAL (southern hemisphere) and high $^4\text{He}/^\text{He}$ (northern hemisphere) domains are nonetheless notable (Figures 8 and S5). Lastly, the two hotspots with the highest 206Pb/204Pb—Macdonald and Bermuda—are located in the tropical latitudes (Figure S5).

Figure 6. Geochemistry of hotspots as a function of shear wave velocity anomalies at 2,850 km. Velocity anomalies are extracted from advected conduits at 2,850 km using the S40RTS model (equivalent plots for SEMUCB-WM1, SMEAN2, and TX2016 are presented in Figure S3). Maximum hotspot $^4\text{He}/^\text{He}$, minimum $^{146}\text{Nd}/^{144}\text{Nd}$, and maximum 206Pb/204Pb are shown to represent expressions of the most primordial component, the strongest EM component, and the strongest HIMU component at each hotspot, respectively (Table S1). Symbols are as described in Figure 5. Hotspot text labels in the figure are defined in Table S1.
Geochemistry, Geophysics, Geosystems

3.6. Relationships Between Hotspot Geochemistry and Buoyancy Flux

Figure 9 shows the maximum $^3\text{He}/^4\text{He}$, minimum $^{143}\text{Nd}/^{144}\text{Nd}$, and the maximum $^{206}\text{Pb}/^{204}\text{Pb}$ of hotspots as a function of hotspot buoyancy flux. Maximum $^3\text{He}/^4\text{He}$ at hotspots shows a positive correlation with hotspot buoyancy flux, where the Spearman's rank correlation coefficient for all hotspots is $r_s = 0.57 \pm 0.11$ (with 1σ error calculated using bootstrap as described in Jackson et al., 2017). This observation is consistent with prior findings (Graham, 2002; Jackson et al., 2017; Jellinek & Manga, 2004; Putirka, 2008). However, minimum hotspot $^{143}\text{Nd}/^{144}\text{Nd}$ and maximum $^{206}\text{Pb}/^{204}\text{Pb}$ at hotspots show no apparent relationship with hotspot buoyancy flux.

4. Discussion

4.1. Enriched Mantle Domains Geographically Linked to Both LLSVPs

The conduits of all EM hotspots can be traced back to the interiors of, or close to (<500 km) the LLSVPs (Figure 5). Furthermore, both LLSVPs source EM hotspots. If we limit our analysis to only the hotspots linked to seismically defined plumes (Figure 2), we still find that both LLSVPs are associated with EM hotspots. This suggests a strong association between subducted continental crust material (White & Hofmann, 1982) and the LLSVPs (Castillo, 1988; Jackson et al., 2018b).

We started our analysis prior to the publication of Doucet et al. (2020), but have to note how our observations contrast with their findings. Doucet et al. (2020) argue that only the Indo-Atlantic LLSVP sources EM hotspots, and that the Pacific LLSVP is devoid of EM domains. The authors suggest that, over the supercontinent cycles, continental crust material has been delivered only to the Indo-Atlantic, and not to the Pacific LLSVP. It is unclear to us which deterministic geodynamic mechanism would favor crust delivery to one LLSVP, but not the other, over multiple supercontinent cycles (i.e., Pangea, Rodinia, Columbia/Nuna, and Kenorland).

The difference in conclusions relates, in part, to data selection. Doucet et al. (2020) suggest that identification of a seismically resolved plume extending into the deep mantle is insufficient to evaluate whether the hotspot is fed by a plume of “deep origin”. Instead, they argue that four additional criteria must be met before a seismically resolved plume can be considered deeply sourced (cf. Courtillot et al., 2003): the hotspot must also be associated with a flood basalt, the hotspot must be linked to a long-lived hotspot track, the hotspot must have high $^3\text{He}/^4\text{He}$ ratios (>10 Ra), and a hotspot must be located far from a subduction zone. As a consequence, Doucet et al. (2020) exclude a number of hotspots we identify as deeply sourced hotspots (due to association with seismically resolved conduits; Figure 2) that emerge from the Pacific (e.g., Pitcairn, Societies, Marquesas, Macdonald, and Caroline) and Indo-Atlantic (e.g., Cameroon, Canary, Cape Verde, and Comores) LLSVPs. Critically, many of the hotspots excluded by Doucet et al. (2020) are actually EM hotspots linked to the Pacific LLSVP via deep plume conduits (e.g., Pitcairn, Samoa, Societies, etc.), thereby weakening the hypothesis that the Pacific LLSVP does not host EM material. Making the seismic definition of a plume secondary to surface features (ancient flood basalts, long-lived hotspot tracks, proximity to trenches), or hotspot lava geochemistry (high $^3\text{He}/^4\text{He}$) may lead to an inaccurate geochemical representation of the deep mantle sampled by plume-fed hotspots. When defining plumes using seismic tomography and geodynamics as we do here, subducted continental crust material sampled by hotspots appears linked to both LLSVPs, not just one.

