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On the Elastic and Viscous Properties of Media Containing
Strongly Interacting In-plane Cracks

T. DAHM1 and TH. BECKER1

Abstract—We calculate elastic moduli and viscosities for media containing strongly interacting
in-plane shear cracks. The cracks are randomly oriented or aligned, with equal length or a logarithmic
size distribution. Our results from both a boundary element and a finite-element method suggest that the
average moduli are best approximated by a differential, self-consistent model (DEM). Thus crack-to-
crack interaction, which is considered in the DEM model, is important at high crack densities. This
result seems to be different to results obtained from numerical experiments with highly fractured
anti-plane shear cracks.
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1. Introduction

A medium containing numerous cracks behaves differently compared to the
homogeneous medium. In seismology it is convenient to define average or effective
elastic moduli to estimate the average elastic properties of the cracked medium.

O’CONNELL and BUDIANSKY (1974) have proposed a first model for the effect
of nonintersecting cracks on the macroscopic elastic properties of solids based on a
self-consistent approximation. However, the expressions that they arrived at for the
dependence of the elastic constants of the material upon crack density appear
unreasonable at high crack densities, since then their bulk and shear modulus
become negative and their Poisson’s ratio exceeds 0.5. Vanishing moduli at finite
crack concentrations due to connecting cracks can be expected for real rocks near
the percolation threshold and may be considered in an effective media model using
additional constraints (e.g., MUKERJI et al., 1995).

BRUNER (1976) and HENYEY and POMPHREY (1982) have modified the analysis
of O’Connell and Budiansky and presented reasonable solutions for effective elastic
constants always lying in the physical range. In our analysis we follow the method
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of BRUNER (1976), which is sometimes called modified self-consistent approxima-
tion (e.g., DAVIS and KNOPOFF, 1995) or differential effective medium (DEM).

CHATTERJEE et al. (1978); HUDSON (1980); HUDSON and KNOPOFF (1989)
showed that although the interaction between cracks is considered in the self-
consistent model, the dipole-dipole interactions are neglected and may have a
practical importance at high crack densities.

In order to investigate the importance of higher order crack-to-crack interac-
tion, DAVIS and KNOPOFF (1995) numerically calculated the shear modulus of a
solid body containing randomly oriented, strongly interacting, nonintersecting
anti-plane cracks. Surprisingly, they found that a much simpler model (first-order
perturbation theory, mean field model) than the self-consistent model, which
totally neglects the crack-to-crack interaction, gives a more satisfactory approxi-
mation to the calculation of the effective shear modulus. At high crack concen-
trations and in the so-called long wavelength limit, the crack-to-crack interaction
has a vanishing influence on the shear modulus and the SH-wave velocity.

Encouraged from the works of Davis and Knopoff, we performed numerical
experiments with strongly interacting, nonintersecting in-plane shear cracks. The
estimated shear modulus can for instance be used to predict the SV-wave veloc-
ity at high crack concentrations and in the long wavelength limit. Our results are
inconsistent with the predictions of the mean field model. In contrast to DAVIS

and KNOPOFF (1995) our elastic constants are more satisfactorily approximated
by the DEM model, where crack-to-crack interaction is taken into account.

2. The Differential Effecti6e Medium Model (DEM), Applied to In-plane Shear
Cracks (2D)

The effect of interaction between cracks is induced by assuming that each
crack behaves as embedded in a material having the average elastic properties of
the cracked body. The approach of BRUNER (1976) is to consider a process
whereby the crack density is gradually increased from zero to its final value. Let
U be the strain energy per unit width of an equally deformed elastic body with
area A under constant loading at its free boundaries (plane strain case, see
HAHN, 1976, p. 180),

U=
A

4G0

[(1−n0)(sx+sy )2−2(sxsy−t2
xy )], (1)

where G0 and n0 are the shear modulus and the Poisson’s ratio of the homoge-
neous, isotropic body, respectively, and sx, sy are the normal stresses in the x
and y direction, respectively, and txy is the shear stress. Inserting a single in-
plane crack increases the total energy of the body by (e.g., HAHN, 1976, p. 132):
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DU=
pa2

2G0

(1−n0)t2, (2)

where a is the half-length of the crack and t the shear traction on its surface before
insertion. After insertion the shear traction on the crack is assumed to be zero.

