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Orogeny results from crustal thickening at active margins, and much progress has been made on 
understanding the associated kinematics. However, the ultimate cause of orogeny is still debated, 
especially for the case of extreme crustal thickening. Inspired by the seminal work of Holmes (1931), we 
explore the connections between the style of orogeny and mantle dynamics. We distinguish between two 
types of orogeny, those that are associated with one-sided, mainly upper mantle subduction, “slab-pull 
orogeny”, and those related to more symmetric, whole mantle convection cells, referred to as “mantle”, 
or “slab-suction orogeny”. Only the latter leads to extreme crustal thickening. We propose that mantle 
orogeny is generated by the penetration of slabs into the lower mantle and the associated change in 
the length scales of convection. This suggestion is supported by numerical dynamic models which show 
that upper plate compression is associated with slab penetration into the lower mantle. Slabs can further 
trigger a buoyant, plume upwelling from the core-mantle boundary which enhances this whole mantle 
convection cell, and with it upper plate compression. We explore the geological record to test the validity 
of such a model. For the present-day, compressional backarc regions are commonly associated with slabs 
that subduct to the deep lower mantle. The temporal evolution of the Nazca and Tethyan slabs with the 
associated Andean Cordillera and the Tibetan-Himalayan orogenies likewise suggests that extreme crustal 
thickening below the Bolivia and Tibetan plateau occurred during slab penetration into the lower mantle. 
This episode of crustal thickening in the Tertiary bears similarity with Pangea assembly events, where 
the Gondwanide accretionary orogen occurred at the same time of the Variscan-Appalachian and Ural 
orogeny. We propose that this Late Paleozoic large-scale compression is likewise related to a change from 
transient slab ponding in the transition zone to lower mantle subduction. If our model is correct, the 
geological record of orogeny in continental lithosphere can be used to decipher time-dependent mantle 
convection, and episodic lower mantle subduction may be causally related to the supercontinental cycle.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Orogeny, i.e. the formation of mountains, represents the most 
spectacular expression of tectonic activity. Building on the pioneer-
ing work of early geologists (e.g., Argand, 1916, 1924), we now 
have a clear kinematic understanding of the structure and geom-
etry of crustal nappe stack evolution within orogenic belts. Seis-
mological imaging provides constraints on the deep structure with 
increasing resolution, while geodetic measurements illuminate the 
current strain-rate distribution within the orogen (e.g., Hafeken-
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scheid et al., 2006; Thatcher, 2009; Zhang et al., 2004; Hatzfeld 
and Molnar, 2010). Despite those fundamental insights, the actual 
causes and mechanisms of mountain building are still debated, es-
pecially for the case of extreme crustal thickening.

One of the first physical models of orogeny was proposed by 
Holmes (1931). Building on Dana (1880), and later incorporating 
Vening Meinesz et al.’ (1932) and Hess’ (1938) marine observa-
tions, Holmes (1931, 1944) proposed that orogeny arises from 
compressive forces and the inversion of a geosyncline; this leads 
to pervasive deformation, the formation of a crustal root, asso-
ciated isostatic uplift, and late-stage magmatism (Fig. 1). Holmes 
proposed that the compressional forces themselves are generated 
by convection: “where currents are flowing horizontally along the un-
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Fig. 1. Successive stages of an orogenic cycle and those of a convection current cycle 
(redrawn from Holmes, 1944).

der surface of the crust, they exert a powerful drag on the latter, throw-
ing it into tension where they diverge and into compression where they 
convergence. Thus, we should expect orogenic belt where the two ap-
proaching current turn down”. This idea was later elegantly tested by 
Griggs (1939), and Holmes (1944) invoked time-dependent convec-
tion with alternating periods of acceleration and deceleration. In 
line with this concept, Wilson (1961) later stated that “... circum-
Pacific and Alpine-Himalayan mountain systems are due to compression 
over downward flowing limbs of huge convection cells is straightforward 
accepted. . . .”

After plate tectonics was established as a kinematic theory cap-
turing the recycling of oceanic lithosphere and large-scale, horizon-
tal crustal motions in the late ‘60s, efforts were primarily dedicated 
to investigating the consequences of continental deformation, with 
modeling techniques ranging from the thin viscous sheet approach 
(e.g., England and McKenzie, 1982) to more complex thermo-
mechanical models of orogenic wedge formation (e.g., Willett et 
al., 1993; Burov et al., 2001; Gerya, 2011; Vanderhaeghe, 2012; 
Jamieson and Beaumont, 2013). The connection between mantle 
dynamics and orogeny was, however, only further pursued by few 
(e.g., Wilson and Burke, 1972; Alvarez, 1990, 2010; Doglioni, 1990; 
Russo and Silver, 1994; Cuffaro and Doglioni, 2018). The relative 
scarcity of integrated work on the dynamics of orogeny and man-
tle convection may be partly due to the difficulties inherent in the 
construction of a fully coupled, mantle-lithosphere model that is 
able to account for the complex rheology of the lithosphere.

However, the constraints on present-day mantle flow have sig-
nificantly improved over the last twenty years. Seismic tomog-
raphy has shown that the lower mantle is dominated by large-
scale (∼spherical harmonic degree two) velocity heterogeneities 
(e.g. Masters et al., 1982; Woodhouse and Dziewonski, 1984; 
Becker and Boschi, 2002), and similar, long-wavelength tempera-
ture anomalies arise in self-consistent, plate-style generating man-
tle convection computations (van Heck and Tackley, 2008; Foley 
and Becker, 2009). When seismic tomography is used to infer den-
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Fig. 2. Equatorial cross section (location shown in the overview map) of a present-
day mantle circulation estimate based on seismic tomography and viscosity inver-
sions (cf. Ghosh et al., 2010), modified from Becker and Faccenna (2011, see there 
for details). The model shows the presence of two large upwelling and downwelling 
zones forming four large-scale convection cells. The Andes and the Himalaya-Tibet 
are located on top of, and inferred to be sustained by, deep mantle downwellings 
(cf. Faccenna et al., 2013).

sity anomalies to drive mantle circulation (Busse, 1983; Hager and 
Clayton, 1989), two upwelling zones above the “large low velocity 
shear provinces” (on top of Africa and the South Pacific) and two 
downwelling zones beneath the Cordillera and Tethyan orogenies 
are predicted (Fig. 2, see also Dziewonski et al., 2010). The mantle 
flow regime resulting from the numerical computation of Fig. 2 is 
not too different from Holmes’ (1944) vision.

Here, we explore the role of mantle dynamics in building and 
supporting orogeny. We start by proposing a classification of oro-
gens based on their deep structures. We then discuss the main dis-
tinctive features of orogens and explore how this may apply to the 
present, as well as the Tertiary and Paleozoic tectonic settings. We 
conclude by discussing the relationships between orogeny, the Wil-
son cycle, and supercontinental assembly in the context of mantle 
convection.