In contrast to the suggestion that subducted continental crust is geographically restricted to both LLSVPs (Castillo, 1988; Jackson et al., 2018b), Williams et al. (2019)}
argue that recycled crust exhibits no significant relationship with either LLSVP. Williams et al. (2019) used maximum 206Pb*/204Pb* at hotspots as a proxy for recycled crust, and suggested that maximum 208Pb*/206Pb* (and therefore recycled crust) exhibits no significant relationship with the low-velocity regions of the deep mantle (Williams et al., 2019). This contrasts with our result of an association between EM (low 143Nd/144Nd)—sourced by recycled continental crust—and the LLSVPs. This discrepancy may be due to the fact that 208Pb*/206Pb* is an imperfect proxy for 143Nd/144Nd: a plot of 143Nd/144Nd versus 208Pb*/206Pb* for global OIB data only hints at a negative correlation (see Figure 15 of Hofmann, 2014). Nonetheless, we find that if the 208Pb*/206Pb* value associated with the lowest 143Nd/144Nd lava from each oceanic hotspot (Table S1) is plotted as a function of conduit distance from LLSVPs, then high 208Pb*/206Pb* is clearly associated with the LLSVPs (see Figure 5), consistent with the association of low 143Nd/144Nd with the LLSVPs. In contrast, when the 208Pb*/206Pb* value associated with the highest 206Pb*/204Pb* at each hotspot (Table S1) is plotted against conduit distance from the LLSVPs, no clear relationship emerges (Figure 5). This is reminiscent of the lack of relationship between maximum hotspot 208Pb/204Pb and conduit distance from the LLSVPs (Figure 5). Therefore, our results suggest that, in order to use 208Pb*/206Pb* as a tool for tracing the geographic relationships between recycled reservoirs and the LLSVPs, it is important to first distinguish between EM (i.e., minimum hotspot 143Nd/144Nd, which shows a clear geographic relationship with the LLSVPs) and HIMU (i.e., maximum hotspot 143Nd/144Nd, which shows no geographic relationship with the LLSVPs) components at hotspots. We thus do not find that 208Pb*/206Pb* excludes a relationship between subducted continental crust and the LLSVPs. The clear relationship between minimum hotspot 143Nd/144Nd and conduit distance from the LLSVPs (Figure 5) provides strong evidence for subducted continental crust being geographically accumulated in the two LLSVPs.

Before accepting a model where EM material is geographically predisposed to the LLSVPs, it is important to consider, and possibly refute, a model where the distribution of EM material is similar inside and outside of the LLSVPs, but is not entrained by plumes outside of the LLSVPs. For example, if EM domains are anomalously dense, they would be entrained only by the most buoyant plumes, which tend to be associated with the LLSVPs (Figure 5). In this scenario, the less buoyant plumes outside of the LLSVPs may be unable to entrain dense EM material located outside of the LLSVPs. Such a model would predict a negative correlation between minimum 143Nd/144Nd and buoyancy flux at hotspots (Figure 9), but no such correlation is observed. This observation argues against a model where dense EM domains lie outside the LLSVPs, but are too dense to be entrained by the relatively weak non-LLSVP plumes (Jackson et al., 2018b).

It is also unlikely that EM domains exist in the same abundance inside and outside of the LLSVPs but, by chance, hypothetical EM domains outside of the LLSVPs are not sampled by plumes. Of the 46 oceanic hotspots characterized for 143Nd/144Nd, six are consistently positioned far outside of the margins of the LLSVPs, and they are geochemically depleted with 143Nd/144Nd ≳ 0.512844 (i.e., 0.512844 is the lowest 143Nd/144Nd value reported among the six hotspots located far from the LLSVPs, and was measured in a Bermuda hotspot lava; see Table S1). In contrast, only 9 of the 40 geochemically characterized oceanic hotspots linked to the LLSVPs are similarly depleted (i.e., all lavas measured from these nine LLSVP-linked hotspots have 143Nd/144Nd ≳ 0.512844), while the other 31 LLSVP hotspots host a less geochemically depleted component (i.e., at least one lava from each of these 31 hotspots has 143Nd/144Nd < 0.512844). If we assume that the mantle outside the LLSVPs has the same distribution of geochemically depleted and geochemically enriched materials as the mantle within the LLSVPs, then the probability that the more geochemically enriched component is not sampled by the six hotspots outside of the LLSVPs is p = 0.013% (i.e., [9/40]p). It is therefore unlikely that material with less geochemically depleted 143Nd/144Nd (<0.512844) is just as common outside of the LLSVPs as it is inside. Geochemical and geophysical constraints thus support a strong geographic relationship between EM domains and both of the LLSVPs (cf. Castillo, 1988; Jackson et al., 2018b).