2.1. Isotropic Case

The simplest model is to assume that the cracks are randomly oriented within
the body, so that the overall elastic properties are still isotropic. Then, in the DEM
approximation the rate of change of strain energy with respect to crack number n
is equated by the same quantity as in (2), but expressed in terms of the applied
constant load and the changing macroscopic elastic moduli of the isotropic,
effective body.
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is the crack density defined after DAVIS and KNOPOFF (1995), n is the number of
cracks, and �t2� is the mean of the squared shear tractions on the cracks. For
randomly oriented cracks �t2� is one half of the squared maximal shear stress in
the body, 0.5 · t2

max. dU/dc in (3) is exact for randomly oriented cracks with equal
length, and slightly overestimated for randomly oriented cracks with varying length.

Without loss of generality we choose the principal stresses s1 and s2 of the
loading system inclined at 45° to the xy-coordinate system, so that

sx=sy=
s1+s2

2
, txy=tmax=−

s1−s2

2
, �t2�= f · t2

xy,

where f=0.5. This leads to

−[(1−2n)(s1+s2)2+ (s1−s2)2]
1
G

dG
dc

−2(s1+s2)2 dn

dc
= f(1−n)(s1−s2)2. (4)

This differential equation can be solved by choosing two different types of loading,
e.g., pure shear (s1=−s2) and uniform pressure (s1=s2), which leads to

n(c)=
(1−n0) efc/2+2n0−1

2(1−n0) efc/2+2n0−1

G(c)
G0

=
1

2(1−n0) efc/2+2n0−1
. (5)
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The effective Poisson’s ratio n(c) in (5) is limited between 0 and 0.5 and increases,
while the effective shear modulus G(c) decreases with increasing crack density (Fig.
1). A Poisson’s ratio of n0:0.5 is realized when the bulk modulus is much larger
than the shear modulus. Replacing average strain by average strain rate n0=0.5 can
be viewed as an equivalent model to estimate effective viscosities.

2.2. Aligned Cracks

In the case that all cracks are inclined by an angle d=0° with respect to the
maximal shear stress, the equation for the effective shear modulus in (5) can still be
used when setting f=1. We included this special case of aligned cracks in our
numerical experiment for reasons given later.

We checked the validity of our assumption and give a brief explanation in the
following. For a general anisotropic plane-strain case we can rewrite the stress strain
relation for average stress and strain as:
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where cijkl are components of the effective elasticity tensor, and cijkl=cjikl=cijlk=cklij

is valid. The six independent components of the elasticity tensor can in general be
estimated by three experiments, e.g., simple shear (a) (exx=eyy=0, exy=e), pure
shear (b) (exx=−eyy=e, exy=0), and uniform loading (c) (exx=eyy=e, exy=0).
When all cracks are aligned and inclined with d=0° with respect to the x axis, the
symmetry of the experiment and the symmetry of the single-crack deformation field
ensure that the average components cxxxy and cyyxy are both zero. We proved this
numerically for strongly interacting and randomly located but strictly aligned cracks.

Figure 1
Relative effective shear modulus Geff/G0 and Poisson’s ratio n as a function of the crack density c and
different initial Poisson’s ratios n0. The predictions of the DEM model are plotted for n0=0, 0.25 and

0.5, the ones of the mean field approximation for n0=0.25.
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A consequence of this special symmetry is that the average component cxyxy

is equal to the isotropic shear modulus G and can be estimated with a single
simple shear experiment. We also numerically proved that uniform loading (c)
and a pure shear experiment (b) generate no dislocation on the aligned cracks.
In accord with theoretical expectations the shear forces on cracks are in both
cases zero.

With these results it is easy to show that the average components fulfill,
similar to the isotropic case, the relations cxxxx=cyyyy=a+2b and cxxyy=a,
where a and b are elastic constants. Therefore equations (1) and (4) with f=1,
originally derived for the isotropic case, can still be used to derive the effective
elastic constants in (5).

However, we emphasize that average elastic properties are not isotropic for
aligned cracks, it is only possible to compare one elastic constant estimated with
a specific experiment with formulas derived for the isotropic case. We also
recognize that our aligned-crack anisotropy problem is different from cracked (or
layered) transverse isotropy problems addressed by others (e.g., ANDERSON et
al., 1974; HUDSON, 1980; PYRAK-NOLTE et al., 1990). In our case we have six
independent elastic constants (and two additional for anti-plane cracks) while the
SV-wave propagation in transversely isotropic media is controlled by four elastic
constants. However, our as well as transversely isotropic media allow purely
transverse S waves propagating parallel or vertical to aligned cracks with a
velocity of 6= (cxyxy /r)1/2, where r is the rock density. We did not evolve the
full dependence of velocity on incidence angle, which is beyond the scope of this
paper.