2. Modes of orogeny

Orogeny can be defined as a process producing crustal thicken-
ing through penetrative crustal deformation and magmatism dur-
ing plate convergence (e.g., Dennis, 1967; Cawood et al., 2009). It 
is commonly classified as Collisional and Cordillera/Subduction type, 
based on the continental or oceanic nature of the down-going 
plate, respectively (Dewey and Bird, 1970; Cawood et al., 2009). 
The collisional-continental type occurs in continental interiors. The 
cordillera/subduction type is also characterized as a peripheral, or 
accretionary orogen, and develops in the oceanic realm surround-
ing continental land masses (Dewey and Bird, 1970; Wilson and 
Burke, 1972; Murphy and Nance, 1991; Cawood and Buchan, 2007). 
Subduction type orogeny can naturally evolve into a continental-
collisional type during continental amalgamation after all oceanic 
lithosphere has been consumed. Arc-collisional orogens may repre-
sent a transient phase of accretion between the two end-member 
cases (Dewey and Bird, 1970). While this classification is useful for 
identifying the tectonic context, it provides only limited indication 
of the dynamic processes that drive the deformation or dictate the 
style of orogeny.
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Fig. 3. Conceptual model for two end-member modes of orogeny (modified from Faccenna et al., 2013; Royden and Faccenna, 2018). Left: In a subduction orogeny, subduction 
is confined to the upper mantle, mantle flow is asymmetric and confined to the upper mantle, and slabs would be favorably in a trench rollback mode, preventing large crustal 
thickening. Right: slab penetration into the lower mantle promotes trench stabilization and whole-mantle, symmetric mantle flow, which promotes trenchward convergence 
of both plates, resulting in protracted compression and crustal thickening. Faccenna et al. (2013) used “slab pull” and “slab suction” for subduction and mantle orogeny, 
respectively, to indicate the one-sided and symmetric nature of force transmission, following Conrad and Lithgow-Bertelloni (2002).
Following Royden (1993), we find it helpful, instead, to distin-
guish end-member orogenies that are directly related to subduc-
tion, also referred to as “subduction orogeny” or “slab-pull orogeny” 
(Royden, 1993; Royden and Faccenna, 2018), and the ones that are 
related to large-scale mantle convection cells with more symmetric 
mantle flow patterns, also referred to as “mantle” or “slab-suction 
orogeny” (Conrad and Lithgow-Bertelloni, 2002; Faccenna et al., 
2013) (Fig. 3). This classification has the advantage of being inde-
pendent of the possibly transient nature of the type of subducting 
lithosphere or the specific tectonic context.

Orogenic belts show remarkable variability in terms of their 
shapes, geometry, and evolution. The shape of the orogeny is con-
trolled by several factors such as the history of convergence, block 
accretions, and the rheology of the lithosphere prior and during 
deformation. Extracting general rules is thus extremely difficult. 
Fig. 4 shows inferred cross-sections for several active mountain 
ranges, distinguishing between the units derived from the down-
going (green) or upper, overriding plate (yellow) during conver-
gence.

There are orogens, such as those of within the Mediterranean 
region, which are exclusively composed of units derived from the 
subducting plate (Figs. 4a and b). Sections for the Central Andes 
and the Tibetan Altiplano (Figs. 4d and e) show similar features, 
even though those two are often considered end members of the 
Collisional and Cordillera types. An occasionally useful orogeny 
classification is the overall shape, in particular if it is symmetric or 
asymmetric. All orogens are fundamentally asymmetric, but only 
some of them show a strongly asymmetric wedge structure, taper-
ing toward the subducting plate. This feature is distinctive of the 
subduction or slab-pull orogen (Royden, 1993; Jamieson and Beau-
mont, 2013; Royden and Faccenna, 2018), which is constituted 
mainly of crustal slices and sediments scraped off from the sub-
ducting plate (green material on Fig. 4).

The Mediterranean belts, such as the Apennines, Dinarides, or 
Hellenides are representative of this style of orogeny (Doglioni, 
1992; Royden, 1993; Royden and Faccenna, 2018) (Figs. 3 and 
4), as are Paleozoic and Mesozoic belts within the western Pa-
cific (e.g., East Australia and New Zealand: Cawood et al., 2011). 
In this orogeny type, the depth of the decollément controls the 
thickness of the thrust nappe. Deformation can vary from thin 
skinned, as for the case of an accretionary wedge with a shallow 
decollément level, to thick skinned, as in the case of re-activation 
of pre-existing extensional feature. The overall shape respects the 
critical taper criteria (Davies et al., 1983).

For subduction orogeny, crustal thickness does not exceed 50 
km. This is because the trench is highly mobile and usually 
migrates backward, preventing large-scale, protracted shortening 
(Royden, 1993). Crustal blocks, or allochthonous terranes, may be 
delaminated and accreted to the upper plate, during active down-
3

welling and accelerating slab rollback (e.g., Brun and Faccenna, 
2008). The topographic expression of subduction orogeny is also 
quite limited, as the active pull of the subducting slab dynamically 
depresses the overall topography by some hundreds of meters (e.g., 
Mitrovica et al., 1989; Crameri et al., 2017; Faccenna and Becker, 
2020).

The other class of mantle or slab-suction orogen shows a more 
symmetrical, double-vergent structure, with thrusting and crustal 
deformation on both sides of the orogen. The two oppositely ver-
gent belts can be separated by a thickened high plateau. This type 
of orogen is mainly built up by the shortening of upper plate units, 
with only minor contributions from the downgoing plate. During 
convergence, small crustal blocks, or allochthonous terranes, may 
be accreted to the upper plate producing pulses of shortening. 
Crustal thickening is protracted for tens of million years and to-
tal crustal thickness typically exceeds 50 km. Larger orogenic belts 
such as the Himalaya-Tibet, Iran or Persian plateau, the Central 
Andes, or the Nevadaplano during the Laramide orogeny are rep-
resentative of mantle orogeny (Fig. 4).

Subduction and underthrusting creates asymmetric foredeep 
basins as a result of plate bending. The basin depth depends on 
the load of the thrust sheets and sediments, and on the pull of the 
subducting slab; it is balanced by the flexural elastic and viscous 
resistance of the subducting plate (Royden, 1993). Foredeep basins 
of subduction orogeny are commonly quite deep and filled by thick 
sequences of turbidite marine deposits. Their formation can be ex-
plained by the pull of the subducting slab (Royden, 1993). The 
best examples of foredeep basins are from the Mediterranean, for 
example from the northern Apennines (e.g. Ori and Friend, 1984; 
Doglioni, 1992).

In contrast, mantle orogens usually present a pro- and a retro-
foredeep basin, e.g., formed on both side of the orogen (cf. Dickin-
son, 1974). The pro-wedge basin can be quite deep if the subduct-
ing plate is oceanic, as for the case of the Andes Cordillera, but the 
retro-wedge is always shallower and filled by coarse continental 
deposits (molasse; Royden, 1993). In the case of Himalaya-Tibet, 
both basins are shallower and filled with continental deposits that 
were sourced both during the collision and during subsequent oro-
genic evolution. Many orogenic belts, such as the Alps, show a 
transition from marine to continental, flysch to molasse, following 
the progression from oceanic to continental subduction and break 
off (Sinclair, 1997).

Subduction and mantle orogeny are not just structurally dif-
ferent, but the associated metamorphism is also quite different. 
Metamorphic gradients for mantle orogeny are commonly moder-
ate to high temperature and related to crustal melting and shear 
heating. High to ultra-high pressure units are limited, as in the 
case of Himalaya, to the very initial phase of continental collision 
(e.g., Leech et al., 2005). Conversely, most of the inner portion sub-
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Fig. 4. Cross sections across active and recently active orogens. a) Central Alps (modified from Schmid et al., 1996); b) Northern Apennines (Piana Agostinetti and Faccenna, 
2018); c) Andes at latitude 20◦S (modified from Oncken et al., 2006); d) Zagros-Iran-Keph-Dagh; e) Himalaya-Tibet cross section (MTB main boundary thrust; MCT: main 
central thrust; STDS southern Tibetan detachment system; Indus-Tsang-Po suture. Redrawn from Guillot and Replumaz, 2013).
duction orogeny belts are often constituted of high-pressure / low 
temperature units formed in the frontal region during subduction 
and high temperature / low pressure in the backarc region dur-
ing exhumation related to backarc thinning and/or delamination 
(e.g., Jolivet et al., 2003; Brun and Faccenna, 2008). Those units 
often exhume within a low angle detachment extensional system. 
Subduction orogeny, indeed, often produces slab-rollback and ex-
tension which provides space for the exhumation of deeper units 
(Brun and Faccenna, 2008; Malusà et al., 2011).