While low 143Nd/144Nd EM domains are uniquely associated with the LLSVPs, the EM material is not evenly distributed throughout the LLSVPs. Instead, the most geochemically extreme EM material (143Nd/144Nd < 0.5125) is sampled primarily by plume conduits that extend into the southern portions (from 43°S to 15°S) of both LLSVPs, and only geochemically depleted (143Nd/144Nd > 0.512630) hotspots are found north of 16° N. While well established (Castillo, 1988; Hart, 1984; Jackson et al., 2018b), the concentration of EM domains in the southern hemisphere is important as it contrasts with results from Doucet
Afar—higher EM component, respectively (Table S1). For two hotspots—Iceland and Afar—higher \(^{3}He/^{4}He\) are available on the older continental portions (e.g., Baffin Island) of the hotspots (and complement the high \(^{3}He/^{4}He\) data from the younger portions of these hotspots, also included in the figure).

It is still not known what mechanism is responsible for concentrating EM material in the southern hemisphere, as subduction injection of continental material over geologic time should generate a random geographic distribution of EM material in the mantle (Hart, 1984; Jackson et al., 2018b), not the observed geographic bias of EM material in the southern hemisphere. However, given that EM is generated by continental crust recycling, the concentration of a deep, isolated EM domain in the southern hemisphere would appear to require preferential subduction in the southern hemisphere (Dupré & Allègre, 1983; Hart, 1984; White, 2015), possibly around the perimeter of a supercontinent during a period of anomalously high-subduction flux (Jackson et al., 2007b). While this mechanism could contribute to the hemispheric pattern of geochemical enrichment that is characteristic of the DUPAL, such a scenario requires high viscosity in the lower mantle, otherwise subsequent subduction could push subducted continental materials into the northern hemisphere. Conversely, in this scenario, material subducted in the northern hemisphere, or near the equator, could have been pushed into the southern hemisphere if plates move predominantly northward and get subducted in the north, and induce a southward return flow in the deep mantle. This effect of a degree-1 convection regime (e.g., Zhong et al., 2007) will be pronounced if there is a layer of sufficiently low viscosity at the base of the mantle: advection velocities for subducted materials in the deepest mantle may be on the order of cm/year if viscosities are similar to the asthenosphere (e.g., Steinberger & Calderwood, 2006) (and not higher, as suggested elsewhere; e.g., Rudolph et al., 2015).

Other factors may also conspire to make it difficult to map paleo subduction locations onto the DUPAL. For example, convection at present is, of course, dominated by degree-2 (Steinberger & Calderwood, 2006) and expected to be only intermittently in degree-1, and not necessarily to have North-South alignment (e.g., Zhong et al., 2007) like the DUPAL. In addition, subducting slabs may require up to \(\sim 200\) Ma to descend to the bottom of the mantle (Domeier et al., 2016; van der Meer et al., 2010), and it may take another few tens to \(\sim 100\) Ma for slab materials to rise to the surface in upwelling plumes. (Such estimates for plume transit times across the mantle—obtained from the plume fluxes as listed (Table S3) and a diameter of 100–200 km for the central part of the conduit through which most of the flux occurs—are similar to estimates of plume head rise time (Steinberger et al., 2019; Torsvik et al., in press), and should not be much longer in duration because the conduit would then disconnect from the plume head.) Therefore, even in the limiting case where subducted material is returned to the surface immediately after reaching the bottom of the mantle, some delay (up to \(\sim 300\) Ma) is expected between subduction and the appearance of recycled crustal materials in hotspot lavas, and an even longer delay is expected if the subducted materials remain at the bottom of the mantle for any length of time (i.e., a long residence in the mantle for at least some recycled crust is suggested by geochemical signals in OIB; Cabral et al., 2013; Castillo et al., 2018; Chauvel et al., 1992; Eisele et al., 2002; Galer et al., 1985; Hanyu et al., 2011; Hart, 1984; Hauri & Hart, 1993; Hofmann, 2014; Hofmann & White, 1982; Stracke, 2012). Additional complexity arises from uncertainty in the paleo-arrangement of subduction zones prior to the Neoproterozoic, and subducted sediment fluxes are even more poorly constrained further back in time. Therefore, poor paleographic and paleo-subduction sediment flux records, delay between crustal subduction and upwelling in plumes, and possible advection of subducted crust in the deep mantle in response to subduction and plate motion at the surface, make it difficult to link the geographic distribution of the DUPAL anomaly to paleo subduction zones.