3. Mean Field Approximation

In the mean field approximation one assumes that the rate of change of
strain energy is independent of the crack concentration and equals (2), which
leads to (HENYEY and POMPHREY, 1982; DAVIS and KNOPOFF, 1995):

n(c)=
2n0+ (1−n0)c
2+2(1−n0)c

G(c)
G0

=
1

1+ (1−n0)fc
. (6)

Since crack-to-crack interactions are neglected in the mean field model, the
change in elastic constants with respect to crack density is smaller than predicted
from the DEM model (Fig. 1).
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Figure 2
Geometry and boundary conditions of the numerical experiment. The body is subjected to a constant
dislocation in x direction at its top and fixed at the bottom. The side walls are free of normal stress and

fixed in y direction.

4. Numerical Experiments

We simulate a simple shear experiment to estimate the effective shear modulus.
A quadratic elastic body with side length L is fixed at its bottom and sheared at its
upper boundary with a constant displacement ux=u/ (Fig. 2). Movement on the
side walls is restricted in the horizontal direction. Due to the defined deformation,
the shear stress txy within the body takes a final value, from which the effective
shear modulus can be estimated by:

Geff=
�txy�
2�exy�

=�txy�
L
u/ , (7)

where �exy�=u/ /2L is the average shear deformation, and �txy� the average shear
stress within the body. The relative effective shear modulus is calculated from the
shear stress of the homogeneous body (t0) and the average shear stress of the
cracked body under the same boundary conditions by:

Geff

G0

=
�txy�

t0

. (8)

DAVIS and KNOPOFF (1995) estimated effective shear moduli from the energy of the
composite. In our experiment the energy of the composite depends not only on the
shear modulus, but also on the Poisson’s ratio. Therefore we chose eq. (8) to
estimate Geff. We used a boundary element method of CROUCH and STARFIELD

(1983) and a modified finite-element method of ZIENKIEWICZ (1977) to model the
elastic behavior of the cracked body.
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4.1. Boundary Element Method

In the boundary element method (BEM) the cracks within the body are divided
into straight line segments on which the magnitudes of constant dislocations are
treated as unknowns that are solved for by satisfying stress-free boundary condi-
tions at the center of the line segment. The interaction between cracks is taken into
consideration using analytic kernel functions of homogeneous media. The
boundaries of the body itself are simulated by placing fictitious dislocation sources
on it and demanding the stress or displacement on the inner side to be zero. This
is a correct approach as long as the body is completely surrounded by fictitious
dislocation sources.

The stresses and displacements at an arbitrary point within the body are
calculated in a second step from the dislocations on the cracks and boundaries of
the body.

The calculated magnitudes of crack and boundary dislocation sources are
accurate when enough line segments are used to sample the problem. As a rule of
thumb one must carefully consider that the minimal distance between neighboring
cracks is slightly larger than the length of the line segments on the cracks. For
example, we divided each crack into segments of equal length (between 2 and 36
segments, depending on the length of the crack), and fixed the minimal distance
between cracks to more than one and a half segment lengths.

DAVIS and KNOPOFF (1995), who also used a boundary element method,
simulated up to 10000 cracks with up to 64 line segments. To solve such large
inversion problems they used a Jacobi iterative scheme, and had to choose initial
values of displacements to be those of the noninteracting case. We find that our
smaller simulations (between 100 and 160 cracks) are large enough to face the
problem of crack interaction, and we were able to use a standard inversion routine
like LU factorization to solve the inversion problem within a reasonable time
(several minutes to hours).

4.2. Finite Elements

The finite-element method (FE) used is an implementation of the split-node
technique as introduced by MELOSH and RAEFSKY (1981). It modifies the standard
set of equations’ force vector (see e.g., ZIENKIEWICZ, 1977, for a description of the
FE method) to enable the incorporation of dislocations at special nodes in a
discrete grid. Prescribing the slip distribution along embedded lines of nodes, one is
able to model the elastic media’s response to cracks or faults. The boundary value
problem of stress-free crack surfaces under external loading was iteratively solved.
In the first step an initial slip on each crack-node was applied such that the shear
stress is reduced. After calculating the inverse coefficient matrix once and solving
for the resulting stress field, the remaining shear stress on each crack-node was used
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to estimate an incremental slip added in the next iteration. The iteration process
was terminated when the remaining stress on each crack-node dropped below 10−4

of the loading stress. Generally 200 iterations within 10 to 20 minutes CPU-time
were needed to simulate single crack problems.