3. Present-day orogeny: trench kinematics, backarc deformation 
and deep mantle structure

When we speculate about the origin of the different degrees 
of symmetry between subduction and mantle orogeny, it is in-
structive to first view orogeny and backarc deformation in the 
context of plate and trench motions (Royden, 1993; Heuret and 
Lallemand, 2005; Heuret et al., 2007; Becker and Faccenna, 2009). 
Fig. 5 illustrates the possible combinations of trench migration and 
upper plate motion. Back arc extension occurs if the trench mi-
grates backward at a higher rate than the upper plate does (e.g., 
Tonga, Sandwich, Mediterranean), or if the upper plate moves away 
from trench faster than the rate of trench advance (e.g., Marianas, 
Izu Bonin). In those cases, the subduction rate exceeds the conver-
gence rate. This plate configuration is likely dominantly driven by 
one-sided slab pull due to the negative buoyancy of the subduct-
ing slab (Royden, 1993; Conrad and Lithgow-Bertelloni, 2002). This 
mode may be favored for the case of older (thicker) oceanic plates, 
or in the case of continental or transitional lithosphere, where light 
crustal material can be scraped off and accreted to trench forming 
orogenic wedge (Brun and Faccenna, 2008). Current examples of 
such subduction orogens are found in the Mediterranean, Indone-
sia (e.g., Taiwan and Banda), and Scotia Arc (Royden and Faccenna, 
2018).
4

Backarc compression occurs when the backward trench mi-
gration rate is lower than the motion of the upper plate (e.g., 
Cordillera) or when the trench migrates forward, toward the up-
per plate (e.g., Adria, Arabia, India). In this case, the subduction 
rate is lower than the convergence rate. Therefore, one-sided slab 
pull is not the dominant mechanism for this mode of backarc de-
formation. Irrespective of the nature of the subducting plate, the 
upper plate here is shortened and thickened intensively, forming a 
mantle or slab-suction type orogen, such as the Tethyan belt of the 
Altiplano.

Following this argument, the style of orogeny then fundamen-
tally depends upon trench migration, which, in turn, is controlled 
by the possibility of the slab to migrate laterally (e.g., Garfunkel 
et al., 1986). A range of parameters may influence the dynamics 
of the trench, including slab buoyancy (Molnar and Atwater, 1978; 
Royden and Husson, 2006; Funiciello et al., 2008; Stegman et al., 
2010), upper plate thickness (e.g., Capitanio et al., 2011; Garel et 
al., 2014; Holt et al., 2015), width of the slab (Funiciello et al., 
2003, 2006; Stegman et al., 2006) and the depth extent of the slab 
into the lower mantle (Zhong and Gurnis, 1995; Garfunkel et al., 
1986; Király et al., 2017). Slab penetration into the more viscous 
lower mantle produces an anchoring effect that reduces its ability 
to migrate laterally (e.g., Garfunkel et al., 1986; Zhong and Gurnis, 
1995; Faccenna et al., 2017).

Fig. 6 shows the relationship between maximum slab depth 
for the main subduction zones as inferred from seismic tomog-
raphy (Li et al., 2008a; Fukao and Obayashi, 2013; van der Meer 
et al., 2018) and the corresponding, present-day backarc strain 
field (Heuret and Lallemand, 2005). Most backarc regions asso-
ciated with slabs deeper than 1000 km are under compression, 
including Java (Yang et al., 2016). Exceptions are represented by 
Central America which shows a recently neutral regime, even if 
it has been associated with strong compression over much of is 
geological history. Most backarc regions that are under extension 
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Fig. 5. Relationships between upper plate and trench velocity (in an absolute, lower 
mantle fixed reference frame) and back-arc deformation. For a laterally free slab, 
the trench velocity is expected to move according to the upper plate. The trench 
velocity is zero for an anchored slab, and equal to the upper plate velocity for a 
free slab (Heuret and Lallemand, 2005).

Fig. 6. Depth of the bulk of the subducting slab (from Fukao and Obayashi, 2013; Li 
et al., 2008a; van der Meer et al., 2018) with color indicating current back-arc strain 
regime (modified from Heuret and Lallemand, 2005). The lower mantle portion be-
low Kermadec (South Loyalty Basin; van der Meer et al., 2018) between 1200 and 
1000 km is not considered to be directly connected to the upper mantle slab and 
probably belongs to an earlier subduction phase.

or in the neutral regime correspond to slabs that are limited to 
the upper mantle or transition zone. Exceptions are represented by 
Japan-Kuriles, where the compressional regime started in the Late 
Miocene after a large extensional phase, possibly due to the inter-
action with the Ryukyu subduction zone (Faccenna et al., 2017).

The relationship indicated by Fig. 6 is consistent with the sug-
gestion that slabs that extend into the lower mantle offer greater 
resistance to lateral migration compared to upper mantle slabs. 
This is probably due to the larger viscosity of the lower man-
tle which also controls vertical sinking velocities (e.g., Gurnis and 
Davies, 1986; Ricard et al., 1993). Upper mantle slabs, conversely, 
are relatively free to migrate. For this reason, upper mantle slabs 
may be preferentially associated with an extensional to neutral 
backarc strain regime. Deeper slabs are more commonly related to 
backarc compression not only because they are anchored, but also 
because penetration after ponding at the 660 km discontinuity can 
5

trigger large-scale, symmetrically converging convection cells that 
can drag surface plates toward the downwelling zone (Becker and 
Faccenna, 2011; Faccenna et al., 2013, 2017; Yamato et al., 2013; 
Dal Zilio et al., 2018; Yang et al., 2018).

The lateral extent of the subduction zone, the influence of 
large-scale mantle flow, and the interaction with other slabs likely 
alter this simple scenario, hiding simple correlations (Heuret and 
Lallemand, 2005). However, if this model is correct, we should then 
expect that the entrance of slabs into the lower mantle would re-
sult in a surge of compression in the backarc region (Yamato et al., 
2013; Faccenna et al., 2013). The geological record of key orogens, 
where the switch from one strain regime to another can be doc-
umented, then consists of a surface record of this process during 
continental deformation and supercontinental assembly (Hoffman, 
2014).

Next, we will present numerical models supporting the idea 
that slab penetration induces upper plate compression and, further, 
will explore whether subduction-induced upwellings originating 
from the core-mantle boundary can enhance this compression. We 
will then review key tectonic elements supporting the idea that 
the formation of the Andes Cordillera and the Himalaya-Tibetan 
orogen are related to episodes of deep mantle subduction.

4. Deep mantle subduction and upper plate compression: 
a dynamical model

We use idealized, numerical subduction models to explore the 
relationship between lower mantle penetration and upper plate 
deformation. We use the ASPECT finite element code (version 2.1.0) 
to construct time-evolving 2-D numerical models (Kronbichler et 
al., 2012; Heister et al., 2017; Bangerth et al., 2020a, 2020b), with 
setups analogous to those of our previous work (Faccenna et al., 
2017; Holt and Condit, 2021). We extend these previous models, 
which consider uniform temperature sub-lithospheric mantle, by 
also incorporating a hot boundary layer at the core-mantle bound-
ary that produces upwelling flow. We find that this affects the 
large-scale mantle flow field and, in turn, the upper plate stress 
field (Fig. 7).

Here, we provide a brief overview of the model setup; a more 
detailed description can be found in the Supporting Information. 
Our models evolve dynamically in that there are no external forces 
or velocities applied to the subduction system. We consider a 
whole mantle domain, with free slip boundaries, and initiate sub-
duction by prescribing an initial proto-slab extending to 250 km 
depth. Our subduction system consists of three, 60 Ma old thermal 
plates. The middle plate, which overrides the left-most subducting 
plate, mimics a continent with reduced density (�ρ =100 kg/m3) 
and increased viscosity (ηcont = 10η0) relative to oceanic litho-
sphere. To the right, the continent transitions to a purely thermal 
plate at a passive margin. The subducting plate is decoupled from 
the overriding plate by a thin (10 km) and weak (1020 Pa s) crustal 
layer, which is cut off at 150 km depth.