\[\text{Figure 8. Geochemistry of hotspots as a function of latitude of the plume conduit at 2.850 km depth using the S40RTS global seismic model. Equivalent plots showing plume and Large Low Shear Wave Velocity Province classification for all relevant seismic models—S40RTS, SEMUCB-WM1, SMEAN2, and TX2016—are presented in Figure S5. Gray symbols represent } ^{3}He/^{4}He \text{ data, and black symbols represent } ^{143}Nd/^{144}Nd \text{ data. Maximum hotspot } ^{3}He/^{4}He \text{ and minimum } ^{143}Nd/^{144}Nd \text{ are shown to represent expressions of the most primordial component and the strongest EM component, respectively (Table S1). For two hotspots—Iceland and Afar—higher } ^{3}He/^{4}He \text{ are available on the older continental portions (e.g., Baffin Island) of the hotspots (and complement the high } ^{3}He/^{4}He \text{ data from the younger portions of these hotspots, also included in the figure).} \]
4.2. Why Are EM Hotspots Confined to the LLSVPs, but HIMU Hotspots Are Everywhere?

In contrast to EM, HIMU shows no association with the LLSVPs (Figure 5). If EM and HIMU are generated by subduction of continental and oceanic crust, respectively (Hofmann & White, 1982; White & Hofmann, 1982), and if continental and oceanic crust are part of the same subduction package and enter the mantle together in downgoing slabs, a key question is why EM (restricted to the LLSVPs) and HIMU (not restricted to the LLSVPs) domains are geographically decoupled.

One possibility is that, unlike EM domains, which are composed of recycled continental crust (Jackson et al., 2007a; White & Hofmann, 1982), HIMU domains are not composed of material linked to downgoing slabs. If this is the case, there would be no reason for EM and HIMU to be spatially coupled in the mantle. For example, one recent model suggests that HIMU is ancient, carbonatite metasomatized subcontinental lithospheric mantle (SCLM; Weiss et al., 2016), and another model argues for a carbonatite origin for HIMU at the CMB (Collerson et al., 2010). Neither model for HIMU is explicitly linked to downgoing slabs. However, a recycled oceanic crust protolith is still the most plausible model for generation of HIMU. For example, elevated Ti concentrations in HIMU lavas are not explained by the two models above (Collerson et al., 2010; Weiss et al., 2016), but are explained by a mafic contribution (Davis et al., 2011; Prytulak & Elliott, 2007). In addition, sulfur isotopic compositions in HIMU lavas are linked to Archean recycled hydrothermally altered oceanic crust (Cabral et al., 2013). Third, radiogenic 187Os/188Os signatures in HIMU lavas (e.g., Hanyu et al., 2011; Hauri & Hart, 1993) are not present in SCLM (except at a single Siberian locality where the 187Os/188Os is a syn- or post-eruptive feature and therefore not interpreted to reflect the SCLM composition; Ionov et al., 2015), but are characteristic of ancient recycled oceanic crust, signaling the importance of a mafic contribution to HIMU lavas.

However, one issue with a recycled oceanic crust origin for HIMU is that HIMU lavas are relatively uncommon among OIB globally, which contrasts with the relatively large volumes of oceanic crust that are inferred to have accumulated in the deep mantle over geologic time. One explanation for the relative rarity of HIMU OIB is that only ancient subducted oceanic crust has had sufficient time to generate extreme HIMU compositions (i.e., Cabral et al., 2013), while younger subducted oceanic crust—which may be abundant in the mantle and in the sources of OIB (e.g., Chauvel et al., 1992; Eisele et al., 2002; Stracke, 2012)—has not had sufficient time to evolve extreme high 206Pb/204Pb ratios. In short, there is no reason to expect all oceanic crust, especially young oceanic crust, to be HIMU in composition. In addition, oceanic crust subducted to the CMB is likely to be denser than ambient mantle at these depths, making subducted oceanic crust more difficult to entrain in upwelling plumes, which may also help explain the rarity of HIMU in OIB in spite of the inferred abundance of subducted oceanic crust in the deep mantle. This model can also help explain the lack of correlation between 206Pb/204Pb and hotspot buoyancy flux (Figure 9) because, if subducted oceanic crust has heterogeneous 206Pb/204Pb as a function of its age, then high buoyancy flux plumes will entrain oceanic crust with both high and low 206Pb/204Pb.