The FE single crack solution accurately converged to the analytical solution
when enough crack-nodes were introduced. Using a typical crack-node interval of
Dx:0.04×a, where a is the half-length of the crack, resulted in a deviation of the
estimated to the theoretical slip of about 2%.

We chose linear form functions and triangular elements. All meshes have been
generated automatically using a gridding routine of SHEWCHUK (1996). The nodal
distribution was constrained to be equidistant on the cracks, to show a higher
density on the crack tips and to obey a minimum angle of 25° and maximum area
of a2/16 at each element. The maximum number of nodes used was 18000.

4.3. Accuracy of our Calculations

We compared the numerical solutions with analytical solutions for the single
crack under pressure and under shear (e.g., POLLARD and SEGALL, 1989) and
found satisfactory agreement for both the boundary element method as well as the
finite-element method (Fig. 3). For strongly interacting cracks analytical solutions
are not available. We cross-checked the results obtained with both methods. Figure
4 gives an example of the estimated shear stress over a profile at x=0 (see Fig. 2)
that crosses several systematicallly aligned cracks (d=0°, c=1.6). The shear stress
approaches zero at the crack crossing points. The small differences in estimated
shear stress are due to different fine sampling of the boundary value problem.

Average shear stress was calculated from the estimated shear stress within the
body. For the boundary element analysis we thereby excluded stress estimates at

Figure 3
Comparison of the analytical and numerical single crack solution (left: displacements ux and uy ; right;
shear stresses sxy ) on a profile on the x axis. The stress-free in-plane shear crack under constant shear

load Dsxy was placed on y=0 between x=9a.
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Figure 4
The normalized shear stress and its average as estimated with the boundary element (BE) and

finite-element method (FE) versus the distance y/L along a profile at x=0.

points near the boundary and the corner of the composite, where the segment
length of the sampled boundary became important. The estimated average stress in
Figure 4 from both methods differs about 1%.

5. Results

Different types of crack distributions have been modelled. First we used
randomly oriented cracks of equal length and of a logarithmic length distribution
(Fig. 5),

l=2a( j)=2j ·
L

100
,

with j=0, 1, . . . , 5 and n( j)=INT {(6− j) · NMAX/21}. Either the length of the
cracks (2a) or the total number of line segments (NMAX) was varied between 900
and 2000 to create crack densities between c=0.87 and c=2.0. The maximum
number of cracks was about 160. For randomly oriented cracks of equal length we
had the problem that at crack densities larger than c=1 the ordering within
subregions steadily increased when rejecting the random choice of a crack that
intersect with another one. As a consequence the cracks were not really randomly
oriented, and f=0.5 was not always met at large crack densities. To minimize
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Figure 5
Randomly oriented cracks of equal length (left) and of a logarithmic length distribution (right) with

crack densities of c=1.23 and c=2.0, respectively.

effects of a discrete crack distribution we averaged effective moduli from different
distributions with identical crack density.

These problems are avoided with aligned cracks, which is a second class of
models we tested. We simulated systematically aligned cracks of equal length, and
randomly distributed but equally oriented cracks of equal length and of a logarith-
mic length distribution (Fig. 6). About 100 cracks were used and the length of the
cracks was increased to increase the crack density from c=0 to about 2. Usually six
to ten line segments have been chosen per crack. The effective shear modulus as a
function of the crack density and the Poisson’s ratio is, for both randomly oriented
(Fig. 7) and aligned cracks (Fig. 8), best approximated with the DEM model.

Effective moduli calculated with the FE method are systematically larger than
the ones from the BEM method (Fig. 8). A closer look at this revealed that the
differences are due to a rough discretization in the corners of the FE models. This
introduces an artificial stiffness in the corners of the model, resulting in larger
effective shear moduli. Generating finer FE grids is in principle possible, but would
at this time exceed the core memory and CPU time available to us.

Figure 6
Systematic aligned cracks (left), randomly aligned cracks of equal length (middle) and of a logarithmic

length distribution (right). The crack density is c=1.6, 1.6 and 2.0, respectively.
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Figure 7
Shear modulus with respect to crack density for randomly oriented cracks of equal length and of a
logarithmic length distribution. The soid line shows the DEM solution, and the dashed line the mean

field solution.