We consider a composite diffusion creep, dislocation creep, and 
plastic rheology. Byerlee-type yielding operates within the litho-
spheric plates (e.g., Enns et al., 2005), dislocation creep operates 
in the upper mantle to average depths of 200-300 km, and the 
lower mantle is exclusively diffusion creep. Dislocation and diffu-
sion creep flow law pre-factors are set to give an average upper 
mantle viscosity of 2.5 × 1020 Pa s (at depth = 330 km). The upper 
to lower mantle transition, at 660 km depth, is defined by a vis-
cosity jump of a factor of either 20 - 25 (Fig. 7) or 90-95 (Fig. S1). 
While the smaller value may be in closer agreement with geoid 
constraints (e.g., Hager, 1984), we test a stronger mantle to exam-
ine the effect of a slab (and mantle flow) that is confined to the 
upper mantle. In all models, the surface temperature is 0 ◦C, we 
neglect compressibility and assign the background mantle a tem-
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Fig. 7. Comparison of dynamic subduction models with and without a thermal boundary layer at the core-mantle boundary. For each model snapshot, lower panels display 
the model temperature field overlain by velocity vectors. Upper panels display the horizontal deviatoric stress within the overriding plate, over a length of 2500 km, with 
negative values (red) indicating compression. A vertical mantle viscosity profile, extracted from near to the trailing edge of the subducting plate, is also displayed for the 
earliest snapshot.
perature of 1300 ◦C. For a viscosity jump of 20-25, we examine 
the role of a basally heated core-mantle boundary (CMB) with ini-
tial thermal boundary layer thickness parameterized by half-space 
cooling ages of 1 Ga (Fig. S1) or 2 Ga (Fig. 7), and a boundary layer 
temperature contrast of 700 ◦C (i.e., TC M B = 2000 ◦C).

With or without lower mantle thermal upwellings, compressive 
stress in the upper plate becomes larger and spans a greater extent 
after the slab has penetrated into the more viscous lower man-
tle (Fig. 7). This occurs because subduction-induced mantle return 
flow transitions from being confined to the upper mantle to span-
ning the entire mantle which, in turn, increases the strength of 
basal tractions that drag the upper plate towards the trench (e.g., 
Faccenna et al., 2017; Dal Zilio et al., 2018; Yang et al., 2018). 
This is supported by a ∼50% reduction in maximum upper plate 
compression in models with a strong lower mantle and hence neg-
ligible lower mantle flow (Fig. S1).

The vigor of whole mantle flow, and hence upper plate com-
pression, is enhanced by the presence of a hot thermal boundary 
layer at the core-mantle boundary (CMB). The effect that lower 
mantle slabs have on CMB thermal boundary layer morphology 
and plume formation is relatively well-studied (e.g. Tan et al., 
2002; McNamara and Zhong, 2005), as is the effect that large-scale 
mantle flow has on subduction zones (e.g. Yamato et al., 2013; 
Faccenna et al., 2017; Baes et al., 2018). However, the two-way 
coupling between slab dynamics and CMB upwellings, as consid-
ered here and relevant to our later discussion of continental cycles, 
remains relatively unexplored.

As the slab sinks into the lower mantle in our models, it re-
distributes hot and upwelling CMB material away from the beneath 
the slab and into two regions beneath the edges of the subduct-
ing and overriding plates. The thermal upwelling on the overriding 
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plate side aligns with the subduction-driven return flow thereby 
increasing the vigor of whole mantle convection and, in turn, the 
magnitude of upper plate compression. After 40 Myrs of model 
evolution, for example, upper plate compression reaches a maxi-
mum (deviatoric) stress of ≈120 MPa in the model with a constant 
lower mantle temperature and ≈150 MPa in the model with a 2 
Ga basal boundary layer (Fig. S1). More strikingly, the horizon-
tal extent of significant compression (σX X > 75 MPa) increases 
from ≈200 km to ≈600 km with the addition of a basal thermal 
boundary layer. The thermal upwelling has the additional effect 
of increasing plate convergence, by >50% at 40 Myr, due to the 
entrainment of the slab and plates by the more vigorous whole 
mantle convection cell. We proceed to discuss how this dynamical 
model may apply to the Tertiary and earlier to the Late Paleozoic 
orogeny.

5. Tertiary evolution of orogeny and large mantle convection

At present, there are two, thousands of km-long active oro-
genic belts on Earth. The Tethyan belt extends from the Mediter-
ranean to the Himalaya-Tibet and further east to Java-Sumatra, and 
at the eastern Pacific margin, the Cordilleran belt stretches along 
the Americas from Canada to Patagonia (Fig. 8). The Tethyan is 
commonly considered as a collisional, internal orogeny, while the 
Cordillera is a peripheral, accretionary orogeny. These orogens were 
built under a different tectonic context but share similar features. 
Both have a double-vergent structure with a high plateau in the 
center (Fig. 4), formed roughly at the same time, and are asso-
ciated with a lower mantle downwelling (Fig. 2) (Wilson, 1961). 
In the following sections, we will briefly review their kinematic 
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Fig. 8. Global seismic tomography for shear wave speed anomalies at 1000 km depth from the SMEAN composite model (Becker and Boschi, 2002). Lines show the trench 
position back in time (in Ma; after Faccenna et al., 2013). This diagram provides a first order indication of the timing of slab penetration (cf. Ricard et al., 1993; van der Meer 
et al., 2018).
history and will then compare their large-scale evolution and the 
associated deep mantle dynamics.

5.1. Cordillera system

The Cordillera of the Americas extends from North America to 
Patagonia and Tierra del Fuego. The structure of the belt shows 
an overall double-vergent and highly asymmetrical structure. The 
western side is characterized by active subduction of the Nazca 
plate and the western Cordillera is constituted by the volcanic arc 
and localized deformation. On the eastern side, a thrust and fold 
belt of the eastern Cordillera is where most of the shortening is 
concentrated; the high Altiplano plateau developed between these 
two belts. The entire orogen is composed of units that are derived 
from the upper plate (Fig. 4). The deep structure of the belt is con-
stituted of up to ∼70 km thick crust with a reduced lithospheric 
mantle thickness (e.g., Beck et al., 1996).

The onset of South American orogeny, i.e., the main episode of 
crustal thickening, started at ∼50 Ma. (e.g., Oncken et al., 2006, 
2013; and references in Faccenna et al., 2017). Prior to this, in 
the Late Cretaceous, South America was under extension, with the 
formation of the Salta rift (Kley and Monaldi, 2002), and short 
episodes of compression and accretionary (e.g., Oncken et al., 2006; 
Horton, 2018a). At that time the westward drift of South America 
was quite rapid at ∼5 cm/yr. The South American drift velocity 
then progressively decreased during the formation of the orogen. 
Reconstruction of the trench migration rate, taking into account 
time variability in Andean shortening, illustrates that the trench 
migration rate in the Central Andes also reduced during the last 
∼50 Ma, but significantly more rapidly than the South American 
velocity reduction (Ren et al., 2007; Faccenna et al., 2017). There-
fore, the origin of the Cordillera orogeny appears to be related to 
this decrease in trench migration rate (Faccenna et al., 2017). The 
Andes Cordilleras, north of 22◦S, is located on top of a high ve-
locity zone positioned in the uppermost lower mantle (Fig. 8). In 
contrast to what is observed below India (see next sub-section), 
the lower mantle anomaly shows, at least in the Central Andes, 
a direct connection with the upper mantle present day slab. In-
spection of Fig. 8 indicates that the position of the lower mantle 
anomaly lines up with the location of the trench at ∼50 ± 10 Ma. 
Hence, slab penetration appears correlated in time with the onset 
of the main crustal thickening event.