Assuming that EM and HIMU arise from subduction of continental and oceanic crust, respectively, we propose a conceptual model below for the spatial decoupling of EM and HIMU domains in the mantle. The position of global subduction zones anticorrelates geographically with the locations of the LLSVPs. This is expected for whole mantle convection because of the near symmetric distribution of slow and fast velocity anomalies (e.g., Yanagisawa & Hamano, 1999), and because slabs are expected to push any compositional component of LLSVPs or any deep global com-

Figure 9. Hotspot geochemistry as a function of hotspot buoyancy flux. Buoyancy fluxes are compiled in Table S3. Maximum hotspot 3He/4He shows a positive relationship with hotspot buoyancy flux, but minimum 143Nd/144Nd and maximum 208Pb/204Pb at global hotspots show no relationship with buoyancy flux. Hotspot text labels (e.g., YE = Yellowstone, IC = Iceland) in the figure are defined in Table S1. Symbols are as described in Figure 5.
positional layer around at the base of the mantle (e.g., McNamara & Zhong, 2005; Zhang et al., 2010). A pattern of mantle convection characterized by subduction downwelling around the LLSVPs, and upwelling over the LLSVPs (supported by higher plume flux over the LLSVPs; Figures 3 and 5), will tend to draw subducted material into the LLSVPs as material subducted outside of the LLSVPs is pushed toward the LLSVPs by downgoing slabs (Boschi et al., 2008; Bower et al., 2013; Tan et al., 2002; Zhang et al., 2010; Zhong et al., 2007). As a result, the LLSVPs are expected to have accumulated substantial quantities of subducted continental and oceanic crust over geologic time.

In contrast, there is less oceanic crust and continental crust outside the LLSVPs (because subducted crust is swept into the LLSVPs), and far less continental crust than oceanic crust both outside and inside of the LLSVPs (because less continental crust is subducted into the mantle relative to oceanic crust). The distribution of continental and oceanic crust inside and outside of the LLSVPs will impact the degree to which EM and HIMU domains, respectively, are entrained in plumes. The two primary limitations on entrainment of subducted crust by plumes are the entrainment capacity of a plume (which limits entrainment of materials that are abundant in the plume feeding zone, like oceanic crust inside and outside of the LLSVPs), and the amount of material available to be entrained (which is the key limitation for entrainment of materials that are relatively scarce in the plume feeding zone, such as continental crust outside LLSVPs).

In this model, the abundance of oceanic crust (and thus HIMU) in regions both inside and outside of the LLSVPs is sufficiently high that entrainment is limited by the entrainment capacity of the plume (i.e., the amount of chemically denser material the plume is able to entrain and still be able to rise to the surface), explaining the presence of HIMU signatures in both LLSVP and non-LLSVP hotspots. Therefore, no correlation between oceanic crust and LLSVPs is expected to be observed in OIB. In contrast, it is possible that entrainment of subducted continental material, which is less abundant in the deep mantle than oceanic crust, is primarily limited by the amount available in the plume feeding zone. There should therefore be more continental crust entrained in plumes (and sampled by plume-sourced OIB lavas) that stem from the LLSVPs, where there is more continental crust available, and less continental crust entrained in plumes located far from the LLSVPs, where there is less continental crust available. However, not all of the LLSVP plumes host an EM signature—only about 1/3 of geochemically characterized LLSVP hotspots exhibit EM signatures—and this can be explained if the subducted continental crust material is not necessarily everywhere in the LLSVPs. This is supported by the observation that EM signatures are found almost exclusively in the southern (DUPAL) regions of the LLSVPs.

While this simple conceptual model helps to explain why EM is found only in LLSVP-linked hotspots and HIMU is found in hotspots everywhere, it does not explain the observation that the Pacific LLSVP is primarily linked to EM2-flavored hotspots (but does host at least one EM1 hotspot, Pitcairn, and a possible EM1 signature at Hawaii; Weis et al. [2011]) while the Indo-Atlantic LLSVP is dominated by EM1 hotspots (White, 2015). Understanding the origin of this geochemical difference will be important for constraining possibly dissimilar histories for the LLSVPs.