The results obtained for effective shear moduli under matrix Poisson’s ratios of
0.5 can be transferred to estimate the effective viscosities of fractured or foliated
viscoelastic media (Fig. 9). Using the vicoelastic correspondence principle (e.g.,
CHRISTENSEN, 1982) it is possible to show that stress-free cracks under short-term
constant shear and long-term constant shear rate behave identically when substitut-
ing the shear modulus through viscosity. We explicitly proved this by extending and
applying the boundary element program to viscoelastic crack problems.
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The essential assumption in the viscoelastic model is that the crack density, e.g.,
within a fault zone, remains constant over a long enough time. In this model
individual cracks or faults may heal and others may be newly generated.

6. Discussion

This 2D study is restricted to highly fractured in-plane shear cracks, with the
hope that some broad generalizations can be elucidated that will help in the
solution of problems involving more complicated geometries. We have not investi-
gated the problem of a medium near the percolation threshold, where through-
going fractures and vanishing of the shear modulus will take place.

Figure 8
Shear modulus with respect to crack density for aligned cracks. See Figure 7 for further explanations.
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Figure 9
Effective viscosity with respect to crack density for aligned cracks.

The good consistency of our numerically estimated effective shear moduli and
the predictions of the DEM model at high crack densities is plausible and not
unexpected. The DEM model considers crack-to-crack interaction which is increas-
ingly important with decreasing distance to neighboring cracks.

However, surprise is the different character of our solution for in-plane cracks
(mode II) to comparable studies of anti-plane cracks (mode III). DAVIS and
KNOPOFF (1995) found that for highly fractured anti-plane cracks the crack-to-
crack interaction can be neglected when predicting effective moduli. As suggested
by their numerical studies they proposed a theory for the interaction of anti-plane
cracks, which unfortunately is not applicable to in-plane cracks.

To better understand these different results we looked at differences in analyti-
cal solutions between mode II and III shear cracks. The crack-tip singularity, the
most pronounced stress perturbation in the near field of a crack, may play an
important role for the interaction between cracks. The decrease of stress away from
the tip singularity is for both mode II and III cracks proportional to the reciprocal
square-root over the distance. Also the strength of the mode II and III singularity,
measured by the stress intensity factor K, is of equal size for single as well as
periodic collinear cracks. Analytic solutions of periodic collinear cracks are of
special interest since their crack-to-crack interaction leads to a steady increase of
K-values with decreasing distance between the cracks (Fig. 10, and GROSS, 1996).
For collinear periodic cracks, interaction near the tip is of equal importance for
both mode II and III cracks. The strong and evenly enhanced stress singularity of
interacting cracks has not been considered in the theory proposed by DAVIS and
KNOPOFF (1995), since they neglect the contribution to the perturbation stress field
from regions between narrowly spaced crack-tips.

Both, the equal strength and radial attenuation of the stress singularity at the
crack tip indicates that the influence of one crack to another is similar for mode II
and III cracks.
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Figure 10
Amplification factor of the strength of the crack tip singularity versus the tip-to-tip distance (normalized

to the crack length) for collinear periodic mode II and III cracks (e.g., GROSS, 1996).

Another measure of the interaction potential is given by the spatial pattern of
the perturbation strain energy. Neighboring cracks within regions of enhanced
perturbation strain energy behave differently compared to homogeneous loading.
The perturbation strain energy of mode II cracks has four major lobes, two in
crack-direction and two orthogonal to the crack, while that of a mode III crack has

Figure 11
Perturbation strain-energy ×2G for a mode II and a mode III crack. The crack with half-length a is

placed on the x axis between −15x/a51.
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only two lobes in crack-direction (Fig. 11, and POLLARD and SEGALL, 1989). On a
profile at y=0 both modes generate the same strain energy for �x �\a, while on a
profile at x=0 the mode II strain energy is larger than that of mode III crack. This
different pattern may influence the interaction between cracks. However, this
comparison does not suggest that crack-to-crack interaction can be totally neglected
for mode III cracks and is important for mode II cracks.

7. Summary

The differential effective self-consistent model gives the best approximation to
predict the moduli of media with strongly interacting in-plane cracks. This seems to
be different for strongly interacting anti-plane cracks, for which a model disregard-
ing the crack-to-crack interaction gives better approximations. We transferred our
results to predict effective viscosities, which may be considered to estimate the
long-term behavior of foliated regions or of fractured viscoelastic media with
steady-state crack densities.
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