Fig. 9(a-e) shows a tentative reconstruction, at the scale of the 
mantle, of a section through the Bolivian orocline and across the 
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Altiplano-Puna plateau, where high velocity material is progres-
sively restored according to the amount of reconstructed subduc-
tion. A tomographic cross section from Lu et al.’s (2019) model 
shows the presence of dipping slabs down to ∼1200 km, progres-
sively thickening in the transition zone and in the upper lower 
mantle. Similar features have been observed in other tomographic 
models (Ren et al., 2007; Li et al., 2008a; Fukao and Obayashi, 
2013; Scire et al., 2015). Another local high velocity anomaly is 
located deeper, between 1400 and 1600 km, and further to the 
east.

The retro-deformation in Fig. 9 shows that the slab entered the 
lower mantle at ∼50 Ma: at that time the trench lines up with 
the deep high velocity anomaly (Faccenna et al., 2017). The mi-
gration of the trench decreased subsequently such that a large 
fraction of the South American westward motion is accommodated 
by shortening, as shown by the inversion of extensional features 
such as the Salta rift. Surface deformation, associated with large-
scale thrusting, shifted eastward after 15 Ma (e.g., Oncken et al., 
2013). The deeper high velocity anomaly to the east lines up with 
the shallower one, is restricted to 10-20◦S and 40◦-50◦ E, and 
may correspond to an earlier, ∼100 Ma old, subduction episode. 
Indeed, subduction beneath the Cordillera was active during the 
entire Mesozoic (e.g., De Celles et al., 2015; Horton, 2018b). The 
lack of a stronger seismic velocity anomaly that correlates with 
this earlier episode of subduction might be due to the rather young 
seafloor age at the trench at this time, which is harder to resolve 
with seismic tomography.

Moving northward, the continuation of the lower mantle 
anomaly can be found below the eastern side of North America. 
This is typically related to Farallon subduction (Bunge and Grand, 
2000; Grand, 2002), but alternative interpretations exist (Sigloch 
et al., 2008). In North America, the Laramide orogeny is older 
than the Cordillera, reaching the peak of its development in the 
Late Cretaceous (De Celles, 2004, and reference therein). The main 
thickening phase of the Laramide occurred at ∼80-90 Ma, with the 
formation of a 3-4 km high altiplano, the Nevadaplano, analogous 
to the Andean plateau (De Celles, 2004). The onset of the Laramide 
orogeny has been related to slab flattening as suggested by the 
contemporaneous eastward shift of the volcanic arc (e.g., Coney 
and Reynolds, 1977; Livaccari et al., 1981; Bird, 1998; Carrapa et 
al., 2019). Reconstructions also show that an oceanic plateau, the 
postulated conjugate of Shatsky Rise, may have hit the trench at 
that time (Liu et al., 2010; Humphreys et al., 2015). The restored
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Fig. 9. Reconstruction of the kinematic motion and tentative correlation with mantle anomaly from the TX2019 model (version without imposed upper mantle slabs; Lu et 
al., 2019) along two cross sections crossing the Bolivian and Tibetan Plateau. a) and f): global mantle circulation model based on mantle tomography; b) and g): mantle 
tomography model (Lu et al., 2019); c)-e): three stage evolution of the Nazca slab (modified from Faccenna et al., 2017); h)-l): three stage evolution of the Tethyan slab.
location of the Farallon trench that lines up with the location of 
the 1000 km depth high-velocity anomaly is older than that of 
South America, at ∼70 to 90 Ma. This is well illustrated by pre-
vious reconstructions (Bunge and Grand, 2000; Ren et al., 2007; 
Husson et al., 2012; Faccenna et al., 2013). Therefore, even for the 
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case of North America, it is reasonable to consider that the main 
crustal shortening episode here occurred during deep mantle an-
choring.

Indirect evidence on the role of subduction on surface defor-
mation can be derived from the Late Cretaceous subsidence within 
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western North America. Superimposed on the flexural basin sys-
tem, there is a clear, long wavelength signal of basin subsidence, 
extending for several hundreds of kms eastward of the orogenic 
front. This is apparent in the 85-80 Ma interval. This large-scale 
episode has been dynamically related to subduction (e.g., Mitrovica 
et al., 1989; Liu et al., 2008). A clear correlation exists between the 
high velocity anomaly at 1200-1500 km depth and the late Creta-
ceous isopach once restored to its absolute position between 95 
and 70 Ma (Spasojevic et al., 2009). This suggests that subsidence 
can also be related to the deep slab evolution in the lower mantle 
and that the slab penetration probably occurred around this time.

We speculate that slab shallowing and then flattening may be 
facilitated by, and may actually have only occurred if, the slab tip 
is anchored into the lower mantle, at which stage the trench is 
forced to migrate backward if the upper plate is advancing to-
wards the trench (e.g., Espurt et al., 2008). Under this condition, it 
is possible that a perturbation of the slab buoyancy by an oceanic 
plateau could result in a flat slab episode. More detailed recon-
struction and modeling is required to test this hypothesis. If this 
model is correct, we can suggest that orogeny and slab penetra-
tion progressed southward from the Farallon plate subduction to 
the Central Andes.

5.2. Tethyan belt

The Himalaya-Tibet orogeny extends from India to the Altai 
(Fig. 4). The Indus-TsangPo suture separates the Himalayan belt, 
a stacked of nappe scraped off from the Indian continent, from 
Tibet-Asia terranes (Fig. 4). Tibet is constituted of six terranes pro-
gressively accreted to Asia before collision (e.g., Yin and Harrison, 
2000; Kapp and De Celles, 2019 and references therein). Most 
agree that the onset of the India-Asia collision started around ∼50 
Ma (e.g., Hatzfeld and Molnar, 2010; Molnar and Tapponnier, 1975; 
Guillot et al., 2003; Avouac, 2003), even if other models suggest a 
later onset. The crust beneath Tibet is 70-80 km thick (e.g., Mitra 
et al., 2005; Schulte-Pelkum et al., 2005), and has been thickened 
during the last ∼50 Ma over a distance of ∼1000 km. Therefore, 
during collision, India advanced inside Asia by about the same 
distance, at an average rate of ∼2 cm/yr. In other words, half of 
the convergence rate is absorbed by the advancing motion of the 
trench, reducing the subduction/underthrusting velocity to ∼2-2.5 
cm/yr. Around ∼1000 km of Greater India continental lithosphere 
underthrusted below Tibet (Capitanio et al., 2010; Replumaz et al., 
2010; van Hinsbergen et al., 2011a).

The Himalaya-Tibet orogen system, and the rest of the Alpine-
Himalayan orogeny, is positioned on top of a long and well-
resolved seismic high velocity anomaly (e.g., Van der Voo et al., 
1999; Li et al., 2008b; Fig. 8). At ∼1100-1500 km depth, it rep-
resents a rather continuous structure, from Java to the East (Re-
plumaz et al., 2004) to the Mediterranean to the West (Faccenna 
et al., 2003). This velocity anomaly has been interpreted as the 
thermal signature of the Tethyan slab descending into the lower 
mantle (Van der Voo et al., 1999; Replumaz et al., 2004; Li et al., 
2008b; Yang et al., 2016). Below India, the lower mantle anomaly 
is positioned to the south of the present-day collisional zone. At 
shallower depth, the high velocity anomaly is distorted and dis-
continuous and it has been imaged beneath Tibet down to a depth 
of 200-300 km (Li et al., 2008b).