4.3. A Link Between Primordial High \(^3 \text{He}/^4 \text{He} \) and the LLSVPs?

While EM signatures resulting from subducted continental crust materials are geographically linked to the LLSVPs, an important question is whether the high \(^3 \text{He}/^4 \text{He} \) domain is also geographically restricted to the LLSVPs, as suggested previously (Williams et al., 2019). Given that the Yellowstone observation does not support the high \(^3 \text{He}/^4 \text{He} \) domain being geographically restricted to the LLSVPs, we reexamine the relationship between primordial helium and the LLSVPs below.

Due to assimilation of ancient \(^4 \text{He} \)-rich continental crust during magmatic ascent (Chiodini et al., 2012; Lowenstern et al., 2014), the elevated \(^3 \text{He}/^4 \text{He} \) of the Yellowstone mantle plume is likely to be even higher than the \(^3 \text{He}/^4 \text{He} \) ratios of 19.4 Ra measured in lavas (Graham et al., 2009), and there are hints of this in the literature: for example, a higher \(^3 \text{He}/^4 \text{He} \) value of 25 ± 4.4 Ra (1σ) (Abedini et al., 2006) was measured in a Yellowstone lava, but this value is associated with larger uncertainties. Similarly, a value of 24.2 ± 2.8 Ra was reported by crushing olivine separates associated with glacial moraines near Yellowstone (Licciardi et al., 2001), but higher \(^3 \text{He}/^4 \text{He} \) (92.6 Ra) was obtained by fusion of the crushed olivines, and more work is
needed to exclude a cosmogenic 3He component in the crushing experiment. Nonetheless, it is clear that a primordial component exists in the Yellowstone plume (e.g., Broadley et al., 2020; Labidi et al., 2020), and a deep plume source for Yellowstone (Nelson & Grand, 2018; Steinberger et al., 2019) is evidence that elevated 3He/4He exists outside of the LLSVPs in the deep mantle.

Yellowstone may not be the only example of a non-LLSVP hotspot hosting elevated 3He/4He. Basu et al. (1996) reported 3He/4He of up to 12.7 Ra in ~250 Ma Siberia flood basalts, and absolute plate motion models do not link this flood basin province geographically with the current location of the LLSVPs (Torsvik et al., 2006; Torsvik et al., 2008). Thus, evidence from the high 3He/4He Yellowstone hotspot, and possibly the Siberian flood basalts, lead us to conclude that, while most high 3He/4He hotspots are linked to the LLSVPs, there appear to be elevated 3He/4He domains located in the mantle outside of the LLSVPs.

Furthermore, results from some seismic models suggest that the northernmost portion of the Indo-Atlantic LLSVP, which sources the highest 3He/4He hotspot (Iceland), is not contiguous with the main body of the Indo-Atlantic LLSVP (Figure 1). This is one example of LLSVPs perhaps consisting of an amalgamation of patches of distinct material, such as at the base of a “plume forest” (e.g., Davaille, 1999; Davaille & Romanowicz, 2020; Schubert et al., 2004), rather than being monolithic, coherent reservoirs sourcing plumes. Together, these observations make it important to consider the morphology, plume forest versus monolithic structure, of the LLSVPs when considering models for geochemical reservoirs that are geographically restricted to the LLSVPs.

The relationship between maximum 3He/4He and hotspot buoyancy flux does provide important clues regarding the nature and distribution of the high 4He/4He domain. Unlike minimum hotspot 143Nd/144Nd and maximum 208Pb/204Pb, the maximum 3He/4He at global hotspots correlates with hotspot buoyancy flux (Figure 9). This observation is consistent with a model where the high 3He/4He domain is deep and dense (Jellinek & Manga, 2004), and therefore entrained only by the hottest and most buoyant plumes (Jackson et al., 2017) (Figure 9). This model may help to explain why Yellowstone is the only modern high 3He/4He hotspot located far outside of the LLSVPs: while non-LLSVP hotspots tend to have low hotspot buoyancy fluxes compared to LLSVP-linked hotspots (Figure 5), the Yellowstone hotspot is the only modern hotspot with a relatively high-buoyancy flux located outside of the LLSVPs, and therefore the only non-LLSVP hotspot with sufficient buoyancy to entrain a dense high 3He/4He layer that is not geographically restricted to the LLSVPs. Thus, the Yellowstone example (and possibly the Siberian flood basalts, which presumably would have been fed by a high buoyancy plume, given the nature of the large volume of this flood basin province) suggests that it is not the geographic position of a hotspot with respect to the LLSVPs that determines whether a hotspot has high 3He/4He (Williams et al., 2019), but it is instead an intrinsic property of a plume—the plume's temperature and buoyancy flux, and therefore entrainment potential—that determines whether a potentially widespread (both inside and outside of the LLSVPs) and dense high 3He/4He material is entrained. The observation that high 3He/4He is rarely entrained outside of the LLSVPs is not necessarily evidence for a paucity of high 3He/4He material outside of the LLSVPs, but can also be attributed to a paucity of high buoyancy plumes outside of the LLSVPs capable of entraining a dense high 3He/4He domain that could be broadly distributed in the deep mantle.