Several studies have attempted to integrate plate kinematics, 
mantle tomography and the development of tectonic structures 
(e.g., Van der Voo et al., 1999; Hafkenscheid et al., 2006; Replumaz 
et al., 2004). Fig. 9 illustrates one possible evolutionary scenario 
along a NNE-SSW cross-section. Between 65 and 45 Ma, two sub-
duction zones were active: the southern one was intraoceanic 
(Trans-Tethyan subduction zone), and the northern one bounding 
Asia formed an Andean type margin (e.g., Aitchison et al., 2000; 
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Jagoutz et al., 2015). The two subduction zones were active from 
the Late Cretaceous to the Eocene, and were separated by the old, 
oceanic Kshiroda plate. The size of this plate is inferred to have de-
creased over time and at around ∼ 65 Ma it was perhaps ∼1000 
km in length. At that time, India was located 2500 km south of the 
northern margin and was rapidly advancing northward at a speed 
exceeding ∼16 cm/yr, while the Deccan lava was flooding north-
western India (Allegre et al., 1999).

The rapid motion may be related to the action of the double 
subduction system (Jagoutz et al., 2015; Holt et al., 2017), the push 
of the Deccan hot spot (van Hinsbergen et al., 2011b), or a combi-
nation of the two (Pusok and Stegman, 2020). The reconstruction 
of Fig. 9 shows that the Tethyan lower mantle anomaly is posi-
tioned between the former sites of the two subduction zones. Be-
tween ∼65 and 45 Ma the double subduction system disappeared, 
due to the consumption of ∼1200 km and ∼1000 km of seafloor 
at the rear and frontal subduction zones, respectively. The high ve-
locity anomaly in the lower mantle today is probably composed of 
both slabs (Van der Voo et al., 1999). Assuming vertical motion in 
the lower mantle, we can deduce that the penetration of the slab 
in the lower mantle occurred around ∼60 ± 10 Ma. This timing of 
penetration of the Indian slab inside the lower mantle corresponds 
to a reasonable lower mantle sinking rate of few cm/yr (Ricard et 
al., 1993; Steinberger et al., 2012; van der Meer et al., 2018) and 
is in good agreement with the reconstructed position of India (Re-
plumaz et al., 2004).

After collision of greater India with Asia, India’s plate velocity 
rapidly decreased to ∼4–5 cm/yr (Copley et al., 2010; Zhang et 
al., 2004). Convergence, underthrusting, and trench advance likely 
continued up to the present-day (e.g., Avouac, 2003; Zhang et al., 
2004). More than ∼1000 km of Greater India continental litho-
sphere underthrusted beneath Asia from ∼45 Ma onward. The 
trace in the mantle of this material can be related to the shal-
lower high velocity anomaly positioned below the Himalaya, which 
broke-off in the Miocene (Guillot and Replumaz, 2013). On the 
northern margin, the Asian continent underthrusts to the south be-
low Tibet, probably by ∼200-250 km since the Eocene (Replumaz 
et al., 2010). The northward motion and collision of India has been 
accompanied by two, plume-like, presumably hot, upwelling flows. 
The rear one, already mentioned, appears related to the Deccan 
trap outpouring around ∼65 Ma, and is presently active beneath 
the Carlsberg ridge. The frontal one appears related to the Hangay 
dome, which formed during multiple episodes of flood volcanism 
from ∼28 Ma onward.

At present, India is moving northward at a sustained and sig-
nificant rate, causing widespread deformation across Tibet and into 
Central Asia to the north. Mantle flow computations indicate that 
India’s present motion may be sustained by mantle drag via a 
“conveyor belt”, i.e., a convection cell with the upwelling limb cen-
tered on the Carlberg ridge and the downwelling limb centered on 
the deep subduction (Alvarez, 2010; Becker and Faccenna, 2011).

In summary, irrespective of variable tectonic settings and sub-
ducting plate natures, the Cordillera and the Tethyan, Tibetan-
Himalayan system share the following common features:

• they formed at around the same time in the Tertiary;
• they are both characterized by extreme crustal thickening and 

the formation of a double-vergent orogenic system flanking a 
high internal plateau;

• the onset and progression of crustal thickening is accompanied 
at depth by slab penetration into the lower mantle;

• they are both located over the downwelling limbs of a large-
scale, whole mantle convection cell.

We can deduce that the evolution of those two orogenic sys-
tems is directly related to the establishment of whole mantle 
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Fig. 10. Continental position during Pangea assembly (modified from Domeir and Torsvik, 2014). Orogenic belt in brown as from Cawood and Buchan (2007).
convection cells. Such a large-scale mantle convection system has 
previously been discussed in the context of the Indo-Atlantic box 
convecting system (Davaille et al., 2005), where the motion of 
Africa-India and South America are related to one another (Silver 
et al., 1998; Conrad and Lithgow-Bertelloni, 2007). It is then inter-
esting to explore if similar correlations between different orogenic 
systems also occurred further back in the past.

6. Back in time: the Pangea orogeny

Pangea is the most recent and thus best documented super-
continent. It formed by the amalgamation of Gondwana, Lauren-
tia/Baltica, and the Siberia–Asia continental masses. Several oro-
gens formed during this assembly (e.g., Stampfli et al., 2013; 
Domeier and Torsvik, 2014) (Fig. 10). The Alleghian-Ouachita-
Variscan orogen formed by the collision of Gondwana with Lauren-
tia and Europe, and the Urals formed by the suture of East Europe 
with Siberia-Asia. Those orogens are collisional, internal orogens 
related to introversion-type continental amalgamation. The initial 
collision of cratonic blocks is dated back to ∼360 Ma. The main 
crustal thickening episode and thermal events occurred between 
320 −280 Ma, followed by final suturing/cooling and uplift at 260 
Ma (Cawood and Buchan, 2007). Overall, the orogens lasted for 
∼100 Ma. Contemporaneously at the periphery of the supercon-
tinent, all along the southern and western Pangea margin (Cawood 
and Buchan, 2007), the Gondwanide orogen formed lasting from 
300 to 230 Ma.

Therefore, during the Pangea orogeny, the internal collisional 
orogen occurred at roughly the same time, or slightly predates, 
the accretionary orogens located along the margins. Similar con-
nections have been documented for the Gondwana assembly, from 
580 to 510 Ma (Cawood and Buchan, 2007) and possibly even fur-
ther back in time (Cawood et al., 2016). The correspondence of the 
active phase of both internal and external orogens has been related 
to a global kinematic plate re-adjustment. It has been suggested 
that this re-adjustment can be related to the terrane accretion or, 
more probably, to an increase in the mechanical coupling within 
the collisional interior that was transferred to the external margin 
(Cawood and Buchan, 2007).

Yet, the correspondence observed during Pangea between the 
formation of an internal collisional orogeny and an external Pa-
cific belt holds also in the Tertiary. Even though the Tertiary de-
formation is not (yet) related to super-continental assembly, Ter-
tiary plate kinematics resemble those active during Pangea assem-
bly (Collins, 2003). The model proposed here, where significantly 
thickened and large-scale orogenic belts are only formed over 
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whole mantle downwellings associated with lower mantle subduc-
tion, may thus also apply for Pangea.

The Mesozoic is mostly associated with continental dispersal, 
without large-scale orogenic episodes, with the exception of the 
Jurassic Cimmerian block accretion in the Tethys. The first large-
scale crustal thickening episode may be related to the Laramide in 
the Late Cretaceous. The lack of large-scale episodes of continental 
thickening in the Mesozoic is consistent with the idea that during 
this time slabs were not anchored in the lower mantle, which facil-
itated slab rollback and continental dispersal (Bercovici and Long, 
2014). For example, the opening of the Atlantic and the westward 
motion of the Americas appears to have been facilitated by the 
retrograde motion of the Cordillera subducting slab (Husson et al., 
2012).

In the Mesozoic, the style and planform of convection cells was 
likely different to what we infer today (Zhong et al., 2007). The 
characteristics of this evolving convective pattern can be investi-
gated by tracking the geographic locations of net plate convergence 
and divergence, under the assumption that they correspond to 
deep mantle downwelling and upwelling, respectively (Conrad et 
al., 2013). This analysis suggests that the divergent component did 
not have change significantly during the last 250 Ma and may have 
remained positioned over a large-scale upwelling beneath Africa 
and Pacific. Conversely, convergence shifted from an equatorial fo-
cus during the Tertiary, to a more polar position in the Mesozoic, 
and then back to an equatorial position at the end of the Paleozoic 
during Pangea assembly. This implies that degree two convection 
with two mantle downwellings, as inferred during the last 50 Ma, 
is not a strictly stable feature but changed between ∼100 and 200 
Ma at least for what concern the depth extent of the downwelling 
component (e.g., Zhang et al., 2010).

In summary, the history of orogeny and the connection with 
deep mantle convection during the Tertiary suggests that only 
lower mantle subduction produces orogeny and sustains exten-
sive crustal thickening. Currently, this is related to global mantle 
circulation within the Indo-Atlantic “box” (Davaille et al., 2005), 
through which the Cordillera and Tethyan orogeny are linked (Sil-
ver et al., 1998), including in terms of their timing at ∼50-60 
Ma. A similar connection between convection and orogeny may 
hold in the Phanerozoic during the assembly of Pangea. Therefore, 
large scale orogeny may be viewed as the surface expression of 
vigorous whole mantle convection episodes during earth history 
(Alvarez, 2010; Faccenna et al., 2013; Hoffman, 2014). If this model 
is correct, we should then expect that phases of lower mantle sub-
duction (avalanching?) produce pulses of large-scale compression, 
favoring the inversion of continental margins and eventually con-
tinental assembly (cf. Condie, 1998).
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Fig. 11. Conceptual model for an orogenic cycle. The duration of the whole cycle could last for 10 to 100 Myr. Slab penetration induces a change from slab-pull to mantle 
orogeny type, producing large scale compression in the upper plate. Slab break-off and total uncoupling from upper to lower mantle slab could generate a general collapse 
of the large orogen, returning back a new stage of subduction orogeny.
7. Orogeny, the Wilson cycle, and super-continent assembly

There is general agreement on relating the formation of wedge-
type orogeny to subduction (e.g., Royden, 1993; Jamieson and 
Beaumont, 2013). The origin of the large-scale, double vergent 
orogens and the related formation of high plateaus is, however, 
more enigmatic (e.g., Vanderhaeghe, 2012). Previous models sug-
gested that protracted compression could favor the transition from 
wedge type to large scale Himalayan-Tibet by migration of the “S-
point”; the deep contact point between the descending and upper 
plate (Jamieson and Beaumont, 2013). However, this model does 
not seem to apply to the case of the Cordillera. In our alternative 
model, double-vergent orogeny represents the surface expression 
of mantle processes, related to slab anchoring at depth and to the 
onset of a whole mantle convection cell, dragging the subduct-
ing and upper plate against one another for a protracted period 
of time.

Subduction and mantle orogeny are here presented as end-
members. However, since they are related to slab dynamics, which 
can be highly time-dependent, it is of course possible to transition 
from one to the other type and stage of orogen growth as part of 
an evolutionary cycle (Fig. 11). During the initial phase of subduc-
tion, slabs accumulate in the deep transition zone, i.e., stagnating 
at depths between ∼700 and ∼1000 km. Under this “ponded” slab 
configuration, subduction zones and their trenches predominantly 
retreat, favoring the formation of an orogenic wedge, and an asym-
metric pile of crustal slices tapering toward the subduction zone 
with limited (<50 km) crustal thickening.

Several models have shown that the penetration of slabs into 
the lower mantle is only temporarily inhibited by the action of 
the viscosity increase and negative Clapeyron slope phase change 
around the 660 km seismic discontinuity (e.g., Zhong and Gur-
nis, 1995; Christensen, 1996; Billen, 2008; Yanagisawa et al., 2010; 
Garel et al., 2014; Agrusta et al., 2017). After a few tens of Myrs, 
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i.e., once enough subducting slab accumulates within the transi-
tion zone, the slab starts to penetrate, albeit at lower rate, into the 
lower mantle. As a consequence, the slab is anchored by the more 
viscous lower mantle, which inhibits the lateral migration of the 
trench and activates a vigorous mantle return flow that drags the 
two plates against one another (Yamato et al., 2013; Faccenna et 
al., 2013; Dal Zilio et al., 2018).

This is the case for Nazca subduction beneath South America, 
where the slab penetrates into the lower mantle after a long slab 
rollback episode, which provides the impetus for the onset of An-
dean orogeny (Faccenna et al., 2017). The activity of the mantle 
orogeny may last for several tens of million years. Mantle flow as-
sociated with the large-scale convection cell may produce plumes 
on the upwelling side of the convection cell (Husson et al., 2012; 
Fig. 7). This system acts as a conveyor belt, sustaining a protracted 
mantle drag over sustained periods of time (Faccenna et al., 2013; 
Rowley et al., 2016) as for India and Arabia at present (Becker and 
Faccenna, 2011). The action of downwelling and upwelling limbs 
of the convection cells favors a double-sided orogen.

Once the deep portion of the mantle slab is disconnected from 
the shallow one, as for example after slab break-off, the anchor-
ing effect slowly vanishes along with the mantle drag (Fig. 11). 
Without the continuous drag from the downwelling mantle, the 
overthickened continental crust will collapse due to its gravita-
tional potential energy, and the mantle orogen will progressively 
evolve into a subduction orogen. This is the case for the forma-
tion of the Basin and Range after the Laramide orogeny, or the 
case of the Aegean subduction system, after the Rhodope orogeny 
was followed by orogenic collapse and a fast phase of slab rollback 
(Jolivet and Faccenna, 2000). The duration of this entire orogenic 
cycle may be of the order of 100 Myr.

The contemporaneous activity of accretionary type orogens and 
collisional type orogens, as observed today, holds also during the 
formation of Pangea and Gondwana (Cawood and Buchan, 2007). 
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Fig. 12. Conceptual model for an orogenic Wilson (1966) cycle, as is linked to mantle 
convection and ultimately leads to supercontinent assembly. The model shows the 
possible linkage between accretionary-Cordillera type and internal-Collisional type 
orogenies. The penetration of the slab into the lower mantle (stage b) induces com-
pression and consequent subduction initiation at passive margins (stage c), leading 
to the closure of the Atlantic and Indian ocean (stage d).

Thus, it is possible to include the concept of an orogenic cycle 
into the large, global-scale supercontinental cycle, and so link the 
time-dependent recycling of oceanic plates to the continental plate 
record.

Several models have been proposed to address the dynamics of 
the supercontinental cycle. The dispersal of continents could be re-
lated to the heating and upwelling of continent-insulated mantle 
(see, e.g., Gurnis, 1988), it could be driven by slab avalanching that 
in turn excites upwelling from the lowermost mantle (Zhong et al., 
2007; Li and Zhong, 2009; O’Neill et al., 2015), or emerge sponta-
neously by slab rollback (Bercovici and Long, 2014).