If the high 3He/4He reservoir is dense and broadly distributed at the CMB, both inside and outside of the LLSVPs, an important question is why, unlike subducted crust, high 3He/4He material is not pushed by downgoing slabs and concentrated within the LLSVPs. This needs to be explored further with dynamic models. However, one possible alternative to a widespread and dense high 3He/4He mantle domain, which is not guided into the LLSVPs by downgoing slabs, would be a core origin for primordial 1He/4He (Bouhifd et al., 2013, 2020; Macpherson et al., 1998; Porcelli & Halliday, 2001; Starkey et al., 2009) that manifests in localized pockets of dense silicate melt at the CMB. If core-derived helium is partitioned into silicate melt pockets at the CMB in much the same way that tungsten is argued to partition from the core into deep mantle silicate melts (Mundl-Petermeier et al., 2020), then anomalous 182W and high 3He/4He may reside in silicate melt pockets at the CMB. This model would help explain the observation that anomalous 182W in OIB, suggested to be a core signature, is found only in high 3He/4He lavas (Mundl et al., 2017). Ultra-low velocity zones (ULVZs) may reflect partial melts at the CMB (Williams & Garnero, 1996), possibly at the base of upwelling plumes (e.g., Cottaar & Romanowicz, 2012; Kim et al., 2020; Thorne et al., 2013; Yuan & Romanowicz, 2017). If deep silicate melts just above the CMB are dense and sink to accumulate as ULVZs
(Andrault et al., 2017), they would satisfy the requirement that the high 3He/4He reservoir is dense and entrained by only the most buoyant plumes (Jackson et al., 2017). Yu and Garnero (2018) showed that, while ULVZs tend to be concentrated in the LLSVPs, some ULVZs exist outside of the LLSVPs, which is consistent with the observation that most high 3He/4He spots are located inside the LLSVPs, and some (e.g., Yellowstone, Siberian flood basalts) exist outside. If ULVZs have high 3He/4He from the core and are temporarily short-lived features—which appear (as silicates melt above the CMB) as plumes form and disappear (solidify) as plumes die—then the fleeting existence of ULVZs would make it difficult for them to be effectively guided into the LLSVPs by downgoing slabs over geologic time. This model may help explain why some high 3He/4He sources to plumes are geographically linked to the LLSVPs, but others (Yellowstone, Siberian flood basalts) are not.

4.4. Preserving the Highest 3He/4He Outside of the DUPAL Domain

The complementary geographic expression of the highest 3He/4He (northern hemisphere) and lowest 144Nd/143Nd (southern hemisphere) (Figure 8) highlights a possible mechanism influencing preservation of high 3He/4He in the mantle: that is, the magnitude of the highest 3He/4He signatures may be impacted by the geographic proximity to EM domains. Uranium and Th-rich continental crust is concentrated in the southern portions of the LLSVPs—in the continental crust-infused DUPAL domain positioned beneath the most extreme EM hotspots—and as a result, the associated excess 3He produced by α-decay completely or partially overprints high 3He/4He domains sampled by plumes upwelling from the DUPAL region. The ultra-high 3He/4He in the Iceland plume might be due to it being one of the northernmost hotspots, and therefore furthest away from the EM-infused DUPAL domain, which would make the Iceland mantle better preserved against mixing with low 3He/4He continental crust in the southern hemisphere.