Our preferred scenario starts after continental assembly, here 
explored for the Indo-Atlantic box (Fig. 12). The dispersal of the 
continent occurred under upper mantle restricted convection that 
favored slab rollback (stage a; e.g.. Bercovici and Long, 2014; Ca-
wood et al., 2016). After a phase of stagnation of subducted mate-
rial in the transition zone, the slab can penetrate and thus expe-
riences anchoring in the lower mantle (Fig. 12b). This produces a 
decrease in the trench retreat rate and triggers large-scale whole 
mantle convection (Zhong et al., 2007; Li and Zhong, 2009; Hus-
son et al., 2012; Faccenna et al., 2013, 2017; Yang et al., 2018), 
which then drags the plates towards the downwelling zone (Fac-
cenna et al., 2017). This induces compression not only over the 
downwelling zone, forming a thick mantle orogen, but also over 
12
the entire plate system (Husson et al., 2012; Yamato et al., 2013; 
Faccenna et al., 2017; Yang et al., 2018). Under these conditions, 
a passive Atlantic-type margin can be slowly inverted and con-
verted into an active margin (Faccenna et al., 1999; Yamato et al., 
2013; Baes at al., 2020), which could ultimately lead to the clo-
sure of the Atlantic (Wilson, 1966) if the trench on the Pacific 
side advances toward the upper plate (Fig. 12c, d). This scenario 
likely played a role in the assembly of Pangea. Whether Pangea 
formed on top of the African plume upwelling, and if this is dy-
namically plausible, is debated (Torsvik et al., 2008; Li and Zhong, 
2009; Conrad et al., 2013). Irrespective of that, deep mantle sub-
duction would naturally excite return flow upwellings and buoyant 
plumes (e.g., Tan et al., 2002; Fig. 7), perhaps from the large, low 
shear wave velocity province margins. Those plumes might then 
locally weaken the upper plate and favor the initial breakup (e.g., 
Condie, 1998; Li and Zhong, 2009). Subsequently, rollback of the 
slab subducting beneath the Americas would again trigger conti-
nental dispersal during a new phase of restricted upper mantle 
convection (Fig. 12a). Recent modelling effort support this idea, 
showing that mantle drag is acting efficiently during collision and 
increasing during period of supercontinental assembly (Coltice et 
al., 2019).

The suggested relationships between subduction and the super-
continental cycle can be best illustrated along an equatorial global 
cross section, going back to the Pangea stage and imagined forward 
to the next assembly (Fig. 13). The contemporaneous formation of 
an accretionary, Gondwanide orogen and the Variscan-Appalachian 
and Ural collisional orogens in the Pangea stage suggests that the 
plate system was under compression (Fig. 13h), and likely orga-
nized with a convection pattern similar to that of the present-day 
(Conrad et al., 2013), which is linked to deep mantle subduction. 
Afterward, during the entire Mesozoic, slab rollback provided the 
free lateral boundary condition for continental dispersal to occur 
under the action of continuous upwelling beneath the continental 
interior (Fig. 13g). In this phase, slabs were then disconnected from 
their deeper portions and mainly restricted to the upper man-
tle. As a consequence, no large orogens were formed. Then from 
50-60 Ma onward, a new phase of lower mantle slab penetration 
occurred, establishing a degree-two style of convection, and creat-
ing the necessary conditions for a new compressional and orogenic 
phase (Fig. 13e-f). If this model is correct, subduction into the 
lower mantle could be considered as intermittent from the Paleo-
zoic onward. Episodes of lower mantle subduction occurred mainly 
in the Paleozoic and Tertiary, while in the Mesozoic slabs would 
have been mainly confined to the upper mantle (Machetel and We-
ber, 1991; Tackley et al., 1993; O’Neill et al., 2015).

As to what will happen in the future, we can speculate about 
two possible scenarios. If the Caribbean and South Sandwich sub-
duction zones can propagate laterally and spread over the Atlantic 
seaboard, the system may evolve to a new supercontinental phase 
leading to the formation of Pangea Ultima by closure of the in-
ternal ocean, i.e. introversion type assembly (Fig. 13d, c; Nance 
et al., 1988; Scotese, 2000; Murphy and Nance, 1991). This im-
plies that the Cordillera subduction zone will advance over large 
distances or, more probably, will vanish as it converts from an ac-
tive to a passive margin. The alternative scenario is extroversion, 
caused by the closure of the external Pacific Ocean, forming the 
Amasia supercontinent (Hoffman, 1992) (Fig. 13a, b). Extroversion 
is favored by slab rollback as it implies the fast consumption of a 
large oceanic domain. Rodinia and Gondwana (Pannotia) probably 
belong to this style of continental assembly (Hartnady, 1991). From 
this perspective, the style of continental assembly is determined by 
the style of subduction, where deep lower subduction favors intro-
version (Condie, 1998) and upper mantle, ponded slab subduction
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Fig. 13. Transition from Pangea to next future supercontinent, Pangea Ultima (introversion) or to AmaAsia (extroversion) from a mantle convection perspective. Note that 
Pangea sections have been rotated to a more northeastern direction to better cross-cut the different orogenic systems (see inset). The reconstruction assumes that Africa did 
not substantially translate longitudinally during the last 250 Ma (Torsvik et al., 2008). e) Convection model as in Faccenna et al. (2013).
and trench rollback favors the extroversion mode (Silver and Behn, 
2008). The time-dependent penetration and anchoring of slabs in 
the lower mantle depends upon a range of parameters, such as 
slab age and velocity, mantle viscosity structure, and the 3-D ex-
tent of the slab. Further exploration of such dynamics should be 
viewed within an integrated tectonic-convective framework.
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8. Conclusions

We find it useful to distinguish between two orogeny end-
members: those of subduction or slab-pull type, related to predom-
inantly one-sided subduction confined to the upper mantle, and 
those of mantle or slab-suction type, related to whole mantle scale 
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convection. The associated structure of orogeny is distinct: in the 
first case, the shape of the belt is highly asymmetric, with taper-
ing toward the subduction zone, crustal thickening that does not 
exceed ∼50 km, and an orogenic belt mainly composed of lower 
plate units. Mantle orogeny, conversely, shows a more symmetric 
shape and large crustal thickening within the upper plate.

We test this idea using idealized numerical models exploring 
the relationships between mantle dynamics and orogeny. Our re-
sults imply that extreme crustal thickening and significant upper 
plate compression likely form when the slab enters and anchors 
into the lower mantle, which induces a large-scale convection cell 
that drags the two plates against each other for a protracted pe-
riod of time. This effect can be enhanced by thermal upwellings 
from the lower mantle that are near to, and triggered by, the lower 
mantle slab.

We explore the applicability of this model by considering the 
present-day distribution of compressional backarc regions, and Ter-
tiary and Late Paleozoic orogeny episodes, and reach the following 
conclusions:

i) The relationships between maximum slab depth for represen-
tative subduction zones as inferred from seismic tomography 
(Li et al., 2008a; Fukao and Obayashi, 2013; van der Meer et 
al., 2018) show that most of the backarc regions where slabs 
reached depths larger than ∼1000 km are under compression.

ii) The central Andes Cordillera and the Tibetan-Himalayan sys-
tem formed at around the same time in the Tertiary. Based on 
kinematic reconstructions, we show that the onset and pro-
gression of crustal thickening in both areas is accompanied at 
depth by slab penetration into the lower mantle, and both re-
gions are located over the downwelling limbs of a large-scale, 
whole mantle convection cell. Therefore, irrespective of the 
variable tectonic settings and subducting plate styles, we infer 
that extreme crustal thickening is driven by mantle convection.

iii) Prior to the Tertiary, large-scale orogeny occurred during 
Pangea assembly when the Gondwanide accretionary orogeny 
and the Alleghian-Ouachita-Variscan collisional orogeny
formed. We propose that this large-scale episode of orogeny 
is also induced by large scale mantle flow; lower mantle sub-
duction leads to continental assembly.

If our model is correct, orogeny and extreme crustal thickening 
episodes can be used to decipher time-dependent mantle convec-
tion. This also implies that that lower mantle subduction may have 
occurred episodically throughout much of the Phanerozoic, induc-
ing the large-scale compressional stresses that eventually lead to 
supercontinental cycling.
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Liu, L., Spasojević, S., Gurnis, M., 2008. Reconstructing Farallon plate subduction be-
neath North America back to the Late Cretaceous. Science 322 (5903), 934–938.
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