This possible geographic (hemispheric) separation of the most geochemically enriched DUPAL domain in the southern hemisphere from the highest-3He/4He (anti-DUPAL) domain in the northern hemisphere suggests that reservoir dynamics are not solely controlled by the density and/or viscosity of the primordial reservoir (Coltice et al., 2005; Dechamps et al., 2011; Gülcher et al., 2020; Samuel & Farnetani, 2003), but that geographic separation from addition of recycled continental crust is also important. The extraordinarily high U and Th concentrations (reflecting enrichment in incompatible trace elements) in continental crust, which are over an order of magnitude higher than in oceanic crust (Gale et al., 2013; Rudnick & Gao, 2003), will ultimately have a greater impact on the 3He/4He of primordial domains, and may help explain why the highest 3He/4He hotspot is furthest from the continental crust-rich DUPAL domain. This is consistent with the suggestion that the highest 3He/4He reservoir preserves its ancient noble gas signature because it is least influenced by subducted crustal materials (White, 2015).

5. Conclusions

EM type hotspots, which host recycled continental crust, are sourced by plumes originating in both Pacific and Indo-Atlantic LLSVPs, and the EM domains are concentrated in the southern hemisphere portions of both LLSVPs. EM signatures are not found in hotspots located outside of the margins of the LLSVPs. In contrast to EM, HIMU (which hosts recycled oceanic crust) is found both inside and outside of the LLSVPs.

The geographic decoupling of EM and HIMU is also explained if the LLSVPs have accumulated oceanic and continental crust over geologic time compared to regions outside of the LLSVPs, which is a result of downgoing slabs pushing subducted material into LLSVPs. As a result, there is less oceanic crust and continental crust outside the LLSVPs. Because much less continental crust is subducted than oceanic crust, there is far less continental crust than oceanic crust both outside and inside of the LLSVPs. Hence, continental crust is predicted to be scarcer outside of the LLSVPs. It is possible that the amount of continental crust entrained and expressed as EM at hotspots is sufficiently low that continental crust entrainment in plumes is limited by the amount available. Therefore, EM is far more likely to be expressed in hotspots linked to the LLSVPs (where continental crust has accumulated) than outside the LLSVPs (where continental crust is scarce). In contrast, the amount of subducted oceanic crust is sufficiently abundant both inside and outside the LLSVPs that entrainment could be limited by the carrying capacity of the plume.
As a result, expressions of ancient recycled oceanic crust (i.e., HIMU) are identified in hotspots both inside and outside the LLSVPs. While most high \(^{3}He/^{4}He\) hotspots appear sourced from the LLSVPs, the plume conduit of the high \(^{3}He/^{4}He\) Yellowstone hotspot is located far from LLSVPs, which indicates that the high \(^{3}He/^{4}He\) reservoir is not restricted to the LLSVPs. While high \(^{3}He/^{4}He\) is not well correlated with the LLSVPs, it is well correlated with hotspot buoyancy flux. Therefore, the example of Yellowstone suggests that an intrinsic property of a plume—its temperature and buoyancy flux, and therefore entrainment potential—governs whether a dense and possibly widespread (both inside and outside of the LLSVPs) high \(^{3}He/^{4}He\) domain is entrained. Thus, the low frequency of high \(^{3}He/^{4}He\) in hotspots outside of the LLSVPs is not evidence for paucity of high \(^{3}He/^{4}He\) material outside of the LLSVPs, but instead relates to a paucity of high-buoyancy plumes outside of the LLSVPs capable of entraining a dense high \(^{3}He/^{4}He\). Our reevaluation of hotspot feeding plume sources provides a baseline for future work linking plate tectonic and thermo-chemical convection models to the evolution of geochemical reservoirs.

Data Availability Statement
All data published in this manuscript are available in Jackson et al. (2020), Spatial characteristics of recycled and primordial reservoirs in the deep mantle, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.26022/IEDA/111810.

Acknowledgments
We thank Bill White and Pat Castillo for constructive and helpful reviews, M. G. Jackson thanks Mark Kurz and Josh Curtice for providing helium measurements for the San Felix sample, and Sunna Hardardóttir for providing comments on the manuscript and helping to update the hotspot geochemical database. M. G. Jackson acknowledges support from National Science Foundation grants EAR-1900652, OCE-1928970 and OCE-1912931. T. W. Becker was supported by NSF EAR-1838565 and 1722680. B. Steinberger received support from the Research Council of Norway through its Centres of Excellence funding scheme, project number 223272, and additional funding from the innovation pool of the Helmholtz Association through the “Advanced Earth System Modeling Capacity (ESMI)” activity. The Smithsonian National Museum of Natural History provided the San Felix lava with the generous support of Leslie Hale and Cathleen Brown.

References

References From the Supporting Information

